
2024 Session A

A1. Determine all positive integers n for which there exist positive integers a, b, and c
satisfying

2an + 3bn = 4cn.

Answer: n = 1 only. For n = 1, the equation is satisfied by (a, b, c) = (1, 2, 2).

Solution 1: Consider n > 1. If d is the greatest common divisor of a, b, c, so a = dx, b = dy,
c = dz, then x, y, z satisfy the same equation and we can assume that the greatest common
divisor is 1. We see that 2 | 3bn, so 2 | b. Letting b = 2b1, the equation becomes

2an + 3 · 2nbn1 = 4cn.

Since n ≥ 2, we have that 4 | 2an, so 2 | an and 2 | a. Setting a = 2a1, we get that

2n(2an1 + 3bn1 ) = 4cn

and 2n−2 | cn. Since we assumed the greatest common divisor of a, b, c is 1, we must have
that 2 ∤ c. Thus, we must have n = 2.

Then
2a2 + 3b2 = 4c2,

and so a2+c2 = 3a2+3b2−3c2 is divisible by 3. Considering all possible cases for remainders
of a and c by division by 3, we see that a2 has remainder 0 or 1, and c2 has remainder 0 or
1. Thus, both a2 and c2 must have remainder 0, so 3 | a and 3 | c. Writing a = 3a2, c = 3c2
we have b2 = 3(4c22 − 2a22), so 3 | b, contradicting the assumption that a, b, c have common
divisor 1.

Solution 2: To prove that there are no solutions for n ≥ 2, assume to the contrary that
there is such a solution. Let d be the greatest common divisor of a, b, and c, and let x = a/d,
y = b/d, and z = c/d. Then 2xn+3yn = 4zn, and the greatest common divisor of x, y, and z
is 1. In particular, at least one of x, y, and z is odd. Since 3yn = 4zn−2xn is even, y is even.
Then since n ≥ 2, it follows that 2xn = 4zn − 3yn is a multiple of 4, so x is even too, whence
z is odd. If n ≥ 3, we then have the contradiction that 2xn+3yn is a multiple of 8, but 4zn is
not. If n = 2, we can write 2(x/2)2 + 3(y/2)2 = z2. It follows that y/2 is odd. Since all odd
squares are congruent to 1 modulo 8, we have 2(x/2)2 ≡ z2 − 3(y/2)2 ≡ 1− 3 ≡ 6 (mod 8),
which is impossible.
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A2. For which real polynomials p is there a real polynomial q such that

p(p(x))− x = (p(x)− x)2q(x)

for all real x?

Answer: Only p(x) = ±x+ c for c a constant.

Solution 1: Let f(x) = p(x) − x and let d denote its degree. Then the desired property is
equivalent to f(x+ f(x)) + f(x) = [f(x)]2q(x). By the Taylor series expansion of f at x,

f(x+ f(x)) = f(x) + f ′(x)f(x) +
f ′′(x)

2
[f(x)]2 + · · ·+ f (d)(x)

d!
[f(x)]d.

Thus, the factorization exists if and only if 2f(x) + f ′(x)f(x) = [f(x)]2r(x) for some poly-
nomial r, which in turn is equivalent to f(x) = 0 or 2 + f ′(x) = f(x)r(x). The factorization
holds when d = 0, hence when p(x) = x + c. If d > 0, then 2 + f ′(x) has degree d − 1, a
contradiction, unless 2 + f ′(x) = 0, which is equivalent to p(x) = −x+ c.

Solution 2: Let r(x) = p(x)− x, then p(x) = x+ r(x) and the equation becomes

r(r(x) + x) + r(x) = r(x)2q(x)

Let r(x) = cnx
n + · · ·+ c1x+ c0 be its expansion in monomials. Then

r(r(x) + x) =
n∑

k=0

ck(r(x) + x)k =
n∑

k=0

ck

k∑
i=0

(
k

i

)
xi(r(x))k−i

= r(x)2


n∑

k=2

ck

k−2∑
i=0

(
k

i

)
xir(x)k−i−2

︸ ︷︷ ︸
q1(x)

+ r(x)

(
n∑

k=1

ckkx
k−1

)
+

n∑
k=0

ckx
k

= r(x)2q1(x) + r(x)r′(x) + r(x).

