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PREFACE 

The Committee on the Undergraduate Program in Mathematics 

(CUPM) was established as a standing committee of the Mathematical 

Association of America (MAA) in 1959.* With financial assistance 

from the National Science Foundation, CUPM in 1960 began to engage 

in several projects and activities related to improvement in the 

undergraduate curriculum. These projects often involved the publica-

tion of reportsj which were widely disseminated throughout the mathe-

matical community and were available from the CUPM Central Office 

upon request. Since a change in the funding policy of the United 

States government makes the continuing production and free distribu-

tion of such reports extremely unlikely, the MAA has decided to 

publish in permanent form the most recent versions of many of the 

CUPM recommendations so that these reports may continue to be readily 

available to the mathematical community and may conveniently be kept 

on the reference shelves of mathematics libraries. 

This COMPENDIUM is published in two volumes, each of which has 

been divided into sections according to the category of reports con-

tained therein. These CUPM documents were produced by the coopera-

tive efforts of literally several hundred mathematicians in the 

United States and Canada. The reports are reprinted here in essen-

tially their original form; there are a few editorial comments which 

serve to update or cross-reference some of the materials. 

The editorial work for the COMPENDIUM was started by William Ε. 

Mastrocola during his term as Director of CUPM and completed after 

his return to Colgate University. He was assisted in the early 

stages by Andrew Sterrett and Paul Knopp, Executive Directors of 

CUPM during 1972 and 1973. Preparation of the final manuscript for 

the printer was the joint work of William E. Mastrocola and Katherine 

B. Magann. The considerable efforts of these individuals is deserving 

of special recognition. 

* A detailed history of CUPM can be found in an article by W. L. 
Düren which appeared in the American Mathematical Monthly, vol. 74, 
pp. 23-37. 
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STATISTICS 

In 1968 CUPM appointed a Panel on Statistics for the purpose 
of providing guidance to departments of mathematics at smaller col-
leges and universities on instruction in statistics. Two concerns 
of general interest were identified for study by the Panel: a pro-
gram to prepare students for graduate study in statistics and a 
basic service course in statistics for students who have not studied 
calculus. The Panel pointed out that these two topics represent 
curricular extremes for statistics instruction in most undergraduate 
programs and that many students' program of study will lie between 
these extremes. 

The Panel's first report, Preparation for Graduate Work in 
Statistics, was issued in 1971. This document describes the type of 
training and experiences which undergraduates contemplating graduate 
study in statistics ought to have. It outlines a basic one-year 
course in probability and statistics, indicates those mathematics 
courses which are valuable for pregraduate preparation in statistics, 
and comments on computer requirements and experience with data. 

The Panel's second project involved a study of the introduc-
tory, noncalculus statistics courses which are offered by practi-
cally every college and taken by students in a wide variety of 
fields. Prompted by the fact that many of the existing courses are 
unsatisfactory for a variety of reasons, the Panel developed a set 
of objectives for such a course and made concrete suggestions for 
realizing the objectives. A detailed list of topics for a conven-
tional course in introductory statistics, as well as some suggested 
alternate approaches, appears in the 1972 publication Introductory 
Statistics Without Calculus. 
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...Both Computer Science and Statistics have dual sources of 
identity and intellectual force, only one of which is mathe-
matical; hence they are more accurately described as partly 
mathematical sciences. ... 

Modern statistics could not operate without mathematics, 
especially without the theory of probability. Equally, it 
could not exist without the challenge of inference in the 
face of uncertainty and the stimulus of the quantitative 
aspects of the scientific method ... statistics is both a 
mathematical science and something else. 

...It is true that undergraduate preparation for majors in 
mathematics, with its traditional emphasis on core mathe-
matics, provides an excellent foundation of knowledge for 
potential graduate students in statistics. It does not, 
however, provide nearly enough students with either motiva-
tion to study statistics or an understanding of the extra-
mathematical aspects of statistics.* 

This report consists of three main sections: (1) Introduc-
tory comments on the field of statistics and its study at the grad-
uate level; (2) A recommended undergraduate program for prospective 
graduate students in statistics; and (3) Implications of the recom-
mendations for departments of mathematics and their students. Our 
recommendations are addressed to departments of mathematics of four-
year colleges and smaller universities which have no specialized 
departmental programs in statistics. At these institutions, the 
department is unlikely to have an experienced or trained statisti-
cian although it is often called upon to offer statistics courses as 
a service for students majoring in other fields. 

I. STATISTICS AND GRADUATE STUDY 

In our modern technological society there is a continually 
increasing demand and necessity for quantitative information. This 
requires planning and skill in the collection, analysis, and inter-
pretation of data. Statisticians deal with inherent variation in 

* The Mathematical Sciences: A Report, by the Committee on Support 
of Research in the Mathematical Sciences of the National Research 
Council for the Committee on Science and Public Policy of the 
National Academy of Sciences, Washington, D. C. Publication 1681 
(1968), pp. 84 and 157. 
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nature and measurement and are concerned with the planning and de-
sign of experiments and surveys, with methods of data reduction, and 
with inductive decision processes. 

Statistics has made significant contributions to many fields, 
most notably to the experimental sciences, agriculture, medicine, 
and engineering. It has also had an important role in the develop-
ment of other fields such as economics, demography, and sociology. 
Statistics and quantitative methods are assuming major roles in 
business and in the behavioral sciences, roles destined to receive 
more and more emphasis. The widespread use of computers in these 
fields increases the need for statisticians at all educational 
levels. 

Although a demand exists in government and business for per-
sons with only undergraduate training in statistics (especially in 
conjunction with training in computer technology and a subject-matter 
field), the attainment of competence in statistics at a professional 
level necessarily requires graduate study. Our recommendations deal 
with minimum undergraduate preparation for this study. It is gener-
ally agreed that broad knowledge of mathematics is required to pro-
ceed with graduate work; currently about two thirds of all graduate 
students in statistics were undergraduate mathematics majors.* Ad-
vanced study in some field (physical, biological, or social science) 
in which data play an important role is also very helpful. 

A significant part of graduate study in statistics is the at-
tainment of a sound understanding of advanced mathematics and the 
theory of statistics and probability, since these are necessary for 
research in statistics and also for competent consultation on appli-
cations of statistics. The consultant seldom encounters textbook 
applications and is regularly required to modify and adapt proce-
dures to practical problems. 

Graduate study in statistics, at both the M.A. and Ph.D. de-
gree levels, is available in a substantial number of universities. 
According to a survey published in The American Statistician (Octo-
ber, 1968), there are in the U. S. and Canada approximately 85 
departments which offer undergraduate degrees in statistics. There 
are approximately 160 departments at 110 universities which offer 
programs leading to graduate degrees in statistics or subject-matter 
fields having a statistics option. These graduate programs of study 
lead to frontiers in both theory and application. The M.A. degree 
provides suitable qualifications for many positions in industry and 
government, often as a consultant or team member in research and 
development, as well as for positions in teaching at junior colleges. 

Aspects of Graduate Training in the Mathematical Sciences, Vol. II, 
page 62, 1969. A report of the Survey Committee of the Conference 
Board of the Mathematical Sciences, 2100 Pennsylvania Avenue, N.W., 
Suite 834, Washington, D. C. 20037. 
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It is also useful for persons who will pursue advanced degrees in 
fields such as psychology and education in which statistical method-
ology plays a significant role. The Ph.D. degree provides addi-
tional preparation for research and teaching careers in universities 
as well as in government and industrial organizations. 

II. THE RECOMMENDED PROGRAM OF STUDY 

Our recommendations for undergraduate courses are subdivided 
into four areas: (A) probability and statistics, (B) mathematics, 
(C) computing, and (D) other requirements. In this section we de-
scribe recommended courses in each of these areas. 

A. Probability and Statistics Requirements 

We recommend that students take at least a one-year course in 
probability and statistics and gain experience with real applica-
tions of statistical analysis. 

1. Probability and Statistics Course (6 semester hours) 

A description of this course (Mathematics 7) can be found in 
Commentary on A General Curriculum in Mathematics for Colleges, 
page 79. 

2. Experience with Data 

We believe that students should have experience with realistic 
examples in the use of the statistical concepts and theory of the 
key course. They should work with real data, consider the objectives 
of the scientific investigation that gave rise to these data, study 
statistical methods for answering relevant questions, and consider 
the interpretation of the results of statistical analyses. These 
goals are not easy to achieve, but various approaches are discussed 
below. 

An appropriate course is not likely to be already available in 
a department of mathematics. The typical one-semester precalculus 
elementary statistics course, usually serving students from depart-
ments other than mathematics, does not fulfill the goals that we 
recommend. 

Courses in research methodology or applied statistics in other 
subject matter areas may meet, at least in part, some of the objec-
tives of exposing students to realistic statistical problems. For 
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example, courses in biological statistics, research methods in be-
havioral science, economic statistics or econometrics, survey meth-
ods, sociological statistics, etc., can meet our intended objective 
if they are offered by practicing scientists who are familiar with 
the way data are generated, the complexities they usually exhibit, 
and the methods that help in their analysis. Although such a course 
will provide coverage of some topics in elementary statistical meth-
ods, it is important that the course be more than a catalog of meth-
ods. The student should see how some one field of science generates 
experimental data and copes with uncertainty and variability. In-
sight gained from relatively few examples or ideas can be consider-
ably more valuable for the student than information obtained by 
covering a large number of separate topics. Modern computers could 
be useful in such a course. 

If a faculty member with training and experience in applied 
statistics is available to the mathematics department, he can devise 
a data analysis course. This course could be based on a number of 
data sets of interest to the student, and it could use books on sta-
tistical methods as reference material for the appropriate statisti-
cal techniques. Basic texts on statistical methods which contain a 
variety of examples of applications of statistical methods include: 

Dixon, Wilfrid J. and Massey, F. J., Jr. Introduction to 
Statistical Analysis, 3rd ed. New York, McGraw-Hill Book 
Company, 1969. 

Fisher, R. A. Statistical Methods for Research Workers, 
13th ed. New York, Hafner Publishing Company, 1958. 

Guttman, Irwin and Wilks, Samuel S. Introductory Engineering 
Statistics. New York, John Wiley and Sons, Inc., 1965. 

Li, C. C. Introduction to Experimental Statistics. New 
York, McGraw-Hill Book Company, 1964. 

Natrella, Mary G. Experimental Statistics, Handbook 91. 
U. S. Department of Commerce, National Bureau of Standards, 
1966. 

Snedecor, George W. and Cochran, W. G. Statistical Methods. 
Ames, Iowa, Iowa State University Press, 1967. 

Walker, Helen M. and Lev, Joseph. Statistical Inference. 
New York, Holt, Rinehart and Winston, Inc., 1953. 

Wallis, Wilson A. and Roberts, Harry. Statistics: A New 
Approach• New York, Free Press, 1956. 

Wine, Russell L. Statistics for Scientists and Engineers. 
Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1964. 
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Winer, Β. J. Statistical Principles in Experimental 
Design. New York, McGraw-Hill Book Company, 1962. 

Examples of data sources and/or statistical critiques of major sci-
entific investigations are: 

Tufte, Edward R. The Quantitative Analysis of Social 
Problems. Reading, Massachusetts, Addison-Wesley Publishing 
Company, Inc., 1970. 

Kinsey, A. C ; Pomeroy, W. B.; Martin, C. E. Sexual 
Behavior in the Human Male. Philadelphia, Pennsylvania, 
W. B. Saunders Company, 1948. 

Report on Lung Cancer, Smoking, and Health. Public Health 
Bulletin 1103. Superintendent of Documents, U. S. Govern-
ment Printing Office. 

Cochran, William G.; Mosteller, Frederick; Tukey, John W. 
Statistical Problems of the Kinsey Report. Washington, D. C. 
American Statistical Association, 1954. 

"The Cochran-Mosteller-Tukey Report on the Kinsey Study: 
A Symposium." Journal of the American Statistical Associa-
tion, 50 (1955), p. 811. 

Cutler, S. J. "A Review of the Statistical Evidence on the 
Association Between Smoking and Lung Cancer." Journal of 
the American Statistical Association, 50 (1955), pp. 267-83. 

Brownlee, K. A. "Statistics of the 1954 Polio Vaccine 
Trials." Journal of the American Statistical Association, 
50 (1955), pp. 1005-1014. (An invited address on the article 
"Evaluation of 1954 Field Trial of Poliomyelitis Vaccine: 
Summary Report." Poliomyelitis Vaccine Evaluation Center, 
University of Michigan, April 12, 1955.) 

The following books use experimental and survey data to illustrate 
statistical concepts and techniques: 

Bliss, Chester I. Statistics in Biology. New York, McGraw-
Hill Book Company, 1967. 

Cox, David R. Planning of Experiments. New York, John Wiley 
and Sons, Inc., 1958. 

Davies, Owen L. Design and Analysis of Industrial Experi-
ments, 2nd rev. ed. New York, Hafner Publishing Company, 
1956. 

Ferber, Robert and Verdoorn, P. J. Research Methods in 
Economics and Business. New York, The Macmillan Company, 
1962. 
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Stephan, Frederick F. and McCarthy, Phillip J. Sampling 
Opinion—An Analysis of Survey Procedures. New York, 
John Wiley and Sons, Inc., 1958. 

Youden, William J. Statistical Methods for Chemists. New 
York, John Wiley and Sons, Inc., 1951. 

When an experienced applied statistician is not available, the 
mathematics department may be able to develop a seminar with the 
assistance of faculty members in other disciplines. Typical experi-
mental areas in a discipline may be discussed and illustrated with 
data from on-going faculty research or from student term projects. 

Another opportunity to provide students with exposure to prob-
lems in data analysis is through laboratories associated with the 
key course in statistics. In such a laboratory, students may be 
asked to analyze data sets, followed by class discussion. Alterna-
tively, term project assignments incorporating study, review, and 
critique of statistical studies with major data sets could be uti-
lized. Still another opportunity would be through projects devel-
oped for independent study following the key course. 

The important element in this recommendation is that the stu-
dent obtain understanding of the role played by statistical concepts 
in scientific investigations and be motivated to continue the study 
of statistics. 

3. Additional Courses 

We recommend that additional courses in probability and sta-
tistics be offered to follow the key course whenever possible. Such 
courses could explore in detail a few topics which were omitted or 
treated lightly in the key course, e.g., analysis of variance, ex-
perimental design, regression, nonparametric methods, sampling, se-
quential analysis, multivariate methods, or factor analysis. 

Other subjects which could serve as useful enrichment are sto-
chastic processes, game theory, linear programming, and operations 
research. Courses in these subjects would be useful to students 
with specialized interests and also would help widen the knowledge 
and capabilities of the prospective graduate student in statistics. 

Β. Mathematics Requirements 

We recommend that students take at least a complete 9-12 
semester hour sequence in calculus, a course in linear algebra, and 
a course in selected and advanced topics in analysis. 
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1. Beginning Analysis (9-12 semester hours) 

This sequence includes differential and integral calculus of 
one and several variables and some differential equations. It is 
desirable that prerequisites for calculus, including a study of the 
elementary functions and analytic geometry, be completed in secondary 
school. 

For detailed course descriptions, we refer the reader to Com-
mentary on A General Curriculum in Mathematics for Colleges, page 
44. This beginning analysis sequence is adequately described by 
GCMC's courses numbered 1, 2, and 4. We think it important to note 
that elementary probability theory is a rich source of illustrative 
problem material for students in this analysis sequence. 

2. Elementary Linear Algebra (3 semester hours) 

This course, which may be taken by students before they com-
plete the beginning analysis sequence, includes the following topics: 
solution of systems of linear equations (including computational 
techniques), linear transformations, matrix algebra, vector spaces, 
quadratic forms, and characteristic roots. An outline for such a 
course (Mathematics 3) can be found on page 55. 

3. Selected Topics in Analysis (3 semester hours) 

The GCMC course Mathematics 5 is not particularly appropriate 
for statistics students, and it is recommended that a course includ-
ing the special topics listed below be offered for these students in 
place of Mathematics 5. 

Such a course should give the student additional analytic 
skills more advanced than those acquired in the beginning analysis 
sequence. Topics to be included are multiple integration in η 
dimensions, Jacobians and change of variables in multiple integrals, 
improper integrals, special functions (beta, gamma), Stirling's 
formula, Lagrange multipliers, generating functions and Laplace 
transforms, difference equations, additional work on ordinary dif-
ferential equations, and an introduction to partial differential 
equations. 

It is possible that the suggested topics can be studied in a 
unified course devoted to optimization problems. Such a course, at 
a level which presupposes only the beginning analysis and linear al-
gebra courses and which may be taken concurrently with a course in 
probability theory, would be a valuable addition to the undergradu-
ate curriculum, not only for students preparing for graduate work in 
statistics but also for students in economics, business administra-
tion, operations research, engineering, etc. Experimentation by 
teachers in the preparation of written materials and textbooks for 
such a course would be useful and is worthy of encouragement. 
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4. Additional Courses 

The following courses from Commentary on A General Curriculum 
in Mathematics for Colleges are not required but are desirable as 
choices for students who wish to have more than minimal preparation. 
A strong course in real variables is especially recommended for stu-
dents interested in working for the Ph.D. in statistics. 

Mathematics 6M. Introductory Modern Algebra. 
Mathematics 8. Numerical Analysis. 
Mathematics 10. Applied Mathematics. [See also 

the CUPM report Applied Mathematics in the Undergraduate Curriculum.1 
Mathematics 11-12·. Introductory Real Variable Theory. 
Mathematics 13. Complex Analysis. 

In general, the stronger a student's background in undergraduate 
mathematics, the better prepared he is for graduate work in statis-
tics. If faculty members with special interests and competence are 
available, additional courses or seminars in the areas mentioned on 
page 466 would be valuable additions to the curriculum for a student 
interested in advanced work in statistics. 

C. Computing Requirements 

We recommend that students be familiar with a modern highspeed 
computer and what it can do, and that they have some actual experi-
ence analyzing data which are sufficiently obscure to require the use 
of a computer. 

It is quite clear that the computer is becoming increasingly 
important to almost every academic discipline; in addition, it is an 
integral part of business, government, and even everyday affairs. 
These are strong enough reasons for every student who receives a bac-
calaureate degree to be acquainted with the computer and its poten-
tial. However, it is even more important that someone who intends 
to be a professional statistician know and understand the modern com-
puter. Anyone who trains in statistics, who will handle data or 
work with and advise people who handle data must have a certain mini-
mum competence in the use of a computer. While it is true that in-
creased competence will be developed as the need arises and that 
some of the more sophisticated applications can be learned while 
doing graduate work, it is recommended that a student who comes into 
a graduate program in statistics begin his training in this area at 
the undergraduate level. 

The most desirable way to be sure that sufficient competence 
is acquired would be through taking a regular course in computing 
such as Introduction to Computing, the course CI described in the 
CUPM report Recommendations for an Undergraduate Program in Computa-
tional Mathematics [page 563]. It is, of course, possible to obtain 
an acceptable level of competence by attending the lectures or 
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informal courses given in many computing centers, supplemented by 
sufficient additional computing experience. A student should under-
stand and be able to use one of the major programming languages. He 
should learn enough of the nomenclature and characteristics of a 
computer to be able to stay abreast of the developments that will 
surely occur during his working lifetime. He should be made aware 
of and have some experience with library programs that are available. 
And, perhaps most important for our special purposes, students should 
have experience with actual data, with the numerical analysis and 
statistical problems they generate, and with the use of the computer 
for simulation. Some of this experience could be obtained by the 
techniques recommended in Section A2 above. The course CM1 of the 
above-mentioned report on computational mathematics [page 551] is 
also based on simulation techniques and would therefore be appropri-
ate for students of statistics. 

Finally, we suggest that in the next decade the availability 
of computers will change many subject-matter areas. If the statis-
tician is to be an effective consultant in these areas, he must be 
aware of the way in which the computer is shaping the disciplines 
with which he will be associated. 

D. Other Requirements 

Statistics deals with the drawing of inferences from data and, 
in its applications, involves the statistician in working jointly 
with subject-matter specialists in the framing of relevant questions, 
developing appropriate methodology for drawing inferences, and 
assisting in the analysis of final results. Whether a person will 
principally do research in statistical methodology, teach statistical 
applications, or consult on statistical applications, knowledge of 
one or more areas of application and an understanding of the nature 
of statistical problems in them is highly desirable. 

Undergraduate preparation for work in statistics should there-
fore include study of a variety of areas of application, with one 
studied in some depth. This will insure that the student, upon grad-
uation, will have an acquaintance with fundamental concepts in a 
variety of areas and technical competence to a moderate extent in at 
least one of the physical, life, or social sciences. Courses se-
lected for study of a field in depth may include a statistical or 
research methodology course offered by that field, in which the 
student will develop an understanding of data collection and data 
handling problems. The student's adviser may be particularly help-
ful in identifying such a course. Students who wish to undertake 
graduate study in specialized areas of statistics, such as econo-
metrics or biostatistics, will find it desirable to take at least 
some advanced work in these areas as undergraduates. 
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III. IMPLICATIONS OF THE RECOMMENDATIONS 

We are aware that at the present time most mathematics depart-
ments have few advanced courses in statistics available and few, if 
any, trained statisticians on their staffs. Because of the late 
date when a student may discover the field of statistics, he may not 
have time to elect many of our recommended courses even if these are 
available. Finally, some of the courses he takes will be designed 
not only for prospective graduate students but for students with 
other majors and interests as well. 

Were these and other limitations not present, we would expect 
our recommended program and the mathematics department to serve the 
needs of undergraduate students by not only imparting to them knowl-
edge of the field of statistics but also by enabling them to dis-
cover their abilities and interests and, if appropriate, by arousing 
their interest in graduate study in statistics or a related field. 
But limitations do exist, and it is not to be expected that all of 
our recommendations can be implemented quickly or that all the needs 
of students will be met by the programs in mathematics departments. 
It is difficult to meet all student needs under the best of circum-
stances. Realistically it is to be expected that severe limitations 
in time and facilities will prevent the student from obtaining a 
well-rounded understanding of the subject at the undergraduate level, 
but at least he can be exposed to some of the basic ideas in statis-
tics. Perhaps most important, a program designed to achieve limited 
goals with relatively few courses, even if it falls short of the full 
program we recommend, can arouse the interest of students in statis-
tics and related fields. 

In the light of the recommendations in this and other CUPM re-
ports (especially GCMC) dealing with courses in probability, statis-
tics, and related areas, it is highly desirable, and we recommend 
that each department of mathematics review its course offerings so 
as to establish appropriate courses in probability and statistics 
and arrange that these courses be staffed by a person competent in 
these fields. Ph.D.s in statistics are increasingly available to 
four-year colleges and smaller universities. With the establishment 
of courses in probability and statistics taught by a person compe-
tent in these fields, the mathematics department can serve the needs 
of prospective graduate students in statistics by (1) arousing in-
terest in and demonstrating the nature of the field of statistics; 
(2) giving students an acquaintance with statistics, its theory, its 
applications, its traditions, even some of its open problems, and 
its relation to other fields such as probability, pure and applied 
mathematics, computer science, and operations research; (3) counsel-
ing students as to courses, curricular choices, and graduate and 
career opportunities in probability, statistics, pure and applied 
mathematics, computer science, and operations research. 

In creating this report, the Panel on Statistics confined its 
attention to recommending undergraduate programs for students who 
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intend to do graduate work in statistics. In the development of 
appropriate recommendations, however, it became apparent that a 
broad program of study in the mathematical sciences was emerging, a 
program suitable, we believe, not only for graduate study of sta-
tistics but also for graduate study in the quantitative aspects of 
the social sciences and business and in newer areas such as opera-
tions research and computer science. The recommendations developed, 
therefore, can form the basis for an innovative degree program in 
the mathematical sciences different from the traditional programs in 
pure or applied mathematics. 

The recommended program accomplishes important secondary ob-
jectives. These include: (1) A decision by students on the nature 
of their future graduate study can be made at a later point in the 
undergraduate program. (2) Mathematically gifted students are ex-
posed to a wider range of potential careers than is presently the 
case. (3) The possibility is created for a substantial emphasis in 
the mathematical sciences to be used as part of an undergraduate 
major, not only in mathematics and statistics but also in other 
departments and in interdisciplinary programs. 

The needs and opportunities for an innovative undergraduate 
program in the mathematical sciences are great. It can provide op-
tions in computer science, applied mathematics, econometrics, opera-
tions research, statistics, probability, and pure mathematics—all 
built around a solid core of training in mathematics. Early expo-
sure to the concepts and possibilities of a variety of these options 
can lead to better choices of areas of concentration later on. A 
curriculum within this framework, combining mathematics, statistics, 
computing, and at least one field of application, has great poten-
tial for continued study in various graduate programs as well as 
value as a terminal degree program. The student may proceed from 
such an undergraduate program to advanced study in statistics, opera-
tions research, econometrics, psychometries, demography, or computer 
science. He also will have excellent qualifications for advanced 
work in sociology, political science, business, urban planning, or 
education. If the undergraduate program in mathematical science is 
a terminal one, the student will have employment opportunities in 
computing, business, industry, and government, with qualifications 
to meet many social needs. 

The minimum preparatory program outlined in Section II can be 
supplemented in a variety of ways with additional work leading to 
undergraduate majors in (1) mathematics, (2) statistics, (3) compu-
tational mathematics [see Recommendations for an Undergraduate Pro-
gram in Computational Mathematics, page 528], (4) other fields (e.g., 
psychology, political science, economics, sociology, engineering, 
linguistics, business administration—especially management sciences, 
biological and physical sciences). 
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PREFACE 

Colleges and universities offer a great variety of courses in 
introductory statistics with no calculus prerequisite. Courses of 
this kind are frequently offered by several departments within a 
single institution, and therefore this report should be of interest 
to instructors in many departments, not merely to those in mathe-
matics and statistics. 

Section I contains a discussion of the background of the re-
port and some review of past and current approaches to the general 
introductory course. Section II contains recommended objectives for 
the course and a discussion of their implications. A conventional 
course is developed in detail in Section III, followed by recom-
mendations for alternative approaches in Section IV. Sections V 
through VII contain suggestions for improving the effectiveness of 
the course, useful in all of the various approaches to it. Selected 
bibliographies are included in each section, and a list of addi-
tional resource materials appears at the end of the report. 

The Panel is indebted to many colleagues for their participa-
tion in a fact-finding conference and for their thoughtful comments 
on a draft version of this report. 

I. INTRODUCTION 

This report is concerned with a general introductory sta-
tistics course without a calculus prerequisite, which is typically 
a one-semester or one-quarter course offered at the sophomore or 
junior level in college. For many students this is a terminal 
course, although some students may elect additional courses in sta-
tistics or in research methods. In four-year colleges and smaller 
universities it is often taught by the mathematics department as a 
service to other departments. 

An introductory statistics course without a calculus prerequi-
site is often required of students majoring in many different fields, 
such as business administration, psychology, sociology, forestry, 
and industrial engineering. In addition, this course serves as an 
elective subject for other students. An understanding of statis-
tical concepts is important for students in any subject where data 
play an important role. Knowledge of basic concepts also permits 
students to use data more effectively in making everyday decisions 
as citizens and consumers, and it might stimulate them to learn more 
about statistics in order to obtain the competence needed for re-
search and analysis in their major fields of interest. Some stu-
dents' interest-might even be aroused sufficiently by this intro-
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ductory course to encourage them to prepare for a program in sta-
tistics at the graduate level. 

Concern for a noncalculus-based introductory statistics course 
has been frequently expressed. Many studies have been conducted to 
consider how to make this course a worthwhile, challenging intellec-
tual enterprise that provides students with some understanding of 
basic statistical concepts. (See, for instance, "Interim Report of 
the Royal Statistical Society Committee on the Teaching of Statis-
tics in Schools." Journal of the Royal Statistical Society, Series 
A, 131 (1968), pp. 478-497.) 

One point of interest has been the proliferation of introduc-
tory statistics courses that has taken place on most large campuses. 
These courses may differ not only in content but also in emphasis 
and method of approach. Some of the factors responsible for this 
are the desire by different disciplines to have courses tailored to 
their needs, the varying backgrounds of persons teaching statistics, 
and the different objectives for the basic statistics course. 

Proliferation in itself is not necessarily undesirable and in-
deed may be desirable if introductory courses directed to specific 
disciplines serve to motivate the basic concepts of statistics more 
effectively or if substantially different objectives are being 
served. However, no widespread satisfaction has been expressed by 
professional statisticians concerning any of the introductory sta-
tistics courses that have been developed. These courses have been 
criticized as follows: 

1) Their emphasis is mathematical or probabilistic without 
providing sufficient insights into statistical concepts. 

2) They provide little insight into the variety and useful-
ness of the applications of statistics. 

3) They are too technique-oriented, overemphasizing computa-
tion and underemphasizing the fundamental ideas underly-
ing statistical reasoning. 

4) They give insufficient attention to drawing statistical 
inferences from real data. 

5) They fail to provide intellectual stimulation. 

6) They fail to allow for the "symbol shock" suffered by 
some students. 

7) They provide inadequate motivation for an interest in 
stochastic (random) models and fail to differentiate them 
from the deterministic models with which students are 
more familiar. 
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The discussion and recommendations that follow are designed to 
counter some of these criticisms through suggestions on course objec-
tives, alternative approaches, curricular content, increased motiva-
tion, computer use, data sets, and student-generated data. 

II. RECOMMENDED OBJECTIVES AND THEIR IMPLICATIONS 

1. Recommended Objectives of Introductory Statistics Courses 

When one considers the variety and extent of the demands for 
an "ideal" first course in statistics, one recognizes the impossi-
bility of having any one course come even close to the ideal. No 
one course can (1) serve as an appreciation course so that students 
can understand the underlying ideas of statistical methodology and 
statistical inference, (2) discipline students to think quantita-
tively and to appraise data critically, (3) give students the facil-
ity to analyze data for everyday problems, (4) train students to 
understand probabilistic models and their uses in a variety of situa-
tions, and (5) enable students to master the basic techniques of 
statistical methodology and to use these techniques flexibly in 
their own applications. 

Hence, it is not possible for the Panel to prescribe an ideal 
introductory statistics course. The special needs of the depart-
ments which require this course, the abilities and interests of the 
instructor, and the different characteristics of the students will 
influence the nature of the course. However, the following guide-
lines are recommended by the Panel: 

a. The introductory statistics course must have limited ob-
jectives . Otherwise, it is likely that none of the objectives will 
be met adequately. 

b. The primary objective of the introductory statistics course 
should be to introduce students to variability and uncertainty and to 
some common concepts of statistics; that is, to methods such as point 
and interval estimation and hypothesis testing for drawing inferences 
and making decisions from observed data. 

c. A secondary objective of the introductory statistics course 
should be to teach the student some common statistical formulas and 
terms and some of the widely used statistical techniques; e.g., the 
t-test. 

The primary objectives may be met in many ways. Much of the 
report considers the conventional introductory course but with a 
view to highlighting desired emphases and utilizing a variety of 
approaches to enhance interest and motivation. Utilization of 
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computers, data sets, experiments, and demonstrations for greater 
clarity and motivation are discussed. The report also contains sug-
gestions for implementing the primary objective through less conven-
tional approaches, e.g., nonparametric, decision-theoretic, and 
problem-oriented approaches. The intent of much of the report is to 
suggest possible ideas for syllabus and presentation; the instructor 
must seek that combination suited to his needs and those of his stu-
dents. 

The Panel recommends the primary objective of the introductory 
statistics course, stated above, because an understanding of the 
basic statistical concepts is essential to an intelligent and flex-
ible use of statistical techniques. The use of techniques without 
understanding of concepts can be dangerous. If the introductory 
statistics course is largely devoted to concepts, students can ob-
tain additional knowledge of statistical techniques in two basic 
ways. They can take a second-level statistics course which focuses 
on a variety of statistical techniques or a course in a subject in 
which specialized statistical techniques are introduced in a context 
in which they are used. 

2. Implications of the Recommended Objectives 

A number of implications follow from the declared objectives. 

a. Since the main objective of the course is understanding of 
basic statistical concepts, it follows that proofs and extensive 
manipulations of formulas should be employed sparingly. While sta-
tistics utilizes these, its major focus is on inferences from data. 

b. The course should not dwell on computational techniques. 
Rather, the amount of computation and whether it is done on a high-
speed computer, a desk calculator, or by hand should be determined 
by the extent to which it helps the students to understand the prin-
ciples involved. 

c. While probabilistic concepts are essential for an under-
standing of statistical inference, probability theory should not con-
stitute a dominant portion of the course. 

d. In order to illustrate the application of statistical 
methodology in making inferences, the course must be data-oriented 
and must incorporate analysis of real-world data. 

Three critical dimensions of the introductory statistics course 
are inferential philosophy, mathematics, and data analysis. Among 
these components we believe that the emphasis should be strongly on 
inferential concepts and data analysis, and less on mathematical 
elernents. 
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3. Recommended Topics to be Covered 

As we have stated earlier, no single introductory statistics 
course will be suitable for all situations. Within the framework of 
the objectives for the introductory statistics course just recom-
mended, a wide variety of courses can be designed. In Sections III 
and IV we consider several different courses which could meet the 
stated objectives: (1) a more or less standard statistics course, 
(2) a decision-theory oriented statistics course, (3) a statistics 
course embodying the nonparametric approach, and (4) a statistics 
course utilizing a problem-oriented approach. 

Despite the variety of possible approaches, most courses will 
include the elements of probability, the binomial and normal dis-
tributions, the distinction between sample and population, descrip-
tive statistics (such'as mean, median, variance, standard deviation, 
and frequency distribution), and statistical inference. The study 
of inference will treat hypothesis testing, point estimation, and 
confidence interval estimation and will include the use of the t-
statistic. 

We present two lists: one includes important topics from 
which a limited selection should be made since no single course can 
reasonably be expected to cover a large fraction of these topics; 
second is a list of topics which should be avoided unless they are 
used as fundamental pedagogical tools or are logically essential 
(such as Bayes1 theorem for a Bayesian approach). 

a. Important topics from which a selection should be made 

1. Probability: sample space, mutually exclusive events, 
independent events, conditional probability, random 
variable (expected value, variance, standard deviation) 

2. Samples: frequency distribution, histogram, ogive, per-
centiles, mean, median, variance, standard deviation, 
mode, range 

3. Distributions: normal, binomial, Poisson, exponential, 
rectangular, geometric 

4. Sampling theory: Law of Large Numbers, Central Limit 
Theorem 

5. Estimation: point estimates, confidence intervals 

6. Hypothesis testing: alternative and null hypotheses, 
power function; errors of types I and II, significance 
levels, one-tail and two-tail tests 

7. One-sample tests: for the mean of a normal distribution 
(t-test), for the proportion of a binomial distribution 
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8. Two-sample tests: t-test, Mann-Whitney test, sign test 

9. Chi-square and contingency tables 

10. Regression and correlation 

11. Analysis of variance 

12. Decision theory: minimax and Bayes' strategies, admis-
sibility 

b. Topics to be avoided (except when they serve as useful teaching 
devices) 

1. Combinatorics 

2. Bayes1 theorem 

3. Partial regression 

4. Sequential analysis 

5. Maximum likelihood and likelihood ratio 

6. Compendia of variations of a given procedure like the 
t-test 

7. Inference on variances using chi-square distributions 
(because they involve nonrobust procedures) 

III. A CONVENTIONAL COURSE IN INTRODUCTORY STATISTICS 

An approach to the teaching of elementary statistics whose 
popularity is reflected in the most widely used textbooks may be 
called the conventional approach. It is characterized in part by a 
logical development in which basic tools are developed slowly and in 
some detail before serious statistical problems are attacked. 

Because of the popularity of the conventional approach and the 
existence of a wide variety of texts oriented toward this approach, 
it is the one most likely to be used in two-year and four-year col-
leges and in smaller universities in the near future. We therefore 
believe it is wise to focus primarily on this kind of course, par-
ticularly since significant modifications and enrichments can make 
it a worthwhile intellectual experience. 

This traditional approach has potential defects, as noted 
earlier. Typically, the major ideas of statistical inference are 
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introduced too late and in haste, and they are often illustrated by 
examples which are not compelling. Frequently, courses of this kind 
suffer from the inclusion of irrelevant concepts and excessive mathe-
matical derivations. Finally, the attempt to break up the subject 
into small digestible bits may cause the student to miss the unifying 
concepts of statistical inference. The course outline and comments 
which follow attempt to provide guidance on topics and suggestions 
for avoiding these defects. 

1. Course Outline 

A recommended conventional course outline, which permits early 
treatment of the ideas of statistical inference and which stresses 
concepts rather than a proliferation of statistical techniques is 
given in this section. The suggested pace has been indicated by 
assigning a number of hours to each group of topics. A standard se-
mester contains 42 to 48 class meetings, and we arbitrarily allowed 
36 hours of class time for the presentation of new material; the 
slack time that we have left provides for tests, review, etc. More 
detailed suggestions of what to mention only briefly and what to 
emphasize are included in the Comments, Section 2. 

CONVENTIONAL COURSE OUTLINE 

Topics Lectures 

0. Introduction 1 

1. Statistical Description 3 
Frequency distributions, cumulative 
frequency distributions; measures of 
location and variation 

2. Probability 3 
Concept; sample space; addition theorem; 
marginal probability; conditional proba-
bility; multiplication theorem; inde-
pendence 

3. Random Variables and Probability Distributions 2 
Concepts; simple discrete univariate 
probability distributions; expectation 
and variance of discrete random variables; 
functions of discrete random variables; 
mean and variance of functions of discrete 
random variables 

4. Special Probability Distributions 2 
Binomial probability distribution; con-
tinuous probability distributions; normal 
probability distribution 
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5. Sampling Distributions 3 
Random sampling; mean and variance of sum 
of independent random variables; sampling 
distribution of mean; Central Limit Theorem; 
sampling distribution of proportion 

6. Estimation of Population Proportion 4 
Point estimation of population proportion; 
confidence interval for population propor-
tion based on large samples 

7. Tests Concerning Population Proportion 5 
Formulating hypotheses; statistical 
decision rules; types of errors; power 
of a test; construction of one-sided and 
two-sided tests (small and large samples) 

8. Inferences Concerning Population Mean 4 
Point estimation of population mean; 
properties of estimators: unbiasedness, 
consistency, efficiency; confidence in-
tervals and one- and two-sided tests of 
hypotheses for the mean of a population 
whose variance is also unknown, based on 
small and large samples 

9. Additional Topics 4-9 

Selection from the following: 

(a) Inferences concerning differences of two 
population means and proportions 

(b) Inferences concerning population variance 
(c) Chi-square and contingency tables 
(d) Regression and correlation 
(e) Analysis of variance 
(f) Nonparametric methods 
(g) Survey sampling 
(h) Quality control 
(i) Bayesian methods 
(j) Decision theory 

The number of lectures assigned to topics 1-8 is a minimal number. 
Use of computers, case discussions, and student-generated data will 
require additional time. Since these activities will vary from 
course to course, we have indicated a number of lectures for each 
topic without considering such activities. Consequently, the number 
of lectures available for additional topics usually will be less than 
the maximum of nine. We do recommend, however, that at least four 
lectures be devoted to one or more of the additional topics. 
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2. Comments on the Course Outline 

General. Since the above outline contains only a list of 
topics, it does not recognize four important ingredients that we 
believe will enhance the conventional approach. 

a. Continuing motivation of the student through examples and 
problems that he finds interesting and important. Data sets and 
student-generated data are discussed in Sections V and VII. 

b. Use of computers to help develop basic concepts such as 
the Central Limit Theorem as well as to remove the drudgery of sta-
tistical calculations. Use of computers is discussed in Section VI. 

c. Emphasis on the basic ideas underlying statistical infer-
ence and a demonstration of how these recur from one application to 
another. This requires skillful teaching and demands that the 
teacher see the broad picture of statistical inference. 

d. Student use of programmed learning materials for develop-
ing mastery of important but routine topics. We believe it is 
wasteful to use precious class time having students practice con-
structing frequency distributions, calculating measures of loca-
tion and variation, using binomial and normal tables, etc. Class 
time is better used for explanation and discussion, not for routine 
calculations and drill. Examples of self-help programmed materials 
are: 

[1] Elzey, Freeman F. A Programmed Introduction to Statistics. 
Belmont, California, Brooks/Cole Publishing Company, 1966. 

[2] Gotkin, Lassar G. and Goldstein, Leo S. Descriptive Statistics: 
A Programmed Textbook, vols. 1 and 2. New York, John Wiley 
and Sons, Inc., 1965. 

[3] McCollough, Celeste and Van Atta, Loche. Statistical Concepts: 
A Program for Self-Instruction. New York, McGraw-Hill Book 
Company, 1963. 

[4] Whitmore, G. Α., et aj.. Self-Correcting Problems in Statistics. 
Boston, Massachusetts, Allyn and Bacon, Inc., 1970. 

The suggested time allocation in the above outline makes it 
clear that, in our view, the early material should be covered quickly 
so that statistical inference can be reached in the first half of the 
course. 

A nonexhaustive, illustrative list of texts fitting the pat-
tern of the conventional course follows. 

Illustrative List of Texts for an Introductory Course: 

[5] Alder, Henry L. and Roessler, Edward B. Introduction to 
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Probability and Statistics, 4th ed. San Francisco, California, 
W. H. Freeman and Company, 1968. 

Reviewed in Journal of the American Statistical Associa-
tion, 64 (1969), p. 675. The first edition is reviewed 
in The American Mathematical Monthly, 68 (1961), p. 1018. 

[6] Freund, John E. Modern Elementary Statistics. Englewood 
Cliffs, New Jersey, Prentice-Hall, Inc., 1967. 

Reviewed in Journal of the American Statistical Associa-
tion, 62 (1967), p. 1504. 

[7] Guenther, William C. Concepts of Statistical Inference. Nefc 
York, McGraw-Hill Book Company, 1965. 

Reviewed in Journal of the American Statistical Associa-
tion, 61 (1966), p. 529. 

[8] Hoel, Paul G. Elementary Statistics, 3rd ed. New York, John 
Wiley and Sons, Inc., 1971. 

Third edition is reviewed in Journal of the American 
Statistical Association, 67 (1972), p. 497. 

[9] Huntsberger, David V. Elements of Statistical Inference, 2nd 
ed. Boston, Massachusetts, Allyn and Bacon, Inc., 1967. 

[10] Mendenhall, William. Introduction to Statistics, 2nd ed. 
Belmont, California, Wadsworth Publishing Company, Inc., 1967. 

Second edition is reviewed in School Science and Mathe-
matics, 67 (1967), p. 754. 

[11] Walker, Η. M. and Lev, J. Elementary Statistical Methods, 
3rd ed. New York, Holt, Rinehart and Winston, Inc., 1969. 

First edition is reviewed in Journal of the American 
Statistical Association. 54 (1959), p. 699. 

Following is a list of texts which may be helpful to the in-
structor as resource materials. 

Illustrative List of References for an Introductory Course: 

[12] Blackwell, David. Basic Statistics. New York, McGraw-Hill 
Book Company, 1969. 

Reviewed in Journal of the American Statistical Associa-
tion , 65 (1970), p. 1398, and in The American Mathemati-
cal Monthly, 77 (1970), p. 662. 
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[13] Dixon, Wilfrid J. and Massey, F. J. Introduction to Statisti-
cal Analysis, 3rd ed. New York, McGraw-Hill Book Company, 
1969. 

Reviewed in Journal of the American Statistical Associa-
tion, 65 (1970), p. 456. The second edition is reviewed 
in The American Mathematical Monthly, 64 (1957), pp. 685-
686. 

[14] Hodges, J. L., Jr. and Lehmann, Ε. L. Basic Concepts of 
Probability and Statistics, 2nd ed. San Francisco, California, 
Holden-Day, Inc., 1970. 

Reviewed in Journal of the American Statistical Associa-
tion, 65 (1970), p. 1680. The first edition is reviewed 
in The American Mathematical Monthly, 72 (1965), p. 1050, 

[15] Natrella, Mary G. Experimental Statistics, Handbook 91. U. S. 
Department of Commerce, National Bureau of Standards, 1966. 

[16] Neyman, J. First Course in Probability and Statistics. New 
York, Henry Holt and Company, 1950. 

Reviewed in Journal of the American Statistical Associa-
tion, 46 (1951), p. 386. 

[17] Savage, I. Richard. Statistics: Uncertainty and Behavior. 
Boston, Massachusetts, Houghton Mifflin Company, 1968. 

Reviewed in Journal of the American Statistical Associa-
tion, 64 (1969), p. 1677. 

[18] Snedecor, George W. and Cochran, W. G. Statistical Methods, 
6th ed. Ames, Iowa, Iowa State University Press, 1967. 

Reviewed in Applied Statistics, 17 (1968), p. 294. 

[19] Wallis, W. Allen and Roberts, Harry V. Statistics: A New 
Approach. New York, The Macmillan Company, 1956. 

Reviewed in Journal of the American Statistical Associa-
tion, 51 (1956), p. 664. 

We turn now to topic-by-topic comments on the outline. These 
comments contain occasional references to books in the above lists. 

Topic 0. Introduction 

This lecture should be devoted to a discussion of the nature 
and importance of statistics, including the difference between the 
inferential nature of statistics and the deductive nature of mathe 
matics. The first lecture should illustrate the existence of 
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Statistical problems in everyday life in order to emphasize that 
statistics is problem-oriented. 

Source material which may be helpful includes: 

[20] Careers in Statistics. The Committee of Presidents of the 
American Statistical Association, the Institute of Mathematical 
Statistics, and the Biometrie Society. The American Statisti-
cal Association, 806 15th Street, N. W., Washington, D. C. 
20005. 

[21] Kruskal, William, ed. Mathematical Sciences and Social 
Sciences. Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 
1970. 

[22] The Mathematical Sciences: A Collection of Essays. Edited by 
The National Research Council's Committee on the Support of 
Research in the Mathematical Sciences (COSRIMS) with the col-
laboration of George A. W. Boehm. Boston, Massachusetts, MIT 
Press, 1969. 

[23] Sills, David L., ed. International Encyclopedia of the Social 
Sciences. New York, The Macmillan Company and the Free Press, 
1968. Listings under: 

Statistics 
Statistical analysis 
Survey analysis 

[24] Tanur, Judith, et al., eds. Statistics: A Guide to the Un-
known. San Francisco, California, Holden-Day, Inc., 1972. 

[25] Wallis, W. Allen and Roberts, Harry V. Statistics: A New 
Approach. New York, The Macmillan Company, 1956. 

Topic 1. Statistical Description 

General comments. The discussion should begin with a problem 
that will motivate the need for statistical data and their analysis 
through frequency distributions and descriptive measures. A good 
problem may be used to give an overview of the course raising ques-
tions relating to later topics. Instructors will be able to find 
problems for which data of local interest from registrars' records 
are appropriate. Examples: Are student entrance test scores higher 
today than they were five years ago? Is student family economic 
status higher today than it was five years ago? Are college-age 
students today taller than they were 30 years ago? Do college apti-
tude test scores for men differ from those for women? 

Our suggestion departs from the usual approach in which data 
are provided without the context of a problem, and a frequency dis-
tribution or a variety of descriptive measures are calculated for 
their own sake. The suggested approach emphasizes problems of 
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interence from the start; the instructor should not hesitate to 
raise questions about inferential problems that will be considered 
later in the course. 

A comparison of a frequency distribution with an expected, 
theoretical distribution, such as the birth pattern distribution in 
R. A. Fisher's Statistical Methods for Research Workers* (p. 67), is 
useful for introducing ideas of statistical inference. So is a bi-
modal distribution, the problem being whether it is made up of two 
different groups, each with a different pattern of variation. 

Specific suggestions. 

a. Class-generated data, from which one or several frequency 
distributions are constructed, often interest students. 

b. In discussing frequency distributions, one should empha-
size the variation inherent in the phenomenon under study and the 
pattern of this variation. Examples of different phenomena (e.g., 
life of light bulbs, number of calculators out of order per day) 
should be utilized to demonstrate widespread presence of variation. 

c. Data for constructing frequency distributions should be 
simple, so that little time is spent on developing class limits. 

d. The discussion of frequency polygon and histogram can be 
used to distinguish between continuous and discrete variables. 

e. In taking up the descriptive measures of location (mean, 
median) and of variation (standard deviation, range), alternate 
computational forms of the mean and standard deviation should be 
called to the student's attention, but no derivations should be 
given. A useful means of pointing out the applicability and limita-
tions of these measures is through a comparison of two or more fre-
quency distributions (e.g., income distribution for 1970 and 1971). 

f. Class time is better devoted to discussion of the meaning 
and limitations of various measures of location and variation than 
to drilling students on their calculation. 

g. Mean and median should be explained as alternate descrip-
tive measures of location, neither of which is perfect for all situa-
tions . 

Topic 2. Probability 

General comments. The way in which introductory probability is 
presented can vary greatly. It is a broad topic, intensive examina-
tion of which leads to deep philosophical problems. The approach of 

* [26] Fisher, R. A . Statistical Methods for Research Workers, 
13th ed. New York, Hafner Publishing Company, 1958. 
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Blackwell [12] in the first three chapters is elementary. The con-
cept of area is used when extended ideas are required. The basic 
laws of probability are developed, making effective use of tables 
and diagrams. A major advantage of the presentation is that it 
stays consistently at a modest mathematical level without disruptive 
digressions. 

A more complete exposition of finite probability theory is 
presented by Hodges and Lehmann in [14]. Chapters 1 and 4 contain 
material appropriate for an introduction to probability in the 
elementary statistics course. We suggest this reference as addi-
tional reading to augment the material in Blackwell. 

An interesting aspect of the modern emphasis in probability is 
that of assigning personal or subjective probabilities to events. 
For an elementary introduction, Savage [17] seems appropriate. The 
discussion includes a great deal of gambling terminology which may 
not appeal to all students. At the end of the chapter there are 
many stimulating notes and problems that are used to extend the 
theory and to show examples of probabilistic reasoning occurring in 
everyday life. Hodges and Lehmann [14] have a short section on sub-
jective probability beginning on page 127. 

Specific suggestions. 

a. Since only three lectures are devoted to probability, dis-
cussion must be restricted to the major concepts, and proofs will 
need to be kept to a minimum. Only finite sample spaces should be 
used for explaining the probability concepts. 

b. The relative frequency interpretation is a useful way to 
motivate the concept of probability. The equally-likely notion 
should not be given major emphasis, though it may be helpful if ex-
tended to real-life situations such as taste experiments or genetic 
problems. 

c. Whether set notation is to be used depends on the mathe-
matical training of the students. At any rate, the allotted time in 
the suggested outline does not permit the teaching of set theory or 
even of basic set concepts. The teacher may, however, wish to point 
out that probability theory is based on set theory. 

d. In teaching statistical independence, the conditional 
definition: 

If P(A|B) = P(A), then A and Β are independent, 

is easier for the student to understand than the product definition: 

If P(AB) = P(A)P(B), then A and Β are independent. 

e. The small amount of time allotted to probability makes it 
imperative that teachers not get bogged down in combinatorial 
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probability problems. Simple, though realistic, examples should be 
used to illustrate the probability concepts covered. 

Topic 3. Random Variables and Probability Distributions 

General comments. Random variables, probability distributions, 
and expectations are treated in fairly standard ways in most texts. 
A simple presentation is given by Blackwell [12], but his presenta-
tion is very brief. 

Specific suggestions. 

a. Do not give a formal definition of random variables; a 
statement that "the value of a random variable is a number deter-
mined by the outcome of an experiment that varies from trial to 
trial" should be adequate. 

b. Introduce probability functions and cumulative distribu-
tion functions in terms of simple examples with a small number of 
points and associated probabilities. Functions of random variables 
also should be considered only in terms of such simple examples. 

c. Stay on the intuitive level. Many definitions and results 
are intuitively reasonable for most students; for instance: 

E(X) = Σχ.Ρ(Χ = x.) 
ι ι 

E(kX) = kE(X) 

CT(kX) = ka(X), k > 0 

d. Use simple everyday examples, with three or four outcomes 
only; e.g., the number of calculators needing repair in a group of 
four calculators; the number of males in families of five persons. 

e. The mean and variance of a linear function of a random 
variable should be mentioned and their usefulness illustrated by an 
example, but formulas should not be derived. 

Topic 4. Special Probability Distributions 

General comments. Student participation can be developed both 
through access to a computer on an individual basis and through ele-
mentary class exercises involving coin tossing, tables of random 
normal deviates, and exercises of this kind. The results of student 
exercises can be combined to demonstrate sampling variation over the 
various samples obtained individually by students, thus serving as 
an introduction to Topic 5, Sampling Distributions. 

Specific suggestions. 

488 



a. State the conditions for a probability distribution to be 
binomial but do not derive its formula. 

b. Formulas for the mean and variance of a binomial distribu-
tion should be given and illustrated by a simple example but should 
not be derived. 

c. Tables of binomial probabilities should be used to demon-
strate characteristics of binomial distributions such as skewness. 
Students should not be asked to calculate binomial probabilities 
repeatedly. 

d. Use a variety of realistic examples. Do not confine ex-
amples to coin tossing; e.g., use the number of defectives in a 
sample from a shipment of parts or the number of voters favoring an 
issue in an opinion poll. 

e. The transition to a continuous random variable, for which 
area represents probability, can be facilitated by considering a 
histogram and shrinking the width of the classes. 

f. The normal distribution can be introduced as: 

(i) an approximate description of many real-life phenomena, 
such as weights of the contents of cans of fruit or 
the Scholastic Aptitude Test scores of students; 

(ii) an approximation to certain discrete distributions, 
such as the binomial distribution or the distribution 
of the sum of the digits on three dice. 

The text used will influence the approach taken, but both notions 
should be introduced. 

g. In discussing the normal distribution, one should empha-
size the variety of shapes encountered for different values of μ 
and σ and the method for transforming any normal random variable 
to a standard normal one. 

h. Realistic examples should be used for the normal distri-
bution. Students will probably be interested in SAT scores, for 
which the mean is 500 and the standard deviation is 100. 

i. Unless the text makes the continuity correction an inte-
gral part of the normal approximation to the binomial distribution, 
this topic should not be taken up or should be mentioned only 
briefly. 

Topic 5. Sampling Distributions 

General comments. Computers are effective in demonstrating 
sampling variability and sampling distributions. Exercises can be 
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developed for many distributions where the computer takes repeated 
samples of fixed size and, for example, provides information on the 
distribution of the sample mean through plots and histograms. The 
student learns of the nature of sampling variation and can proceed 
through variation in sample sizes to obtain insight into the in-
herently increased stability of sampling distributions as sample 
sizes are increased. The student can be given insight thereby into 
the behavior of the variance of a mean and into the concepts of the 
Central Limit Theorem. 

Specific suggestions. 

a. The concept of the sampling distribution of the mean can 
be explained initially by considering a small finite population and 
sampling with or without replacement with a small sample size 
(n = 2 or 3). This permits the exact sampling distribution of the 
mean to be developed by enumeration. The mean and variance of this 
sampling distribution can then be studied. 

b. Since the Central Limit Theorem should only be stated and 
not proved, evidence of its operation will need to be given to the 
student. Some texts contain exact sampling distributions for dif-
ferent sample sizes or the results of sampling experiments. Print-
outs of computer runs simulating sampling distributions for different 
sample sizes can also be distributed to students and discussed. If 
a computer is not available on campus, printouts could be obtained 
from a computer located elsewhere. 

These approaches are helpful but, in our opinion, are not as 
effective as having students participate in sampling experiments. 
A simple experiment is to sample a rectangular distribution, either 
from a table of random numbers, by drawing chips from a bowl, or by 
computer. If a computer is used, it will also be easy to sample 
other kinds of populations. Sampling a moderately skew population 
may help convince students of the Central Limit Theorem in the ab-
sence of symmetry. Indeed, the use of several populations (e.g., 
rectangular, exponential) can demonstrate to the student that the 

rapidity with which the sampling distribution of (x - μ) -r (σ/η/η) 
approaches a normal distribution as η increases depends on the 
population from which the samples are selected. 

c. It should be pointed out to students that the sample pro-
portion is a mean, and hence the Central Limit Theorem applies di-
rectly to sample proportions. 

Topic 6. Estimation of Population Proportion 

General comments. If the teacher prefers, he can take up esti-
mation of the means of continuous populations and tests concerning 
them before he discusses inferences on population proportions. In-
ferences on proportions are, in our opinion, somewhat simpler to 
present; e.g., binomial tables can be used to derive the power of 
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tests. Hence, we place inferences on proportions before inferences 
on means of continuous populations. 

Also, testing hypotheses can be taken up before estimation. 
We recommend taking up statistical estimation first because we be-
lieve it is easier for the student to understand than hypothesis 
testing. 

The most common interpretation of a confidence interval has 
been that of a random interval which contains a fixed parameter with 
given probability over repeated applications. This point of view 
has been presented traditionally in most texts. Through use of sub-
jective probability and Bayes' theorem, one can interpret a confi-
dence interval as a fixed interval (for given observed data) which 
contains a random parameter with given posterior probability. 
Savage [17] puts forward both concepts (see page 209 and page 260) 
and points out basic differences in philosophy. 

Specific suggestions. 

a. The large sample confidence interval for the population 
proportion ρ can be developed readily by relying on an extension of 

the Central Limit Theorem which states that (p - p) -=-Vp(l - p)/n 
is approximately normal for large sample size η, ρ being the 
observed proportion. 

b. An experiment with repeated sampling of a known popula-
tion, setting up a confidence interval each time, can be helpful in 
conveying the idea of the confidence coefficient and in illustrating 
that the location and width of the confidence interval varies from 
sample to sample. This can be done either by computer or by class-
generated samples. Such an experiment is particularly desirable 
since it will provide evidence of the working of the extension of 
the Central Limit Theorem. 

c. Realistic examples, such as estimation of the proportion 
of voters favoring a candidate or the proportion of persons in the 
labor force who are unemployed, will be helpful in illustrating the 
pervasiveness of estimation problems. The subject of sample surveys 
in general may be discussed in connection with statistical estima-
tion. 

d. The discussion of confidence intervals should consider the 
usefulness of the particular confidence interval obtained. For in-
stance, in a close election race involving two candidates, a confi-
dence interval for the proportion of voters favoring one of the 
candidates which ranges from .45 to .53 may not be useful. Discus-
sion of several such examples can help the student to recognize that 
different problems may call for different levels of precision. 

e. The determination of the confidence coefficient should be 
discussed in general terms. Several examples may be used to illus-
trate that important problems, such as estimating the unemployment 
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rate for purposes of determining national economic policy, call for 
higher confidence coefficients than do less important problems. 

f. The determination of the sample size required to yield a 
confidence interval of sufficiently small width for a given confi-
dence coefficient provides a useful means of introducing the stu-
dent to the notion that statistical investigations should be planned 
in advance. 

g. In discussing interval estimation of the population pro-
portion for small sample sizes, reference should be made to tables 
or to the Clopper-Pearson charts which appear in many texts and 
books of tables. See, for example, 

[27] Owen, Donald B. Handbook of Statistical Tables. Reading, 
Massachusetts, Addison-Wesley Publishing Company, Inc., 1962. 

Topic 7. Tests Concerning Population Proportion 

General comments. This subject can be discussed either by 
considering small sample sizes first and then large sample sizes, or 
vice versa. An advantage of beginning with small sample sizes is 
that power calculations can readily be made by using widely avail-
able binomial tables. A disadvantage is that the power obtained for 
small sample sizes will be relatively poor so that the student may 
feel that the statistical test is almost useless. If small sample 
sizes are taken up first, it is incumbent upon the instructor to 
note early that many practical problems require much larger sample 
sizes. 

An advantage of beginning with large sample sizes is that 
many problems can be treated much more realistically. A disadvan-
tage is that power calculations will be more tedious. 

Neyman [16] gives a complete, systematic analysis of several 
stages involved in testing hypotheses (pp. 268-271). 

Specific suggestions. 

a. A basic difficulty for most students is the proper formu-
lation of the alternatives H Q and H^ for any given problem and 

the consequent determination of the proper critical region (upper 
tail, lower tail, two-sided). 

b. Practice with problems containing a verbal statement of 
the situation and requiring the students to develop H ^ and H^ 

can be most helpful. Indeed, students should be competent in formu-

lating the alternatives H Q and H ^ and in designating the appro-

priate type of critical region before they begin the detailed calcu-

lations for determining the exact critical region. 
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c. Realistic problems should be used when the student is 
asked to formulate the appropriate alternatives and H^. 

d. Students can often be helped by introducing the critical 
region in terms of the statistic p, the sample proportion. For 
instance, if: 

Ho : Ρ = P 0 

Ηι : Ρ > P 0 » 

the student can readily see that the appropriate decision rule is of 
the form: 

if ρ S A, accept H Q , 

if ρ > A, accept H^, 

where A is the cut-off point to be determined. It can then be 
explained how to determine A if, for example, the probability of 
concluding when ρ = p Q is to be α· 

The standardized statistic (ρ - ρ ) τ Jp (1 - Ρ )/n for 

ο ο ο determining the critical region is a confusing way to introduce the 
student to testing hypotheses. After the student gains some famili-
arity with testing hypotheses, the standardized statistic then is 
more easily used. 

e. In developing the properties of a statistical decision rule 
for testing hypotheses, attention should not only be given to the 
power curve of the decision rule but also to the error curve which 
shows the probabilities of error directly. Many students understand 
the implications of a decision rule for testing more easily through 
the error curve than through the power curve [e.g., if : ρ § PQ> 

: ρ > p Q , then Ρ(Error) = Ρ(Accept | p) for ρ S P Q and 

P(Error) = P(Accept H Q | p) for ρ > PQ)]· 

f. When discussing the two-sided test, one should explain the 
correspondence between the confidence interval for the population 
proportion and the testing approach. 

g. When small sample sizes are considered first, the power of 
a test and the error probability for a given population proportion 
should be obtained using binomial tables rather than by making actual 
calculations. Binomial tables can then be used to set up a decision 
rule with specified control on type I and/or type II errors. At this 
point a transition can be made to the case of large samples and the 
use of the normal approximation. 

h. Students often do not understand how the ρ level is 
r o 

determined in an actual problem. This situation can be clarified by 
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illustrating a variety of situations, for instance: 

(i) In deciding whether a company should accept or reject 

an incoming shipment, p^ may be the break-even pro-

portion of defective items for which it is equally 

costly to accept or reject a shipment. 

(ii) In an experiment to determine whether a person has extra-
sensory perception by having him indicate whether coins 
flipped in a different city are heads or tails, p^ may 

be .5, the level expected if the person were guessing and 
no ESP were present. 

These examples illustrate two commonly encountered situations, 
namely those for which p Q is the break-even proportion and those 

for which p Q is determined by theoretical considerations as the 

level where no effects, or no effects of practical significance, are 
present. 

i. Discussion of the determination of the probability of a 
type I error (size of test) a may usefully be combined with the 
problem of how to determine sample size, as follows: 

(i) For given η and a, find the probability of type 
II error β at an appropriate value of p. If β is satisfactory, 
use the given η and a. If β is too high, increase the sample 
size. If no increase in sample size is possible, raise a until a 
suitable balance between a and β is found. 

(ii) If, for given η and α, β turns out to be 
smaller than necessary, the sample size may be reduced or a 
lowered. 

j. Sampling experiments to demonstrate the behavior of a 
given decision rule for different levels of ρ may be a helpful 
supplement for many students. 

Topic 8. Inferences Concerning Population Mean 

Specific suggestions. 

a. Some major properties of estimators (unbiasedness, con-
sistency, and efficiency) could be discussed here, but only briefly. 
If they are discussed, we recommend that it be done here rather than 
in Topic 6. We feel that students should first become acquainted 
with the general concept of statistical estimation before they be-
come concerned with properties of point estimators. 

b. In discussing the small-sample confidence interval based 
on the t-distribution, emphasis should be placed on the robustness 
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(insensitivity of properties of the procedure to departures from the 
assumption of normality) of the t-statistic and the consequent wider 
applicability of this confidence interval to populations which are 
not exactly normal. 

c. In developing inferences concerning population means, stu-
dents should not be asked to perform extensive calculations to find 
the sample mean and standard deviation. 

d. Sampling experiments for estimation and testing with small 
sample sizes can be helpful in several ways: 

(i) When sampling a normal population, the experiment 
will give the student further confidence in the 
t-distribution and will illustrate once again the 
meaning of the confidence coefficient or the level 
of significance and power. 

