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Preface 

On October 28-29, 1987, over six hundred mathematicians, scientists, and educators gathered 

in Washington to participate in a Colloquium, Calculus for a New Century, sponsored by the 

National Academy of Sciences and the National Academy of Engineering. Centering on that 

Colloquium and containing 75 separate background papers, presentations, responses, and other 

selected readings, Calculus for a New Century: A Pump, Not a Filter conveys to all who are 

interested the immense complexity of issues in calculus reform. 

Conducted by the National Research Council in collaboration with the Mathematical As-

sociation of America, the Colloquium is a part of Mathematical Sciences in the Year 2000 (MS 

2000), a joint project of the Board on Mathematical Sciences and the Mathematical Sciences Ed-

ucation Board. The National Research Council is the principal operating agency of the National 

Academy of Sciences and the National Academy of Engineering and is jointly administered by 

both academies and the Institute of Medicine. 

The National Academy of Sciences is a private, non-profit, self-perpetuating society of dis-

tinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of 

science and technology and to their use for the general welfare. Upon the authority of the charter 

granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the 

federal government on scientific and technical matters. 

The National Academy of Engineering was established in 1964, under the charter of the Na-

tional Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous 

in its administration and in the selection of its members, sharing with the National Academy of 

Sciences the responsibility for advising the federal government. The National Academy of Engi-

neering also sponsors engineering programs aimed at meeting national needs, encourages education 

and research, and recognizes the superior achievement of engineers. 

The Institute of Medicine was established in 1970 by the National Academy of Sciences to 

secure the services of eminent members of appropriate professions and the examination of policy 

matters pertaining to the health of the public. The Institute acts under the responsibility given 

to the National Academy of Sciences by its congressional charter to be an advisor to the federal 

government and, upon its own initiative, to identify issues of medical care, research, and education. 

The National Research Council was organized by the National Academy of Sciences in 1916 

to associate the broad community of science and technology with the Academy's purposes of 

furthering knowledge and advising the federal government. Functioning in accordance with general 

policies determined by the Academy, the Council has become the principal operating arm of both 

the National Academy of Sciences and the National Academy of Engineering in providing services 

to the government, the public, and the scientific and engineering communities. Frank Press and 

Robert M. White are chairman and vice chairman, respectively, of the National Research Council. 

The Mathematical Association of America is an organization of about 26,000 members ded-

icated to the improvement of mathematics, principally at the collegiate level. It has played a 

long-term role in improving mathematics education through the work of its committees and its 
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publications, of which this volume is one example. 

The Board on Mathematical Sciences of the Commission on Physical Sciences, Mathematics, 

and Resources was established in 1984 to maintain awareness and active concern for the health 

of the mathematical sciences and to serve as the focal point in the National Research Council for 

issues connected with the mathematical sciences. The Mathematical Sciences Education Board 

was established in 1985 to provide a continuing national overview and assessment capability for 

mathematics education. These boards, joint sponsors of MS 2000, selected a special Task Force 

on Calculus, chaired by Ronald G. Douglas, to direct the planning of the colloquium Calculus for 

a New Century. 

Calculus for a New Century was made possible by a grant from the Alfred P. Sloan Foundation 

to the National Research Council. Support for the umbrella project, MS 2000, was provided by the 

National Science Foundation. This volume was prepared at St. Olaf College under the direction 

of editor Lynn Arthur Steen, and the publishing was directed for the Mathematical Association 

of America by Peter L. Renz. 

Bernard L. Madison 

MS 2000 Project Director 



Introduction 

Nearly one million students study calculus each year in the United States, yet fewer than 25% 
of these students survive to enter the science and engineering pipeline. Calculus is the critical filter 
in this pipeline, blocking access to professional careers for the vast majority of those who enroll. 
The elite who survive are too poorly motivated to fill our graduate schools; too few in number to 
sustain the needs of American business, academe, and industry; too uniformly white, male, and 
middle class; and too ill-suited to meet the mathematical challenges of the next century. 

These facts led Robert White , President of the National Academy of Engineering, to suggest 
that calculus must become a pump rather than a filter in the nation's scientific pipeline. Others 
used a different metaphor—to become a door, not a barrier. To make calculus a pump is a chal-
lenge to educators and scientists; to walk through the door that calculus opens is a challenge to 
students. Regardless of the metaphor, calculus must change so that students will succeed. 

All One System 
In a narrow sense, calculus can be viewed simply as a sequence of courses in the mathematics 

curriculum, of concern primarily to those who teach high school and college mathematics. But 
in fact, calculus is a dominating presence in a number of vitally important educational and social 
systems. Calculus is: 

• A capstone for school mathematics, the culmination of study in the only subject (apart from 
reading) taught systematically all through K-12 education. 

• A pre-requisite to the majority of programs of study in colleges and graduate schools. 

• The dominant college-level teaching responsibility of university departments of mathematics , 
intimately linked to the financial support of graduate education in mathematics. 

• A course whose techniques are rapidly being subsumed by common computer packages and 
pocket calculators. 

• An important component of liberal education, part of the core learning that is the hallmark 
of an educated person. 

These interlocking systems make calculus extraordinarily resistant to change. Calculus has im-
mense inertia that is rooted in tradition, reinforced by client disciplines, and magnified by masses 
of students. Yet calculus is failing our students: no one is well served by the present course. Those 
who apply calculus want students to have more mathematical power rather than mere mimicry 
skills; those concerned for education fear that for far too many able students, calculus is the end 
of ambitions rather than the key to success; still others foresee that computers will make much of 
what we now teach irrelevant: 

• Computers and advanced calculators can now do most of the manipulations that students 

learn in a typical calculus course. 

• College administrators report that calculus is a lightning rod for students' complaints. 

• Computer scientists, one of the largest of mathematics' many clients, advocate discrete 

mathematics rather than calculus as a student's first college mathematics course. 

• In many large universities, fewer than half of the students who begin calculus finish the term 

with a passing grade. 



xii 

• Little in the typical calculus course contributes much to the aims of general education, 
although for most students, calculus is the last mathematics course they ever take. 

For all these reasons, a broad coalition of organizations has now undertaken an effort to revi-
talize calculus. Calculus for a New Century is a first visible public step in this long but crucially 
important process. 

Issues and Controversies 
Calculus for a New Century: A Pump, Not a Filter is intended to be a resource for calculus 

reform, rooted in the October 28-29 Colloquium, but including much additional material. Over 80 
authors from mathematics, science and engineering convey in 75 separate contributions (totalling 
over 165,000 words) a very diverse set of opinions about the shape of calculus for a new century. 
The authors agree on the forces that are reshaping calculus, but disagree on how to respond to 
these forces; they agree that the current course is not satisfactory, yet disagree about new content 
emphases; they agree that neglect of teaching must be repaired, but do not agree on the most 
promising avenues for improvement. Readers must judge for themselves how they will respond to 
this diverse yet realistic sample of informed views on calculus: 

C o l l o q u i u m : A record of presentations prepared for the first of the two-day Colloquium. 
These include four plenary presentations and prepared remarks from two panels. 

R e s p o n s e s : A collage of reactions to the Colloquium by a variety of individuals represent-
ing diverse calculus constituencies. These commentaries, each a mini-editorial, were written in 
response to what was said and unsaid during the formal proceedings. 

R e p o r t s : Summaries of sixteen discussion groups that elaborate on particular themes of 
importance to reform efforts. Each report was prepared jointly by the discussion leader and 
reporter. 

I s s u e s : A series of background papers providing context for the calculus Colloquium. The 
first two, on Innovation, are journalistic analyses based on extensive interviews with many mathe-
maticians, educators, and scientists. The remaining sixteen, in four sections, provide background 
on issues in Science, Engineering, and Business; Teaching and Learning; Institutional Perspectives; 
and Mathematical Sciences. 