Thus, the original equation is equivalent to

r(x)2q1(x) + r(x)r′(x) + 2r(x) = r2(x)q(x).

Thus, either r(x) is identically 0 (so p(x) = x) or

r′(x) + 2 = r(x)(q(x)− q1(x)).

If the degree of r(x) is not 0, then deg(r′(x) + 2) = deg(r(x))− 1 < deg(r(x)(q(x)− q1(x)),
unless q(x) − q1(x) = 0. Thus, either deg(r(x)) = 0, so p(x) = x + c, or q(x) = q1(x) and
r′(x) = −2, so r(x) = −2x+ c, so p(x) = −x+ c.

Plugging the two possibilities in the original equation we see the following. For p(x) =
x+ c, we have 2c = c2q(x), so all real values for c give a solution with a constant polynomial
q(x). For p(x) = −x + c we have −(−x + c) + c − x = (−2x + c)2q(x), so q(x) = 0 gives a
solution for all c.

The solutions are thus p(x) = −x+ c for any real c or p(x) = x+ c for any real c.
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A3. Let S be the set of bijections

T : {1, 2, 3} × {1, 2, . . . , 2024} → {1, 2, . . . , 6072}

such that T (1, j) < T (2, j) < T (3, j) for all j ∈ {1, 2, . . . , 2024} and T (i, j) < T (i, j + 1) for
all i ∈ {1, 2, 3} and j ∈ {1, 2, . . . , 2023}. Do there exist a and c in {1, 2, 3} and b and d in
{1, 2, . . . , 2024} such that the fraction of elements T in S for which T (a, b) < T (c, d) is at
least 1/3 and at most 2/3?

Answer: Yes.

Solution 1: We consider the more general situation where the set of bijections S is T :
{1, . . . ,m} × {1, 2, . . . , n} → {1, 2, . . . ,mn} satisfying the given inequalities, where

m,n ≥ 2

. In the problem we have m = 3, n = 2024. To simplify the notation, we switch to the
probabilistic formulation: we are choosing elements T uniformly at random from S and
considering the probability that T (a, b) < T (c, d), which is equal to the proportion of such
bijections T . By symmetry, if m and n are exchanged, then Pr[T (a, b) < T (c, d)] becomes
Pr[T (b, a) < T (d, c)].

Consider Pr[T (2, 1) < T (1, 2)]. If Pr[T (2, 1) < T (1, 2)] ∈ [13 ,
2
3 ], then let (a, b) = (2, 1)

and (c, d) = (1, 2), and we are done. If not, then without loss of generality we can assume
Pr[T (2, 1) < T (1, 2)] < 1

3 (if instead Pr[T (2, 1) < T (1, 2)] > 2
3 , then we can exchange m and

n to get Pr[T (1, 2) < T (2, 1)] > 2
3 , in which case Pr[T (2, 1) < T (1, 2)] = 1 − Pr[T (1, 2) <

T (2, 1)] < 1
3). Our goal now is to show that Pr[T (2, 1) < T (1, j)] ∈ [13 ,

2
3 ] for some j > 2.

Let Si = {T ∈ S : T (2, 1) = i} and let qi = |Si|/|S|, i.e. the probability that the bijection
T has T (2, 1) = i. If T (2, 1) = i, we must have T (1, j) = j < T (2, 1) for j ≤ i − 1 and
T (1, j) > i = T (2, 1) for j ≥ i. So T (2, 1) < T (1, j) is equivalent to j ≥ T (2, 1), and summing
over all possibilities for the value T (2, 1) = 2, . . . , j we have

Pr[T (2, 1) < T (1, j)] = q2 + q3 + · · · qj .

In particular, q2 = Pr[T (2, 1) < T (1, 2)] < 1
3 . Note also that q2 + · · ·+ qn+1 = 1 since these

are the only possibilities for T (2, 1).

Claim. We have that q2 ≥ q3 ≥ · · · ≥ qn+1.

Proof. We see that there is an injection ϕ : Si+1 → Si, given by ϕ(T )(1, i) = i+1, ϕ(T )(2, 1) =
i, and ϕ(T )(r, s) = T (r, s) for all other (r, s).