(ii) When sampling a population moderately different from 
a normal population (e.g., a rectangular population), 
the experiment will illustrate the robustness of the 
t-statistic. 

e. We recommend bypassing the case of known σ unless infer-
ences concerning the population mean are considered before infer-
ences concerning the population proportion. The reason for this 
recommendation is that the case of known σ does not arise often in 
practice and only serves to introduce an unnecessary repetitive ele-
ment for the student. Reliance should be placed on (χ - μ) τ (s/Jn) 
being approximately distributed as t for small η for populations 
not departing excessively from a normal population and being approxi-
mately distributed as a standard normal variable for larger η for 
almost all populations. 

If there is time available to discuss planning the sample size 
or to determine the power of the test, we recommend the use of charts 
such as those in Guenther [7]. For the case of unknown σ these 
charts could be entered by using two values of σ within which the 
standard deviation is expected to fall, thereby obtaining bounds on 
the power or sample size. 

Topic 9. Additional Topics 

Students in the social sciences might benefit most from topics 
a, c, d, f (see page 481); in the physical and biological sciences, 
from topics a, c, d, e; in management science, from topics g and h; 
in economics, from topics d and h; in education, from topics a, d, f. 
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IV. SOME ALTERNATE APPROACHES 

In this section we discuss three alternate approaches to the 
introductory statistics course. Each approach provides great poten-
tial for innovation, and some instructors may wish to try one or 
several of these in lieu of the conventional approach. For two of 
the alternate approaches (decision theory, nonparametric), a number 
of possible textbooks are available. Since the textbook used will 
have a major effect in the determination of the precise contents, 
the order of presentation, and the amount of time to be devoted to 
the various topics, no effort is made here to present outlines. In-
stead, we discuss the principles underlying the use of the approaches. 
This will serve to indicate potential advantages and disadvantages 
and to provide a foundation in terms of which the instructor may in-
terpret various texts that are now and will later become available. 

No text designed specifically for the third approach (problem-
oriented) is available, to the best of our knowledge. The instructor 
wishing to implement this approach must be prepared for substantial 
developmental efforts. 

1. A Decision Theory Course in Introductory Statistics 

Basic elements of the course. Decision theory is a formula-
tion of statistical problems in which the statistician has available 
a choice of actions, the consequences of which depend on an unknown 
state of nature. To help decide on an appropriate action, one must 
perform an experiment which will yield relevant data to help deter-
mine the state of nature. Since the data generally depend not only 
on the state of nature but also on chance, uncertainty appears in 
two places--the effect of chance, i.e., random variation, and the 
initial ignorance of the state of nature. 

A decision theory course in introductory statistics should in-
clude the following concepts. 

Concepts: Philosophical principles of decision-making under 
uncertainty; averages and measures of variability; probability 
and expectation; utility; Bayes' strategies and posterior 
probabilities; the parameters of distributions relevant for 
optimal actions; testing hypotheses, significance levels; esti-
mation, confidence intervals. 

The development of these ideas requires the presentation and use of 
(1) elementary properties of probability and mathematical expecta-
tion, (2) sets and functions on a relatively simple level, and (3) 
properties of convex sets such as the separating hyperplane theorem. 

Traditional statistical techniques of handling data such as 
histograms, cumulative frequency polygons, means and standard devia-
tions are not vital to the decision theory approach. Their intro-
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duction has considerable potential pedagogic value, however, in pre-
paring the student for the analogous probabilistic concepts of 
density, cumulative distribution function, and expectation. The 
standard statistical methods in estimation, hypothesis testing, and 
confidence intervals are not easily blended with this approach. 

Results of decision theory have implications in business and 
other real-life situations where decisions must be made in the face 
of uncertainty, and a wise choice must consider consequences of the 
available actions. 

Advantages and disadvantages of the decision theory approach. 
One major advantage of the decision theory approach over traditional 
approaches lies in the problem-solving orientation. Each example 
considered involves a problem in decis ion-making which requires a 
good and sensible answer. 

The decision theory approach should appeal to students who are 
interested in the philosophical foundations of scientific inference 
and who are curious about the rationale for coping with random varia-
tion and uncertainty. Such students would find the decision theory 
approach natural and easy to follow. It would be esthetically pleas-
ing for the student who likes mathematics and enjoys the application 
of basic ideas such as sets, functions, and convexity to clarify non-
trivial results in inference. (It is possible to present these 
results without, or with a minimum of, formal derivations.) For the 
student who anticipates further serious study of statistics, this 
course can serve as a valuable complement to his other work in sta-
tistics . 

This course will not serve for a student who is expected to 
learn some of the major tools of statistics in the first course. 
Although the course can present an exciting view of statistics and 
scientific inference, the decision theory point of view gives a 
limited view of statistics and does little to acquaint the student 
with actual statistical practice; it does not give him experience 
with data analysis. 

Another limitation of the decision theory approach is that it 
tends to involve an overformulation of statistical problems in the 
sense that the statistician is presumed to know precisely the set of 
available actions, the set of possible states of nature, the conse-
quences of the actions, and all the relevant probability distribu-
tions. Little allowance is made for the possibility of error in 
specifying the model. No provision is made for learning from data. 

While a minimum of mathematical background is required, the 
student who is very weak in mathematics will fail to enjoy some of 
the esthetic values of this approach and may find that coping with 
the elementary arithmetic and algebra distr'acts him from the main 
ideas. 
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Finally, the opportunities to apply the ideas and methods of 
such a course in other academic work are relatively few, although 
such opportunities seem to be increasing steadily as decision-making 
becomes used more and more in diverse fields such as business, engi-
neering, and medicine. 

Illustrative List of Texts and References: 

Aitchison, John. Choice Against Chance: An Introduction to Statis-
tical Decision Theory. Reading, Massachusetts, Addison-Wesley 
Publishing Company, Inc., 1970. 

Reviewed in The Australian Journal of Statistics, 13 (1971), 
p. 123. 

Chernoff, Herman and Moses, Lincoln E. Elementary Decision Theory. 
New York, John Wiley and Sons, Inc., 1959. 

Reviewed in Journal of the American Statistical Association, 
55 (1960), p. 291, and in The American Mathematical Monthly. 
67 (1960), p. 487. 

Hadley, G. Introduction to Probability and Statistical Decision 
Theory. San Francisco, California, Holden-Day, Inc., 1967. 

Reviewed in Journal of the Royal Statistical Society, Series A, 
131 (1968), p. 437. 

Lindgren, B. W. Elements of Decision Theory. New York, The Mac-
millan Company, 1971. 

Lind ley, D. V. Making Decisions. New York, John Wiley and Sons, 
Inc., 1971. 

Raiffa, Howard. Decision Analysis: Introductory Lectures on Choices 
Under Uncertainty. Reading, Massachusetts, Addison-Wesley Publishing 
Company, Inc., 1968. 

Reviewed in Journal of the American Statistical Association, 
64 (1969), p. 1668. 

Schlaifer, R. Probability and Statistics for Business Decisions: 
An Introduction to Managerial Economics Under Uncertainty. New 
York, McGraw-Hill Book Company, 1959. 

Reviewed in Journal of the American Statistical Association, 
54 (1959), p. 813. 

2. A Nonparametric Course in Introductory Statistics 

Basic elements of the course. Using nonparametric methods it 
is possible to introduce substantial problems in inference very 
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early In the course, with impressive solutions which can be easily 
comprehended. The preparation required before beginning standard 
nonparametric methods consists mainly of some work in rather ele-
mentary discrete probability. No time need be devoted to the usual 
development of histograms and the computation of means and standard 
deviations. With the early introduction of meaningful problems, the 
discussion of sampling distributions is interwoven in the develop-
ment of statistical inference in a way which leads to ready under-
standing by the student. It is possible to avoid a digression into 
combinatorics by presenting simple illustrations and relying on 
appropriate tables. 

A nonparametric course in introductory statistics should in-
clude the following concepts. 

Concepts: Probability, probability distributions, hypothesis 
testing, estimation, two-sample tests, chi-square tests and 
contingency tables, correlation, robustness. 

While it is most desirable that the introductory course using 
a nonparametric approach concentrate on nonparametric methods, it is 
possible toward the end of the course to introduce the student to 
some parametric statistics. If the instructor wishes to cover some 
parametric topics, only a few should be taken up. To be in line with 
our recommended objectives, the course should not become technique-
oriented; one should avoid making the course a compendium of non-
parametric and parametric methods. 

Advantages and disadvantages of the nonparametric approach. 
The use of nonparametric methods provides several potential advan-
tages. With the availability of appropriate tables, the detailed 
working of numerical examples, regarded by many as essential to a 
thorough grasp of principles as well as techniques, is simple and 
brief. The methods are easily interpreted and have natural and 
sensible justifications. The methods have the advantage of robust-
ness. Thus the student is quickly introduced to useful and simple 
techniques which have wide applicability. This exposure to statis-
tical concepts throughout the course provides the student with a 
foundation for a good understanding of standard parametric pro-
cedures. 

For the student who is required to take statistics to satisfy 
the demands of a major field in which statistics is used, this course 
is likely to provide an introduction to some useful nonparametric 
methods at an elementary level. 

A major disadvantage of this approach is that students will 
have little or no exposure to those parametric methods needed for 
later work in other subjects. Another disadvantage is that current 
books in nonparametric statistics do not focus on either point or 
interval estimation. Also, there are few texts at the elementary 
leve1. 
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Illustrative List of Texts for an Introductory Course: 

500 

Conover, W. J. Practical Nonparametric Statistics. New York, John 
Wiley and Sons, Inc., 1971. 

Reviewed in Journal of the American Statistical Association, 
67 (1972), p. 246. 

Kraft, Charles H. and van Eeden, Constance. A Nonparametric Intro-
duction to Statistics. New York, The Macmillan Company, 1968. 

Reviewed in Journal of the American Statistical Association, 
66 (1971), p. 223, and in The American Mathematical Monthly, 
77 (1970), p. 207. 

Noether, Gottfried E. Introduction to Statistics: A Fresh Approach. 
Boston, Massachusetts, Houghton Mifflin Company, 1971. 

Reviewed in Journal of the American Statistical Association, 
67 (1972), pp. 496-497, and in The Mathematics Teacher, 64 
(1971), p. 630. 

Other Selected References in Nonparametric Statistics: 

Bradley, James V. Distribution-Free Statistical Tests. Englewood 
Cliffs, New Jersey, Prentice-Hall, Inc., 1968. 

Reviewed in Journal of the American Statistical Association, 
64 (1969), p. 1090. 

Gibbons, J. Nonparametric Statistical Inference. New York, McGraw-
Hill Book Company, 1971. 

Hajek, Jaroslav. Nonparametric Statistics. San Francisco, Califor-
nia, Holden-Day, Inc., 1969. 

Reviewed in the Australian Journal of Statistics, 13 (19 71), 
p. 123. 

Noether, Gottfried E. Elements of Nonparametric Statistics. New 
York, John Wiley and Sons, Inc., 1967. 

Reviewed in Journal of the American Statistical Association, 
63 (1968), p. 728. 

Siegel, Sydney. Nonparametric Statistics for the Behavioral Sciences. 
New York, McGraw-Hill Book Company, 1956. 

Reviewed in Journal of the American Statistical Association, 
52 (1957), p. 384, and 'n The American Mathematical Monthly, 
64 (1957), pp. 690-691. 



3. A Problem-oriented Course in Introductory Statistics 

Basic elements of the course. Envisioned here is a relatively 
radical departure, in the direction of a "case study" approach, from 
any of the courses described previously. Such a problem-oriented 
approach, which some may advocate for a second rather than a first 
course, is not entirely new. R. A. Fisher's classic Statistical 
Methods for Research Workers [26], which had a profound influence on 
a generation of scientists, is in large part problem-oriented. Al-
though that book attempts to build up sophistication and complexity 
gradually, there are many places where a previously uninformed reader 
would find imposing gaps. Nevertheless, the audience, consisting 
largely of people with meaningful problems upon which to apply the 
methods and with the professional backgrounds to evaluate how sensi-
ble the conclusions were, found this book to be an invaluable guide. 
The level of maturity demanded was considerably higher than can be 
expected of students taking a first course in statistics. On the 
other hand, these students will have help from a teacher and other 
students. 

We propose a modification of Fisher's approach. Let meaning-
ful and nontrivial problems be presented (initially with a suggested 
solution, later without one). The detailed examination of the prob-
lems and solutions should evoke questions which lead to a discussion 
of fundamental concepts and methods. The order of the concepts to 
be discussed will depend on the problem and on the questions concern-
ing a proposed solution. Generally, the order will not produce a 
simple and systematic course development of concepts. The student 
will need to be intelligent enough to have a quick grasp of new con-
cepts, to recognize a reasonable approximation to a sensible solu-
tion, and to be satisfied with a nonsystematic development of the 
course. 

The practice of scientists in presenting their work is to 
remove many of the untidy traces of false starts and preliminary 
studies which led to final clear-cut results. But a major part of 
the excitement of research lies in these lost traces, and much of 
this work involves statistics in its formal and informal aspects. 
It is to be hoped that a case study approach would spark this kind 
of excitement and interest on the part of the students and also lead 
to an understanding of statistical practices. 

In a course of this kind, the computer and computer simulations 
can play an important role. When one inquires about the properties 
of a procedure, it is possible to use a computer simulation to see 
how the procedure works. The output of a simulation can also serve 
as a source of valuable data for further problems. Results of simu-
lations can be reported by printouts (especially where there is no 
access to a computer). When adequate computer facilities are avail-
able, however, students can be encouraged to make their own independ-
ent investigations. 
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To illustrate the problem-oriented approach and to show how 
different cases are useful for different configurations of concepts, 
we present two examples. As these examples will make clear, the 
envisioned problem-oriented course differs sharply from present 
courses. In most current textbooks, problems are used simply to 
provide examples with which to illustrate the method under study. 
Often the problems are artificial and noncompelling, and the intel-
lectual challenge to the student is limited to the study of how to 
carry out the details of the method correctly rather than of what 
method to apply and how well it works in the problem. 

The problem-oriented course will not be easy to teach. As the 
need for more material on statistical concepts arises, assignments 
will have to be made in supplementary texts, programmed materials, 
or handouts developed by the instructor. 

Example 1: The Peach Crop. A cling peach crop has been in-
sured against frost damage by a growers' association. A frost occurs 
and a court must adjudicate disagreement between the growers and the 
insurance carrier on the amount of damages. 

One possible way for deciding the compensation to be paid to 
growers is to examine each of the 26,793 trees in the orchards be-
longing to members of the association. An impartial expert could 
assess the damage to each tree. If he assesses the peaches on a tree 
as lS7o damaged, the damage would be 37 X .15 = 5.50 dollars, where 
37 dollars is the estimated average value of the peaches on undamaged 
trees. Theoretically, all 26,793 trees in the orchards could be ex-
amined in order to obtain a total damage figure. 

Clearly, it is unreasonable to examine all the trees. Indeed, 
the cost of doing so would far exceed the value of the crop. A sta-
tistical consultant proposed examining a sample of 100 trees ran-
domly selected from among all 26,793 trees in the orchards and using 
the average damage to the crop per tree in this sample as an esti-
mate of the average damage per tree in the total population. His 
advice was taken, and the sample resulted in damages of 5.50, 7.10, 
9.90, 1.57, with a mean of 6.31. When this mean is multiplied 
by the number of trees in the orchards, an estimate of 6.31 X 26,793 
= $169,063.83 is obtained for the value of the damages suffered by 
the growers. 

The growers are concerned about this procedure. They wish to 
recover the full damages caused by the frost, but they are anxious 
to avoid being criticized by the court for using the wrong method of 
estimating the damages to the peaches. They ask, "Is the above 
estimate the correct value for the damages to the peach crop?" No, 
it is not. It is an estimated damage; it is impractical to obtain 
the actual data needed to compute the "correct" damage. "The law is 
not clear on how to treat estimates. Would a mathematician say that 
this is the correct estimate?" This is not a mathematical problem 
in the sense that there exists a "correct" way to select and analyze 
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the data. It is a statistical problem. The question should be 
whether the procedure used to arrive at this estimate is a reasonable 
procedure for an unbiased statistician. It seems reasonable, but to 
answer this question in a meaningful way, we must know how an esti-
mate obtained by this method is related to the unknown "damage" and 
how estimates from alternative methods would compare with this. 

Up to this point the concepts of random sample and average 
have been used. These terms can and probably should be explained in 
detail after some of the more pressing problems are discussed. It 
is necessary now to point out that the estimate is random and to 
illustrate how the estimate would have varied if the experiment had 
been repeated 10 times. It would be valuable to consider the con-
sequence of selecting different sample sizes and the cost of sam-
pling. The necessity of dealing with variability is now clear, and 
the Central Limit Theorem can be hinted at or discussed briefly. 

An analysis of the data from simulation would use histograms, 
means, and standard deviations. These could be presented in a 
matter-of-fact way. Instructions on how to carry out the presenta-
tions and analyses need not be given immediately if these concepts 
are easily enough appreciated in this specific context. 

At this point one can extend the problem in several directions. 
One can make it more realistic by adding the fact that the orchards 
are located in two different river valleys and that the location and 
elevation of the orchards can be used as a basis for stratified sam-
pling. This raises the point that the more one knows, the better 
one can do; it raises the question of how to profit from vague in-
formation. 

Alternatively, one can discuss the advantages of randomiza-
tion to avoid hidden bias. 

Suppose that, due to a clerical error, it was reported that 
there were 700 trees in a certain orchard, whereas the actual 
figure was 70. The statistician might not wish to decrease his 
original estimate accordingly, because the 630 nonexistent trees had 
had a chance of being sampled and could have yielded a 0. An ad-
justment would make his estimate biased, and he would not understand 
the sampling properties of such ex post facto procedures. On the 
other hand, if he were to testify in court, his opinion might be 
criticized if the estimate were not adjusted. 

Another question that may arise is how much the insurance 
carrier should pay for damage to the crop if they are confident that 
it is between $150,000 and $190,000. Should the carrier pay $2,000 
for increased sampling which is likely to reduce the length of the 
confidence interval to $10,000? Should one regard a payment of 
$170,000 in the first case as a gamble in which the insurer risks as 
much as $20,000? Would the $2,000 qualify as a prudent expense to 
reduce the amount at risk from $20,000 to $5,000? What is a reason-
able trade-off? 

503 



It is apparent that this simplified example has enormous 
potential for illustrating statistical concepts in a context which 
is meaningful and interesting. Indeed, there is some danger of 
dwelling too long on one example, as students may become bored with 
it. 

Example 2: Death Takes a Holiday. Do famous people, people 
whose birthdays are likely to be celebrated publicly, put off dying 
until after their birthdays? To answer this question, David Phillips 
studied the birth and death days of over 1,200 famous people (Tanur, 
Judith, et al., eds. Statistics: A Guide to the Unknown. [23]). 
To make the classification less tedious, he examined only the birth 
and death months. 

There are two conflicting hypotheses. One states that there 
is no relation between birth and death months. According to this 
hypothesis, someone born in April is as likely to die in November as 
someone born in December. The alternate hypothesis states that in-
deed there is a relation between birth and death months, that some-
one born in December is less likely to die in November than someone 
born in April. 

Phillips does not present a formal test of these hypotheses in 
his paper. He shows that for four different sets of data, the month 
before birth is less often a death month and the four months after 
birth are more often death months. The consistency of this result 
in all four sets of data is interpreted as increasing the plausibil-
ity of the alternative hypothesis, specialized somewhat to include 
the four-month death rise after the birth month. 

What concepts are raised by this problem? The student is in-
troduced to two-way contingency tables (month of birth and month of 
death) and the use of observed proportions as estimates of probabil-
ities. Confidence intervals can be introduced to assess whether an 
observed proportion is consistent with a theoretical expectation. 
The idea of testing hypotheses and the use of the chi-square test 
enter naturally, as does the notion that the chi-square test is an 
all-purpose test whose power can be improved upon in the presence of 
a sufficiently specific alternative hypothesis. This point gives 
one an opportunity to discuss problems about designing hypotheses 
after studying the data. Finally, there is the problem of describ-
ing independence carefully and indicating how this hypothesis differs 
from a uniform distribution in the length of time between birth and 
death months. 

This problem emphasizes the need to supplement informal heuris-
tics by a sound theoretical framework which serves to guarantee that 
plausible conclusions are sound. Further, this problem is not closed. 
Several additional questions are open to study. The death rate in 
the birth month is also high. Should this enter the analysis? What 
would a detailed study of death dates within a month of the birth 
date show, and can this be studied effectively in view of the 
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potentially small samples involved? Does the ability of modern 
medicine to prolong life for a few days if necessary have an effect 
on the death rate very near the birth date? There seem to be low 
death rates four and six months before the birth month. Does this 
mean anything? 

Advantages and disadvantages of the problem-oriented approach. 
Some major advantages of the problem-oriented approach are: 

a. Discussion of meaningful and nontrivial problems evokes 
interest and raises fundamental statistical questions. 

b. Sensible, even if only partial, answers to realistic ques-
tions provide reinforcement for understanding of key concepts and 
motivation for further study. 

c. The opportunity to use computer simulations is valuable 
and may help to motivate students. 

d. A feeling for the excitement of research is derived when 
the traces of false starts and preliminary studies are not erased. 

Some major disadvantages of the problem-oriented approach are: 

a. This approach leads to the use of methods and ideas that 
have not been carefully digested in advance. There will be some 
need to operate at levels of less than complete understanding. The 
uninvolved and unmotivated student may find it difficult to salvage 
anything from such a course. 

b. Live problems are often very complicated. It will be dif-
ficult but necessary to simplify without throwing away too much of 
the essence. 

c. While this approach should be exciting to those who are 
involved, it may be frustrating to students who expect to be told 
what to do and how, and who find open-ended questions or nonresolved 
philosophical issues difficult to tolerate. 

d. In this approach, concepts and methods arise in context 
and not in a systematic framework for review by the student without 
undue repetition. 

e. The heuristic approach suggested here sometimes leads to 
incorrect results or paradoxes. When these are corrected, the stu-
dent may feel insecure. How is he to know when his reasoning is 
sound without being told by the teacher? Some rigorous follow-up 
may be necessary. 

f. Problems that seem easy may require a good deal more matu-
rity from the students than we think. It may be difficult to trans-
form unmotivated students, required by their major departments to 
take a statistics course, into participant's in statistical inquiry. 
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Selected Sources for Cases: 

Brownlee, K. A. "Statistics of the 1954 polio vaccine trials." 
Journal of the American Statistical Association, 50 (1955), pp. 1005-
1014. (An invited address on the article "Evaluation of 1954 field 
trial of poliomyelitis vaccine: Summary Report." Poliomyelitis Vac-
cine Evaluation Center, University of Michigan, April 12, 1955.) 

Cochran, William G.; Mosteller, Frederick; Tukey, John W. Statisti-
cal Problems of the Kinsey Report. American Statistical Associa-
tion, 806 15th St., N.W., Washington, D. C. 20005, 1954. 

Coleman, James S., et al. Equality of Educational Opportunity. 
Washington, D. C , U. S. Government Printing Office, 1966. (A set 
of Correlation Tables, separately bound, is also available for the 
use of research workers.) 

Cutler, S. J. "A review of the statistical evidence on the associa-
tion between smoking and lung cancer." Journal of the American Sta-
tistical Association, 50 (1955), pp. 267-83. 

Heermann, Emil F. and Braskamp, Larry A. Readings in Statistics for 
the Behavioral Sciences. Englewood Cliffs, New Jersey, Prentice-
Hall, Inc., 1970. 

Kinsey, A. C ; Pomeroy, W. B.; Martin, C. E. Sexual Behavior in the 
Human Male. Philadelphia, Pennsylvania, W. B. Saunders Company, 
1948. 

Mosteller, Frederick, et al., eds. Statistics by Example, Part III, 
Detecting Patterns. Reading, Massachusetts, Addison-Wesley Publish-
ing Company, Inc., 1973. 

Mosteller, Frederick, et al., eds. Statistics by Example, Part IV, 
Finding Models. Reading, Massachusetts, Addison-Wesley Publishing 
Company, Inc., 1973. 

Moynihan, Patrick. The Negro Family: The Case for National Action. 
Washington, D. C , U. S. Government Printing Office, 1965. Reprinted 
in Rainwater, Lee and Yancy, William L. The Moynihan Report and the 
Politics of Controversy. Cambridge, Massachusetts, MIT Press, 1967. 

Peters, William. Readings in Applied Statistics. Englewood Cliffs, 
New Jersey, Prentice-Hall, Inc., 1969. 

Report on Lung Cancer, Smoking, and Health. Public Health Bulletin 
1103, Superintendent of Documents, U. S. Government Printing Office. 

Steger, Joseph Α., ed. Readings in Statistics for the Behavioral 
Sciences. New York, Holt, Rinehart and Winston, Inc., 1971. 

Tanur, Judith, et al., eds. Statistics: A Guide to the Unknown. 
San Francisco, California, Holden-Day, Inc., 1972. 
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"The Cochran-Mosteller-Tukey Report on the Kinsey Study: A Symposium." 
Journal of the American Statistical Association, 50 (1955), p. 811. 

Tufte, Edward R. The Quantitative Analysis of Social Problems. 
Reading, Massachusetts, Addison-Wesley Publishing Company, Inc., 
1970. 

V. USE OF DATA SETS 

The use of problem material involving real data in teaching 
the introductory course in statistics overcomes some of the recog-
nized defects of the traditional systematic course. By focusing 
attention on problems involving data which have intrinsic interest 
for the student, it is possible to introduce important statistical 
ideas and concepts in a context that will serve to facilitate stu-
dent understanding. Use of examples and cases from real life can 
also be of great help in motivating students. Further, they can 
serve as vehicles for illustrating the application of statistical 
concepts and methods in a variety of settings. 

Data sets useful for the introductory statistics course can be 
small or large. Small data sets can be extracted from investigations 
in a variety of fields (e.g., sample surveys of voters or consumers, 
federal statistical reports, annual business reports, and the like), 
or they can be generated by various class experiments or investiga-
tions. They are characterized by limited amounts of data suitable 
for illustrating a particular statistical concept or technique. An 
example is the annual earnings of a company during the past ten years, 
which might be used for comparing average earnings in the first five 
years with those in the second five years. 

Large data sets are characterized by large volumes of inter-
related data. For example, a data set on voting behavior may con-
tain information about a variety of personal characteristics of the 
voter (e.g., age, sex, income, education, marital status, attitudi-
nal data) as well as a variety of voting behavior (e.g., voting be-
havior in elections during the past five years at national, state, 
and local levels). Another example of a large data set is medical 
information about a segment of the population (e.g., age, sex, 
height, weight, blood pressure, cholesterol level, etc.). Large 
data sets are often available on tapes and can be stored in local 
computers for ease of access by students. 

For the introductory statistics course that features a system-
atic development of statistical concepts, large and small data sets 
are used in essentially similar fashion. For example, to illustrate 
the construction of a confidence interval, one might use data on con-
sumer food expenditures or on blood pressure of patients. These data 
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could be given to the student in the form of a small data set, or he 
could be asked to perform a limited task of analysis with these data. 
(This is in distinction to the use of large data sets as a means of 
developing understanding of statistical concepts unsystematically in 
a problem-oriented fashion.) 

Use of problem material based on real data sets requires that 
the instructor devote class time to discussion. The setting of the 
problem should be discussed initially so that students understand it 
clearly. After the statistical analysis has been completed, the 
meaning and interpretation of the results should be discussed, as 
well as any further analyses that might be required for investigation 
of the problem. 

The use of data sets is not restricted to illustrating the 
application of particular statistical methods. They can also be used 
as a meaningful vehicle in sampling experiments. The data set for 
this purpose would be viewed as a population, and repeated samples 
would be selected from it by a table of random numbers or by computer. 
An advantage of this use of data sets over sampling from artificial 
populations is that real data sets permit the students to interpret 
the results more meaningfully. For example, the demonstration that 
the sampling distribution of the sample mean becomes more concen-
trated with increasing sample size is more meaningful for many stu-
dents when they can interpret the numbers involved in real terms, 
e.g., as incomes or blood pressures. 

The use of data sets requires computational effort. Although 
we strongly believe that the use of real data sets adds a valuable 
dimension to the introductory statistics course, we also strongly be-
lieve that students should not engage in computational drudgery. Con-
sequently, adequate computational facilities need to be provided if 
large data sets are to be employed. If these facilities are not 
available, small data sets with simplified numbers should be employed. 

Experience suggests that students find data sets most interest-
ing when they come from an area of interest to them. Thus, if the 
introductory statistics course is taught in a number of sections, it 
would be desirable to set up one or more sections for social science 
students, one or more sections for physical science students, and one 
or more sections for biological science students. Cases, examples, 
and data sets from these subjects can then be used so that students 
will be motivated by illustrations from situations with which they 
are familiar. If the introductory statistics course is taught in 
only one section, examples and cases should be selected that are 
simple and easy to understand by most of the students in the class. 

Data sets can be obtained from diverse sources. One major 
source, containing demographic, sociological, economic, and many 
other kinds of data, is: 

U. S. Bureau of the Census. Statistical Abstract of the United 
States, 1970. Washington, D. C , U. S. Government Printing Office, 
1970. 
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Data on consumer behavior and voting preferences, and other 
types of sample survey data are available from various survey re-
search centers. A list of sources for such data sets is: 

Social Science Data Archives in the United States, 1967. Council on 
Social Science Data Analysis, 605 West 115th Street, New York 10025. 

Three books sponsored jointly by the National Council of 
Teachers of Mathematics and the American Statistical Association 
contain a wealth of statistical examples and applications: 

Mosteller, Frederick, et al., eds. Statistics by Example. Part III, 
Detecting Patterns. Reading, Massachusetts, Addison-Wesley Publish-
Company, Inc., 1973. 

Mosteller, Frederick, et al., eds. Statistics by Example, Part IV, 
Finding Models. Reading, Massachusetts, Addison-Wesley Publishing 
Company, Inc., 1973. 

Tanur, Judith, et al., eds. Statistics: A Guide to the Unknown. 
San Francisco, California, Holden-Day, Inc., 1972. 

In addition to using data sets furnished by the instructor, 
students can obtain data sets of their own from their particular 
field of interest, or the entire class can develop data by class-
organized demonstrations and experiments (see Section VII) or by 
surveys conducted by members of the class. 

VI. USE OF COMPUTERS 

A computer can serve three broad roles in the implementation of 
the goals of an introductory statistics course. It can: (1) clarify 
certain key ideas of the course, (2) perform routine numerical calcu-
lations, and (3) facilitate more active student participation in the 
development of statistical concepts. Each of these roles is illus-
trated below. The question of whether a student should learn com-
puter programming inevitably arises in discussions of the role of 
computers in education. It is this Panel's view that so much is de-
manded in the ordinary introductory statistics course, that the tak-
ing of additional time to teach programming is not justified. This 
Panel does not feel that the learning of programming will enable the 
student to obtain sufficiently greater analytical skills to warrant 
taking this time away from other topics. There may be reasons in 
the context of a student's entire curriculum for his being taught 
programming. If so, a decision must be made in the context of the 
curriculum as to which course should contain the teaching of program-
ming. 
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We turn now to illustrations of the various ways in which com-
puters can be used to clarify important statistical concepts. The 
long-run relative frequency interpretation of probability can be 
illustrated by having a computer repeatedly simulate an experiment 
which results in "success" or "failure" on each trial and print the 
relative frequencies of success after 10, 20, 30, ... trials. The 
experiment should not be such a trivial one that students can find 
the probability by the examination of a few equally likely outcomes. 

One of the primary objectives of this introductory course is 
to introduce students to the notions of variability and uncertainty; 
these concepts can be illustrated in a number of ways on the com-
puter. The notion of a confidence interval, for example, can be 
brought to life with a computer. A large number of 80% confidence 
intervals obtained from samples of size 20 from a binomial distribu-
tion with ρ = 0.6 are easily obtained on a computer and the propor-
tion of intervals containing 0.6 determined. The confidence level 
should be low enough so that students will see cases where ρ = 0.6 
does not lie within the interval. This demonstration can be linked 
to the testing of statistical hypotheses and can provide a sound 
basis on which to discuss that topic. 

Properties of estimators can also be studied on the computer 
by obtaining sampling distributions of estimators, e.g., distribu-
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lustrate what is meant by an unbiased estimator. Variances of dif-
ferent estimators also can be studied by examination of sampling dis-
tributions generated by the computer. 

An additional benefit can result from the use of random number 
generators in an introductory course. The necessity of knowing that 
pseudo-random digits generated by a computer possess characteristics 
expected of random digits presents an opportunity to introduce the 
study of statistical tests such as the chi-square test and tests of 
runs. 

A second role of the computer in an introductory statistics 
course is to perform routine numerical calculations that are re-
quired in the analysis of the problems. This Panel believes that 
the computational aspects of the subject should be held to a mini-
mum, consistent with the clarification of statistical ideas and 
principles and with the motivation of students by the introduction 
of interesting, contemporary problems. If an analysis of a situa-
tion that interests an instructor and his class requires computa-
tional assistance, then by all means some computational aid should 
be used, whether it be from an electronic computer or a desk calcu-
lator. Students expect a course to contain a touch of realism, and 
they are frequently disappointed if they do not attain some experi-
ence with handling large amounts of data. Students should learn the 
procedures for calling up a statistical package because that knowl-
edge is often used by those who analyze data. Three widely used 
statistical packages are: 
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Dixon, W. J., ed. Biomedical Computer Programs, University of 
California Publications in Automatic Computation #2, Second Edition. 
Los Angeles, California, University of California Press, 1970. 

Hogben, David, et al. OMNITAB II User's Reference Manual. NBS 
Technical Note 552, U. S. Department of Commerce. Washington, D.C., 
U. S. Government Printing Office, 1971. 

Nie, Norman H., et al. Statistical Package for the Social Sciences. 
New York, McGraw-Hill Book Company, 1970. 

Even when major reliance for computation is placed on a large 
electronic computer, there are occasions when the understanding of a 
concept or a computational technique requires that students perform 
computations on a desk calculator or by hand. One or two simple 
problems illustrating the Student t-test, for example, should require 
students to calculate sample variances. Experience indicates that it 
is unwise to assume that students always understand what computations 
are required with raw data and know that statistical analysis is not 
always based on large amounts of data requiring the use of a computer. 

A computer can also serve instructors who wish to break away 
from presenting all the ideas of the course through formal lectures. 
We refer to this third function of computers as their "interactive" 
role. For example, the instructor need not lecture students as to 
what constitutes a "large" sample in order to be able to apply the 
Central Limit Theorem; instead, an empirical investigation can be 
undertaken. First, the instructor can have the students guess mini-
mum values of η for which sample means tend to be normally distri-
buted when sampling from a number of populations with different char-
acteristics. The computer can then be used to generate sampling dis-
tributions of sample means for different sample sizes, thereby pro-
viding a basis for refined estimates of minimum η and ultimately 
enhancing the students' understanding of the Central Limit Theorem 
and the degree to which the shape of the population density and 
sample size affect the shape of the sampling distribution. Working 
with data of these kinds, students usually raise new questions. In 
the case cited, students naturally want to know how to decide whether 
their sampling distributions are normal, and the instructor has the 
motivation for a new investigation or at least a mention of inferen-
tial problems. Another way of encouraging student participation 
through interaction with the computer is the selection of η and a 
to obtain a reasonable power curve for testing hypotheses about bi-
nomial p. Students also can be asked to select those independent 
variables in a set of variables which are important in a regression 
analysis; economists in most colleges and universities can provide 
the instructor with suitable data for this purpose. 

The interactive role of the computer is enhanced by the exist-
ence of terminals and a sufficient number of screens in the class-
room, but this equipment is not essential. Students can be required 
to make investigations of the sort illustrated above as homework 
exercises using the available computer facility. 
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In the use of a computer in any of its three functions, it is 
desirable to give the student a feeling of control over the opera-
tions of the computer. This can be done by requiring the student 
to specify parameters, desired output, and the like. For instance, 
in a sampling experiment the student might specify the population to 
be sampled, the sample size, and the number of trials, as well as 
the nature of the output (e.g., frequency distribution, histogram). 
Some students also benefit by writing simple programs using sub-
routines of basic statistical operations. 

The printout of a computer run will be of interest to the stu-
dent to the extent that he is interested in the original problem. 
Hence, our earlier comments on the importance of interesting and 
meaningful data sets are equally relevant whether the calculations 
are performed on a computer or by the student. 

Even when a computer is not available, students can still 
realize some of its benefits. For instance, an instructor can ob-
tain a complete set of computer printouts for his students. Stu-
dents can use this set of printouts in the same fashion as a labora-
tory manual. At appropriate times the instructor can refer to one 
of the printouts and explain how a particular analysis is carried 
out with the computer, explain the types of information given on the 
computer printout, and indicate how this information would be used 
for analysis of the data. In this way the students can obtain some 
of the benefits of learning how a computer can assist in statistical 
analysis and also obtain computer illustrations of some of the basic 
statistical concepts such as sampling distributions without actually 
having access to a computer. Dixon discusses the use of a "side 
inch" of computer printout in Review of the International Statistical 
Institute, 39 (1971), pp. 315-339. The "side inch" can be obtained 
for $3.00 by writing to Professor W. J. Dixon, Department of Bio-
mathematics, School of Medicine, University of California, Los 
Angeles, California 90024. 

The use of computers in teaching introductory statistics can 
be expensive. In addition to the costs of the equipment, the use of 
computers requires much planning by the instructor, as well as sub-
stantial monitoring during the course. A modern programmable mini-
computer provides a relatively inexpensive way of performing a wide 
variety of statistical operations. 

The impression has been gained by many instructors using com-
puters in teaching introductory statistics that their use is of in-
terest to students and motivates them. Despite their wide use, how-
ever, only limited formal evaluation of the effectiveness of com-
puters in the introductory statistics course has been carried out to 
date. Undoubtedly, the coming years will provide important informa-
tion on the best way in which computers can be used in introductory 
statistics courses as well as on their cost-effectiveness as. teach-
ing and learning devices. 
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None of the above mentioned uses of computers are to be con-
fused with computer-assisted instruction. This method of instruc-
tion is expensive for use in the introductory course and, when com-
pared with a well written programmed learning text, it may not be 
economically justified at this time. That is not to say, however, 
that technology will not advance sufficiently far in the next few 
years to make computer-assisted instruction an important alternative 
to existing modes of instruction. 
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Sterling, Τ. and Pollack, S. "Use of the computer to teach intro-
ductory statistics." Communication of the Association of Computing 
Machinery, 9 (1966), pp. 274-276. 

VII. EXPERIMENTS, SIMULATIONS, DEMONSTRATIONS, AND TEACHING AIDS 

Since planning of experiments and analysis of actual data are 
major concerns of most practicing statisticians, it would seem that 
one might use relatively simple experiments to develop basic sta-
tistical concepts, to obtain data for future analysis, and to give 
some experience in designing an experiment. There are arguments 
against this approach. It can use up a considerable amount of time 
for the individual student, for the class, and especially for the 
teacher. It can sometimes be frustrating. The arguments for such 
an approach center about the personal involvement of the student, 
his increase in interest, and his discovery of important principles 
or relationships. There is considerable evidence that such an 
approach can be successful. Practically all of the basic training 
courses in statistical quality control used experiments and demon-
strations to introduce statistical concepts, and these uses were 
judged successful. Two helpful references on these uses are: 

Olds, E. G. and Knowler, L. A. "Teaching statistical quality con-
trol for town and gown." Journal of the American Statistical Associ-
ation, 44 (1949), pp. 213-230. 

Scherwin, R. L. "Teaching aids for statistics and quality control." 
Industrial Quality Control, 23 (1967), pp. 654-660. 

1. Demonstrations and Verification Experiments 

For out purposes we would like to distinguish among several 
types of experiments. The first type we shall designate as a "demon-
stration." The student is given an assignment for which the instruc-
tor has the theoretical solution. If the student also knows or 
guesses the expected outcome, then this approximates the typical 
high school science experiment which simply illustrates a law stated 
or derived in the text book. Requiring students to toss a coin 100 
times and to record the total number of heads would be a typical 
demonstration. The students know that the probability is close to \ 
and most of them also know that one does not really expect 50 heads 
and 50 tails. 

An assignment that the student count the number of rolls of a 
die until all six digits occur or count the number of digits in a 
random digit table until all ten digits are found is another type of 
experience. The instructor, with his knowledge of the geometric 
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distribution and the theorems on sums of independent random varia-
bles, may know the mean and variance of the two distributions. He 
also may know that the distributions are skewed. The student does 
not have this knowledge and in this first course is unlikely to 
acquire it. To the student this assignment is a venture into the 
unknown. On the other hand, the instructor, while he may be sur-
prised by an individual result, is quite sure that he will not be 
surprised by the entire set of results. We will call an activity 
such as this a "verification experiment." 

There are many demonstrations and verification experiments 
from which the students may discover or better understand basic sta-
tistical concepts. The student might be asked to toss a coin 64 
times, recording his results (0 or 1) in a 4 by 16 table, and to 
find the average for each column, for each row, and for the entire 
table. These results could be used to justify statements about the 
distribution of the sample mean as η increases. The student might 
be asked to draw samples, using a sampling paddle, from a box of 
beads or balls of at least two different colors. Bowls of numbered 
chips might be used, made up to represent different distributions, 
either of different types, such as rectangular, triangular, exponen-
tial, and normal, or of one type with different parameters. The 
student might draw small samples from a population, construct a con-
fidence interval for each sample, and determine the proportion of 
confidence intervals which include the population mean or proportion. 
In general, the distribution of any sample statistic might be moti-
vated by a demonstration or experimental verification. To a great 
extent, the value of such activities depends upon the student's 
interest and enthusiasm. In any case, the activities should be used 
with moderation. 

Selected References: 

Berkeley, Edmund C. Probability and Statistics—An Introduction 
Through Experiments. New York, Science Materials Center, 1961. 
This book describes some 27 experiments. It is written to accompany 
a kit. 

Dixon, Wilfrid J. and Massey, Frank J., Jr. Introduction to Sta-
tistical Analysis. New York, McGraw-Hill Book Company, 1969. Most 
chapters have a set of class exercises based on random number tables, 
bead drawings, etc. 

Harrison, R. D. "An activity approach to the teaching of statistics 
and probability." (in three parts) Mathematics Teaching, 34 (1966), 
pp. 31-38; 35 (1966), pp. 52-61; 36 (1966), pp. 57-65. 

Malpos, A. J. Experiments in Statistics. Edinburgh, Scotland, 
Oliver and Boyd, Ltd., 1969. 
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2. Open Experiments 

An "open experiment" is quite different from a demonstration or 
an experimental verification. Neither the instructor nor the student 
is able to predict the outcome. As an extreme example, let us con-
sider a different version of the coin-tossing demonstration. The 
class, in some manner unknown to the instructor, will split into two 
groups of equal size. Each member of the first group will actually 
toss a coin 100 times and record the outcomes (0 or 1) in order. 
Each member of the second group will write out a sequence of 100 
numbers (0 or 1) without tossing a coin, in such a fashion that the 
sequence, in his opinion, simulates the results of actual coin toss-
ing. Using statistical tests (which may be developed over the term), 
the instructor will attempt to identify in which group each sequence 
belongs. The teacher might classify a sequence as group two if the 
results come too close to 50-50, or if there are too many runs, or 
if the longest run is suspiciously small, or if the cumulative frac-
tion of heads stays too close to n/2. But now the experimental 
situation is completely reversed; the students know the answers and 
the teacher is the discoverer. 

Actual classroom experiments of the open type can cover a wide 
range of difficulty. A relatively simple one is to ask the class 
the probability of getting a head on a coin if the coin is spun in-
stead of tossed. First, one must specify the essential conditions. 
What kind of coin? How long a spin? If the coin is spun by holding 
it with the finger of one hand and flicking it with a finger of the 
other hand, does the initial position of the coin make a difference? 

Some apparently simple experiments can suddenly develop compli-
cations. Consider the experiment of empirically determining the 
approximate probability that a thumbtack will fall point up. Obvi-
ously one must first specify at least the particular make of thumb-
tack. But does one need to specify the type of surface it falls on? 
And can one speed up the experiment by taking ten thumbtacks in a 
container and shaking them up? In one class, two students shook the 
thumbtacks in a china cup with a gentle lateral motion and then 
poured them on a table. Result--almost 100% points up! At this 
point another student decided to investigate the effect of different 
grades of sandpaper for the receiving surface and discovered an in-
teresting regression problem. 

An open experiment that can display individual differences is 
the "coin shove" experiment (see the Jowett reference, below). On 
some smooth poster board 30 inches long, draw a target line (desig-
nated 0) approximately 6 inches from one end. Also draw lines an 
inch apart (designated +1, +2, -1, -2, . . . ) , parallel to the 
target line. Then draw a starting line approximately 6 inches from 
the other end of the poster board. A trial of this experiment con-
sists of shoving a coin from behind the starting line so that it 
stops as close to the target line as possible. The purpose of the 
experiment is to study the frequency distribution of scores that 
result from η repeated trials. Many questions can be investigated: 
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Is there a significant improvement in the scores if 5 practice 
crials are allowed? Is there a significant difference between the 
abilities of individuals? Is it reasonable to assume independent 
trials? Can the scores of individuals be improved by allowing the 
use of a slingshot-type coin shooter? At what value of η is stu-
dent interest replaced by boredom? 

Selected References: 

"Interim Report of the R. S. S. Committee on the Teaching of Sta-
tistics in Schools." Journal of the Royal Statistical Society, 
Series A, 131 (1968), pp. 478-497. 

Jowett, G. H. and Davies, Η. M. "Practical experimentation as a 
teaching method in statistics." Journal of the Royal Statistical 
Society, Series A, 123 (1960), pp. 10-35. 

Mosteller, Frederick, et al. Probability with Statistical Applica-
tions , 2nd ed. Reading, Massachusetts, Addison-Wesley Publishing 
Company, Inc., 1970. Manual describes a variety of experiments, 
demonstrations, and teaching aids. Pages 449 to 454 of the text 
suggest a set of projects for highspeed computers. 

Rade, Lennart, ed. The Teaching of Probability and Statistics. 
New York, John Wiley and Sons, Inc., 1970. 

3. Simulations 

Another type of laboratory experience might be classified a 
"simulation." Here there may exist a theoretical solution to the 
problem, but it may not be at the competence level of the class. 
One example might be a simplified epidemic where each day 20 persons 
line up in random order. Suppose that of the η = 20 persons, 
χ = 2 persons are contagious, y = 3 persons are immune, and 
ζ = 15 are susceptible. A susceptible person who stands next to a 
contagious person catches the disease. The duration Of the disease 
is one day, so that a contagious person is immune the next day. To 
simulate the epidemic, shake a container having two red beads 
labeled C for contagious, three yellow beads labeled I for immune, 
and 15 white beads labeled S for susceptible, and pour the beads in 
a trough or a long-stemmed funnel. (A computer may be used instead 
of beads.) Suppose the result for the first trial is: 

S S C S S I C S S I S S S S S I S S S S 

Then on the next trial we would have three infectious persons 
(places 2, 4, 8), five immune persons (places 3, 6, 7, 10, 16), and 
12 susceptible persons. Variables which might be investigated are 
the number of trials until the epidemic is ended, the number of sus-
ceptible left at the end of the epidemic, and the largest number of 
contagious persons at any time. The simulation study can be en-
larged by investigating the behavior of the epidemic for various 
values of x, y, and n. 
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Another simulation is the server problem. Customers arrive at 
integral values of time t from 1 to η (for example, let η = 50). 
The probability of a customer's arriving at any time t is a con-
stant ρ (for example, ρ = 1/5). The service time for a customer 
is a constant c less than 1/p (for example, c = 4 ) . At the end 
of η time intervals the gates are closed but the customers in line 
must still be served, and of course the persons serving them must be 
paid overtime. For equipment one can use a die, a pack of playing 
cards, a table of random digits, or a computer. The first decision 
that needs to be made concerns what data to record. After one class 
tried the experiment, they decided that they should record: number 
of arrivals, total service time, idle time, overtime, sum of the 
delay times, and sum of squares of delay times. This last number 
they named the "riot index." 

Films 

A number of films pertaining to probability, statistics, and 
quality control are available. Of those known to the Panel, the 
film "Random Events" of the PSSC Physics Series seems most suitable 
for the kind of course we are considering. 

Selected Films: 

1. Probability and Statistics 
25 minutes Β & W 1957 

2. Mathematics and the River 
19 minutes Color 1959 
Horizons of Science Series 

3. Probability and Uncertainty 
56 minutes 1965 

ASSN Films 
347 Madison Avenue 
New York, New York 10036 

Educational Testing Service 
20 Nassau Street 
Princeton, New Jersey 08540 

Educational Service, Inc. 
40 Galen Street 
Watertown, Massachusetts 02172 

4. Mean-Median-Mode 
13 minutes Color, Β & W 
1966 

5. Probability 
12 minutes Color 1966 

6. Matter of Acceptable Risk 
30 minutes Β & W 1967 

7. Random Events 
31 minutes Β & W 1962 
PSSC Physics Series 

McGraw-Hill Text Films 
330 West 42nd Street 
New York, New York 10018 

McGraw-Hill Text Films 
330 West 42nd Street 
New York, New York 10018 

Indiana University 
Audio-Visual Center 
Bloomington, Indiana 47401 

Modern Learning Aids 
315 Springfield Avenue 
Summit, New Jersey 07901 
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8. How's Chances 
30 minutes Β & W 1957 
Westinghouse 

9. It's All Arranged 
30 minutes Β & W 195 7 
Westinghouse 

10. Photons 
19 minutes Β & W 1960 
PSSC Physics Series 

11. Predicting Through Sampling 
10 minutes Color 1969 

12. The Probabilities of Zero 
and One 

11 minutes Color 1969 

Association Films 
347 Madison Avenue 
New York, New York 10017 

Association Films 
347 Madison Avenue 
New York, New York 10017 

Modern Learning Aids 
315 Springfield Avenue 
Summit, New Jersey 07901 

Bailey Films Associates 
11559 Santa Monica Blvd. 
Los Angeles, California 90025 

Bailey Films Associates 
11559 Santa Monica Blvd. 
Los Angeles, California 90025 

13. Probability, An Introduction Bailey Films Associates 
9 minutes Color 1969 11559 Santa Monica Blvd. 

Los Angeles, California 90025 

Visual Aids and Other Materials 

There are available a variety of visual aids and other helpful 
materials. Various manufacturers of games offer large dice, roulette 
wheels, chuck-a-luck cages, etc. Biased and mismarked dice are avail-
able, although it is sometimes difficult to locate a source. 

Selected Sources: 

a. Lightning Calculator Company, Box 6192, St. Petersburg, 
Florida 33736. 

1. Quincunx or Galton Board. A device for generating a bi-
nomial or normal distribution. This model features an 
adjustable outlet which enables one to shift the popula-
tion mean, a sliding control which enables one to drop 
from one to five beads at a time, and a control for exam-
ining small samples before they are accumulated into a 
large sample; completely self-enclosed so that the beads 
cannot drop out. 

2. Sampling Demonstrators. Consists of six different colors 
of beads, plastic container, and sampling paddles. Avail-
able in two different models, one with 2000 beads and 
three sampling paddles, a second with 1000 beads and two 
sampling paddles. 
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3. Control Chart Simulator. Device consisting of various 
distribution patterns, dowel rods for indicating limits 
of variability, etc., and frame. Reverse side has set of 
horizontal wires with beads to demonstrate observations 
over time, either individual or grouped. 

b. Ray R. Lilly, 30 Lilly Road, Wanaque, New Jersey 07465. 

1. Sampling demonstrators, plastic balls in various colors 
and lot sizes, sampling paddles. Available in different 
models or to specification. 

2. Demonstration Board. One side consists of various models 
for distributions, with templates (attachable) to show 
distribution of average for η = 5 and η = 20. Also a 
model to show change in variability. Dowel rods show 
specification limits, control limits, modified control 
limits, etc. Reverse side consists of one set of hori-
zontal wires for distribution over time of either in-
dividuals or subgroups, plus overlay set of wires to 
demonstrate distribution of medians. 

3. Three-dimensional models. One consists of a peg-board 
with plastic rods and beads to demonstrate multivariable 
control charts, bivariate distributions, etc. A second 
has a set of sliding channels with pegs, which can be used 
to demonstrate correlation, regression, etc. 

c. E. S. Lowe Company, Inc., 200 Fifth Avenue, New York, New York 
10010. Manufacturer of games and accessories. Items such as 
large dice (up to 4 inches), roulette wheels, bingo games, 
chuck-a-luck, miniature slot machines, etc. 

d. Hunter Spring Company, Lansdale, Pennsylvania 19446. Normal 
frequency distribution template. For use in illustration work. 
Small template with σ = 10 mm. 

e. Tell Manufacturing Company, 200 South Jefferson Street, Orange, 
New Jersey 07050. Manufacturer of plastic beads and balls in 
various size ranges from 6 mm to 23 mm diameter. Some 13 dif-
ferent colors. Smaller sizes in units of 100. 

f. Walco Products Company, 37 West 37th Street, New York, New 
York 10018. Manufacturer of wooden beads in various shapes 
and sizes. Spherical beads come in sizes from 3 mm to 20 mm. 
Cylindrical and barrel shapes up to 1 inch in height. Small 
beads must be ordered in units of 1000, larger in units of 100. 

g. Quality Service Foundation, Weena 700, Rotterdam, Netherlands. 

1. Polyhedra numbered 0 to 9 for generating random digits or 
selecting random samples. 
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2. Drafting triangle with two normal templates for distribu-
tion of individuals and distribution of averages. (n = 5) 

h. Japanese Standards Association, Ginza Higashi 6-1, Chuo-ku, 
Tokyo, Japan. Icosahedron numbered 0 to 9 for generating 
random digits or for selecting random samples. 

Course Organization 

Inclusion in the introductory statistics course of the varied 
motivational and instructional activities, such as the use of data 
sets, computers, sampling experiments, and films, is time-consuming. 
The instructor may therefore wish to add another class meeting each 
week to permit more extensive use of this pedagogy. 

One method of including these activities is by scheduling them 
in class when they naturally arise. An advantage of this approach 
is that the student can understand the activity in its context. A 
disadvantage is that many of the activities, such as sampling experi-
ments, are time-consuming and therefore may disrupt the continuity 
of the overall development. 

Another approach is to schedule formal laboratory periods from 
time to time, during which these activities take place. Then the 
development of the course material is not disrupted, but the timing 
of events can not always be made to coincide with the class develop-
ments. 

Learning Resources Centers 

Demonstrations, verifications, experiments, and simulations 
require physical facilities and organization. The Panel has been 
encouraged to learn of various institutions that have developed 
learning resources centers where students can listen to tapes, view 
films, find programmed material for remediation, carry out experi-
ments, and plan their own group investigations. Such a center pro-
vides an opportunity for small group discussions both at the planning 
stage of an investigation and at the analysis stage. For some of the 
experiments discussed, such as the server problem or the epidemic 
problem, it is advisable to have students work in teams of two to 
four, with each team repeating the experiment a small number of 
times. The results can then be pooled. For other experiments there 
will need to be serious consideration given to the question of pool-
ing. For the coin shove experiment, for instance, the question of 
pooling results will raise serious problems and can lead to a dis-
cussion of individual and group differences. 

Organizing students into small groups to carry out investiga-
tions can be an effective means of stimulating student interactions 
and can thereby aid the learning process. Student teams should be 
reasonably small so that each student can participate effectively. 
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The teacher may meet with each team from time to time or be avail-
able for assistance when a team requires it. 

Some learning resources centers have a time-shared console or 
are adjacent to a computation facility having such consoles. The 
Panel suggests that mathematics departments offering statistics 
courses consider the establishment of such a facility. 

ADDITIONAL RESOURCE MATERIALS 

Folks, LeRoy. "Some prior probabilities on the future of statistics." 
The American Statistician. 24 (1970), pp. 10-13. References cited in 
the Folks article: 

1. "Some aspects of the teaching of statistics." John Wishart, 
1939. JRSS, 102, pp. 532-564. 

2. "The teaching of statistics." Harold Hotelling, 1940. Annals 
of Math. Stat., pp. 457-471. 

3. "On the future of statistics." M. G. Kendall, 1942. JRSS, 
105, pp. 69-91. 

4. "The teaching of statistics." Institute of Mathematical 
Statistics Committee on the Teaching of Statistics, 1948. 
Annals of Math. Stat., 19, pp. 99-115. 

5. "The teaching of statistics." John Wishart, 1948. JRSS, A, 
111, pp. 212-229. 

6. "Why statistics?" P. C. Mahalanobis, 1948. Sankhyi, 10, 
pp. 195-228. 

7. "The future of data analysis." J. W. Tukey, 1962. Annals of 
Math. Stat., 33, pp. 1-67. 

8. "On the future of statistics — a second look." M. G. Kendall, 
1968. JRSS, A, 131, pp. 182-194. 

Kirk, Roger E., ed. Statistical Issues: A Reader for the Behavioral 
Sciences. Belmont, California, Brooks/Cole Publishing Company, 1972. 

Klein, Morris. Mathematics in Western Culture. New York, Oxford 
University Press, Inc., 1953. The following articles: 

1. "The mathematical theory of ignorance: The statistical approach 
to the study of man," pp. 340-358. 
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2. "Prediction and probability," pp. 359-375. 

3. "Our disorderly universe: The statistical view of nature," 
pp. 376-394. 

Mathematical Thinking in Behavioral Sciences (Readings from The 
Scientific American). San Francisco, California, W. H. Freeman and 
Company, 1968. The following articles: 

1. "Chance," A. J. Ayer, October, 1965. 

2. "What is probability?" Rudolph Carnap, September, 1953. 

3. "Subjective probability," John Cohen, November, 1957. 

4. "Probability," Mark Kac, September, 1964. 

Newman, James R., ed. World of Mathematics, 4 vols. New York, 
Simon and Schuster, Inc., 1956. The following articles: 

Vol. 2, Part VII: The Laws of Chance 

1. "Concerning probability," Pierre Simon de Laplace, p. 1325. 

2. "The red and the black," Charles Sanders Peirce, p. 1334. 

3. "The probability of induction," Charles Sanders Peirce, 
p. 1341. 

4. "The application of probability to conduct," John Maynard 
Keynes, p. 1360. 

5. "Chance," Henri Poincare, p. 1380. 

Vol. 3, Part VIII: Statistics and the Design of Experiments 

1. "Foundations of vital statistics," John Graunt, p. 1421. 

2. "First life insurance tables," Edmund Halley, p. 1437. 

3. "The law of large numbers," Jacob Bernoulli, p. 1452. 

4. "Sampling and standard error," L. C. Tripett, p. 1459. 

5. "On the average and scatter," J. C. Moroney, p. 1487. 

6. "Mathematics of a lady tasting tea," Sir Ronald A. Fisher, 
p. 1512. 

7. "The vice of gambling and the virtue of insurance," George 
Bernard Shaw, p. 1524. 
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Preparation for Graduate Work in Statistics, 1971. CUPM, 
P. 0. Box 1024, Berkeley, California 94701. 

Review of the International Statistical Institute. 2 Oostduinlaan, 
The Hague, Netherlands. Vol. 39, Number 3 (1971). The following 
articles: 

1. "New techniques of statistical teaching: Opening remarks," 
pp. 253-256. 

2. "The first course In statistical methods and the use of teach-
ing aids," K. Austwick, J. Hine, G. B. Wetherill, pp. 287-306. 

3. "Post college continuing education activities in statistics," 
J. Stuart Hunter, pp. 307-311. 

4. "Comments about a general audience TV course on statistics," 
J. Hemelrijk, pp. 312-314. 

5. "The joint American Statistical Association-National Council of 
Teachers of Mathematics Committee on the Curriculum in Statis-
tics and Probability," F. Mosteller, pp. 340-342. 

6. "Operation of the Centre for Applied Statistics in Medicine 
and Medical Biology," D. Schwarz, pp. 346-347. 

7. "The teaching of statistics," T. Yoshizawa, pp. 348-350. 

8. "New techniques of statistical teaching," H. C. Hamaker, 
pp. 351-360. 

9. "The jackknife," F. Mosteller, pp. 363-368. 

10. "Round table meeting: Recommendations," pp. 369-372. 

The American Statistician. 805 15th Street, N.W., Washington, D. C. 
20005. "The Teacher's Corner" frequently contains articles on 
topics suitable for an introductory statistics course. 

The Statistician. 55 Park Lane, London, W 1, England. See Vol. 18, 
Number 3, 1968: 

The Teaching of Statistics 

1. "Innovation in teaching," D. T. Page, p. 207. 

2. "Teaching management statistics by programmed instruction," 
D. Kitchen, pp. 209-226. 

3. "Practical classes in statistics," Η. M. Davies, pp. 227-236. 

Varberg, Dale E. "The development of modern statistics," The Mathe-
matics Teacher. Part 1, 56 (1963), pp. 252-257; Part 2, 56 (1963), 
pp. 344-348. 
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COMPUTING 

During the decade beginning in 1962, CUPM made a continuing 
effort to advise college mathematics departments on curricular mat-
ters related to the tremendous growth in the use of the computer and 
the pervading influence which the computer has come to exert on soci-
ety. Initial steps in this direction were taken by the Panel on 
Physical Sciences and Engineering, which issued its Recommendations 
on the Undergraduate Mathematics Program for Work in Computing* in 
1964. Taking account of the significant changes which had recently 
occurred in the relationship of mathematics to computing and to com-
puting machines, the Panel proposed a program designed to prepare 
students whose careers were likely to be intimately connected with 
highspeed computing. The program included reference to three types 
of courses: (1) mathematics courses of a general nature which should 
be available for the prospective specialists in computer science; 
(2) technical courses in computer science; and (3) an introductory 
course in computer science. 

Two years later CUPM commissioned R. W. Hamming of Bell Tele-
phone Laboratories, Inc., to prepare a monograph on Calculus and the 
Computer Revolution.* Published in 1966, this book describes and 
illustrates briefly some aspects of computing as they are related to 
the beginning calculus course. 

A task force was appointed in 1966 for the purpose of advising 
CUPM on a future course of action with regard to computing. The 
task force suggested the creation of a Panel on Computing, which 
would work closely with various computing organizations and would 
have several charges related to the impact of the computer on mathe-
matics education. Such a panel was appointed in 1967. 

One of the Panel's projects was to gather and disseminate in-
formation regarding the use of computers in introductory calculus 
courses. A newsletter entitled "Calculus With Computers,"* issued 
in 1969, contained general observations and summaries of statements 
from various institutions which had instituted computer-oriented 
calculus courses. 

The Panel's primary aim was to develop a systematic approach 
to the impact of computers on undergraduate mathematics programs, 
rather than to address itself to the training of computer scientists 
per se. (The latter topic had already been considered by the Associ-
ation for Computing Machinery in its report Curriculum 68--Recommenda-
tions for Academic Programs in Computer Science.) The Panel formu-
lated a specific undergraduate program in computational mathematics, 
combining courses in mathematics, computer science, and computational 
mathematics--complete with course outlines and suggestions for imple-
mentation. This course of study is presented in the 1971 publication 

* Not included in this COMPENDIUM 
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Recommendations for an Undergraduate Program In Computational Mathe-
matics . The main concern of this report is for the education of 
mathematicians who wish to know how to use and to apply computers. 