E x a m i n a t i o n s : A selection of final examinations from Calculus I, II, and III from universities, 
colleges, and two-year colleges around the country. These exams are intended to illustrate calculus 
as it is today, to document exactly what students are currently expected to achieve. 

R e a d i n g s : A collection of reprints of documents related to calculus. Many of these papers 
are referred to either in the Colloquium talks or in the background papers; they are reproduced 
here as a convenience to the reader. 

P a r t i c i p a n t s : A complete list of names, addresses, institutions, and telephone numbers from 
the registration list of the October 28-29 Colloquium, provided here to facilitate future correspon-
dence among those with similar interests. 

Process of Renewal 
Calculus for a New Century is itself a middle chapter in a long process of calculus reform. 

It builds on a much smaller workshop organized by Ronald G. Douglas at Tulane University in 
January, 1986 which led to the much-cited publication Toward a Lean and Lively Calculus (MAA 
Notes No. 6, 1986). Shortly afterwards, the Mathematical Association of America appointed a 
Committee on Calculus Reform chaired by Douglas to make plans for an appropriate follow-up 
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to the Tulane meeting. Then in January 1987, the National Science Foundation proposed to 
Congress a major curriculum initiative in reform of calculus. To help frame a national agenda for 
calculus reform, and to insure broad participation of the scientific and engineering communities, 
the Douglas Committee recommended that the National Academies of Science and Engineering 
sponsor a national colloquium cn calculus reform. 

At the same time, the two mathematics boards of the National Research Council—the Board 
on Mathematical Sciences and the Mathematical Sciences Education Board—jointly launched 
Mathematical Sciences in the Year 2000 (MS 2000), a project led by Bernard L. Madison to 
provide a comprehensive assessment of collegiate and graduate education in the mathematical 
sciences, analyzing curricular issues, resources, personnel needs, and links to science, engineer-
ing, and industry. Since calculus is a central ingredient in the agenda of MS 2000, the Calculus 
Colloquium became the first undertaking of that project. 

Calculus for a New Century 
Three hundred years ago, precisely, the first edition of Newton's Principia Mathematica was 

published. Two hundred years ago, more or less, calculus was first offered as a regular subject 
in the university curriculum. One hundred years ago the mathematical revolution launched by 
Newton gave birth in the New World to what is now the American Mathematical Society. 

"Calculus for a New Century" celebrates these three centenaries, not by looking back but by 
looking forward to the 21st Century, when today's students will be our scientific and mathemat-
ical leaders. Calculus determines the flow of personnel in the nation's scientific pipeline. To fill 
this pipeline, we must educate our youth for a mathematics of the future that will function in 
symbiosis with symbolic, graphical, and scientific computation. We must interest our students in 
the fascination and power of mathematics—in its beauty and in its applications, in its history and 
in its future. Calculus for a New Century: A Pump, Not a Filter offers a vision of the future of 
calculus, a future in which students and faculty are together involved in learning, in which calculus 
is once again a subject at the cutting edge—challenging, stimulating, and immensely attractive 
to inquisitive minds. 

A C K N O W L E D G E M E N T S : Details of Calculus for a New Century were handled efficiently by 
Bernard Madison and Therese Hart, staff members of Project MS 2000. Calculus for a New Cen-
tury: A Pump, Not a Filter was prepared in an extraordinarily short t ime—three weeks for prepa-
ration of the camera-ready copy—using a ΤEΧ system at St. Olaf College. Mary Kay Peterson 
deserves special thanks for typing and correcting the entire volume—all 1,083,000 characters—on 
such a very tight timetable. 

Lynn Arthur Steen 
St. Olaf College 
Northfield, Minnesota 
November 20, 1987 
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Calculus for a New Century 

Frank Press 

N A T I O N A L A C A D E M Y O F S C I E N C E S 

Good morning. I would like to welcome all of you 
to this National Colloquium on Calculus For A New 
Century. 

Last night I welcomed to this auditorium another au-
dience for a preview of a film called "The Infinite Voy-
age," which will be shown all over the country in prime-
time television, both commercial and public broadcast-
ing. I t ' s a family-oriented program that will continue 
for three years. Last night 's program featured many 
things, but computat ional mathematics was an essen-
tial feature of all of the science components in the film. 

I would like to say a few words about the strong 
interest of our own organization here in mathematics 
education. I guess tha t everyone recognizes that math-
ematics education is centrally important as a foundation 
for science, for engineering, and also for the social sci-
ences. Here at the National Research Council where we 
work in all of these fields, we certainly recognize that , 
as you must too in your own schools and organizations. 

Mathematics is increasing in importance, not only in 
the fields tha t I jus t mentioned, but also in the service 
sector and in banking and finance. (In fact, some math-
ematical geniuses may be responsible for programming 
those computers tha t caused the automatic selling that 
contributed to the stock market crash. They should 
have had academic careers ) 

Why are we losing so many bright people—losing 
them from mathematics and science in favor of Wall 
Street and business schools and law schools? Mathe-
matics is a critical filter in tha t it can knock you out of 
the pipeline, permanently, particularly for women and 
minorities who might otherwise have careers in the pro-
fessions until their mathematics courses destroy their 
hopes and aspirations. 

I, myself, had a t raumat ic experience. I was knocked 
out in the sense tha t I took the most advanced under-
graduate course in mathematics and received the only 
A in the course. Yet the professor, after giving me 
my grade, said, "I don ' t want you to major in math-
ematics." So I was knocked out of mathematics into 
physics—and it had a t raumat ic effect on me. 

We are very proud and pleased that our Mathemat-
ical Sciences Education Board is providing a new type 

of national leadership in mathematical education. It 
is appropriate for us to have this emphasis in our own 
organization. It is appropriate for the country to take 
initiatives as represented by this Colloquium because 
of the importance of mathemat ics in so many different 
ways. We are pleased also that the Mathematical Sci-
ences Education Board is interested in the whole range 
of mathematics , from the youngest children through col-
lege. 

This particular conference is under the initiative of 
our Board on Mathematical Sciences which works in 
partnership with our Mathematical Sciences Education 
Board. Together these two Boards launched the Project 
M S 2 0 0 0 , a comprehensive review of mathematics ed-
ucation through college and university systems. This 
Colloquium on the calculus is the lead activity of this 
three-year project. We are put t ing together our com-
mittee tha t will be responsible for M S 2 0 0 0 and have 
just received the acquiescence of a major industrialist 
to serve as chairman of the committee tha t will super-
vise M S 2 0 0 0 . 

As I have said, calculus is an important foundation 
for the scientific, engineering, and research communi-
ties. It is also an important foundation for anyone who 
wants a good solid education in the modern era. Later 
this morning you will hear from Robert White , the Pres-
ident of our sister organization, the National Academy 
of Engineering, who will certainly emphasize the impor-
tance of calculus to our technological society. 

I know tha t you have a lot of work to do in these two 
days, with a program and workshops that deal with 
many different groups covering essentially everybody 
who will need calculus for their training. I look forward 
to hearing the results of your Colloquium. 

FRANK PRESS is President of the Notional Academy of 
Sciences. A former Science Advisor to President Carter, Dr. 
Press served for many years as head of the Department of 
Earth and Planetary Sciences at the Massachusetts Insti-
tute of Technology. He received a Ph.D. in geophysics from 
Columbia University. 



4 C O L L O Q U I U M : P L E N A R Y P R E S E N T A T I O N S 

Castles in the Sand 

Ronald G. Douglas 

S T A T E U N I V E R S I T Y O F N E W Y O R K AT S T O N Y B R O O K 

I want to welcome you to this Colloquium on be-
half of the Calculus Task Force. I am delighted that 
you have come and that so many people are interested 
in improving the teaching of calculus. There are over 
six hundred people here today, about five hundred of 
whom are mathematicians. About one hundred are 
from research universities, four hundred from four-year 
colleges, fifty from two-year colleges, and fifty from high 
schools. There are over a hundred people from other 
("client") disciplines; some are publishers and others 
journalists. 

