2024 Session A

A1l. Determine all positive integers n for which there exist positive integers a, b, and c
satisfying
2a" + 3b" = 4c".

Answer: n =1 only. For n = 1, the equation is satisfied by (a,b,c) = (1,2, 2).

Solution 1: Consider n > 1. If d is the greatest common divisor of a, b, ¢, so a = dx, b = dy,
¢ = dz, then x,y, z satisfy the same equation and we can assume that the greatest common
divisor is 1. We see that 2 | 3b™, so 2 | b. Letting b = 2b;, the equation becomes

2™ + 3 - 2"B7 = 4c™.
Since n > 2, we have that 4 | 2a™, so 2 | ™ and 2 | a. Setting a = 2a;, we get that
2"(2al 4 3b7) = 4c"

and 2772 | ¢". Since we assumed the greatest common divisor of a,b,c is 1, we must have
that 2 1 ¢. Thus, we must have n = 2.
Then
2a? 4 3b* = 4¢2,

and so a® +c? = 3a? 4 3b? — 3¢? is divisible by 3. Considering all possible cases for remainders
of a and ¢ by division by 3, we see that a® has remainder 0 or 1, and ¢? has remainder 0 or
1. Thus, both a? and ¢ must have remainder 0, so 3 | @ and 3 | c. Writing a = 3az, ¢ = 3¢z
we have b? = 3(4c3 — 2a3), so 3 | b, contradicting the assumption that a,b,c have common
divisor 1.

Solution 2: To prove that there are no solutions for n > 2, assume to the contrary that
there is such a solution. Let d be the greatest common divisor of a, b, and ¢, and let x = a/d,
y=">b/d, and z = ¢/d. Then 22"+ 3y™ = 42", and the greatest common divisor of z, y, and z
is 1. In particular, at least one of x, y, and z is odd. Since 3y™ = 4z"™ — 22" is even, y is even.
Then since n > 2, it follows that 22" = 42" — 3y™ is a multiple of 4, so z is even too, whence
zis odd. If n > 3, we then have the contradiction that 2x™ 4 3y™ is a multiple of 8, but 42" is
not. If n = 2, we can write 2(x/2)? + 3(y/2)? = 22. It follows that /2 is odd. Since all odd
squares are congruent to 1 modulo 8, we have 2(x/2)? = 22 — 3(y/2)? =1 -3 =6 (mod 8),
which is impossible.



A2. For which real polynomials p is there a real polynomial ¢ such that

p(p()) — z = (p(z) — z)*q(x)

for all real x?
Answer: Only p(x) = £z + ¢ for ¢ a constant.

Solution 1: Let f(z) = p(x) — x and let d denote its degree. Then the desired property is
equivalent to f(x + f(x)) + f(x) = [f(z)]?q(x). By the Taylor series expansion of f at z,

@) @)
L2 @R+ 2 f@)

Thus, the factorization exists if and only if 2f(z) + f'(z)f(z) = [f(2)]*r(x) for some poly-
nomial 7, which in turn is equivalent to f(z) =0 or 2 + f/(x) = f(z)r(x). The factorization
holds when d = 0, hence when p(z) = z +¢. If d > 0, then 2 + f'(x) has degree d — 1, a
contradiction, unless 2 + f’(z) = 0, which is equivalent to p(x) = —x + c.

fla+ f(@) = f(@)+ f(2)f(z) +

Solution 2: Let r(z) = p(x) — x, then p(x) = x 4+ r(x) and the equation becomes

r(r(z) +a) +r(z) = r(z)*q(z)

Let r(z) = cpz™ 4 - - - + c12 + ¢o be its expansion in monomials. Then

k = . (k i k—i
r(r(z) +z) = cr(r(x) +2)" = E Cr g (Z>x (r(z))
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q1 96)
=r(z)*qu(z) +r(x)r’ (z) + 7(2).

Thus, the original equation is equivalent to

r(@)’q(z) + r(2)r' () + 2r(z) = r*(2)q(2).

Thus, either r(z) is identically 0 (so p(z) = z) or

r'(z) +2 =r(z)(q(x) - qi(2)).

If the degree of r(z) is not 0, then deg(r’'(z) 4+ 2) = deg(r(z)) — 1 < deg(r(z)(q(z) — q1(x)),
unless g(x) — q1(z) = 0. Thus, either deg(r(z)) = 0, so p(x) = x + ¢, or q(z) = q1(z) and
r(z) ==2,s0 r(x) = =2z + ¢, so p(x) = —x +c.