The report of the Panel on Computing attacked a significant 
problem: the need for new, innovative courses directly concerned 
with computational mathematics and computer science. Remaining to 
be considered, however, was another important question: How should 
the computer affect traditional mathematics courses? To study this 
question and related points, CUPM in 1971 appointed a Panel on the 
Impact of Computing on Mathematics Courses to succeed the Panel on 
Computing. The new Panel's investigations culminated in the publica-
tion of Recommendations on Undergraduate Mathematics Courses Involv-
ing Computing in 1972. This document includes outlines for lower-
division courses in elementary functions, calculus, discrete mathe-
matics, and linear algebra with stress on algorithms, approximations, 
model building, and the nature of the entire prob lern-solving process. 
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PREFACE 

During the last two decades the development of computers has 
helped to stimulate the dramatic increase and diversification in the 
applications of mathematics to other disciplines. In the belief that 
the time is appropriate for a systematic approach to the impact of 
computers on undergraduate mathematics programs, the CUPM Panel on 
Computing presents this report. 

Our basic recommendation is that mathematics departments 
should experiment with innovative undergraduate mathematics 
programs which emphasize the constructive and algorithmic 
aspects of mathematics, and which acquaint students with com-
puters and with the uses of mathematics in computer applica-
tions . 

A specific undergraduate program in computational mathematics 
is proposed. This is not a program in computer science, nor is it a 
minor modification of the traditional undergraduate mathematics major. 
It is, rather, a program in the mathematical sciences that combines 
courses in mathematics, computer science, and computational mathe-
matics. It can be used as a basis for further specialization in any 
of several areas, including computer science, or mathematics, or one 
of the areas of application of mathematics. 

1. Philosophy and Aims of the Program 

Since publication of the 1964 CUPM report Recommendations on 
the Undergraduate Mathematics Program for Work in Computing, computer 
science has developed as a separate area of study. More and more 
colleges and universities are establishing computer science depart-
ments, and the number of students enrolled in computer science pro-
grams is increasing rapidly. The need for separate curriculum stud-
ies in this, new area was recognized by the Association for Computing 
Machinery, and in 1968 its Curriculum Committee on Computer Science 
published a report entitled Curriculum 68--Recommendations for Aca-
demic Programs in Computer Science. This widely acclaimed report is 
still regarded as giving a good description of curricula in computer 
science. Its recommended minimal mathematics preparation is about 
equivalent to that usually required of students in the physical 
sciences and engineering. 

More recently, three trends have become noticeable. First, 
there appears to have developed a strong tendency on the part of 
computer science programs to minimize prerequisite requirements in 
traditional mathematics, particularly analysis, and also to under-
emphasize or even to disregard most areas of scientific computing. 
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Second, many disciplines, including in particular the biological, 
social, and behavioral sciences, have become increasingly mathemati-
cal, giving rise to a need in these fields for expanded education in 
mathematics and in scientific computing. Finally, the computer has 
begun to have a direct effect upon mathematics courses themselves. 
New courses, particularly in computationally-oriented applied mathe-
matics, are being introduced into many mathematics curricula, and 
traditional courses are being modified and taught with a computer 
orientation. As an example of the latter we cite only the teaching 
of calculus. Approximately 100 schools now offer a course in calcu-
lus using the text Calculus, A Computer Oriented Presentation, pub-
lished by the Center for Research in College Instruction in Science 
and Mathematics. Other computer calculus projects were reported in 
the 1969 CUPM Newsletter, "Calculus with Computers," now out of print. 

These three trends all indicate a need for the mathematics com-
munity to accept a responsibility for mathematical or scientific com-
puting and to broaden educational opportunities toward a more encom-
passing "mathematical science" in which students may explore the 
areas of overlap between pure and computational mathematics, as well 
as computer science. There is thus a need for innovative undergradu-
ate programs which provide for a wide range of options, different 
opportunities for graduate study, and a variety of future careers. 

A new view of mathematics as a mathematical science in the 
above sense raises many curricular questions, to which several CUPM 
panels have begun to address themselves. In particular, a need arose 
for reappraisal of the already-cited 1964 report. Such a reappraisal 
is desirable if for no other reason than that a large number of all 
undergraduate mathematics majors are likely to find themselves later 
in some computer-related field. 

The present report is the result of such a reappraisal by the 
CUPM Panel on Computing. From the outset it was evident that the 
aims of this report should be different from those of the earlier 
work, since its intended audience is different. The present report 
does not address itself to the training of computer scientists. In-
stead, its concern is for the education of mathematicians who will 
know how to use and to apply computers. Programs in computational 
mathematics necessarily have different objectives than do programs 
in computer science. 

In accordance with our previous remarks, the mathematics pro-
gram presented here is intended to be a departure from the tradi-
tional undergraduate mathematics curriculum. It should not be re-
garded, however, as a replacement for that curriculum, but rather, 
together with it, as one of several equally valid options for stu-
dents of the mathematical sciences. It should meet the needs of stu-
dents who plan to enter careers in scientific computing or who wish 
to enroll in graduate programs in computationally-oriented applied 
mathematics. With some suitably selected options during the senior 
year, a continuation in many computer science graduate programs should 
be possible. With other options, a continuation in pure mathematics 
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should also be possible. At the same time, several of the courses 
included in the program meet the mathematical needs of students in 
other disciplines and may also be appropriate for prospective second-
ary school mathematics teachers. 

The program proposed here is presented in a spirit of open ex-
perimentation, not as a final product. In its design the Panel has 
been neither as conservative nor as radical as it might have been. 
For instance, a conservative approach might be to combine a list of 
suitable mathematics courses of a traditional nature with a comple-
mentary list of computer science courses. This is easily accomplished 
in an institution having both a mathematics and a computer science 
department, but it leads to a large number of required courses and 
provides for little or no interaction between the two parts of the 
program. At the other extreme stands a curriculum in which computing 
has been completely integrated with the mathematical material, either 
by the introduction of new courses or by the repackaging of old ones. 

In designing its program the Panel has taken a path somewhere 
between the extremes indicated above. Several new computer-oriented 
mathematics courses are described here; at the same time, some stan-
dard computer science and mathematics courses are included and, in 
particular, no recommendations are made concerning the redesigning 
of standard mathematics courses, such as the calculus, to include 
computer use. Where they are available, such computationally-oriented 
basic mathematics courses could be ideal components of this program, 
but their definition still requires considerable study and experimen-
tation. The Panel felt that such a study on its part would serve only 
to divert its attention from its main concern, namely, the description 
of a new curriculum in computational mathematics for the undergraduate 
mathematics major which can be implemented in many institutions with-
out excessive cost or delay. 

In this latter connection the Panel believes that its program 
can be offered even by smaller colleges having suitable access to 
educational computing equipment, with only modest additions to their 
mathematics staffs. More specifically, through the junior year, the 
new computationally-oriented mathematics courses recommended here 
number only four. These, together with the three basic and rela-
tively standard computer science courses, could be handled by the 
equivalent of one mathematician interested in applied mathematics 
with an emphasis on computing and numerical analysis and one special-
ist in computer science. The remaining core courses can be taught 
by the other members of the mathematics department. Clearly, this 
small staff could offer only a few of the additional courses listed 
in this report as possible electives, but the Panel believes that 
even such a minimal program would be desirable for many students. 
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2. Recommendations and Brief Course Descriptions 

For a major undergraduate program in Computational Mathematics 
we recommend a basic core curriculum of 12 one-semester courses: 
five in mathematics, four in computational mathematics, and three in 
computer science. We will refer to these courses in the sequel, 
respectively, by the symbols Ml, M2, M3, M4, M5, CM1, CM2, CM3, CM4, 
CI, C2, and C3. 

Each of the courses carries 3 credits; at the same time it is 
desirable that some of the computer-oriented courses include a sched-
uled laboratory period for which additional credit may be awarded. 
As described below, this sequence can be handled in three years, 
leaving the senior year for electives, also set forth below. 

2.1 Basic Component 

Before describing the 12 courses in the Basic Component, it may 
be instructive to illustrate one way of imbedding them into the first 
three undergraduate years. In the chart on page 534, arrows indicate 
the "prerequisite structure," i.e., the dependency of each course on 
those which precede it. Notice that two courses are recommended for 
each semester. Mathematical progress within the program is not dif-
ferent from that in standard programs. If the student wishes to 
switch to pure mathematics after sampling the eight core courses of 
the first two years, it will be a simple matter for him to do so with 
no loss of mathematical pace. It should also be noted that of the 
CM and C courses, three are taught in the first semester and four in 
the second semester of each year. This part of the program could 
easily be handled by the equivalent of two teachers in a small col-
lege where multiple sections are unlikely. 

Let us now describe these 12 courses briefly, leaving detailed 
course outlines and references for Section 4. 

a) Mathematics- courses 

These five courses are described in the CUPM document Commen-
tary on A General Curriculum in Mathematics for Colleges, page 
Incidentally, the committee which produced the Commentary has already 
noted that there is little need for M3 to require M1-M2 as explicit 
prerequisites. This fact has been observed in the chart. 

Ml 
M2 
M3 
M4 
M5 

Calculus I 
Calculus II 
Elementary Linear Algebra 
Multivariable Calculus I 
Multivariable Calculus II 

533 



CHART SHOWING ONE WAY OF IMBEDDING THE BASIC COMPO-
NENT INTO THE FIRST THREE UNDERGRADUATE YEARS. ARROWS 
INDICATE THE PREREQUISITE STRUCTURE. 

COMPUTATIONAL 

SEMESTER MATHEMATICS MATHEMATICS COMPUTER SCIENCE 

CM4 C3 
g Differential Programming 

Equations and Languages and 
Numerical Methods Data Structures 
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Ml 
Calculus I 

Cl 
Introduction 
to Computing 

M2 
Calculus II 

CM1 
Computational 
Models and 
Problem Solving 

C2 
Computer 
Organization 
and Programming 

M3 
Elementary 
Linear Algebra 

CM2 
Introduction 
to Numerical 
Computation 

M4 
Multivariable 
Calculus I 

M5 
Multivariable 
Calculus II 

CM3 
Combinatorial 
Computing 

1 

2 

3 

4 
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b) Computational Mathematics 

These courses constitute the heart of our program. While their 
spirit is mathematical, computing plays an important role in each. 
The courses CM1 and CM3 are novel in character, while CM2 and CM4 
are intended to replace the traditional first courses in Numerical 
Analysis and Ordinary Differential Equations, In the initial phase 
of implementing this program the traditional versions of these 
courses could be used temporarily in place of CM2 and CM4, thereby 
allowing the faculty to concentrate first on the development of the 
new courses CM1 and CM3. 

CM1. Computational Models and Problem Solving 

Prerequisite: CI 

The purpose of this course is to introduce students early in 
their programs to a wide variety of different computer applications. 
This is to be accomplished mainly through the construction and inter-
pretation of computational models for several interesting and worth-
while practical problems from various disciplines, including the bio-
logical and behavioral sciences as well as the physical sciences and 
mathematics. 

The spirit in which the course is presented is of utmost impor-
tance. The applications discussed in the course should be reasonably 
realistic and comprehensive, and the students should become aware of 
the very serious difficulties and limitations that can arise. Ques-
tions should be raised about the validity of models, the effect of 
numerical errors, the significance of statistical results, the need 
for data verification, the difficulties in testing programs, docu-
mentation, etc. Whenever possible, the basic mathematical aspects 
of the different models should be discussed in general and related 
to the computational results. However, since the course is intended 
for freshmen or sophomores, no attempt can be made to enter into any 
deeper analysis of specific mathematical questions. With a proper 
balance between the computational and mathematical points of view, 
the course should provide the students not only with an appreciation 
of both the potential and limitations of computer applications but 
also with an interest in learning more about the many relevant areas 
of mathematics. 

The outline included in Section 4 places special emphasis on 
the use of computational models for the simulation of random and non-
random processes, although a few numerical and nonnumerical computer 
applications are also included. The latter types of problem will be 
considered in more detail in the subsequent courses CM2 and CM3. 

It should be noted that this course may also be of considerable 
value and interest to students outside the present program. 
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CM2. Introduction to Numerical Computation 

Prerequisites: CI, M2, M3 

This first course in numerical analysis may be taken in the 
sophomore year. Since it is based on as little as one year of analy-
sis, the emphasis should be more on intuition, experimentation, and 
error assessment than on rigor. The methods considered should be 
amply motivated by realistic problems. It is better to treat a few 
algorithms thoroughly than to be exhaustive in the number of algo-
rithms considered. Students should be expected to program and run a 
number of problems on a computer, and considerable time should be 
spent analyzing the results of such runs. In particular, the analy-
sis of roundoff and discretization errors, as well as the efficiency 
of algorithms, should be stressed. 

Topics should include the solution of linear systems, the solu-
tion of a single nonlinear equation, interpolation and approximation 
(including least squares approximation), differentiation and inte-
gration, and elements of the numerical solution of eigenvalue prob-
lems . 

CM3. Combinatorial Computing 

Prerequisites: CI and M3 

Combinatorial computing is concerned with the problem of how to 
carry out computations with discrete mathematical structures. It 
bears to combinatorial (discrete, finite) mathematics the same rela-
tionship that numerical analysis bears to analysis. Numerical analy-
sis is much more widely known and much better developed than combina-
torial computing. However, there are many reasons to believe that 
within the next decade combinatorial computing will rival numerical 
analysis in its importance to computer users. In fact, outside of 
the traditional areas of applications of mathematics to the physical 
sciences, discrete mathematical structures may occur more frequently 
than continuous ones, and even in large problems in the physical 
sciences data-handling considerations lead quickly to questions in 
combinatorial computing. 

This course is intended as an introduction to the emerging field 
of combinatorial computing. Its objectives are (1) to acquaint stu-
dents with certain types of problems which occur frequently when 
problems are formulated in combinatorial terms, so that they are able 
to recognize them when they encounter them in disguise, and (2) to 
teach students certain important concepts and proven techniques which 
experience has shown to be useful in solving many combinatorial prob-
lems, particularly on a computer. 

Typical topics to be covered in the course are the representa-
tion of integers, sets, and graphs; counting and enumeration tech-
niques; sorting and searching methods; and selected problems and 
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algorithms in graph theory. Students should be expected to write 
programs for various algorithms and to experiment with their applica-
tion to appropriate problems. 

CM4. Differential Equations and Numerical Methods 

Prerequisites: CM2 and M4 

This course is intended to replace the more traditionally 
oriented course in differential equations in which the focus is often 
on nonconstructive developments. It has the objective of introducing 
the student to key concepts underlying the qualitative understanding 
of differential equations as well as to methods for constructing their 
approximate solutions. It is intended for the junior year. The his-
torical development of the subject is closely related to the physical 
and engineering sciences; nevertheless, it is recommended that ex-
amples from biology, economics, and other fields be chosen where pos-
sible, so as to draw upon a student's intuitive understanding of the 
processes illustrated. Some further suggestions for such material 
can be found in the CUPM report Applied Mathematics in the Undergradu-
ate Curriculum, page 705. 

As a result of this course the student should have confidence 
in his ability to develop an approximate solution of a differential 
equation, be able to discuss the basic qualitative behavior of the 
solution, and have an appreciation of the importance of analytic 
methods in furthering his understanding of the subject. 

Typical topics should include a discussion of simple linear 
equations, the initial value problem for the first-order equation 
y' = f(x,y) and some methods for its numerical solution, a basic 
introduction to first-order systems and their applications including 
plane autonomous systems, and finally some topics relating to bound-
ary value problems. 

c) Computer Science 

The following three courses represent certain modifications of 
several of the basic courses in Curriculum 68. All three courses 
should not consist simply of lectures but should also incorporate a 
scheduled laboratory period. 

CI. Introduction to Computing 

Prerequisite: College admission 

This first course in computing has by now become standard in 
many institutions. The 1964 CUPM report Recommendations on the Under-
graduate Mathematics Program for Work in Computing recommended a par-
ticular version of this course, and the corresponding course Bl in 
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Curriculum 68 has been widely referenced. The course serves several 
purposes: 

(1) To develop an understanding of the concept of an algorithm and 
of the algorithmic formulation of methods for the solution of 
problems on a computer. 

(2) To train the student in the use of at least one algorithmic 
programming language and to introduce him to the basic struc-
tural aspects of such languages. 

(3) To acquaint the student with the basic characteristics and prop-
erties of computers. 

For the program proposed here the stress of the course should be on 
problem solving by computer. Accordingly, the student should be as-
signed a number of different problems both of the numerical and non-
numerical type, including at least one larger project. 

C2. Computer Organization and Programming 

Prerequisite: CI 

The purpose of this course is to provide the student with a 
basic introduction to the structure and organization of digital com-
puters and to the use of assembly language programming systems, with-
out becoming involved in a too-detailed discussion of computer hard-
ware or assembly language programming. 

The course proposed here is in part similar to the course B2 in 
Curriculum 68 with the addition of some topics from the course 13 in 
the same report. However, unlike those courses, it has primarily a 
survey character. Typical topics include computer structure, assem-
bly languages, data representation, addressing techniques, elements 
of logic design, discussion of the principal units of a digital com-
puter, systems software, and a survey of contemporary computers. 

C3. Programming Languages and Data Structures 

Prerequisite: CM1 

This course is intended to introduce the student to some of the 
elements of programming languages as well as to certain important 
techniques of organizing and linking together information stored in 
a computer. Topics covered in the course include the basic structure 
of algorithmic languages, tree and list structures in a computer, 
string manipulation, data structure and storage allocation, and basic 
aspects of languages and grammars. The students should become ac-
quainted with at least two different-level languages, such as a string 
manipulation language and an advanced algorithmic language. 
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The course covers a number of topics from the ACM courses II 
and 12 but is otherwise novel in character. Some instructors may 
find it desirable to use CM3 as a prerequisite; this would be similar 
in spirit to the approach of the ACM recommendations. But it is 
equally conceivable to introduce C3 as a prerequisite for CM3, al-
lowing a much wider range of computational assignments in the latter 
course. 

2 .2 Elective Component 

Given the Basic Component described above, and depending on the 
student's particular interests, there are several ways to round out a 
good major program. Broadly speaking, possible technical electives 
can be grouped under the following six—somewhat over lapping—cate-
gories, not necessarily in order of importance: 

a) Mathematics 
b) Probability and statistics 
c) Computationally-oriented mathematics 
d) Other applied mathematics 
e) Computer science 
f) Other disciplines 

The specific courses listed here under each of these headings are not 
meant to exhaust all possibilities; clearly, there are various other 
choices and variations. If the Basic Component of the program has 
been completed during the first three years, the elective courses 
will—most probably—be concentrated during the senior and part of 
the junior year. But other arrangements of the Basic Component are 
also possible, thereby allowing for a distribution of elective courses 
throughout most of the undergraduate program. 

a) Mathematics 

Several of the courses offered as part of the standard mathe-
matics curriculum can serve as electives for a computational mathe-
matics program. This involves, in particular, 

Introductory Real Variable Theory (Mathematics 11-12 of 
GCMC) 

Complex Analysis (Mathematics 13) 
Introductory Modern Algebra (Mathematics 6M) 
Linear Algebra (Mathematics 6L) 
Introduction to Mathematical Logic 

The Basic Component, augmented by a year course in real variables and 
a year course in algebra, would constitute minimally adequate prepara-
tion for graduate study in mathematics. These additions could easily 
be achieved in the senior year. 

The standard introductory course in ordinary differential equa-
tions has not been mentioned here again since it was replaced by CM4. 
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A beginning course in partial differential equations is included in 
subsection c) below. 

b) Probability and Statistics 

Statistical computations represent a large percentage of scien-
tific computing work in many disciplines. Accordingly, the Panel be-
lieves that a good introduction to probability and statistics is 
highly important to students in a program of the kind discussed here. 
In fact, it may be very desirable to require such an introduction of 
all students in the program. 

The Panel recommends a one-year combination of probability and 
statistics with M4 as a prerequisite. The first semester should pro-
vide an introduction to probability, with the second covering suit-
able topics from statistics. Courses like this are already offered 
in many schools, and recommendations about the material to be covered 
have been set forth by the CUPM Panel on Statistics in Preparation 
for Graduate Work in Statistics, page 459. 

For the purposes of a computational mathematics program it may 
be highly desirable to integrate computational aspects directly into 
these courses. But in line with the approach taken in this report, 
the Panel did not wish to make any such specific recommendations at 
this time. 

c) Computationally-oriented Mathematics 

The courses grouped under this subheading are similar to CM1-
CM4; that is, their spirit and content are mathematical, but comput-
ing plays an important role in each. Accordingly, it is most desir-
able that a program in computational mathematics include at least 
some additional courses of this nature. 

From among the variety of possible topics the Panel decided to 
select five course areas which appear to be fairly representative. 

Numerical linear algebra 

This course covers the description and analysis of some of the 
principal computational methods in linear algebra. It uses CM2 and 
M3 as prerequisites and could replace the standard advanced linear 
algebra course for students in this program. Typical topics might in-
clude a thorough discussion of elimination methods and of Wilkinson's 
backward error analysis, iterative methods for large linear systems 
and the corresponding basic convergence results, and methods for solv-
ing eigenvalue-eigenvector problems. The various topics should be 
motivated and illustrated by means of different applications. 

Courses like this have become almost standard in many institu-
tions. The course material can be found, for example, in parts of 

540 



the following texts: 

Forsythe, George E. and Moler, Cleve Β. Computer Solution of Linear 
Algebraic Systems. Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 
1967. 

Householder, Alston S. The Theory of Matrices in Numerical Analysis. 
Waltham, Massachusetts, Blaisdell Publishing Company, Inc., 1964. 

Noble, Ben. Applied Linear Algebra. Englewood Cliffs, New Jersey, 
Prentice-Hall, Inc., 1969. 

Varga, Richard S. Matrix Iterative Analysis. Englewood Cliffs, New 
Jersey, Prentice-Hall, Inc., 1962. 

Wilkinson, James H. The Algebraic Eigenvalue Problem. New York, 
Oxford University Press, Inc., 1965. 

Applied modern algebra 

The purpose of this course is to introduce the student to the 
discrete algebraic structures most commonly used in applications. It 
is intended to replace the standard modern algebra course (Mathe-
matics 6M of GCMC) for those students who are concerned with applica-
tions of algebra rather than with algebra as pure mathematics. Where-
as the topics are in general not intended to be treated in depth, the 
treatment should be adequate enough in each case to enable the stu-
dent to read independently in more complete expositions. According-
ly, the presentation should include formal definitions and proofs of 
fundamental theorems, but at the same time there should be consider-
able emphasis on practical applications. 

While courses on applied and computational linear algebra have 
become reasonably common, the same cannot be said about courses on 
applied modern algebra. Moreover, at present there exists essen-
tially only one text on this topic, namely, 

Birkhoff, Garrett and Bartee, Thomas C. Modern Applied Algebra. New 
York, McGraw-Hill Book Company, 1970. 

This book contains material for a full year course. A one-semester 
course on the senior level with a prerequisite of CM3 might begin with 
a review of set algebra and an introduction to semigroups and groups 
and some of their applications. Then the stress could be placed on 
partially ordered sets, lattices and Boolean algebra, and their appli-
cations in switching algebra and logic. Another approach would be to 
play down Boolean algebra and to stress rings and fields, including, 
in particular, polynomial rings and finite fields, and their applica-
tions to coding theory. 
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Optimization 

* See also the CUPM reports Recommendations on the Undergraduate 
Mathematics Program for Engineers and Physicists [page 628] and 
Applied Mathematics in the Undergraduate Curriculum [page 705]. 
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Optimization problems arise frequently in scientific computer 
applications. This includes problems from the entire area of mathe-
matical programming as well as from optimal control theory, calculus 
of variations, and from parts of combinatorics. A one-semester intro-
ductory course in optimization problems, with CM2 and M4 as prerequi-
sites, is therefore a highly desirable elective in a program of this 
kind. 

Such a course--not stressing computational aspects--was de-
scribed in the CUPM report Mathematical Engineering--A Five Year 
Program, page 649.* It begins with a discussion of specific examples 
of typical optimization problems from the various cited fields, and 
continues with an introduction to convexity and η-space geometry, 
Lagrange multipliers and duality, and the Simplex method. Then it 
turns to some combinatorial problems and to elements of the classical 
calculus of variations and of control theory. In a more computation-
ally-oriented version of the course it appears to be desirable to 
delete the latter three topics and to present instead an extended 
coverage of the numerical aspects of linear programming, as well as a 
discussion of transportation problems. The course could then end 
with an introduction to numerical methods for convex programming 
problems. The student would be assigned computational projects in-
volving some of the many available library subroutines; in fact, an 
important by-product of the course in this form might be to familiar-
ize the students with the extensive computational effort that has 
already been spent in connection with mathematical programming tech-
niques . 

There is an extensive list of available references relating to 
this course. Without attempting to be comprehensive, we mention only 
the following books: 

Berge, Claude and Ghouila-Houri, A. Programming, Games and Trans-
portation Networks. New York, John Wiley and Sons, Inc., 1965. 

Dantzig, George B. Linear Programming and Extensions. Princeton, 
New Jersey, Princeton University Press, 1963. 

Hadley, George F. Linear Programming• Reading, Massachusetts, 
Addison-Wesley Publishing Company, Inc., 1962. 

Hadley, George F. Nonlinear and Dynamic Programming. Reading, 
Massachusetts, Addison-Wesley Publishing Company, Inc., 1964. 



Künzi, Hans P.; Tzschach, Η.; Zehnder, C. Numerical Methods of 
Mathematical Optimization with ALGOL and FORTRAN Programs. New York, 
Academic Press, Inc., 1968. 

Polak, E. Computational Methods in Optimization. New York, Academic 
Press, Inc., 1971. 

Partial differential equations and numerical methods 

The general aim of this course is to survey the standard types 
of partial differential equations, including, for each type, a dis-
cussion of the basic theory, examples of applications, classical 
techniques of solution with remarks about their numerical aspects, 
and finite difference methods. By necessity, most proofs of exist-
ence and uniqueness theorems and of the properties of the numerical 
methods are to be omitted. 

A course of this kind--based on CM4 and M5--requires in general 
two semesters, and even then it will be very demanding of the students 
at the senior level. Typical topics include first-order equations and 
the elements of the theory of characteristics for linear and quasi-
linear equations; linear second-order equations in two variables; 
classification; canonical forms; a discussion of the wave, diffusion, 
and Laplace equations; and a survey of some topics about other equa-
tions. For a description of a one-year course on partial differen-
tial equations--not stressing numerical methods—see also the CUPM 
report Mathematical Engineering—A Five Year Program, page 649. 

There do not appear to be any entirely appropriate texts for 
this course. The following are some possible titles: 

Ames, William F. Numerical Methods for Partial Differential Equa-
tions . New York, Barnes and Noble, 1970. 

Probably too difficult as a text for a first undergraduate 
course, but valuable as a reference for the course. 

Berg, Paul W. and McGregor, James L. Elementary Partial Differential 
Equations. San Francisco, California, Holden-Day, Inc., 1966. 

Elementary introductory text, but does not emphasize numerical 
methods. 

Forsythe, George E. and Wasow, Woolfgang R. Finite Difference 
Methods for Partial Differential Equations. New York, John Wiley 
and Sons, Inc., 1960. 

Important reference for numerical methods. 

Mitchell, A. R. Computational Methods in Partial Differential Equa-
tions . New York, John Wiley and Sons, Inc., 1969. 

Weinberger, Hans F. A First Course in Partial Differential Equations. 
Waltham, Massachusetts, Blaisdell Publishing Company, 1965. 

Introductory text which places special consideration on physical 
applications. 
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Introduction to applied functional analysis 

544 

The purpose of this course is to present some of the basic 
material of elementary functional analysis as it is of use and impor-
tance in numerical and applied mathematics. With a prerequisite of 
CM2 and M5, the course includes an introduction to metric spaces, 
the contraction mapping theorem and various of its applications, 
normed linear spaces, linear and nonlinear operators, the differential 
calculus on normed spaces, applications to iterative processes such 
as Newton's method, minimization techniques for nonlinear functionals 
on Banach spaces, and, if time permits, some discussion of the rela-
tionships between functional analysis and approximation theory. 

By necessity, the material has to be presented from a geometri-
cal and intuitive viewpoint rather than in a formal and abstract man-
ner. Some of the results should be explored further by applying them 
to specific computational problems; here team projects may be very 
appropriate. 

The following are some texts which cover parts of the material 
mentioned above: 

Collatz, Lothar. Functional Analysis and Numerical Mathematics. New 
York, Academic Press, Inc., 1966. 

Survey of many of the interactions between the two fields. 

Davis, Philip J. Interpolation and Approximation. Waltham, Massa-
chusetts, Blaisdell Publishing Company, 1963. 

For the connections to approximation theory. 

Dieudonne, Jean. Foundations of Modern Analysis. New York, 
Academic Press, Inc., 1969. 

For the differential calculus on normed linear spaces. 

Goffman, Casper and Pedrick, George. First Course in Functional 
Analysis. Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1965. 

For much of the basic material; not numerically oriented. 

Goldstein, Allen A. Constructive Real Analysis. New York, Harper 
and Row, Publishers, 1967. 

For minimization methods. 

Kantorovich, L. V. and Akilov, G. P. Functional Analysis in Normed 
Spaces. Elmsford, New York, Pergamon Press, Inc., 1964. 

Contains a detailed discussion of Newton's method. 

Kolmogoroff, A. N. and Fomin, S. V. Elements of the Theory of Func-
tions and Functional Analysis, vol. I. Baltimore, Maryland, Gray-
lock Press, 1957. 

Schechter, Martin. Principles of Functional Analysis. New York 
Academic Press, Inc., 1971. 



In some of these courses it may be desirable to add a second 
semester in order to provide a more extended coverage of the mate-
rial. This applies also to CM4, where a second semester is probably 
very desirable for many students. 

The Panel believes that students in a program such as this 
might benefit by being able to deepen their knowledge in graph 
theory and combinatorics beyond the material covered in CM3. A 
course in this area is described in Applied Mathematics in the Under-
graduate Curriculum, page 734. 

d) Other Applied Mathematics Courses 

As discussed in the beginning, a main aim of this program is to 
provide the student with a basic understanding of the application and 
use of computers in the solution of scientific problems. Accordingly, 
it will be most important that the student acquire a certain famili-
arity with at least some of the many applications of mathematics and 
with mathematical model building. 

A number of suitable topics for an applied mathematics course 
are discussed in Applied Mathematics in the Undergraduate Curriculum, 
page 705 . Outlines for some courses in physical mathematics are de-
scribed in the CUPM report Mathematical Engineering—A Five-Year 
Program, page 649. From this latter report we mention, in particular, 
the following courses: 

ME3 Mechanics 
ME8 Εlectromagnetics 
ME9 Thermodynamics and Statistical Mechanics 
0R2 Operations Research 
0R3 Systems Simulation 
0M3 Celestial Mechanics 
0M4 Orbit Theory 
CT2 Control 
CT4 Linear Systems 
CT7 Information Theory 

It should be stressed that for the purposes of this program the spe-
cific topics covered in any of these courses are not as important as 
the applied mathematical spirit, that is, the emphasis on model build-
ing, on analysis of the model, and on interpretation of the results. 

It should also be noted that by listing these courses separately 
from those in the previous subsection we do not mean to imply that 
little or no computational work is to be involved here. In fact, in 
many of these courses computer applications might prove to be of con-
siderable value and might strengthen the student's understanding of 
the interrelationship among scientific problems, mathematical models 
for them, and numerical methods for finding approximate solutions of 
these models. 
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e) Computer Science 

In an institution with an ongoing computer science program, 
many of the courses offered as part of that program can serve well 
as possible technical electives in this curriculum. We mention, in 
particular, the following courses described in Curriculum 68: 

Some introductory courses in mathematical logic covering topics from 
17, Al, and A7 are also offered by many mathematics departments and 
may serve as possible electives. 

Finally, it may be of interest to note that with the addition 
of three or four courses, such as 14 and 15 or Al, to the Basic Com-
ponent, a student would meet more than the minimal requirements in 
Curriculum 68 for an undergraduate major in computer science. Such 
additions could easily be achieved in the senior year. 

f) Other Disciplines 

This last and yet by no means least important subgroup of pos-
sible electives concerns courses in any of the disciplines outside of 
mathematics which are sources of mathematical computing problems. 
The Panel firmly believes that an understanding of the ideas, prin-
ciples, and methods of at least one such area is a basic ingredient 
of the education of a computational mathematician and hence that any 
student in this program should take at least some suitable courses in 
another discipline. It should be stressed that this need not be the 
traditional introductory physics sequence, but that beginning courses 
in the engineering, biological, behavioral, or social sciences might 
be equally appropriate. The specific type and number of courses 
depends in each case on what is available, the field selected, and 
the student's depth of interest. 

14 
15 
16 
17 
Al 
A2 
A4 
A5 
A7 

Systems Programming 
Compiler Construction 
Switching Theory 
Sequential Machines 
Formal Languages and Syntactic Analysis 
Advanced Computer Organization 
System Simulation 
Information Organization and Retrieval 
Theory of Computability 
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3. Implementation of the Program 

3.1 Staff 

It was stated earlier that the program of the Basic Component 
could be carried out by a mathematics department with the equivalent 
of one faculty member interested in numerical analysis and computing, 
and one in computer science. Such a department could offer some of 
the elective courses as well, depending on the interests of its mem-
bers. A year course in Probability and Statistics is already taught 
in many colleges, and courses in Modern Applied Algebra are beginning 
to appear in addition to, or as replacements for, the usual courses 
in Abstract Algebra. Courses resembling those in Optimization or 
Applied Functional Analysis are also offered by many colleges. 

Thus, while the entire program could not be offered except in 
an institution with several faculty members in applied and numerical 
mathematics as well as in computer science, much of it--and especial-
ly the Basic Component—may be possible in a small college with an 
expanded mathematics department as described above, provided a com-
puter is available. 

This leaves, of course, the question of staffing the computing 
facility itself, which in turn depends strongly on the nature of that 
facility. In most cases, such a facility requires the supervision of 
at least one professional manager or director, who in turn may be 
capable of teaching the necessary computer science courses in this 
program. Besides this person, many colleges have found that the prob-
lem of staffing the computing laboratory can be solved in part, or 
even completely, through the students themselves. One of the virtues 
of the computer as an instructional device is the personal involve-
ment that it demands of and readily receives from the students. They 
learn quickly for the most part and teach one another very effec-
tively. They serve well in many jobs associated with the operation 
of the computer facility. To bring them formally into the teaching 
process is sensible and rewarding. 

3.2 Facilities 

Apart from dealing with the arrays of desk calculators which 
have served statistical laboratories in the past, mathematics depart-
ments have not faced the wide variety of problems connected with the 
incorporation of laboratory work into their academic programs. The 
implementation of this program necessarily requires careful planning 
and maintaining of proper laboratory facilities. Because of sus-
tained increases in costs of education, college administrations are 
understandably hesitant to incur major new expenditures. The follow-
ing discussion is directed toward helping to clarify or distinguish 
among various factors which might characterize a computational facil-
ity suitable t'o this program. 
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The principal ways of incorporating computer use into an educa-
tional program can be characterized as follows: 

1) Discussion of computational results obtained directly or 
indirectly by the instructor. 

2) Student use of computers outside the classroom in a batch 
mode. Here, typically, programs are collected and submitted to be 
run together on a computer, without the possibility of further inter-
action from the originator. Very often the input is in the form of 
punched cards. 

3) Student use of computers outside the classroom in a time-
sharing mode. Here either simple teletypewriters or more elaborate 
character- and graphical-display devices are in open communication 
with the processor. A user can input his program almost instantane-
ously and, by executing or modifying it at will, he is able to inter-
act in an experimental manner with the computational process. 

4) Use of time-shared classroom display facilities to inte-
grate the presentation of the theoretical and computational aspects 
of the course material. 

5) Use of special laboratories having dedicated computers 
(i.e., reserved solely for this use) for part or all of the meetings 
of the class in order to integrate computational work directly into 
the instructional process, 

6) Use of special laboratories for computer-aided instruction. 

At present, the most frequently used approaches are those under 
1), 2), and 3); for this program, 1) by itself is not satisfactory. 
Accordingly, we shall focus our discussion primarily upon the use of 
the batch mode 2) or the time-sharing mode 3). 

No matter which type of computational service is chosen, the 
most essential points appear to be that it must be reliable, respon-
sive to fluctuating student demands during a semester, and capable of 
allowing the student to complete assignments in a reasonable time 
span. In line with this, a complete dependence on slack-hour use of 
a computer owned by local industry, the shared use of campus equip-
ment dedicated primarily to accounting and administrative functions, 
or the "generous" gift of an outdated computer will generally prove 
unsatisfactory. 

For most of the requirements of this program, computational 
services in the batch mode can be entirely satisfactory, effective, 
and at the same time economical. One of the critical factors is then 
the "turnaround time" between the submission of input and the return 
of the output to the originator. Since the completion of a problem 
by a student may require four to eight, or even more, machine runs, 
a turnaround time that allows at least two runs during a normal day 
appears to be rather desirable. (With the aid of multi-processing 
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systems, it is possible to achieve a turnaround time of a few min-
utes or less for short student runs.) Besides the turnaround time, 
another controlling parameter in batch service is the availability 
of ancillary equipment for producing and handling punched cards. 
Here queues easily develop which are not readily reduced without con-
siderable cost. It may be hoped that this latter problem will be al-
leviated considerably by the development of less expensive mark-
sensing or character-reading devices. 

Time-sharing services have much to recommend them. However, 
their costs are generally higher than those of acceptable batch ser-
vices. Moreover, they can also lead to considerable queueing prob-
lems if not enough consoles are available to the students. The 
critical parameter is the maximal number of terminals which can be 
sustained by the particular computer system without a significant 
degradation of the response time. 

The repertoire of available computer languages is an important 
consideration for any computational service. For many of the require-
ments of this program, one scientific language such as FORTRAN, BASIC, 
ALGOL, PL/1, or APL is sufficient. In general, however, it is de-
sirable that the student gain experience with more than one language, 
and in certain courses, such as C3 or CM3, additional languages such 
as SNOBOL are particularly important. In several courses, including, 
for instance, CM1, CM2, or CM4, plotting and display facilities could 
also play a useful role. Indeed, here a versatile time-shared class-
room display system of the type mentioned under 4) might be ideal and 
could completely determine the character of the courses. However, 
more modest services can be completely successful. 

Broadly speaking, the computational services required by this 
kind of program can be provided in one or a combination of the fol-
lowing ways: 

1) Use of off-campus computing facilities 

2) Participation in an educational computer network 

3) Operation of a campuswide educational computer facility 

4) Operation of separate computer laboratories by different 
departments 

Except under special circumstances, exclusive dependence on the 
first of these approaches is, in the long run, not very satisfactory. 
However, certain supplementary off-campus computer services, if reli-
able and economical, can provide highly advantageous solutions to en-
riching more modest services available on the campus 

At present, educational computer networks have been established 
in only a few geographical locations. The organization of these net-
works ranges from fairly loose mutual assistance groups to highly 
organized hardware networks. Either time-sharing or batch-processing 
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services can be provided—sometimes both. Clearly, the access to a 
large central computer with a massive program library, large memory, 
fast central processor, and large systems and programming staffs 
represents a considerable advantage. On the other hand, logistical 
and communication problems, lack of control, etc., may turn out to 
be very detrimental for a participant college. Nevertheless, the 
possibility of joining such a network when feasible certainly de-
serves proper consideration. 

Probably the most common approach toward meeting the educational 
computer needs of a college or university is the establishment of a 
centralized, campuswide academic computing center. Such a center 
will serve its expected purpose only when operated by an adequate 
staff in an efficient, professional manner; this is a point too often 
overlooked. 

In recent years many small and medium-sized computers have been 
marketed at relatively low prices. This has made it possible for 
many institutions to have separate computers of varying sizes for in-
dividual departmental use. The assured availability of a specialized 
service to the department is, of course, one of the greatest advan-
tages of this approach. It also allows the development of special 
laboratories of the type mentioned under 5) above. On the other hand, 
the computational work possible on these machines is severely limited 
by their size, and for more sophisticated tasks additional computer 
services are often needed. 

The actual costs of a computing facility depend upon many fac-
tors, including the desired quality of the service, the intended 
group of users, the specific type of equipment selected, local physi-
cal facilities, and the corresponding staff needs. The Panel there-
fore decided not to include here any cost estimates for the facilities 
needed in this program. Some data on such costs are given, for ex-
ample, in recent reports of the Southern Regional Education Board and 
the American Council on Education.* 

* See Guidelines for Planning Computer Centers in Universities and 
Colleges and Computers in Higher Education, both publications of 
the Southern Regional Education Board, 130 Sixth Street, N.W., 
Atlanta, Georgia 30313. See also Computers on Campus, American 
Council on Education, One Dupont Circle, Washington, D. C. 20036, 
and "A Survey of Computing Costs," CRICISAM Newsletter 3, Septem-
ber, 1971, pp. 2-5. 
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4. Detailed Course Outlines 

In this section we present outlines for the seven courses CM1, 
CM2, CM3, CM4 and CI, C2, C3. They are intended to suggest topics 
which might be included in these courses and should not be inter-
preted as check lists of required material. Where appropriate, sug-
gested numbers of lectures to be spent on the various topics are in-
cluded in the descriptions. These lectures total approximately 36 
hours for a semester course; this leaves room for examinations, re-
views, and lectures on supplementary technical material. 

CM1. Computational Models and Problem Solving 

Prerequisite: CI 

Depth of treatment for the topics outlined below will vary 
with the interest of instructor and students, and lecture hours are 
therefore not assigned to any of the topics. It is recommended that 
a small number of fairly substantial projects be required in this 
course, rather than a larger number of smaller problems. Some of 
the material is suitable for group projects. 

Detailed Outline 

Statistical calculations 

Tabulation of data 

Calculation of means and variances 
Least squares fitting of straight lines 
Intuitive meaning of randomness 
Random number generators 
Tests of generators (e.g., chi-square) 

Simulation of random processes 

Queues, inventories, random walks, etc. 
Discussion of statistical significance (confidence intervals) 
Games such as blackjack and bingo 
Monte Carlo calculations 

Simulation of nonrandom processes 

Simple hypothetical computer 
Approximations to physical, economic, and biological processes 
Discussion of errors in such approximations 
Deterministic games such as nim 

Other nonnumerical problems 

Enumeration 
Searching and sorting 
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Connectivity of graphs, shortest paths 
Text editing 
Elementary computer graphics 
Handling arithmetic expressions 

Sample Problems 

1. Develop a program for the least squares fitting of straight 
lines to given data. The program should input pairs of values 
(x^>y.) a n < 3 output the values of (a,b) where y = ax + b is the 

best fit. Is the same line obtained when the values of χ and y 
are interchanged? Show how your program can be used to fit curves 

χ b 
given by y = ab or y = ax by taking the logarithms of each 
side of these equations. Are the results the same as those obtained 
by a true least squares fit of these curves without taking logarithms? 

2. Write a program to generate 1000 pseudo-random numbers and 
calculate the chi-square statistic that is associated with 10 equal 
subintervals of the interval in which the random numbers are supposed 
to be uniformly distributed. If the numbers are random, the value of 
this statistic should exceed 16.9 with a probability of only 5 per 
cent. On the basis of this test, have you any reason for doubting 
the usefulness of your generator? 

3. One relatively simple game of solitaire begins with a deal 
of nine cards, face up. If any two of these cards have the same face 
value, they are covered with two new cards, also face up. The last 
step is repeated until the deck has been exhausted except for one 
card, in which case the dealer has won the game, or until there are 
no more pairs showing, in which case the dealer has lost. Write a 
program to simulate this game and use it to determine an approxima-
tion to the probability of winning. How reliable do you believe the 
approximation to be? 

4. Describe a model of cars moving through a highway toll 
station, and write a program to simulate the process. Use it to 
find approximations to the average delay and show how this delay 
depends on traffic density. Discuss the main limitations of your 
model. Assuming that one has a good model, what further limitations 
are there in the results obtained from any such simulation? 

5. Write a program to simulate a game of blackjack and use it 
to compare different strategies. (This problem can be used as the 
basis for a group project.) 

6. Describe a simple hypothetical computer and write a program 
to simulate its behavior. The description of the machine should be 
carefully documented so that any potential user will be able to deter-
mine exactly what the machine will do in every conceivable circum-
stance . 

7. A man starts at the southwest corner of a field and runs 
north at 15 feet per second. His dog starts at the southeast corner, 
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200 feet from where the man starts, and runs directly towards his 
master at the rate of 40 feet per second. Calculate an approxima-
tion to the dog's path and to the time taken by the dog to catch his 
master. Compare this time with the time required if the shortest 
path had been taken. 

8. Suppose that the adjacency matrix for a graph is given, 
along with two of its nodes. Write a program that will determine 
whether or not there is a path between the two nodes. Develop a 
second program for the same task, but based on a distinctly different 
algorithm, and compare the relative merits of the two different pro-
grams . 

9. Develop a program for right-justifying text material. In-
put to the program should be a paragraph of text, and the correspond-
ing output should be the same paragraph properly justified. (This 
problem can be expanded into a more substantial project on text edit-
ing by including additional features such as section headings and 
paging.) 

10. A package of programs is to be developed for producing 
sequences of pictures. The pictures are to be output on a printer 
and must therefore be relatively simple, but the basic ideas are 
similar to those needed for computer-produced movies. (This can be 
a good group project. Once agreement is reached on how to represent 
the data, members of the group can be assigned separate tasks, such 
as developing subprograms for input, output, moving, shrinking, and 
rotating pictures.) 

Bibliography 

Most introductory books on computer programming contain mate-
rial on computer applications. Some of these texts are cited in the 
outline of course CI below. The following texts are primarily con-
cerned with computer application problems suitable for this course: 

Barrodale, Ian; Ehle, Byron L. ; Roberts, F. D. K. Elementary Computer 
Applications in Science, Engineering, and Business. New York, John 
Wiley and Sons, Inc., 1971. 

Gruenbörger, Fred and Jaffray, George. Problems for Computer Solu-
tion. New York, John Wiley and Sons, Inc., 1965. 

Hull, Thomas E. and Day, David D. F. Computers and Problem Solving. 
Reading, Massachusetts, Addison-Wesley Publishing Company, Inc., 1970. 
(in particular, Part 2) 
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CM2. Introduction to Numerical Computation 

Prerequisites: CI, M2, M3 

Each of the major topics in the course should be amply moti-
vated by introducing applications from the physical and social 
sciences. A consideration of electrical networks or input-output 
systems in economics leads, for instance, to linear systems; vibra-
tion problems from mechanics or Markov processes provide examples 
for eigenvalue problems; root-locus problems arise in several areas 
of engineering; observational data collected in practical experi-
ments lead to a consideration of interpolation and least squares 
techniques. A selection of problems can be found, for example, in 
the book by Carnahan, Luther, and Wilkes (see bibliography). 

During the course the students should solve a number of prob-
lems on the computer. Some of these should involve programming of 
the simpler algorithms and others should make use of library sub-
routines . 

Detailed Outline 

Introduction (2 lectures) 

Number representation on a computer 
Computer arithmetic 
Discussion of the various types of errors 

Linear systems of equations (9 lectures) 

Gaussian elimination and the LU factorization 
Partial and complete pivoting 
Example of ill-conditioning 
Discussion of ways for detecting ill-conditioning 
The Wilkinson backward error result and its implications (no 

proofs) 
Iterative improvement 
Iterative methods with simple convergence criteria (no proofs) 

Solution of a single nonlinear equation (6 lectures) 

Successive approximation 

The Point of Attraction Theorem and its implications 
Discussion of the rate of convergence 
Newton's method and the simplified Newton method 
Secant method and method of false position 
Stopping criteria for iterations 
Extension of Newton's method to two equations in two unknowns 
Roots of polynomials 
Sturm sequences 
Example of ill-conditioning of the roots of a polynomial 
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Interpolation and approximation (6 lectures) 

Lagrange interpolating polynomial 
Error term for an interpolating polynomial 
Newton forward and backward difference polynomials 
Piecewise polynomial interpolation 
Least squares approximation, including numerical problems 

associated with the normal equations and orthogonal poly-
nomials and their use in least squares 

Chebychev economization of power series 

Numerical differentiation and integration (6 lectures) 

Error in differentiating the interpolating polynomial 
Differentiation by extrapolation to the limit 
Integration formulas based on interpolating polynomials and 

the associated error terms 
Romberg integration 
Gaussian quadrature formulas 
Adaptive methods 

The eigenvalue problem (6 lectures) 

Direct root-finding methods such as Muller's or the secant 
method 

The power method for the dominant eigenvalue 
Subdominant eigenvalues by the inverse iteration method 
The Householder-Givens method for symmetric matrices (without 

proofs) 

Bibliography 

Carnahan, Brice; Luther, Η. Α.; Wilkes, James 0. Applied Numerical 
Methods. New York, John Wiley and Sons, Inc., 1969. 

Primarily as a source of problems. 

Conte, Samuel D. Elementary Numerical Analysis: An Algorithmic 
Approach. New York, McGraw-Hill Book Company, 1965. 

Fox, Leslie and Mayers, D. F. Computing Methods for Scientists and 
Engineers. New York, Oxford University Press, Inc., 1968. 

Frb'berg, Carl E. Introduction to Numerical Analysis, 2nd ed. 
Reading, Massachusetts, Addison-Wesley Publishing Company, Inc., 1969. 

Henrici, Peter K. Elements of Numerical Analysis. New York, John 
Wiley and Sons, Inc., 1964. 

McCracken, Daniel D. and Dorn, William S. Numerical Methods and 
FORTRAN Programming. New York, John Wiley and Sons, Inc., 1964. 

Stiefel, Ε. L. An Introduction to Numerical Mathematics. New York, 
Academic Press, Inc., 1963. 
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Wendroff, Burton. First Principles of Numerical Analysis. Reading, 
Massachusetts, Addison-Wesley Publishing Company, Inc., 1969. 

CM3. Combinatorial Computing 

Prerequisites: CI and M3 

The material listed here may be more than can be covered prop-
erly in one semester. Since many topics are rather independent of 
each other, an instructor can make his own selection of what to ex-
clude. For this reason no breakdown into the number of lectures for 
each topic was included. Students are expected to implement some of 
the algorithms on the computer and also to experiment with relevant 
library subroutines. For this computational work, it may be desir-
able to assign team projects rather than to let every student proceed 
on his own. 

Detailed Outline 

The machine tools of combinatorics 

Integers and their representation, including radix, modulo, 
and factorial representation (and its use in indexing over 
permutations), monotonic vector representation (and its use 
in indexing over combinations and partitions) 

Sets and their representation, including bitstring and index 
representation 

Some aspects of list processing and storage organization, in-
cluding representation of variable length sequences, one-
and two-way lists, tree structures, free storage, and gar-
bage collection 

Enumeration and counting 

Enumeration techniques, such as backtrack and sieve methods 
Counting techniques, including recurrence relations and tech-

niques for solving them, Polya's counting formula 

Sorting 

Internal sorting; insertion, selection, and enumeration 
me thod s 

External sorting; long-sorted subsequences, merging, distribu-
tion sorting 

Searching 

Searching in a linearly ordered set, including hash-coding or 
scatter storage techniques, Fibonacci search 

Trees and their use in ordering sets, rooted trees and their 
properties, representation of trees, methods of traversing 
trees, internal and external path length, optimal and near 
optimal search trees 
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Heuristic search, game trees, minimax evaluation, pruning, 
static evaluation functions, backing up uncertain values 

Graph algorithms 

Some concepts from graph theory, such as graphs, directed 
graphs and their representation, paths, trees, circuits 
and cutsets 

Connectedness and shortest path problems, including various 
related algorithms 

Flow problems, max-flow and min-cut theorem, Ford-Fulkerson 
algorithm 

Spanning trees, and algorithms for finding them 
Graph isomorphisms 
Planarity of graphs 

Sample Problems 

1. In how many different ways can one color the six faces of 
a cube which may be freely rotated with two colors? [Topics: count-
ing, group of transformations, Polya's theorem] 

2. An integrated circuit manufacturer builds chips with 16 
elements arranged in a 4 X 4 array as shown below. To realize dif-
ferent circuits all patterns for interconnecting the elements are 
needed. Direct interconnections are made only between horizontally 
or vertically adjacent elements, e.g., as shown below: 

(Closed loops do not usually occur, but this is ignored here for 
simplicity's sake.) To deposit interconnections on the chip a photo-
mask of the interconnection pattern is needed. Notice that the same 
photo-mask will do for the two interconnection patterns shown above. 
How many photo-masks are required in order to lay out all possible 
interconnection patterns on these chips? 

a) Carefully define the permutation group involved. 

b) Solve the problem using Burnside's lemma alone. 
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c) Solve the problem using Polya's counting formula. 

[Topics: counting, group of transformations, Polya's theorem] 

3. List all the essentially different ways in which eight 
queens can be placed on a chessboard so that no two are on the same 
row, column, or diagonal. Two ways of placing queens are essen-
tially different if they cannot be transformed into each other by a 
rotation of the board or by reflection on any of the axes shown in 
the figure: 

4. Assume a large deck of Ν punched cards is dropped on the 
floor, but fortunately each card contains a unique sequence number 
from 1 to Ν which indicates its position in the deck. After the 
cards have been picked up, the deck is not in complete disorder; it 
contains long runs of cards in proper order. Discuss what sorting 
techniques can be considered to sort the deck as efficiently as pos-
sible. What standard sorting techniques would definitely be inef-
ficient in this case? [Topics: linear order, expected number of 
comparisons, sorting algorithms] 

5. a. Prove that every positive integer A has a unique 
representation a^, a^, a^ which satisfies the conditions 

(i) A = a.-l! + a -2! + ... + a -n!; 1 2 η 

(ii) 0 s a t S i for i = 1, 2, n; 

(iii) a n φ 0. 
Let the factorial representation for zero be a. = 0, so that 
0 = 0·1!. 

b. Devise an algorithm for adding 1 to a number in 
factorial representation. 

c. Devise algorithms for adding and subtracting two 
numbers in factorial representation. 
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d. For fixed Ν s 1, there are (N+l)! numbers whose 
factorial representation a,, a„ a has η S N. From this 

1 2 η 
fact and from the uniqueness of the factorial number representation 
proved in (a), derive the identity: 

1-1! + 2 - 2 ! + 3 - 3 ! + ... + N-N! = (N+l)! - 1 

e. The factorial number representation is useful in 
enumerating permutations. This can be done in many ways. The tech-
nique discussed below is called the Derangement Method of M. Hall. 

Let Ρ = (ig, i^j i^) be a permutation of the N + l 

integers 0, 1, ..., N. For j = 1, 2, ..., Ν define: 

a. = (the number of integers < j which occur to 

the right of j in permutation P) 

As an example, the permutation Ρ = (2, 0, 1) yields 

3 χ = 0, a 2 = 2. 

By considering a^, . .., a^ to be the factorial representation of 

an integer A, we have set up a correspondence between the (N+l)! 
permutations of the integers 0, 1, ..., Ν and the (N+l)! numbers 
with factorial representation a^, a n (n s N ) . 

(e^) Prove that this correspondence is 1:1. 

(e^) Devise an algorithm which constructs the permuta-

tion associated with an integer A from the factorial repre-

sentation of A. 

6. Devise an algorithm for finding shortest paths in a graph 
with weighted nodes. The length of a path is defined to be the sum 
of the weights of all nodes which lie on the path. 

Consider the following three variations of the problem: 

a. paths between two given nodes 

b. paths between one given node and all other nodes 

c. paths between all pairs of nodes 

[Topics: shortest paths, wave propagation algorithm] 

Bibliography 

There are several good books on combinatorial mathematics in 
general and on graph theory in particular, but there appears to be 
none which is written from the point of view proposed here, of em-
phasizing the computational aspects of algorithms for solving com-
binatorial problems. 
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The book that comes closest to this point of view is 

Beckenbach, Edwin F., ed. Applied Combinatorial Mathematics. New 
York, John Wiley and Sons, Inc., 1964. 

Much useful material on computational and programming aspects 
of algorithms, combinatorial ones in particular, can be found in: 

Knuth, Donald E. The Art of Computer Programming. Reading, Massa-
chusetts, Addison-Wesley Publishing Company, Inc. 

Vol. 1. Fundamental Algorithms, 1968. 
Vol. 2. Seminumerical Algorithms, 1969. 
Vol. 3. Sorting and Searching, 1971-72. 

The following references are not intended to be exhaustive by 
any means, but simply to point to a few papers which are typical of 
those which concentrate on computational aspects of combinatorics. 

The machine tools of combinatorics 

Hall, Marshall, Jr. and Knuth, Donald E. "Combinatorial 
analysis and computers." American Mathematical Monthly, 
72 (1965), pp. 21-28. 

Lehmer, Derrick H. "The machine tools of combinatorics." In 
Beckenbach, Edwin F., ed. Applied Combinatorial Mathematics. 
New York, John Wiley and Sons, Inc., 1964. 

Lehmer, Derrick H. "Teaching combinatoric tricks to a com-
puter." Proceedings of Symposia in Applied Mathematics, 10. 
Combinatorial Analysis, pp. 179-194. Providence, Rhode Island, 
American Mathematical Society, 1960. 

Enumeration and counting 

Golomb, Solomon W. and Baumert, Leonard D. "Backtrack pro-
gramming." Journal of the Association for Computing Machinery, 
12 (1965), pp. 516-524. 

Lehmer, Derrick H. "The sieve problem for all-purpose com-
puters ." Mathematical Tables and Other Aids to Computation, 
7 (1953), pp. 6-14. 

Swift, J. D. "Isomorph rejection in exhaustive search tech-
niques." Proceedings of Symposia in Applied Mathematics, 10. 
Combinatorial Analysis, pp. 195-200. Providence, Rhode 
Island, American Mathematical Society, 1960. 

Walker, R. J. "An enumerative technique for a class of combi-
natorial problems." Proceedings of Symposia in Applied Mathe-
matics, 10. Combinatorial Analysis, pp. 91-94. Providence, 
Rhode Island, American Mathematical Society, 1960. 
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Searching 

Hlbbard, Thomas N. "Some combinatorial properties of certain 
trees with applications to searching and sorting." Journal of 
the Association for Computing Machinery. 9 (1962), pp. 13-28. 

Morris, Robert. "Scatter storage techniques." Comrnunications 
of the Association for Computing Machinery, 11 (1968), pp. 38-
44. 

Peterson, W. W. "Addressing for random access storage." IBM 
Journal of Research and Development. 1 (1957), pp. 130-146. 

Graph algorithms 

Cornell, D. G. and Gottlieb, C. C. "An efficient algorithm 
for graph isomorphism." Journal of the Association for Com-
puting Machinery, 17 (1970), pp. 51-64. 

Dijkstra, E. W. "A note on two problems in connexion with 
graphs." Numerische Mathematik, 1 (1959), pp. 269-271. 

Edmonds, Jack. "Paths, trees and flowers." Canadian Journal 
of Mathematics, 17 (1965), pp. 449-467. 

Gottlieb, C. C. and Cornell, D. G. "Algorithms for finding a 
fundamental set of cycles for an undirected linear graph." 
Communications of the Association for Computing Machinery, 10 
(1967), pp. 780-783. 

Lee, C. Y. "An algorithm for path connections and its applica^ 
tions." Institute of Radio Engineers Transactions on Elec-
tronic Computers, EC-10 (1961), pp. 346-365. 

Moore, Edward F. "The shortest path through a maze." Pro-
ceedings of the International Symposium on the Theory of 
Switching, pp. 285-292. Cambridge, Massachusetts, Harvard 
University Press, 1959. 

Warshall, Stephen. "A theorem on Boolean matrices." Journal 
of the Association for Computing Machinery, 9 (1962), pp. 11-
12. 

CM4. Differential Equations and Numerical Methods 

Prerequisites: CM2, M4 

Throughout this course it is desirable to introduce problems 
which lead to the types of equations considered at the time. Excel-
lent sources include circuit theory, mechanical systems, biological 
systems, particle dynamics, and economics. Numerical methods are to 
be introduced early in the course both to illustrate the qualitative 
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behavior of solutions and to motivate uniqueness and existence argu-
ments. In considering these methods the student should be made aware 
of the effects of discretization--and roundoff errors--and of stabil-
ity. The students are expected to write some programs for various 
methods and to use existing library subroutines for others. 

Detailed Outline 

Origin and examples of differential equations (2 lectures) 

Sample (deterministic and nondeterministic) problems from the 
physical, social, and biological sciences, including predator-
prey model 

Difference equations, including examples of different equations 
leading to the same differential equation 

Simple linear equations (4 lectures) 

y' = f(x), y' = ay + f, y" = ay' + by + f 
Representation of solutions by indefinite integrals and special 

functions 
Direction fields 
Qualitative behavior of solutions 
Uniqueness and continuous dependence on initial data 
Consequences of linearity 
Approximation by Taylor series 
Polygon method 
Trapezoidal approximation 
Equivalence of second-order equations to first-order systems 
Introduction to first- and second-order difference equations 

and their elementary properties 

The first-order equation y' = f(x,y) (9 lectures) 

Graphical treatment, polygon method 
Relation to integral equations, Picard iteration 
Quadrature methods 
Picard existence and uniqueness theorem with proof 
Statement of Peano existence theorem 
Nonuniqueness examples 
Discussion of continuous dependence on initial data 
Power series solution and numerical methods 
Runge-Kutta methods 
Predictor-corrector methods 
Discussion on consistency and convergence (without proofs) 

First-order systems of equations (8 lectures) 

Redevelopment for first-order systems--using vector notation--
of the major results about single first-order equations 

Review of matrix results, similarity transformations, series 
for exp(At) and semigroup properties 

Vector space of solutions of y' = Ay, the adjoint solution 
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Representation of solutions of nonhomogeneous problems 
Stiff systems 

Plane autonomous systems (7 lectures) 

Numerical exploration of y' = ax + by + f(x,y), x' = cx + dy 

+ g(x,y) 
Poincare phase plane and critical solutions 
Critical points and concepts of stability 
Numerical comparison of linear and nonlinear equations 
The Lienard equations 
Liapounov's ideas 
Exploration of predator-prey model 

Two-point boundary value problems (6 lectures) 

Exploration of the linear second-order equation with 
boundary conditions by shooting techniques 

Discretization and methods for solving the resulting 
Extensions to nonlinear equations 

Bibliography 

Birkhoff, Garrett and Rota, Gian-Carlo. Ordinary Differential Equa-
tions . Boston, Massachusetts, Ginn and Company, 1962. 

Selected topics. 

Daniel, James W. and Moore, Ramon E. Computation and Theory in 
Ordinary Differential Equations. San Francisco, California, W. H. 
Freeman and Company, 1970. 

Henrici, Peter. Discrete Variable Methods in Ordinary Differential 
Equations. New York, John Wiley and Sons, Inc., 1962. 

Keller, Herbert B. Numerical Methods for Two-Point Boundary Value 
Problems. Boston, Massachusetts, Ginn and Company, 1968. 

Advanced discussion of material on two-point boundary value 
problems. 

Lapidus, Leon and Seinfeld, John H. Numerical Solution of Ordinary 
Differential Equations. New York, Academic Press, Inc., 1971. 

CI. Introduction to Computing 

Prerequisite: College admission 

As stated in Section 2, this course should be oriented toward 
problem solving with computers. Accordingly, it is important that, 
throughout the course, different types of problems are considered 
and appropriate algorithms for their computational solution are de-
signed and discussed. In particular, it is essential that both 
numerical and nonnumerical applications are presented. The problems 

mixed 

equations 
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should be reasonably interesting and realistic, and some should be 
open-ended, requiring a certain effort to identify what is required 
and how the solution is to be obtained. At least one major project 
leading to a completely verified and documented program should be 
included. 