Finally, let k = max{j : q2 + · · · + qj < 1
3}, which exists by the above bounds. Further,

since qn+1 ≤ q2 < 1
3 , we have q2 + · · · + qn = 1 − qn+1 > 2

3 , so k < n. By maximality
we must have that 1

3 ≤ q2 + · · · + qk+1, and since qk+1 ≤ q2 < 1
3 , we must also have

q2+ · · ·+ qk+1 = (q2+ · · ·+ qk)+ qk+1 <
1
3 +

1
3 = 2

3 . Then (a, b) = (1, k+1) and (c, d) = (2, 1)
are the desired pairs.

Solution 2: The answer is yes, in particular for a = 2, b = 2024, c = 3, d = 2023. Think of
the domain of T as a grid with 3 rows and 2024 columns, with rows and columns numbered
as for a matrix. The greatest value of T , namely 6072 must be in the bottom row and the
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rightmost column, so T (3, 2024) = 6072. Similarly, the value 6071 can only be immediately
above or immediately to the left of (3, 2024), so either T (2, 2024) = 6071 or T (3, 2023) = 6071.
Thus, the number n1 of T for which T (2, 2024) < T (3, 2023) is the number of T for which
T (3, 2023) = 6071, and the number n2 of T for which T (2, 2024) > T (3, 2023) is the number
of T for which T (2, 2024) = 6071. To prove that n1/(n1 + n2) is between 1/3 and 2/3, it
suffices to prove that n1/n2 is between 1/2 and 2.

For integers k ≥ ℓ ≥ m ≥ 0, let Dk,ℓ,m = ({1}×{1, 2, . . . , k})∪({2}×{1, 2, . . . , ℓ})∪({3}×
{1, 2, . . . ,m}). Notice that D2024,2024,2024 is the domain of T in the problem statement. More
generally, think of Dk,ℓ,m as a left-justified grid with k elements in the first row, ℓ elements in
the second row, and m elements in the third row. Let N(k, ℓ,m) be the number of bijections
T : Dk,ℓ,m → {1, 2, . . . , k + ℓ + m} for which T (i, j) < T (i + 1, j) and T (i, j) < T (i, j + 1)
whenever both sides of the inequality are defined. Notice that N(2024, 2024, 2024) is the
number of elements in S, and so is N(2024, 2024, 2023), since T (3, 2024) is determined by the
conditions on T . Furthermore, n1 = N(2024, 2024, 2022) and n2 = N(2024, 2023, 2023).

The bulk of the remainder of the solution is to derive a formula for N(k, ℓ,m). The
greatest value of T , namely k + ℓ+m, must occur at the right end of a row and only if this
row extends beyond the bottom row, so either T (1, k) = k + ℓ+m or T (2, ℓ) = k + ℓ+m or
T (3,m) = k + ℓ +m. If k > ℓ > m > 0, then all three cases are possible, and if k = ℓ then
the largest element cannot be at (1, k) etc. Each case can be reduced to a domain with one
fewer element, resulting in the identity

N(k, ℓ,m) = N(k − 1, ℓ,m) +N(k, ℓ− 1,m) +N(k, ℓ,m− 1), (*)

where we assume that the term is 0 if the arguments are not in weakly decreasing order.
Furthermore, considering the conventional values N(0, 0, 0) = 1 and N(k, ℓ,m) = 0 if k, ℓ or
ℓ < m as “boundary conditions”, (*) recursively determines N(k, ℓ,m) for all k ≥ ℓ ≥ m ≥ 0
with k + ℓ+m > 0.

We will express N(k, ℓ,m) as a linear combination of trinomial coefficients, which satisfy
a similar recursion. Let

F (p, q, r) =
(p+ q + r)!

p!q!r!

for nonnegative integers p, q, r, and extend F to the integers by defining F (p, q, r) = 0 if p < 0
or q < 0 or r < 0.

Lemma. For (p, q, r) ̸= (0, 0, 0),

F (p, q, r) = F (p− 1, q, r) + F (p, q − 1, r) + F (p, q, r − 1).

Proof. For nonnegative p, q, r with p+ q + r > 0, the desired equality is equivalent to

(p+ q + r − 1)!

p!q!r!
(p+ q + r) =

(p+ q + r − 1)!

p!q!r!
p+

(p+ q + r − 1)!

p!q!r!
q +

(p+ q + r − 1)!

p!q!r!
r.

If p < 0 or q < 0 or r < 0, then the desired equality is equivalent to 0 = 0.