Plugging the two possibilities in the original equation we see the following. For p(x) =
x + ¢, we have 2c = c2q(x), so all real values for ¢ give a solution with a constant polynomial
q(z). For p(z) = —z + ¢ we have —(—x + ¢) + ¢ — x = (=22 + ¢)?q(x), so q(x) = 0 gives a
solution for all c.

The solutions are thus p(x) = —x + ¢ for any real ¢ or p(x) = = + ¢ for any real c.



A3. Let S be the set of bijections
T:{1,2,3} x {1,2,...,2024} — {1,2,...,6072}

such that T'(1,7) < T(2,j) < T(3,5) for all j € {1,2,...,2024} and T'(i,j) < T'(i,5 + 1) for
all i € {1,2,3} and j € {1,2,...,2023}. Do there exist a and c in {1,2,3} and b and d in
{1,2,...,2024} such that the fraction of elements T in S for which T'(a,b) < T'(c,d) is at
least 1/3 and at most 2/37

Answer: Yes.

Solution 1: We consider the more general situation where the set of bijections S is T :
{1,....m} x{1,2,...,n} = {1,2,..., mn} satisfying the given inequalities, where

m,n > 2

In the problem we have m = 3,n = 2024. To simplify the notation, we switch to the
probabilistic formulation: we are choosing elements T uniformly at random from S and
considering the probability that T'(a,b) < T'(c,d), which is equal to the proportion of such
bijections 7. By symmetry, if m and n are exchanged, then Pr[T'(a,b) < T(c,d)] becomes
Pr(T(b,a) < T(d,c)].

Consider Pr[T'(2,1) < T(1,2)]. If Pr[T(2,1) < T(1,2)] € [3, 3], then let (a,b) = (2,1)
and (c,d) = (1,2), and we are done. If not, then without loss of generality we can assume
Pr(T(2,1) < T(1,2)] < £ (if instead Pr[T(2,1) < T(1,2)] > 2, then we can exchange m and
n to get Pr[T(1,2) < T(2,1)] > 2, in which case Pr[T'(2,1) < T(1,2)] = 1 — Pr[T(1,2) <
T(2,1)] < 1). Our goal now is to show that Pr[T(2,1) < T(1, )] € [3, 2] for some j > 2.

Let S; ={T € S:T(2,1) =i} and let ¢; = |S;|/|5], i.e. the probability that the bijection
T has T(2,1) = i. If T(2,1) = i, we must have T(1,j) = j < T(2,1) for j < i—1 and
T(1,7)>i=T(2,1) for j >i. SoT(2,1) <T(1,7) is equivalent to j > T'(2,1), and summing
over all possibilities for the value T'(2,1) = 2,...,j we have

Pri7(2,1)<T1,5)]=¢+qg¢g+ g

In particular, g» = Pr[T(2,1) < T(1,2)] < 3. Note also that gz + - + g1 = 1 since these
are the only possibilities for T'(2,1).

Claim. We have that g2 > q3 > -+ > qp+t1-

Proof. We see that there is an injection ¢ : S;1+1 — S;, given by ¢(T)(1,7) = i+1, ¢(T)(2,1) =
i, and ¢(T')(r,s) = T(r,s) for all other (r,s). O

Finally, let k = max{j : g2 +--- +¢; < %}, which exists by the above bounds. Further,
since gn+1 < @@ < %, we have ga + -+ ¢qn = 1 — gn+1 > %, so k < n. By maximality
we must have that % < g+ -+ + qry1, and since g1 < @2 < %, we must also have
G2+ app1 = (g2 +ak) +qe1 < g+3 = 3. Then (a,b) = (1,k+1) and (¢,d) = (2,1)
are the desired pairs.

Solution 2: The answer is yes, in particular for a = 2, b = 2024, ¢ = 3, d = 2023. Think of
the domain of T as a grid with 3 rows and 2024 columns, with rows and columns numbered
as for a matrix. The greatest value of T', namely 6072 must be in the bottom row and the



rightmost column, so 7'(3,2024) = 6072. Similarly, the value 6071 can only be immediately
above or immediately to the left of (3,2024), so either T'(2,2024) = 6071 or T'(3,2023) = 6071.
Thus, the number ny of T' for which 7°(2,2024) < T'(3,2023) is the number of 7" for which
T(3,2023) = 6071, and the number ng of T for which 7'(2,2024) > T'(3,2023) is the number
of T for which T'(2,2024) = 6071. To prove that ni/(ny + ng) is between 1/3 and 2/3, it
suffices to prove that ni/ng is between 1/2 and 2.