The course can serve to introduce many traditional mathematical 
ideas from a different point of view (e.g., subroutines and functions, 
induction and recursion, etc.). Such identifications should be 
strengthened where possible. 

The course should be organized so that students can write small 
computer programs almost immediately. This may be accomplished by 
representing algorithmic processes from the outset both by flowcharts 
and programming languages. 

The following outline is for a one-semester course meeting 
three times each week for lectures. In addition, it is generally 
advisable to schedule a regular weekly laboratory period of at least 
two hours. No lecture hours were assigned since the need for proper 
sequencing of programming assignments often demands that certain 
topics are either interchanged or distributed throughout the course. 

Detailed Outline 

Problems, algorithms, and programs 

Typical problems and mathematical models 
Concept of an algorithmic process 
Flowcharts 
Basic structure and properties of algorithms 
Concept of a program 
How computers execute programs 
Elements of a higher-level programming language 

Basic programming 

Number and character representation 
Constants and variables 
Principal syntactic statements of the language 
Functions, subroutines, and complete programs 
Elements of the system being used 
Libraries 
Program testing and documentation 

Errors and approximations 

The approximate character of mathematical models 
Truncation and roundoff error 
Verification of algorithms 
Error conditions and messages 
Techniques for algorithm testing 
The idea of numerical stability 
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Data structures 

Discussion of a variety of problems leading to different data 
structures such as vectors, arrays, strings, trees, linked 
structures 

Basic manipulation of the different structures 

Advanced topics 
Further details of the programming language 
Aspects of compilers 
Basic structure of an operating system 
Aspects and organization of computer systems 

Survey of computers, languages, and systems 

Historical developments, discussion of different language 
types, aspects of systems programs, new developments 

Bibliography 

Arden, Bruce W. An Introduction to Digital Computing. Reading, 
Massachusetts, Addison-Wesley Publishing Company, Inc., 1963. 

A good reference for the instructor. 

Cole, R. W. Introduction to Computing. New York, McGraw-Hill Book 
Company, 1969. 

Forsythe, Alexandra I.; Kennan, Thomas Α.; Organick, Elliott I.; 
Stenberg, Warren. Computer Science: A First Course. New York, John 
Wiley and Sons, Inc., 1969. 

This is a text for a high school course but may be appropriate 
for this course. 

Galler, Bernard A. The Language of Computers. New York, McGraw-Hill 
Book Company, 1962. 

A good reference for the instructor. 

Gruenberger, Fred. Computing: An Introduction. New York, Harcourt 
Brace Jovanovitch, Inc., 1969. 

Hull, Thomas E. Introduction to Computing. Englewood Cliffs, New 
Jersey, Prentice-Hall, Inc., 1966. 

Hull, Thomas E. and Day, David D. F. Computers and Problem Solving. 
Reading, Massachusetts, Addison-Wesley Publishing Company, Inc., 
1970. 

Part I of this text emphasizes material appropriate for this 
course. 

Kemeny, John G. and Kurtz, Thomas E. Basic Programming. New York, 
John Wiley and Sons, Inc., 1967. 

An introduction to programming with applications. 
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Rice, J. Κ. and Rice, J. R. Introduction to Computer Science: 
Problems, Algorithms, Languages, Information and Computers. New 
York, Holt, Rinehart and Winston, Inc., 1969. 

Walker, Terry M. and Cotterman, William W. An Introduction to 
Computer Science and Algorithmic Processes. Boston, Massachusetts, 
Allyn and Bacon, Inc., 1970. 

C2. Computer Organization and Programming 

Prerequisite: CI 

This course includes computational projects in assembly lan-
guage programming. However, in line with the survey character of 
the course, care should be taken not to involve the students in a 
too-detailed discussion of assembly languages or of computer hard-
ware. A scheduled laboratory period is desirable. 

Detailed Outline 

Computer structure and machine language (2 lectures) 

Fundamentals of computer organization, including registers, 
arithmetic units, memory, I/O units, and their interdependence 

Description of typical single-address machine instructions 
Programs as sequences of machine instructions and their execu-

tion 

Introduction to symbolic coding and assembly systems (5 lectures) 

Mnemonic operation codes 
Labels, symbolic address 
Literals 
Pseudo operations 
General construction of assemblers 
Simple examples and exercises using a locally available 

assembler 

Digital representation of data (3 lectures) 
Bits, fields, words 
Character representation 
Radix representation of numbers, radix conversion, representa-

tion of integers, floating point, and multiple precision 
numbers in binary and decimal form 

Variable length data 

Addressing (2 lectures) 

Absolute addressing, indexing, indirect addressing, relative 
addressing 

Zero-, one-, two-, three-address instruction formats 
Address transformations 
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Machine organization to implement addressing structures 
Character- versus word-oriented machines 

Logic design (5 lectures) 

Elements of Boolean algebra 
AND, OR, NOT logic gates 
Implementation of Boolean functions 
Encoders and decoders 
Descriptive discussion of clocked circuits, flip-flops, regis-

ters, shift registers, accumulators, counters, timing chains 

Arithmetic units (3 lectures) 

Serial versus parallel arithmetic 
Implications of choice of radix 
Design of a simple arithmetic unit 
Design of half-adder and adder 
Algorithms for multiplication and division 

Instruction units (3 lectures) 

Instruction fetch and decoding 
Program sequencing 
Branching 
Subroutine calls 
Interrupts 
Control and timing logic 
Micro-programming as a means of implementing control units 

Storage units (3 lectures) 

Structure of core memory 
Typical memory bus structure 
Memory overlap, protection, relocation, and paging 
Word versus character organizations 
Types of bulk memories 
Descriptive discussion of stack memories, associative memories, 

read-only memories, and virtual memory schemes 

Input-output systems (3 lectures) 

Direct memory access I/O 
I/O channels and controllers, multiplexers 
Characteristics of various types of input/output devices 
Relation of I/O system to control unit and main memory 
Input/output programming 
Buffering and blocking 
Interrupts 
Problems of error detection and correction in data transmission 

567 



Systems software (4-5 lectures) 

Operating systems 
Input/output packages 
Assemblers, loaders 
Interpreters, compilers 
Utility programs and libraries 

Survey of contemporary computers (3-6 lectures) 

A survey of contemporary computers emphasizing a variety of 
machine organization. Typical topics: large versus small 
computers; single register, multiple register, and stack 
machines; unorthodox machines. Discussion of possible imple 
mentation of high-level programming language statements on 
typical computers. 

Bibliography 

Bell, C. G. and Newell, A. Computer Structures. New York, McGraw-
Hill Book Company, 1970. 

Survey of computer organizations. Source of material for the 
survey of contemporary computers. 

Chu, Yaohan. Digital Computer Design Fundamentals. New York, 
McGraw-Hill Book Company, 1962. 

A somewhat dated reference on logic design. 

Gear, C. William. Computer Organization and Programming. New York, 
McGraw-Hill Book Company, 1969. 

Reference on assembly language programming. 

Gschwind, H. W. Design of Digital Computers: An Introduction. 5th e 
New York, Springer-Verlag New York, Inc., 1970. 

Text on computer design and organization, slightly engineering 
oriented. 

Hellerman, H. W. Digital Computer System Principles. New York, 
McGraw-Hill Book Company, 1967. 

Uses Iverson notation, directed toward IBM equipment, 
especially S/360. 

Knuth, Donald E. The Art of Computer Programming. Volume 2, Semi-
numerical Algorithms. Reading, Massachusetts, Addison-Wesley 
Publishing Company, Inc., 1969. 

Reference for a mathematical treatment of computer arithmetic 
(Chapter 4). 

McCluskey, E. J. Introduction to the Theory of Switching Circuits. 
New York, McGraw-Hill Book Company, 1965. 

Reference for basic switching theory. 
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Nashelsky, Louis. Digital Computer Theory. New York, John Wiley 
and Sons, Inc., 1966. 

A paperback containing a survey of many of the topics covered 
in this course. 

C3. Programming Languages and Data Structures 

Prerequisite: CM1 

Detailed Outline 

Structure of algorithmic languages (8 lectures) 

Review of basic program constituents of the language intro-
duced in CI 

Introduction to the elements of AUJOL or PL/1 
Informal syntax and semantics of simple statements in that 

language 
Backus normal form 
Grouping of statements and block structure of programs 
Scopes, local and nonlocal quantities 
Functions and procedures 
Formal and actual parameters 
Binding time of program constituents 
Simple recursive procedures 
Concept of a stack 
Simulation of recursions as iterations using stacks 

Arithmetic statements (4 lectures) 

Brief discussion of graphs and trees 
Tree diagrams of arithmetic expressions 
Informal discussion of precedence hierarchies 
Infix, prefix, postfix notation 
Translation between infix and postfix notation 
Evaluation of expressions in postfix notation 

Trees and lists in a computer (8 lectures) 

Types of data nodes and linkages 
List names, list heads, sublists 
Multilinked lists 
Stacks as list structures with usage discipline 
Representation of trees as special cases of lists 
Accessing, insertion, deletion, and updating in trees 
Traversal schemes for trees 
Application to the generation of machine code from expression 

trees 

String manipulation (7 lectures) 

Introduction to a string manipulation language such as SNOBOL 
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Data declarations in such a language 
Recursive algorithms in such languages 
Applications to formal differentiation of expressions 

Data structures and storage allocation (3 lectures) 

Storage allocation for algorithmic language structures such as 
independent, nested blocks, strings, arrays, etc. 

Procedures using run-time stacks 
Storage allocation for string manipulation languages 

Some aspects of languages and grammars (6 lectures) 

Syntax, semantics, and pragmatics of programming languages 
The concept of a formal grammar 
Production notation 
Discussion of Chomsky's classification of grammars 
Discussion of computability, undecidability 
Syntax and semantics of arithmetic statements 
Precedence and operator precedence grammars 
Syntactic specification of procedures, blocks, and statements 
Formal semantics corresponding to syntactic specifications 

Bibliography 

Genuys, F., ed. Programming Languages. New York, Academic Press, 
Inc., 1968. 

Harrison, M. C. Data Structures and Programming. Courant Institute 
of Mathematical Sciences, New York University, 1970. 

Knuth, Donald E. The Art of Computer Programming. Volume I, 
Fundamental Algorithms. Reading, Massachusetts, Addison-Wesley 
Publishing Company, Inc., 1968. 

Important presentation of data structures. 

Rosen, Saul, ed. Programming Systems and Languages. New York, 
McGraw-Hill Book Company, 1967. 

Contains, among other things, a discussion of SN0B0L and a 
comparison of list processing languages. 

Sammet, Jean E. Programming Languages: History and Fundamentals. 
Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1969. 

A comprehensive survey of languages. 

Wegner, Peter. Programming Languages, Information Structures, and 
Machine Organization. New York, McGraw-Hill Book Company, 1968. 

An approach to programming languages as information structures. 
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1. Preface 

The growing influence of modern electronic computing in many 
fields of knowledge has contributed to a dramatic increase and diver-
sification in the application of mathematics to other disciplines. 
No longer are the uses of mathematics confined exclusively to the 
physical sciences and engineering; they are found with increasing 
frequency in the social, behavioral, and life sciences as well. Cor-
respondingly, the use of the computer has led to different require-
ments for the solution process in mathematics itself. Theory con-
struction and model building have assumed a different dimension; in 
addition to knowing existence theorems, the user of mathematics must 
know constructive methods for solving problems, and he must have the 
means to ascertain the efficiency as well as the correctness of these 
me thod s. 

These developments have created new challenges with regard to 
revision of the undergraduate mathematics curriculum. The basic cur-
riculum should reflect the contemporary points of view associated 
with computer application in mathematics; it should acquaint the stu-
dents with the newly developed methods of solving standard problems 
and also introduce them to the host of problems which have arisen in 
the past few years. 

There now appears to be growing recognition that more consider-
ation should be given to the potential impact of the computer on the 
basic undergraduate courses which serve not only potential mathema-
ticians and computer scientists but many other students as well. The 
present report is the result of the first study of this problem by 
CUPM. 

Although a consensus about the role of computers in the basic 
mathematics curriculum has not yet evolved, we believe there is an 
urgent need for experimentation in this area. This report presents 
ideas for such experimentation by proposing changes in various basic 
mathematics courses and by suggesting some new courses which are de-
signed to take advantage of the presence of computers. 

As is the case with all CUPM reports, these recommendations 
must be regarded as general suggestions which will need to be adapted 
to local circumstances and revised in the light of subsequent experi-
ence. Nevertheless, mathematics departments should immediately con-
cern themselves with the ideas outlined in this report so that they 
can prepare their students for the uses of mathematics in the context 
of the availability of computers. 
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2. Premises of this Study 

We suggest four ways in which the computer can influence under-
graduate mathematics education: 

(i) Computing can be introduced into traditional mathematics 
courses; 

(ii) New courses in computationally-oriented mathematical 
topics can be designed; 

(iii) The entire curriculum can be modifed to integrate com-
puting more fully into the student's program; 

(iv) Computers and computer-related devices can be used as 
direct aids to mathematical instruction. 

This report addresses itself to (i) and certain aspects of (ii). 
As for (iii), some possible curriculum restructuring relating to com-
puting has been discussed in the CUPM report Recommendations for an 
Undergraduate Program in Computational Mathematics. Finally, (iv) is 
a very broad area which would require a separate study of its own; we 
include only a brief discussion of some related topics in the final 
section of the report. 

We do not suggest that all mathematics instruction be modified 
along any of these lines. In recent years it has become appropriate 
to speak of the mathematical sciences in a broad sense rather than of 
mathematics in the more familiar, narrower sense. This situation in-
dicates a need for different avenues within mathematics education; 
the introduction of computer-oriented material should therefore be 
regarded as a development parallel to the standard curriculum which 
interacts with the standard curriculum at a number of places. 

Nearly every student taking mathematics courses can benefit 
from some computer-oriented mathematics instruction. The use of com-
puters is beginning to pervade all phases of life in our society, and 
in most disciplines, including mathematics, there is a need for stu-
dents to become familiar with some aspects of computing. Many mathe-
matics departments have observed that well over half of their under-
graduate majors enter computer-related careers or graduate programs 
after graduation. Clearly, these students would benefit considerably 
from computer-oriented courses and curricula. Computer-oriented 
courses also serve all those students from other disciplines who are 
interested in learning more mathematics in order to solve problems 
from their own fields. Modern applied mathematics has a strong com-
puter orientation; when students enter this field, those whose educa-
tion stresses concern for computational problems have a decided ad-
vantage over those who are familiar only with theoretical results. 
Finally, the growing trend toward introducing computers in high 
schools will require that prospective teachers learn about the inter-
action between the computer and mathematics. 
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Although the content and objectives of computational material 
differ considerably for various groups of students, computing pro-
vides all of them an unusual opportunity for active participation. 
For this reason the motivational aspects of computing are significant 
for most students, and the value of such motivation should not be 
underestimated. 

A more substantive objective must be to select course material 
and approaches so as to reflect the actual influence of computing on 
mathematics. The recommendations which follow are based on the pre-
mise that any program which seeks to reflect this influence should 
stress four points—namely, algorithms, approximations, model build-
ing, and the nature of the entire problem-solving process. 

Algorithms. The modern computer's development as a general-
purpose problem-solving system derives not so much from its arith-
metic capabilities but from its ability to handle logical and non-
numerical problems. From a mathematical viewpoint this has led to a 
greater emphasis on the construction and analysis of algorithms for 
the actual solution of mathematical problems rather than only on the 
proof of the existence of solutions. Stressing the algorithmic 
aspects forces the student to state both the problem and the method 
of solution in precise and unambiguous terms. It fosters his ability 
to organize and formulate logically an attack on a problem as well as 
to recognize and clarify the assumptions he is making in order to 
solve the problem. 

Approximations. In most analysis courses numerical algorithms 
are more prevalent than nonnumerical ones. This leads to questions 
of error or, more generally, to questions about the quality of the 
approximations produced by the algorithm. If an algorithm produces 
an answer, some statement is needed to relate this answer to a solu-
tion of the original mathematical problem. If a process appears to 
converge, there is a need to prove that the process converges as well 
as to determine how rapidly it converges. If a method is bound to be 
applicable to certain input data, it is necessary to establish what 
happens when changes are introduced in these data. Clearly, in under-
graduate courses these questions can rarely be answered satisfactorily 
but the student should acquire a concern for them and an appreciation 
of their importance. 

Model Building. An important part of every real application of 
mathematics is the recognition and formulation of a satisfactory 
mathematical model of the given nonmathematical problem. Developing 
the student's skill in this process should be an objective of every 
course involving computer applications. 

The Problem-Solving Process. Modeling, the development of al-
gorithms, the study of the approximations used, and the computation 
and interpretation of results are all principal steps in the process 
of solving a problem on a computer. It is important to stimulate in 
the student an understanding of this process viewed as a whole by 
discussing and assigning the complete solution of appropriate simple 
problems. 
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The four points raised here--namely, the stress on algorithms, 
the development of a concern for the quality of approximations, the 
emphasis on model building, and a general emphasis on the entire 
problem-solving process--should be considered as general objectives 
in the student's program. In those undergraduate courses which in-
volve a limited amount of computing, little more can be done than to 
illustrate the importance of these points and to instill in the stu-
dent an intuitive understanding and concern for them. This requires 
a careful selection of the computational topics to be discussed and 
of the problems to be assigned. In other words, without underesti-
mating the motivational value of computing, we believe that the in-
troduction of computational material into a mathematics course should 
go beyond merely illustrating a mathematical concept. It should at 
least provide a definite answer to a specific question or problem in 
order to give the student deeper insight into the theory, the model, 
and the algorithms used. 

Implementation and Precautions. There are wide variations in 
the extent and type of computer use which can be introduced into a 
traditional mathematics course. Such variations arise both from 
differences in computing facilities and from differences in the in-
structors' opinions of how essential these uses can and should be 
for the course. Where computing facilities are readily available or 
where courses are modified extensively to emphasize the four objec-
tives discussed above, the trend is often to use the computer fre-
quently and in a matter-of-fact manner. This means that computer-
related material is presented throughout the course and that computer 
problems are assigned as a regular part of the homework; the student 
is expected to master these problems in order to have a coherent 
understanding of the subject. Where computing facilities are not so 
readily available or where computer-related material enters the course 
only in a secondary, supportive role, the trend is to consolidate 
computer use into the solution of a number of relatively substantial 
problems and to expect the student to apply his mathematical knowl-
edge to these problems, but not to demand mastery of these problems 
for a coherent picture of the course. In this case, extra credit is 
sometimes given for the computer component of a course. 

In whatever way the computer is used, there are a number of 
precautions which ought to be observed. Primarily, one should 
neither misuse nor overuse the computer. The computer is certainly 
misused when one is not mathematically honest about what it can or 
cannot do. For example, a computer can approximate a limit, but it 
cannot "compute" one or verify its existence, nor can it "test" a 
function for continuity. Specific examples of overuse of the com-
puter are harder to provide, but it can be recognized when computing 
begins to crowd mathematical material out of the course or when stu-
dents become bored by it. Overuse of the computer can result when 
the excitement of the new approach obscures the principal purpose: 
to teach mathematics. It is primarily the algorithmic approach to-
gether with the other three objectives, rather than the actual use 
of a computer, which will help to advance this purpose. Many points 
about algorithms can be made without using a computer at all; three-
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digit arithmetic can be used to discuss approximations and roundoff 
error, and model-building and problem-solving expertise can also be 
gained from judiciously chosen paper-and-pencil problems. Also, 
students need not program every algorithm they encounter, and experi-
ments with preprogrammed algorithms can often provide more insight 
than the lengthy drudgery of debugging a complicated program. It is 
up to the individual instructor to maintain a proper balance between 
the use of the computer and the other components of the course. 

3. Basic Courses 

3.1 Introduction 

In this section we discuss five one-semester beginning under-
graduate courses which include an emphasis on computing. As in all 
CUPM reports, the outlines given here are not meant to be prescrip-
tive but are intended to extend the exposition of our ideas in the 
previous section by giving suggestions and possible approaches for 
implementing them. 

For reference purposes we begin with a list of brief catalog 
descriptions for these courses. The descriptions do not include any 
programming requirements; these are discussed in Section 5.2. 

MC-0. Elementary Functions and Problem Solving. [Prerequi-
site: College admission] Basic computer programming, elementary 
functions, matrix operations. These topics are to be motivated by, 
and applied to, practical problems. 

MC-1. Calculus I with Computer Support. [Prerequisite: MC-0 
plus trigonometry, or equivalent mathematical background] Differen-
tial and integral calculus of the elementary functions with associ-
ated analytic geometry, supported by computer applications. 

MC-2. Calculus II with Computer Support. [Prerequisite: 
MC-1] Techniques of integration, introduction to multivariate cal-
culus, and elements of differential equations, supported by computer 
applications. 

MC-DM. Discrete Mathematics. [Prerequisite: No specific 
course prerequisite, but see page 590] Concepts and techniques in 
discrete mathematics that find frequent applications in computing 
problems. 

MC-3. Algorithmic Elementary Linear Algebra. [Prerequisite: 
MC-0 or equivalent background] An introduction to matrix and vector 
algebra in η dimensions with an emphasis on algorithmic aspects. 
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The four courses MC-0 through MC-3 represent computer-oriented 
versions of the courses Mathematics 0 through 3 in the 1972 CUPM 
report Commentary on a General Curriculum in Mathematics for Colleges 
(GCMC Commentary). In the case of MC-0 and MC-3, the material in 
the GCMC Commentary courses was considerably modified and rearranged 
in order to introduce a fairly strong emphasis on computation. In 
MC-1 and MC-2, on the other hand, the purpose and the outline have 
remained essentially the same as for traditional courses; the empha-
sis on what is taught, however, has shifted along with the shift in 
the kinds of applications that are possible with the computer. The 
remaining course MC-DM represents a new development. It has a strong 
algorithmic flavor and introduces material of considerable importance 
in many computer applications. The course may not only supplement 
the standard curriculum but could also serve well as a first mathe-
matics course for students from many disciplines. 

Ideally, a student entering any of these computer-related 
courses other than MC-0 should have at least a rudimentary knowledge 
of programming. Since this is, at present, an unrealistic require-
ment, several possible alternatives are suggested in Section 5.2. 
Since these alternatives depend strongly on local circumstances, no 
further mention of them is made in the outlines. Only in the case 
of MC-0 is some time allotted to introduce certain elementary com-
puter concepts. 

In each of the following outlines, the suggested pace is in-
dicated by assigning a number of hours to each group of topics. A 
standard semester contains 42 to 48 class meetings, and we follow the 
GCMC Commentary in allowing approximately 36 hours for discussion of 
new material; the remaining time can be devoted to tests, reviews, 
etc. 

3.2 Course Outlines 

MC-0. Elementary Functions and Problem Solving 

[Prerequisite: College admission] The aim of this freshman-
level course is to teach students ways to approach problems in the 
physical, natural, and social sciences and to equip them with some 
fundamental mathematical and computational tools for the solution of 
these problems. Typical problems are concerned with measurement and 
prediction: given a process such as a factory producing steel, 
traffic moving on a city street, or a shifting population, it is 
desired to predict future properties of the process on the basis of 
past measurements. The approach taken in the course is first to 
have students model and simulate specific processes using a computer 
and then look for functional relationships between various aspects 
of these processes, e.g., between time and the total output of steel, 
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between traffic light timing and traffic density, or between past and 
future population distributions. The objectives of this approach are 
to create an understanding of modeling through approximation and 
simulation and a feeling for the types of questions asked about 
models and functions. 

Studies of elementary functions, computational techniques, and 
matrix operations are interwoven in the course and are used to illus-
trate and motivate one another. Depending upon the selection and 
treatment of particular topics, this course may serve either as a 
refresher course for students going on to calculus or as a terminal 
course for students who intend to take only one course in mathematics. 
However, this course alone probably will not prepare students ade-
quately for a one-year sequence in calculus, since it does not con-
tain the topics from trigonometry which they will need. The orienta-
tion towards applications and the emphasis on computing should make 
the course attractive to many students who might otherwise avoid 
more traditional mathematics courses. There are no prerequisites, as 
instruction in the use of a computer is integrated with the rest of 
the course. 

COURSE OUTLINE 

1. Introduction. (6 hours) Number representation, algo-

rithms, elements of programming, functions, relations. 

2. Linear and quadratic functions. (8 hours) Simulations 

involving constant and accelerated rates of change, graphs of linear 

and quadratic functions, zeros, maxima, minima, applications. 

3. Linear programming. (4 hours) Linear functions of two 

variables, linear inequalities, maxima, minima, applications. 

4. Matrix operations. (6 hours) Representations of tabular 

data, subscripts, matrix and vector operations, simultaneous equa-

tions, applications. 

5. Algebra of functions. (6 hours) Algebraic operations on 

functions, polynomial and rational functions, maxima, minima, zeros, 

inverses, composition. 

6. Exponential and logarithmic functions. (6 hours) Simula-

tions of exponential growth, properties of exponents, logarithms as 

inverses of exponentials. 
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COMMENTARY 

1. Introduction. Simple mathematical concepts can be intro-

duced or reviewed in the context of teaching the rudiments of pro-

gramming in a computer language such as APL, BASIC, or FORTRAN. For 

a start, students should learn to use arithmetic, branching, and 

simple looping statements; other techniques, such as subroutines, 

can be considered later as the need for them arises. Machine arith-

metic can be contrasted with ordinary arithmetic, with examples of 

roundoff error being given. 

Functions should be introduced as single-valued rules of 

association, with the relationships between the inputs and outputs 

of computer programs providing many examples of both numeric and 

nonnumeric functions. Questions of scaling which arise in the de-

velopment of a simple program for graphing functions can be used as 

a bridge to the next section on linear functions. 

2. Linear and quadratic functions. In studying rates of 

change, the student can first write a computer program to model a 

situation involving constant change. After this model has been used 

to motivate a study of linear functions, the computer program can be 

modified by the addition of a single statement to model constant 

acceleration, thereby motivating a study of quadratic functions; 

later, the added statement can be changed to have the program model 

more complicated rates of acceleration (e.g., a bouncing ball or 

exponential growth). Questions about zeros, maxima, and minima 

should be raised and answered to ascertain properties of models, 

functions, and graphs. In this way the study of linear and quadratic 

functions provides a framework for later material in the course. 

In addition to using the computer for simulation, one can 

stress the algorithmic aspects of graphing by using programs to com-

pute the slopes of lines or the zeros of a quadratic function by the 

quadratic formula. Zeros, and in particular square roots, can also 

be approximated by the bisection method. 

3. Linear programming. The study of linear functions leads 

naturally to a study of linear programming in two dimensions. Bound-

ary conditions lead to a consideration of linear inequalities and to 
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the solution of simultaneous equations in two unknowns in order to 

determine constraint regions. Cost functions can be introduced as 

functions from vectors in those regions to numbers, and the location 

of the maxima and minima of these functions at the vertices of 

regions can be demonstrated by drawing level curves. 

4. Matrix operations. As a further example of the applica-

bility of linear methods, models of population movement can be 

studied. One can introduce a vector V to represent the population 

distribution at a given time and a matrix Μ to represent the per-

centage redistribution of population over a year's time. Matrix and 

vector multiplication can be motivated by writing a computer program 

to model population movement over a number of years and observing 

that M n V is the population distribution after η years. Finally, 

this model can be used to motivate the solution of simultaneous 

linear equations or the inversion of a matrix to find the equilib-

rium distribution. 

5. Algebra of functions. By associating functions with sub-

routines which compute them, one can motivate a general discussion of 

the domains and ranges of functions, as well as of algebraic opera-

tions on functions. Applied to polynomials, this leads naturally to 

the rational functions. In order to answer standard questions about 

these functions, one can discuss numerical techniques such as bisec-

tion and hill-climbing for locating zeros, maxima, and minima. The 

inverse of a function can be found by computing the zeros of trans-

lated functions. 

6. Exponential and logarithmic functions. Computations in-

volving population growth, interest rates, or radioactive decay lead 

to a study of exponential functions. The logarithm can be computed 

by the method developed in Section 5, and its properties can be 

established from the properties of exponentials. 

REFERENCES 

No presently available text is suitable for this course. While 
some of the references listed below contain material that can be used 
in the course, no text develops computing and mathematics together 
along the lines suggested by units 1 and 2. The approaches to com-
puting in two of the references bracket the suggested approach: 
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Vogeli, et al., is generally too elementary and does not use comput-
ing in a substantial way, while Higgins presumes too much prior ex-
perience both in computing and in mathematics. The remaining refer-
ences are programming texts which contain some examples appropriate 
for the course. 

Barrodale, Ian; Ehle, Byron; Roberts, F. D. K. Elementary Computer 
Applications in Science, Engineering, and Business. New York, John 
Wiley and Sons, Inc., 1971. 

Gruenberger, Fred and Jaffray, George. Problems for Computer Solu-
tion. New York, John Wiley and Sons, Inc., 1965. 

Higgins, G. Albert. The Elementary Functions: An Algorithmic 
Approach. Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1974. 

Kemeny, John G. and Kurtz, Thomas E. Basic Programming, 2nd ed. 
New York, John Wiley and Sons, Inc., 1971. 

Maurer, Η. A. and Williams, Μ. R. A Collection of Programming 
Problems and Techniques. Englewood Cliffs, New Jersey, Prentice-
Hall, Inc., 1972. 

Vogeli, Bruce R.; Prevost, Fernand; Gilbert, Glenn; Carroll, Edward. 
Algebra One. Morristown, New Jersey, Silver Burdett Company, 1971. 

MC-1 and MC-2. Calculus I and II with Computer Support 

[Prerequisite for MC-1: MC-0 and trigonometry, or equivalent 
background; prerequisite for MC-2: MC-1] The introductory courses 
on calculus appear to be those mathematics courses in which the use 
of the computer has been most popular. One reason for this is the 
fact that many concepts and methods in the calculus have a practical 
flavor which can be enhanced by introducing computing. While the 
motivational value of computational work plays a considerable role, 
the student can also handle more realistic problems using the com-
puter as a tool and with it learn to appreciate more fully the power 
and usefulness of calculus. 

There are at this time no firm guidelines as to how the com-
puter should be introduced into calculus courses; many radically 
different experiments have been conducted and are still being car-
ried on. We believe that at present a practical and rather attrac-
tive approach is to use the computer to support courses which are 
more or less traditional in the selection and sequencing of the 
material. Hence the courses described below are, at least in out-
line, identical with the courses Mathematics 1 and 2 in the GCMC 
Commentary, and their basic purpose remains essentially the same--
namely, that of being an intuitive, yet sound, introduction to 
limits in various forms, such as derivatives, integrals, or sums of 
series, along with applications of several types, such as maximum-
minimum problems or questions leading to integrals. 
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We do not believe that it is enough to teach the calculus 
courses more or less as usual and to assign computer projects as 
supplements to the course. Such an approach does not take full ad-
vantage of the interplay between theoretical and algorithmic ideas. 
The new courses must be taught in a different manner, if only because 
computing can provide much useful motivation for the calculus. More-
over, the emphasis on what is taught should shift towards the kind 
of realistic applications that are possible with the computer. In 
these ways the computer can be used to support the presentation of 
material rather than merely to supplement it. 

The commentaries below indicate ways in which this supportive 
role of the computer can be accomplished. For the most part these 
commentaries are meant to supplement rather than replace those in 
the GCMC Commentary. 

COURSE OUTLINE FOR MC-1 

1. Introduction. (4 hours) Review of the function concept. 

Function evaluation and graphing on a computer. 

2. Limits, continuity. (3 hours) Limit and approximation 

defined intuitively. Derivatives as examples. Definition of con-

tinuity, types of discontinuity, Intermediate Value Theorem. Compu-

tational applications involving the bisection method and showing 

effects of truncation and roundoff error. 

3. Differentiation of rational functions; maxima and minima. 

(5 hours) Computational projects involving search algorithms for 

finding extrema. Newton's method. 

4. Chain rule. (3 hours) Include derivatives of functions 

defined implicitly, inverse function and its derivative. The algo-

rithmic aspect of functional composition. 

5. Differentiation of trigonometric functions. Higher deriva-

tives. (3 hours) 

6. Applications of differentiation. (3 hours) Tangent as 

"best" linear approximation. Approximations using differentials. 

Additional extremal problems. Related computer applications. 

7. Intuitive introduction to area. (2 hours) Computational 

approximation of areas of regions under a curve. 

8. Definite integral. (3 hours) Simple quadrature rules and 

their applications. 

9. Indefinite integrals, Fundamental Theorem. (4 hours) 
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10. Logarithmic and exponential functions. (3 hours) Computer 

problems involving exponential growth or decay using Euler's method. 

11. Applications of integration. (3 hours) 

COMMENTARY ON MC-1 

1. Introduction. The computer can be used to evaluate func-

tions, thereby considerably extending the kinds of functions a stu-

dent can handle and, indeed, even recognize as functions (e.g., func-

tions with piecewise or algorithmic definitions can be evaluated 

numerically even though they may not be expressible algebraically). 

Students should recognize that the relation between the input and 

the output of a computer program can define a function; such an 

awareness can be used later to demonstrate the existence of various 

interesting functions. 

A good computing facility would enable the student to experi-

ment with functions--and also their graphs when they can be drawn--

in much the same way as he can work with simple functions when he 

has only pencil and paper. A graphing program should be provided or 

developed, and students should become reasonably familiar with it, 

so that it can be used to motivate later topics in terms of graphs . 

2. Limits, continuity. Many kinds of calculations help to 

motivate the need for a precise definition of limit. Such calcula-

tions arise in practical attempts to approximate limits of functions 

or rates of change. While the student will sense that successive 

approximations are approaching a limit, he will also discover that 

the limitations of numerical approximations due to truncation or 

roundoff errors prevent him from calculating that limit exactly. 

This awareness should be used to motivate the need for mathematical 

proofs of the existence of limits. 

The bisection method for finding zeros of continuous functions 

can be introduced either as motivation for or as an application of 

the Intermediate Value Theorem. 

In this section, as well as in others, one should recall 

several points observed earlier concerning the use or misuse of the 

computer. First, one should use terminology carefully so as not to 
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mislead students; a computer can approximate a limit, but it cannot 

"compute" one, nor can it "test" a function for continuity. Second, 

one should remember that the primary purpose of the course is still 

to teach calculus and that it is the algorithmic approach, and only 

secondarily the actual use of the computer, which advances this pur-

pose; hence the computer does not have to be used in every conceiv-

able situation, and many points about algorithms can be made without 

a computer at all. 

3. Differentiation of rational functions. Nonnumerical algo-

rithms can be recognized when they appear even though they may not be 

programmed. For example, formal differentiation should be recognized 

as a process that can be mechanized. 

More realistic maximum and minimum problems can be attempted. 

The approach to such problems would include graphing functions, 

searching for extremal points, and sometimes finding zeros of deriva-

tives. The computer increases the student's power to find zeros of 

functions since the bisection method or Newton's method are available 

when algebraic techniques fail. 

4. Chain rule. Computer programs and flowcharts can be used 

to explain the process of functional composition and to motivate the 

chain rule. Information about the inverse of a function f can be 

obtained by finding zeros of f(x) - a, for various values of a. 

5. Differentiation of trigonometric functions. The graphing 

program can be used for motivation. 

6. Applications of differentiation. The limitations of numer-

ical methods can be used to motivate the need for theorems concerning, 

say, the number of extremal points. For example, numerical methods 2 2 

may lead one to suspect that χ + cos (kx) has a unique minimum 

when k is slightly larger than 1, rather than two minima which 

are separated by a maximum at 0. 

Again, more realistic maximum and minimum problems can be 

attempted. Newton's method for locating zeros of functions can be 

developed and compared with the bisection method for its rate of con-

vergence and range of applicability. 

7. Intuitive introduction to area. 
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8. Definite integral. The notion of the definite integral 

can be made concrete prior to the proof of the Fundamental Theorem 

so that the student need not confuse the existence of the definite 

integral of a function with his ability to find an antiderivative. 

The student can write programs to approximate definite integrals by 

techniques such as the trapezoidal rule. Improper integrals can be 

motivated in terms of programs to approximate them. 

9. Indefinite integrals. Fundamental Theorem. The nature of 

the indefinite integral as a function of the upper endpoint can be 

illustrated by considering a computer program to approximate values 

of this function. 

10. Logarithmic and exponential functions. Numerical methods 

can be used to discuss and sketch solutions of the differential equa-

tion y' = ky. 

11. Applications of integration. The computer greatly in-

creases the variety of examples which can be treated. Applications 

of the integral as the limit of Riemann sums, and not merely as an 

antiderivative, were recommended in the GCMC Commentary and can be 

handled much more successfully with the use of the computer. For 

example, in following those suggestions one can use numerical tech-

niques to integrate the normal probability distribution or to graph 

a logistic curve corresponding to a differential equation 

N' = (a - bN)N governing population growth. One can also observe 

the general applicability of numerical techniques as opposed to the 

often limited applicability of analytical techniques. For example, 

given experimental data concerning the acceleration of a vehicle, 

one can compute the values of integrals to obtain the velocity and 

position of that vehicle [cf. Garfunkel, Solomon. "A laboratory 

and computer based approach to calculus." American Mathematical 

Monthly. 79 (1972), pp. 282-290]. 

COURSE OUTLINE FOR MC-2 

1. Techniques of integration. (9 hours) Integration by 

trigonometric substitutions and by parts; inverse trigonometric 

functions; quadrature formulas and computer applications; improper 
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integrals and numerical questions; volumes of solids of revolution. 

2. Elementary differential equations. (7 hours) Elementary 

methods for computational solution. 

3. Analytic geometry. (10 hours) Vectors; lines and planes 

in space; polar coordinates; parametric equations. 

4. Partial derivatives. (5 hours) 

5. Multiple integrals. (5 hours) 

COMMENTARY ON MC-2 

1. Techniques of integration. At the discretion of the in-

structor, less attention might be paid to techniques of formal inte-

gration in order to provide time for a study of numerical methods 

for approximating definite integrals. Experiments can be performed 

to suggest theorems about the rates of convergence of various methods. 

In some simple cases one might attempt to place bounds on the numer-

ical errors due to the approximation method and to truncation and 

roundoff effects. In general, an applied flavor can be introduced 

into the calculus course by relating some of the theorems to realis-

tic numerical processes. 

Although formal integration is more complicated than formal 

differentiation, certain aspects, such as integration of powers of 

sines and cosines or the use of partial fractions, can be considered 

from an algorithmic point of view. 

As an example of finding error bounds, consider the midpoint 

(or tangent) approximation 

f (x) dx « h Σ f (a + [k - |]h), 
J a k = 1 

b-a 
where h = , to the integral of a twice-differentiable function 

η 

f. One can show with the aid of Taylor's theorem that the trunca-

tion error is bounded by — j ^ ^ — B , provided that |f"(x)| £ Β 

for a < χ < b. Furthermore, for suitable a, b, and h, the error in 

evaluating the approximation is bounded by nhE^ + n(n-l)E2Fh, 

which is less than (b-a)(E.^ + nE2F), where E^ is the maximum 

absolute error in the computation of f(x) for a < χ < b, Ε is 
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a bound for ~ (r being the relative roundoff error 

bound), and |f(x)| s F for a < χ < b. In the particular case 

-27 
η = 128 and = = 1.01 X 2 , the midpoint approximation to 

J: 
•2 (jx 

— = log 2 can be guaranteed to have an error of no more than 
1 x 

Ι Ο " 5 . 

It should be observed that formal and numerical methods are 

not mutually exclusive alternatives, and that many problems require 

a combination of the two. Analytical techniques may be used to 

transform an integral for numerical methods. For example, the in-

tegral 
sin χ , 

dx 

is more easily handled numerically if it is first transformed to 

4 ο Γ sin χ 
2 Ji 3 π $π χ 

dx, 

which is obtained by integrating by parts twice. 

2. Elementary differential equations. The notion of a tangent 

field can be used to suggest numerical methods for the approximate 

solution of first-order differential equations. Higher-order equa-

tions can also be treated by translating them into systems of first-

order equations which can then be solved numerically. 

A bound on the propagated error for a simple method can be 

derived. With Euler's method applied to y' = f(x,y), V ( X

Q ) = yQ> 

it can be shown that the propagated error is bounded by 

^ΎΓ e x P £ L < x

n " X o ) ] ' 

where R is a bound on the local "roundoff" error 

y n • C l * "'Vl'Vl'' 

Τ is a bound on the local "truncation" error 

y ( x n } " y ( V l } " h f ( Vl' y ( Vl ) ) ' 
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h is the step-size, L is a Lipschitz constant, and y C is the 
η 

computer approximation to y(x ), χ > χ . [See Gear, C. William. η n o 

Numerical Initial Value Problems in Ordinary Differential Equations. 

Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1971.] 

3, 4, 5. Analytic geometry. Partial derivatives. Multiple 

integrals. Due to the lack of numerical methods which are both 

elementary and practical, the computer itself has less impact on 

the teaching of multivariable calculus than on single-variable cal-

culus. However, an algorithmic approach can still be used, for ex-

ample, to stress analogies with single-variable calculus or to intro-

duce formal manipulations. If computing applications are desired, 

one might discuss hill-climbing techniques for finding maxima or 

some relatively simple method for approximating the values of double 

integrals. 

REFERENCES 

The following texts contain elementary applications of numeri-
cal methods to the calculus. 

1. Sources of applications 

Barrodale, Ian; Ehle, Byron L.; Roberts, F. D. K. Elementary Com-
puter Applications in Science, Engineering, and Business. New York, 
John Wiley and Sons, Inc., 1971. 

Dorn, William S.; Bitter, Gary G.; Hector, David L. Computer Appli-
cations for Calculus. Boston, Massachusetts, Prindle, Weber, Inc., 
1972. 

Hamming, Richard W. Calculus and the Computer Revolution. Boston, 
Massachusetts, Houghton Mifflin Company, 1968. 

Hull, Thomas E. and Day, David D. F. Computers and Problem Solving. 
Reading, Massachusetts, Addison-Wesley Publishing Company, Inc., 
1969. Chapter 9. 

2. Some calculus texts having a computational flavor 

Flanders, Harley; Korfage, Robert R.; Price, Justin J. Calculus. 
New York, Academic Press, Inc., 1970. 

Henriksen, M. and Lees, M. Single-Variable Calculus. New York, 
Worth Publishers, Inc., 1970. 

Stenberg, Warren, et al. Calculus, A Computer Oriented Presentation, 

Parts 1 and 2. CRICISAM, Florida State University, 1970. 
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MC-DM. Discrete Mathematics 

[Prerequisite: The material of this course can be taught at 
various levels of difficulty and sophistication in the undergraduate 
curriculum. Although no specific college mathematics courses are 
prerequisite for MC-DM, it is important that the student have ability 
in manipulating symbols and in using formulas.] Although an obvious 
goal of this course is to equip the students with some useful mathe-
matical tools, a more important goal is to develop their ability to 
perceive, formulate, and solve problems that are discrete in nature. 
This course can be taken prior to, or concurrently with, a course in 
calculus. Indeed, students who are not mathematics majors might be 
counseled to take such a course rather than the traditional freshman 
calculus course. (For example, it can be argued that for social 
science, behavioral science, and biological science majors, a course 
in discrete mathematics might be more useful than a course in calcu-
lus.) There are several undergraduate-level mathematical courses 
that can follow this course naturally. A course in Probability and 
Statistics (see, for example, 4.2 below) or a course in Applied 
Algebra may well be popular choices. Other courses are Combinatorial 
Mathematics, Optimization Techniques (such as those proposed by the 
Panel on Applied Mathematics in the CUPM report Applied Mathematics 
in the Undergraduate Curriculum), Applied Logic, Graph Theory, and 
Computational Algorithms. Although computing facilities are not 
absolutely essential in such a course, they can play a very attrac-
tive supporting role. Since there is a strong algorithmic flavor 
throughout this course, the implementation of some computational 
algorithms will enhance the understanding and appreciation of the 
mathematical results. Also, probably in a less significant way, 
ideas such as graphical representation of discrete functions and 
solution of difference equations can be illustrated on a computer. 

The number of hours specified is intended to indicate the rela-
tive emphasis for the various topics. Some instructors will find 
these time estimates unsuitable and will therefore need to make ad-
justments for their classes. However, because the material covered 
in this course is so new and unusual in the undergraduate curriculum, 
the Panel felt it would be valuable to present a wide variety of 
ideas for a course in discrete mathematics. 

COURSE OUTLINE 

1. Elementary set theory. (2 hours) Basic concepts and 

terminology in set theory. Subsets. Empty set. Intersection, 

union, symmetric difference, and complementation of sets. Venn 

diagrams. 

2. Permutations and combinations. (4 hours) Permutation and 

combination of objects. Simple enumeration formulas such as that for 

the number of ways to select or to arrange r objects from η 
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objects with or without repetitions. Simple machine tools of combi-

natorics such as computer algorithms for generating all permutations 

and all combinations of a set of objects. 

3. Discrete functions. (2 hours) Domain and range of a 

function. One-to-one and onto functions. Pigeonhole principle. 

4. Manipulation of discrete functions. (2 hours) Forward 

and backward differences of a discrete function. Accumulated sum of 

a discrete function. Sum, product, convolution, and correlation of 

discrete functions. 

5. Generating functions. (4 hours) Generating functions as 

alternative representations of discrete functions. Operations on 

discrete functions and the corresponding operations on their gener-

ating functions. 

6. Difference equations. (5 hours) Linear difference equa-

tions with constant coefficients. Homogeneous solution and particu-

lar solution. Boundary conditions and undetermined coefficients. 

Solution of difference equations by the technique of generating func-

tions. Simultaneous difference equations. 

7. Relations. (2 hours) Cartesian product of sets. Binary 

relations. Reflexive, symmetric, transitive relations. Equivalence 

relations. Partial ordering relations. Union, intersection, and 

complementation of relations. 

8. Graphs. (2 hours) Basic terminology in the theory of 

graphs. Directed graphs. Linear graphs and multigraphs. Connected-

ness. Paths. Graphs as representations of binary relations. Graphs 

as structural models. 

9. Trees, circuits, and cut-sets. (4 hours) Mathematical 

properties of trees. Trees as structural models. Spanning trees. 

Circuits. Cut-sets. 

10. Path problems in graphs. (5 hours) Eulerian path. 

Hamiltonian path. Existence of Eulerian paths and Hamiltonian paths 

in graphs. Physical interpretation of these notions. Shortest path 

algorithms and related problems. 

11. Network flow problems. (4 hours) Transportation networks. 

Maximum-flow minimum-cut theorem. The Ford-Fulkerson algorithm for 

finding maximum flow. 
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COMMENTARY 

1. Elementary set theory. The theme of this course is "dis-

crete objects and their relationships." Consequently, the language 

of elementary set theory will be used throughout the course. The 

discussion should remain at an intuitive level, although it is quite 

reasonable to mention topics such as Russell's paradox which may 

lead to a discussion of axiomatic set theory. 

2. Permutations and combinations. The discussion can begin 

with a determination of the number of subsets of a given set, a 

natural continuation of the material in Section 1. An important 

lesson to teach the students is that often some seemingly difficult 

problems may have very simple methods of solution when considered 

from the correct point of view. 

Example: Design an algorithm for generating all r-combinations 

of η objects with unlimited repetitions. 

Example: From all 5-digit numbers a number is selected at 

random. What is the probability that the number selected 

has its digits arranged in nondescending order? 

3. Discrete functions. The notion of discrete functions is 

introduced as an association of values (elements in the range) to 

objects (elements in the domain). There are numerous examples of 

discrete functions: coloring the faces of a polyhedron, assigning 

grades to students, classification of documents, etc. Point out the 

obvious extension to the notion of continuous function. The pigeon-

hole principle (also known as the shoebox argument) is a powerful 

technique, although it sounds extremely simple, as the following 

example illustrates. 

Example: The integers 1, 2, 3, 101 are arranged 

randomly in a sequence. Show that there is either a 

monotonically increasing subsequence or a monotonically 

decreasing subsequence of 11 (or more) integers. 

[Solution: Let a^, a^, a^, a ôi denote a random arrange-

ment of the integers 1, 2, 3, 101. Let us label each 
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integer a^ with a pair of numbers (^'^k^' where i^ is 

the length of a longest monotonically increasing subsequence 

that begins at a,, and j is the length of a longest mono-
K k 

tonically decreasing subsequence that begins at a^. Suppose 

that 1 s ife S 10, 1 s j s 10 for k = 1, 2, ..., 101. 

According to the pigeonhole principle, there must exist a 
m 

and a which are labelled with the same pair of numbers, 
η r 

However, this is an impossibility because a < a implies 
m η 

that i > i , and a > a implies that 1 > i . (We 
m η m η m η 

assume that m < n.)] 

4. Manipulation of discrete functions. The notion of the for-

ward and backward differences of a discrete function corresponds to 

the notion of the derivative of a continuous function. The notion of 

the accumulated sum of a discrete function corresponds to the notion 

of the integral of a continuous function. The convolution z(n) of 

two discrete functions x(n) and y(n) is defined to be 

z(n) = Σ x(i) y(n-i). 
i 

The crosscorrelation function w(n) of two discrete functions x(n) 

and y(n) is defined to be 

w(n) = Σ x(i) y(i-n). 
i 

The autocorrelation of a function is the crosscorrelation of the 

function with itself. 

Example: Consider the sequence A = [1, 1, 1, -1, 1, 1, -1} 

as a signal transmitted by a radar transmitter. This signal is 

bounced back by an object whose distance from the radar is to 

be measured. (The distance can be determined from the elapsed 

time between the transmission of the signal and the arrival of 

the return signal.) To minimize the effect of noise interfer-

ence, we want to choose a sequence so that the correlation 

function between the transmitted and the received signals will 

have a large peak value. Show that A is a good choice. 

[Answer: The autocorrelation function of the sequence A is 

[-1,0,-1,0,-1,0,7,0,-1,0,-1,0,-1}, which has a large peak 

value.] 
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5. Generating functions. The concept of the generating func-

tion of a discrete function corresponds to the concept of the Laplace 

transformation or the Fourier transformation of a continuous func-

tion. The sum of two discrete functions corresponds to the sum of 

their generating functions. The convolution of two discrete func-

tions corresponds to the product of their generating functions. 

Example: Show that 

©'•©'•©'•••••ö'-ff)-
Give a combinatorial interpretation (in terms of selection 

of objects) of this equality. [Answer: When a coin is 

tossed 2n times, there are 2^ n sequences of possible 

outcomes. Both sides of the above equality give the number 

of sequences of outcomes in which the number of heads 

occurring in the first η tosses is equal to the number 

of heads occurring in the last η tosses.] 

6. Difference equations. Students will be better prepared 

for a course in differential equations after they have studied dif-

ference equations in this course. Indeed, concepts such as homo-

geneous solutions and particular solutions carry over directly to 

differential equations. Solving difference equations by the tech-

nique of generating functions corresponds to solving differential 

equations by the technique of Laplace transformations. 

Example: A certain nuclear reaction in a system containing 

nuclei and high and low energy free particles is described 

as follows. There are two kinds of events: (i) a high 

energy particle strikes a nucleus, causing it to emit 3 

high energy particles and 1 low energy particle, and is 

absorbed; (ii) a low energy particle strikes a nucleus, 

causing it to emit 2 high energy particles and 1 low energy 

particle, and is absorbed. Every free particle causes an 

event 1 \j,sec after it is emitted. If a single high energy 

particle is injected at time t = 0 into a system containing 

only nuclei, what will the total number of free particles 

in the system be at time t = 20 ^.sec? [Solution: Let a 
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denote the number of high energy particles and b the 
η t h 

number of low energy particles in the system at the η 

μβεοοηα. We have the simultaneous difference equations: 

a = 3a + 2b Λ and b = a , + b . , with the initial 
η n-1 n-1 η n-1 n-1' 

conditions a = 1 and b Q = 0. Solving these equations, we 

obtain a n + b n = ^ {(2 + , / 3 ) n + 1 - (2 - ^3) n + 1 } . ] 

7. Relations. Structural properties of sets of discrete 

objects can be described by relations. There are numerous examples 

of the concept of relations between objects: for instance, the 

relation "is the father of" is nonreflexive, nonsymmetric, and non-

transitive; the relation "is the spouse of" is symmetric; the rela-

tion "is divisible by" (between integers) is a partial ordering 

relation. 

Example: Write a computer program to determine all possible 

assignments of 0's and l's to the vertices of the partial 

ordering diagram in Fig. 1 so that a 1 never precedes a 0. 

Fig. 1 

8. Graphs. There are many examples from various disciplines 

using graphs as abstract models of structures, among which are social 

structures, finite state machines, PERT charts, data structures in 

computer programs. 

Example: The inputs to an electronic combination lock are 

strings of 0's and l's. The lock will be opened when the 

pattern 010010 appears at the end of the input string. Such 

a lock can be modeled graphically as in Fig. 2, where a string 

of 0's and l's defines a path starting at the initial vertex. 
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Fig. 2 

9. Trees, circuits, and cut-sets. Although trees are very 

simple in concept, they are rich in structure and find application 

in many areas of study. There is enormous room for further discus-

sion beyond the basic concepts; topics such as enumeration of trees, 

optimal trees (notably the Huffman algorithm for determining trees 

with minimum weighted path lengths), and algorithms for traversing 

trees may be considered. 

Example: Communication links are to be built between cities. 

Suppose the cost of building a link between two cities is 

proportional to the distance between them. We want to build 

a set of links so that there is a path through these links 

between every two cities. Design a nonexhaustive algorithm 

that will yield a layout of minimal total cost. (This is a 

problem of designing an algorithm for finding a minimal span-

ning tree in a graph with weighted edges.) 

10. Path problems in graphs. The notion of a shortest path 

in a graph has a clear interpretation in physical terms. If comput-

ing facilities are available, the implementation of some graph algo-

rithms by students would be highly desirable. The discussion of 

Eulerian paths brings out another feature in our study of discrete 

structures--a simple criterion for the existence of some properties 

in a large class of structures. The following examples also illus-

trate some physical interpretations of the abstract notions of 

Eulerian and Hamiltonian paths. 
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Example: Arrange all η-digit binary numbers in such a way 

that the last (n-1) digits of a number are equal to the first 

(n-1) digits of the successive number. (This is an Eulerian 

path problem with application in digital engineering.) 

Example: Arrange all η-digit binary numbers in such a way 

that two adjacent numbers differ only at one digit. (This is 

a Hamiltonian path problem with application in digital 

engineering.) 

11. Network flow problems. This discussion not only exposes 

the students to the general problem of discrete optimization but 

also shows them a recursive technique in which the solution is im-

proved in a step-by-step manner until an optimal solution is reached. 

This has exactly the same flavor as that of the simplex method in 

linear programming. 

Example: Engineers and technicians are to be hired by a 

company to participate in three projects. The personnel 

requirements of these three projects are listed in the 

following table: 

Minimal number of Minimal number in each category 

people needed in Mechanical Mechanical Electrical Electrics 
each project engineers technicians engineers technicie 

Project I 40 5 10 10 5 

Project II 40 10 5 15 5 

Project III 20 5 0 10 5 

Moreover, to prepare for later expansion, the company wants to 

hire at least 30 mechanical engineers, 20 mechanical technicians, 

20 electrical engineers, and 20 electrical technicians. What 

is a minimal number of persons in each category that the com-

pany should hire, and how should they be allocated to the three 

projects? (This problem can be formulated as a problem of 

finding a minimal flow in a transportation network where there 

is a lower bound on the flow-value in each of the edges.) 
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REFERENCES 

The following four books would be useful in a course at the 
freshman-sophomore level. Berman and Fryer contains a very broad 
coverage of combinatorics. Kemeny, Snell, and Thompson discusses 
many interesting application problems. Berztiss was written mainly 
for computer science students. Vilenkin has a nice collection of 
examples and problems. 

Berman, Gerald and Fryer, K. D. Introduction to Combinatorics. 
New York, Academic Press, Inc., 1972. 

Berztiss, A. T. Data Structures. New York, Academic Press, Inc., 
1972. 

Kemeny, John G.; Snell, J. Laurie; Thompson, Gerald L. Introduction 
to Finite Mathematics, 2nd ed. Englewood Cliffs, New Jersey, 
Prentice-Hall, Inc., 1966. 

Vilenkin, Ν. Y. Combinatorics. New York, Academic Press, Inc., 1971. 

The following books are more suitable for a junior-senior 
level course. They can also be used as references in a freshman-
sophomore level course. Although these books are more advanced than 
the books cited above, they are quite readable even for undergradu-
ate students. 

Berge, Claude. Principles of Combinatorics. New York, Academic 
Press, Inc., 1971. 

Berge, Claude. The Theory of Graphs and its Applications. New York, 
John Wiley and Sons, Inc., 1962. 

Busacker, Robert G. and Saaty, Thomas L. Finite Graphs and Networks: 
An Introduction with Applications. New York, McGraw-Hill Book Com-
pany, 1965. 

Knuth, Donald E. The Art of Computer Programming, vol. I. Reading, 
Massachusetts, Addison-Wesley Publishing Company, Inc., 1968. 

Liu, C. L. Introduction to Combinatorial Mathematics. New York, 
McGraw-Hill Book Company, 1968. 

Ryser, Herbert J. Combinatorial Mathematics, MAA Carus Monograph 14. 
New York, John Wiley and Sons, Inc., 1963. 
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MC-3. Algorithmic Elementary Linear Algebra. 

[Prerequisite: MC-0 or equivalent background] This course 
corresponds to Mathematics 3, "Elementary Linear Algebra," as de-
scribed in the GCMC Commentary, and we refer the reader to that 
report for some additional comments. The differences between the 
two courses are mainly matters of emphasis and arrangement of topics. 
Whereas the course described in the GCMC Commentary stresses the 
algebraic and geometrical aspects of linear algebra and has a cer-
tain abstract flavor, the present course has a predominantly algo-
rithmic viewpoint and its discussion revolves around the various 
ramifications of solving a system of linear equations. Throughout 
the course, detailed algorithms are to be presented and discussed, 
in flowchart or some simple step-by-step form, and the students 
should use these in connection with various practical problems, on 
a computer where possible. At the same time, in this course it is 
particularly important to warn the student that the algorithms are 
based on arithmetic with real numbers and that in a practical com-
putation the effect of roundoff errors may lead to considerable 
distortions of the final result. This may be illustrated with well-
chosen examples, but no attempt should be made to enter into a 
deeper discussion of such numerical problems. 

COURSE OUTLINE 

1. Introduction. (3 hours) Discussion of various practical 

problems involving matrices. Review of the elimination process for 

2 x 2 and 3 x 3 systems of equations. Examples showing various 

cases of solvability of such systems. 

2. Matrix algebra. (5 hours) Definition of real η X m 

matrices. Examples of various special forms of matrices. Trans-

poses; symmetric and diagonal matrices. Equality, addition, and 

scalar multiplication. Matrix product and its properties. Computa-

tional applications of matrix algebra. 

3. Vectors and geometry. (4 hours) Geometrical interpreta-

tion of 1 X 3 matrices. Algebraic properties in 3-space. The inner 

product. Euclidean length, angle, orthogonality, direction cosines. 

Linear combinations. Lines and planes. Projections. Vector proofs 

of simple geometric theorems. Matrices as linear transformations in 2 3 

R and R . Geometric interpretation of one linear equation in three 

variables and of a 3 X 3 system. 

4. Inverses and the row echelon form. (5 hours) Left and 

right inverses of an η X m matrix and relation to existence and 
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uniqueness of solutions of linear equations. Review of the elimina-

tion process as motivation for the elementary row operations. Ele-

mentary row operations and their formulation in terms of multiplica-

tion by elementary matrices. The algorithm for transforming a matrix 

to row echelon form. Equivalent systems of equations. Solvability 

properties of homogeneous and inhomogeneous systems using row echelon 

form. 

5. Linear dependence and independence. (5 hours) Linear 

combinations of η X m matrices. Linear spaces of vectors and mat-

rices. Subspaces. Linear dependence and independence of vectors 

in R"* and in R n , and of matrices. Examples and basic properties. 

Use of row echelon form to determine linear dependence or independ-

ence in R n. Bases. Exchange algorithm. Dimension. Sum and inter-

section of subspaces and their dimensions. 

6. Elimination. (5 hours) Algorithm for solving triangular 

systems. Inverses of triangular matrices. Gaussian elimination 

without pivoting; triangular decomposition. Pivots and the general 

algorithm. Backsubstitution and the solution of square linear sys-

tems. Algorithm for the computation of inverses. Numerical examples 

of ill-conditioning. 

7. Rank. (5 hours) Linear mappings between linear spaces. 

Range space and null space. Relation between algebra of mappings 

and of matrices. Uniqueness aspect of row echelon form. Rank of a 

matrix. Rank of the transpose. Dimensions of null space and range 

space and related results. 

8. Euclidean spaces. (4 hours) The inner product. Schwarz 

inequality. Euclidean length in R n. Orthogonal bases. Gram-Schmidt 

process. Orthogonal projections. The least squares method. 

9. [Optional] Abstract vector spaces. Axiomatic definition 

of vector space over R. Examples. Linear transformations and their 

algebra. The matrix of a linear transformation with respect to a 

given basis. Change of basis. 
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COMMENTARY 

1. Introduction. Practical problems involving matrices a-

bound. They may include the adjacency matrix of a street net, a 

simple resistive electrical network, a Markov chain example, the 

method of least squares, etc. [See, e.g., Noble, Ben. Applied 

Linear Algebra. Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 

1969, Chapter 2.] 

2. Matrix algebra. The stress here is on the algorithms of 

matrix algebra. Matrix multiplication can be motivated by practical 

examples of inner products leading to the product of a 1 Χ η matrix 

by an η X 1 matrix. Then the transformation of variables in linear 

equations readily provides a motivation of the matrix product. The 

examples introduced earlier can now be elaborated; for example, con-

nectivity of a street net can be determined by forming powers of the 

adjacency matrix. A subroutine package for matrix algebra may be 

very useful for these applications. 

3. Vectors and geometry. This section is rather standard. 

For comments we refer the reader to the GCMC Commentary. 

4. Inverses and the row echelon form. In this section a basic 

algorithm is introduced, namely, the reduction to row echelon form; 

it will play a central role in the remainder of the course. Various 

applications are possible--for instance, determining solvability 

properties of a resistive electrical network. 

5. Linear dependence and independence. In discussing the use 

of the row echelon form to determine linear dependence and independ-

ence, it is particularly important to illustrate the numerical prob-

lems which might occur when a computer is used. This can be motivated 

well by simple 2- and 3-dimensional examples. If time permits, the 

role of the exchange algorithms in linear programming can be illus-

trated by simple examples. [See, e.g., Stiefel, Ε. L. Introduction 

to Numerical Mathematics, translated by W. C. Rheinboldt. New York, 

Academic Press, Inc., 1963.] 

6. Elimination. After a thorough discussion of the overall 

algorithm, it may be desirable to use a well-written subroutine 

package for computer assignments involving the solution of linear' 
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systems arising in the practical problems introduced earlier. [See, 

for example, the routines given in Forsythe, George E. and Moler, C. 

Computer Solution of Linear Algebraic Systems. Englewood Cliffs, 

New Jersey, Prentice-Hall, Inc., 1967.] 

7. Rank. For some applications of rank, e.g., to chemical 

reactions, see Chapter 5 of the book by Ben Noble which was cited 

above. 

8. Euclidean spaces. Again, applications abound. In particu-

lar, various problems leading to the use of the least squares method 

can be discussed. 

REFERENCES 

1. Matrices and linear algebra 

Davis, Philip J. The Mathematics of Matrices. Waltham, Massachusetts, 
Blaisdell Publishing Company, 1965. A well-written elementary intro-
duction to matrices. 

Hohn, Franz E. Elementary Matrix Algebra. 2nd ed. New York, The 
Macmillan Company, 1964. An introductory text which proceeds in a 
manner similar to the outline above. 