Claim. For k ≥ ℓ ≥ m ≥ 0 or k+1 = ℓ ≥ m ≥ 0 or k ≥ ℓ+1 = m ≥ 0 or k ≥ ℓ ≥ m+1 = 0,

N(k, ℓ,m) = F (k, ℓ,m) + F (k + 2, ℓ− 1,m− 1) + F (k + 1, ℓ+ 1,m− 2)

− F (k + 1, ℓ− 1,m)− F (k, ℓ+ 1,m− 1)− F (k + 2, ℓ,m− 2).
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Proof. The claimed expression for N(k, ℓ,m) satisfies the recursion (*) for k ≥ ℓ ≥ m ≥ 0
and k + ℓ+m > 0 as an immediate consequence of the Lemma, since k + ℓ+m > 0 ensures
that none of the triples on which F is being evaluated are (0, 0, 0). It remains to verify the
“boundary conditions”.

If k+1 = ℓ ≥ m ≥ 0, then substituting ℓ = k+1 into the claimed expression and using the
fact that F (p, q, r) = F (q, p, r) makes all the terms cancel out, yielding the required boundary
value 0 in this case. Similarly, if k ≥ ℓ+ 1 = m ≥ 0, then substituting m = ℓ+ 1 and using
the fact that F (p, q, r) = F (p, r, q) makes all the terms cancel out. If k ≥ ℓ ≥ m + 1 = 0,
then all terms in the claimed expression are 0. Finally, if k = ℓ = m = 0, first term is 1 and
all other terms are 0, yielding the required value 1 in this case.

For k ≥ ℓ ≥ m ≥ 0, it follows that

(k + 2)!(ℓ+ 1)!m!

(k + ℓ+m)!
N(k, ℓ,m) = (k + 2)(k + 1)(ℓ+ 1) + (ℓ+ 1)ℓm+ (k + 2)m(m− 1)

− (k + 2)(ℓ+ 1)ℓ− (k + 2)(k + 1)m− (ℓ+ 1)m(m− 1)

= (k + 1− ℓ) ((k + 2)(ℓ+ 1)− (k + ℓ+ 2)m+m(m− 1))

= (k + 1− ℓ)(ℓ+ 1−m)(k + 2−m).

Then for k ≥ 2,

N(k, k, k − 2)

N(k, k − 1, k − 1)
=

(k + 2)!k!(k − 1)!

(k + 2)!(k + 1)!(k − 2)!
· 1 · 3 · 4
2 · 1 · 3

= 2
(k − 1)

(k + 1)
.

This fraction is between 1/2 and 2 for all k ≥ 2. In particular, with k = 2024, we get that
n1/n2 is between 1/2 and 2, which completes the solution.

Remark. This problem is a special case of the 1/3–2/3 conjecture (https://en.wikipedia.
org/wiki/1/3-2/3_conjecture). Solution 1 is based on an argument in [S. H. Chan, I.
Pak, G. Panova, “Sorting Probability for Large Young Diagrams”, Discrete Analysis 24
(2021), https://doi.org/10.19086/da.30071]. The final formula derived in Solution 2
for N(k, ℓ,m) is a special case of the “hook length formula”, written in the following form:

https://en.wikipedia.org/wiki/Hook_length_formula#Related_formulas
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A4. Find all primes p > 5 for which there exists an integer a and an integer r satisfying
1 ≤ r ≤ p− 1 with the following property: the sequence 1, a, a2, ..., ap−5 can be rearranged to
form a sequence b0, b1, b2, ..., bp−5 such that bn − bn−1 − r is divisible by p for 1 ≤ n ≤ p− 5.

Answer: Only p = 7.

Solution: For p = 7, a = 3 yields the sequence 1, 3, 9, which can be reordered as 1, 9, 3.
For p ≥ 11, we work modulo p. Suppose 1, a, a2, . . . , ap−5 can be rearranged with differ-