I am delighted that ...so many people 
are interested in improving the 
teaching of calculus. 

Why are we all here? Why is this Colloquium being 
held? Let me t ry to explain this with a little personal 
history. 

Five years ago, I became Chair of the Mathematics 
Department at my university for the second time. I 
found a large difference between this time and the last, 
which had been about ten years earlier. Teaching was 
different! Although everyone still did their teaching, 
morale was low and there was an overwhelming sense 
of futility, felt by all. Since calculus involved the largest 
number of students, much of this feeling was centered 
in the calculus. 

About the same time I was confronted with the issue 
of the continuing relevance of the subject of calculus. 
Debate on the rising importance of discrete mathemat-
ics was sweeping across university campuses, and I often 
was called on to defend the role of calculus in these dis-
cussions. 

My interest in calculus was treated as 
a curiosity. No one ever talked about 
teaching. Teaching was something we 
had to do and get over with. 

For both of these reasons I was forced to think about 
calculus and calculus teaching. Moreover I began to 

ask questions about calculus when I travelled to other 
universities. 

My interest in calculus was t reated as a curiosity. No 
one ever talked about teaching. Teaching was some-
thing we had to do and get over with. No one said tha t 
mathematics teaching was good; everyone believed im-
plicitly that since nothing could be done about it, then 
why talk about it. 

Most curricular and teaching activities had stopped 
around 1970 in the "post post-Sputnick" era. But the 
need for change had not. Now there were more and 
different students; faculty cutbacks had led to larger 
classes, and to more teaching assistants and adjunct 
instructors. And finally there were more powerful hand-
held calculators; computers had gone from a building 
somewhere across campus to a room down the hall to 
your desk top. 

A few "oddballs" persevered. ... But 
they were not able to get others to join 
the effort and ultimately the sea 
overwhelmed the castles in the sand 
which they had so painstakingly built. 

I found in my travels, however, tha t not all faculty 
had given up on curriculum and teaching reform. A few 
"oddballs" had persevered. Through nearly superhu-
man efforts they had mounted experimental programs 
with different methods of teaching and new curricula. 
Perhaps surprisingly, they often achieved considerable 
success. 

But they were not able to get others to join the effort 
and ultimately the sea overwhelmed the castles in the 
sand which they had so painstakingly built. Therefore, 
I concluded that isolated innovations are not the answer 
to the problems in mathematics teaching. This posed a 
real dilemma since change certainly cannot be dictated 
from the top down. 

Wha t was needed was a strategy to place the im-
provement of mathematics teaching and curriculum on 
the national agenda. Support had to be provided for 
local efforts, and this didn ' t mean jus t money. Further, 
a mechanism needed to be provided to coordinate and 
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network the results of innovation, both the good and 
the bad. 

Change certainly cannot be dictated 
from the top down. 

To s tar t to accomplish all of this I asked the Sloan 
Foundation to fund a Calculus Workshop, which was 
held at Tulane University two years ago. There a di-
verse group agreed tha t both the teaching and content 
of calculus should change, and that it could change. 
We reached substantial agreement on some changes to 
make. All this is reported in Toward a Lean and Lively 
Calculus [1]. 

However, changing the calculus is an enormous and 
complex undertaking. Calculus is taught to over three 
quarters of a million students a term; about a half bil-
lion dollars a year is spent on tuition for teaching cal-
culus; and calculus is a prerequisite for more than half 
of the majors at colleges and universities. Almost ev-
eryone has a stake in calculus. 

This Colloquium has been organized to discuss how 
to proceed, not to ratify some preordained plan. We 
hope to plant many seeds and to help provide the sun 
and the rain necessary for these seeds to grow. 

Changing the calculus is an enormous 
and complex undertaking. ... Almost 
everyone has a stake in calculus. 

A number of excellent position papers have already 
been prepared to provide background and to set the 
stage. Robert White will provide an engineer's perspec-
tive on the role and importance of calculus. Lynn Steen 
will discuss calculus as it is today and Thomas Tucker 
will discuss some of the possibilities for the calculus of 
the future. The morning session concludes with a de-
scription of the new NSF calculus initiative by Judi th 
Sunley and Robert Watson. 

After lunch there will be two panel discussions. The 
first, moderated by Cathleen Morawetz, will allow rep-
resentatives from the "client disciplines" to discuss their 

disciplines. The second, moderated by Andrew Glea-
son, will allow campus administrators to provide a view 
of calculus from the campus. Finally, all part icipants 
will get a chance to contribute their ideas in the discus-
sion groups tomorrow. 

Isolated innovations are not the answer 
to the problems in mathematics 
teaching. 

Any change in the way calculus is taught , or in the 
way mathematics is taught , will depend on all of us, 
on those here today and on the thousands of others 
who teach calculus and all the rest of mathematics in 
the colleges (both two-year and four-year), in the high 
schools, and in the universities. 

My title, based on my early experiences, refers to 
castles in the sand. I had intended to close by stat-
ing tha t we wanted to avoid building more castles in 
the sand. However, another metaphor , also based on 
the sea, might be bet ter . The number of people at this 
Colloquium, and the interest tha t has been manifested 
in this topic suggest tha t a bigger phenomenon is in-
volved. So I conclude by urging all of us to "catch the 
wave" and try to direct it to the Calculus for a New 
Century tha t we will choose. 

Reference 

[1] Douglas, Ronald G. (ed.) Toward a Lean and Lively Cal-
culus. MAA Notes Number 6. Washington, D.C.: Math-
ematical Association of America, 1986. 

R O N A L D G. D O U G L A S is D ean of the College of Physi-
cal Sciences and Mathematics at the State University of New 
York at Stony Brook and Chairman of the National Research 
Council's Task Force on the Reformation of the Teaching of 
Calculus. A specialist in operator theory, Douglas is a past 
holder of both Sloan and Guggenheim fellowships. He is 
a member of the Board on Mathematical Sciences of the 
National Research Council and Chairman of the American 
Mathematical Society's Science Policy Committee. He re-
ceived a Ph.D. degree in mathematics from Louisiana State 
University. 
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Calculus of Reality 

Robert M. White 

N A T I O N A L A C A D E M Y O F E N G I N E E R I N G 

Let me extend to all of you a welcome on behalf of 
the National Academy of Engineering. I have rarely 
seen this auditor ium as filled as it is today. It is a 
good sign tha t the topic we will be discussing today has 
generated great concern throughout the mathematics 
and the non-mathematics community also. 

I a m probably one of the few non-mathematicians in 
this auditor ium today. I am one of the "clients," as you 
call them. I would like to talk to you from the viewpoint 
of a client. I have views tha t s tem from my personal 
experiences in science and engineering, and from my 
experience in trying to make scientific and technological 
institutions function. 

We were asked to have faith in what 
we were being taught ... and faith that 
sometime in the future what we were 
learning would have application. 

My introduction to the calculus was an introduction 
to the mysteries. It was assumed, when I was going 
through school, tha t we would learn even without un-
derstanding. We were asked to have faith in what we 
were being taught, faith in our instructors, teachers, 
and professors, and faith that sometime in the future 
what we were learning would have application. 

I graduated many years ago from the Boston Public 
Latin School. I t 's the oldest public school in the coun-
try, founded in 1635. Harvard University was founded 
in 1636. Those of us who went to the Boston Public 
Latin School always claimed tha t Harvard was founded 
as a place where Latin School graduates could go after 
graduation. 

Today, however, students will not take 

education in any field on faith. 

My introduction to the calculus was as a freshman 
at Harvard. They didn ' t teach calculus at Boston Pub-
lic Latin School in my days. My instructor, al though 
he may not have been famous then, is well recognized 

these days as a famous mathemat ic ian. He was Oscar 
Zariski. He might have been a great mathematician, 
but he was not the greatest instructor of freshman cal-
culus. I survived. 