For integers k > £ > m > 0, let Dy ¢, = ({1} x{1,2,...,k})U({2} x{1,2,...,€})U({3} x
{1,2,...,m}). Notice that D2024,2024,2024 is the domain of T" in the problem statement. More
generally, think of Dy, ., as a left-justified grid with & elements in the first row, £ elements in
the second row, and m elements in the third row. Let N(k, ¢, m) be the number of bijections
T : Dpgm — {1,2,...,k + € +m} for which T(i,j) < T(i + 1,7) and T(i,j) < T(i,j + 1)
whenever both sides of the inequality are defined. Notice that N(2024,2024,2024) is the
number of elements in S, and so is N (2024, 2024, 2023), since 7'(3,2024) is determined by the
conditions on T'. Furthermore, n; = N (2024, 2024, 2022) and ny = N (2024, 2023, 2023).

The bulk of the remainder of the solution is to derive a formula for N(k,¢,m). The
greatest value of T', namely k£ + £ + m, must occur at the right end of a row and only if this
row extends beyond the bottom row, so either T'(1,k) = k+ ¢+ m or T'(2,¢) = k+ ¢+ m or
T3,m)=k+{+m. If k> ¢ >m >0, then all three cases are possible, and if k¥ = ¢ then
the largest element cannot be at (1, k) etc. Each case can be reduced to a domain with one
fewer element, resulting in the identity

Nk, t,m) = N(k — 1,,m) + N(k,£ — 1,m) + N(k, £,m — 1), (%)

where we assume that the term is 0 if the arguments are not in weakly decreasing order.
Furthermore, considering the conventional values N(0,0,0) = 1 and N(k,¢,m) =0 if k, £ or
¢ < m as “boundary conditions”, (*) recursively determines N (k,¢,m) for all k > ¢ >m >0
with £+ ¢+ m > 0.

We will express N(k, ¢, m) as a linear combination of trinomial coefficients, which satisfy
a similar recursion. Let
(pP+g+r)

plg!r!
for nonnegative integers p, ¢, r, and extend F' to the integers by defining F'(p,q,7) =0if p < 0
org<Qorr<0.

F(p,q,r) =

Lemma' FOT (p7 q, T) ;é (O’ 07 O);
F<p7Q7r) = F(p_ 17q77n) +F(p7q_ 17T) +F(p,q,7"— 1)
Proof. For nonnegative p, q,r with p + ¢ +r > 0, the desired equality is equivalent to

p+qg+r—1)! p+qg+r—1!  (p+qg+r—1)

(p+q+7r—1)
plglr! b plglr! a plglr!

plg'r!

(p+qg+r)=
If p<0org<0orr <0, then the desired equality is equivalent to 0 = 0. O
Claim. Fork>¢>m>0ork+1=4>m>00rk>¢+1=m>00rk>{>m+1=0,

N(k,t,m) = F(k,t,m)+ F(k+2,0—1,m—1)+ F(k+ 1,0+ 1,m — 2)
—Fk+1,0—1,m)— F(k,{+1,m—1)— F(k+2,0,m —2).



Proof. The claimed expression for N(k, ¢, m) satisfies the recursion (*) for k > ¢ > m > 0
and k+ £+ m > 0 as an immediate consequence of the Lemma, since k + ¢ + m > 0 ensures
that none of the triples on which F' is being evaluated are (0,0,0). It remains to verify the
“boundary conditions”.

If k+1=4¢2>m > 0, then substituting £ = k+1 into the claimed expression and using the
fact that F'(p,q,r) = F(q,p,r) makes all the terms cancel out, yielding the required boundary
value 0 in this case. Similarly, if £ > ¢+ 1 = m > 0, then substituting m = £ 4 1 and using
the fact that F'(p,q,7) = F(p,r,q) makes all the terms cancel out. If k > ¢ > m+1 =0,
then all terms in the claimed expression are 0. Finally, if K = £ = m = 0, first term is 1 and
all other terms are 0, yielding the required value 1 in this case. O

For k> ¢ > m > 0, it follows that

(k+2)!1(£ + 1)!m!
(k+£+m)!