ences between consecutive terms congruent to r ̸≡ 0 (mod p). If two of these terms were the
same modulo p, then jr ≡ 0 (mod p) where j is the distance between their indices in the arith-
metic progression. Since j < p, we must have j = 0, and so the terms are all distinct modulo
p. Because p−5 > (p−1)/2, we conclude that a has multiplicative order p−1 modulo p, and
so 0, 1, a, a2, . . . , ap−2 are distinct modulo p. Therefore, 1, a, a2, . . . , ap−5 must be congruent
to a “segment” of the “cyclic” modulo-p arithmetic progression 0, r, 2r, . . . , (p − 1)r, 0, . . ..
Then 0, ap−4, ap−3, ap−2 must be congruent to the remaining segment that completes the cy-
cle. Since ap−1 ≡ 1 (mod p), these four terms are congruent to 0, c, c2, c3, where c is the
residue class of ap−2 modulo p. Because none of c, c2, c3 are −1 times another, 0 must be an
end of the arithmetic progression, which we may assume is the beginning. Furthermore, if
we multiply by c−4, we obtain another arithmetic progression using the same rearrangement
of the terms 0, c−3, c−2, c−1 as for 0, c, c2, c3. Thus, with either d = c or d = c−1, we need
only consider the three orderings of 0, d, d2, d3 that begin with 0 and where d precedes d3.

The progression is 0, d, d2, d3. Then d2 ≡ 2d (mod p) and d3 ≡ 3d (mod p), so d ≡ 2
(mod p) and 8 ≡ 6 (mod p), a contradiction.

The progression is 0, d, d3, d2. Then d3 ≡ 2d (mod p) and d2 ≡ 3d (mod p). Thus, d ≡ 3
(mod p) and 27 ≡ 6 (mod p), a contradiction.

The progression is 0, d2, d, d3. Then d ≡ 2d2 (mod p) and d3 ≡ 3d2 (mod p). Thus, d ≡ 3
(mod p) and 3 ≡ 18 (mod p), a contradiction.
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A5. Consider a circle Ω with radius 9 and center at the origin (0, 0), and a disk ∆ with
radius 1 and center at (r, 0), where 0 ≤ r ≤ 8. Two points P and Q are chosen independently
and uniformly at random on Ω. Which value(s) of r minimize the probability that the chord
PQ intersects ∆?

Answer: r = 0. More generally, if the larger circle has radius ρ > 1, then the minimum
probability for 0 ≤ r ≤ ρ− 1 occurs at (and only at) r = 0.

Solution 1: Consider more generally the case that ∆ has center (r cos θ, r sin θ). The prob-
ability p(r) that PQ intersects ∆ is independent of θ, so we can compute p(r) by considering
θ to be a random variable chosen uniformly on [−π, π], independently of P and Q.

Next, let O be the origin, and let Π be the set of lines through O. Let L be the line in Π

that bisects angle POQ. As the angle ray
−−→
OQ makes with ray

−−→
OP increases from 0 to 2π, the

angle L makes with
−−→
OP increases half as fast from 0 to π (this sweeps through all the lines in

Π). Thus, L is uniformly distributed on Π for each fixed P . Since P is uniformly distributed
on Ω, the ordered pair (P,L) is uniformly distributed on Ω × Π. Since P and L determine
Q (specifically, Q is the reflection of P through L), we can compute p(r) with respect to the
independent uniform random variables P , L, and θ (instead of with respect to P , Q, and θ).

Because of the uniform distribution of θ, the probability that PQ intersects ∆ is indepen-
dent of L. Thus, we can fix L to be vertical and compute p(r) with respect to P and θ; then
PQ is the horizontal line through P . By left-right symmetry, we can compute p(r) using the
uniform distribution for P on the half of Ω to the right of L. Thus, let P = (ρ cosφ, ρ sinφ)
where φ is uniformly distributed on [−π/2, π/2]. For fixed θ, the probability that PQ in-
tersects ∆ is then the probability that ρ sinφ lies between r sin θ − 1 and r sin θ + 1, which
is

1

π

(
arcsin

(
r sin θ + 1

ρ

)
− arcsin

(
r sin θ − 1

ρ

))
.

Thus,

p(r) =
1

2π2

∫ π

−π

(
arcsin

(
r sin θ + 1

ρ

)
− arcsin

(
r sin θ − 1

ρ

))
dθ.

It follows that

p′(r) =
1

2π2

∫ π

−π

sin θ

ρ

(
1√

1− (r sin θ + 1)2/ρ2
− 1√

1− (r sin θ − 1)2/ρ2

)
dθ

=
1

2π2

∫ π

−π
sin θ

(
1√

ρ2 − (r sin θ + 1)2
− 1√

ρ2 − (r sin θ − 1)2

)
dθ.