Later, at MIT, when I became involved in the a tmo-
spheric and oceanographic sciences, it became clear in 
hindsight why calculus was important and why it was 
so necessary for me as a person interested in geophysical 
fluid dynamics. 

If ever a field needed to be brought out 

of mystery to reality, it is the c a l c u l u s . 

Today, however, s tudents will not take education in 
any field on faith. They want to know why what they 're 
studying is important and how it 's going to help them. 
If ever a field needed to be brought out of mystery to 
reality, it is the calculus. 

Calculus now is more impor tant than ever. Calcu-
lus, as the mathematics of change, is the skeleton on 
which the flesh of our modern industrial society grows. 
The public does not understand this fundamental role 
of the calculus. But as people who are responsible for 
imparting the calculus, you must unders tand it, and you 
must understand the consequences of failure to impart 
an understanding of this field of mathemat ics . 

R e s t o r i n g E c o n o m i c G r o w t h 

There are many realities tha t we need to face in this 
country, not the least being the recent events in the 
stock market . But the most serious reality we face to-
day is the need to harness science and technology for 
economic growth. And harnessing science and technol-
ogy for economic growth means harnessing the calculus. 

We are "a nation at risk," as tha t famous report in-
dicated. However, we are a t risk in many ways—not 
only in our educational system for which the phrase 
was first introduced. Science and technology are the 
touchstones of economic growth which is fundamental 
to the s tandard of living, job creation, health care, pro-
vision of a good environment, and much more. During 
the past century this country has done very well in har-
nessing science and technology. Investment in science 
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and technology has created new industries of all kinds, 
e.g., in semiconductors and biotechnology. Many of the 
most progressive and successful companies depend on 
new products tha t are based on science and technol-
ogy for their economic growth. For example, I recently 
visited the 3M Company and learned tha t 25% of its 
revenues are based on products tha t did not exist just 
five years ago and were the result of their research and 
development activities. 

We have done well in this country because over the 
past century we have had far-sighted policies that led to 
an educational system that has produced the talent we 
need to run our industrial, academic, and governmen-
tal enterprises. We have made major investments in 
research and development enterprises, both those sup-
ported by the government and by private industry, to 
produce scientific and engineering knowledge. We have 
an economic system that has provided the incentives 
and rewards for innovation and application. 

Harnessing science and technology for 

economic growth means harnessing the 

calculus. 

Nevertheless, in recent years tha t picture has been 
changing, as anyone who reads the headlines or watches 
nightly television news will know. Industry has moved 
many production systems abroad. Many industries have 
been severely hurt in terms of jobs. At the end of World 
War II, the United States accounted for 40% of the 
world's GNP; today we account for 20%. We now run 
a $200 billion trade deficit. 

We are in a continuing competitive bat t le with in-
dustries in other countries: 

• In aviation, the European Airbus now has over 30% 
of the world market share in large t ransport aircraft. 

• On U.S. highways, 30% of the automobiles are foreign 
imports . 

• In consumer electronics, it is difficult to find products 
produced in the United States . 

• Even in heavy machinery, the last manufacturer of 
large s team turbines has jus t given up. 

We are in a competitive bat t le , across the board. In 
industry it is a bat t le for market share, but it is a new 
kind of a bat t le . It is a bat t le tha t is fought with tariffs, 
wage rates, and economic policies. But above all else, 
it is a bat t le tha t is fought with trained people. Lack of 
an adequate pool of trained people will, in the long run, 
lose tha t bat t le for us. And losing tha t bat t le means a 

loss of jobs and a lowering of s tandards of living. It be-
comes a central responsibility for all of us in education, 
especially those in science and engineering education, 
to make sure that this country has an adequate pool of 
trained talent. 

W e a r e in a continuing competitive 
battle with industries in other 
countries. ...Above all else, it is a 
battle that is fought with trained 
people. 

There are many disturbing signs. Some have been 
highlighted by the work of the Mathematical Sciences 
Education Board. There appears to be a lessening of 
interest among citizens of the United States in careers 
in science and technology. We know, on the basis of 
surveys, tha t the mathematical a t t ra inment of our stu-
dents are inferior, at least in K-12 grades, to those of 
most of our industrial allies. 

S c h o o l h o u s e t o t h e W o r l d 

At the college level, the United States has become 
schoolhouse to the world. In 1986 we trained 340,000 
foreign students in our universities. A very large num-
ber of these, about 130,000, go into engineering. 

Tha t ' s most welcome. I think we should train foreign 
students. The problem is tha t at the very highest levels, 
at the Ph .D. levels in schools of engineering, 50% of the 
students are not United States citizens. Now tha t ' s not 
necessarily bad, because about 60% of the foreign-born 
students eventually remain in the United States . They 
become productive part icipants in the industrial and 
governmental appara tus of this country. 

W e a r e not getting adequate response 
out of our own pool of talent in this 
country. 

This country has been built on immigrants. But a 
high percentage of foreign s tudents in science and tech-
nology is an indication of the fact t ha t we are not get-
ting adequate response out of our own pool of talent in 
this country. We are coming to depend more and more 
on the in-flow of talent from other countries. 
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I n t e l l e c t u a l C a p i t a l 

The availability of intellectual capital is now world-
wide. Jus t as the economy has become international, 
with the economy of one nation dependent on the econ-
omy of others, so the scientific and engineering enter-
prise has also become internationalized. Since the end 
of World War II, we have seen the growth of centers 
of excellence in many countries of the world with very 
substantial capabilities in science and technology. The 
issue needs to be framed in terms more familiar in indus-
try where investment in capital equipment and physical 
plant is accepted. We now need to think in terms of 
investment in intellectual capital. 

Development of intellectual capital requires training, 
so training must therefore be looked upon as an invest-
ment. We must begin to think of our investments in 
education as being jus t that—investments in building 
the intellectual capital of this country on which our in-
dustry, our government, and our universities can draw. 

Intellectual capital needs nurturing, it needs protec-
tion, and it needs renewal. Yet our ability to form in-
tellectual capital is decreasing in many ways. The tech-
nological workforce in America is graying. We are all 
familiar with the effects of decreasing birth rates, with 
the changing demographics and evolving ethnic compo-
sition of the work force. We need to be deeply concerned 
about how we are going to build this intellectual cap-
ital in the face of a changing and diminishing pool of 
individuals on whom this intellectual capital is based. 

Intellectual capital needs nurturing, it 

needs protection, and it needs renewal. 

...As teachers of mathematics, you are 

in the front lines of building this 

intellectual capital. 

As teachers of mathematics , you are in the front lines 
of building this intellectual capital . The question is: 
How can we repair our failings, how can we buttress our 
strengths? As you know bet ter than I, one of our failings 
is in teaching mathemat ics . Buttressing our strengths 
is one of the purposes of MSEB. 

M a k i n g C a l c u l u s E x c i t i n g 

Among the difficult par ts of teaching mathematics 
is teaching calculus. As it is now taught , and as you 
appreciate bet ter than I, it tends to be a barrier to stu-
dents. Many of them drop out; many of them fail; many 

lose interest. Wha t we need to do is to find ways to en-
courage and not discourage s tudents , to keep them in 
the pipeline. I don' t think it is necessary for us to re-
duce s tandards to maintain s tudents in the pipeline. I 
think instead there need to be new approaches to teach-
ing. You have heard about some of these already, and 
you will hear about many more ideas in the days ahead. 

Calculus is really exciting stuff, yet we 
are not presenting it as an exciting 
subject. 