Nk, t,m)=(k+2)(k+1)({+1)+ L+ 1)lm+ (k+2)m(m—1)

—(k+2)+ 1)l —(k+2)(k+1)m—(L+1)m(m—1)
=k+1-0(k+2)+1)—(k+L+2)m+m(m—1))
=k+1-0O(f+1—m)(k+2—m).

Then for k& > 2,

Nk kk—2) _  (k+2W(-1! 13-4 (k-1
Nk k—1,k—1) (k+2k+D)(k-2) 2-1-3 " (k+1)

This fraction is between 1/2 and 2 for all £ > 2. In particular, with & = 2024, we get that
n1/ngy is between 1/2 and 2, which completes the solution.

Remark. This problem is a special case of the 1/3-2/3 conjecture (https://en.wikipedia.
org/wiki/1/3-2/3_conjecture). Solution 1 is based on an argument in [S. H. Chan, I.
Pak, G. Panova, “Sorting Probability for Large Young Diagrams”, Discrete Analysis 24
(2021), https://doi.org/10.19086/da.30071]. The final formula derived in Solution 2
for N(k,¢,m) is a special case of the “hook length formula”, written in the following form:

https://en.wikipedia.org/wiki/Hook_length_formula#Related_formulas



A4. Find all primes p > 5 for which there exists an integer a and an integer r satisfying
1 < r < p—1 with the following property: the sequence 1, a,a?, ...,a?~® can be rearranged to
form a sequence bg, by, by, ..., b,—5 such that b, — b,—1 — r is divisible by p for 1 <n <p —5.

Answer: Only p=7.

Solution: For p =7, a = 3 yields the sequence 1, 3,9, which can be reordered as 1,9, 3.

For p > 11, we work modulo p. Suppose 1,a,a?,...,aP~> can be rearranged with differ-
ences between consecutive terms congruent to r # 0 (mod p). If two of these terms were the
same modulo p, then jr =0 (mod p) where j is the distance between their indices in the arith-
metic progression. Since j < p, we must have j = 0, and so the terms are all distinct modulo
p. Because p—5 > (p—1)/2, we conclude that a has multiplicative order p— 1 modulo p, and
s0 0,1,a,a?,...,aP~? are distinct modulo p. Therefore, 1, a,a?,...,a?”® must be congruent
to a “segment” of the “cyclic” modulo-p arithmetic progression 0,r,2r,...,(p — 1)r,0,....
Then 0,aP~%, a?~3, a?~2 must be congruent to the remaining segment that completes the cy-
cle. Since a?~! = 1 (mod p), these four terms are congruent to 0,c,c?, 3, where c is the
residue class of a?~2? modulo p. Because none of ¢, ¢?, ¢® are —1 times another, 0 must be an
end of the arithmetic progression, which we may assume is the beginning. Furthermore, if
we multiply by ¢4, we obtain another arithmetic progression using the same rearrangement
of the terms 0,¢73,¢72, ¢! as for 0,¢,c?,¢3. Thus, with either d = ¢ or d = ¢!, we need
only consider the three orderings of 0, d, d?, d® that begin with 0 and where d precedes d>.

The progression is 0,d,d?, d>. Then d?> = 2d (mod p) and d® = 3d (mod p), so d = 2
(mod p) and 8 =6 (mod p), a contradiction.

The progression is 0,d,d®,d?. Then d® = 2d (mod p) and d? = 3d (mod p). Thus, d = 3
(mod p) and 27 =6 (mod p), a contradiction.

The progression is 0, d?, d,d®. Then d = 2d*> (mod p) and d® = 3d? (mod p). Thus, d = 3
(mod p) and 3 = 18 (mod p), a contradiction.



A5. Consider a circle Q with radius 9 and center at the origin (0,0), and a disk A with
radius 1 and center at (r,0), where 0 < r < 8. Two points P and @ are chosen independently
and uniformly at random on Q. Which value(s) of  minimize the probability that the chord
PQ intersects A?

Answer: r = 0. More generally, if the larger circle has radius p > 1, then the minimum
probability for 0 < r < p — 1 occurs at (and only at) r = 0.

Solution 1: Consider more generally the case that A has center (rcos#,rsiné). The prob-
ability p(r) that PQ intersects A is independent of #, so we can compute p(r) by considering
0 to be a random variable chosen uniformly on [—7, 7], independently of P and Q.