The integrand is positive when 0 < r < ρ − 1 and sin θ > 0, because then (r sin θ − 1)2 <
(r sin θ + 1)2 < ρ2. Notice that the integrand is also an even function of θ, since it is the
product of two odd functions. Thus, p′(r) > 0 for 0 < r < ρ − 1, and therefore p(r) is
minimized at r = 0 only.

Solution 2: Let P = (ρ cos θ, ρ sin θ), where θ is uniformly distributed on [0, 2π). Let B be
a point on ∆ for which PB is tangent to ∆, and let C = (r, 0) be the center of ∆. Then
PBC is a right triangle, and since length BC = 1, we have

sin∠BCP =
BC

PC
=

1√
(ρ cos θ − r)2 + (ρ sin θ)2

=
1√

ρ2 + r2 − 2ρr cos θ
.
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Let A be the arc between the two tangent rays from P to ∆. For fixed P , the conditional
probability that PQ intersects ∆ is the probability that Q lies in A, which is the angle
measure α of A divided by 2π. Notice that α is twice the angle between the tangent rays
from P to ∆, and hence α = 4∠BCP . Thus, the conditional probability that PQ intersects
∆ is (2/π) arcsin(1/

√
ρ2 + r2 − 2ρr cos θ). It follows that the overall probability p(r) that

PQ intersects ∆ is given by

p(r) =
1

2π

∫ 2π

0

2

π
arcsin

(
1√

ρ2 + r2 − 2ρr cos θ

)
dθ

=
2

π2

∫ π

0
arcsin

(
1√

ρ2 + r2 − 2ρr cos θ

)
dθ.

Notice that p(0) = (2/π) arcsin(1/ρ).
Since arcsin is a convex function on the interval [0, 1], Jensen’s inequality implies that

p(r) ≥ 2

π
arcsin

(
1

π

∫ π

0

1√
ρ2 + r2 − 2ρr cos θ

dθ

)
.

The proof that p(r) > p(0) for 0 < r ≤ ρ − 1 will be complete after we prove the following
claim for such r:

1

π

∫ π

0

1√
ρ2 + r2 − 2ρr cos θ

dθ >
1

ρ
.

This claim turns out to be true for 0 < r < ρ, in fact. Let x = r/ρ ∈ (0, 1); multiplying the
inequality above by ρπ yields the equivalent claimed inequality∫ π

0

1√
1 + x2 − 2x cos θ

dθ > π.

Let t = (
√
1 + x2 − 2x cos θ − 1)/x, so that 1 + x2 − 2x cos θ = (1 + xt)2, and notice that

t goes from −1 to 1 as θ goes from 0 to π. To change variables from θ to t in the integral
above, we compute 2x sin θ dθ = 2x(1 + xt)dt, and

2x sin θ = 2x
√

1− cos2 θ = 2x

√
1−

(
1 + x2 − (1 + xt)2

2x

)2

=
√

(2x+ 1 + x2 − (1 + xt)2)(2x− 1− x2 + (1 + xt)2)

=
√
(1 + x+ (1 + xt))(1 + x− (1 + xt))(1 + xt+ (1− x))(1 + xt− (1− x))

=
√

(2 + x+ xt)x(1− t)(2− x+ xt)x(1 + t) = x
√

1− t2
√
(2 + xt)2 − x2.

Thus, ∫ π

0

1√
1 + x2 − 2x cos θ

dθ =

∫ 1

−1

1

1 + xt
· 2(1 + xt)√

1− t2
√
(2 + xt)2 − x2

dt

=

∫ 1

−1

2√
1− t2

√
(2 + xt)2 − x2

dt.
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Let fx(t) = (2 + xt)2 − x2, so that the integrand above can be written 2fx(t)
−1/2/

√
1− t2.

Since the function y 7→ y−1/2 on the positive real numbers is convex,

fx(t)
−1/2 + fx(−t)−1/2

2
≥
(
fx(t) + fx(−t)

2

)−1/2

= (4 + x2t2 − x2)−1/2 >
1

2

for 0 < x < 1 and −1 < t < 1. Thus,∫ 1

−1

2fx(t)
−1/2

√
1− t2

dt =

∫ 1

0

2(fx(t)
−1/2 + fx(−t)−1/2)√

1− t2
dt >

∫ 1

0

2√
1− t2

dt = π

as claimed.
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A6. Let c0, c1, c2, . . . be the sequence defined so that

1− 3x−
√
1− 14x+ 9x2

4
=

∞∑
k=0

ckx
k

for sufficiently small x. For a positive integer n, let A be the n-by-n matrix with i, j-entry
ci+j−1 for i and j in {1, . . . , n}. Find the determinant of A.