Calculus is really exciting stuff, yet we are not pre-
senting it as an exciting subject. At MIT, when I was 
taking my graduate degree, I went through the calculus 
course for engineers. By tha t time I understood why 
I was taking calculus and what it would be used for. 
It is clear to all of you, bu t not entirely clear to all 
the people who need to make decisions, t ha t engineer-
ing and scientific applications just cannot exist without 
the calculus. Whether it is the design of a bridge, an 
electronic circuit, aircraft, or calculations of chemical 
processes, the calculus is at the core. Wi thout calculus 
we would revert back to the engineering empiricism of 
a century ago. And tha t we don' t want. 

W e a t h e r F o r e c a s t i n g 

My own experience is, I think, illustrative. I a m a 
sometime weatherman. I used to be chief of the United 
States Weather Bureau. The field of weather forecasting 
is a good illustration of the fundamental importance of 
the calculus. It dominates work in this field. 

Back in 1904 the idea tha t one could forecast the 
weather on the basis of physical law was first broached 
by Vilhelm Bjerknes in Norway. But of course at t ha t 
time there was no way to apply the laws of motion. It 
wasn't until 1922 tha t an Englishman named Lewis Fry 
Richardson set those partial differential equations up in 
finite difference form, and sought to calculate by hand 
the t ime changes tha t would occur given a knowledge of 
the initial s ta te of the atmosphere a t a grid of points. It 
was the first application in my field of finite difference 
methods. He did it by hand, if you can imagine t ha t , 
and the results were just all wrong. 

In the 1940's and 1950's, when I earned my spurs as a 
weather forecaster, the best we could do was to use per-
turbat ion theory in trying to unders tand the growth of 
disturbances in a fluid system. But tha t only gave you 
initial tendencies of the growth of these disturbances. 
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It wasn't until 1955 that the use of digital machines 
to calculate the weather was a t tempted . First applica-
tions were run on ENIAC, one of the first digital com-
puters developed by the Signal Corps. Under the over-
all supervision of John von Neumann of the Inst i tute 
for Advanced Study at Princeton, the first experiments 
were conducted. Tha t was the beginning of the trans-
formation of weather forecasting from an art to a sci-
ence. 

T h e ability to apply ... equations 
transformed an entire science. The 
v a l u e to the world of modern weather 
calculations is enormous. The central 
role of calculus . ..to produce important 
practical results is evident. 

The ability to apply those partial differential equa-
tions in finite difference form transformed an entire sci-
ence. The value to the world of modern weather cal-
culations is enormous. The central role of calculus in 
dealing with these problems to produce important prac-
tical results is evident. 

T e a c h i n g for F l e x i b i l i t y 

The issues tha t this Conference must address are well 
laid out in your background documents. As I look at 
it, what we need to do now is to teach calculus in a 
way tha t provides a body of understanding which con-
tr ibutes to the flexibility and adaptabil i ty required of 
scientists and engineers, of social scientists and man-
agers. 

W h a t we need to build into our 
students (and eventually into the 
people in our work force) is an ability 
to move from field to field. ...To do 
that you need ...an appreciation of the 
calculus. 

The reason why flexibility is impor tant is tha t in 
an era of very rapid technological change, with newly 
emerging fields of all kinds, what we need to build into 
our students (and eventually into the people in our work 
force) is an ability to move from field to field. To do 

tha t you need the kind of understanding tha t comes 
from an appreciation of the calculus. 

We need to teach the calculus in a way tha t facilitates 
complex and sophisticated numerical computat ion in an 
age of computers. Somehow or other you have to make 
calculus exciting to s tudents . The question as t o the 
role of calculus in an age of computat ional mathemat ics 
is one that clearly this Colloquium needs to address. 

I n t h e N a t i o n a l S p o t l i g h t 

We confront a real challenge. It is clear tha t there 
is growing appreciation of the role of mathematics . En-
rollments in mathematics depar tments have increased. 
We do have some problems with teaching assistants— 
over half come from outside the United States. But we 
can't meet these challenges jus t by a rm waving or by 
generalized s tatements about what needs to be done— 
tha t high schools should prepare students better, or 
that students should work harder. A Colloquium like 
this has a real opportuni ty to come up with suggestions 
for how to at tack this problem. 

Calculus is a critical way-station for 
the technical manpower that this 
country needs. It must become a 
pump instead of a filter in the pipeline. 

The national spotlight is turning on mathematics as 
we appreciate its central role in the economic growth 
of this country. The linkage between mathematics and 
economic growth needs to be made, and needs to be 
made stronger than it has been to da te . Calculus is 
a critical way-station for the technical manpower that 
this country needs. It must become a p u m p instead of 
a filter in the pipeline. It is up to you to decide how to 
do tha t . 

R O B E R T M. W H I T E in President of the National 
Academy of Engineering. He has served under five U. S. 
Presidents in leadership positions concerning science and 
technology policy. He continnes to be active in an advisory 
capacity to the United States Government, and has also re-
tained an active role in academic affairs. He received his 
Sc.D. degree in meteorology from the Massachusetts Insti-
tute of Technology. 
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Calculus Today 

Lynn Arthur Steen 

S T . O L A F C O L L E G E 

It is clear from the size of this colloquium tha t the 
calculus enterprise we are embarking on is of immense 
interest. One of the things I would like to do today is to 
document with some figures tha t it is also of immense 
proportions. 

Calculus is our most important course 
T h e future of our subject depends 

on improving it. 

I begin with a quotation from Gail Young, from the 
background paper he prepared for this colloquium. It 
is a summary assessment by a long-time leader of the 
mathematics community, speaking to mathematicians: 

Calculus is our most important course . . . . The future 
of our subject depends on improving it. 

In support , I offer this evidence: 

• Three-quarters of collegiate-level mathematics is cal-
culus. (By "collegiate level" I refer to those par ts 
of higher mathematics tha t are calculus-level and 
above, since all other courses taught in colleges and 
universities are really school-level mathematics.) 

Calculus is the last mathematics course 

taken by our national leaders. 

• Calculus is the last mathematics course taken by our 
national leaders. This is a very important issue. If 
you think about the career pat terns of our national 
leaders, and of what s tudents study in universities, 
the best students who enter universities by and large 
do take calculus, either in high school or in college, 
whether or not they are going to be scientists or engi-
neers. Future lawyers, doctors, clergy, public school 
leaders—all professional leaders seem to take a little 
bit of calculus. But for virtually everybody, it is the 
last mathematics course they take. The entire pub-
lic image of leaders of the United States concerning 
the nature of mathematics , and of the mathematical 
enterprise, is set by the last course that they take, 
which is calculus. 

* Calculus is among the top five collegiate courses in 
annual enrollment. Calculus not only dominates the 
mathematics curriculum, but it dominates the entire 
university curriculum. Also in that top five is pre-
calculus. When you put the two of them together, 
those two enrollments make up a substantial fraction 
of enrollment in higher education. 

• Most of what students learn in calculus is irrelevant 
to the workplace. This observation came out of many 
of the background papers: an awful lot of what stu-
dents actually learn in the current calculus course is 
no longer relevant to the way mathemat ics is used in 
science or industry. 

C a l c u l u s E n r o l l m e n t s 

Here is a crude portrai t of calculus enrollment, 
rounded to the nearest hundred thousand. At the high 
school level, there are about 300,000 students enrolled 
in calculus courses of some kind. Only about 15-20% 
of these s tudents are in AP calculus, so there is a 
large number of students—well over 200,000—who go 
through calculus in a once-over in high school. 

There are 100,000 calculus enrollments in two-year 
colleges, and another 600,000 in the four-year colleges 
and universities. According to recent da t a from a 
special calculus survey conducted by Richard Ander-
son and Donald Loftsgaarden [2], about half of these 
600,000 are in mainstream "engineering" calculus, with 
the remainder in non-mainstream ("soft") calculus or 
various summer and extension courses. 

Only one-fourth of calculus-level 

enrollments (or one-eighth of 

mathematics enrollments in higher 

education) are in courses at or above 

calculus. 