Next, let O be the origin, and let II be the set of lines through O. Let L be the line in II
that bisects angle PO(Q). As the angle ray O@ makes with ray OP increases from 0 to 2, the
angle L makes with OP increases half as fast from 0 to 7 (this sweeps through all the lines in
IT). Thus, L is uniformly distributed on II for each fixed P. Since P is uniformly distributed
on {2, the ordered pair (P, L) is uniformly distributed on © x II. Since P and L determine
Q (specifically, @ is the reflection of P through L), we can compute p(r) with respect to the
independent uniform random variables P, L, and 6 (instead of with respect to P, @, and 0).

Because of the uniform distribution of 6, the probability that PQ intersects A is indepen-
dent of L. Thus, we can fix L to be vertical and compute p(r) with respect to P and 6; then
PQ is the horizontal line through P. By left-right symmetry, we can compute p(r) using the
uniform distribution for P on the half of Q to the right of L. Thus, let P = (pcosp, psiny)
where ¢ is uniformly distributed on [—7/2,7/2]. For fixed 6, the probability that PQ in-
tersects A is then the probability that psin ¢ lies between rsinf — 1 and rsin € + 1, which

is
1 < . <rsin9—i—1> . <rsin9—1>)
— | arcsin | ———— | —arcsin | —— | ).
m p p
1 4 i 1 inf —1
p(r) = — / arcsin rsmfF1y arcsin rsinf -1 do.
2m? ), p P

It follows that

Thus,

'(r) = 1/7r sinf ! — L do
b 212 J o p \V/1—(rsinf@+1)2/p2 /1 — (rsinf —1)2/p>

1 T 1 1
= 2/ sin 6 - — _ do
2me ) & V2= (rsinf+1)2  \/p2 — (rsinf — 1)2

The integrand is positive when 0 < 7 < p — 1 and sinf > 0, because then (rsinf — 1)? <
(rsinf + 1)2 < p?. Notice that the integrand is also an even function of 6, since it is the
product of two odd functions. Thus, p'(r) > 0 for 0 < r < p — 1, and therefore p(r) is
minimized at r = 0 only.

Solution 2: Let P = (pcos#, psinf), where 0 is uniformly distributed on [0,27). Let B be
a point on A for which PB is tangent to A, and let C = (r,0) be the center of A. Then
PBC is a right triangle, and since length BC = 1, we have

BC 1 1

sin/BCP = — = = .
PC \[(pcos® —r)2+ (psin®)2  /p2+ 12— 2prcosf

7



Let A be the arc between the two tangent rays from P to A. For fixed P, the conditional
probability that PQ intersects A is the probability that @ lies in A, which is the angle
measure « of A divided by 27. Notice that « is twice the angle between the tangent rays
from P to A, and hence oo = 4/BCP. Thus, the conditional probability that PQ intersects
A is (2/)arcsin(1/+/p2? + 12 — 2prcos ). It follows that the overall probability p(r) that
PQ intersects A is given by

1 (2 1
p(r) = — — arcsin do
2 Jo m Vp? 412 —2prcosf

2 (7 . 1
== arcsin do.
™™ Jo Vp? + 12 —2prcosf

Notice that p(0) = (2/7) arcsin(1/p).
Since arcsin is a convex function on the interval [0, 1], Jensen’s inequality implies that

2 1 (7 1
p(r) > — arcsin / o | .
T m™Jo \/p?+1r2—2prcosf

The proof that p(r) > p(0) for 0 < r < p — 1 will be complete after we prove the following
claim for such r:

1 (7 1 1
— dag > —.
m™Jo \/p?+12—2prcosf p
This claim turns out to be true for 0 < r < p, in fact. Let x = r/p € (0,1); multiplying the
inequality above by pm yields the equivalent claimed inequality

4 1
do > .
/0 V1+ 22 —2xcosf

Let t = (v/1+ 22 — 2xcosf — 1)/x, so that 1+ 22 — 2z cos@ = (1 + zt)?, and notice that
t goes from —1 to 1 as 6 goes from 0 to w. To change variables from 6 to ¢ in the integral
above, we compute 2z sin 0 df = 2x(1 + «t)dt, and

2x
=VQ2r+1+22— (14 2t)2)(2z — 1 — 22 + (1 + 21)2)
=VA+z+O+at)A+z—Q+2t)A+at+(1—2z)1+xt—(1-2))
=V/2+z+at)z(1— )2 -z +at)x(l+t) =21 — 2/ (2 + t) — 22.