Noble, Ben. Applied Linear Algebra. Englewood Cliffs, New Jersey, 
Prentice-Hall, Inc., 1969. This excellent text corresponds in spirit 
and approach to our outline but contains considerably more material 
and is, in parts, somewhat more advanced. 

2. Numerical aspects 

Forsythe, George E. and Moler, C. Computer Solution of Linear Alge-
braic Systems. Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 
1967. A brief, modern, but more advanced text on the basic numerical 
aspects of solving systems of linear equations. 

Fox, Leslie. Introduction to Numerical Linear Algebra. New York, 
Oxford University Press, Inc., 1965. This text is a good source of 
Instructive examples of error problems in numerical linear algebra. 
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4. Further Undergraduate Courses 

In this section we discuss a rather heterogeneous group of 
upper-division undergraduate mathematics courses and areas affected 
by computing. The given list does not exhaust the possibilities and, 
even for the areas discussed here, there may well be other ways of 
incorporating the effect of computing. Clearly, at this level there 
is considerably more flexibility and there are probably many ways of 
modifying the approaches we suggest here. 

For the courses in this section, the programming prerequisites 
are, of course, more advanced than for the previous courses; the 
computational facilities may also need to be more flexible. (See 
Sections 5.1 and 5.2). Further, the knowledge of computing and 
applied mathematics required by faculty members teaching these 
courses differs considerably from course to course. Thus for Ordi-
nary Differential Equations (4.1) and Numerical Calculus (4.4) a 
knowledge of numerical analysis as well as facility in programming 
are absolutely essential. For Discrete Probability and Computing 
(4.2) reasonable programming experience in addition to a knowledge 
of probability is required. For Algebra Courses Influenced by Com-
puting (4.5) a grounding in the algebraic foundations of computer 
sciences is needed in addition to the more usual kinds of computer 
expertise. Finally, for Mathematical Computer Modeling (4.3) a 
thorough knowledge of the applications involved is essential, of 
course, in addition to the programming and numerical analysis knowl-
edge required by the selected applications. 

4.1 Ordinary Differential Equations (3 semester hours) 

[Prerequisites: MC-3, Mathematics 4 from the GCMC Commentary, 
good programming experience] How ordinary differential equations 
arise in practice. Separation of variables, integrating factors, 
variation of parameters, substitution. Equations with constant co-
efficients. Series solutions. Euler's method and a brief treatment 
of existence and uniqueness. An explicit Runge-Kutta method; a trap-
ezoidal method for stiff systems. [For a discussion of stiff systems, 
see Gear, C. William. Numerical Initial Value Problems in Ordinary 
Differential Equations. Englewood Cliffs, New Jersey, Prentice-Hall, 
Inc., 1971.] An introduction to boundary value problems. 

The purpose of this course is basically the same as that of a 
more traditional course on ordinary differential equations, except 
that greater emphasis should be given to practical methods of solu-
tion. The most significant change is the inclusion of several care-
fully chosen numerical methods. 

One numerical method is based on a well-established Runge-Kutta 
formula and is treated in enough detail to permit the writing of a 
reasonably effective computer program. This method is adequate for 
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nonstiff problems, and there is no need to make more than brief 
reference to more complicated methods, such as multi-step methods, 
for these problems. However, one other method is needed for stiff 
systems of ordinary differential equations. A method based on the 
trapezoidal rule is included in this course because it is both simple 
and adequate. Numerical methods for boundary value problems are also 
included. A more detailed discussion of other numerical methods 
should be left to courses in numerical analysis. 

This course can be followed by a second semester course cover-
ing several more advanced topics and exploiting more thoroughly vari-
ous numerical methods. Topics for such a second semester may be 
chosen from among the following: 

Series solutions (including special functions), autonomous 
systems, Laplace transform, comparison theorem, eigenvalues 
and eigenfunctions, perturbation theory, asymptotic behavior, 
numerical methods, Galerkin methods, applications. 

COURSE OUTLINE 

1. Systems of equations. (2 hours) How ordinary differential 

equations arise in physical, chemical, biological, and economic prob-

lems . 

2. Elementary analytic methods. (5 hours) Variables sepair-2 

able, e.g., in y' = 1 - y . Integrating factors, e.g., in 

y' + P(x)y = Q ( x ) . Substitution, e.g., in y' = (ax + by)/(cx + dy). 

Variation of parameters. Solving equations with constant coeffi-

cients, e.g., the system y' = ay + bz, z' = cy + dz, or the higher-

order equation y" + ay' + by = f(x). Introduction to series solu-

tions. 

3. Euler's method. (5 hours) Brief treatment of an exist-

ence and uniqueness, theorem (perhaps without a detailed proof) of 

the Cauchy-Lipschitz kind, which can also be viewed as a theorem 

about the convergence of a simple numerical procedure. Bound on 

propagated error with Euler's method. Numerical examples, including 

a difficult one such as the Volterra equations that often arise in 

biological problems, e.g., y' = 2(y - yz), z' = -z + yz. 

4. More efficient numerical methods. (6 hours) Motivation 

of explicit Runge-Kutta formulas. A complete numerical method, 

including a strategy for changing step-size (see flowchart given 

below). Numerical examples, comparison with Euler's method. Note 
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the generality of the numerical method for systems of first-order 

equations: it can be used with nonlinear as well as linear equa-

tions; moreover, higher-order equations can be reduced to systems of 

first-order equations. Brief mention of more complicated multi-step 

methods. 

5. Stiff systems of equations. (6 hours) The inability of 

standard methods to cope efficiently with stiff systems (e.g., with 

stable linear systems whose eigenvalues differ in magnitude by large 

factors). A complete numerical method for stiff systems based on 

the trapezoidal rule. Numerical examples, e.g., y' = -lOly - 100z, 

z' = y. Compare Runge-Kutta and trapezoidal methods. Brief mention 

of other methods for stiff systems. 

6. Boundary value problems. (10 hours) Elementary theoreti-

cal considerations, including an introduction to eigenvalues and 

eigenfunctions. Shooting methods. Finite difference methods. Men-

tion of Galerkin methods. 

7. Limitations of numerical methods. (2 hours) Acknowledge 

the limitations of numerical methods and the need for their improve-

ment. Point out the need for further analysis of solutions of dif-

ferential equations, for example in the neighborhood of a singularity. 

COMMENTARY 

This course is intended to provide a reasonable balance be-

tween analytic and numerical methods that can be applied to problems 

involving ordinary differential equations. The students are expected 

to carry out numerical work related to applications. 

This theme can be illustrated with Volterra's equations, which 

are mentioned above in the detailed outline. To begin with, examples 

of this sort are easily motivated in terms of predator-prey relation-

ships. Then analytic methods can provide some useful information, 

such as existence and uniqueness of the solutions, and, with certain 

initial conditions, the existence of periodic solutions. But finding 

reasonable approximations to the solutions involves the use of numer-

ical methods. The analytic methods are limited to relatively simple 

problems but help to provide an understanding for more general situa-

tions. The numerical methods are much more generally applicable, but 
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A Runge-Kutta method for nonstiff problems 

Start 
Start with f (x,y) , x Q , y Q , x f (final value of x) ,T (tolerance 

per unit step), h m a x (maximum step-size) 

Choose 
step-size h 
and, if 
necessary, 
calculate 
current slope 

Calculate 
next 
approximation 
to 
y 

Calculate the 
estimate of 
error per unit 
step, EST 

EST 4 Τ J 
El Update x,y 

f min { h m a x , x f - x } , on entry 

otherwise 

Find slope on entry and after successful step 

Use Kutta's formula 

[νΐ+ι=η+ £ ( k 0 + 2 k 1 + 2 k 2 + k 3 ) , 

where k Q = hf(Xj,yj) 

k | = hf(xj + V4h, yj + !4k0), etc.] twice with step-size 'ΛΙι 

Find approximation y by using Kutta's formula once with 

step-size h; then EST = I 15h I 

Stop 
Stop with x Q , y 0 replaced by Xf and the 

computed approximation to y (Xf ) 
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they do not contribute very much to one's understanding; moreover, 

it is often difficult to assess their reliability. 

We include in this section a flowchart for the explicit Runge-

Kutta method and some comments on a trapezoidal method for stiff 

systems. 

Notes: j , 

1. Choosing h to be ^ ( T / E S T ) 4 times its previous value 

can be justified as follows. First of all, the exponent is \ be¬ 

cause the method is a fourth-order method and the ratio ( T / E S T ) 4 

is asymptotically equal to the ratio of step-sizes associated with 

errors of τ and EST respectively. The trial step-size should bt 

chosen to be somewhat smaller than what is determined by this ratio, 

and the factor .9 has been shown experimentally to be reasonably 

good. 

2. Some modifications of the above are needed if we wish to 

allow x_ < χ . 
f ο 

3. Care should be taken to avoid possible overflow in calcu-

lating T / E S T . 

4. Provision could be made for using an error exit if the 

error test fails with h equal to a given h . . 

Ί m m 
A trapezoidal method for stiff systems 

A relatively simple method for stiff systems can be patterned 

on the flowchart given above. The only major change that needs to 

be made is to replace Kutta's formula with the trapezoidal formula 

and to arrange for this equation to be solved by Newton's method. 

(The latter is required because simple iterations on this formula 

will not usually converge for stiff systems.) 

Some minor changes are also needed. The exponent \ which is 

used in finding h must be replaced by \ because the trapezoidal 

formula is only second-order, and the factor 15 in the formula for 

EST must be replaced by 3 for the same reason. 
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REFERENCES 

There is no one book which contains all the topics described 
in this outline. However, the following books taken together cover 
the material, although the last three especially contain too much 
for this one course; thus, topics will have to be selected. 

Boyce, William E. and DiPrima, Richard C. Elementary Differential 
Equations and Boundary Value Problems, 2nd ed. New York, John Wiley 
and Sons, Inc., 1969. 

Coddington, Earl A. An Introduction to Ordinary Differential Equa-
tions . Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1964. 
Complete coverage of the theoretical aspects. 

Davis, Harold T. Introduction to Nonlinear Differential and Integral 
Equations. New York, Dover Publications, Inc., 1960. Good treat-
ment of practical examples, including the Volterra equations. 

Gear, C. William. Numerical Initial Value Problems in Ordinary 
Differential Equations. Englewood Cliffs, New Jersey, Prentice-
Hall, Inc., 1971. Numerical methods for initial value problems, 
including stiff systems. 

Keller, Herbert B. Numerical Methods for Two-Point Boundary-Value 
Problems. Boston, Massachusetts, Ginn and Company, 1968. 

4.2 Discrete Probability and Computing 

[Prerequisites: MC-2 and some knowledge of programming and 
computing procedures such as those found in Sections 2 and 3 of 
MC-DM] This course is intended as an introduction to the elements 
of probability. The main difference between it and a standard 
probability course, apart from the use of computing, is that, in 
order to get to more complex problems, less time is spent developing 
tools for solving simple problems. This difference is reflected in 
the amount of time allotted to the various units comprising the 
course, as well as in the fact that difficult theorems (such as the 
Central Limit Theorem) are to be stated without proof. However, in 
cases where proofs are omitted, the computer is used to provide ex-
perimental intuition for the validity of the theorems. 

COURSE OUTLINE 

1. Definition of a discrete probability measure; conditional 

probability for experiments with a finite number of outcomes. (3 

hours) 

2. The frequency concept of probability; fluctuation theory 
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illustrated by simulation; the arcsine law for the number of times 

in the lead. (3 hours) 

3. Sums of sequences of independent random variables with 

common distribution; generating functions; mean; variance. (7 hours) 

Computational illustration of the Central Limit Thoerem. Proof of 

the Weak Law of Large Numbers. Illustration of the Strong Law of 

Large Numbers by simulation. 

4. Brief discussion of probabilities on infinite spaces. (4 

hours) Poisson, normal, and exponential distributions. Waiting-

time problems illustrated by computer simulation. 

5. Fair games (martingales). (6 hours) System theorems. 

Ruin probabilities. The meaning of convergence of nonnegative mar-

tingales illustrated using branching processes and other examples. 

6. Finite Markov chains. (6 hours) Recurrent and absorbing 

chains. Use of matrix computation to write programs for basic de-

scriptive quantities relating to Markov chains. 

7. Additional topics. (7 hours) Applications of previous 

topics to selected problems in discrete potential theory, simulation 

of complex systems, or statistics. 

COMMENTARY 

1. Definition of a discrete probability measure. This unit 

represents in part a survey of material from MC-DM. Counting is 

restricted to permutations and combinations. Computational applica-

tions involve the properties of the binomial coefficients. 

2. The frequency concept of probability. A possible computer 

assignment involves the discovery of the highly unintuitive arcsine 

law for the number of times in the lead in a penny-matching game. 

Once a conjecture has been established on the basis of experiments, 

a proof can be given using Feller's treatment based on the reflec-

tion principle. This provides an example of an easy limit theorem. 

3. Sums of sequences of independent random variables with 

common distribution. Let X^, X^, ... be a sequence of independent 

integer-valued random variables, and let S = X, + ... + X . A 
° η 1 η 

computer program can be used to compute 
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ρ / η ) = Ρ Γ [ Β η ^ ] 

using only that 

pi - I p k pj-k · 
k 

This program may then be employed to motivate the concepts of mean 

and variance and to illustrate the Central Limit Theorem. 

4. Brief discussion of probabilities on infinite spaces. 

This unit is included primarily to provide background for a later 

course on statistics. The discussion should be limited to distribu-

tions for a single experiment, with concepts such as the mean and 

variance being introduced by analogy with the finite case. 

5. Fair games (martingales). Chapter 8 of Kemeny, Schleifer, 

Snell, and Thompson provides source material. This unit could be 

replaced by a unit on branching processes and generating functions. 

6. Finite Markov chains. For a discussion of some related 

computational work, see, for example, Kemeny, John G. and Kurtz, 

Thomas E. Basic Programming, 2nd ed. New York, John Wiley and Sons, 

Inc., 1971, especially Section 16.3. 

7. Additional topics. The purpose of this unit is to unify 

numerous applications through techniques discussed previously. For 

example, discrete potential theory can be applied to optimal stop-

ping problems and to Markov decision processes; and the solution of 

the Dirichlet problem can be found using (a) the voltage in an 

electrical network, (b) the value of a stopped martingale (the Monte 

Carlo method), and (c) Markov chain methods. Such applications 

would build upon units 5 or 6 or both. Alternative or additional 

applications could include the simulation of complex systems (cf. 

Forester) or an introduction to elementary statistics. 

REFERENCES 

There is no single text which is suitable for the entire 
course. Sections of Feller and of Kemeny, Schleifer, Snell, and 
Thompson can be used for various units of the mathematical topics, 
i.e., noncomputational aspects. Freiberger gives a more advanced 
treatment, and Forester is an example of an application of these 
ideas to a real-life problem. 
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1. Mathematical background 

Feller, William. An Introduction to Probability Theory and Its 
Applications, vol. 1, 3rd ed. New York, John Wiley and Sons, Inc., 
1968. 

Kemeny, John G.; Schleifer, Α.; Snell, J. Laurie; Thompson, Gerald L. 
Finite Mathematics with Business Applications. 2nd ed. Englewood 
Cliffs, New Jersey, Prentice-Hall, Inc., 1972. 

2. Some computational applications 

Forester, Jay W. Urban Dynamics. Cambridge, Massachusetts, MIT 
Press, 1969. 

Freiberger, Walter F. and Grenander, Ulf. A Short Course in Compu-
tational Probability and Statistics. New York, Springer-Verlag New 
York, Inc., 1971. 

4.3 Experimental Development of a Course in Mathematical-Computer 
Modeling 

A mathematical model of a phenomenon, mechanism, or process 
can be a system of algebraic, differential, difference, or functional 
equations, a stochastic process, or an abstract structure in terms of 
which a problem or question can be studied and can be given a mathe-
matical solution. The usefulness of mathematical models in the 
physical sciences and engineering is beyond question; in many in-
stances the models are so good that computer simulation is as accu-
rate as any experimental measurements that can be made. The power 
of the computer to simulate and to compute widens the scope of ac-
ceptable models, affects the usefulness of mathematical methods, and 
makes possible procedures which are much different from those of the 
past and far superior to them. 

In view of the complexity of physical phenomena which have been 
successfully subjected to mathematical analysis, mathematicians and 
scientists do not doubt that useful mathematical models can be con-
structed in all of the sciences. Indeed, for a long time we have 
witnessed a growing mathematization within the nonphysical sciences. 

In all of this we are just beginning to appreciate the impact 
of the computer, and we are even less aware of the impact which com-
puting and the computer will eventually have upon mathematics and 
pedagogy. Today our mathematical instruction is barely beyond the 
pencil-and-paper and chalk-and-blackboard stage; relatively few 
mathematicians have had experience in mathematical modeling and in 
effective use of the computer. 

Although it seems imperative today to re-examine the content 
of our courses and to give our students some training in the processes 
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by which mathematics is and can be applied, it is certainly beyond 
our experience at the moment to do so extensively at an elementary 
level. Modeling itself might best be introduced as an integral part 
of courses designed to teach a certain body of mathematics, but 
initially it might be better and easier to gain experience by experi-
menting with a separate course in mathematical-computer modeling at 
a post-calculus level. This could be a joint experimental under-
taking by a number of faculty members and a few students; it should 
consist of the study and investigation in depth of a small number of 
carefully selected problems. 

In selecting a problem one should take the following things 
into account: 

(1) The problem should be easily stated. Without requiring 
extensive specialized knowledge or background, it should be possible 
to distinguish enough of the essential features in order to begin to 
construct some mathematical models, however crude. 

(2) The problem should have mathematical content--the simpler 
the better at this level--which illustrates how mathematics is needed 
(i) to provide insight, (ii) to test the model (e.g., against a sim-
ple special case where the solution is obvious or easy), (iii) to 
develop a theory of the essential features of the model, and (iv) to 
indicate computational procedures. 

(3) The problem should in some essential way require use of 
the computer (i) to provide insight through computer experimenta-
tion with the model or problem, (ii) to provide approximate answers 
and practical solutions, and (iii) to test the model and the solu-
tions . 

This does not imply that it is impossible to learn a great 
deal about modeling with pencil and paper, but a basic objective 
here is to go beyond this stage and to learn something about the 
uses and misuses of the computer and mathematical theory. More time 
needs to be spent in thinking about what goes into and what comes 
out of the computer than about the computation itself. 

It is within the rules of the game to use mathematical or 
scientific results without proof, although where proofs are easily 
accessible and instructive they could be included. It would also be 
good pedagogy to consider models which are known to be poor, im-
practical theories and solutions, and poor numerical methods. 

A SAMPLE PROBLEM 

An excellent example is suggested by the work of Harold W. 

Kuhn. See his papers listed in the references at the end of this 

section; see also Courant and Robbins. 
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Fermat-Steiner-Weber Problem 
1 2 

Given η distinct points ρ = ( x ^ y ^ , ρ = (x 2 , y 2 ) , .... 

p n = (x >y ) in the plane and η positive numbers w,, w„, .... w 
η η i ί η 

find points which minimize 

η 

F ( P ) = Y W J P - P 1 ! . 
i=l 

where ρ = (x,y) and |p| = (x2 + y 2 ) ^ (thus |p - p*~\ is the 

Euclidean distance between ρ and p 1 ) . This problem, posed by 

Fermat in the early 17th century with η = 3 and w^ = w 2 = = 1, 

has had a long history and has been studied recently with renewed 

interest because of applications to spatial economics (optimal loca-

tion of a factory, a shopping center, a hospital, a communications 

center, etc.). 

Omitting the trivial case when the η points are collinear, 

we can show without difficulty that F is strictly convex, has a 

unique minimum which is in the convex hull of p \ p 2 p n , and 

that the vanishing of a gradient (suitably defined at the vertices 

p'') is a necessary and sufficient condition for a minimum. 

The history and theory is interesting and provides a necessary 

background to the problem of finding approximate solutions numeri-

cally. The computational difficulties are nontrivial. 

The following algorithm has been independently proposed at 

least three times: 

Let 

q" = T i c T 1 ) , 

where 

T(q) = q + h(q) VF(q), 

• (kl^
l" - p k i " 1 ) " 1 

k k 
with T(p ) = ρ at the vertices [h(q) is the harmonic mean of 

the distances to the vertices]. 

It can be shown that: 

If q minimizes F, then it is a fixed point of T. If q 
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is a fixed point of Τ that is not a vertex, then q minimizes F. 

Either (1) Tn(q) converges to a fixed point or (2) T-'(q) = p k 

for some j and some k. 

Kuhn gives an algorithm which controls the step-size 

h(q) VF(q) for which he conjectures that F(q n + 1 ^ s F(q n ). This 

would imply convergence. Calculations involving η = 3 to η = 24 

give close approximations after seven iterations. 

Outline for the Study of this Problem 

1. Nonmathematical statement and discussion of an economic 

problem involving the optimal location of a plant, shopping center, 

etc. 

2. Mathematical statement of the problem. Locate in the plane 

a point that minimizes the weighted sum of its distances to η given 

points in the plane. 

3. History of the problem. Solution of simple cases. Sim-

plest case (3 points, equal weights) considered by Fermat (c. 1635) 

in an essay on maximum and minimum problems. The more general prob-

lem with weights w^, w^, w^ appears in an early book on "fluxions" 

by Simpson, one of the first textbooks on calculus. 

4. Some mathematical theory. 

a. Existence-uniqueness. 

b. Necessary and sufficient conditions. 

c. Dual problem. 

5. Computational methods. Use of the computer. 

a. As a problem in mathematical programming. 

b. A proposed algorithm and its motivation. Iterations, 

convergence, and fixed points. 

c. Computation of some examples. 

d. The conjecture F(q n + ^) s F(q n ). Special cases in 

which it can be verified. 

e. Computer tests of the conjecture. 

6. A specific application. Study the problem of a good loca-

tion for a large regional high school in the community. 

7. Generalizations and unanswered mathematical and practical 

questions (research problems). 
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Desirable Features Illustrated by the Example 

1. It is simple to describe, easily understood, explicit, 

interesting, and significant. 

2. It has deep roots within the history of mathematics. 

Special cases of this problem appear as exercises in the earliest 

texts on "fluxions." It can be considered today in the light of new 

ideas, new mathematics, and computational procedures related to 

modern digital computers. 

3. It serves to review and illustrate mathematics to which the 

student has been exposed: max-min, Lagrange multipliers (not re-

quired if the dual problem is omitted), simple linear algebra (analy-

tic geometry), convergence. 

4. It requires introduction at an elementary level of some 

new mathematics and new ideas important in mathematics and applica-

tions: convexity, duality, iteration (successive approximations), 

fixed points, and mathematical programming. 

5. It provides an opportunity to develop a small body of 

theory. 

6. It raises questions of computation, significant examples 

of which require the computer. 

7. It raises a conjecture which can be proved in special 

cases and can be tested on the computer in more general cases. 

8. It reaches the frontiers of research (generalizations to 

nonlinear costs, noneuclidean distance, etc., which are significant 

for applications). 

A RECOMMENDATION 

The development of individual topics, problems, exercises, etc., 
needed for a course of this type will require considerable work and 
imagination. This might be accomplished through isolated projects 
for independent group study with selected students, directed by an 
applications- and computer-oriented mathematician and a colleague 
representing the area of application. 

Such experimental courses would be the testing ground for the 
development of instructional model building and are encouraged by 
the Panel. In the long run we believe that such model building 
should come in directly as a vehicle for teaching mathematics and 
its applications (for an example see the book by Grenander and the 
book by Freiberger and Grenander). 
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REFERENCES 

Courant, Richard and Robbins, Herbert. What is Mathematics? New 
York, Oxford University Press, Inc., 1941, p. 354 ff. 

Freiberger, Walter F. and Grenander, Ulf. A Short Course in Computa-
tional Probability and Statistics. New York, Springer-Verlag New 
York, Inc., 1971. 
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SUPPLEMENTARY REFERENCES 

The following books are meant to illustrate some areas and 
sources of ideas for modeling. Do not expect to find completely 
worked out instructional material. 

Arrow, Kenneth J., ed. Selected Readings in Economic Theory from 
Econometrica. Cambridge, Massachusetts, MIT Press, 1971. 

Äthans, Michael A. and Falb, Peter. Optimal Controls. New York, 
McGraw-Hill Book Company, 1966. 

Bellman, Richard. Introduction to the Mathematical Theory of Control 
Processes, vol. I. (Linear Equations and Quadratic Criteria). New 
York, Academic Press, Inc., 1967. 

Canon, M. ; Cullum, C ; Polak, E. Theory of Optimal Control and 
Mathematical Programming. New York, McGraw-Hill Book Company, 1970. 

Computers in Undergraduate Science Education. Conference Proceedings, 
Chicago, Illinois, August 17-21, 1970. College Park, Maryland, Com-
mission on College Physics, 1971. 

Forester, Jay W. Urban Dynamics. Cambridge, Massachusetts, MIT 
Press, 1969. 
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Life Sciences: Some Mathematical Problems in Biology, vol. I. 
Providence, Rhode Island, American Mathematical Society, 1968. 

Hooper, John W. and Nerlove, Marc, eds. Selected Readings in Econo-
metrics from Econometrica. Cambridge, Massachusetts, MIT Press, 
1970. 
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Electronic Engineers, 345 East 47th Street, New York, New York 10017, 
1971. 
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47th Street, New York, New York 10017, 1971. 

Kirk, Donald E. Optimal Control Theory, An Introduction. Englewood 
Cliffs, New Jersey, Prentice-Hall, Inc., 1970. 
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York, McGraw-Hill Book Company, 1967. 

Ledley, Robert S. Use of Computers in Biology and Medicine. New 
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John Wiley and Sons, Inc., 1969. 
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Press, Inc., 19 71. 
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Wagner, Harvey Μ. Principles of Operations Research with Applica-
tions to Managerial Decisions. Englewood Cliffs, New Jersey, 
Prentice-Hall, Inc., 1969. 

Wodwell, G.; Craig, P.; Johnson, H. A. "DDT in the biosphere: Where 
will it go?" Science, 174 (1971), pp. 1101-1107. 

Zadeh, Lotfi and Polak, Elijah. System Theory. New York, McGraw-
Hill Book Company, 1969. 

4.4 Thoughts on a "Postponed" Calculus Course with Emphasis on 
Numerical Methods 

In recent years many questions have been raised about the 
special role played by the basic calculus sequence as the first set 
of courses in traditional college mathematics curricula. There are 
many arguments for beginning with the calculus, but with the growth 
of computer science and the need for more mathematics in the be-
havioral and social sciences there are more and more arguments for 
postponing the calculus courses. 

For those students who do not need to use the calculus in 
other courses until the junior or senior year, a drastically revised 
one-year calculus course which makes heavy use of computing and algo-
rithmic ideas may be suitable. This course would have the Discrete 
Mathematics course MC-DM and a thorough knowledge of programming as 
prerequisites and would not be taken until the sophomore or junior 
year. A constructive approach to the basic concepts of the calculus 
would be used throughout the course and heavy emphasis would be 
placed on both numerical and nonnumerical algorithms. The course 
would contain some elementary numerical analysis, attention being 
paid to error analysis and degrees of approximation. 

By necessity, some of the traditional topics of the calculus 
will have to be slighted, but the knowledge that the students will 
gain in being able to handle fairly complex real-world problems would 
certainly offset this. 

The following outline should be considered as a first tentative 
suggestion. Given the novelty of the approach, there are very few 
experiences which might have been used as a guide. The material is 
ample for a one-year course, but no attempt is made to indicate the 
pace. The increased mathematical maturity of the students should 
make possible a faster pace than that in the usual calculus course. 
It should be kept in mind throughout the course that the topics are 
to be treated with heavy emphasis on numerical orientation. 
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A TENTATIVE OUTLINE 

1. Numbers. A brief review of (intuitive) number concepts. 

Distribution of floating-point numbers on the line. Arithmetic 

problems with floating-point numbers. Roundoff errors. Ordering, 

inequalities, distances, and absolute value. All of this should be 

computationally oriented. 

2. Sequences. Computational example of approximating the 

square root. Squeeze concept. Other related examples of limits. 

Need for irrational numbers to "fill" the number line; completeness 

concept. Definition of limit. Basic limit theorems (prove only a 

few). Squeeze theorem. Importance of error estimates. Slow and 

fast convergence illustrated by various examples. 

3. Functions. Review of function concept (functions as map-

pings). Functions defined by algorithms, e.g., Horner's scheme, etc. 

Graphs and basic curve sketching. Arithmetic combination of func-

tions. Geometric discussion of "near" functions and simple computa-

tional examples of approximations. Composition of functions, in-

verses. Monotonicity. Zeros, bisection algorithm. Uniform con-

tinuity; Intermediate Value Theorem for uniformly continuous func-

tions using bisection algorithm. 

4. Interpolation. Polynomial interpolation, undetermined 

coefficients, Lagrange formula, application to the solution of equa-

tions . 

5. Derivatives. Limits, basic limit theorems with reference 

to the sequential case. Motivation and definition of the derivative. 

The cases χ (small k) and 1/x. Concept of higher derivatives. 

Continuity. Basic differentiation theorems. Derivative of poly-

nomials, Horner's algorithm again. Derivative of rational functions. 

Linearization. Newton's method. Monotone convergence of Newton's 

method. Derivatives of monotone, convex, and concave functions. 

Chain rule. Implicit functions, inverse functions, application to 
1/n 

x 

6. Area. Intuitive discussion of properties of area. Area 

of regions under monotone functions by approximations with sums of 

rectangles. Extension to nonmonotone functions, application to χ , 

k = 0, 1, 2, 3. 
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7. Integral. Riemann sums, existence for uniformly contin-

uous functions, basic properties. The Fundamental Theorem of Calcu-

lus. Application to the calculation of definite integrals. Substi-

tution and integration by parts. 

8. Quadrature• Review of rectangular approximation, trape-

zoidal rule and Simpson's rule. Integration by the Lagrange formula. 

Algorithmic treatment of partial fractions. 

9. Differential equations. Direction fields, concept of 

solving first-order initial value problems. Separable case. Euler's 

method. Differential equations of radioactive decay, first-order 

logarithms. Second-order linear equations, superposition principle, 

harmonic motion, trigonometric functions. 

10. Taylor's theorem. Mean Value Theorem, Taylor's theorem. 

Lagrange and integral remainder, application to error of interpola-

tion, quadrature, l'Hopital's rule, critical points, simple numeri-

cal methods for critical points. 

11. Numerical solution of differential equations. Euler's 

method reviewed, trapezoidal rule, local discretization error, modi-

fied Euler's methods, Taylor's polynomial methods, idea of Runge-

Kutta and multi-step methods. Brief geometric discussion of sta-

bility problems. 

REFERENCES 

There is no single textbook which covers the material proposed 
here, but parts of the following three texts may be used. 

Flanders, Harley; Korfhage, Robert R.; Price, Justin J. Calculus. 
New York, Academic Press, Inc., 1970. 

Henriksen, M. and Lees, M. Single-Variable Calculus. New York, 
Worth Publishers, Inc., 1970. 

Stenberg, Warren, e_t al_. Calculus, A Computer Oriented Presentation. 
Parts 1 and 2. CRICISAM, Florida State University, 1970. 

For the numerical analysis portions, parts of various standard books 
on numerical methods can be used, especially for problems and appli-
cations . 
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4.5 Algebra Courses Influenced by Computing 

At the present time it is not clear how the standard under-
graduate introduction to algebra (e.g., Mathematics 6M in the GCMC 
Commentary) should be modified to reflect the growing influence of 
computers. Some knowledge of algebra is essential for an under-
standing of areas such as algebraic algorithms and symbol manipula-
tion which have a strong algebraic flavor. Nonetheless, there is no 
consensus as to how the usual introduction to abstract algebra should 
be modified. In the discussion below we present brief outlines of 
three possible modifications, along with some sources of further 
information. 

1. At Harvard University the Department of Applied Mathematics 
has taught a one-year course based on Birkhoff and Bartee, Modern 
Applied Algebra (New York, McGraw-Hill Book Company, 1970). Topics 
are selected from among the following: 

Sets and functions, relations, graphs. Finite state machines, 
programming languages. Monoids, groups, lattices, Boolean 
algebras, rings, polynomials, finite fields. Optimization' 
and computer design, binary group codes, polynomial codes, 
recurrent sequences, computability. 

For further details about the course, the book by Birkhoff and Bartee 
should be consulted. 

2. Professor John Lipson of the University of Toronto has 
taught a modification of the one-year algebra course to advanced 
students in computer science for the past three years. Lecture 
notes for this course are expected to be available to interested 
parties sometime in 1973. 

The principal topic in the second half of this course is a 
study of algebraic algorithms which incorporates recent work not 
readily available in the textbook literature. The following topics 
are considered: 

Sets, relations, functions. Examples of algebraic systems. 
Universal algebra. Lattices, Boolean algebra, groups, rings, 
finite fields. Interpolation theory, algebraic algorithms. 

In addition to the usual textbooks in algebra, the following 
sources are used: 

Berztiss, A. T. Data Structures. New York, Academic Press, Inc., 
1971. 

Birkhoff, Garrett. Lattice Theory. 3rd ed. Providence, Rhode Island, 
American Mathematical Society, 1966. 

Birkhoff, Garrett and Bartee, Thomas C. Modern Applied Algebra. New 
York, McGraw-Hill Book Company, 1970. 
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Knuth, Donald Ε. The Art of Computer Programming. Reading, 
Massachusetts, Addison-Wesley Publishing Company. Vol. I, 1968; 
Vol. II, 1969. 

3. A one-semester modification of the course described has 
been taught in the Department of Electrical Engineering at the 
Massachusetts Institute of Technology and in the Division of Applied 
Mathematics at Brown University. The following topics are covered: 

Sets, relations, functions, morphisms, diagram graphs and 
applications. Monoids, groups, lattices. Finite state 
machines, semantics of flow diagrams, programming languages. 
Rings, fields, polynomials, extension fields, finite fields. 

5. Implementation 

5.1 Computing Facilities 

See Section 3.2 of Recommendations for an Undergraduate Program 
in Computational Mathematics, page 547. 

5.2 Programming Requirements 

The principal objective of any of the courses described in 
this report is to describe a mathematical subject area and applica-
tions related to it. Thus, the teaching of programming should not, 
by itself, be a purpose of any of these courses. Ideally, a student 
entering any of the lower-division courses except MC-0 should be 
required to have at least a beginning knowledge of one of the stand-
ard algorithmic languages implemented at his institution, as well as 
the ability to develop flowcharts and basic programs from a general 
description of a process. For the upper-division courses a more 
thorough familiarity with such a language and more programming exper-
tise is required. 

At present, few students entering the lower-division courses 
will have the corresponding programming background, although the 
expanding use of computers in high schools may change this picture 
in the future. Meanwhile, there are several alternatives that can 
be adopted. 

If a student's schedule permits, one solution would be for him 
to take a one-semester introduction to computing, such as the course 
CI described in the CUPM report Recommendations for an Undergraduate 
Program in Computational Mathematics. If this approach leads to 
delays in the mathematical progress, a possible alternative might be 

622 



to let him take the computing course and his first mathematics course 
concurrently. In that case any one of the courses in Section 3 could 
be modified and taught in such a way that programming is not abso-
lutely essential, although the results of the computations and the 
problems raised by computations would, of course, be used in the 
course. 

Another alternative not involving a separate computing course 
is to teach a minimum amount of programming in supplementary lec-
tures to those who need it during the first few weeks of the fresh-
man courses. The time required for this depends considerably on the 
computing facilities available and on the language used; here com-
puter use in a conversational mode is often particularly helpful. It 
is essential that the students be given ample opportunity to write 
and run programs of their own and to operate the necessary equipment, 
such as terminals or key punches. Moreover, it is important that con-
sultants be available who can help them over their difficulties with-
out overwhelming them with technical details. In courses where addi-
tional credit is given for the computational work, the supplementary 
programming lectures would, of course, take up the first few of the 
laboratory sessions held throughout the semester. 

Which of these alternatives is the most feasible in a given 
situation depends not only upon the intended use of the computer in 
the course but also upon the nature of the available computing 
facilities. 

As mentioned before, a few lectures in programming are not suf-
ficient preparation for the more advanced courses. A consistent pro-
gramming experience in the lower courses may, in general, enable a 
student to read an introductory computer science text on his own and 
to round out his computer knowledge in this way. Otherwise, a first 
computing course such as the course CI cited earlier is certainly a 
natural prerequisite for the upper-division courses. 

5.3 Changes in Instructional Techniques 

In connection with the general topic of this report it is 
appropriate to review the state of teaching techniques in light of 
requirements for incorporating computers into the curriculum and to 
develop new teaching methods for bringing computational results and 
numerical algorithms into the classroom. The principal objective is 
to foster the "laboratory" atmosphere in class and to make each stu-
dent feel that he is actively engaged in learning through problem 
solving, experimentation, and discovery. 

It is important to bring the computational results into the 
classroom. Although thoughtful students wili learn well from pro-
gramming projects assigned as homework,' the hurried or less thought-
ful students see these assignments as chores to be done as quickly as 
possible. Sometimes a student will turn in a program with an error 
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in it so gross as to make his answers meaningless. He will not have 
learned anything from the activity unless the instructor is able to 
review the work in class and exhibit the results which the problem 
was intended to elucidate. 

The college mathematics teacher has always been at a real dis-
advantage when asked to make his lectures with chalk and blackboard 
as exciting and interesting as those of, say, his colleagues in 
physics who have carefully orchestrated, and often dramatic, experi-
ments to perform in class. More than ever, though, we find chalk 
and blackboard inadequate for the presentation of the new material 
being proposed in this report; a teacher filling a board with com-
puter results to six significant digits is likely to deter even the 
most energetic student! We hope that authors and publishers will 
address themselves to this problem and begin to develop new teaching 
materials for the mathematics teacher. Three possibilities are men-
tioned below, in order of increasing cost and complexity. 

The first and most accessible teaching assist might come from 
sets of transparencies to be used with an overhead projector. Graphs 
of functions of one and two dimensions, successively "blown-up" por-
tions of them, and computational results can all be presented. Care-
fully prepared overlays can give graphical results a dynamic sense. 
We are all familiar with the power and appeal of really good, profes-
sionally executed illustrations in textbooks. A library of trans-
parencies of equal excellence with which a teacher could illustrate 
his lecture would go far toward livening up the classroom. The 
teacher interested in developing visual material should seek help 
from a media specialist.^ 

The second possibility to be considered is that of videotaped 
or filmed presentations. Here the dynamic nature of the algorithms 
can be well conveyed. For illustration, let us consider the concept 
of the definite integral. If the limit definition is phrased in an 
algorithmic form, the student will comprehend it best if he sees the 
approximating rectangles sketched, their areas added in one at a 
time, and the whole process repeated for a finer partition. When the 
partition is refined, he sees the effect of taking a larger number of 
smaller contributions to the integral. It is very difficult to draw 
accurately enough and fast enough on a blackboard to give students 
this sense of dynamism. Also, when animation is under consideration, 
it is natural to try to incorporate computer-produced graphics in 
these presentations.2 

1. Some information might also be obtained from the Association for 
Educational Communications and Technology, 1201 16th Street, N.W., 
Washington, D. C. 20036. 

2. Advice may be obtained from Educational Development Center, 
55 Chapel Street, Newton, Massachusetts 02160. 
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An independent reason for developing recorded presentations is 
that television cassette technology is reaching a stage which will 
allow a student to view a presentation independently, making individ-
ualized instruction a reality. A "library" of cassettes will make it 
possible for him to spend as much time as necessary on precisely the 
material that is appropriate for him. Courses could become modular 
in nature and it would no longer be necessary for all students to 
proceed in lock-step through the material. We note that freshman 
classes are becoming increasingly heterogeneous, both with respect to 
the students' capabilities and to the quality and quantity of their 
high school mathematics preparation. As "learning centers" with 
carrels containing TV screens and other audio-visual devices become 
increasingly common, the mathematical community should be concerned 
with their potential impact and usefulness. 

We encourage authors who wish to prepare materials utilizing 
these new media to seek professional help from audio-visual special-
ists. Television and film offer new opportunities for innovative 
teaching. Simply to televise or to film traditional lectures would 
fail to take full advantage of the possibilities afforded by these 
media. 

The third and most sophisticated and desirable technological 
solution is to have an on-line terminal connected to a reliable com-
puter available at all times in the classroom. Devices are available 
which tap the input to a cathode ray tube display device and put the 
same image on one (or more) television monitors so that a large class 
can "participate" in the interaction.3 If an on-line computer is 
used, a great deal of preliminary work is required on the part of the 
teacher. Numerical experiments must be chosen with great care, lest 
roundoff errors, the peculiarities of the computer operating system, 
etc., produce unanticipated results. Thus "inverting" a nearly sin-
gular matrix or "summing" an alternating series with terms alike to 
6 digits using 5-digit arithmetic would obscure rather than illumi-
nate, and could carry the teacher far deeper into the theory of com-
putation than he ever intended to go. These problems are particularly 
likely to arise if a mini-computer with a small word length is used 
with only single precision arithmetic. 

3. For an overview of these technological developments, we recommend 
Ronald Blum, ed., Computers in Undergraduate Science Education 
Conference Proceedings, Commission on College Physics, College 
Park, Maryland, 1971 (available from American Institute of Physics, 
335 East 45th Street, New York, New York 10017). See also Pro-
ceedings of a Conference on Computers in the Undergraduate Cur-
ricula, 1970 (available from the University of Iowa Computer 
Center, Iowa City, Iowa 52240), Proceedings of the Second Annual 
Conference on Computers in the Undergraduate Curricula, 1971 
(available from The New England Press, Box 979, Hanover, New 
Hampshire 03755), and Proceedings of the 1972 Conference on Com-
puters in the Undergraduate Curricula, 1972 (available from 
Southern Regional Education Board, 130 Sixth Street, N.W., 
Atlanta, Georgia 30313). 
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APPLIED MATHEMATICS 

The importance of applications of mathematics to other areas 
was recognized by CUPM early in its existence. Among the original 
four panels were a Panel on Mathematics for the Physical Sciences 
and Engineering and a Panel on Mathematics for the Biological, Man-
agement, and Social Sciences, each charged with the task of making 
recommendations for the undergraduate mathematics program of students 
whose major interest lay in one of the stated fields. 

The Panel on Physical Sciences and Engineering concentrated its 
efforts on the training of engineers and physicists, issuing its 
first report (Recommendations on the Undergraduate Mathematics Pro-
gram for Engineers and Physicists) in 1962. The demand for this 
document was so great that it was necessary to have it reprinted in 
1965. Significant developments which occurred during the mid-sixties 
prompted the Panel to revise its recommendations and issue a new re-
port in 1967. In the meantime this Panel had also developed CUPM's 
first definitive statement regarding the role of the computer in 
undergraduate mathematics. Its 1964 report Recommendations on the 
Undergraduate Mathematics Program for Work in Computing contained 
outlines for introductory and technical courses in computer science 
and a description of a program for mathematics majors planning to 
enter the field of computing; it is not being reproduced in this 
COMPENDIUM because it has been superseded by more recent CUPM docu-
ments. (See the section on COMPUTING.) Another document, Mathe-
matical Engineering—A Five-Year Program, was issued by the Panel in 
1966 to provide a means of alleviating what was then a drastic short-
age of engineers having a substantial background in mathematics. 
Described as "a suggestion, rather than a recommendation," this re-
port gives several outlines for options in operations research, orbit 
mechanics, and control theory. 

The Panel on Mathematics for the Biological, Management, and 
Social Sciences, confronting problems which were less well defined, 
issued its Tentative Recommendations for the Undergraduate Mathe-
matics Program for Students in the Biological, Management, and Social 
Sciences* in 1964. Primarily concerned with the mathematics cur-
riculum for prospective graduate students in those fields, the re-
port was meant to serve as a basis for discussion and experimentation. 
As a result of several issues raised in reaction to this document, 
CUPM decided in 1967 to concentrate on individual disciplines and, as 
a first step, appointed a Panel on Mathematics in the Life Sciences, 
charged with making recommendations for the mathematical training of 
the undergraduate life science student, whether or not he goes on to 
graduate school. The term "life science" here referred to agricul-
ture and renewable resources, all branches of biology, and medicine. 
This Panel worked closely with the Commission on Undergraduate Educa-
tion in the Biological Sciences, and its investigations culminated 

* Not included in this COMPENDIUM. 
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in the publication of Recommendations for the Undergraduate Mathe-
matics Program for Students in the Life Sciences—An Interim Report 
(1970). Although it was anticipated that a final form of this report 
would eventually be issued, this project was never undertaken due to 
lack of funds. 

Appointed in 1964, the CUPM a_d hoc Subcommittee on Applied 
Mathematics was charged with suggesting appropriate undergraduate 
programs for students planning careers in applied mathematics. The 
Subcommittee's recommendations for such a program, together with 
suggestions for implementation and course descriptions, appeared in 
the 1966 report A Curriculum in Applied Mathematics.* During the 
years 1967-69 an Advisory Group on Applications kept CUPM informed 
on current developments in applied mathematics. The extremely rapid 
development of applications of mathematics, particularly in fields 
outside the physical sciences, together with a renewed interest in 
applications among mathematicians, led CUPM to appoint in 1970 a 
Panel on Applied Mathematics, whose duty was to reconsider some of 
the questions which the Subcommittee had studied earlier, and to 
draw up new recommendations in line with the nature and methods of 
applied mathematics. The Panel's suggestions, which emphasize the 
role of model building, are given in Applied Mathematics in the 
Undergraduate Curriculum (1972). This report contains detailed out-
lines of three options for a course in applied mathematics, each of 
which utilizes the model-building approach. 

* Not included in this COMPENDIUM. 
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BACKGROUND (1962) 

One reason for the current effort on the undergraduate program 
is the rapid change in the mathematical world and in its immediate 
surroundings. Three aspects of this change have a particular effect 
on undergraduate curricula in the physical sciences and engineering. 
The first is the work being done in improving mathematics education 
in the secondary school. Several programs of improvement in second-
ary school mathematics have already had considerable effect and can 
be expected to have a great deal more. Not only can we hope that 
soon most freshmen expecting to take a scientific program will have 
covered precalculus mathematics, but, perhaps more important, they 
will be accustomed to care and precision of mathematical thought and 
statement. Of course, not all students will have this level of prep-
aration in the foreseeable future, but the proportion will be large 
enough to enable us to plan on this basis. Students with poorer 
preparation may be expected to take remedial courses without credit 
before they start the regular program. 

This improved preparation obviously means that we will be able 
to improve the content of the beginning calculus course since topics 
which take time in the first two years will have been covered earlier. 
More than that, however, it means that the elementary calculus course 
will have to take a more sophisticated attitude in order to keep the 
student from laughing at a course in college which is less careful 
mathematically than its secondary school predecessors. 

The second aspect of change in mathematics which confronts us 
is the expansion in the applications of mathematics. There is a real 
"revolution" in engineering—perhaps "explosion" is an even better 
description than "revolution," because, as it turns out, several 
trends heading in different directions are simultaneously visible. 
One is a trend toward basic science. The mathematical aspect of this 
trend is a strengthening of interest in more algebraic and abstract 
concepts. An orthogonal trend is one toward the engineering of large 
systems. These systems, both military and nonmilitary, are of ever-
increasing complexity and must be optimized with regard to such fac-
tors as cost, reliability, maintenance, etc. Resulting mathematical 
interests are linear algebra and probability-statistics. A further 
trend, in part a consequence of the preceding two, is a real increase 
in the variety and depth of the mathematical tools which interest the 
engineer. In general, engineers are finding that they need to use 
new and unfamiliar mathematics of a wide variety of types. 

A third factor is the arrival of the electronic computer. It 
is having its effect on every phase of science and technology, all 
the way from basic research to the production line. In mathematics 
it has, for one thing, moved some techniques from the abstract to the 
practical field; for example, some series expansion, iterative tech-
niques, and so forth. Then too, computers have led people to tackle 
problems they would never have considered before, such as large sys-
tems of linear equations, linear and nonlinear programming, and 

630 



Monte Carlo methods. Many of these new techniques require increased 
sophistication in mathematics. 

An additional factor entering from another direction must also 
be mentioned. Mathematicians in the United States have in recent 
years become much more closely involved with areas adjacent to their 
own research. Of the many factors which enter here, we may mention 
the greatly increased interest of mathematicians at all levels in 
education, the rapid growth of mathematical employment in industry, 
the spread of research and consulting contracts into the universities, 
and the development of a number of mathematical disciplines, such as 
information theory, that have many applications but are not classical 
applied mathematics. There is thus a real desire among mathemati-
cians and scientists to cooperate in matters of education. 

The conclusions above and the recommendations that constitute 
the body of this report were formulated by the Panel after extensive 
consultation with mathematicians, physicists, and engineers. In en-
gineering, in particular, representatives of many fields and many 
types of institutions were consulted, as well as officials of the 
American Society for Engineering Education.-- The recommendations 
for physicists were drawn up in close collaboration with the Commis-
sion on College Physics. 

In considering the recommendations which follow, it is crucial 
to examine what has been our attitude toward certain ideas which in-
evitably occupy a central position in any discussion of mathematical 
education. Among these are mathematical sophistication and mathemat-
ical rigor, motivation, and intuition. Now it is a fact that mathe-
matical rigor--by which we mean an attempt to prove essentially every-
thing that is used--is not the way of life of the physicist and the 
engineer. On the other hand, mathematical sophistication—which 
means to us careful and clear mathematical statements, proofs of many 
things, and generally speaking a broad appreciation of the mathemati-
cal blocks from which models are built--is desired by, and desirable 
for, all students preparing for a scientific career. How does one 
choose what is actually to be proved? It seems to us that this is 
related to the plausibility of the desired result. It is unwise to 
give rigor to either the utterly plausible or the utterly implausi-
ble, the former because the student cannot see what the fuss is all 
about, and the latter because the most likely effect is rejection of 
mathematics. The moderately plausible and the moderately implausible 
are the middle ground where we may insist on rigor with the greatest 
profit; the great danger in the overzealous use of rigor is to employ 
it to verify only that which is utterly apparent. 

Some of the results of a conference with engineers are embodied in 
four addresses delivered at a Conference on Mathematics in the En-
gineering Curriculum, held under the auspices of this Panel in 
March, 1961. These addresses were published in the Journal of 
Engineering Education, 52 (1961), pp. 171-207. 
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Let us turn next to the subject of motivation. Motivation 
means different things to different people and thus requires clari-
fication. One aspect of motivation is concerned with the difference 
between mathematics and the applications of mathematics, between a 
mathematical model and the real world. For many engineers and 
physicists motivation of mathematical concepts can be supplied by 
formulating real situations which lead to the construction of reason-
able models that exhibit both the desirability and the usefulness of 
the mathematical concept. Thus, motion of a particle or growth of a 
bacterial culture may be used as physical motivation for the notion 
of a derivative. It is also possible, of course, to give a mathe-
matical motivation for a new mathematical concept; the geometric 
notion of a tangent to a curve also leads to the notion of deriva-
tive and is quite enough motivation to a mathematician. Since each 
kind of motivation is meaningful to large groups of students, we 
feel that both should appear wherever relevant. It is certainly a 
matter of- individual taste whether one or both motivations should 
precede, or perhaps follow, the presentation of a mathematical topic. 
In either case, however, it is necessary to be very clear in dis-
tinguishing the motivating mathematical or physical situation from 
the resulting abstraction. 

Physical and mathematical examples which are used as motivation, 
as well as previous mathematical experience, help to develop one's 
intuition for the mathematical concept being considered. By "intui-
tion" we mean an ability to guess both the mathematical properties 
and the limitations of a mathematical abstraction by analogy with 
known properties of the mathematical or physical objects which moti-
vated that abstraction. Intuition should lead the way to rigor when-
ever possible; neither can be exchanged or substituted for the other 
in the development of mathematics. 

A mathematics course for engineers and physicists must involve 
the full spectrum from motivation and intuition to sophistication and 
rigor. While the relative emphasis on these various aspects will for-
ever be a subject for debate, no mathematics course is a complete ex-
perience if any of them is omitted. 

INTRODUCTION TO THE REVISION (1967) 

In the five years that have elapsed since the first publication 
of these recommendations, several factors have emerged to affect the 
teaching of mathematics to engineers. The most striking of these is 
the widespread application of automatic computers to engineering 
problems. It is now a commonplace that all engineers must know how 
to use computers and that this knowledge must be gained early in 
their training and reinforced by use throughout it. We have, accord-
ingly, included an introductory course in computer science as a 
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requisite for all engineering students and have increased the amount 
of numerical mathematics in other courses wherever possible. 

A second factor is the fairly general acceptance of linear 
algebra as part of the beginning mathematics program for all students. 
In the engineering curriculum this is tied in to the expansion in 
computing, since linear algebra and computers are precisely the right 
team for handling the large problems in systems analysis that appear 
in so many modern investigations. Five years ago there were only a 
handful of elementary texts on linear algebra; now treatments are 
appearing almost as fast as calculus books (with which they are 
often combined). 

A development of particular interest to these recommendations 
is the appearance of the CUPM report A General Curriculum in Mathe-
matics for Colleges (1965), referred to hereafter as GCMC. It is 
too early to judge how widely the GCMC will be adopted, but initial 
reactions, including those of teachers of engineering students, have 
been generally favorable. GCMC makes considerable use of material 
in the first version of these recommendations, and now we, in turn, 
borrow some of the courses in GCMC. 

Minor changes in the content of courses and some rearrangement 
and changes of emphasis are the result of experience and discussions 
over the years. 

Relatively little change has been made in the program for 
physicists. The only major one has been the inclusion of Introduc-
tion to Computer Science in the required courses. We do this in the 
conviction that all scientists (if not, indeed, all college graduates) 
should know something about the powers and limitations of automatic 
computers. 

Applications of Undergraduate Mathematics in Engineering, 
written and edited by Ben Noble, published in January, 1967, by the 
Mathematical Association of America and the Macmillan Company, is 
based on a collection of problems assembled as a joint project of 
CUPM and the Commission on Engineering Education. The book has five 
parts: Illustrative Applications of Elementary Mathematics, Applica-
tions of Ordinary Differential Equations, Applications to Field Prob-
lems, Applications of Linear Algebra, Applications of Probability 
Theory. 

INTRODUCTION TO THE RECOMMENDATIONS 

This report presents a program for the undergraduate mathemati-
cal preparation of engineers and physicists. 
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Since obviously no single program of study can be the best one 
for all types of students, all institutions, and all times, it is 
important that anyone expecting to make use of the present recom-
mendations understand the assumptions underlying them. The follow-
ing comments should make these assumptions clear and also explain 
some other features of the recommendations. 

1. This is a program for today, not for several years in the 
future. Programs somewhat like this are already being given at 
various places, and the sample courses we outline are patterned 
after existing ones. We assume a good but not unusual background 
for the entering freshman. 

Five or ten years from now the situation will undoubtedly be 
different--in the high schools, in research, in engineering practice, 
and in such adjacent areas as automatic computation. Such differ-
ences will necessitate changes in the mathematics curriculum, but a 
good curriculum can never be static, and it is our belief that the 
present proposal can be continually modified to keep up with develop-
ments. However, the material encompassed here will certainly con-
tinue to be an important part of the mathematical education needed by 
engineers and physicists. 

2. The program we recommend may seem excessive in the light of 
what is now being done at many places, but it is our conviction that 
this is the minimal amount of mathematics appropriate for students 
who will be starting their careers four or five years from now. We 
recognize that some institutions may simply be unable to introduce 
such a program very soon. We hope that such places will regard the 
program as something to work toward. 

3. Beyond the courses required of all students there must be 
available considerable flexibility to allow for variations in fields 
and in the quality of students. The advanced material whose avail-
ability we have recommended can be regarded as a main stem that may 
have branches at any point. Also, students may truncate the program 
at points appropriate to their interests and abilities. 

4. The order of presentation of topics in mathematics and 
some related courses is strongly influenced by two factors: 

a. The best possible treatment of certain subjects in 
engineering and physics requires that they be pre-
ceded by certain mathematical topics. 

b. Topics introduced in mathematics courses should be used 
in applications as soon afterwards as possible. 

To attain these ends, coordination among the mathematics, engineering, 
and physics faculties is necessary, and this may lead to course 
changes in all fields. 
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5. The recommendations are, of course, the responsibility of 
CUPM. In cases where it seems of interest and is available, we have 
indicated the reaction of the groups of engineers and physicists who 
were consulted. For convenience we refer to them as "the consultants." 

LIST OF RECOMMENDED COURSES 

It is desirable that all calculus prerequisites, including 
analytic geometry, be taught in high school. At present it may be 
necessary to include some analytic geometry in the beginning analy-
sis course, but all other deficiencies should be corrected on a non-
credit basis. 

The following courses should be available for undergraduate 
majors in engineering and physics: 

1. Beginning Analysis. (9-12 semester hours) 

As far as general content is concerned, this is a relatively 
standard course in calculus and differential equations. There can 
be many variations of such a course in matters of rigor, motivation, 
arrangement of topics, etc., and textbooks have been and are being 
written from several points of view. 

The course should contain the following topics: 

a. An intuitive introduction of four to six weeks to the 
basic notions of differentiation and integration. This 
course serves the dual purpose of augmenting the student's 
intuition for the more sophisticated treatment to come and 
preparing for immediate applications to physics. 

b. Theory and techniques of differentiation and integration of 
functions of one real variable, with applications. 

c. Infinite series, including Taylor series expansion. 

d. A brief introduction to differentiation and integration of 
functions of two or more real variables. 

e. Topics in differential equations, including the following: 
linear differential equations with constant coefficients 
and first-order systems--linear algebra (including eigen-
value theory, see 2 below) should be used to treat both 
homogeneous and nonhomogeneous problems; first-order linear 
and nonlinear equations, with Picard's method and an intro-
duction to numerical techniques. 
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f. Some attempt should be made to fill the gap between the 
high school algebra of complex numbers and the use of com-
plex exponentials in the solution of differential equa-
tions. In particular, some work on the calculus of com-
plex-valued functions of a real variable should be included 
in items b and c. 

g. Students should become familiar with vectors in two and 
three dimensions and with the differentiation of vector-
valued functions of one variable. This material can 
obviously be correlated with the course in linear algebra 
(see below). 

h. Theory and simple techniques of numerical computation 
should be introduced where relevant. Further comments on 
this point, applying to the whole program, will be found 
below (under course 3). 

We feel that the above comments on beginning analysis suffi-
ciently describe a familiar course. The remaining courses in our 
list are less generally familiar. Hence the brief descriptions of 
courses 2 through 12 are supplemented in the Appendix [or elsewhere 
in this COMPENDIUM] by detailed outlines of sample courses of the 
kind we have in mind. 

2. Linear Algebra. (3 semester hours) 

A knowledge of the basic properties of η-dimensional vector 
spaces has become imperative for many fields of applications as well 
as for progress in mathematics itself. Since this subject is so 
fundamental and since its development makes no use of the concepts 
of calculus, it should appear very early in the student's program. 
We recommend a course with strong emphasis on the geometrical in-
terpretation of vectors and matrices, with applications to mathe-
matics (see items 1-e and 1-g above), physics, and engineering. 
Topics should include the algebra and geometry of vector spaces, 
linear transformations and matrices, linear equations (including 
computational methods), quadratic forms and symmetric matrices, and 
elementary eigenvalue theory. 

It may be desirable, for mathematical or scheduling purposes, 
to combine beginning analysis and linear algebra into a single co-
ordinated course to be completed in the sophomore year. 

For outlines of a Beginning Analysis sequence, see the courses 
Mathematics 1, 2, and 4 described in Commentary on A General Curricu-
lum in Mathematics for Colleges, page 44 . The course Mathematics 3 
(Elementary Linear Algebra) of the GCMC Commentary (page 55 ) approx-
imates the linear algebra course described here, but does not contain 
the recommended material on quadratic forms and elementary eigenvalue 
theory. This Panel's recommended courses on functions of several 
variables, functions of a complex variable, real variables, and alge-
braic structures coincide with those of the GCMC Commentary (Mathe-
matics 5 [alternate version], 13, 11, and 6M, respectively). 
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3. Introduction to Computer Science. (3 semester hours) 

The development of high-speed computers has made it necessary 
for the appliers of mathematics to know the path from mathematical 
theory through programming logic to numerical results. This course 
gives an understanding of the position of the computer along this 
path, the manner of its use, its capabilities, and its limitations. 
It also provides the student with the basic techniques needed in 
order to use the computer to solve problems in other courses. 

An even more important part of the path must be provided by the 
student's program as a whole. All the courses discussed here should 
contain, where it is suitable and applicable, mathematical topics 
motivated by the desire to relate mathematical understanding to com-
putation. It is especially desirable that the student see the pos-
sibility of significant advantage in combining analytical insight 
with numerical work. Indications of such opportunities are scattered 
throughout the recommended course outlines. 

4. Probability and Statistics. (6 semester hours) 

Basic topics in probability theory, both discrete and contin-
uous, have become essential in every branch of engineering, and in 
many engineering fields an introduction to statistics is also needed. 
We recommend a course based on the notions of random variables and 
sample spaces, including, inter alia, an introduction to limit theo-
rems and stochastic processes and to estimation and hypothesis test-
ing. Although this should be regarded as a single integrated course, 
the first half can be taken as a course in probability theory. For 
ease of reference we designate the two halves 4a and 4b. 

5. Advanced Multivariable Calculus. (3 semester hours) 

Continuation of item 1-d. A study of the properties of contin-
uous mappings from E n to E m , making use of the linear algebra in 
course 2 , and an introduction to differential forms and vector cal-
culus based on line integrals, surface integrals, and the general 
Stokes theorem. Application should be made to field theory, ele-
mentary hydrodynamics, or other similar topics, so that some intui-
tive understanding can be gained. 

6. Intermediate Ordinary Differential Equations. (3 semester 
hours) 

This course continues the work on item 1-e into further topics 
important to applications, including linear equations with variable 
coefficients, boundary value problems, rudimentary existence theo-
rems, and an introduction to nonlinear problems. Much attention 
should be given to numerical techniques. 

7. Functions of a Complex Variable. (3 semester hours) 

This course presupposes somewhat more mathematical maturity 
than courses 5 and 6 and so would ordinarily be taken after them, 
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even though they are not prerequisites as far as subject matter is 
concerned. In addition to the usual development of integrals and 
series, there should be material on multivalued functions, contour 
integration, conformal mapping, and integral transforms. 

8. Partial Differential Equations. (3 semester hours) 

Derivation, classification, and solution techniques of boundary 
value problems. 

9. Introduction to Functional Analysis. (3 semester hours) 

An introduction to the properties of general linear spaces and 
metric spaces, their transformations, measure theory, general Fourier 
series, and approximation theory. 

10. Elements of Real Variable Theory. (3 semester hours) 

A rigorous treatment of basic topics in the theory of func-
tions of a real variable. 

11. Optimization. (3 semester hours) 

Linear, nonlinear, and dynamic programming, combinatorics, 
and calculus of variations. 

12. Algebraic Structures. (3 semester hours) 

An introduction to the theory of groups, rings, and fields. 

13. Numerical Analysis. 

14. Mathematical Logic. 

15. Differential Geoemtry. 

The last three courses are topics that might well be of inter-
est to special groups of students. Their lengths and contents may 
vary considerably. For a sample outline of a course in Numerical 
Analysis, see Mathematics 8 (Introduction to Numerical Analysis) in 
Commentary on A General Curriculum in Mathematics for Colleges, 
page 83. 

The above list of courses is the result of careful considera-
tion by the Panel and the consultants. The brief description given 
here and the detailed sample outlines found in the Appendix [or else-
where in this COMPENDIUM], while based on the mathematical structure 
of the topics themselves, reflect strongly the expressed interests 
of engineers and physicists. We realize that the nature of the in-
stitution and the requirements of other users of mathematics as well 
as of the mathematics majors may influence the specific offerings. 
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RECOMMENDED PROGRAM FOR ENGINEERS 

A. Courses to be required of all students. 

1. Beginning Analysis. This recommendation needs no com-
ments . 

2. Linear Algebra. The great majority of the consultants 
felt that this is important material that all engineers 
should have during the first two years. 