Answer: 10(n
2−n)/2.

Solution 1: More generally, let

F (x) =
1− αx−

√
(1− αx)2 − 4βx

2β
=

∞∑
k=0

ckx
k.

We show that the determinant of the n × n matrix defined as in the problem statement is
(β(α+ β))(n

2−n)/2. When α = 3, β = 2, we get the problem statement.
By the quadratic formula, F (x) is a root of

βF (x)2 + (αx− 1)F (x) + x = 0.

From its definition, observe that c0 = F (0) = 0. Examining the coefficient of xn in the
functional equation, we find

cn =


1, if n = 1,

α+ β, if n = 2,

(α+ 2β)cn−1 + β
n−2∑
k=2

ckcn−k, if n > 2.

(We use the convention that a sum with strictly decreasing limits of summation is 0.)
Thus, the 1-by-1 matrix has determinant 1 and the 2-by-2 matrix has determinant

(α+ 2β)(α+ β) · 1− (α+ β)2 = β(α+ β).

We proceed by induction; assume the claim for some n ≥ 2 and consider the (n+1)-by-(n+1)
matrix.

From row n + 1, subtract α + 2β times row n and βcn+1−k times row k for rows k =
2, . . . , n− 1. The entry in row n+ 1, column j is now

cn+j − (α+ 2β)cn+j−1 − β

n−1∑
k=2

cn+1−kcj+k−1 = cn+j − (α+ 2β)cn+j−1 − β

n−1∑
k=2

ckcn+j−k

= β

n+j−2∑
k=n

ckcn+j−k = β

j−1∑
k=1

ck+n−1c1+j−k.

Next, reduce rows n, n − 1, . . . , 3 similarly. Finally, subtract α + β times row 1 from row 2,
so the entry in the jth column of row 2 is now

β

j−1∑
k=1

ckc1+j−k.
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At this point, column j of rows 2 through n+ 1 is the column vector

β

j−1∑
k=1


ckc1+j−k

ck+1c1+j−k
...

ck+n−2c1+j−k

ck+n−1c1+j−k

 = β

j−1∑
k=1

c1+j−k


ck
ck+1
...

ck+n−2

ck+n−1

 .

Therefore, the entire first column is now the standard basis vector e1. The determinant of
the reduced matrix (which is the same as the determinant of the original matrix) is then the
determinant of its lower right n-by-n submatrix. Pull the factor βn out of the determinant
of the submatrix. Noting that, for j ≥ 3,

j−2∑
k=1

c1+j−k


ck
ck+1
...

ck+n−2

ck+n−1


is in the span of the columns 2, . . . , j − 1 of this submatrix, we may reduce its columns
from left to right, yielding c2 = (α + β) times the original n-by-n matrix. Therefore, the
determinant for (n + 1)-by-(n + 1) matrix is βn(α + β)n times that for the n-by-n matrix,
completing the induction.
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Remark. Letting An denote the n-by-n matrix, the row and column reductions above can
be summarized as follows:

1
−(α+ β) 1

0 −(α+ 2β) 1 0
0 −βc2 −(α+ 2β) 1

. . .

0 −βcn−2 −βcn−3 . . . −βc2 −(α+ 2β) 1
0 −βcn−1 −βcn−2 . . . −βc3 −βc2 −(α+ 2β) 1



·An+1 ·



1 0 0 0
1 −c3/c2 −c4/c2 . . . −cn/c2 −cn+1/c2

1 −c3/c2 . . . −cn−1/c2 −cn/c2
. . .

0
1 −c3/c2

1



=


c1 c2 . . . cn+1

0
... β(α+ β)An

0

 .

Solution 2: We will show that A = LDLt where [Li,j ]
n−1
i,j=0 is a lower triangular matrix with

1’s on the diagonal and [Di,j ]
n−1
i,j=0 is a diagonal matrix with Dk,k = 10k. (Here we start the

indexing at 0.) Then detA = det(L)2 det(D) = 1 · 100+1+···+(n−1) = 10(
n
2).