1422 — (1 +2t)2)?
2xsin0:2x\/m:2x\/1_( R

Thus,

/7r 1 de—/l 1 2(1 + xt) J
0 V1+22—2xcosd S ltat V1—12/(2 + 2t)2 — 22

[w=7a
— dt.
1 VI =12/ (2 + )2 — 2



Let f.(t) = (2 + xt)? — 22, so that the integrand above can be written 2f,(t)~"/2/v/1 — t2.
Since the function y — /2 on the positive real numbers is convex,

Lo+ fo(=)7H2 <fm(t) + fm(—t))_m 4222 ]

2 2 ~3

for 0 <z <1and —1 <t < 1. Thus,

1/2 1 —1/2 _\—1/2 1
m 0 Vi 0 V122

as claimed.



AG6. Let ¢y, cq,co,... be the sequence defined so that

1-32—+vV1—- 14z + 922 &
4 —chx

k=0

for sufficiently small z. For a positive integer n, let A be the n-by-n matrix with i, j-entry
Ciyj—1 for i and j in {1,...,n}. Find the determinant of A.

Answer: 10("*—)/2

Solution 1: More generally, let

F(w)zl—ax—\/(;ﬁ—aw — 4px chx

We show that the determinant of the n x n matrix defined as in the problem statement is
(B(e+ B))"*~™/2. When o = 3,3 = 2, we get the problem statement.
By the quadratic formula, F(z) is a root of

BF(x)* + (ax — 1)F(z) + = = 0.

From its definition, observe that ¢y = F(0) = 0. Examining the coefficient of 2" in the
functional equation, we find

17 If n = 17
— a’+’67 H‘n:: 2,
“n = n—2
(@+28)cn-1+ B> ckCnt, if n > 2.
k=2

(We use the convention that a sum with strictly decreasing limits of summation is 0.)
Thus, the 1-by-1 matrix has determinant 1 and the 2-by-2 matrix has determinant

(a+28)(a+pB)-1—(a+B)* =Bla+p).

We proceed by induction; assume the claim for some n > 2 and consider the (n+1)-by-(n+1)
matrix.
From row n + 1, subtract a + 28 times row n and Bcy,41—p times row k for rows k =

2,...,n— 1. The entry in row n + 1, column j is now
n—1 n—1
Cntj — (@4 2B)cntj1 = B Cni1-kCirh-1 = Cntj — (@ +28)cntj1 — B Y ChCnyjk
k=2 k=2
n+j—2
=/ Z CkCntj—k = chm 1C14j—k-
Next, reduce rows n,n — 1,...,3 similarly. Finally, subtract a + § times row 1 from row 2,

so the entry in the jth column of row 2 is now

j—1
B E CkCl4j—k-
k=1

10



At this point, column j of rows 2 through n + 1 is the column vector

CkCl4+j—k Ck
j—1 Ck+1C14-j—k j—1 Ck+1
B : =f Z Clyj—k :
=L Cpgn—oCiyj k=1 Chn—2
L Ck4+n—1C1+j—k | | Ck+n—1 |

Therefore, the entire first column is now the standard basis vector e;. The determinant of
the reduced matrix (which is the same as the determinant of the original matrix) is then the
determinant of its lower right n-by-n submatrix. Pull the factor 8" out of the determinant
of the submatrix. Noting that, for j > 3,

SR
j—2 Ck+1
ch+j—k :
k=1 Ck+n—2
L Cktn—1 ]
is in the span of the columns 2,...,j5 — 1 of this submatrix, we may reduce its columns

from left to right, yielding co = (a + () times the original n-by-n matrix. Therefore, the
determinant for (n + 1)-by-(n + 1) matrix is " (a + )" times that for the n-by-n matrix,
completing the induction.
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Remark. Letting A,, denote the n-by-n matrix, the row and column reductions above can
be summarized as follows:

1
—(a+p) 1
0 —(a+28) 1 0
0 —,BCQ —(Oé + 25) 1
0 —Bcn—2 —Ben-3 ... —Pea —(a+2p) 1
i 0 —Ben—1 —fen—2 ... —Pc3 —pez —(a+28) 1
1 0 0 0 i
1 —ec3/ca —cyfca ... —cpfca  —cpy1/ca
1 —cgfca ... —cp_1fca —cn/co
: An+1 ’ O
1 —c3/co
L 1 -
c1 ‘ Co Cn+1
B 0
i Bla+ )4,
0

Solution 2: We will show that A = LDL' where [L; ;]
1’s on the diagonal and [Di,j]zj_:lo is a diagonal matrix with Dy = 10*. (Here we start the
indexing at 0.) Then det A = det(L)?det(D) = 1 - 100+1++0=1 = 10(5).