Looking at mathematics vertically, a little more than 
half of total college mathemat ics enrollments are below 
the calculus level. Of the remaining half, 75% are in cal-
culus. So only one-fourth of calculus-level enrollments 
(or one-eighth of mathematics enrollments in higher ed-
ucation) are in courses at or above calculus. 
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C h a r a c t e r i s t i c s o f C a l c u l u s 

The 1985-86 CBMS survey [1] shows that the average 
section size in calculus is about 34. Tha t ' s no surprise. 
Wha t is surprising is tha t only about 7% of calculus 
courses use computers. The more recent survey [2] re-
veals tha t 3 % of the calculus courses require the use of 
computers. 

In a sample of final examinations tha t appears in the 
proceedings of this colloquium, we asked about whether 
calculators are permit ted on final examinations. It 
seems to split about 50-50, in a way tha t is not cor-
related with the type of institution. So there is a real 
division in the community on tha t issue. 

Only about 7% of calculus courses use 
computers. 

Since these sample examinations also contain infor-
mation on grade distribution, I looked a t the da t a to 
determine the percentage of s tudents who withdrew or 
failed—those who were enrolled at the two or three week 
mark, but who did not finish the course with a pass-
ing grade. Looking a t it institution by insti tution— 
with an unscientific but very diverse sample—it looks 
like a uniform distribution for withdrawal and failure of 
5% to 60%. For comparison, in the recent Anderson-
Loftsgaarden study, of the 300,000 students who took 
mainstream calculus, only 140,000 finished the year 
with a grade of D or higher. 

Ron Douglas and others have conjectured tha t suc-
cess in calculus is correlated with feedback on home-
work. So we looked at what percentage of courses cor-
rect homework regularly. The recent survey shows tha t 
55% rarely or never pick up homework and grade it. 

E x a m s 

When I looked a t the questions on the sample of 
final examinations representing colleges of every type, 
from community colleges to ivy-league institutions, eas-
ily 90% of the questions were asking students to 

Solve Evaluate 
Sketch Determine 
Find Calculate 
Graph Wha t is? 

Most questions asked for straightforward calculations 
or posed template problems tha t are taught over and 
over again in the course and tha t are in the textbook in 
nice boxed examples. Anybody who is wide awake and 

pays attention ought to be able to figure out how to do 
these kinds of problems. 

About 10% of the questions posed higher-order chal-
lenges; most of those were template word problems. 
Those of you who teach calculus know what tha t 
means—problems tha t fit a s tandard pa t te rn . Some 
institutions and some courses have dramatically differ-
ent pat terns , but the mainstream examinations are like 
this: 90% calculation, 10% thought . 

You find very rarely—only one problem in 1 out of 20 
examinations—the kind of question tha t used to be very 
common 20 and 30 years ago: "State-and-prove " 
Problems dealing with the theory of calculus or with 
rigorous calculus have simply vanished from American 
calculus examinations. 

Problems dealing with the theory of 
calculus ... have simply vanished from 
American calculus examinations. 

Look at what s tudents are asked to do for 90% of 
their examination problems; look at the verbs solve, 
sketch, find, evaluate, determine, calculate, graph, inte-
grate, differentiate. W h a t these commands correspond 
to , more or less, are the but tons on an H P 28C. W h a t 
we are actually examining s tudents on, what we really 
expect them to learn, and what they know we really ex-
pect despite whatever the general goals of calculus are 
claimed to be, is the ability to do precisely the kinds of 
things tha t calculators and computers are now doing. 

Pushing but tons , whether mechanical or mental , is 
one of the things we have to look at very carefully, to 
figure out how we are going to adapt calculus to bet ter 
meet the needs of s tudents . 

W h a t we are actually examining 
students on, what we really expect 
them to learn, and what they know we 
really expect ...is the ability to do 
precisely the kinds of things that 
calculators and computers are now 
doing. 

Ron Douglas talked about riding the wave as another 
calculus metaphor from the sea. If you pay at tent ion 
to the general concerns tha t are coming out of discus-
sions of higher education, there is a great deal of con-
cern about making sure tha t freshmen courses and other 
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courses that are taken as part of a s tudent 's general ed-
ucation make a significant contribution to the broad 
aims of undergraduate educat ion—that they help stu-
dents learn to think clearly, to communicate, to wrestle 
with complex problems . . . , etc. 

There is very, very little in the calculus course of 
today tha t does any of these things. Word problems 
are a small step in tha t direction, but they are very 
rare and most of us who teach calculus know that if 
you put too many of those problems on your test, you 
are at great risk in the student evaluations. 

I n n o v a t i o n : T e c h n o l o g y 

One other i tem tha t will appear in the proceedings 
of this colloquium is a paper by Barry Cipra based on 
interviews with many people who are now doing ex-
perimental things with calculus. These are innovations 
already under way, out of the mainstream, at least a lit-
tle bit . The areas in which people are currently working 
fall into two broad categories: technology and teaching. 

• Disks. A lot of textbooks, as well as individual au-
thors, offer supplementary P C or Macintosh disks to 
help illustrate what is going on in calculus. Because 
of the power of this equipment, these packages tend 
to be exclusively numerical and graphing, since they 
do not have enough power to handle symbolic ma-
nipulation. 

• Symbolic Algebra. These systems perform the ma-
nipulative routines of algebra and calculus in purely 
symbolic form-as we teach them in class. Packages 
like MACSYMA, SMP, and Maple run on large sys-
tems or workstations (e.g., VAX or Sun). Some of 
these are being compressed to fit in to the small desk-
top machines. 

• Programming. In some places, instructors embed the 
teaching of programming into calculus, usually in Ba-
sic, in many cases now in TrueBasic; rarely is it in 
Pascal. It still is pret ty uncommon anywhere to ex-
pect calculus students to also do programming. 

• Super Calculators. Current top-line calculators from 
HP, Sharp, and Casio are in the $80-200 price range, 
but we all know tha t soon they will be one-fourth 
tha t price. All can do graphs; some can do symbolic 
manipulation; most can do a great deal of what stu-
dents normally accomplish in their freshman course. 

• Electronic Blackboards. Some experiments use tech-
nology to make lecturing and presentation more dy-
namic. With a good classroom setup with a com-
puter and a screen, you can do more examples, more 
realistic examples, and more dynamic examples. Cal-

culus is the study of change; with an electronic black-
board you can actually demonstra te tha t change in 
real time, so students can see what these concepts 
are all about . 

• Electronic Tutors. At the further out research level, 
there are people in artificial intelligence who are try-
ing very hard to adapt techniques from symbolic al-
gebra and the electronic blackboard and put it all 
together into a sophisticated program that would 
amount to an electronic tu tor for calculus. 
Now a lot of people have been working on this for 

school mathematics—for algebra and geometry. I 'm 
frankly skeptical tha t this work will ever come to much, 
since it seems to me that the subtleties tha t are involved 
in learning calculus are probably a few generations be-
yond the ability of the artificial intelligence community 
to catch up with it. But I know there are people in ar-
tificial intelligence who believe tha t I a m wrong, people 
who believe t ha t in five years they will have these tu-
tors really working. Some of them are probably in the 
audience right now . . . . 

I n n o v a t i o n : T e a c h i n g 

If you move away from the technology arena, there 
is not too much else going on. Technology is certainly 
what has captured the most interest. Here are three 
important areas related to teaching where serious work 
is taking place. 

Teaching Assistants. Many universities are trying to 
devise means of incorporating TA's into the teaching of 
the calculus in a way tha t makes the experience for the 
students more satisfactory. As you all know, the budget 
structure of the major universities essentially requires 
heavy dependence on teaching assistants in calculus in 
some form or other, so there is a lot of experimenting 
going on to figure out what forms are bet ter than others. 

Even in a calculus course that is very 
well done ...students can go through 
...getting a grade ofB, maybe even a 
grade of A, and never write a complete 
sentence. 