Let F (x) = 1−3x−
√
1−14x+9x2

4 = x + 5x2 + O(x3). We have that (4F (x) + 3x − 1)2 =
1− 14x+ 9x2, so

2F (x)2 + (3x− 1)F (x) + x = 0.

Let f(u) := F (u)/u = 1 + 5u + O(u2) and g(u) := F (u)−u
5u = u + O(u2), and define Li,j

for i, j = 0, 1, . . . as the coefficients of the expansion of

ℓ(u, v) =
∑
i,j≥0

Li,ju
ivj =

f(u)

1− vg(u)
= f(u)

(
1 + vg(u) + v2g(u)2 + · · ·

)
.

We see that Li,j = 0 for i < j and Li,i = 1. Consider B = LDLt where Dk,k = dk for k ≥ 0
and all other entries of D are zero. Then the entries of B are

Bi,j =
∑
k≥0

Li,kDk,kLj,k.
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(Only a finite number of terms in the sum above are nonzero, because L is lower triangular.)
Denote by [zk]H(z) the coefficient of zk in the expansion of H(z). Set

b(u, v) =
∑
i,j≥0

Bi,ju
ivj =

∑
k≥0

[wktk]
∑

i,j,r,s≥0

Li,ru
iwrdrLj,sv

jts

=
∑
k≥0

[wktk]ℓ(u, dw)ℓ(v, t) = f(u)f(v)
∑
k≥0

[wktk]
∑
r,s≥0

drwrg(u)rtsg(v)s

= f(u)f(v)
∑
k≥0

dkg(u)kg(v)k =
f(u)f(v)

1− dg(u)g(v)
.

The lower-triangular property Li,j = 0 for i < j implies that Bi,j depends only on values
of Li,k, Dk,k, and Lj,k with k ≤ i and k ≤ j. Thus, the equation B = LDLt holds also for the
finite matrices [Bi,j ]

n−1
i,j=0, [Li,j ]

n−1
i,j=0, and [Di,j ]

n−1
i,j=0. The following claim proves the desired

decomposition for A, and finishes the solution.

Claim. For d = 10, we have Ai+1,j+1 = Bi,j.

Proof. Define Ai,j = ci+j−1 for all i, j = 1, 2, . . ., and let

a(u, v) =
∑
i,j≥0

Ai+1,j+1u
ivj =

∑
i,j≥0

ci+j+1u
ivj

=
∑
r≥0

cr+1(u
r + ur−1v + · · ·+ vr) =

∑
r≥0

cr+1
ur+1 − vr+1

u− v
=

F (u)− F (v)

u− v
,

since c0 = 0.
Next, consider

a(u, v)− b(u, v) =
F (u)− F (v)

u− v
− f(u)f(v)

1− 10g(u)g(v)

=
F (u)(1− 10g(u)g(v))− uf(u)f(v)− F (v)(1− 10g(u)g(v)) + vf(u)f(v))

(u− v)(1− 10g(u)g(v))
.

We have that F (u) = F (u)−u
2F (u)+3u , and so the first half of the numerator above is

F (u)(1− 10g(u)g(v))− uf(u)f(v) = F (u)(1− 10g(u)g(v)− f(v))

=
(F (u)− u)

2F (u) + 3u

(
1− 2

(F (u)− u)(F (v)− v)

5uv
− F (v)

v

)
=

(F (u)− u)

(2F (u) + 3u)(5uv)
(5uv − 2F (u)F (v) + 2vF (u) + 2uF (v)− 2uv − 5uF (v))

=
(F (u)− u)

(2F (u) + 3u)(5uv)
(3uv − 2F (u)F (v) + 2vF (u)− 3uF (v))

=
(F (u)− u)(F (v)− v)(−2F (u)− 3u)

(2F (u) + 3u)(5uv)

= −(F (u)− u)(F (v)− v)

5uv
.

The second half of the numerator is the negative of the first half, with u and v interchanged,
so performing the same manipulations on the second half verifies that it cancels with the first
half. Thus, a(u, v) = b(u, v) and the claim is proved.

13



Remark. This problem was inspired by the determinants of Hankel matrices used to count
tilings of the Aztec diamond (https://en.wikipedia.org/wiki/Aztec_diamond).
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