3. Introduction to Computer Science. Developments of the 
last few years make it clear that engineering is strongly 
dependent on a knowledgeable use of computers. 

4a. Probability. All students should have at least a 3-semes-
ter-hour course in probability. The consultants agreed 
on the value of probability to an engineer, but there was 
considerable disagreement among the consultants as to the 
advisability of requiring it of all students. However, 
the members of our Panel are unanimously and strongly of 
the opinion that this subject will soon pervade all 
branches of engineering and that now is the time to begin 
preparing students for this development. 

B. Courses recommended for students intending to go into 
research and development. 

4b. Statistics. 

5. Advanced Multivariable Calculus. 

6. Intermediate Ordinary Differential Equations. 

7. Functions of a Complex Variable. 

The consultants agreed to the value of the material in courses 5, 6, 
and 7, and some preferred that it be completed within the junior 
year. The Panel is convinced that an adequate presentation requires 
a minimum of nine semester hours, which could, of course, be taken 
in one year if desired. The order in which courses 5 and 6 are 
taken is immaterial except as they may be coordinated with other 
courses. If they are to be presented to the students in a fixed 
order, the instructor may wish to adjust the time schedules and 
choice of topics. 

C. Courses which should be available for theoretically 
minded students capable of extended graduate study. 

8. Partial Differential Equations. 

9. Introduction to Functional Analysis. 
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10. Elements of Real Variable Theory. 

640 

Presumably a student would take either 9 or 10 but not both; 9 is 
probably more valuable but 10 is more likely to be available. 

11. Optimization. 

D. Courses of possible interest to special groups. 

12. Algebraic Structures. 

13. Numerical Analysis. 

14. Mathematical Logic. 

15. Differential Geometry. 

RECOMMENDED PROGRAM FOR PHYSICISTS 

A. Courses to be required of all students. 

1. Beginning Analysis. 

2. Linear Algebra. Like the engineers, the physicists felt 
that this material is essential. 

3. Introduction to Computer Science. 

5. Advanced Multivariable Calculus. This course should be 
taken in the sophomore year if possible, and in any event 
no later than the first part of the junior year. 

6. Intermediate Ordinary Differential Equations. 

B. Additional courses, in order of preference. Students 
contemplating graduate work should be required to take a 
minimum of three to nine semester hours of these courses. 

7. Functions of a Complex Variable. 

9. Introduction to Functional Analysis. 

4a. Probability. The value of requiring this course in the 
undergraduate program of all physicists is not as well 
established as it is for engineers. 

12. Algebraic Structures. 



10. Elements of Real Variable Theory. 

8. Partial Differential Equations. 

Appendix 

DESCRIPTION OF RECOMMENDED COURSES 

While we feel strongly about the spirit of the courses out-
lined here, the specific embodiments are to be considered primarily 
as samples. Courses close to these have been taught successfully 
at appropriate levels, and our time schedules are based on this ex-
perience. Some of these courses are sufficiently common that approx-
imations to complete texts already exist; others have appeared only 
in lecture form. 

2. Linear Algebra. (3 semester hours) 

The purpose of this course is to develop the algebra and 
geometry of finite-dimensional linear vector spaces and their linear 
transformations, the algebra of matrices, and the theory of eigen-
values and eigenvectors. 

The course Mathematics 3 (Elementary Linear Algebra) of 
Commentary on a General Curriculum in Mathematics for Colleges 
(page 55) approximates the linear algebra course which this Panel 
has in mind. Mathematics 3 does not, however, contain the recom-
mended material on quadratic forms and elementary eigenvalue theory. 

3. Introduction to Computer Science. (3 semester hours) 

This course serves a number of purposes: 

(1) It gives students an appreciation of the powers and 
limitations of automata. 

(2) It develops an understanding of the interplay between the 
machine, its associated languages, and the algorithmic formulation 
of problems. 

(3) It teaches students how to use a modern computer. 

(4) It enables instructors in later courses to assign prob-
lems to be solved on the computer. 
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For an outline of such a course, see CI (Introduction to 
Computing) in Recommendations for an Undergraduate Program in Com-
putational Mathematics (page 563). 

4. Probability and Statistics. (6 semester hours) 

This is a one-year course presenting the basic theory of 
probability and statistics. Although the development of the ideas 
and results is mathematically precise, the aim is to prepare stu-
dents to formulate realistic models and to apply appropriate sta-
tistical techniques in problems likely to arise in engineering. 
Therefore new ideas will be motivated and applications of results 
will be given wherever possible. 

First Semester: Probability. 

a. Basic probability theory. (4 lectures) Different theo-

ries of probability (classical, frequency, and axiomatic). Combi-

natorial methods for computing probability. Conditional probability, 

independence. Bayes' theorem. Geometrical probability. 

b. Random variables. (5 lectures) Concept of random varia-

ble and of distribution function. Discrete and continuous types. 

Multidimensional random variables. Marginal and conditional dis-

tributions . 

c. Parameters of a distribution. (4 lectures) Expected 

values. Moments. Moment-generating functions. Moment inequalities. 

d. Characteristic functions. (4 lectures) Definition, 

properties. Characteristic functions and moments. Determination of 

distribution function from characteristic function. 

e. Various probability distributions. (6 lectures) Binomial, 

Poisson, multinomial. Uniform, normal, gamma, Weibull, multivariate 

normal. Importance of normal distribution. Applications of normal 

distribution to error analysis. 

f. Limit theorems. (6 lectures) Various kinds of conver-

gence. Law of Large Numbers. Central Limit Theorem. 

g. Markov chains. (4 lectures) Transition matrix. Ergodic 

theorem. 

h. Stochastic processes. (6 lectures) Markov processes. 

Processes with independent increments. Poisson process. Wiener 

process. Stationary processes. 
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Second Semester: Statistics. 

a. Sample moments and their distributions. (5 lectures) 

Sample, statistic. Distribution of sample mean. Student's distri-

bution. Fisher's Ζ distribution. 

b. Order statistics. (4 lectures) Empirical distribution 

function. Tolerance limits. Kolmogorov-Smirnov statistic. 

c. Tests of hypotheses. (5 lectures) Simple hypothesis 

against simple alternative. Composite hypotheses. Likelihood ratio 

test. Applications. 

d. Point estimation. (5 lectures) Consistent estimates. 

Unbiased estimates. Sufficient estimates. Efficiency of estimate. 

Methods of finding estimates. 

e. Interval estimation. (6 lectures) Confidence and toler-

ance intervals. Confidence intervals for large samples. 

f. Regression and linear hypotheses. (4 lectures) Elemen-

tary linear models. The general linear hypothesis. 

g. Nonparametric methods. (5 lectures) Tolerance limits. 

Comparison of two populations. Sign test. Mann-Whitney test. 

h. Sequential methods. (5 lectures) The probability ratio 

sequential test. Sequential estimation. 

5. Advanced Multivariable Calculus. (3 semester hours) 

For an outline of this course, see Mathematics 5 (Multivariable 
Calculus II--alternate version) in Commentary on A General Curriculum 
in Mathematics for Colleges, page 77. 

6. Intermediate Ordinary Differential Equations. (3 semester 
hours) 

The presentation of the course material should include: (1) 
an account of the manner in which ordinary differential equations 
and their boundary value problems, both linear and nonlinear, arise; 
(2) a carefully reasoned discussion of the qualitative behavior of 
the solution of such problems, sometimes on a predictive basis and 
at other times in an a posteriori manner; (3) a clearly described 
awareness of the role of numerical processes in the treatment of 
these problems, including the disadvantages as well as the advan-
tages--in particular, there should be a firm emphasis on the fact 
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that numerical integration is not a substitute for thought; (4) an 
admission that we devote most of our lecture time to linear problems 
because (with isolated exceptions) we don't know much about any non-
linear ones except those that (precisely or approximately) can be 
attacked through our understanding of the linear ones. Thus, a 
thorough treatment of linear problems must precede a sophisticated 
attack on the nonlinear ones. 

The distribution of time among items d through f cannot be 
prescribed easily or with universal acceptability. Only a super-
ficial account of these topics can be given in the available time, 
but each should be introduced. 

a. Systems of linear ordinary differential equations with 

constant coefficients. (6 lectures) Review of homogeneous and non-

homogeneous problems; superposition and its dependence on linearity; 

transients in mechanical and electrical systems. The Laplace trans-

form as a carefully developed operational technique without inver-

sion integrals. 

b. Linear ordinary differential equations with variable 

coefficients. (10 lectures) Singular points, series solutions 

about regular points and about singular points. Bessel's equation 

and Bessel functions; Legendre's equation and Legendre polynomials; 

confluent hypergeometric functions. Wronskians, linear independence, 

number of linearly independent solutions of an ordinary differential 

equation. Sturm-Liouville theory and eigenfunction expansions. 

c. Solution of boundary value problems involving nonhomogene-

ous linear ordinary differential equations. (7 lectures) Methods 

using Wronskians, Green's functions (introduce δ functions), and 

eigenfunction expansions. Numerical methods. Rudimentary existence 

and uniqueness questions. 

d. Asymptotic expansion and asymptotic behavior of solutions 

of ordinary differential equations. (3 lectures) Essentially the 

material on pp. 498-500 and pp. 519-527 of Methods of Mathematical 

Physics by Harold Jeffreys and Bertha S. Jeffreys (third edition; 

New York, Cambridge University Press, 1956). 

e. Introduction to nonlinear ordinary differential equations. 

(6 lectures) Special nonlinear equations which are reducible to 

linear ones or to quadratures, elliptic functions (pendulum oscil-

lations), introductory phase plane analysis (Poincare). 
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f. Numerical methods. (7 lectures) Step-by-step solution of 

initial value problems for single equations and for systems. Error 

analysis, roundoff, stability. Improper boundary conditions, dis-

continuities, and other pitfalls. 

7. Functions of a Complex Variable. (3 semester hours) 

For an outline of this course, see Mathematics 13 (Complex 
Analysis) in Commentary on A General Curriculum in Mathematics for 
Colleges, page 97. 

8. Partial Differential Equations. (3 semester hours) 

This course is suitable for students who have completed a 
course in functions of a complex variable. The emphasis is on the 
development and solution of suitable mathematical formulations of 
scientific problems. Problems should be selected to emphasize the 
role of "time-like" and "space-like" coordinates and their relation-
ship to the classification of differential equations. (It seems 
very useful to introduce the appropriate boundary conditions moti-
vated by the physical questions and be led to the classification 
question by observing the properties of the solution.) The student 
should be led to recognize how few techniques we have and how special 
the equations and domains must be if explicit and exact solutions are 
to be obtained; he particularly must come to realize that the effec-
tive use of mathematics in science depends critically on the re-
searcher's ability to select those questions which both fill the 
scientific need and admit efficient mathematical treatment. To 
accomplish this realization, the instructor should frequently intro-
duce a realistic question from which he must retreat to a related 
tractable problem whose interpretation is informative in the context 
of the original question. 

a. Derivation of equations. (2 lectures) The derivation of 

mathematical models associated with many scientific problems. Re-

view of heat conduction to a moving medium, the flow of a fluid in 

a porous medium, the diffusion of a solute in moving fluids, the 

dynamics of elastic structures, neutron diffusion, radiative trans-

fer, surface waves in liquids. 

b. Eigenfunction expansions. (5 lectures) Eigenfunction 

expansions in both finite and infinite domains (Titchmarsh). 

c. Separation of variables. (7 lectures) The product series 

solutions of partial differential equation boundary value problems. 
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Integral transforms such as the Laplace, Fourier, Mellin, and 

Hankel transforms and their use. Copious illustration of these 

techniques, using elliptic, parabolic, and hyperbolic problems. 

d. Types of partial differential equations. (5 lectures) 

The classification of partial differential equations, characteris-

tics; appropriate boundary conditions. Domains of influence and 

dependence in hyperbolic and parabolic problems. The use of char-

acteristics as "independent" coordinates. 

e. Numerical methods. (8 lectures) Replacement of differ-

ential equations by difference equations; iterative methods; the 

method of characteristics. Convergence and error analysis. 

f. Green's function and Riemann's function. (9 lectures) 

Their determination and use in solving boundary value problems. 

Their use in converting partial differential equation boundary value 

problems into integral equation problems. 

g. Similarity solutions. (3 lectures) 

h. Expansions in a parameter. (3 lectures) Perturbation 

methods in both linear and nonlinear problems. 

9. Introduction to Functional Analysis. (3 semester hours) 

The purpose of this course is to present some of the basic 
ideas of elementary functional analysis in a form which permits 
their use in other courses in mathematics and its applications. It 
should also enable a student to gain insight into the ways of 
thought of a practicing mathematician and it should open up much of 
the modern technical literature dealing with operator theory. 

Prerequisite to this course is a good foundation in linear 
algebra and in the concepts and techniques of the calculus of 
several variables. The material of this course should be presented 
with a strong geometrical flavor; undue time should not be spent on 
the more remote and theoretical aspects of functional analysis. 
Topics should be developed and first employed in mathematical sur-
roundings familiar to the student. It would be very much in keeping 
with the intention of the course to emphasize the relationship be-
tween functional analysis and approximation theory, discussing (for 
example) some aspects of best uniform or best I? approximation to 
functions, and some error estimates in integration or interpolation 
formulas. 

While some knowledge of measure theory and Lebesgue integra-
tion is needed for an understanding of this material, it is not 
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intended that the treatment be as complete as that in a standard 
real analysis course. The intended level is that to be found in 
the treatment by Kolmogorov and Fomin (Kolmogorov, A. N. and Fomin, 
S. V. Elements of the Theory of Functions and Functional Analysis. 
Vol. 2: Measure, the Lebesgue Integral, Hilbert Space. Baltimore, 
Maryland, Graylock Press, 1961.) If there is additional time, stu-
dents might be introduced to some of the elementary theory of inte-
gral equations, or to applications in probability theory, or to the 
study of a specific compact operator, or to distributions. 

For an outline of such a course, see Mathematics Q (Functional 
Analysis) in A Beginning Graduate Program in Mathematics for Pro-
spective Teachers of Undergraduates, page 125. 

10. Elements of Real Variable Theory. (3 semester hours) 

For an outline of this course, see Mathematics 11 (Introduc-
tory Real Variable Theory) in Commentary on A General Curriculum 
in Mathematics for Colleges, page 93. 

11. Optimization. (3 semester hours) 

Attempts to determine the "best" or "most desirable" solution 
to large-scale engineering problems inevitably lead to optimization 
studies. Generally, the appropriate methods are highly mathematical 
and include such relatively new techniques as mathematical program-
ming, optimal control theory, and certain combinatorial methods, in 
addition to more classical techniques of the calculus of variations 
and standard maxima-minima considerations of the calculus. 

The 3-semester-hour course outlined below is planned to pro-
vide a basic mathematical background for such optimization studies. 
Another outline for a course in optimization, utilizing methods of 
programming and game theory, can be found in the report Applied 
Mathematics in the Undergraduate Curriculum, page 722. 

a. Simple, specific examples of typical optimization problems. 

(3 lectures) Minimization with side conditions (Lagrange multi-

pliers, simple geometrical example). Linear program (diet problem). 

Nonlinear program (least squares under inequality constraints, delay 

line problem). Combinatorial problem (marriage or network). Varia-

tional problem (brachistochrone). Control problem (missile). 

Dynamic program (replacement schedule). 

b. Convexity and η-space geometry. (6 lectures) Convex 

regions, functions, general definition (homework: use definition 
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to show convexity [or nonconvexity] in nonobvious cases, such as 

Chebychev error over simple family of functions). Local, global 

minima. Convex polyhedra (review matrix, scalar product geometry). 

Geometric picture of linear programming. 

c. Lagrange multipliers and duality. (6 lectures) Classical 

problem with equality constraints. Kuhn-Tucker conditions for in-

equality constraints. Linear programs. Dual variables as Lagrange 

multipliers. Reciprocity, duality theorems. 

d. Solution of linear programs — simplex method. (3 lectures) 

e. Combinatorial problems. (6 lectures) Unimodular property. 

Assignment problem (Hall's theorem, unique representatives). Net-

works (min-cut max-flow). 

f. Classical calculus of variations. (7 lectures) Station-

arity. Euler's differential equation, gradient in function space. 

Examples, especially Fermat's principle and brachistochrones. 

g. Control theory. (8 lectures) Formulation. Pontryagin's 

maximum principle (Lagrange multipliers again). 

12, Algebraic Structures. (3 semester hours) 

For an outline of this course, see Mathematics 6M (Introductory 
Modern Algebra) in Commentary on A General Curriculum in Mathematics 
for Colleges, page 68. 
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INTRODUCTION 

During a conversation at the mathematics meetings in January, 
1964, the late S. S. Wilks of Princeton University pointed out the 
absence of any special large-scale efforts to provide technical per-
sonnel for the nation's space program. As he saw it, there was a 
continuing need for persons really well-trained in the mathematical 
sciences and able to apply their fields to the complicated engineer-
ing problems of the space effort. His aim was to provide technical 
manpower specifically prepared for a strong combination of mathemat-
ics and engineering—in addition to the more customary converts 
from a great variety of backgrounds. He felt that CUPM, with its 
tradition of pervasive concern for all aspects of collegiate mathe-
matical education, might undertake a study of this problem. The 
present report is, in part, a response to his ideas. 

A pair of meetings with representatives of NASA and the space 
industry confirmed the eminent need for the projected product. At 
the same time it became clear that many other industries, such as 
electronics and communication, would have an equal interest in a 
mathematical engineer with the same basic background but possibly 
somewhat different specialization. All these industries face in-
numerable engineering problems with a common need for extensive and 
sophisticated mathematical analysis. For the solution of such prob-
lems it is no longer true that the prime requirement is a good 
physical intuition; rather, one also needs a well-developed mathe-
matical intuition. Thus the mathematical engineering program must 
involve a heavy concentration in mathematics, but with a choice of 
topics that will give a useful basis for applications as well as 
solid grounding in theory. As the Panel came to grips with this 
multiplicity of purposes, it developed the notion of a common core, 
for all mathematical engineers, of material in the basic physical 
sciences and, more extensively, in the mathematical sciences. The 
core, in turn, is complemented by a number of options, which are more 
specialized developments in depth and which assure that the student 
will be fairly well acquainted with at least one branch of engineer-
ing. Orbit mechanics, operations research, and control theory are 
three options which are developed in detail in the present report. 

It turns out that a minimum of five years, rather than four, 
is needed to carry out the desired sequences in depth. It is not 
immediately obvious what the student's area of concentration should 
be called. The dual emphasis on mathematics and engineering makes 
either field conceivable; in fact, the program comes close to being 
recognizable as a master's program in applied mathematics. However, 
the heavy emphasis on the physical sciences, the concern in each 
option with the building of mathematical models, and the rather 
heavily prescriptive nature of the program make a realization within 
the engineering school more suitable. Wherever the program may ap-
pear within an institution's offerings, it should involve close 
cooperation between the mathematicians and the engineers. 
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A natural question also arises as to the possible fields of 
further graduate study which a student could enter on completion of 
the present program. It is our opinion that relatively little, if 
any, "remedial" work will be necessary to qualify the student for a 
doctoral program in applied mathematics or, depending on the particu-
lar option, in engineering science, or in industrial or electrical 
engineering. Whether or not a master's degree should be given for 
the completion of this program is a matter for the offering institu-
tion to decide. As remarked above, the content of the program is of 
the right order of magnitude for this degree. Other considerations 
(e.g., requirement of a thesis) may be deciding factors. 

A number of additional remarks about the program are in order. 
A most important aspect is the flexibility which would automatically 
be built into the mathematical engineer. With such a background and 
with a considerable facility in making connections between the real 
world and mathematical models thereof, such a man could easily re-
train himself, say, from space science to oceanography, if a sudden 
shift of present national interest should make this desirable. 
Secondly, the similarity in spirit of this program to the recently 
introduced engineering physics and engineering science programs is 
worth noting. The idea of these programs is to give the student a 
solid background of the kind of physics that would be useful in a 
wide variety of engineering applications, along with enough engineer-
ing subjects to impart some feeling for the kinds of problems he 
would encounter. There is now no question of the value of such 
training. In just the same way, mathematical engineering combines 
a solid foundation in major areas of applicable mathematics with 
real strength in some particular area of engineering, and experience 
in connecting the two. Incidentally, it should be remarked that 
mathematical engineering has existed for some years, much in the 
spirit of the present report, at several universities in the Nether-
lands. It seems to be a successful program from the point of view 
of both employment opportunity and preparation for further graduate 
work. 

DESCRIPTION OF PROGRAM 

As remarked above, the program is constructed around a core 
consisting of a heavy concentration of mathematics and the physical 
sciences. Attached to the core there may be many options, each 
providing motivation, application, and extension of the core mate-
rial to some phase of engineering. The core is fairly well defined 
and will probably not vary greatly from one institution to another. 
The options, on the other hand, will necessarily have much local 
flavor both in their general subject matter and in the particular 
courses that compose them. The three options that we present here 
are thus to be regarded as samples of what can be done. 
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The Core 

Modern engineering is built upon a three-part foundation con-
sisting of mathematics, the physical sciences, and automatic com-
puting. The last of these is a newcomer whose precise role and 
manner of development are still matters of speculation, but there is 
no question as to its basic importance. These three topics, then, 
compose the core. 

The mathematical portion, which is, for this program, the most 
extensive, is based on Recommendations on the Undergraduate Mathe-
matics Program for Engineers and Physicists, page 628. The courses 
recommended there as preparation for graduate work have been modi-
fied somewhat and about nine semester hours have been added, much of 
it as additional work in topics already begun. This gives us the 
following list (the initial number refers to the course outlines 
given in the Appendix [or elsewhere in this COMPENDIUM], and "hours" 
means "semester hours"): 

Calculus and Linear Algebra (12-15 hours) 
1. Functions of Several Variables (3 hours) 
2. Intermediate Ordinary Differential Equations (3 hours) 
4. Numerical Analysis (3 hours) 
5. Probability and Statistics (6 hours) 
6. Complex Variables (3 hours) 
7. Functional Analysis (3 hours) 

10. Partial Differential Equations (6 hours) 
11. Optimization (3 hours) 

Discussion of the individual courses is deferred until the 
whole core has been described. 

The resulting 42-45 hours of mathematics in the core is about 
the magnitude of a good undergraduate major in mathematics, but the 
emphasis is quite different. This program stresses analysis heavily. 
Indeed, the minimal treatment of algebra and geometry is perhaps the 
most vulnerable point of this curriculum. However, for the foresee-
able future the topics included are certainly of first importance. 
Other mathematical topics needed in certain courses can be developed 
when needed to the extent required. 

We recognize full well that the value of these courses depends 
on the spirit in which they are taught. One must keep in mind that 
their ultimate purpose is application, either directly or as prepara-
tion for more obviously applicable topics. Such courses as Partial 
Differential Equations and Optimization should lean heavily on applied 
problems. Computational methods should be stressed throughout. Fur-
ther, as much interconnection as possible should be built into the 
whole program. It is planned that both the mathematics and the en-
gineering courses should reinforce one another to an unprecedented 
degree. 
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A corollary of this requirement is that the courses should be 
taught by whoever is capable of doing the best job, regardless of 
the department he happens to be in. For the more standard and the 
more theoretical courses the mathematics department would be the 
natural place to look for teachers, but where applications are 
heavily stressed the best teacher may well be found in some other 
field. 

Beyond a fairly standard 15- to 18-hour introduction to physics 
and chemistry, the program calls for 12 more hours in the basic 
sciences. Six of these are accounted for by a mechanics course, in-
tended to be a coordinated combination of physics, mathematics, and 
computing. Considerable time is spent on variational methods and 
continuum mechanics, as well as on the standard mechanics of parti-
cles and rigid bodies. 

The remaining six hours is divided between electromagnetics and 
thermodynamics (including statistical mechanics). Of the many pos-
sible continuations of the basic material it was felt that these two, 
because of their fundamental nature, their wide applicability, and 
their susceptibility to interesting mathematical analysis, are par-
ticularly appropriate to this program. 

Modern computing facilities and the techniques for using them 
are still developing with bewildering rapidity, and no program fixed 
now will give adequate coverage for very long. We are painfully 
aware of these rapid developments and claim no special powers of 
prophecy. The proposal delineated here provides two realistic ap-
proaches to current problems of computing. A direct approach is the 
inclusion of two courses devoted to computation, the Numerical Analy-
sis mentioned above and an Introduction to Computer Science [such as 
the course CI in Recommendations for an Undergraduate Program in Com-
putational Mathematics!· These give the principles of modern compu-
tation, including the use of a programming language, and their basic 
applications to mathematical problems. 

Less direct, but perhaps of more ultimate importance, is the 
inclusion of computational methods in connection with each appropri-
ate topic in other courses. Such topics occur in almost all the 
core courses, but particularly in Differential Equations (both 
Ordinary and Partial), Mechanics, and Optimization. It is expected 
that significant problems to program and run on a computer will be 
part of the work in these courses. Only in this way can a real 
understanding of the power and (especially) of the limitations of 
modern computing techniques be communicated. 

The overall structure of the core can be seen in the table. 
Here each entry represents a 3-hour course. 
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Year Core Courses Electives* 

I Calculus Physics 
Chemistry 

6 

Calculus Physics 
Chemistry 6 

II Linear Algebra Physics 
Computer Science 6 

Calculus Physics 9 

III 1. Functions of 
Several Variables 

3. 
4. 

5. 

Mechanics 
Numerical 

Analysis 
Probability 

3 

2. Ordinary Differential 
Equations 

3. 
5. 

Mechanics 
Statistics 6 

IV 6. Complex Variables 8. Electromagne tics 9 

7. Functional Analysis 9. Thermodynamics 9 

V 10. Partial Differential 
Equations 

11. Optimization 9 

10. Partial Differential 
Equations 12 

* semester hours 

Of an assumed total of 150 semester hours for the five years, 
45 hours are devoted to mathematics and computing and 30 to basic 
sciences. This leaves the remaining 75 hours for humanities elec-
tives and for additional courses in engineering, mathematics, and 
science. With a roughly even split this should satisfy normal re-
quirements. The most demanding of our sample options, Control 
Theory, specifies only 24 hours, leaving, say, 15 hours for basic 
engineering and technical electives and 36 hours for the humanities. 

The first two years of the program are fairly standard. For 
the mathematics portion we recommend the sequence of courses de-
scribed in Commentary on A General Curriculum in Mathematics for 
Colleges, page 33 . In addition to linear algebra and the usual 
elementary calculus of one or more variables this includes an intro-
duction to differential equations. 
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Introductory physics and chemistry courses are at present under 
intensive review by professional groups; some radically new physics 
courses have recently appeared and other experimental programs are 
underway. We therefore refrain from specifying these courses in any 
detail but urge the reader to consult the publications of the Commis-
sion on College Physics and the Advisory Council on College Chemistry. 
Widespread adoption of new elementary courses could require great 
changes in the content, or even in the selection, of the later 
science courses in the core. 

The introductory computer science course should include a dis-
cussion of the nature of an automatic computer and the manner in 
which it solves problems, an introduction to a specific computer 
language and its role in this process, and some practice in the 
actual solution of various types of problems. Either by means of 
this course or from supplementary instruction, students should be 
able to program and run simple problems early in their sophomore 
year. 

The third year has the heaviest concentration of core courses, 
foundation for the more advanced material in the core and for the 
technical applications in the options. These courses are of fairly 
standard type except for Mechanics, which has been described, and 
Intermediate Ordinary Differential Equations. The occurrence of 
considerable material on differential equations in the calculus 
course justifies the initial adjective in the latter title and per-
mits the course to concentrate on linear equations with variable 
coefficients, boundary value problems, and special functions. There 
is also a brief introduction to nonlinear equations. 

The report Commentary on A General Curriculum in Mathematics 
for Colleges outlines three courses in Functions of Several Variables 
(Mathematics 5. Multivariable Calculus II.). The first of these 
has a classical vector analysis approach, while the second uses dif-
ferential forms; the third is particularly suited for students in 
statistics. We recommend the second course, outlined on page 77, 
partly because the vector technique is covered in the physics courses 
but also because the more general approach is a valuable background 
for fourth-year Functional Analysis. 

With the exception of the Probability and Statistics all the 
third-year work is closely interconnected, and considerable thought 
should be given to the sequence of topics so as to get the most co-
ordination. In particular, linear algebra, numerical techniques, 
and the use of a computer to solve problems are ever-recurring themes 
in the year's work. 

The fourth and fifth years of the core are fairly light, since 
here will come most of the work in the options. In the mathematics 
courses, in addition to the obvious requirements of Complex Variables 
and Partial Differential Equations—six hours of the latter is neces-
sary for any sort of coverage, we have included courses in Functional 
Analysis and Optimization. The first of these provides an introduc-
tion to some hitherto abstract topics that are proving useful in a 
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variety of applications, such as numerical analysis, communication 
theory, quantum physics, and many branches of mathematics. General 
metric and linear spaces, operators and functionals, with an intro-
duction to measure theory, are the central topics. 

Optimization is another introductory course, but one tied very 
closely to applications. Based on the notions of compactness, con-
vexity, and Lagrange multipliers, it treats briefly the various 
types of mathematical programming, some combinatorial problems, and 
the calculus of variations. 

The two science courses in the fourth year, Electromagnetics 
and Thermodynamics, could vary considerably in content. In any case, 
however, they should take advantage of the students' exceptional 
background in analysis, probability, mechanics, and computing to 
give a considerably more sophisticated treatment than could commonly 
be contemplated. 

The selection and arrangement of the courses comprising the 
core represent the Panel's best judgment of the curriculum currently 
needed to develop the kind of highly trained but still flexible 
engineer described in the Introduction. Local conditions and opin-
ions will undoubtedly suggest some changes, and future developments--
for example, an upsurge of biological engineering--may call for a 
reappraisal of the whole program. But the basic framework of mathe-
matics, science, and computing should still be appropriate for many 
years to come. 

The Options 

The role of the option is to provide the student with a 
solid acquaintance with some branch of engineering, at the same time 
giving background and applications of many of the subjects treated 
in the core. In general, serious work in the option will begin in 
the fourth year, following the heavy load of third-year core courses 
and some appropriate technical introduction. With this background 
the work in the option can begin, and proceed, at a higher level of 
sophistication than is usually possible. 

As samples of what might be done we present three options, 
labeled, for want of better names, Operations Research in Systems 
Engineering, Orbit Mechanics, and Control Theory. There is nothing 
special about these; they simply happened to be topics of interest 
to some of the Panel members and consultants. Other topics of equal 
suitability might be, for example, Fluid Mechanics, Solid Mechanics, 
Electronics and Microwaves, Wave Propagation and Plasma Physics, 
Materials Engineering, and Nuclear Engineering. 

For each of the sample options we give here a brief descrip-
tion of the program and an outline of its structure. Detailed syl-
labi of the courses are given in the Appendix. 

657 



OPERATIONS RESEARCH IN SYSTEMS ENGINEERING 

Operations Research has been described as the application of 
mathematical methods to the solution of practical optimization prob-
lems in engineering, in business, and in government. The Operations 
Research Option builds onto the core those features of operations 
research that pertain especially to the design, development, and 
production of large-scale engineering systems. These require analy-
sis of the complicated interrelationships among component and system 
performances, development and production costs, scheduling priorities, 
available manpower and facilities, and a host of other factors. Such 
considerations have made necessary the use of various optimization 
techniques, the application of probabilistic and statistical methods, 
the development of a highly mathematical reliability theory, Monte 
Carlo simulation methods, optimal control theory, linear, nonlinear 
and dynamic programming methods, and queueing theory. These mathe-
matical topics provide the typical tools for operations research 
studies which find wide applicability in the evaluation (and compari-
son) of performance, programs, and policies in certain types of en-
gineering and industrial situations. 

The Operations Research Option, which has been fleshed out in 
some detail, represents an attempt to provide suitable training for 
engineers who have to cope with such problems. Building upon the 6-
hour course in Probability and Statistics of the core, it provides a 
6-hour course in mathematical methods of reliability engineering. 
The course includes both probabilistic models of reliability prob-
lems and statistical techniques of reliability estimation. The in-
troductory optimization course of the core is supplemented by a 
further 6-hour course in linear programming techniques, dynamic 
programming, inventory and scheduling problems, queueing theory, and 
related topics. 

The third course recommended in this option is a 3-hour course 
in System Simulation, which exploits the use of a computer in carry-
ing out the analysis of such operations research activities. 

Additional courses in economics, such as Economic Decision 
Theory, or in management science would constitute appropriate elec-
tives for certain students. 

Note that the core course in Optimization has been moved into 
the fourth year to provide the necessary background for the fifth-
year course in Operations Research. 
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Year Core Courses Option Courses Electives 

IV 6. Complex Variables 0R1. Reliab ility 9 

7. 

8. 

Functional Analysis 

Electromagnetics 

0R1. Reliab ility 

9. Thermodynamics and 
Statistical Mechanics 

11. Optimization 

V. 10. Partial Differential 
Equations 

0R2. Operations 
Research 

15 

10. Partial Differential 
Equations 

0R2. 

0R3. 

Operations 
Research 

Systems 
Simulation 

ORBIT MECHANICS 

As with each of the options, the aim is to build upon the 
foundation supplied by the core to provide greater specialization 
in an aspect of mathematics of central importance in modern engineer-
ing, here space science. 

The design of space vehicles; prediction, correction, and con-
trol of their space flight; transmission and evaluation of informa-
tion collected in space--all such tasks place unusual new require-
ments on engineering skills and training. Additional problems arise 
from the necessity for real-time computations and corrections during 
space flight. Underlying all these difficulties is the problem of 
developing a correct physical intuition for the nature of space 
travel, vehicle control, and environmental conditions in space. 

The Orbit Mechanics Option supplements the core courses in 
mechanics with substantial one-semester courses in celestial mechan-
ics and in orbit theory. The addition of an advanced programming 
course and an introduction to control theory provides solid ground-
ing for many problems of space vehicle engineering. The course in 
data smoothing and prediction provides training essential to the 
successful collection, retrieval, and interpretation of telemetered 
information. 
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Additional courses in astronomy or in space physics constitute 
natural electives for students in such a program. 

Since some of Partial Differential Equations is needed for 
Advanced Numerical Analysis and Celestial Mechanics, the core course 
10 must be put in the fourth year. This gives a rather heavy con-
centration of mathematics in the fourth year, but this could be re-
lieved, if desired, by a further shifting of some of the other 
courses. 

Year Core Courses Opt ion Courses Electives 

IV 6. 

7. 

8. 

Complex Variables 

Functional Analysis 

Εlec tromagne tic s 

OM1. Advanced 
Numerical 
Analysis 

9 

9. Thermodynamics and 
Statistical Mechanics 

10. Partial Differential 
Equations 

10. Partial Differential 
Equations 

V 11. Optimization OM2. 

OM3. 

OM4. 

CT2. 

CT5. 

Advanced 
Programming 

Celestial 
Mechanics 

Orbit Theory 

Control 

Data Smoothing 
and Prediction 

12 

CONTROL THEORY 

The advances in computers and in instrumentation have brought 
an enormous increase in the sophistication of control systems. The 
instruments allow us to measure rapidly and precisely many variables 
which were previously hard to measure, and the computer allows us to 
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make use of all the data while it is still current. The space pro-
gram has given a great impetus to control theory by bringing up a 
number of new problems with very strict requirements. Another as-
pect of many control problems is that they involve control loops 
which extend over great distances, thereby creating an interface 
problem between the control and the communications specialist. 

The Control Theory Option starts in the third year with a one-
semester course in circuit theory which exposes the student to the 
modeling problem, to some specific physical devices which he will 
encounter later, and to basic system concepts in simple physical 
situations. In the fourth year the control course will furnish the 
student the basic facts about control systems and the linear systems 
course will provide the common base for further courses in control, 
communications, and circuits. The fifth year includes a course on 
the techniques of optimization, one on advanced control, one on 
advanced communications, and one on information theory. 

Year Core Courses Option Courses Electives 

IV 6. Complex Variables CT2. Control 6 

7. Functional Analysis CT3. Laboratory 

8. Electromagnetics CT4. Linear Systems 

9. Thermodynamics and 
Statistical Mechanics 

CT5. Data Smoothing 
and Prediction 

V 10. Partial Differential 
Equations 

CT6. Advanced 
Control 

12 

10. Partial Differential 
Equations 

CT7. Information 
Theory 

11. Optimization CT8. Advanced 
Communications 

APPENDIX 

Sample Outlines of the Courses 

The course outlines given in this Appendix or elsewhere in the 
COMPENDIUM are intended in part as extended expositions of the ideas 
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that we have in mind, in part as feasibility studies, and in part 
as proposals for the design of courses and textbooks. They have a 
wide variety of origins. Some are standard courses now given in 
universities and some are experiments that have never yet been tried. 
Most of them, however, are modifications or combinations, more or 
less radical, of familiar material. They have been prepared by many 
different persons, with a broad spectrum of interests in mathematics 
and related fields, and representing industrial as well as academic 
interests. However, all outlines were carefully scrutinized by the 
whole Panel and were not accepted until their value to the whole 
program was clear. For better or worse, this is a committee product. 

It will be observed that there is considerable overlapping in 
some of the content of the courses, for example in Intermediate Ordi-
nary Differential Equations and in Numerical Analysis. This is in-
evitable in the courses in any modern university, where most courses 
are taken by a variety of students in different programs and with 
different backgrounds. If a neater dovetailing of these courses is 
possible in particular cases, the contents should of course be modi-
fied accordingly. 

The Core 

I, II Physics (12) Calculus and Linear Algebra (12-15) 

Chemistry (6) Computer Science (3) 

III 1. Functions of Several Variables (3) 

2. Intermediate Ordinary Differential Equations (3) 

3. Mechanics (6) 

4. Numerical Analysis (3) 

5. Probability and Statistics (6) 

IV 6. Complex Variables (3) 

7. Functional Analysis (3) 

8. Electromagnetics (3) 

9. Thermodynamics and Statistical Mechanics (3) 

V 10. Partial Differential Equations (6) 

11. Optimization (3) 
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1. Functions of Several Variables. (3 semester hours) 

For an outline of this course, see Mathematics 5 (Multivariable 
Calculus II--alternate version) in Commentary on A General Curriculum 
in Mathematics for Colleges, page 77. 

2. Intermediate Ordinary Differential Equations. (3 semester 
hours) 

For an outline of this course, see Recommendations on the 
Undergraduate Mathematics Program for Engineers and Physicists, 
page 643. 

3. Mechanics. (6 semester hours) 

The course outlined below differs from that given in certain 
textbooks in that the discussion of mechanics is interruped at 
various stages in order to deal with topics in numerical analysis; 
e.g., after the equations of motion are formulated, various methods 
for numerically integrating initial value problems are discussed 
and analyzed. It is assumed that the student has had the linear 
algebra course as well as the computer science course. Homework 
assignments that involve use of a computer should be made. 

a. Kinematics. (8 lessons) Cartesian coordinates in Euclid-

ean 3-space, cartesian tensors, the numerical tensors δ.., e..,· ij ljk 

Parametric equations of curves. Velocity and acceleration in 

cartesian coordinates, in general coordinates. Moving general co-

ordinates and the velocity and acceleration in such coordinates. 

Equations of straight lines in moving general coordinates. Char-

acterization of inertial coordinate frames. 

b. Particle mechanics. (10 lessons) Equations of motion. 

Initial value problems for a system of ordinary differential equa-

tions, existence, uniqueness, continuous dependence on parameters 

and initial values. Numerical methods for integrating initial value 

problems, their stability. 

c. Perturbation theory. (8 lessons) Physical stability. 

Numerical stability. Linearization of nonlinear problems. 

d. Central forces. (10 lessons) Planetary orbits. Energy 

integrals, angular momentum integrals. Constants of motion and 

symmetry properties. 
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e. Variational principles and rigid body motion. (13 lessons) 

Hamilton's principle, generalized coordinates of Lagrange, canonical 

equations, contact transformations, partial differential equations 

of Hamilton and Jacobi. Rigid body motion. 

f. Multidimensional variational principles. (8 lessons) 

Variation of multiple integrals and applications to problems in 

statics and dynamics of deformable bodies. Vibrating strings and 

membranes. Rayleigh-Ritz method. Use of polynomials to derive dif-

ference equation approximation to the boundary value differential 

equations that are the Euler equations of a variational principle. 

Numerical integration of boundary value problems on the line and in 

the plane. 

g. Continuum mechanics. (21 lessons) Stress and strain ten-

sors. Conservation of mass, momentum and energy. Partial differen-

tial equations describing the motion of a perfect fluid. One-dimen-

sional isentropic motions (simple and compound waves). Numerical 

integration of 1-dimensional motions. Existence of shocks. Numeri-

cal integration in the presence of shocks. 

4. Numerical Analysis. (3 semester hours) 

For an outline of this course, see Mathematics 8 (Introduction 
to Numerical Analysis) in Commentary on A General Curriculum in Mathe-
matics for Colleges, page 83. 

5. Probability and Statistics. (6 semester hours) 

For an outline of this course, see Recommendations on the Under-
graduate Mathematics Program for Engineers and Physicists, page 642. 

6. Functions of a Complex Variable. (3 semester hours) 

For an outline of this course, see Mathematics 13 (Complex 
Analysis) in Commentary on A General Curriculum in Mathematics for 
Colleges, page 97. 
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7. Introduction to Functional Analysis. (3 semester hours) 

For an outline of this course, see Mathematics Q (Functional 
Analysis) in A Beginning Graduate Program in Mathematics for Pro-
spective Teachers of Undergraduates, page 125. 

8. Electromagnetics. (3 semester hours) 

This course combines the essentials of classical electromagne-
tic theory with the foundations of applications to plasma media. It 
should take advantage of the preparation in mechanics, especially 
continuum mechanics, as well as of the fundamentals of electricity 
and magnetism in the introductory physics course. 

a. Electrostatics. (4 lessons) Vacuum field and potential 

theorems. Dielectrics. Boundary conditions. Energy relations and 

forces. 

b. Magnetic fields. (5 lessons) Current and moving charges. 

The vector potential. Magnetic media. Energy relations and forces. 

c. Maxwell's equations. (6 lessons) The law of induction. 

Maxwell's equations, extended to moving media. Energy, force, and 

momentum relations in the electromagnetic field. 

d. Wave propagation. (8 lessons) The scalar wave equation. 

Plane, cylindrical, spherical waves. Homogeneous isotropic media. 

Dispersion. Nonhomogeneous isotropic media. Rays; the geometrical 

optics approximation. Wave packets, including nonhomogeneous media 

and absorption. 

e. Electromagnetic waves. (7 lessons) Free space and homo-

geneous isotropic media. Homogeneous plasmas. Inhomogeneous media. 

Anisotropic media, including plasma with magnetic field. 

f. Radiation. (9 lessons) Simple radiating systems. Radia-

tion by moving charges. Radiation in ionized gases. Synchrotron 

radiation. 

9. Thermodynamics and Statistical Mechanics. (3 semester hours) 

There is a current trend to combine the macroscopic and the 
microscopic aspects of thermal physics from the beginning, instead 
of giving a careful treatment of classical thermodynamics, with 
applications, as in Thermal Physics by Philip M. Morse (second 
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edition; Menlo Park, California, W. A. Benjamin, Inc., 1969). The 
suggested outline follows the latter plan, as probably more appro-
priate as a background for varied applications. 

Thermodynamics. 

a. State variables and equations of state. (3 lessons) 

Temperature, pressure, heat, and energy. Extensive and intensive 

variables. Pairs of mechanical variables. The perfect gas and 

other equations of state. 

b. The first law of thermodynamics. (4 lessons) Work, in-

ternal energy, heat. Heat capacities. Isothermal and adiabatic 

processes. 

c. The second law of thermodynamics. (6 lessons) Heat 

cycles. Reversible and irreversible processes. Entropy. Applica-

tions to simple thermodynamic systems. 

d. The thermodynamic potentials. (3 lessons) Internal 

energy, enthalpy, Gibbs and Helmholtz potentials. Examples and 

procedures for calculation. 

e. Phrase equilibria. (3 lessons) Melting, evaporation, 

triple point, and critical point. 

f. Chemical applications. (2 lessons) Reaction heats, 

electrochemical processes. 

Statistical Mechanics (Equilibrium). 

a. Statistical methods. (3 lessons) Random walk; probability 

distributions; mean values; binomial, Poisson, and Gaussian distribu-

tions. 

b. Statistical description of systems of particles. (3 les-

sons) Ensembles, ergodic hypothesis, postulates, limiting behavior 

for large N, fluctuations. 

c. Quantum statistics. (5 lessons) Maxwell-Boltzmann, Bose-

Einstein, and Fermi-Dirac distributions with applications (solids, 

gases, electron gas, blackbody radiation, etc.). 

Microscopic Description of Nonequilibrium. 

a. Elementary kinetic theory. (2 lessons) 

b. Transport theory. (2 lessons) Based on Boltzmann's equa-

tion, in simplified form. 

666 



c. Brownian motion. (3 lessons) Possibly including the 

Fokker-Planck equation. More on random variables. Markov processes, 

fluctuations, irreversible processes. 

10. Partial Differential Equations. (6 semester hours) 

This course ordinarily occurs in the fifth year of the se-
quence, although with certain options (e.g., Orbit Mechanics) it 
should be taken in the fourth year. The material should strike a 
reasonable balance between the classical analytical theory of partial 
differential equations and modern computational aspects of the sub-
ject. For that reason, existence theorems and the like should be of 
the constructive type whenever possible. Further, application to 
problems in classical and modern physics should constantly be borne 
in mind. Physical models should be used both to predict results 
concerning the behavior of solutions to partial differential equa-
tions and to interpret phenomena revealed analytically or computa-
tionally. 

a. Introduction. (6 lessons) Derivation of some equations; 

discussion of mathematical models, continuous dependence theorems, 

and relation to physics. 

b. Classification and characteristics. (9 lessons) Cauchy 

problem for first-order equations, formulation and statement of 

Cauchy-Kowalewski theorem. 

c. Hyperbolic equations. (12 lessons) Existence and contin-

uous dependence for second-order equations. Riemann method. Three-

dimensional wave equation. Retarded potentials. Numerical methods--

finite difference schemes and stability. 

d. Elliptic equations. (21 lessons) Potential theory in 

three dimensions with smooth boundaries. Eigenvalue problems--

estimates. Numerical methods. 

e. Parabolic equations. (12 lessons) Thermal potential 

theory. Convergence to steady state and relation to potential prob-

lems. Numerical methods and connection, in steady state, to numeri-

cal methods for elliptic problems. 

f. Integral representation of solutions. (12 lessons) 

Green's functions. Integral equations. 

g. Equations of hydrodynamics. (6 lessons) Shock phenomena, 

weak solutions. Numerical methods. 

667 



11. Optimization. (3 semester hours) 

For an outline of this course, see Recommendations on the 
Undergraduate Mathematics Program for Engineers and Physicists, 
page 647. A natural successor to this course is the 6-semester-
hour course Operations Research in the Operations Research Option, 
where linear programming techniques are developed in depth and addi-
tional topics in dynamic programming, inventory and scheduling prob-
lems, Monte Carlo simulation techniques, and queueing theory are 
introduced. 

OPERATIONS RESEARCH IN SYSTEMS ENGINEERING OPTION 

Year Core Courses Option Courses 

III 1. Functions of Several 
Variables 

(3) 

2. Intermediate Ordinary 
Differential Equations 

(3) 

3. Mechanics (6) 

4. Numerical Analysis (3) 

5. Probability and 
Statistics 

(6) 

IV 6. Complex Variables (3) 0R1. Reliability (6) 

7. 

8. 

Functional Analysis 

Εlectromagne tics 

(3) 

(3) 

9. Thermodynamics and 
Statistical Mechanics 

(3) 

11. Optimization (3) 

10. Partial Differential (6) 0R2. Operations (6) 
Equations Research 

OR3. Systems (3) 
Simulation 
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0R1. Quantitative Methods in Reliability Engineering. (6 semester 
hours) 

The growing complexity of systems over the last two decades 
has inspired the development of a body of quantitative methods for 
developing, improving, and measuring system reliability. Since 
reliability is such a critical factor in the successful completion 
of every highly technical program, it is of value to the engineer to 
learn quantitative reliability theory, as presented in the following 
course. The mathematical and statistical methods of the course are 
not simply routine applications of well-known theory, but in many 
cases represent new developments motivated by reliability problems. 

The 6-semester-hour course in Probability and Statistics of 
the core is an essential prerequisite for this course. 

First Semester: Probabilistic Models in Reliability. 

a. Failure distributions in reliability theory. (8 lessons) 

Typical failure laws. The exponential as the failure law of complex 

equipment. Monotone failure rates. Bounds for distributions with 

monotone failure rate. General failure rates. 

b. Prediction of system reliability from a knowledge of com-

ponent reliabilities. (3 lessons) Analytical methods for computing 

reliability exactly. Bounds on system reliability based on paths or 

cuts. Monte Carlo methods. Qualitative relationships for multi-

component structures. 

c. Redundancy optimization. (5 lessons) Optimal allocation 

of redundancy subject to constraints. Optimal redundancy assuming 

two kinds of failure. 

d. Operating characteristics of maintenance policies. (6 

lessons) Renewal theory. Replacement based on age. Comparison of 

age and block replacement policies. Random replacement. Repair of 

a single unit. 

e. Optimum maintenance policies. (4 lessons) Replacement 

policies. Inspection policies. 

f. Stochastic models for complex systems. (8 lessons) Semi-

Markov processes. Repairman problems. Marginal checking. Optimal 

maintenance policies under Markovian deterioration. 

Second Semester: Statistical Reliability Theory. 

a. Estimating reliability parameters assuming form of distri-

bution known. (8 lessons) Maximum likelihood estimation in the 
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case of normal, exponential, gamma, Weibull, and binomial distribu-

tions. Confidence and tolerance limits in these cases. Minimum 

variance unbiased estimation in these cases. 

b. Estimating reliability parameters under physically plaus-

ible assumptions. (9 lessons) Errors resulting from incorrect 

assumption as to form of failure distribution. Maximum likelihood 

estimation assuming a monotone failure rate. Maximum likelihood 

estimation assuming a decreasing and then increasing failure rate. 

Conservative confidence and tolerance limits. 

c. Estimating reliability growth. (7 lessons) Form of 

growth assumed known. Only monotonicity of reliability assumed. 

Conservative confidence limits. 

d. Confidence limits on system reliability using observations 

on individual components. (6 lessons) Success or failure observa-

tions. Life length observations. Asymptotic methods. 

e. Hypothesis testing. (9 lessons) Acceptance sampling, 

fixed sample size, truncated and censored sampling, sequential 

sampling. Accelerated life testing. Testing for monotone failure 

rate. 

0R2. Operations Research. (6 semester hours) 

The accent is on the mathematical aspects of the subject, 
rather than the management or industrial engineering aspects. It is 
assumed that time and facilities are available for a computation 
laboratory in connection with both semester courses. A prerequisite 
of an introductory computer programming course is desirable. 

The first semester develops linear programming in depth, build-
ing on the preparation given in a previous one-semester course in 
Optimization. 

First Semester: Advanced Linear Programming. 

a. Review of the simplex algorithm. (4 lessons) Variations 

of the simplex algorithm. Degeneracy, perturbation. Revised sim-

plex method. 

b. Games and linear programs. (4 lessons) Matrix games. 

Equivalence of matrix games and linear programs. 

c. The transportation problems. (4 lessons) Elementary 
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transportation theory. The transshipment problem. 

d. Networks and the transshipment problem. (4 lessons) 

Graphs and trees. Interpreting the simplex method on the network. 

The shortest route problem. 

e. Variables with upper bounds. (3 lessons) The general 

case. The rounded variable transportation problem. 

f. Programs with variable coefficients. (3 lessons) Wolfe's 

generalized program. Special cases. 

g. Decomposition principle for linear programs. (9 lessons) 

The general principle. Decomposing multistage programs. 

h. Convex programming. (4 lessons) General theory. Separ-

able convex objectives. Quadratic programming. 

i. Discrete variable problems. (4 lessons) Survey of methods. 

Gomory's method of integer forms. 

Second Semester: Dynamic Programming and Stochastic Models. 

a. Dynamic programming. (10 lessons) Principle of optimality. 

Multistage allocation problems. Arrow-Harris-Marschak inventory 

model. 

b. Dynamic programming and Markov processes. (5 lessons) 

Discrete dynamic programming. Optimal policies with discounted 

returns. 

c. Monte Carlo techniques. (10 lessons) Production of random 

variables by computer. Simulating stochastic systems on the computer. 

d. Mathematical theory of queues. (14 lessons) Single server; 

Poisson input; exponential service. Many servers; Poisson input; ex-

ponential service. The busy period. Stochastic inventory models. 

0R3. Systems Simulation. (3 semester hours) 

This course examines those symbol manipulation applications of 
the computer that involve the numerical and logical representation of 
some existing or proposed system, for the purpose of experimenting 
with the model and of comparing methods of operating the system. The 
primary purpose of the computer is thus not a calculating adjunct to 
experimentation but is the experimental medium itself. A course in 
probability and statistics is a prerequisite. 
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a. Programming languages. (11 lessons) Special languages 

designed for use in simulation, such as SIMSCRIPT and GPSS. Addi-

tional study of the languages will arise in their use throughout the 

rest of the course. 

b. Technical problems of simulation. (14 lessons) Synchroni-

zation of events, file maintenance, random number generation, random 

deviate sampling. 

c. Statistical problems peculiar to simulation. (7 lessons) 

Sample size estimation, variance reducing techniques, problems of 

drawing inference from a continuous stochastic process. 

d. Applications. (7 lessons) Queueing models; storage, 

traffic, and feedback systems; design of facilities and operating 

disciplines. 
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ORBIT MECHANICS OPTION 

Year Core Courses Option Courses 

III 1. Functions of Several 
Variables 

(3) 

2. Intermediate Ordinary 
Differential 
Equations 

(3) 

3. Mechanics (6) 

4. Numerical Analysis (3) 

5. Probability (3) 

IV 6. 

7. 

Complex Variables 

Functional Analysis 

(3) 

(3) 

OM1. Advanced Numerical (3) 
Analysis 

8. Electromagnetics (3) 

9. Thermodynamics and 
Statistical Mechanics 

(3) 

10. Partial Differential 
Equations 

(6) 

11. Optimization (3) OM2. 

OM3. 

OM4. 

CT2. 

Advanced 
Programming 

Celestial 
Mechanics 

Orbit Theory 

Control 

CT5. Data Smoothing 
and Prediction 

(3) 

(3) 

(3) 

(3) 

(3) 

673 



0M1. Advanced Numerical Analysis. (3 semester hours) 

This course, with its emphasis on topics in partial differen-
tial equations and elementary functional analysis, demands a reason-
able amount of mathematical maturity. It should be taken after the 
first semester of Partial Differential Equations. 

a. Matrix inversion and matrix eigenvalues. (10 lessons) 

Review and extension of iterative methods. Jacobi, Householder, 

and other methods of finding eigenvalues. Ill-conditioning and 

error analysis. 

b. Ordinary differential equations, boundary value problems. 

eigenvalue problems. (11 lessons) Finite difference methods, ex-

tremal principles. 

c. Partial differential equations of second order. (18 les-

sons) Topics selected from the following: Classification, analyti-

cal solutions of well-posed problems for single equations; maximum 

principles for elliptic and parabolic equations, — o r energy--

estimates as well as pointwise estimates of solutions; hyperbolic 

equations, domain of dependence; Fourier analysis and stability for 

constant coefficient equations, eigenvalues for elliptic equations, 

iterative methods for difference equations arising from partial dif-

ferential equations. 

0M2. Advanced Programming. (3 semester hours) 

This course deals with various types of computer programming 
and serves to introduce students to the concepts involved in current 
work in this area. An introductory course in computer science is a 
prerequisite, and it is assumed that the students have considerable 
facility in programming with FORTRAN or ALGOL. 

a. Survey. (9 lessons) Assembly systems, methods of storage 

allocation when using these, pseudo-orders, macros, modify and load 

techniques, monitor and executive systems. 

b. Structure of languages. (15 lessons) Study of a particu-

lar language such as ALGOL, its ambiguities, its method of dealing 

with recursions and procedures. List-processing languages, compiler-

writing languages. 

c. Theory of compilers. (15 lessons) Nature of syntax-
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directed compilers, compilers for dealing with problem-oriented 

languages, compilers for dealing with compiler syntax languages. 

Discussion of the evolution of a translator from a simple language 

whose translator is given in machine language. 

0M3. Celestial Mechanics. (3 semester hours) 

This course in celestial mechanics concerns itself with the 
mathematical structures underlying the physical theory, and with 
deriving from them methods which are commonly used to attack the 
fundamental problems of interest to space research and technology. 

a. Introduction. (6 lessons) Description of dynamical sys-

tems by means of Lagrangian functions. Lagrangian equations of 

motion. Ignorable coordinates, energy equation, and other elementary 

instances of first integrals. Liouville systems in general. Classi-

cal examples: harmonic oscillator, simple pendulum, spherical pendu-

lum, central forces, a charged particle in an electromagnetic field, 

solid body. The principle of dynamical analogy. 

b. Phase space. (6 lessons) Legendre duality (with a sug-

gestion about how it is applied to derive state functions in classi-

cal thermodynamics). Transition from Lagrangian functions and 

Lagrangian equations to Hamiltonian functions and canonical equa-

tions. Canonical mapping: its definition, its multiplier, and its 

residual functions. Completely canonical mappings; canonical ex-

tensions of coordinate transformations. Generation of canonical 

mappings by numerical functions. Invariance with respect to the 

group of canonical mappings: canonical equations, Poisson brackets, 

Lagrange parentheses. 

c. Canonical constants of a dynamical system. (6 lessons) 

Definition of a set of canonical constants of integration. Variation 

of canonical constants. The Hamilton-Jacobi equation as an algorithm 

for constructing sets of canonical constants. The action and angle 

variables. Separable Hamiltonians; Staeckel systems and Liouville 

systems. Applications: the problem of two bodies, the problem of 

two fixed centers. Normal modes of vibrations and vibrations of 

molecules. 
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d. Integrals of a dynamical system. (9 lessons) Poisson's 

theorem about the bracket of two integrals and its dual application 

to Lagrange parentheses. Integrals in involution; Liouville's 

theorem. Jacobi-last multiplier. Application to the motion of a 

solid body. Whittaker's adelphic integral. Application to the in-

vestigation of a dynamical system around the equilibrium. Isoener-

getic reduction. Application to the regularization and the binary 

collisions in the problem of two bodies and in the restricted prob-

lem of three bodies. 

e. Perturbation theory. (12 lessons) Poincare's method of 

the small parameter. Birkhoff's method of iterative canonical map-

pings. Application to the motion of a satellite of an oblate 

planet. 

0M4. Orbit Theory. (3 semester hours) 

The purpose of this course is to offer illustrations of mathe-
matical principles and to compel the student to master them securely 
by careful numerical examples. The material should be arranged to 
provide a nearly continuous flow of computational work for the labo-
ratory sessions no matter at what level the course is set. 

The instructor and his students should be directed to develop 
the topics all the way down to an efficient and reliable program in 
the FORTRAN or ALGOL language on an electronic computer. As most of 
the textbooks on the subject matter cater to computers who use 
logarithms or hand-operated desk-model calculating machines, special 
care should be taken to rearrange classical algorithms and formulas 
for use on an electronic computer. 

Topical problems should be selected from at least these four 
main research areas: 

a. Orbit determination. (10 lessons) The obvious reference 

here is P. Herget's The Computation of Orbits, published privately 

by the author at Cincinnati Observatory, 1948. This booklet has 

been updated by the author in his lectures on "Practical Astronomy" 

and on "Orbit Determination" given at the summer course in Space 

Mathematics, Cornell University, 1963. 

b. Orbit analysis. (12 lessons) The question here is to 

gain physical information from the comparison between the orbit as 
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it has been observed and the orbit as it has been computed from a 

particular mathematical model. 

c. Orbit design. (7 lessons) How to produce orbits that 

satisfy a priori conditions (e.g., given initial conditions, mission 

requirements, optimum characteristics, etc.). 

The course should limit itself to well-tried problems and 

should aim at producing examples where good-quality results can be 

reached without too much effort. This can be achieved in the re-

stricted problem of three bodies. 

After an introduction to that problem, the instructor should 

review two or three methods for integrating numerically the equations 

of motion, either in cartesian coordinates or in regularized coordi-

nates. Then should come a development on variational equations. 

Thereafter the theory of characteristic exponents should be applied 

to the analysis of a family of periodic orbits. 

d. Analytical theories. (10 lessons) How to expand on 

literal theory by enabling an electronic computer to handle symbol 

manipulations in a given algebra. 

This new field promises to provide mathematicians with power-

ful tools to develop literal theories in an extensive set of physi-

cal problems. 
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CONTROL THEORY OPTION 

Year Core Courses Option Courses 

III 1. Functions of Several (3) CT1. Electric Circuits (3) 
Variables 

2. Intermediate Ordinary (3) 
Differential Equations 

3. Mechanics (6) 

4. Numerical Analysis (3) 

5. Probability and 
Statistics (6) 

IV 6. Complex Variables (3) CT2. Control (3) 

7. Functional Analysis (3) CT3. Laboratory (3) 

8. Electromagnetics (3) CT4. Linear Systems (3) 

9. Thermodynamics and (3) CT5. Data Smoothing (3) 
Statistical Mechanics and Prediction 

V 10. Partial Differential (6) CT6. Advanced Control (3) 
Equations 

CT7. Information (3) 
11. Optimization (3) Theory 

CT8. Advanced (3) 
Communications 
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CT1. Electric Circuits. (3 semester hours) 

This is a basic course in circuit theory. The purpose is to 
teach in a precise language the fundamental facts of circuit theory 
while developing skills in writing and solving the circuit equations 
and keeping close contact with physical circuits (filters, ampli-
fiers, digital circuits). 

a. Lumped circuits. (3 lessons) Lumped circuit approxima-

tion. Kirchhoff laws, relation to Maxwell's equations. Circuit 

elements; including nonlinear and time-varying elements. 

b. Simple circuits. (13 lessons) First- and second-order 

circuits: zero-input response and zero-state response; response to 

step, impulse, and sinusoid. Linearity and time-invariance: con-

volution. Impedance, phasors, frequency response, and resonance. 

c. Coupling elements. (2 lessons) Coupled inductors, trans-

formers, and dependent sources. Dependent sources as parts of models 

for electronic devices. 

d. Power and energy. (2 lessons) Energy stored and power 

dissipated in elements; relation with real and imaginary part of 

impedance. 

e. General methods of analysis. (6 lessons) Graph theory: 

trees, links, cut-sets, loops. Loop and cut-set analysis, mixed 

method. Duality. Computer programs for analysis of circuits. 

f. Linear time-invariant circuits. (6 lessons) Reduction of 

systems of equations. Network functions: poles, zeros, gain and 

phase. 

g. Network theorems. (3 lessons) Superposition, The'venin, 

Norton, reciprocity. Careful discussion of range of applicability: 

comments on nonlinear and time-varying circuits. 

h. Two-port description. (4 lessons) Two-port description 

of electronic devices: relation to their graphical characteristics. 

Linear time-invariant networks as two-ports. Interconnection of 

two-ports. 
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CT2. Control. (3 semester hours) 

In this course the student learns some basic facts about con-
trol systems, their analytical description, and techniques of de-
sign. This course is mostly concerned with single-variable control. 

a. Description of feedback systems and components. (5 les-

sons) Advantages and disadvantages of feedback, importance of meas-

uring device, noise problems. Basic components, electrical, hydrau-

lic, pneumatic. Requirements and specifications of control systems. 