Writing. Some people have taken up the task of inte-
grating into calculus the objectives of teaching s tudents 
to write and communicate by making writing an impor-
tant component of calculus. It certainly is the case now 
that even in a calculus course tha t is very well done— 
with good lecturing and small classes, where s tudents 
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ask questions and the instructor answers them, where 
instructors or assistants help students , where students 
turn in homework and take regular examinations—it is 
probably the case tha t students can go through such 
a course getting a grade of B, maybe even a grade of 
A, and never write a complete sentence in the entire 
semester, and probably never even talk at length about 
calculus with anyone. 

There are people who are trying to correct tha t . If 
you look in the Tulane Proceedings, Toward a Lean and 
Lively Calculus, there are a set of objectives for calculus 
t ha t emphasize expanding its goals beyond core math-
ematics goals to include a lot more general education 
objectives. Some far-sighted instructors are working on 
broad issues like tha t . 

Constructivism. There is a movement in educational 
psychology tha t is actually led by physicists, tha t points 
out (with good support ing data) tha t students do not 
approach the study of subjects like mathematics and 
physics—or probably anything else—with a blank slate 
on which we teachers can fill in details by writing them 
on the blackboard and expecting students to xerox them 
into their brain. 

Students do not approach the study of 
mathematics with a blank slate. 
... When we instruct them, it is like 
pushing on a gyroscope. The student 
moves in a different direction than we 
push. 

Students come with their own preconceptions about 
what mathemat ics should be, with their own repertoire 
of means of coping with mathematics as they encounter 
it. In many cases it may be evasive behavior, but it is 
part of a variety of prior experiences that s tudents have. 

When we instruct them, it is like pushing on a gyro-
scope. The student moves in a different direction than 
we push. So in order to teach s tudents what we want 
them to learn, we have to understand the interaction 
tha t goes on when students construct their own images 
of mathematics which are quite likely different than the 
ones we have in our minds or tha t we are trying to con-
vey to them. 

O p t i o n s for t h e F u t u r e 

Let me close with an outline of issues for Tom Tucker, 
who will be telling you his view of what calculus may 
be like in the future. 

When I talked with Tom about these presentations, I 
suggested tha t he could view this in a manner tha t fits 

his own expertise as Chairman of the A P Examining 
Committee which sets the most widely-used multiple 
choice examination for calculus. So I gave Tom a mul-
tiple choice question which he will answer shortly. I 
would like to conclude by telling you what the question 
is, so you can think about how you would answer it. 

Where is calculus headed? Here are five choices for 
calculus tomorrow: 

A. It will disappear completely as client disciplines dis-
cover tha t they can teach students to run computers 
bet ter than the mathemat ics depar tment can. 

B. It will become the first modern classic—a scholarly 
refuge, like Latin, in which arcane insights of a past 
age are rehashed for those who wish to understand 
the history of our present culture. 

C. It will remain totally unchanged due to the inability 
of forces acting from different directions to move an 
object with such large mass. 

D. It will grow to double its present gargantuan mass, 
under pressure from the many client disciplines who 
want students who enter college knowing nothing to 
learn everything before they are sophomores. 

E. It will explode into a supernova, with every discipline 
teaching calculus its own way. 

We will shape the answer to this question—not today, 
but in the next few years—and in so doing respond to 
Gail Young's challenge. Reforming calculus is our most 
important task. 
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Calculus Tomorrow 

Thomas W. Tucker 

C O L G A T E U N I V E R S I T Y 

Is there a "crisis" in calculus? If I were to ask tha t 
of s tudents in one of my calculus classes, they would 
all say "yes," but their interpretation of "crisis" would 
be a t a more personal level, especially with tha t hour 
exam coming up next week. 

Leonard Gillman, in the most recent issue of Focus 
[1], writes tha t the phrase "crisis in calculus" reminds 
him of a 1946 murder trial in Indiana. The case should 
have been open and shut, but by continually referring to 
the murder as "an unfortunate accident" ("Where were 
you the afternoon of that unfortunate accident?"), the 
seasoned defense at torney managed to get his client off 
with only 2 1/2 years for manslaughter. 

Maybe Gillman is right. Maybe there is no crisis in 
calculus. Maybe it 's jus t . . . a n unfortunate accident. 
My students like that phrase too. They use it a lot 
themselves: "Professor Tucker, about tha t unfortunate 
accident of mine on problem 3." 

No, there is a crisis today in mathematics , and in 
science. The crisis lies in the infrastructure of science, 
which is fed by the undergraduate mathematics curricu-
lum. Like it or not, calculus is the entry for the entire 
undergraduate program in mathematics as well as the 
foundation for the sciences. 

We have in our calculus classes a 
captive audience. ...If we cannot 
produce from this audience the 
mathematicians and scientists the 
country needs, we must ask "Why 
not?" 

We spend enormous amounts of time and effort 
teaching calculus to masses of students. We have in 
our calculus classes a captive audience, at least for the 
t ime being. If we cannot produce from this audience 
the mathematicians and scientists the country needs, 
we must ask "Why not?" Are we doing the right things 
in this course? Can we change what we teach and how 
we teach it? Wha t will calculus be like tomorrow? 

B u s i n e s s as U s u a l 

I propose three pictures of the future for calculus. 
The first is the obvious one: business as usual. Text-

books will continue to get bigger; using the logistic 
equation with da ta 640 grams in 1934 (Granville, Smith 
and Longley), 1587 grams in 1960 (Thomas, Third Edi-
tion), and 2617 grams in 1986 (Grossman, Third Edi-
tion), I get a limiting mass of 3421 grams. The content, 
however, will be unchanged. 

Nearly half of all calculus s tudents will be enrolled 
in classes of size 80 or more. Many smaller classes 
and recitation sections will be taught by graduate stu-
dents whose native language is not English. Calculators 
and computers will be banned from most examinations. 
Pencil-and-paper algebraic manipulation will be the or-
der of the day. Students will fail or withdraw in large 
numbers. And no one will complain because, after all, 
calculus is calculus. I t 's too familiar, too respected, too 
comfortable, and too big to change. 

C a l c u l u s in H i g h S c h o o l 

The second picture is tha t the mainstream college 
calculus course, like a river in the Great Basin, will 
gradually disappear into a number of sinkholes. It will 
seep away into the secondary school curriculum. Al-
ready 60,000 students a year are taking the Advanced 
Placement calculus exams and tha t number has been 
growing steadily at 10% a year ever since 1960. (In 
fact, it jumped 20% last year.) 

It would not be surprising to see 200,000 A P Calculus 
exams in year 2000. And tha t is only the t ip of the 
iceberg. From surveys, it appears tha t fewer than half 
of the students enrolled in an A P course actually take 
the exam, and even more s tudents are taking non-AP 
calculus. Within a decade, there could be more s tudents 
taking calculus in secondary school than presently take 
it in college. 

High school calculus can be very, very 

good. ... The hundreds of AP teachers 

I have met ... embarrass me with their 

dedication, enthusiasm, and expertise. 

Before we wring our hands over this s ta te of affairs, 
let me say tha t high school calculus can be very, very 
good. It should be. They have 150 meetings to cover 
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what we in college do in 50. Teaching calculus in sec-
ondary school is viewed as a pleasure and a reward; in 
college, it is a burden. The hundreds of AP teachers I 
have met through my involvement in the A P program 
embarrass me with their dedication, enthusiasm, and 
expertise. And of course they teach to the select few in 
secondary school, while we teach to the masses in col-
lege. It is no wonder tha t in my fall Calculus II class, the 
incoming freshman always outperform the sophomores 
who took our own Calculus I the previous semester. 

But can secondary schools also teach calculus to the 
masses? In Russia, all 16 and 17-year olds are supposed 
to learn calculus. In Europe, general education takes 
place in secondary school, not in the universities. Many, 
s tudents , perhaps a majority, who are enrolled in our 
mainstream calculus courses are there to get a good 
general education: a calculus course on the transcript 
is the sign of an educated person. 