Let F(x) = =32 14_14x+9m2 = x + 522 + O(23). We have that (4F(z) + 3z — 1)? =
1 — 14z + 922, so

?j_:lo is a lower triangular matrix with

2F(z)? + (3z — 1)F(2) + = = 0.

Let f(u) := F(u)/u = 1+ 5u+ O(u?) and g(u) := Z8=" = 4 + O(u?), and define L;

5u
for i,7 =0,1,... as the coefficients of the expansion of
Uu,v) = Z L julv’ = S flu) (1 +vg(u) +v3g(u)® +--).
§,j>0 7 1 —vg(u)

We see that L; j = 0 for ¢ < j and L;; = 1. Consider B = LDL! where Dy = dk for k>0
and all other entries of D are zero. Then the entries of B are

B;; = Z Ly Dy g Lj k-
k>0
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(Only a finite number of terms in the sum above are nonzero, because L is lower triangular.)
Denote by [2¥]H(z) the coefficient of 2* in the expansion of H(z). Set

b(u,v) = Z Bz-,juivj = Z[wktk] Z Li7ruiwrerj,svjt8

1,720 k>0 %,5,r,8>0

= S [k, dw)(o,t) = Fu)f(0) St Y dwrg(u) (o)
k>0 k>0 r,s>0

S g g — TI)

= 1007(0) S d'o0)"s00)" = e

The lower-triangular property L; ; = 0 for ¢ < j implies that B; ; depends only on values
of L; ., Dy x, and L;, with & <7 and k < j. Thus, the equation B = LDL! holds also for the

finite matrices [Bz',j]?,j_:loy [Lz‘,j]zj_:lo; and [D”]f]_:lo The following claim proves the desired

decomposition for A, and finishes the solution.
Claim. For d = 10, we have A;41,j+1 = B; ;.

Proof. Define A; ; = c;yj—1 forall4,j =1,2,..., and let

a(u,v) = E Ajyy jru't’) = g Citjr1u'v’

4,520 ,7>0
_ u""i’l _ ,U’f‘+1 F w) — F v
=S et ) = S e _ Pl - Flv)
u—v u—v
r20 r>0

since ¢g = 0.
Next, consider
_ Fu) - Fv) f(u)f(v)
alu, v) = b, v) = wu—v  1—10g(u)g(v)
_ Fu)(1 = 10g(u)g(v)) — uf(u)f(v) — F(v)(1 - 10g(u)g(v)) + vf(u)f(v))
(u—v)(1 —10g(u)g(v)) ‘

We have that F(u) = %, and so the first half of the numerator above is

Fu)(1 = 10g(u)g(v)) — uf(u)f(v) = F(u)(1 = 10g(u)g(v) — f(v))

_ (Fu) —w) (F(u) —u)(F(v) —v) F(v)
~sr s (2 )
— (F(u)—U) Uy — U v v (u uwF(v) — 2uv — 5uF' (v
= 3 (u) 1 3u)(Buo) OW0 ~ 2F(F (W) +20F (u) £ 2ul (v) = 2uv = 5uF (v))
(F(u) —u) B D E( .
(@F () + 3u)(5an) W0 ~ 2 (WF(0) +20F (u) = 3uF (v))

_ (F(uw) —u)(F(v) = v)(=2F(u) — 3u)
(2F (u) + 3u)(buv)
_(Fw) —u)(F(v) —v)

Suv

The second half of the numerator is the negative of the first half, with v and v interchanged,
so performing the same manipulations on the second half verifies that it cancels with the first
half. Thus, a(u,v) = b(u,v) and the claim is proved. O
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Remark. This problem was inspired by the determinants of Hankel matrices used to count
tilings of the Aztec diamond (https://en.wikipedia.org/wiki/Aztec_diamond).
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