Examples. 

b. Linear time-invariant control systems. (20 lessons) 

Analysis, illustrated by several extensive examples, based on dif-

ferential equations and integral equations (convolution). Stability, 

root locus, Nyquist criterion. Design of compensating networks to 

obtain stability and meet the specifications. 

c. Sampled systems. (6 lessons) Examples of systems where 

the feedback data are naturally sampled periodically. Analysis of 

sampled systems. Stability, root locus, Jury's criterion. Design 

of compensating networks. 

d. Nonlinear systems. (8 lessons) Local stability near 

equilibrium. Example of limit cycles. Stability: approximate 

methods describing functions. Lyapunov's second method. Applica-

tion to design. 

CT3. Laboratory. (3 semester hours) 

The purpose of the laboratory is to insure that students con-
nect the classroom concepts and results to physical reality and 
appreciate the power and limitations of experimental work. Typic-
ally, one part of the laboratory could be devoted to circuits work: 
behavior of linear circuits (including resonance), effects of non-
linear elements on waveform and power spectrum, some pulse circuits. 
The second part of the laboratory would cover control: study of a 
typical control system, experiments with various compensations; 
stability; experiments with and simulation of a nonlinear control 
system. 
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CT4. Linear Systems. (3 semester hours) 

Purpose: to provide a solid foundation of concepts, facts, 
and techniques to be used in later courses in control, communication, 
and circuits. 

a. Systems. (6 lessons) State as a parametrization of input-

output pairs and as part of the system description. Operator point 

of view. State equivalence. Linear systems. Linear systems ob-

tained by linearization of ordinary differential equation about a 

nominal trajectory. Examples throughout. 

χ = Ax + By 
b. Linear systems of the form and their dis-

y = Cx + Dy 

crete time analogs. (6 lessons) Time-invariant case: explicit 

solution by function of a matrix and Laplace and z-transforms. For 

simple linear operators, diagonalization, mode interpretation (in-

cluding numerical techniques). Jordan form, analog computer inter-

pretation. Time-varying case: properties of the state transition 

matrix. Periodic systems: Floquet theory, kinematic equivalence. 

c. Impulse response and transfer functions. (12 lessons) 

Free use of Fourier and Laplace transforms. Superposition integral. 

Asymptotics of impulse response and transfer function. Minimum 

phase. Uncertainty principle. Group delay. Signal flow graphs. 

d. Stability. (9 lessons) Characterization of stability for 

linear time-invariant, periodic and time-varying systems (zero-

input stability: Lienard Chipart, Nyquist; bounded input implies 

bounded output; implications of an impulse response which is in L''), 

Lyapunov method. 

e. Input-output description and state equations. (6 lessons) 

Controllability, observability, and normality. Characterization in 

time-invariant and time-varying cases. Output controllability. Con-

trollability and observability of an interconnection of systems. 
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CT5. Data Smoothing and Prediction. (3 semester hours) 

a. Representation of functions by Fourier series and inte-1 2 

grals. The Fourier transform in L and L . (8 lessons) 

b. Random processes: definition, examples, representations; 

autocorrelation, power spectrum; estimation of spectral densities. 

(14 lessons) 

c. Linear mean-square estimation, filtering and prediction. 

The Wiener-Hopf equation; solution by the Wiener filter and Kalman-

Bucy filter. (11 lessons) 

d. Detection and parameter estimation. Application to digital 

communications system and radar. (6 lessons) 

CT6. Advanced Control. (3 semester hours) 

This course treats advanced topics in control so that students 
can readily read the current literature. Multiple-input multiple-
output systems are included. 

a. Nonlinear control. (10 lessons) Describing function. 

Subharmonics. Stability: Sandberg circle criterion, Popov-type 

criteria. Lyapunov method used as a design tool. Lyapunov method 

for systems with inputs. Bounds on output. 

b. Adaptive control. (8 lessons) Examples of adaptive 

control: identification techniques and parameter adjustment. Sto-

chastic approximation. 

c. Optimum control. (21 lessons) Formulation of the problem. 

Examples: systems described by ordinary differential equations and 

difference equations. Maximum principle for differential systems. 

Numerical methods. Relation of maximum principle with steepest 

descent. 

CT7. Information Theory. (3 semester hours) 

a. The concept of the source and of an information measure. 

Desirable properties of information measure, examples of simple 

sources. (3 lessons) 

b. Codes, their efficiency and redundancy. The efficient 
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encoding of discrete independent sources. (4 lessons) 

c. General discrete sources, Shannon's encoding theorem, 

the nature of written and spoken English. (4 lessons) 

d. The concept of a channel, channel capacity, symmetry of a 

channel. (3 lessons) 

e. The fundamental theorem of information theory, error-

detecting and error-correcting codes, the geometric interpretation 

of coding problems. (17 lessons) 

f. Generalization to continuous channels, channel capacity 

of continuous channels. (8 lessons) 

CT8. Advanced Communications. (3 semester hours) 

a. Review. (4 lessons) Signal and noise representations, 

the purpose of modulation. 

b. Amplitude modulation. (7 lessons) The generation and 

detection of AM waves, power spectrum, single side-band and vestigial 

side-band transmission, effects of distortion and noise. 

c. Frequency and angle modulation. (12 lessons) Generation, 

detection, power spectrum, effects of distortion and noise. 

d. Pulse modulation. (10 lessons) Pulse amplitude modula-

tion, pulse position modulation, pulse duration modulation. A brief 

introduction to pulse code modulation. 

e. Design. (6 lessons) The design of optimum receivers in 

the presence of additive noise and fading. 
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1. Introduction 

The Panel on Mathematics for the Biological, Management, and 
Social Sciences was primarily concerned with the mathematics curricu-
lum for prospective graduate students in those fields. Their recom-
mendations, which were published in the 1964 CUPM report Tentative 
Recommendations for the Undergraduate Mathematics Program of Students 
in the Biological, Management, and Social Sciences (BMSS), were 
meant to serve as a basis for discussion and experimentation. From 
these discussions it became apparent that (1) some of the recommenda-
tions would be very difficult for mathematics departments to imple-
ment, (2) a different program was needed for the terminal bachelor's 
degree, (3) the single program presented would not seem to be ideally 
suited to the diverse fields included in the BMSS disciplines, es-
pecially at the advanced level. In response to these findings, CUPM 
decided to concentrate on individual disciplines and, as a first 
step, appointed the present Panel on Mathematics for the Life Sciences, 
charged with making recommendations for the mathematical training of 
all undergraduate life science students, not only pregraduate stu-
dents. (Here, life sciences are taken to mean agriculture and renew-
able resources, all branches of biology, and medicine.) 

The Panel on Mathematics for the Life Sciences has undertaken, 
through conferences and extensive consultation with leaders in the 
biological field, to learn from them what mathematics they consider 
to be necessary for their students. In particular, the Panel held 
several meetings with representatives of the Commission on Under-
graduate Education in the Biological Sciences (CUEBS). After the 
biologists had specified the mathematics needed by students of biology, 
the Panel proceeded to describe mathematics courses that contain this 
mathematics. This report is the outcome of these consultations and 
studies. Finally, the Panel held a special conference in which a pre-
liminary draft of this report was submitted to a group of biologists 
for comment and criticism. The discussions and conferences with the 
biologists have emphasized a serious fourth problem: (4) heavy re-
quirements in chemistry, physics, and biology make it difficult for 
a major in the life sciences to add mathematics courses to his pro-
gram. 

In preparing this report, the Panel considered all four of the 
problems mentioned above, and it presents herewith its recommenda-
tions for a basic mathematics core for life science undergraduate 
majors (see Part I) and for certain more specialized studies (see 
Part II). 

Part I describes a basic core of mathematics for all under-
graduate majors in the life sciences. In Section 2 we describe the 
level of mathematical preparation on which this core is based. In 
Section 3 the recommendations for the mathematical core are stated 
and justified, and in Section 4 we treat some of the principles and 
details of implementation of this core. 
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The Panel feels strongly that every life science major should 
gain substantial experience with computers (digital, analogue, and 
hybrid). We feel that the time is ripe now for a detailed treatment 
of the role of the computer in the undergraduate program, especially 
as it relates to the life science student. This accounts for the 
detail found in Section 5. 

Part II outlines certain more specialized studies which this 
Panel believes will be important for some students in mathematics as 
well as for students in the life sciences. Section 6 describes a 
program for undergraduate preparation for the study of biomathematics 
at the graduate level. A description of an upper-division course 
focusing on the building of mathematical models in the life sciences 
and some suggestions for its implementation appear in Section 7. 

Certain of the courses in A General Curriculum in Mathematics 
for Colleges are cited frequently; their descriptions appear else-
where in this COMPENDIUM. 

I. MATHEMATICS FOR UNDERGRADUATE BIOLOGY MAJORS 

2. Background of the Students 

In recent years much effort has been expended to improve mathe-
matics education in the elementary and secondary schools. Several 
programs of improvement in secondary schools have already had consid-
erable effect and we hope that they will have a great deal more. In 
particular, we hope that mathematics courses in the secondary school 
will contain a judicious mixture of motivation, theory, and applica-
tions. For the purposes of our discussion it is assumed that the 
student is acquainted with both the algebraic and geometric aspects 
of elementary functions (see the description of Mathematics 0 in 
Commentary on A General Curriculum in Mathematics for Colleges, page 
75 ); moreover, we assume that the student has been exposed to the 
idea of a set, mathematical induction, binomial coefficients, and the 
summation notation. Thus, our discussion applies to students in the 
life sciences who are prepared to begin their collegiate mathematics 
with a calculus course, although departments of mathematics may have 
to offer precalculus courses in order to prepare some students ade-
quately for this program. 

Historically, mathematics has been closely allied to the physi-
cal sciences, especially to physics. In secondary schools and in 
elementary undergraduate courses, applications of mathematics have 
traditionally been limited to the physical sciences. Therefore, it 
is not uncommon for students whose interests lie in other fields to 
enroll in a bare minimum of mathematics courses. If students are to 
possess the prerequisites stated above, proper counseling both in 
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high school and in college is imperative. Students must be made 
aware of the doors that are closed to them in fields of the life 
sciences, as well as in the physical sciences and engineering, when 
they terminate their study of mathematics prematurely. We hope that 
this message will be transmitted to guidance and counseling person-
nel, and we urge all concerned to give attention to ways by which 
counseling of potential life science students can be improved in 
their locality. 

3. The Basic Core: Recommendation and Justification 

The Panel on Mathematics for the Life Sciences has considered 
the problem of recommending a basic core of mathematics courses for 
students in the life sciences. The prospective life science major, 
whatever his specialty or career goal, now needs more mathematics 
than was recognized to be the case a few years ago. As a result of 
its study, the Panel concludes that the mathematical core for the 
undergraduate life science major should include one year of calculus, 
some linear algebra, and some probability and statistics. 

More specifically, the Panel believes that this core can be 
provided by the following courses: Mathematics 1 (Calculus I), 
Mathematics 2 (Calculus II), Mathematics 3 (Elementary Linear Alge-
bra), and Mathematics 2P (Probability). Outlines for all of these 
courses can be found in Commentary on A General Curriculum in Mathe-
matics for Colleges. In addition, we recommend that each student 
gain some experience in the use of an automatic computer in the 
first two years of study. This might come in the form of a sequence 
of laboratory exercises (see Section 5) in which algebraic language 
problems are developed and run. Institutions which do not have com-
putation centers may be able to provide service via remote terminals 
or through the courtesy of nearby organizations. This permits the 
use of computing algorithms, lecture demonstrations, or problem 
assignments in biology and mathematics courses at appropriate times. 

The recommendations are consistent with the findings of the 
two life science commissions sponsored by the National Science Founda-
tion. In Publication No. 18 of the Commission on Undergraduate Educa-
tion in the Biological Sciences, "Content of Core Curricula in Biol-
ogy" (June, 1967), pp. 30-31, we find: "Fourth, we recommend that 
careful attention be given to relating biology courses to the back-
ground of the student in mathematics, physics, and chemistry... in 
mathematics, at least through the level now generally taught as 
calculus, ...some background in physical and organic chemistry." 
This recommendation clearly indicates that a full-year sequence of 
calculus (including multivariable calculus) should be taken by a 
biology major. In this same publication the curricula for biology 
majors at Purdue University, Stanford University, North Carolina 
State University, and Dartmouth College are presented. At three of 
these institutions, one year of calculus is required in addition to 
some probability and linear algebra. In the remaining institution, 
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additional calculus is required instead of "finite mathematics" 
(here taken to mean basic linear algebra with applications--such as 
Markov chains--and combinatorial probability). 

In 1967 the Commission on Education in Agriculture and Natural 
Resources (CEANAR) charged a committee "to recommend mathematics re-
quirements to be met ten to fifteen years hence in undergraduate cur-
ricula for Agriculture and Natural Resources." In its report* this 
committee chose to state its recommended requirements almost entirely 
in terms of courses described in the CUPM report A General Curriculum 
in Mathematics for Colleges. Mathematics 1, 2P, and some computer 
instruction are recommended for majors in all areas covered by CEANAR. 
Moreover, for students majoring in technology programs, Mathematics 2 
and Mathematics 7 (Probability and Statistics) are recommended; to 
this students majoring in science programs should add Mathematics 3 
and Mathematics 4 (a third course in calculus). 

There are other good reasons for recommending this core of four 
mathematics courses: 1, 2, 3, and 2P. First of all, these are stand-
ard mathematics courses whose broad availability should facilitate 
implementation. Secondly, this curriculum is flexible enough to 
accommodate a student who may decide to change his major. For ex-
ample, if in the first year or two he enters a discipline that in-
volves more mathematics, he will not have lost any time. Thirdly, 
compressing this material into a shorter three-course sequence is 
unwise from a pedagogical point of view. Very few students are capa-
ble of gaining even a minimal mastery of calculus in a one-semester 
course, and at least one semester is needed to cover a significant 
amount of linear algebra or of probability. Moreover, if a student 
eventually decides to take more advanced mathematics and still con-
tinue in the branch of life sciences he originally chose, he will 
have the appropriate prerequisites. In this connection we discuss 
in Section 7 the role of a course in the applications of mathematics 
to the life sciences for the research-bound student. Since such a 
course involves relatively advanced mathematics, it will carry cer-
tain further mathematical prerequisites beyond the core itself. 

Preparation for research in certain areas of biology will de-
mand competence in mathematics equivalent to the Master's degree 
level. Some biologists have even asserted that a student who has a 
Bachelor's degree with a major in mathematics and appropriate courses 
in chemistry and physics would be welcomed as a graduate student in 
biology, even though he had had no courses in biology. Further de-
velopment of this line of thought is found below in Section 6 on bio-
mathematics . 

* See "Undergraduate Education in the Physical Sciences and Mathe-
matics for Students in Agriculture and Natural Sciences," pp. 32-
35. This report is available from the Division of Biology and 
Agriculture, the National Research Council, 2101 Constitution Avenue, 
Washington, D. C. 20418. 
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Although the Panel feels that an offering to life science stu-
dents of fewer than four semesters of mathematics course work will 
not meet the objectives laid out by the life scientists whom we have 
consulted, we must recognize that this amount of mathematics is more 
than will be accepted by some of them as a requirement for all under-
graduate life science majors. We have been urged to consider what 
can be done with three courses. Any three-course program will lose 
some of the desirable features described in the last paragraphs. We 
present several options of three courses and point out some of the 
advantages and shortcomings of each: 

(1) Mathematics 1, 2, 3; 
(2) Mathematics 1, 3, and 2P; 
(3) Mathematics 1, some appropriate interweaving of 2 and 3, 

and 2P; 
(4) Mathematics 1, 2, and one semester of finite mathematics; 
(5) An integrated three-semester sequence, specifically de-

signed for life science students and built around finite 
mathematics, calculus through multivariable calculus, 
probability, and statistical inference. 

It may be well to observe that each of the above options could 
lead to completion of the core in graduate school, if this were de-
sired. This could be done with standard courses in the case of op-
tions 1 or 2 or with one or more special courses in the case of other 
options. 

Some features of the options are highlighted in the following 

Number of 
special mathe-
matics courses 
required 

Number of 
core subjects 
omitted 
entirely 

Full year 
of calculus 
included 

Core 0 0 Yes 

Option 1 0 1 Yes 
Option 2 0 1 No 
Option 3 1 0 No 
Option 4 1 0 Yes 
Option 5 3 0 No 

The first column measures to some extent the extra load placed 
on the mathematics department by each option. The offering of each 
special course involves planning and coordination activities and in 
a small institution may have a high cost per student because of 
limited enrollment. 

Any option involving special courses inevitably raises the pos-
sibility of requiring additional course work (or equivalent thereof) 
to provide the proper prerequisites for further study in mathematics. 
The severity of this effect can be assessed only in the context of a 
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given institution, a given spectrum of courses, and some designated 
group of students at a given skill level. 

Column 3 relates to the remark that offering less than a full 
year of experience in calculus seems to be insufficient. 

The Panel feels that option 1 is the least undesirable, since 
1) probability can be added by many students as an elective, 2) this 
sequence is easier for most mathematics departments to staff than 
one involving probability, and 3) many schools now offer linear alge-
bra as an integral part of the calculus sequence. Option 2 is con-
siderably less desirable than option 1, since it omits multivariable 
calculus, a topic that the Panel feels is vital to modern biology 
(see the previous reference to CUEBS Publication No. 18). 

Options 3, 4, and 5 share the disadvantage of having no effi-
cient continuing mathematics course which can be used to complete 
the core material. 

Options 3 and 4 may be desirable for larger institutions in 
which the mathematics and biology departments can work out arrange-
ments for an additional elective special course which would complete 
the core. If many departments were to adopt one of these options, 
graduate departments might choose to require that the core be com-
pleted in graduate school. Care must be exercised in implementing 
option 3 to include topics in calculus that are needed in physics 
and chemistry prerequisites to biology courses. 

The essential feature of option 5 is to construct a three-
semester sequence, illustrated by life science examples and contain-
ing essential material from the calculus, while interweaving some 
probability, statistics, and linear algebra in an integrated format. 
However, in situations where there are substantial numbers of stu-
dents who have not had appropriate mathematics courses by the time 
they begin graduate work in biology, the departments of biology and 
mathematics may wish to collaborate in designing special programs. 
It is more important for a graduate biology student to understand the 
basic concepts of the mathematics he uses than to develop the compu-
tational skills needed by a physical scientist or engineer. By tak-
ing advantage of the maturity, strong motivation, and established 
field of interest of these students, satisfactory programs (such as 
option 5 above) stressing the understanding of these mathematical 
concepts could be designed in such a way as to require less time than 
the standard undergraduate courses. 

Such cooperation involving another department with the mathe-
matics department has proved successful in the past. This was par-
ticularly true in some areas of the social sciences, where the de-
mand for such programs eventually diminished when the great majority 
of entering graduate students came with a sufficient mathematical 
background. The research needs of some biology departments have 
motivated them to hire biomathematicians, who could participate in 
teaching the graduate programs envisioned here. 
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4. The Basic Core: Imp lernentat ion 

The Panel recommends that all life science majors be required 
to complete two semesters of calculus and one semester each of lin-
ear algebra and probability (including some statistics). These 
courses, Mathematics 1 and 2, Mathematics 3, and Mathematics 2P, are 
discussed in detail in Commentary on A General Curriculum in Mathe-
matics for Colleges, page 33. In many undergraduate curricula these 
courses must serve many needs: prospective biology majors find them-
selves in the same classes with students from a wide variety of dis-
ciplines (such as engineering, economics, business administration, 
one of the physical sciences, or even mathematics). When this is the 
case, it is unlikely that special emphasis on biological applications 
will be featured in any part of this four-course program. A few in-
stitutions, however, can afford to present all, or some part, of this 
core program exclusively for students whose main interests lie in the 
life sciences. We do not address ourselves to the task of making 
detailed recommendations to this group since we feel that an institu-
tion offering a special mathematics core for life scientists will 
wish to take advantage of local features and design a hand-tailored 
program. Between these extremes, we find institutions able to give 
varying amounts of special attention to life science orientation in 
the mathematics core. Our suggestions below are directed primarily 
to this group. We expect that there will be considerable latitude 
in the extent and manner that these recommendations are utilized. 

The life science major should be given more consideration than 
has been the custom in the past, even by the first group of institu-
tions that cannot afford to provide special courses or sections of 
courses. Traditionally, the applications given in calculus, for ex-
ample, are almost exclusively chosen from the physical sciences. 
With the rapid growth of the life sciences, it is only reasonable 
that increased emphasis be given to illustrative examples from this 
field, even in a calculus course in which the interests of most of 
the students lie elsewhere. 

We now proceed to our comments on the modifications necessary 
to make the core courses more suitable to the needs of the life 
science students. 

[Editor's note: In the case of Mathematics 1 and 2, the Panel's 
suggestions relative to the original course outlines in the 1965 
General Curriculum in Mathematics for Colleges have been incorporated 
into the revised outlines in Commentary on A General Curriculum in 
Mathematics for Colleges (1972). Thus, we refer the reader to the 
new outlines.] 

Mathematics 1. Calculus I. 

See Commentary on A General Curriculum in Mathematics for 
Colleges, page 44. 
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Mathematics 2. Calculus II. 

See Commentary on A General Curriculum in Mathematics for 
Colleges, page 51. 

Mathematics 2P. Probability. 

Relative to this course, an outline of which is given in 
Commentary on A General Curriculum in Mathematics for Colleges, 
page 76 , we make the following comments: 

a. With respect to (1) of the GCMC description, the introduc-
tion of the probability axioms should be properly motivated by the 
frequency interpretation (see Hodges, J. L. and Lehmann, Ε. L. 
Basic Concepts of Probability and Statistics. San Francisco, 
California, Holden-Day, Inc., 1964) in order to connect these con-
cepts with the empirical traditions of the life sciences. 

b. With respect to sections (2) and (3), some time could be 
saved by merging the sections so that the Poisson and normal distri-
butions would be introduced as limits of the binomial distribution. 
For the normal approximation, we feel that the most efficient presen-
tation—in consideration of both time spent and student understand-
ing—would be to discover numerically that a sequence of binomial 
cumulative distribution functions, after the usual normalization, 
tends to the normal distribution (see Mosteller, F. R., et al. 
Probability with Statistical Applications. 2nd ed. Reading, Massa-
chusetts, Addison-Wesley Publishing Company, Inc., 1970). 

c. We feel that two-state Markov chains, as a generalization 
of sequences of Bernoulli trials, should be included in the course. 
The presentation of these could begin in the discussion of condi-
tional probability in section (1). A solution for the limiting dis-
tribution of the process and a numerical demonstration of conver-
gence to this limit should then follow the other limit theorem dis-
cussions, taking up one or two lessons. 

d. If Mathematics 3 is included as a prerequisite for Mathe-
matics 2P, topics such as the Markov process in (c) can be presented 
more efficiently and in greater depth in matrix form. 

A modified course description of 2P appropriate for students 
in the life sciences can then be given as follows: 

1. Probability as a mathematical system. (11 lessons) Varia-
bility of experimental results, sample spaces, events as subsets, 
probability axioms and immediate consequences, finite sample spaces 
and equiprobable measure as a special case, random variables (dis-
crete and continuous), conditional probability and stochastic inde-
pendence, Bayes' formula. Sequences of independent Bernoulli trials, 
two-state Markov chains. 
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2. Probability distributions. (15 lessons) Characterization 
of probability distributions by density and distribution functions, 
illustrated by the binomial and uniform distributions. Expected 
values, mean and variance. Chebychev inequality, Poisson distribu-
tion introduced as approximation to the binomial, normal approxima-
tion to the binomial, Central Limit Theorem, stationary distribution 
of a simple Markov chain, Law of Large Numbers, discussion of special 
distributions motivated by relevant problems in the life sciences. 

3. Statistical inference. (13 lessons) Concept of random 
sample, point and interval estimates, hypothesis-testing, power of 
a test, regression, examples of nonparametric methods, illustrations 
of correct and of incorrect statistical inference. 

Mathematics 3. Elementary Linear Algebra. 

[Editor's note: Here the Panel on Mathematics for the Life 
Sciences referred the reader to Mathematics 3 (Linear Algebra) in 
the 1965 General Curriculum in Mathematics for Colleges and made 
several suggestions for modifying this course in order that it be 
more appropriate for students in the life sciences. Some of the 
Panel's suggestions were incorporated into the revised version of 
Mathematics 3 (Elementary Linear Algebra) which appears in Commentary 
on A General Curriculum in Mathematics for Colleges, page 55. 
Another appropriate course, featuring many of the Panel's suggested 
modifications, is Mathematics L (Linear Algebra) of A Transfer Cur-
riculum in Mathematics for Two-Year Colleges, page 231. 

5. Recommendations for Computing 

Automatic Computing 

We recommend that every undergraduate in the life sciences 
have some contact with an automatic digital computer, and that this 
contact begin as early as possible in his program of study. Among 
the many bases for this recommendation are: that many mathematical 
models in the life sciences, as witnessed by the current technical 
literature, are procedural in nature and are best studied with the 
computer; that many analytic techniques of experimental biology are 
of practical value only when applied with an automatic computer; 
and that the automatic computer could play an important role in 
undergraduate biology lectures and laboratory if the students were 
prepared to make use of it. 

This recommendation is stated separately from our recommenda-
tion of a CORE mathematics program for the life sciences student be-
cause we feel that experience in automatic computing will become 
part of a general liberal arts requirement rather than part of a 
major in either biology or mathematics. In many colleges a first 
course in computing is not the responsibility of the mathematics 
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department but of a computer science department or a department in 
which computer applications are already numerous. As applications 
in subject-area courses increase, the need for an introduction to 
computing separate from the courses in biology, chemistry, mathe-
matics, and physics may disappear. 

CUPM has established a panel to consider instruction in compu-
ter science and the use of computers for instruction in mathematics. 
Our recommendations may be used to select options from their recom-
mendations when they become available and to set an amount of ex-
perience appropriate for the biology major. [See Recommendations 
for an Undergraduate Program in Computational Mathematics (1971) and 
Recommendations on Undergraduate Mathematics Courses Involving Com-
puting (1972).] 

It should be noted that our basic recommendation in automatic 
computing is minimal. For example, the recommended experience does 
not include the introduction to analog or to hybrid analog-digital 
computing, and it includes only the briefest view of the complex 
problems of numerical analysis. We hope that some analog experience 
could be gained in advanced biology laboratory work. We also urge 
that the student be cautioned against the misuse of computing tech-
niques, to avoid any tendency toward confusing the mastery of a pro-
gramming language with an adequate knowledge of mathematics. 

We suggest two alternatives for a one-semester course by which 
this computing experience can be gained. These are described in de-
tail in Section 9. [See also the course CI in Recommendations for an 
Undergraduate Program in Computational Mathematics, page 563.] The 
first alternative is an informal program of weekly lectures and dis-
cussions of one hour extending through the freshman year, supple-
mented by a large number of assigned programming exercises to be de-
veloped and run at the student's convenience. It would amount to 
about one half a semester course for which credit might or might not 
be given. The second is a formal 3-semester-hour course with five or 
six assigned programming exercises, to be taken normally in the 
sophomore year. These suggestions will be stated more completely, 
but first it seems proper to point out the advantages and problems of 
the two approaches. 

Basic computer programming skills have commonly been acquired 
through programs of self-instruction. Many computer scientists feel 
that it is best to provide the student with a computing facility, 
some reference manuals as to its use, an introductory lesson or two, 
and then to stay out of his way as he practices by developing pro-
grams which are of particular interest to him or are relevant to his 
other studies. They would not give formal academic credit for this 
work. We would temper this plan by continuing the lessons or dis-
cussion periods beyond the most basic introduction and assigning some 
specific programs to insure that the student is exposed to various 
classical and valuable computing techniques. Even with this modifi-
cation, the plan has the obvious advantage of not making significant 
demands on either faculty or student time, an important factor 
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considering the already heavy required curriculum in the life 
sciences. It reasonably could, in fact, be carried out without 
academic credit. Unfortunately, the student freedom which permits 
this implies a lack of control over facility usage, so this alterna-
tive can prove expensive in machine charges. 

The second alternative, a formal semester course introducing 
the student to computing, has the disadvantage of adding to an al-
ready exacting schedule. A most troublesome additional problem is 
that we do not feel that the introductory course in many computer 
science programs is appropriate to students in the life sciences. 
In that they are planned to set the foundation for further work in 
mathematics or computer science, they often do not cover computing 
applications adequately. The course we propose may, therefore, add 
an additional load on the mathematics faculty, particularly distaste-
ful because of its partial redundancy. A formal course has two 
powerful advantages, however. The students will be brought to a 
higher level of competency and machine charges per student can be 
kept relatively low. This applied computing course could be rele-
vant to fields beyond the life sciences, of course, and could be 
planned to serve all undergraduates not intending to specialize in 
computer science. 

Continuing the Computing Experience 

Given the contact with computers which we recommend, the stu-
dent will be able to use the computer to extend his studies both in 
mathematics and in the life sciences. Experience has shown that he 
will, in fact, do so. It is important, therefore, that facilities 
be available to support this use. While accurate estimates of po-
tential use are impossible, many students will continue computing at 
about the rate begun in the introductory course if given a chance. 

Of importance in rflklnj* proper advantage Of the student's com-
puting experience is the use of computing exercises and demonstra-
tions whenever relevant in the regular biology curriculum. We point 
out that the relevance is striking in many areas. For example, a 
course in population genetics could use a computing facility as a 
regular laboratory instrument, and some topics such as genetic drift 
are difficult to present without the computer. Too often, the stu-
dent will recognize this value before the instructor. It is essen-
tial that every effort be made to introduce the potential of applied 
computing, as well as all other mathematical techniques, to the life 
science faculty. Among the possible means for this faculty educa-
tion are: the involvement of the life science faculty in the program 
of computer instruction, the preparation and distribution of mate-
rials and understandable manuals on local computing facilities, the 
preparation and distribution of computer demonstration and laboratory 
materials for specific courses, and, most important, a demonstration 
of interest by the mathematics or computing faculty in biological 
research along with patient collaborative effort with life scientists. 
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II. SPECIALIZED STUDIES 

6. Undergraduate Preparation for Blomathematics 

The present state of biomathematics is such that one cannot 
expect to study this subject as an undergraduate. The best that can 
be expected of an undergraduate curriculum is to provide the student 
with a strong background in mathematics, physics, chemistry, and 
biology as preparation for graduate study. Indeed, because of its 
dependence upon the other sciences, biology may be emphasized the 
least in the undergraduate program and then, presumably, the most in 
the graduate program. In most colleges the undergraduate who is en-
rolled in such a program will be regarded as a major in mathematics. 

Before going into details concerning the mathematics component, 
we consider some general principles on which a biomathematics pro-
gram should be based. 

(1) About one third of the student's undergraduate curriculum 
will be devoted to the mathematical sciences, including statistics 
and computing. A second third will be devoted to physics, chemistry, 
and biology, and the remainder to the humanities and social sciences 
to fulfill degree requirements. Since the student will normally be 
a major in mathematics, it is important that departments of mathe-
matics allow their majors to choose electives freely in the biologi-
cal sciences. 

(2) Many institutions give several different versions of basic 
courses in the sciences. The crucial difference is usually the ex-
tent to which mathematics is used. It is vital, therefore, that the 
student plan his program so as to take the most sophisticated ver-
sion of each course that is available. This injunction applies 
especially to courses in physics and in physical chemistry. 

(3) Very few universities have a department of biomathematics. 
Most graduate students who study this subject will be enrolled in 
some life science department. It is essential, therefore, that the 
undergraduate program of such a student include enough courses in 
biology for him to gain admission to a graduate program in a life 
science area. This need not imply that the undergraduate program 
must contain very many courses in biology. Many leading life sci-
ence departments will admit a person with as strong a background in 
mathematics and chemistry as is contemplated here if he has had as 
few as four semester courses of undergraduate biology and some may 
even require no undergraduate biology. 

(4) It is neither practical nor desirable for a student to 
make an irrevocable commitment to a particular specialty early in 
his college career. As was stated in the preceding paragraph, a 
student who elects the program that is being presented here should 
be qualified for admission to a graduate life science program. He 
may then choose to specialize in some area of biology other than 
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bioraathematics. On the other hand, he may decide to do graduate 
work in mathematics only. By adding a substantial course in abstract 
algebra to the program described below, he should become eligible for 
admission to most graduate departments of mathematics. 

(5) Of the natural sciences, chemistry will receive the 
greatest emphasis. Courses in organic chemistry and the strongest 
possible course in physical chemistry will certainly be included in 
the program; biochemistry may also be included, although some schools 
prefer to introduce this topic at the graduate level. 

With these considerations in mind, we now turn to the mathe-
matics in this program. The computer experience and the core of 
four mathematics courses discussed in Sections 4 and 5, as well as 
in the GCMC report, form the foundation of this preparation. To this 
we add semester courses in Calculus, Advanced Multivariable Calculus, 
Statistics and Probability, and a two-semester sequence of Real Vari-
able Theory, as described in Mathematics 4, 5, 7, 11, and 12 in Com-
mentary on A General Curriculum in Mathematics for Colleges, page 33 
The GCMC Mathematics 10, preferably in the version described in 
Section 7 below, and a Numerical Analysis course (see Mathematics 8, 
page 83 ) should be included. 

A biomathematician will need to know more mathematics than is 
presented in this program. For example, he will have only a touch 
of differential equations in Mathematics 2 and 4, and will ordinarily 
need considerably more probability and statistics than is covered in 
Mathematics 2P and 7. Thus, his graduate program will include addi-
tional work in mathematics, although it will consist predominantly 
of biology. A biomathematics student (as well as other biology grad-
uate students) may wish to follow a plan that is currently used in 
many other graduate fields: electing one mathematics course each 
term until the Master's degree requirements in mathematics are met. 
A few biomathematicians may wish to include course preparation for 
the Ph.D. degree both in mathematics and in the life sciences. 

7. A Course in Applications of Mathematics in the Life Sciences 

A course in applied mathematics (Mathematics 10) is briefly 
described in Commentary on a General Curriculum in Mathematics for 
Colleges. The essential feature of this course is "model building 
and analysis" coupled with appropriate interpretation and theoreti-
cal prediction. The philosophy of this approach to applied mathe-
matics is well stated on page 92, and we recommend the reader's 
careful attention to that material in order to establish the neces-
sary point of view for consideration of a course entitled Introduc-
tion to Applied Mathematics: Life Sciences Option. [See also the 
1972 report Applied Mathematics in the Undergraduate Curriculum, 
page 705. 
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Three versions of a model-building course are developed in 
detail in Applied Mathematics in the Undergraduate Curriculum, 
page 705. We consider here another version designed for students 
with a particular interest in the life sciences. 

Applications of mathematics in the life sciences may be class-
ified basically into two broad categories, deterministic and sto-
chastic. Moreover, a third category should also be added, that of 
mixed models, wherein the particular phenomenon under consideration 
may be modeled in either deterministic or stochastic fashion. 

Specific prerequisites for a life sciences version of Mathe-
matics 10 will vary according to which topics are studied, but in 
any case they include the basic core, supplemented suitably—usually 
with additional work in calculus and differential equations (Mathe-
matics 4 and 5) and perhaps with additional work in probability and 
statistics (Mathematics 7). 

One feature of life science models is that the mathematics used 
tends to be either almost trivial or relatively advanced; good 
"junior-level" models seem hard to find. Thus, for the present, suc-
cessful offering of a life science version of Mathematics 10 would 
seem to call for an instructor who is well qualified both in mathe-
matics and in the life sciences. Moreover, this instructor should 
be broadly interested and knowledgeable in applied mathematics and, 
in particular, in model building. Earlier CUPM reports have recom-
mended that, in the absence of such a member of the mathematics 
faculty, Mathematics 10 should not be offered. It has been found in 
a number of institutions, however, that a viable alternative may be 
obtained through a joint effort of an interested member of the mathe-
matics faculty and specialists in various other disciplines. Both 
mathematics and biology can thus be adequately represented and the 
essential feature of strong motivation is present. An undergraduate 
seminar led jointly by such a faculty team, with models being pro-
posed by the members of the class, has been found to work well in 
practice. A format suitable for this purpose has been described by 
S. A. Altman ("A Graduate Seminar on Mathematics in Biology." CUEBS 
News, Vol. V, No. 1, October, 1968, pp. 9-10). 

An institution with a strong, modern biological sciences de-
partment should be able to offer a course such as that suggested 
above. This is especially true if the members of the life sciences 
faculty are interested in bringing in mathematical ideas and there 
is also present at the institution a mathematics cadre interested in 
the applied mathematical sciences. Several members of the Panel have 
had some experience in offering courses based on model building in 
both physical and life sciences. Such an approach revolves around 
an artful use of the case study method, with the class thereafter 
pursuing the mathematical structure, detective story fashion, wher-
ever it may lead. Usually the mathematical structure itself is 
developed en route only to the extent that is demanded by the model, 
although appropriate avenues are of course indicated to the students 
for following up any particular portions of the mathematics that may 
especially interest them. 
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We conclude this section with a few general comments concern-
ing mathematical models in the life sciences. 

Model construction consists, for the mathematician at least, 
of laying down an appropriate axiom system, either as a formal set 
of axioms or by means of a system of defining equations. Equations 
of motion in physiology and biophysics, linear algebra formulations 
of protein sequences or of population state vectors, dynamical sys-
tems describing population interactions, combinatorial models of 
genetic phenomena or of macromolecule configurations are all in-
stances of such axiom systems. Once an appropriate mathematical 
structure (i.e., a set or sets with operations) has been specified, 
the further analysis proceeds within the mathematical structure, 
emerging at certain strategic times with interpretations or theoreti-
cal predictions drawn from the mathematical deductions themselves. 
To the extent that these conclusions are In accord with those aspects 
of the actual phenomenon that are regarded as significant in that 
context, so, too, may the original mathematical model be regarded as 
a good one. One of the virtues of such a procedure, as noted in the 
GCMC report, is that "the attempt to build a satisfactory mathemati-
cal model (often) forces the right question about the original situa-
tion to come to the surface." It is clear, therefore, that the 
modeling process is often one of successive approximations, hope-
fully convergent to a sound theory at some stage. An essential part 
of the instructor's responsibility would seem to be conveying to the 
life sciences student the realization that once an appropriate mathe-
matical structure has been determined via axiomatization, he can 
work strictly within this mathematical structure, to come back in 
the end with certain interpretations and theoretical predictions 
relevant to the particular life science phenomenon under considera-
tion. All too often there seems to be what amounts to almost a 
mental block in many biologists' thinking that precludes their leav-
ing the realm of empirical laws and statistical description (mathe-
matics as curve fitting) to work within the mathematical structure 
itself. The great significance of this latter mode of procedure 
for the astonishing growth of the physical sciences during the past 
half century has been well described by Mostow, Sampson, and Meyer 
(Fundamental Structures of Algebra. New York, McGraw-Hill Book 
Company, 1963. Preface) in the following terms: 

"The great evolution of the physical, engineering and 
social sciences during the past half century has cast mathe-
matics in a role quite different from its familiar one of a 
powerful but essentially passive instrument for computing 
answers. In fact that view of mathematics was never a correct 
one... . Its inadequacy is becoming increasingly apparent 
with the growing recognition that mathematics is at the very 
heart of many modern scientific theories--not merely as a 
calculating device, but much more fundamentally as the sole 
language in which the theories can be expressed. Thus mathe-
matics plays an organic and creative part in science, as a 
limitless source of concepts which provide fruitful new ways 
of representing natural phenomena." 
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The objective of the proposed course in applications of mathematics 
in the life sciences is to develop in students the capability to 
utilize these powerful mathematical methods in the fashion indicated 
above. 

III. APPENDICES 

8. Course Outlines for Mathematics 0. 1. 2, 3. 2P 

See Commentary on A General Curriculum in Mathematics for 
Colleges, page 33. 

9. Course Outlines for an Introduction to Computing 

Following are outlines of programs for the two alternatives 
suggested in Section 5. [See also the course CI in Reeornmendations 
for an Undergraduate Program in Computational Mathematics, page 563.] 

Introduction to Computing: Alternative 1 

The course is comprised of weekly or biweekly one-hour lecture 
and discussion meetings and ten or more student programming exer-
cises. It is set primarily for freshmen, although, if done with in-
formality, it could involve the entire life science community, in-
cluding the faculty. The prime goal is the development of basic 
applied programming skills in an algebraic language. There is 
little concern for the logical organization of the machine or de-
tailed representation of information in the computer. 

Materials 

1. An introduction to a common algebraic language, such as 

FORTRAN, PL/1, ALGOL, or the conversational languages BASIC, CAL, 

JOSS. 

2. A reference for elementary numerical methods. 

3. A reference for statistical methods. 

4. A reference for simulation and other general problem-

solving techniques. 

Facilities 

Computing facilities will be required to handle the submittal 
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of approximately 60 batch process jobs of very short duration per 

student over the period of the course. If a time-shared facility 

is available, about 20 to 25 console hours will be required equiva-

lently. The conversational use of a time-shared facility is to be 

preferred from the point of view of efficient use of student time. 

In order to assure relevance of the exercises to the life 

sciences, it would be desirable for an instructor from the life 

sciences faculty to handle the lectures and discussions for the 

life science students in this course, initially, with the advice 

and assistance of a member of the mathematics or computer science 

faculty. This would also serve as a logical entree to the education 

of the life science faculty to the potential of automatic computers 

and related models for their fields. We feel that many biologists 

will accept the challenge posed in this context, when assured ade-

quate guidance. 

There are a number of possible logistic problems related to 

running the programming exercises that will usually make teaching 

assistants at a very junior level valuable to this course. 

Faculty 

Content 

Topics Suggested Problems 

(Approximate number of lecture 
hours in parentheses) 

(These may be presented in the 
context of a biological prob-
lem) 

1. Algorithms, flowchart repre-
sentations. (1) 

2. First principles of an alge-
braic language. (6) 

2a. Mean and standard devia-
tion of a sample. 

BASIC, FORTRAN, CAL, PL/I, or 
ALGOL. Organized so that stu-
dents may begin programming as 
soon as possible. 

2c. 

2b. Selection sort. 

Table look-up. 

2d. Linear interpolation in 
a table. 
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3a. Area under a curve by 
Simpson's rule. 

3b. Euler's method (point-
slope). 

3c. Root finding by method of 
false position. 

4. Simulation of the rolling 
of a die. 

5. Use of a standard data 
analysis package such as 
the BIMD statistical pro-
grams . 

Additional program or 
programs on topics of 
special interest to the 
student. 

Introduction to Computing: Alternative 2 

This course is a one-semester 3-credit-hour introduction to 
applied computing. While the concern for representation of algo-
rithms and data overlaps that of a first course in computer science, 
our suggestion differs in that the accent is always on application, 
on problem solving with a digital computer. There are three or four 
suggested programming exercises in an algebraic language and one or 
two in special-purpose languages suited for biological problems. 
The course is set primarily for sophomores. 

Materials 

1. An introductory text on computing. 

2. References for elementary numerical methods and statistical 

methods. 

Faculty 

The course must be handled by a specialist in computing, as 

opposed to Alternative 1, although the elective programming exercise 

could be directed by a teaching assistant from the life sciences. 

Facilities 

Computing facilities will be required to handle the submittal 

of approximately 30 batch process jobs of short duration per student. 

3. Very simple introduction to 
numerical calculus. (This can 
be carried out before the stu-
dents have had any appreciable 
instruction in calculus.) (4) 

Cautionary discussion of error 
in calculation, with examples. 

4. Pseudo-random numbers. 
Simulation. (2) 

5. Introduction to the literature 
of computer programs. (2) 
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About 15 console hours on a time-shared remote access computer would 

be required equivalently. 

Content 

Topics Suggested Problems 

(Approximate number of lecture Problems listed under alterna-
hours in parentheses) tive 1 and others, such as 

1. The concept of an algorithm: 
discussion of its connota-
tions. (2) 

2. Representation of algorithms: 
natural language, flowchart, 
algebraic language. (2) 

3. Principles of an algebraic lan-
guage: FORTRAN, PL/1, ALGOL, or 
a conversational language: BASIC, 
CAL, etc., as available. Illus-
trations from simple numerical 
and statistical methods. (10) 

The evaluation of algorithms, 4. Test for well formation of 
logical organization of a string of parentheses, 
computing machine. (5) 

5. A sampling of computer applica-
tions and methods. Simple sym-
bol manipulation, list structure 
simulation examples, pseudo-rand 
number generation, a simulation 
language such as SIMSCRIPT, and 
specific applications from the 
life sciences. (12) 

5a. Generation of Markov chain 
from transition matrix 

s, (presented in behavioral 
ι terms) in algebraic lan-

guage, or a flow simula-
tion in SIMSCRIPT. 

5b. Elective problem on a topic 
from the life sciences such 
as an epidemic simulation, 
or the analysis of data 
from an actual experiment. 

5c. Numerical integration, or 
linear regression with 
printer plot of graphical 
output. 

6. Discussion or demonstration of 
special computing equipment in-
volving graphical displays or 
real-time control of experi-
ments. (3) 
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I. INTRODUCTION AND STATEMENT OF RECOMMENDATIONS 

Traditionally, attempts to solve problems in the physical 
sciences have stimulated and, in turn, extensively utilized basic 
developments in mathematics. This essential interaction between 
mathematics and the sciences is experiencing new vigor and growth. 
Recently, mathematical methods have been introduced into the social 
and life sciences, and even into some areas of the humanities. This 
has led to the development of new mathematical ideas and to new ways 
of using mathematics. The Committee on the Undergraduate Program in 
Mathematics (CUPM) appointed a Panel on Applied Mathematics to con-
sider the implications for the undergraduate curriculum of this new 
growth of the uses of mathematics. 

Instead of training students to handle all of the steps in-
volved in solving a realistic problem, typical courses in applied 
mathematics generally confine themselves to a treatment of various 
mathematical techniques; in particular, mathematical model building 
is neglected. While courses in mathematical techniques are necessary, 
they do not provide a sufficiently broad training for students in-
terested in applied mathematics. 

The Panel therefore makes the following recommendations: 

1. Every mathematics department should offer one or two courses 
in applied mathematics which seriously and comprehensively 
treat realistic problems and which emphasize model building. 

2. Mathematics courses in the first two years of college should 
contain many realistic applications. 

3. Every student taking a substantial number of courses in mathe-
matics should include at least one course in applied mathe-
matics . 

4. A concentration in applied mathematics should be made available 
if the resources of the college permit. 

The Panel is aware that the fourth recommendation is the most 
difficult to implement, especially in smaller departments. However, 
we feel strongly that most college departments can begin to imple-
ment the first three recommendations without undue difficulty or 
delay. For instance, having one instructor offer a course emphasiz-
ing model building could be an initial step toward implementing the 
first recommendation. Although the course may not have all of the 
desired characteristics the first time it is taught, the instructor's 
experience, along with ideas from this report, should enable him to 
come closer to meeting the objectives described here when he teaches 
the course again. Instructors in calculus, for example, can help to 
implement the second recommendation by introducing in their courses 
some applications different from the usual ones. In any case, the 
first of these recommendations can be effected by instituting one or 
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two new courses at the upper-division level, and the second by in-
corporating applications in the lower-division courses. 

II. DISCUSSION 

Pure mathematics has undergone tremendous development during 
the past 25 years. Consequently, the recent generation of mathe-
maticians is concerned primarily with pure mathematics, not only in 
research but also in educational activities. This is evidenced by 
the abstractness of some high school mathematics courses and the 
early introduction of axiomatic courses in colleges. 

While the Panel applauds the advances in pure mathematics, it 
feels that it is unfortunate that education in applied mathematics 
has not received the same attention as that in pure mathematics. As 
a result, many other departments offer courses having substantial 
mathematical content, and mathematics faculties have tended to be 
unaware of the mathematization of many areas. It is encouraging, 
however, that there seems to be a recognition of this tendency and 
that a sympathetic interest in applications of mathematics is spread-
ing. There is much more emphasis now than there was ten years ago 
on areas which directly attack problems of contemporary society such 
as ecological studies, city planning, water and atmosphere restora-
tion, etc. This interest manifests a return to an attitude held in 
earlier times when mathematics was viewed as closely related to other 
areas such as the physical sciences and engineering. The unique way 
in which mathematics can contribute to an understanding of important 
problems in modern society is acknowledged, and many mathematicians 
have been attracted to the new ideas involved in recent applications 
because they are eager to have their teaching and research contribute 
to solutions of problems which are practical and contemporary. 

These recent applications have contributed to changes in applied 
mathematics, both in its nature and in its methods. Applied mathe-
matics may once have been identified exclusively with areas of analy-
sis which had particular bearing on physics and engineering. But be-
cause mathematics is used in the social, life, and managerial sci-
ences, and even in the humanities, applied mathematics must now 
include topics such as linear programming, graph theory, optimiza-
tion theory, combinatorics, game theory, and linear algebra, in 
addition to those which have been traditionally associated with it. 
Similarly, methods of applied mathematics may have been thought of 
as involving complicated calculations with numbers or analytic ex-
pressions. While techniques for calculation are important, they are 
only part of the professional resources of an applied mathematician. 
Theory construction and model building are now essential for him. 
In studying the role of applied mathematics in the undergraduate cur-
riculum, the Panel has taken into account these new topics and methods. 
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Having considered all of these points, we conclude that under-
graduate instruction in applied mathematics must have a strong com-
ponent specifically devoted to model building, and that undergradu-
ates generally should be more aware of the many uses of mathematics 
in other areas. 

III. NEW COURSES IN APPLIED MATHEMATICS 

In our considerations we have been guided by the steps a work-
ing applied mathematician follows in studying a given situation. 
This process has been described in many ways by various authors. We 
use a description which is reminiscent of the one given by Murray 
Klamkin in the American Mathematical Monthly, 78 (1971) pp. 55-56 
(ascribed to Henry 0. Pollak): 

1. Recognition of the nonmathematical problem. 

2. Formulation of the mathematical model. 

3. Solution of the mathematical problem. 

4. Relevant computations. 

5. Explanation of results in the context of the original 
problem. 

Courses in mathematical topics give training in the solutions 
of mathematical problems (step 3), and courses in computer science 
and numerical analysis explain computational and approximative tech-
niques (step 4 ) , but very few courses adequately treat the processes 
involved in recognition, formulation, and explanation (steps 1, 2, 
and 5). While the student must, of course, have sufficient mathe-
matical and computational techniques at his command to solve the 
mathematical problems he confronts and to obtain the numerical re-
sults which are needed, we are convinced that the training of a 
student of applied mathematics must be more comprehensive. He must 
be thoroughly grounded in the techniques of mathematical model build-
ing, and he must have ample practice in interpreting the results of 
his mathematical solution in the original setting. 

The first recommendation of the Panel is that each department 
should offer a course or two in applied mathematics which treat some 
realistic situations completely, beginning with a careful analysis 
of the nonmathematical origin of the problem; giving extremely care-
ful consideration to formulation of a mathematical model, solution 
of the mathematical problem, and relevant computations; and present-
ing thoughtful interpretations of the theoretical results to the 
original problem. In other words, there should be a few courses 
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which give the students the experience of grappling with an entire 
problem from beginning to end. 

To aid colleges in implementing the first recommendation, the 
Panel has constructed outlines of courses which emphasize model 
building. These courses are not intended to replace courses stress-
ing mathematical techniques which are offered for students majoring 
in other areas, nor should they replace those standard mathematical 
offerings in which applications play a useful motivational role. 
Service courses are valuable and should continue to be offered by 
the mathematics department; indeed, they should be designed in active 
collaboration with members of concerned departments. Courses in 
mathematical topics which have their origins in applications are 
also important. However, the courses we recommend here provide a 
complementary training by giving students active experience in 
mathematical model building. 

The Panel has given at the end of this report three course 
outlines which illustrate how a course stressing model building can 
be designed. These outlines are centered around the topics of 
optimization, graph theory and combinatorics, and fluid mechanics. 
The optimization course is intended as an example of a sophomore-
junior course, the course on graph theory and combinatorics is 
appropriate at the junior level, and a course along the lines of the 
fluid mechanics option can be taught at the senior level. The 
optimization course and the course in graph theory and combinatorics 
can be offered at various levels by changing the level of rigor, 
varying the pace, concentrating longer on problems from a specific 
area, etc. These particular topics were chosen as unifying themes 
because of the experiences, interests, and competencies of individ-
ual Panel members, and because the courses on optimization and on 
graph theory and combinatorics illustrate the use of topics not 
traditionally viewed as being part of applied mathematics. In 
choosing these topics, the Panel does not mean to exclude other 
topics which might be used as the unifying element of an applied 
mathematics course. On the contrary, we hope that these outlines 
will stimulate instructors to construct similar courses around other 
topics. In fact, within reasonable limits, the particular topics 
chosen are not nearly so crucial as the emphasis on the model build-
ing process. 

IV. GUIDELINES FOR TEACHING THE NEW COURSES 

In planning or in teaching courses which emphasize model build-
ing, the instructor should keep in mind certain points which are es-
sential for proper implementation of our recommendations. 
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First, the role of model construction must be made clear and 
amply illustrated throughout the course. The student must have as 
much experience as possible in constructing models. Real-life situa-
tions are often so complex that it is impossible to formulate a 
satisfactory model immediately; quite often it is necessary to con-
struct a succession of models in an effort to find a satisfactory 
one. The student should have experience with this process. Further-
more, he should be aware that there may be several approaches which 
lead to essentially different mathematical models for the same prob-
lem. Therefore, a critical evaluation of the steps in constructing 
a model is essential in order that the student know what kind of 
information he can expect or cannot expect from a model and that he 
be able to choose the model which is most effective for his purpose. 

Constructing a model for a given situation requires originality 
and a thorough understanding of the original nonmathematical situa-
tion. To appreciate what is involved, students must be active in 
formulating models. This aspect of the training is so important 
that the instructor should be willing to sacrifice some topics to 
insure the student's thorough grounding in model building. If the 
instructor conducts his class in the traditional lecture fashion, 
then he should prepare homework projects which require his students 
to formulate and to refine models for various situations. However, 
the Panel explicitly calls attention to the possibility of conducting 
these courses as seminars in which students and faculty members work 
cooperatively. Such a seminar could be organized around various 
problems, or it could develop a model for a complicated system which 
can be subdivided into smaller units. A benefit of the latter for-
mat is the experience of teamwork. Another possibility is for stu-
dents to choose projects which they pursue independently. These 
projects could range from original investigations to reports based 
on the literature. In this case, students should periodically re-
port their progress to the other participants in the seminar. 

It is important to realize that model building has many forms. 
The activity which is most usually associated with the term modeling 
and which is actually always present in some form consists of formu-
lating in explicit terms the dependence of the phenomenon under in-
vestigation upon the relevant factors. A classic example is the 
construction of a model for the motion of a vibrating string leading 
to a linear partial differential equation. In this case the factors 
which are to be neglected as well as those which have considerable 
effect on the motion can be identified, and the sort of physical 
assumptions which simplify the model are relatively clear. With 
appropriate assumptions, an analysis of the physical laws governing 
the motion of a particle lead to a mathematical model for the motion 
of the string consisting of a partial differential equation and suit-
able boundary conditions. The solution of this mathematical problem 
aids in the description of the motion of the string. The degree to 
which the solution of the mathematical problem contributes to an 
understanding of the physical one depends upon the degree to which 
the assumptions fit the real situation. 
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The model for motion of a vibrating string is a deterministic 
one; that is, it is based on the assumption that the physical laws 
and the initial conditions determine the response of the system 
exactly. Such models are not always appropriate, and there are 
instances in which uncertainty in the real situation should be re-
flected in the model, as, for example, in stochastic models. As an 
illustration, consider the construction of a model for the spread of 
a disease. The number of people who become ill during an epidemic 
depends on a number of factors associated with the disease--its 
virulence and period of contagion for example--and also on the ran-
dom contacts between infected and susceptible individuals. In some 
instances the results obtained by ignoring the probabilistic features 
of the situation may be adequate, while in others inclusion of the 
probabilistic features may be required in order to obtain a satis-
factory fit between the predictions of the model and the results of 
observations. 

Alternatively, it may be that any model which accounts for what 
appear to be the essential features and which is formulated for 
mathematical analysis will lead to mathematical problems which are 
either totally intractable or beyond the scope of investigation. In 
such cases a computer simulation may be useful. Simulations may be 
performed on both deterministic and stochastic models, and they may 
provide much of the same type of information that is obtained from 
a mathematical analysis when such analysis is feasible. 

The point is that there are many kinds of models, and the stu-
dent of applied mathematics should be aware of them. Consequently, 
the topics for investigation must be chosen carefully so that differ-
ent types of models will be illustrated. 

Second, the problems chosen for investigation must be realistic. 
In this report, when we use the term "realistic" referring to prob-
lems or situations, we have in mind those which arise directly from 
nature or from social behavior and which have some current signifi-
cance. We label as "artificial" those problems which seem to be 
designed purely to illustrate some mathematical point. While some 
artificial problems have undeniable pedagogical value, relying al-
most exclusively on such problems will not instill the attitude of 
mind which should characterize the modern applied mathematician. In 
a contrived situation it is difficult to create and maintain interest 
in the multitude of concerns which arise in problems occurring in the 
real world. Since it is the Panel's intention that the student rec-
ognize the complexities of the real world and that he come to terms 
with these complexities in his model building process, the student 
must face real problems. In the course outlines we have given 
references to assist those who wish to acquaint themselves with 
significant problems in other fields. 

Third, the original nonmathematical situation should not be 
forgotten once a mathematical formulation has been achieved. The 
results of the mathematical study need to be interpreted in the 
original setting. Stopping short of this gives the impression that 
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manipulation of symbols or that techniques of computation or approxi-
mation are the important points, whereas they are only intermediate 
steps, although absolutely essential, in studying a realistic non-
mathematical situation. For this reason we urge that in these 
courses the situations should not only be realistic but that they 
should be treated as completely as possible. 

Fourth, the mathematical topics treated should be worthwhile 
and have applicability beyond the specific problem being discussed. 
They should be appropriate to the level at which the course is 
offered; problems and examples should be chosen to illustrate more 
than just elegant or ingeneous applications of mathematically trivial 
ideas. It is impossible for a single course to contain all of the 
mathematical techniques which all students may need; nevertheless, 
it is possible to select as illustrative techniques those which will 
be valuable to a large portion of the students. 

Finally, an instructor of applied mathematics should not view 
his work as being confined to one academic department or, for that 
matter, restricted to his college or university. Applied mathematics 
affords unique opportunities for cooperative projects with other 
members of the college community and with people outside the college 
whose professional work is related to mathematics. We encourage 
instructors to invite active participation by students and faculty 
members from other departments in planning and conducting courses or 
seminars. In some instances it may be valuable to include nonacadem-
ic professional people having interests and competencies related to 
the area being studied; their experience and point of view may add 
a new dimension to the investigations. It is our view that instruc-
tors in applied mathematics are in a particularly good position to 
initiate cooperative ventures of this type. 

V. USE OF COMPUTERS IN APPLIED MATHEMATICS 

Mathematics education has been influenced in several ways by 
the recent trend toward the widespread use of computers. This is 
particularly true of instruction involving applications. The role 
of computing in the mathematics curriculum is being studied in de-
tail by the CUPM Panel on the Impact of Computing on Mathematics 
Courses [see Recommendations on Undergraduate Mathematics Courses 
Involving Computing, page 571], and comments on computing as a part 
of a concentration in applied mathematics can be found in Section 
VIII of this report. The purpose of this section is to draw atten-
tion to the ways in which machine experience can reinforce ideas and 
techniques which the student is learning and thereby contribute to 
the teaching of applications. 
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The use of computers makes it possible to consider situations 
having a much greater complexity than would be possible if the asso-
ciated numerical work were to be carried out by hand or with the 
assistance of a desk calculator. This is true not only in courses 
specifically oriented toward applications but also in the standard 
undergraduate courses. As an illustration of the sort of activity 
which illustrates the process of applied mathematics and which be-
comes feasible through the use of computers, consider the example of 
determining as a function of time the position and velocity of a 
rocket traveling to the moon. The depth of the study obviously de-
pends heavily on the audience, but certain versions are appropriate 
for students in courses in elementary calculus or ordinary differ-
ential equations. A sample discussion in the spirit of this report 
would include the following features. 

1. Newton's laws of motion and gravitation and a mathematical 
model for the system. A careful discussion of the idealiza-
tions and approximations made in constructing the model. 

2. Derivation of the differential equations governing the motion 
of a rocket in one dimension between the earth and moon. 

3. Discussion of the qualitative features of the solution. 

4. Selection of a numerical method. 

5. Preparation and testing of a computer program for the integra-
tion of a system of first-order ordinary differential equa-
tions . 

6. Use of the program to obtain quantitative information on the 
motion of the rocket. Determine the escape velocity of the 
earth-moon system and compare it with that of the earth alone. 

7. Comparison of results predicted by the 1-dimensional model 
with observed phenomena and a discussion of the inadequacies 
of such a model. 

8. Derivation of the differential equations describing the motion 
of a rocket in two dimensions. 

9. Numerical solution of these equations in two dimensions [re-
peat steps 3, 4, and 5 in this case]. Use a plotter to graph 
the trajectories as functions of initial velocity and firing 
angle. 

10. Comparison of these results with observations. Discussion of 
discrepancies. 

In addition to its use in the activities described above, the 
computer can also be used to obtain the best values of parameters 
occurring in the model and to test the validity of the model. The 
latter usually involves comparing predictions based oh the model 
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with experimental data by using statistical techniques. Finally, 
both analog and digital computers are useful tools for simulation 
when the situation cannot be modeled in a form susceptible to mathe-
matical analysis. 

VI. RECOMMENDATIONS CONCERNING MATHEMATICS COURSES IN THE FIRST TWO 
YEARS 

The Panel believes that many students lose their enthusiasm 
for mathematics even as a tool because their mathematics courses seem 
unrelated to their own discipline. A large segment of students in 
lower-division mathematics courses is primarily interested in fields 
outside mathematics. These students want to use the ideas and tech-
niques of mathematics in their fields of interest; they are not in-
terested in majoring or minoring in mathematics. We feel that the 
best way to demonstrate the power and utility of mathematical ideas 
to these students and thereby to sustain their interest is to intro-
duce applications to other fields in the early mathematics courses. 
Therefore, the second recommendation of the Panel is that a greater 
number of realistic applications from a greater variety of fields be 
introduced into the mathematics courses of the first two years. 

The suggestions made earlier about the choice of problems and 
examples apply here too. Instructors should strive to avoid arti-
ficial or contrived examples and applications. It is especially 
important to formulate the problem clearly and to mention explicitly 
the assumptions, approximations, and idealizations used to obtain a 
reasonable mathematical model. If simplifications are needed to 
make the mathematical problem workable, then they should be clearly 
stated and discussed. In other words, the applications should be 
significant and their treatment should be as complete and intellec-
tually honest as the level of the course will allow. 

The applications should be chosen from various fields in order 
to illustrate the use of a mathematical model or idea in different 
settings. If the course and the background of the students permit, 
some problems should be treated which require one to construct a 
succession of mathematical models in an effort to conform better to 
experimental data. Numerical methods might be included. 

As we have already mentioned, some students who are not mathe-
matics majors lose enthusiasm for mathematics because their courses 
do not contain applications. However, the Panel is also concerned 
that the mathematics major have an appreciation for the importance 
of mathematics in other areas. Even if he becomes a research mathe-
matician, he is very likely to teach some undergraduate mathematics 
courses. His effectiveness in these courses can be greatly increased 
by a grasp of the relations among different branches of mathematics 
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and the relations between mathematics and other disciplines. There-
fore, we feel that he should see many significant applications in 
his elementary mathematics courses. 

Unfortunately, very little literature on applications of ele-
mentary mathematics exists at the present time. One source is the 
Proceedings of the Summer Conference for College Teachers on Applied 
Mathematics held at the University of Missouri--Rolla with the sup-
port of the National Science Foundation, published by CUPM. These 
proceedings contain applications of elementary calculus, linear 
algebra, elementary differential equations, and probability and 
statistics. 

Textbooks for most undergraduate mathematics courses vary con-
siderably in their emphasis on applications, and instructors should 
consult various books so that they can provide their classes with a 
variety of interesting applications. For example, in differential 
equations there are many modern texts which contain discussions of 
genuine applications. Two books which contain a variety of applica-
tions not duplicated in many other places are: 

Bellman, R. and Cooke, K. L. Modern Elementary Differential 
Equations, 2nd ed. Reading, Massachusetts, Addison-Wesley 
Publishing Company, Inc., 1971. 

Carrier, G. F. and Pearson, C. E. Ordinary Differential 
Equations. Waltham, Massachusetts, Blaisdell Publishing 
Company, 1968. 

Also, modern texts in general physics and mechanics usually have 
examples suitable for discussion in a course on differential equa-
tions. 

Another standard undergraduate course--linear algebra--has 
many applications to both physical problems and linear programming. 
In addition to the references listed in connection with the optimiza-
tion outline given later in this report, the following text deserves 
mention : 

Noble, B. Applied Linear Algebra. Englewood Cliffs, New 
Jersey, Prentice-Hall, Inc., 1969. 

The following book is a collection of realistic problems suit-
able for undergraduate mathematics courses. The problems are cate-
logued according to the mathematical tools used in their solution. 
Every teacher of freshman and sophomore mathematics should be aware 
of this source of applications. 

Noble, B. Applications of Undergraduate Mathematics in 
Engineering. New York, The Macmillan Company, 1967. 

As an example of the way in which a specific subject matter 
area may be used to provide applications for elementary courses, 
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consider the biological sciences. Population growth, for example, 
can serve as a motivation for the introduction of elementary dif-
ferential equations. Also, population growth problems can be con-
sidered from a probabilistic point of view; indeed, many problems in 
the biological and social sciences admit both deterministic and sto-
chastic models, so it may be wise to introduce probability along 
with calculus in order to be able to study both kinds of models. 
Books are now available which take this approach; for example, 

Chover, J. The Green Book of Calculus. Menlo Park, 
California, W. A. Benjamin, Inc., 1971. 

Stein, Sherman K. Calculus in the First Three Dimensions. 
New York, McGraw-Hill Book Company, 1967. 

The instructor who wishes to include applications to the bio-
logical sciences will find the following references useful. Al-
though some of this material can be treated with little modification 
in lower-division classes, these sources are more suitable for the 
instructor than for the student. 

Gerstenhaber, Μ. et al. AMS Lectures on Mathematics in the 
Life Sciences: Some Mathematical Problems in Biology, vol. I. 
Providence, Rhode Island, American Mathematical Society, 1968. 
(See particularly the first paper.) 

Pielou, E. C. An Introduction to Mathematical Ecology. 
New York, John Wiley and Sons, Inc., 1969. 

Smith, J. M. Mathematical Ideas in Biology. New York, 
Cambridge University Press, 1968. 

VII. COMMENTS ON SECONDARY SCHOOL TEACHER TRAINING 

Our third recommendation is that every student whose degree 
program includes a substantial number of courses in mathematics 
should take at least one course in applied mathematics. This recom-
mendation clearly should apply to mathematics majors, but the Panel 
wishes to emphasize that every prospective secondary school teacher 
of mathematics should also have at least one course in applied mathe-
matics. The role of applied mathematics in the training of teachers 
of secondary school mathematics has been underscored by the American 
Association for the Advancement of Science* and by other CUPM panels. 
[See Recommendations on Course Content for the Training of Teachers 

* Guidelines and Standards for the Education of Secondary School 
Teachers of Science and Mathematics. Washington, D. C , 
American Association for the Advancement of Science, 1971. 
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of Mathematics, page 158 J The M A S recommendations state that "an 
undergraduate program for secondary school mathematics teachers 
should ... provide substantial experiences with mathematical model 
building so that future teachers will be able to recognize and con-
struct models illustrating applications of mathematics." The CUPM 
Panel on Teacher Training recommends that prospective teachers 
should complete a major in mathematics and that the courses in the 
program should include not only a mixture of motivation, theory, 
and application but also an introduction to model building. Indeed, 
that Panel recommends that a course in applied mathematics is par-
ticularly desirable as an upper-division option for the mathematics 
major. 

The Panel on Applied Mathematics strongly supports these recom-
mendations and emphasizes the following reasons for a secondary 
school teacher of mathematics to have a knowledge of applications: 

1. Appropriate applications provide excellent motivational 
material. 

2. The teacher should be aware that most of the mathematics en-
countered in the secondary school has its origins in problems 
in the real world, and he should know what these origins are. 

3. The teacher should be aware of the applications of mathematics 
in the social and life sciences as well as in the physical 
sciences. Since mathematical notions are occurring with in-
creasing frequency in elementary texts in the social and life 
sciences, and since it is unlikely that most teachers of these 
subjects have adequate mathematical training to appreciate this 
material, the mathematics teacher may well be called upon to 
serve as a resource person for other teachers. 

4. Carefully selected applications may aid significantly in de-
veloping the student's ability to recognize familiar proc-
esses which occur in complex situations. 

Further discussion of these and other ideas can be found in refer-
ences [E] and [P] at the end of this section. 

We make the following recommendations: 

1. In those courses of the basic curriculum which are taken by 
substantial numbers of prospective secondary school teachers 
(viz., Mathematics 1, 2, 3, 4 and 2P of Commentary on A 
General Curriculum in Mathematics for Colleges (CGCMC)), appli-
cations of the subject to problems arising outside mathematics 
should receive more attention than is generally given now. 

2. Each prospective teacher should be strongly encouraged to take 
one of the courses proposed in Section III of this report or a 
course in applied mathematics designed especially for secondary 
school teachers. Sample materials appropriate for an applica-
tions-oriented course for teachers include [Β], [Po], and [S], 
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VIII. RECOMMENDATIONS CONCERNING A CONCENTRATION IN APPLIED 
MATHEMATICS 

The fourth recommendation of the Panel is that an undergraduate 
concentration in applied mathematics should be offered if the re-
sources of the college permit. In many institutions there are stu-
dents who desire such a program. These students should take some 
courses in model building such as those described in Section III, 
and they should be trained in mathematical topics useful in applica-
tions. We are concerned both that the training of the students 
properly reflect the changes taking place in applied mathematics and 
that a department of mathematics be able to begin implementation of 
our recommendations immediately with a relatively small change in 
cours.e offerings. For these reasons our recommendations center 
around courses of the type we have already described and courses in 
various mathematical techniques which are common in many colleges. 

A student interested in a concentration in applied mathematics 
should take three courses in calculus (Mathematics 1, 2, 4 of CGCMC) 
and a course in linear algebra (Mathematics 3 of CGCMC). (For those 
who notice the omission of differential equations, we point out that 
Mathematics 2 of CGCMC contains an introduction to differential equa-
tions.) To insure training and practice in modeling, he should take 
at least one and preferably two of the new courses described in this 
report. A student who has a particular area to which he wishes to 
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apply his mathematics should select courses in mathematical topics 
which are useful in that area as well as courses in the field of 
application which utilize significant mathematics. The topics sug-
gested below can be organized into courses in various ways. How-
ever, we do recommend that applications be introduced in these 
courses, and we feel that the comments made in Section VI on appli-
cations in the freshman and sophomore courses are particularly appro-
priate here. 

A student who is interested in applications to the physical 
sciences or in some areas of life sciences (e.g., ecology) should 
take a physical science version of an applied mathematics course 
such as the one in fluid mechanics outlined in this report. His 
further mathematics courses should include as many of the following 
topics as possible: probability theory; elementary partial differen-
tial equations (some of this is already contained in the fluid 
mechanics course); topics in ordinary differential equations such as 
asymptotic solutions, stability, and periodic solutions; boundary 
value problems (including Fourier series); computer-oriented topics 
from numerical analysis such as those which emphasize numerical 
solutions of ordinary differential equations, numerical linear alge-
bra, solution of nonlinear equations, or numerical quadrature. 

A student interested in applications to business and social 
sciences should take courses such as the optimization course and the 
graph theory course outlined in this report. His further mathematics 
course work should include as many topics as possible from the fol-
lowing: probability theory and applications as described in the 
report of the CUPM Panel on Statistics, Preparation for Graduate 
Work in Statistics; statistics as described in the same document; 
computational linear algebra. 

Furthermore, because much work in applied mathematics involves 
computations, approximations, and estimates, it is clear that stu-
dents concentrating in applied mathematics should have training in 
the use of computers. Beyond increasing computational power, a 
knowledge of the uses of computers can provide a new perspective for 
formulating and analyzing problems of applied mathematics. Conse-
quently, the Panel strongly recommends that the following phases of 
computer experience be included in the program of every student of 
applied mathematics: 

1. Computer programming. The student should have sufficient 
familiarity with a programming language to be able to use 
computer facilities in ways that are appropriate for his 
mathematical course work. 

2. Computational mathematics. The approximations, estimations, 
algorithms, and programming necessary to derive numerical 
solutions of mathematical questions should be presented. 

3. Training and experience in the use of a computer at the vari-
ous stages of solving a problem in applied mathematics. The 
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Student should have experience in using the computer to 
organize large quantities of numerical data and to simulate 
complicated processes. 

IX. COURSE OUTLINES 

To exemplify the kinds of courses recommended in Section III, 
the Panel has constructed three course outlines. These courses do 
not deal merely with mathematical topics; they are courses in which 
the momentum comes from real situations. In particular, stress 
should be placed on model building and on interpretation of mathe-
matical results in the original nonmathematical situation. 

These outlines are not offered as perfect models of the kinds 
of courses we recommend. Rather, they represent our present best 
efforts to construct courses with these new emphases. We hope that 
they will produce a thoughtful response in the form of even better 
outlines for applied mathematics courses. 

It is essential that these outlines be read with the recom-
mendations of Section IV in mind. Also, the reader should have in 
hand one or two of the primary references in order to find examples 
of the kind of treatment we are suggesting. 

In reading these outlines, in teaching these courses, or in 
constructing other courses along the lines of our recommendations, 
instructors should strive to stay well between the extremes of: 
(a) a course about mathematical methods whose reference to science 
consists mainly of assigning appropriate names to problems already 
completely formulated mathematically, and (b) a kind of survey of 
mathematical models in which only trivial mathematical development 
of the models is carried out. 

The course in optimization was planned as a one-quarter course, 
with additional material in the sections marked * bringing the 
total to a one-semester course. The courses in graph theory and 
combinatorics and in fluid mechanics were designed as one-semester 
courses. 

The number of lectures specified indicates the relative em-
phasis we have in mind for the various topics and serves as an 
actual time estimate for a well-prepared class. The Panel appre-
ciates the fact that some instructors will find these time estimates 
somewhat unsuitable (for instance, they do not take into account the 
pursuit of finer points or the review of prerequisite material) and 
will find it necessary to make modifications in the courses for their 
classes. The Panel was tempted to construct less ambitious outlines 
but decided against this, because it felt that a prospective 
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instructor would be helped by having more examples of the treatment 
we recommend rather than fewer. Nonetheless, a valuable course can 
be constructed by choosing a few of the topics listed and treating 
them carefully and thoroughly. Furthermore, if the students become 
actively engaged in the model building activity, then the time 
estimates given are not appropriate. In any case, we encourage in-
structors to engage in open-ended discussions with class participa-
tion in the modeling aspect of the course and, if necessary, to 
restrict the subject matter content of the course in order to accom-
modate this. 

IX.1. OPTIMIZATION OPTION 

This course was designed to provide an introduction to the 
applications of mathematics in the social and management sciences. 
The goals of this course, as stated in Sections III and IV, are a 
study of the role of mathematics as a modeling tool and a study of 
some mathematical notions of proven usefulness in problems arising 
in the social and management sciences. The mathematical content con-
sists of programming and game theory. This selection is a consid-
ered choice, although it is recognized that several other alterna-
tives could serve as well. 

The proposed course can be taught at several levels to fit the 
competencies and interests of the class. In particular, one version 
might be appropriate for freshmen whereas another might be appropri-
ate for upper-class students in the management and social sciences. 
The course outlined here is intended for an average junior-level 
class. The students should have completed the equivalent of two 
semesters of calculus and should have some familiarity with elemen-
tary probability theory. Linear algebra is not included as a pre-
requisite, as the necessary background is developed in the course. 
No specific knowledge of any other discipline is assumed. 

A.bibliography and an appendix, important adjuncts to the 
course coutline, are found after the outline. References to the 
bibliography are enclosed in square brackets [ ], and references to 
the appendix are enclosed in braces { }. The bibliography contains 
a selection of books and other references which have proved useful 
in courses of this sort. Certain references have been designated as 
primary references, and comments have been provided which indicate 
those features of particular interest for an instructor. Most of 
the citations in the course outline are to the primary references. 
The instructor should have at least one of the primary references 
at hand while reading the outline. The appendix contains examples 
of the types of problems which can be studied using the ideas and 
methods of this course. 
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COURSE OUTLINE 

1. Mathematical foundations of model building (4 lectures) 

The real world and abstractions to mathematical systems; axiom 

systems as used in model building. 

The ideas of a mathematical model and model building are intro-

duced by using several examples which can be developed quickly and 

which illustrate applications in several different fields. Typical 

examples might be drawn from business (programming models for re-

source allocation), ecology (linear programming models of pollution 

control), psychology (2- or 3-state Markov chain models for learning), 

and sociology (game theory models for conflict). Assumptions made in 

the construction of these models should be carefully identified. The 

status of empirical "laws" should be discussed: law of gravity, law 

of reflection, law of supply and demand. It should be pointed out 

that all model building requires some essentially arbitrary decisions 

on the part of the person who is constructing the model. For example, 

whether to select a deterministic or a stochastic model is ultimately 

a decision of the investigator. In most instances there is no single 

best model. A model which was constructed to account for observed 

phenomena of one type may not give predictions which agree with other 

observations. The role of approximation and idealization in model 

building is fundamental. Approximations which are made and justified 

for real-world reasons should be distinguished from those whose basis 

is mathematical. Students need practice in making connections be-

tween assumptions about the real world and axioms in a mathematical 

system. Some of the examples should bring out the fact that an im-

portant (and frequently difficult) part of model building is asking 

the right question and viewing the real world problem from the right 

perspective. Some attention should be given to the practical prob-

lems of critically evaluating models and estimating parameters. 

Most of the references contain some comments on model building. 

The initial chapters of primary references [D], [KS], and [Sa] have 

more comprehensive discussions. The books [ABC] and [LR] discuss 

modeling from the point of view of the social scientists. 
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2. Linear Programming models (18 lectures) 

a) Construction of linear programming models. (1 lecture) 

A detailed discussion of a real-world situation which can be reason-

ably modeled in terms of a linear program. 

Examples similar to {1] or {2} might be used. Assumptions 

which lead to the axioms of linearity should be explicitly noted and 

adequately justified. It may be that the linear model is meant to 

serve only as a first approximation to a more complicated situation. 

Also, a linear model is frequently realistic only for restricted 

values of some variables. Such questions need to be considered. It 

is desirable to introduce both deterministic and stochastic models 

and later to compare two models of the same situation. The history 

of the development of linear programming during and after World War 

II is interesting. The book [D] is a useful reference for this 

material. 

b) The basic problem. (6 lectures) The algebra and geometry 

of systems of linear inequalities in R n. Matrix and vector notation 

and elementary linear algebra. Systems of linear equations and their 

application to systems of linear inequalities (e.g., if A is an 

m Χ η matrix and b € R m (b φ 0), then there exists χ € R n satis-

fying Ax = b or there exists χ € R m satisfying A'v. = 0, 

k-Σ * 0). 

The notion of duality and the fundamental theorem should be 

introduced and illustrated. Consider complementary slackness and 

its economic interpretation. Selections from the primary references 

[D], [Ga], [SpT], and [W] provide appropriate sources. 

* Proof of the fundamental duality theorem. 

c) Algorithms: the simplex method. (6 lectures) 

Much of the usefulness of linear programming models rests on 

the fact that the resulting mathematical problems can be efficiently 

solved. Accordingly, it is important to give some attention to com-

putation, although only a bare introduction is proposed here. The 

method can be introduced as a sequence of replacement operations 

similar to a method for solving systems of linear equations. Alge-

braic and economic considerations can be used to describe and moti-

vate the method. The concept of degeneracy arises naturally, but a 
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complete discussion of this idea is beyond the scope of the course. 

Larger and more realistic problems should be solved, and students 

with computer competence should be encouraged to use it. The refer-

ences are the same as those cited in b). 

* Further remarks on degeneracy. 

* A proof of the convergence of the simplex algorithm, 

d) Refined models: linear programming and uncertainty. 

(5 lectures) 

These models should be introduced by discussing the inadequacy 

of deterministic models for certain problems. One example is the 

allocation of aircraft to routes (this is discussed in Chapter 28 of 

[D]). There is no single formulation for stochastic models, as for 

deterministic ones, and there is little general theory. However, 

this is an important modeling technique which serves to demonstrate 

how models can be refined to take account of additional information. 

Examples can be given which show that one is not usually justified 

in simply substituting expected values for coefficients which are 

actually random variables. The basic problem is to formulate the 

stochastic model in such a way that relevant information can be 

obtained by studying an ordinary deterministic model. Chance con-

strained programming provides an interesting special case. Primary 

references [D] and [W] contain this material. 

* Multistage models and dynamic programming. 

* Geometry of the simplex method. 

* Linear models of exchange and production. 

3. Game-theoretic models (10 lectures) 

a) Games and decision-making with uncertainty models for 

systems involving opposing interests. (3 lectures) The role of 

games as a modeling technique in the social sciences. The basic 

assumption of rational behavior and its validity. 

Introduce utility theory, in both its qualitative and quanti-

tative aspects. Consider individual decision-making under uncertainty 

and compare this to games. Discuss examples and, in particular, the 

relevance of a mathematical theory of games for the real world. The 

basic reference [LR] is useful here. Both [LR] and [BN] discuss 
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game theory from the social scientist's point of view. 

b) Games with two sets of opposing interests. (3 lectures) 

Two-person zero-sum matrix games and the connection between such 

games and linear programming. 

Although such games are of limited use in applications, they 

provide a convenient vehicle for introducing basic notions of 

strategy and payoff. The fundamental (minimax) theorem of two-person 

zero-sum games. In primary references [D] and [Ga] this material is 

closely connected with linear programming. The discussion in [LR] 

is more comprehensive, and the notions of extensive and normal forms 

for games are introduced. 

c) Nonzero-sum games. (3 lectures) 

Games of the "prisoner's dilemma" type are of particular inter-

est to the social scientist and can be used to illustrate the dif-

ficulties which arise in more complex models. The theory for such 

games is not nearly so well developed as for the games of b ) , but 

the study should bring out many of the questions that arise in 

mathematical work in the social sciences. Primary reference [LR] 

contains some of this material; more detailed expositions can be 

found in [BN] and, among the additional references, in [R]. 

d) η-person games. (1 lecture) 

There is a qualitative difference between two-person situations 

and those involving three or more independent interests. Thus, there 

are new difficulties which arise in modeling three-interest conflict 

situations. The notion of a "solution" to such games requires care-

ful analysis. The role of bargaining and coalitions is important in 

such models. See primary reference [LR]. 

* Games of timing. Reference [Dr] is especially complete on 

this topic. 

* Two-person cooperative games. 

References 

A bibliography consisting of several hundred items on the 
topics listed in the course outline could easily be compiled. Thus, 
with some exceptions, the list of references is restricted to those 
sources specifically cited in the course outline. Several of the 
books listed here contain extensive bibliographies. The books given 
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extended annotation are, with one exception, examples of writing 
which reflect the spirit of the course. The exception [0] is a 
mathematics textbook which presents some of these notions from a 
purely mathematical point of view. Critical reviews are indicated 
according to the following scheme: AMM, American Mathematical 
Monthly; MR, Mathematical Reviews; OR, Operations Research; and SR, 
SIAM Review. Also, each reference has been broadly classified 
according to whether it is primarily concerned with the mathematical 
content (M) or applications (A), and whether it is most useful for 
the student (S) or instructor (I). Several of the other references 
have been given a one-line annotation where useful. 

Primary References 

[D] Dantzig, George B. Linear Programming and Extensions. 
Princeton, New Jersey, Princton University Press, 1963, 
625 p. AMM 72, p. 332; MR 34 #1073; OR 14, p. 734. 
(M and A, S) A textbook on mathematical programming 
written by one of the founders of the field. It includes 
chapters on the history of the subject and on model formu-
lation. Chapter 3 contains five detailed examples. 
Standard topics in linear programming, extensions to inte-
ger, stochastic, and nonlinear programming, and many appli-
cations. Connection between programming and matrix games 
is included. Basic linear algebra is covered rapidly, and 
some probability is needed for the chapters on stochastic 
programming and games. No other prerequisites. Last two 
chapters contain detailed examples of formulation and study 
of models for nutrition and transportation. Extensive 
bibliography, many examples, and exercises. 

[Dr] Dresher, Melvin. Games of Strategy: Theory and Applications. 
Englewood Cliffs, New Jersey, Prentice-Hall, Inc., 1961, 
184 p. AMM 69, p. 243; MR 22 #13310; OR 10, p. 272. 
(M and A, S) The basic theory of two-person zero-sum games 
is developed in the first three chapters independent of its 
connection with linear programming. The remaining chapters 
include methods of solution, extensions to games with an 
infinite number of strategies, and games of timing. Basic 
calculus and probability are required. Several thoroughly 
discussed examples and applications, particularly to mili-
tary problems. No exercises. 

[Ga] Gale, David. The Theory of Linear Economic Models. New 
York, McGraw-Hill Book Company, 1960, 330 p. MR 22 #6599. 
(M and A, S) Theoretically oriented presentation of linear 
programming and game theory with emphasis on the use of 
these concepts in developing linear economic models. An 
advanced undergraduate textbook with no specific mathematics 
prerequisites, but almost everything is proved and several 
proofs require considerable sophistication. Chapter 2 pro-
vides a self-contained study of linear algebra including 
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linear inequalities. The approach is both algebraic and 
geometrical throughout. Validity of the models is not 
discussed. Exercises are a definite asset; they vary from 
routine to nontrivial extensions of the theory. 

Kaufmann, A. and Faure, R. Introduction to Operations 
Research. New York, Academic Press, Inc., 1968. (A, S ) 
Collection of 18 chapters, each a completely worked-out 
independent example, generally written in anecdotal form. 
Few specific mathematics prerequisites; calculus and finite 
mathematics certainly sufficient. Basic ideas thoroughly 
explained but involved mathematical arguments are avoided. 
Applications are mostly to business situations and problems 
have an aura of reality. 

[KS] Kemeny, J. C. and Snell, J. L. Mathematical Models in the 
Social Sciences. Waltham, Massachusetts, Blaisdell Pub-
lishing Company, 1962, 145 p. AMM 71, p. 576; MR 25 #3797. 
(A, S) Collection of eight independent examples of the 
construction and study of mathematical models drawn from 
several scientific disciplines. Stated mathematics pre-
requisites are one year of calculus and a good course in 
finite mathematics, but most students will require more 
background. No specific social science knowledge is assumed. 
There is an introductory chapter on the methodology of mathe-
matical model building. Exercises and projects at the end 
of each chapter. 

[LR] Luce, R. D. and Raiffa, H. Games and Decisions. New York, 
John Wiley and Sons, Inc., 1957, 509 p. MR 19, p. 373. 
(A, S) This is more a book about the concepts and results 
of game theory than a mathematics textbook; there are al-
most no proofs. Modest prerequisites: some knowledge of 
finite mathematics plus a bent for mathematical thinking. 
Thoroughly motivated discussions of the heuristic considera-
tions which precede the mathematical formulation of the 
problems. These discussions are colored by a social science 
point of view. The introductory chapters consider the role 
of game theory in the social sciences and give a relatively 
complete discussion of utility theory including an axio-
matic treatment. Extensive bibliography. No exercises. 

[0] Owen, Guillermo. Game Theory. Philadelphia, Pennsylvania, 
W. B. Saunders Company, 1968, 228 p. MR 36 # 7420. (Μ, I) 
Mathematics textbook on two-person (chapters 1-5) and n-
person (chapters 6-10) game theory, including those aspects 
of linear programming which are important for the study. 
Assumes basic calculus and probability. Convexity used but 
developed in an appendix. Chapters on infinite games and 
utility theory. Written in Definition-Theorem-Proof style. 
Many exercises of varying difficulty. Few applications. 
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[Sa] Saaty, Thomas L. Mathematical Methods of Operations 
Research. New York, McGraw-Hill Book Company, 1959, 421 p. 
AMM 68, p. 188; MR 21 #1223. (Μ and A, I) A textbook on 
operations research consisting of three major units. Part 
I contains chapters on the scientific method, mathematical 
existence and proofs, and some methods of model formation. 
The first chapter is particularly relevant for this course. 
Part II includes classical optimization techniques as well 
as linear programming and game theory. Part III is devoted 
to probability theory and its applications, particularly to 
queueing. There are many examples with convenient refer-
ences to the literature, and a large bibliography accom-
panies each chapter. Assumes basic calculus and matrix 
theory. Some sections require multidimensional calculus. 
No exercises. 

Simonnard, Michele. Linear Programming (translated by 
William S. Jewell). Englewood Cliffs, New Jersey, Prentice-
Hall, Inc., 1966, 430 p. MR 34 #1079, original French 
edition MR 25 #1952; SR 9, p. 608. (Μ, I) A textbook on 
linear programming covering the general theory (chapters 
1-7), integer programming (chapters 8-9), and the trans-
portation problem (chapters 11-15). The connection of lin-
ear programming with game theory and extensions to stochas-
tic and dynamic programming are omitted. The book is 
oriented in a practical direction, and emphasis is on effec-
tive methods. It contains references to the literature, 
and there is an extensive bibliography but no exercises. 
Appendices on linear algebra, convex polyhedra, and graphs. 
No specific prerequisites. 

[SpT] Spivey, W. A. and Thrall, R. M. Linear Optimization. New 
York, Holt, Rinehart and Winston, Inc., 1970, 530 p. (M and 
A, S) A mathematics textbook on linear programming with 
emphasis on the development of the simplex algorithm. The 
approach is a spiral one, and most topics are developed at 
several levels of difficulty. Chapter 2 discusses modeling 
and presents several examples. There is a chapter on game 
theory. The necessary background material on foundations, 
sets, functions, and linear algebra is given in appendices. 
Many exercises. Suitable as a text for students with 
limited backgrounds. 

[W] Wagner, Η. M. Principles of Management Science with Appli-
cations to Executive Decisions. Englewood Cliffs, New 
Jersey, Prentice-Hall, Inc., 1970, 562 p. (A, S) A text-
book of mathematical model building and optimization in a 
business setting. Prerequisites are a year of calculus and 
finite mathematics. No knowledge of business administra-
tion or economics is assumed. Emphasis on linear, dynamic, 
and stochastic programming with chapters on waiting-line 
models and computer simulation. Broad selection of exer-
cises ranging from computational to "Form a mathematical 
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model for ... ." Some proofs, but many results are provided 
only heuristic justification. 

Additional References 

Ackoff, Russell L., with the collaboration of S. K. Gupta 
and J. S. Minas. Scientific Method: Optimizing Applied 
Research Decisions. New York, John Wiley and Sons, Inc., 
1962. AMM 72, p. 216; OR 11, p. 157. The philosophy and 
formulation of mathematical models, including utility 
theory. 

[ABC] Atkinson, R. C ; Bower, G. H. ; Crothers, E. J. An Intro-
duction to Mathematical Learning Theory. New York, John 
Wiley and Sons, Inc., 1965. 

Bellman, Richard, ed. Mathematical Optimization Techniques. 
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Blalock, Η. M. Theory Construction, from Verbal to Mathe-
matical Formulations. Englewood Cliffs, New Jersey, 
Prentice-Hall, Inc., 1969. AMM 77, p. 216. 

[BN] Buchler, I. R. and Nutini, H. G., eds. Game Theory in 
the Behavioral Sciences. Pittsburgh, Pennsylvania, 
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Industrial Applications of Linear Programming, vol. I, II. 
New York, John Wiley and Sons, Inc., 1961. MR 28 #1003a,b. 

Dantzig, George B. and Veinott, A. F., eds. Mathematics in 
the Decision Sciences, Parts 1, 2. (Lectures in Applied 
Mathematics, vol. XI, XII) Providence, Rhode Island, 
American Mathematical Society, 1968. 

Duffin, R. J.; Peterson, E. L.; Zener, C. Geometric 
Programming. New York, John Wiley and Sons, Inc., 1967. 
AMM 77, p. 1024; SR 10, p. 235. 

Freudenthal, Η., ed. The Concept and the Role of the Model 
in Mathematics and Natural and Social Sciences. New York, 
Gordon and Breach, Science Publishers, Inc., 1961. 

Gale, D.; Kuhn, Η. W.; Tucker, A. W. "Linear programming 
and the theory of games." Cowles Commission for Research 
in Economics, Monograph #13. New York, John Wiley and Sons, 
Inc., 1951. 

Goldman, A. J. and Tucker, A. W. "Theory of linear program-
ming." Annals of Mathematics Studies No. 38. Princeton, 
New Jersey, Princeton University Press, 1956, pp. 53-98. 
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Hadley, G. Linear Programming. Reading, Massachusetts, 
Addison-Wesley Publishing Company, Inc., 1962. AMM 71, 
p. 815; SR 6, p. 191. 

Rapoport, Anatol. Fights, Games, and Debates. Ann Arbor, 
Michigan, University of Michigan Press, 1960. 

Rapoport, Anatol. Two-Person Game Theory: The Essential 
Ideas• Ann Arbor, Michigan, University of Michigan Press, 
1966. MR 35 #1356. Nonmathematical exposition of basic 
ideas of two-person game theory. 

[R] Rapoport, Anatol and Chammah, A. M. Prisoner's Dilemma; 
a Study in Conflict and Cooperation. Ann Arbor, Michigan, 
University of Michigan Press, 1965. 

Shubik, Martin, ed. Game Theory and Related Approaches to 
Social Behavior. New York, John Wiley and Sons, Inc., 1964. 
OR 12, p. 637. Collection of articles on the applications 
of game theory in the social sciences. 

Spivey, W. A. Linear Programming: An Introduction. New 
York, The Macmillan Company, 1963. 

Vajda, S. Mathematical Programming. Reading, Massachusetts, 
Addison-Wesley Publishing Company, Inc., 1961. 

Ventzel, E. S. Lectures on Game Theory. New York, Gordon 
and Breach, Science Publishers, Inc., 1961. 

Wilder, R. L. Introduction to the Foundations of Mathe-
matics , 2nd ed. New York, John Wiley and Sons, Inc., 1965. 

Williams, J. D. The Compleat Strategyst, rev. ed. New 
York, McGraw-Hill Book Company, 1966. Intended for readers 
with no background in mathematics, this book develops the 
basic ideas of game theory through a variety of clever 
examples. 

Appendix 

The problems given here are indicative of the sorts of ques-
tions that can be studied using the techniques and ideas of this 
course. Problems similar to these should be approached in the spirit 
of Section 1 of the outline, where the question is phrased in real-
world terms and a mathematical model is constructed. In such a dis-
cussion, close attention should be paid to assumptions, both explicit 
and tacit. The student should be made aware of the strengths and 
shortcomings of the resulting models. 
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1. Linear programming 

Here are two linear optimization problems, one concerning diet 
and another concerning transportation, posed in a business context. 
The first is given in considerable detail, while the second is 
merely sketched. Possible extensions are indicated. 

1.1 This problem, the determination of an adequate diet of 

minimum cost, was one of the first studied using a linear program-

ming model. Detailed comments on the formulation of a mathematical 

model may be found in [D] and in the original paper of G. J. Stigler 

("The cost of subsistence," J. of Farm Econ.. 27 (1945), pp. 303-

314). The following is a linear programming model. 

Consider η different types of foods (apples, cheese, onions, 

peanut butter, etc.) and m nutrients (proteins, iron, vitamin A, 

ascorbic acid, etc.). In the original problem of Stigler, η = 77 

and m = 9. Suppose that one can determine the daily allowance of 

each nutrient required by an individual and the nutrient values of 

the foods per dollar of expenditure. (These assumptions are at best 

approximations and should be presented as such.) Let 

a. . = amount of nutrient i obtained from an expenditure of 

one dollar on food j, 

b^ = daily requirement of nutrient i, 

x. = number of dollars spent on food j. 

With these definitions the condition that the diet provide at least 

the daily requirement of each nutrient becomes 

The problem of finding an adequate diet of least cost is then the 

problem of minimizing Σ x. subject to the above inequalities. 
j=l J 

1.2 Suppose an oil company has m producing wells, η re-

fineries, and pipelines connecting certain pairs of wells and refin-

eries. Given the output at each well, the demand at each refinery, 

and the cost of transporting one barrel of oil through each pipe-

line, determine how the production of the wells should be allocated 

among refineries in order to minimize transportation costs. 

1.3 In 1.2 consider the case that only allocations in whole 

barrels are permitted. Also consider the case where supply, demand, 

η 

j = 

i = 1, 2 m. 
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or other parameters are not known exactly, but instead some random 

behavior for each is assumed. 

2. Game theory 

Here are two examples involving decision making under uncer-
tainty. The first example can be completely analyzed in terms of 
the elementary theory; the second cannot, but it illustrates a game 
that occurs frequently in the social sciences. 

2.1 Two political parties compete for public favor by stating 

their views in η different media, labeled 1, ..., n. Each party 

has finite resources and must distribute its expenditures among the 

various media without knowing the intentions of the opposing party. 

The payoff (a numerical measurement of the gain of one party or, 

equivalently, the loss of the other) resulting from use of medium i 

is given by a function p(i,x,y) depending only on the medium and 

the resources χ and y committed to that medium by the opposing 

parties. The payoff for the entire game is the sum of the payoffs 

in individual media. Given a knowledge of the resources and payoffs, 

how should each political party allocate its expenditures? 

The following is a very simple model of a social situation in-
volving conflicting interests. Models of this sort and their refine-
ments are currently being studied by mathematically oriented social 
scientists. Although these models are only rough approximations to 
very complex situations, the results obtained from them are far from 
completely understood from a psychological and sociological point of 
view. 

2.2 In an isolated and self-contained environment two retail 

stores compete for the local soft drink market. Each retailer 

handles only one brand of soda pop, different from the brand handled 

by the other retailer, and the two brands are identical in quality. 

In ordinary circumstances each retailer pays 70ς for a carton of pop 

which he sells for $1. However, the soft drink distributors realize 

that from time to time price competition will develop, and they agree 

to sell their products to the retailer at 60c per carton provided 

that it is offered at retail for 80ς per carton. Every Saturday each 

retailer must decide independently what his price for soda pop will 

be for the following week. Each has available the following informa-

tion concerning demands: At the usual price they will each sell 1,000 
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cartons per week. If one retailer discounts while the other does 

not, then the discount store will sell 2,000 cartons while the store 

maintaining the usual price will sell only 200 cartons. If both 

stores sell at the discount price, then the total demand will be for 

2,300 cartons and each will sell half that amount. Supposing that 

this decision must be made each week, how should the store managers 

proceed? 

IX.2 GRAPH THEORY AND COMBINATORICS OPTION 

This is an outline for a one-semester course designed to ac-
quaint students with some fundamental concepts, results, and applica-
tions of graph theory and combinatorial mathematics. Only high 
school mathematics is required, but the student needs to be thor-
oughly familiar with this material. It should be kept in mind that 
this course represents just one of a number of (essentially equiva-
lent) possible courses and is intended to offer the student not only 
specific facts and applications but also a feeling for the underlying 
philosophy of combinatorial mathematics. 

A bibliography and an appendix follow the course outline. Ref-
erences to the bibliography are in brackets [ ] , and references to 
the appendix are in braces { }. The bibliography contains references 
to books and other sources, together with comments about the primary 
references. The appendix contains examples of problems which can be 
treated using the ideas and methods of this course. 

COURSE OUTLINE 

1. Mathematical foundations of model building (4 lectures) 

Real models, mathematical models, axiom systems as used in 

model building. (For discussion, see Section 1 of the course out-

line for the Optimization Option.) 

2. Graph theory (18-20 lectures) 

a) Basic concepts: relations, isomorphism, adjacency matrix, 

connectedness, trees, directed graphs, Euler and Hamiltonian cir-

cuits. (3 lectures) 

In this section the student is introduced to a number of ele-

mentary (but fundamental) ideas of graph theory. He should be given 
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as soon as possible the opportunity to formulate and discuss various 

models of real situations in these terms. [BS] is an especially good 

source of appropriate, relatively simple examples. 

This material is available from numerous sources. The presenta-

tion in [L] is suitable here; more technical treatments are given in 

[Harl] and [01], while that of [02] is probably too elementary. 

Other sources are [Bel] and (1, 2}. 

b) Circuits, cutsets, spanning trees, incidence matrices, 

vector spaces associated with a graph, independent circuits and cut-

sets, orthogonality of circuit and cutset subspaces. (5-7 lectures) 

The linear algebra required for this section is minimal and, if 

necessary, could be developed in several hours. The concepts covered 

here lead directly to one of the more important applications of graph 

theory, namely, electrical network analysis. This material is cov-

ered rather briefly in [L] with no applications, very compactly in 

[Bee], more completely in [BS], and comprehensively in [SR] (on which 

an entire course could easily be based). [SR] is also an excellent 

source of applications of these topics. 

c) Flows in networks, max-flow min-cut theorem, Ford-Fulkerson 

algorithm, integrity theorem, applications (e.g., linear programming, 

Kb'nig-Egervary theorem, multicommodity flows, marriage theorem). 

(4 lectures) 

An appropriate discussion of this material occurs in [L] and in 

selected passages of [BS]. An exhaustive treatment occurs in [FF], 

which is also a good source of examples and applications ([3] is 

typical). 

This section allows for a wide selection of applications for 

which these techniques are appropriate. Examples of multicommodity 

flow problems might be given here in order to illustrate the dif-

ficulties often encountered in more complex models. 

d) Planarity, Kuratowski's theorem, duality, chromatic graphs, 

matching theory. (6 lectures) 

The concepts presented in this section allow the student to 

become familiar with some slightly more advanced material in graph 

theory. These can be used to model more complex situations, e.g., 

[4] and [5} (cf. [Si], [Ben]). 
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This material may be found in nearly all standard graph theory 

texts (e.g., [01], [Bel], [Harl], or briefly in [L]). Typical appli-

cations occur in [BS]. Example {4} gives a nice application of some 

of these subjects (cf. [Si]). These topics are perhaps not so funda-

mental as the preceding and may be omitted if time pressure is a 

problem. 

3. Combinatorial mathematics (19-22 lectures) 

a) Basic tools: permutations, combinations, generating func-

tions, partitions, binomial coefficients, recurrence relations, dif-

ference equations, inclusion-exclusion. (10-12 lectures) 

The concepts introduced in this section are fundamental and 

should be part of every applied mathematician's stock in trade. 

Typical applications of this material are literally too numerous to 

be singled out. See, e.g., [F], [Rio], [L], [Bee], [Sa], [Kn], [Pe]. 

Two standard sources are the initial chapters of [F] and [Rio], 

but these might tax some students a bit. [L] is easier to read but 

says less. Crisp discussions of most of the material are given in 

[Ry]. 

b) Somewhat more advanced material. Systems of distinct 

representatives, Möbius inversion, theorems of Ramsey type, block 

designs, Hadamard matrices. (3-4 lectures) 

It is important for the student to see models which use some-

what more sophisticated concepts from combinatorial mathematics. 

Good examples of this are the studies of the dimer problem and the 

Ising model presented in [Pe] and the analysis of telephone switch-

ing networks in [Ben]. The topics listed in this section serve to 

introduce the student to more advanced ideas. (Of course, other 

similar topics listed in the available references may be substituted 

at the discretion of the instructor.) These subjects are covered 

adequately (although perhaps somewhat disjointly) in [Hal], The 

treatment in [Ry] would be suitable for the better students. The 

relevant sections of [Hal] are suitable if more emphasis on block 

designs is desired. Historically, block designs arose primarily in 

the design of statistical experiments. Recently, these concepts 

have been useful in a variety of fields, e.g., coding theory [Berl], 

spectroscopy [SFP], and data compression. (Also see [5}.) 
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c) Polya counting theory: equivalence classes, (permutation) 

groups, cycle structure, Burnsides1 theorem, Polya's theorem, gen-

eralizations. (6 lectures) 

Historically, this subject arose from Polya1s work on enumer-

ating chemical isomers ([Po]; see also {6}). Typical applications 

include enumeration of Boolean functions [Sie] and enumeration of 

random walks on lattices [Pe]. Other examples are also available in 

[L], [Be2], [Rio]. 

[L] is appropriate here if only minimal depth is required. 

[Bee, Ch.5] gives a more detailed picture. The presentation of [Rio] 

has a reputation of being somewhat hard to read. Polya counting 

theory offers students an opportunity to apply some elementary con-

cepts from group theory to their models. Of course, several addi-

tional lectures may be needed to prepare students who have had no 

exposure to the concept of an equivalence relation or a group. Numer-

ous examples and applications of this material are available, e.g., 

[Sie], [L], [Be2], [Rio]. 

It should be kept in mind that the particular choice of models 

and results presented is not critical. The underlying object here is 

to develop in the student a feeling for the formulation and analysis 

of various models using the ideas of combinatorial mathematics. 

Many of the topics covered involve techniques for which effi-

cient algorithms are known (e.g., network flows, matching, connec-

tivity, and planarity). It would be quite appropriate for students 

to implement these algorithms on computers if facilities are avail-

able. This very effectively illustrates the savings in time and 

money achieved by using an efficient algorithm rather than, for ex-

ample, an enumerative search. 

References 

In the list of references below, there is no attempt to be ex-
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Append ix 

1. Organization X has offices located in a number of cities. 

It wishes to establish a communication network among all its loca-

tions so that any two offices may communicate with one another, pos-

sibly by going through some of the other locations. Furthermore, it 

is desired to minimize the total length (cost) of the network. How 

should the cities be connected? If one is allowed to locate switch-

ing junctions arbitrarily rather than just at the office locations, 

then how can a minimal network be obtained? (See [Kr] and [GP].) 

2. A (traveling) salesman has a fixed set of locations (farm 

houses) that he is required to visit. He leaves from his home 

office, travels to each location once in some order, and then returns. 

In what order should he visit the locations in order to minimize his 

total distance, cost, time (energy)? (See [Li] and [KL].) 

3. An oil company has a number of oil wells (sources) and a 

number of refineries, customers, etc. (sinks), all connected by some 

intricate network of pipelines. The portions of pipeline between 

various points of the network have different (known) capacities. 

How can one route the oil through the system in order to maximize 

the flow of oil to the sinks? What if the direction of flow in 

certain pipelines is restricted? What if there are several grades 

of oil available in varying amounts from the sources and it is 

desired to maximize the value of the mixture received at the sinks? 

(See [FF].) 
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4. Certain integrated circuits can be made by depositing very 

thin metallic and dielectric films in suitable patterns on an insu-

lating substrate. Ordinarily printed circuits are strictly planar; 

crossovers are made only by leading one of the conductors entirely 

out of the plane of the circuit. In the thin film technique, how-

ever, conductors can be separated by thin insulating layers within 

the plane of the circuit, causing a nonzero capacitance between the 

crossing conductors. Thus, crossovers can be permitted, provided 

this nonzero capacitance between the crossing conductors is per-

mitted. The general problem is to determine which circuits can be 

realized by some suitable thin film circuit. This leads to a number 

of interesting questions in graph theory, one of which is the follow-

ing: Given a set S = {s^,...,s ] of arcs or "strings," what are 

necessary and sufficient conditions on a set Ρ of pairs [s ,s.} 

so that there is some configuration of the s^ in the plane 

for which s and s intersect if and only if [s.,s.] belongs 
ι j 1 ι JJ 

to P? (See [Si].) 

5. The Hall theorem on systems of distinct representatives 

occurs in a variety of applications. Several of these are: 

a) In a certain company, η employees are available to fill 

η positions, each employee being qualified to fill one or more of 

these jobs. When can each employee be assigned to a job for which 

he is qualified? (See [Bel].) 

b. An m Χ η chessboard has a certain subset of its squares 

cut out. When is it possible to place a collection of 2 X 1 

"dominoes" on this board so that each of its squares is covered 

exactly once? (See [Pe].) 

c) A telephone switching network connecting mr inlets with 

mr outlets is made up of three stages as indicated in the figure. 

(See [Ben].) 
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Each square box represents a switching unit for which any of the 

possible permutations of connecting its local inlets to its local 

outlets is possible. The problem is to show that this network is 

rearrangeable. i.e., given any set of calls in progress and any pair 

of idle terminals, the existing calls can be reassigned new routes 

(if necessary) so as to make it possible to connect the idle pair. 

How is the reassignment made so as to change the minimum number of 

existing calls? (cf. [Ben],) 

d) If there are as many r-element subsets of an η-element set 

as there are k-element subsets, then it is possible to associate with 

each k-element subset a distinct r-element subset which contains it. 

How? 

6. A naphthalene molecule Clf.Hft (See figure on next page.) 
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Η Η 

contains 8 hydrogen atoms which are available for substitution. The 

symmetry group G of the underlying figure 

has order 4 and consists of the identity and three rotations about 

axes which are horizontal, vertical, or coming out of the page. 

Think of this group as just permuting the eight hydrogen atoms. The 
g 

identity fixes them all and has cycle index S^; each of the other 
three permutations moves them in four pairs of two each and contri-4 

butes to the cycle index S^. The cycle index of the group (con-

sidered as acting only on the hydrogen atoms) is thus 

Now suppose we replace k of the hydrogen atoms by chlorine atoms 

and r of the hydrogen atoms by bromine atoms. How many different 

molecules can be formed? This is exactly the kind of question that 

Polya's theorem answers. 

Answer: In P_(S ,S„) replace S1 by 1 + χ + y and S_ 
2 2 k r 

by 1 + χ + y . Then the coefficient of χ y is the desired 

number. In fact, after making the substitution, we have 
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I [(1 + χ + y ) 8 + 3(1 + χ 2 + y 2 ) 4 ] = 1 + 2x + 2y + 10x2 + 14xy + 10y2 

+ . . . . 

Each term in this series can be interpreted: 1 corresponds to the 

original molecule (no substitution); 2x corresponds to 

Η Η 

(substituting one CI for an H ) , etc. (For the notation used here, 

see [L] and [Bee]; problems of this type occur in [Pe].) 
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IX.3 FLUID MECHANICS OPTION 

The course described below is based on a view of applied mathe-
matics as a natural science distinguished from other natural sciences 
by a mathematical content that is significant in its own right. 
Fluid mechanics was chosen because it exemplifies applied mathematics 
in this sense: it is important historically, it encompasses many 
interesting physical problems, and it can be taught in the spirit of 
this report. However, to teach such a course at the undergraduate 
level requires special care in order to avoid the two possible ex-
tremes of, on the one hand, pursuing mathematical topics for their 
own sake and, on the other hand, studying physical models which in-
volve only trivial mathematical ideas. 

The approach to the subject proposed here has been selected 
with the audience and our objectives in view. Although this material 
can be taught from a more modern perspective, it would then require 
more sophisticated mathematical techniques and would be feasible 
only with very well prepared undergraduates. Our approach was se-
lected because we feel that it is accessible to a wide audience and 
because it effectively attains our goals. 

The course is intended for seniors. Prerequisites are elemen-
tary courses in calculus, differential equations, linear algebra, and 
physics. A course in advanced calculus or analysis is desirable. 
The student should be familiar, for instance, with the mathematical 
issues involved in the termwise integration of infinite series. This 
course should be valuable in solidifying and extending the student's 
grasp of areas of analysis and differential equations. The course 
outlined here does not assume prior knowledge of complex analysis, 
partial differential equations, or fluid mechanics. 

A potential instructor of this course is faced with issues not 
present in the preceding outlines. It requires more specialized 
knowledge and would most easily be offered by someone with a back-
ground in applied mathematics. Nevertheless, we feel that the pres-
ent outline is sufficiently detailed so that it can serve as a guide 
to instructors and so that it can encourage teachers to experiment 
with courses in this area. The main point which the instructor must 
keep in mind is that this is to be a course about applied mathematics 
using fluid mechanics as its representative element; it is not a 
course on fluid mechanics alone. 

The main needs of the instructor, in addition to mathematics, 
are a basic knowledge of classical physics, a willingness to read, 
and perhaps above all an interest in nature. Those who are not 
specialists in fluid mechanics will find it particularly important 
to read this outline with one of the references at hand. While there 
are many books on fluid mechanics, there are very few which emphasize 
the point of view which the Panel has taken here. A list of books 
which may be helpful to the teacher is given in section 5 below, with 
brief comments. References to specific sections of some of these 
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books are given for each of the topics in the detailed outline in 
section 4. Unfortunately, there seems to be no book which would be 
completely satisfactory as a text for this kind of a course; the 
book by Prandtl, which includes most of the topics in the outline 
discussed clearly from the physical point of view, is perhaps the 
most appropriate. But the mathematical side of many of these dis-
cussions will require appreciable expansion for the purposes of this 
course; for digressions of a more purely mathematical nature which 
will from time to time be appropriate, one can perhaps rely on the 
general mathematical background of the instructor. 

COURSE OUTLINE 

This course has two main parts, the first of a fairly general 
nature concerned with the mathematical formulation of continuum 
models for fluids and the second dealing with more specific problems 
illustrative of the more important simplified models. In the outline 
each part is broken down into several areas, for each of which some 
remarks in the style of a "catalog description," with some sugges-
tions on the general approach, are given. These remarks are followed 
by a list of topics for each of several lectures on this area, with 
attention drawn to specific sections of the references in which a 
treatment of these topics is given. For definiteness, these specific 
references have been restricted mainly to the books of Prandtl and 
Yih. The format of the references is indicated by this example: 
[P] 11:1.1 means section 1.1 in the second chapter of Prandtl's book. 

1. Continuum models for fluids 

This part of the course concerns primarily the formulation and 

basic properties of the principal mathematical models used in fluid 

mechanics. Here one can well emphasize the central role of model 

building in applied mathematics and the importance of models which 

are both mathematically self-consistent and capable of being criti-

cally compared with the experimental or observational facts which 

they are supposed to describe. Fluid mechanics is a particularly 

good example to illustrate that a mathematical model can be very 

helpful even though it is in a sense definitely incorrect (e.g. , the 

molecular structure of matter is completely missing from continuum 

models) and that in reality all theoretical science is done in terms 

of models, none of which should be assigned any absolute validity. 

a) The concept of continuous matter as a useful macroscopic 

model of real matter. (2 lectures) Mass and density. Kinematics: 

velocity field and the idea of a "fluid particle" as a theoretical 

concept in the continuum model, not the same thing at all as a mole-
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cule. "Eulerian" and "Lagrangian" variables and the mathematical 

form of the continuum model. The continuity equation. 

Mathematical ideas: flow as a continuous mapping, Jacobians in 

the transformation of multiple integrals, the divergence theorem. 

One might well emphasize here the reverse of the familiar physical 

"proof" of the divergence theorem--the mathematical theorem shows 

that the continuum model is in accord with our intuitive ideas about 

the continuity of matter. 

References. Continuum models for fluids; mass, density, "fluid 

particle," velocity, acceleration: [Y] 1:1,2,3,4 and [P] 11:1.1. 

Continuity equation, divergence theorem, and Jacobians: [Y] 1:5,6 

and [P] 11:1.2. More kinematics: [Y] 1:7,8,9. 

b) Dynamics. (4 lectures) Introduction to the basic ideas 

from particle mechanics (momentum, force, kinetic energy) into the 

continuum model. Pressure and stress. Stress tensor and the momen-

tum equation. Mechanical energy equation. Angular momentum and sym-

metry of the stress tensor in the absence of body torques and "torque-

stresses." 

Mathematical ideas: divergence theorem again, with more vector 

calculus. Tensors as geometric objects. Components of a symmetric 

second-order tensor form a symmetric matrix, hence have real eigen-

values and an orthonormal basis of eigenvectors (principal stresses). 

References. Pressure and stress: [P] 1:1,2,3. Concept of a 

tensor as a geometric object and its representation by components; 

stress tensor of a continuum: [Y] 1:10. Yih's rather classical and 

formalistic view of tensors might well be given a more geometrical 

and contemporary flavor. Symmetrical second-order tensors, in par-

ticular stress and deformation tensors, relationship between a second-

order tensor and the matrix of its components; application of linear 

algebra; principal stresses and eigenvalues, principal directions, 

etc.: [Y] 1:11,12. Navier-Stokes form of the stress tensor and the 

corresponding fluid equations of motion: [Y] 1:13 and [Y] 11:1,2. 

Conservative body forces and the mechanical energy equation, vortic-

ity equation: [Y] 11:3,4. 

c) Thermodynamics. (3 lectures) The equation of state. In-

ternal energy, heat, and entropy. Heat conduction and the total 
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energy equation. 

In the absence of sufficient background in physics, this part 

may have to be limited mainly to equations of state in the simplest 

cases: incompressible fluids and the isothermal and adiabatic ideal 

gas. However, thermodynamics, where accessible, provides a good 

source of exercises in changing variables, Jacobians, etc., and also 

often illustrates rather well the advantages of a careful mathemati-

cal formulation over a loose intuitive description. 

At this point various examples of hydrostatics problems can 

conveniently be introduced. Two important points to be emphasized 

here (and throughout the course in other contexts) are: i) Hydro-

statics is a "simplified model," relevant not only when there is 

strictly no motion but also a good approximation in appropriate cir-

cumstances (vertical accelerations small compared with that of grav-

ity). One can introduce here the idea of simplifying the model on 

the basis of the smallness of certain dimensionless parameters 

characteristic of the particular case in hand, ii) By discussing 

some problems related to familiar situations, one can help the stu-

dent to form the habit of using mathematics to enhance his perception 

of nature. For example, the hydrostatics of the isothermal and 

adiabatic atmospheres can answer questions like: Is it plausible 

that oxygen should be needed when climbing Mt. Everest? or How 

much colder is it likely to be on the top of some local peak than 

it is at ground level? 

Mathematical ideas: in addition to Jacobians, etc., some 

simple ordinary differential equations. 

References. Review of thermodynamics: [Y] appendix I, pos-

sibly truncated and treated in a mathematically more sophisticated 

manner. Ideal gases: [Y] appendix I and [P] 1:5. Heat or energy 

equation: [Y] 11:8. Applications from hydrostatics: [P] 1:6,7,10. 

2. The more simplified models 

Geometrical or physical parameters needed to specify a problem 

completely lead to characteristic dimensionless parameters (e.g., 

Mach number, Reynolds number) whose smallness or largeness in particu-

lar cases indicate the usefulness of simplified models (e.g., 
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incompressible or inviscid flow). In the discussion of simplified 

models, emphasis should be shared between their general properties 

(e.g., Kelvin's circulation theorem) and careful consideration of 

the extent to which the simplified model is in fact relevant. In 

particular, the prevalence of nonuniform convergence in going over 

to the simplified model and the kinds of additional considerations 

required in the regions of nonuniformity ("boundary layers") should 

be brought out, at least qualitatively. In assessing relevance, it 

is probably best to include with the general discussion a number of 

applications of the basic models to concrete situations. Simple and 

familiar cases which emphasize the two points mentioned under lc) in 

connection with hydrostatics should be considered where possible. 

a) Ideal irrotational flow and surface waves on water. 

(5 lectures) 

Here there are a number of opportunities for introducing impor-

tant mathematical ideas and techniques, for instance: i) some gen-

eral properties of harmonic functions; ii) solution of boundary value 

problems for Laplace's equation by superposition of wave solutions 

(i.e., "separation of variables" or use of Fourier representations); 

iii) free waves—phase and group velocity; iv) forced waves, e.g., 

the linear wave-maker problem (radiation condition at infinity, 

Sturm-Liouville equations, and eigenfunction expansions for boundary 

value problems). 

If the students have not seen a proof of the Fourier series 

theorem, the instructor might like to insert a lecture on this topic, 

proving the theorem for piecewise continuously differentiable periodic 

functions. 

References. General properties of the inviscid flow model, 

dimensionless form of general equations, and inviscid flow as ideali-

zation for large Reynolds number: [Y] 11:5,6. Kelvin circulation 

theorem: [Y] 111:1,2 and [P] 11:2.8. Bernoulli theorems: [Y] 111:8,9 

and [P] 11:2.3,4. Ideal irrotational flow: [Y] IV:1,2,3,4 and 

[P] 11:2.9. Surface waves: [P] 11:2.15 and [Υ] V:1,2.1,2.2,2.3. 

Standing waves and group velocity: [Υ] V:2.4,2.5,2.6,2.11. The 

wave-maker problem: [Y] V:2.13. 

b) Linear shallow-water theory. (4 lectures) 
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This provides another simplified model and gives opportunity 

for further discussion of Sturm-Liouville eigenvalue problems. The 

relationship with variational techniques can be brought out here in 

the estimation with trial functions or comparison theorems of the 

resonant frequencies of soup bowls, swimming pools, harbors, and 

lakes. 

Some properties of the wave equation, for instance the signifi-

cance of characteristics, can also be included. (Nonlinear shallow-

water theory, its analogy with compressible flow and shock waves 

might be discussed, but probably there will not be sufficient time 

for this.) 

References. Linear shallow-water theory: [L] pp. 169-72, 189. 

Forced motion and normal modes: [L] pp. 176-79. Tides: [L] pp. 180-

82, 198-200. Variable depth or section: [L] pp. 185-86, 191-93. 

c) Ideal flow past bodies. (5 lectures) 

Flow past circles and spheres gives simple problems in potential 

theory which can be tied in with Fourier series and spherical har-

monics, notably by considering flow past near-circles or near-spheres; 

ideas of regular perturbation theory enter here as well. 

D'Alembert's "paradox" provides a striking example of the fail-

ure of a simplified model when interpreted too literally, combined 

with its rescue and continued usefulness when the main source of the 

difficulty (flow separation) is identified and appropriately modeled. 

The elementary theory of airfoils and drag estimates via dynamic 

pressure arguments could be discussed with questions like: Why do 

sailplanes have very long slender wings? How big should a parachute 

be? How much air resistance is a car subject to? 

References. Examples: [Y] IV:7.4, [P] 11:2.9, and [Y] IV:18. 

Flow past a near-sphere: [Y] IV:13, possibly generalized and with 

further discussion of spherical harmonics. (Yih's discussion is 

perhaps too brief and formalistic, and the fact that surface har-

monics are to spheres what sines and cosines are to circles is rather 

obscured.) Perhaps another mathematical digression could be added 

here: students are too often so put off by excessive emphasis on 

associated Legendre functions that they never seem to realize that 

the rotation group is behind it all. Two-dimensional flows with 
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circulation: [Ρ] 11:10. Blasius and Kutta-Joukowski theorems: 

[Y] IV:22,22.1. Airfoils: [Ρ] 111:16,17. 

d) Inviscid flow with vorticity. (3 lectures) 

Some interesting phenomena of this sort can be studied without 

too much complication by considering linearized flow in rotating sys-

tems. Unfortunately, a more complete picture of the applications of 

hydrodynamic theory in meteorology and oceanography probably involves 

too many other considerations to be feasible in this course. 

References. Geostropic flow and the Taylor-Proudman theorem: 

[G] I and [Y] 111:12,12.1,12.2. Effect of the earth's rotation on 

atmospheric and oceanic flows: [P] V:8. Motion of parallel recti-

linear vortex filaments: [L] pp. 154-55. 

e) Viscosity. (4 lectures) 

References. Couette and Poiseuille flow: [Y] VII:2.1,2.2,2.3, 

2.10,2.11 and [P] 111:1.9b. Ekman and Stokes-Rayleigh boundary 

layers: [Y] VII:2.12,3.4; [P] V:9; and [G] 2.3. Secondary flow: 

[P] 111:8, [G] 2.4, and [P] V:9. The boundary layer: [P] 111:3 and 

[Y] VII:5,6. 

f) Instabilities. (2 lectures) 

(Why does water run out of an inverted glass even though the 

atmospheric pressure can support the weight of a 30-foot column of 

water--and why does it not similarly run out of a narrow tube?) 

Kelvin-Helmholtz instability, although an over-simplified model, can 

be related to wave generation by wind. 

References. Gravitational instability: [Y] IX:2.1,2.3 and 

[P] V:16. Kelvin-Helmholtz instability: [Y] IX:8.1, [ L ] p. 232, 

[Y] IX:6.1. 

References 

The books referred to in the outline are: 

[G] Greenspan, H. P. The Theory of Rotating Fluids. New York, 
Cambridge University Press, 1968. A rather advanced text 
or research monograph. 

[L] Lamb, H. Hydrodynamics. New York, Dover Publications, Inc., 
1945 (reprint). The classic work in the field. Its rather 
old-fashioned mathematical style and extensive character, 
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combined with a certain tendency to present important 

results without adequate identification, make it sometimes 

rather difficult for the novice. As with some other 

classics, results given almost parenthetically in Lamb con-

tinue occasionally to be rediscovered (and published!). 

[P] Prandtl, L. Es sentials of Fluid Dynamics. New York, 

Hafner Publishing Company, 1952. An excellent and interest-
ing book from the physical point of view, with clear dis-
cussions of many scientific and engineering applications. 
Most of the less elementary mathematical aspects, however, 
have (intentionally) been left aside. 

[Y] Yih, Chia-Shun. Fluid Mechanics. New York, McGraw-Hill 

Book Company, 1969. A good graduate-level textbook, 

emphasizing the theoretical side. Quite a few exercises. 

Some other books which the instructor may find useful to have 
on hand are listed below. 

Additional References 

Batchelor, G. K. An Introduction to Fluid Mechanics. 
New York, Cambridge University Press, 1967. 

Landau, L. D. and Lifschitz, E. Fluid Mechanics. Reading, 

Massachusetts, Addison-Wesley Publishing Company, Inc., 

1959. 

Rouse, H. Fluid Mechanics for Hydraulic Engineers. New 
York, McGraw-Hill Book Company, 1938. 

Von Arx, W. S. Introduction to Physical Oceanography. 

Reading, Massachusetts, Addison-Wesley Publishing Company, 

Inc., 1962. 

The books by Batchelor and by Landau and Lifschitz are both 

good; Landau and Lifschitz is written perhaps more from the physi-

cist's point of view, Batchelor from the applied mathematician's. 

Also, a good engineering text such as the book by Rouse and, in 
connection with 2 d ) , the book by Von Arx, may be found helpful. 

There are a number of interesting 8mm. film strips on topics 
in fluid mechanics, as well as some longer films, prepared by the 
National Committee for Fluid Mechanics Films and available from 
Encyclopaedia Brittanica Films. They do not on the whole contribute 
much on the mathematical side but may well add interest and apprecia-
tion for the physics. Some which might be found useful in connection 
with the course outlined above are: 

FM-3: Shear Deformation of Viscous Fluids [continuity 

equation] 
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FM-14A and Β: Visualization of Vorticity with Vorticity 
Meter [continuity equation, conservative body forces and 
the mechanical energy equation, vorticity equation] 

FM-13: The Bathtub Vortex [general properties of the 
inviscid flow model, two-dimensional flows with circula-
tion, effect of the earth's rotation on atmospheric and 
oceanic flows] 

FM-10: Generation of Circulation and Lift for an Airfoil 
[airfoils] 

FM-11: The Magnus Effect [secondary flow] 

FM-6: Boundary Layer Formation [the boundary layer, Ekman 
and Stokes-Rayleigh boundary layers] 

FM-31: Instabilities in Circular Couette Flow [instabili-
ties, Couette and Poiseuille flows] 
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