If the calculus of the future takes place 
in secondary school, what will college 
mathematics departments have to 
teach? 

There is but one question: if the calculus of the fu-
ture takes place in secondary school, what will college 
mathematics depar tments have to teach? Already I am 
seeing more and more s tudents arrive on campus with 
AP Calculus credit and never set foot in a mathematics 
classroom again. This could be an omen. 

C a l c u l u s A c r o s s t h e C u r r i c u l u m 
Mainstream calculus may also disappear into the 

client disciplines. Mathematicians are not the only peo-
ple smart enough to teach calculus, and it shouldn't be 
surprising if other users wish to tailor a calculus course 
to their own needs. Some of the most innovative text-
books to appear in recent years have been for alternative 
tracks—for business, for life sciences, even for computer 
science. When we were making syllabi recommenda-
tions at the Tulane Calculus Conference in 1986, we 
found tha t many of our suggestions had already been 
adopted in a nonstandard text published independently 
by the Inst i tute for Electrical and Electronic Engineer-
ing ( IEEE) . 

The mathematics community could learn something 
from alternative courses. If it doesn't , mainstream cal-
culus may find its flow of students diverted more and 
more. Already more than one in three college calcu-
lus students is enrolled in an alternative course, and, as 
with secondary school calculus, this number will grow. 

The t ru th of the mat ter is tha t our clients have been 
remarkably tolerant of mains t ream calculus. At my in-
sti tution, we don' t even teach exponential growth in 
first semester calculus, and yet the economics depart-
ment, which urges students to take at least one semester 
of calculus, doesn't seem to notice. Out of sight, out of 
mind, perhaps; but we shouldn' t count on laissez-faire 
forever. 

T h e truth of the matter is that our 
clients have been remarkably tolerant 
of mainstream calculus. 

Finally, mainstream calculus may disappear into 
computers and calculators. Long division, root ex-
traction, use of log and trig tables are all fading from 
the precollege curriculum (not as fast, however, as one 
would expect: even though every s tudent has a $10 sci-
entific calculator close at hand, most textbooks still in-
clude tables of values of sines, cosines, na tura l logs, and 
exponentials). 

Many traditional calculus topics such as curve sketch-
ing, relative maxima and minima, even formal differen-
tiation and integration may become jus t as obsolete in 
the face of symbolic manipulation and curve plott ing on 
computers and calculators. How long will mathemat-
ics faculty be able to maintain discipline in the ranks 
of students "digging and filling intellectual ditches," as 
Lynn Steen so aptly put it in a recent article [2] in the 
Chronicle of Higher Education? 

What happens when our calculus clients find we are 
still teaching the moral equivalent of long division while 
they simply want their s tudents to know how to push 
but tons intelligently? Of course we would find it bar-
baric if s tudents could only recognize J^ 11/(1 -I- x2)dx 
as .785398, but what do we do when their calculators 
actually answer "π /4"? Tha t will happen, you know, 
and as usual, before we're ready for it. 

What happens when our calculus 
clients find we are still teaching the 
moral equivalent of long division while 
they simply want their students to 
know how to push buttons 
intelligently? 

In the future, we may only need a few people who 
know the inner workings of the calculus, a cadre of the 
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same size as the numerical analysts who keep our cal-
culators going today, and I guarantee you that number 
is a lot less than 600,000 students a year. 

C l e a n i n g H o u s e 

In contrast to this second picture of calculus tomor-
row, which we might call the twilight of mainstream 
calculus, let us consider a third picture, a vista of a 
more conceptual, intuitive, numerical, pictorial calcu-
lus. The first step in that direction is honesty, with 
our students and with ourselves. If we teach techniques 
of integration because it builds character, let 's admit 
it to ourselves and to our students. If we like π / 4 as 
an answer rather than .785398 because it is beautiful 
rather than useful, let 's tell our students tha t . If com-
plex numbers are both too useful and too beautiful to 
ignore, then let 's include them. 

Do we need l 'Hopital 's rule to know that ex grows 
faster than x 1 0 0 ? Do we ever need to mention the 
cotangent and cosecant? Do we really want to know 
the volume of that solid of revolution? Are all func-
tions encountered in real life given by closed algebraic 
formulas? Are any? 

Are all functions encountered in real 
life given by closed algebraic formulas? 
Are any? 

We should be asking these questions. In fact, we 
should have asked these questions long ago. And when 
we have figured out really why we teach what we do, 
let's tell it to our students. 

After we clean house, what will the new calculus be 
like? I hope that it uses calculators and computers, 
not for demonstrations but as tools, tools that raise 
as many questions as they answer. The first time one 
plots the graph of a random polynomial on a computer, 
one learns that polynomials lead very dull lives most of 
the time, just going straight up or straight down, and 
that singularities are just tha t , singular. Tha t is an 
important lesson, and one which is lost on most calculus 
students. 

I remember when a colleague arranged a classroom 
computer demonstration to show the limit of quotients 
Ay/Ax is the derivative dy/dx and was shocked and 
embarrassed to find after a few iterations tha t the quo-
tients diverged. (I warned him about roundoff error but 
he didn' t believe me.) Finding good numerical answers 
can be jus t as difficult, just as instructive, and just as 
rewarding as slick algebraic manipulation. 

Computers and calculators can also be used as a tool 
to infuse new mathematics into a staid course. We com-
plain that the lay view of mathematics is tha t there is 
nothing to study—it was all finished off a long time ago. 
Tha t shouldn't be surprising if the calculus we teach to-
day we could have taught one hundred years ago, maybe 
even two hundred. 

W h a t h a v e mathematicians been doing 
for the last century? Our calculus 
classes say the answer is "Nothing." 

For example, leafing through those boxed-in biogra-
phies of mathematicians in a well-known text, I could 
not find a single mathematician active after Riemann's 
death in 1866. Wha t have mathematicians been doing 
for the last century? Our calculus classes say the answer 
is "Nothing." 

Computers could change tha t . We could play with 
contemporary mathematics: the dynamics of functional 
iteration, fractals, stability, three-dimensional graphics, 
optimization, maybe even minimal surfaces. I know, I 
know: just because it 's new, doesn ' t mean i t ' s good. 
But a little "live" mathemat ics in a lean and lively cal-
culus wouldn' t hurt , even if i t 's only a commercial. 

I hope the use of computers and calculators will also 
teach students to think about the reasonableness of 
their answers. As it is, they work so hard to get solu-
tions that they never even give their solutions a second 
thought. I remember a problem we graded on an A P 
exam, which asked for the largest possible volume for a 
water tank meeting certain restrictions. We kept track 
of the largest and smallest answers. The largest was 
somewhat bigger than the universe, and the smallest 
was much less than an a tom (not counting, of course, 
all the negative answers). 

W e may even end up in the future not 
only with "machines who think" but 
also with "students who think." 

Students who just push but tons and write down the 
answer will find out quickly that tha t is not enough. We 
may even end up in the future not only with "machines 
who think" but also with "students who think." 

T h e D a y A f t e r T o m o r r o w 

Suppose this third picture of calculus tomorrow 
comes true. It 's a nice picture, an exciting picture, 
but there is still the day after tomorrow. Reforms have 



T U C K E R : C A L C U L U S T O M O R R O W 17 

ways of becoming undone. In the late 1960's the NSF-
supported Committee on the Undergraduate Program 
in Mathematics (CUPM) recommended that multivari-
able calculus be taught in the full generality of η di-
mensions with a whole semester of linear algebra as a 
prerequisite. By the early 1970's, textbooks for such a 
course had been published and many, if not the major-
ity, of colleges and universities taught their multivari-
able calculus tha t way. 

But something happened in the next decade with-
out any urgings or direction from on high. A recent 
survey for the A P program revealed tha t 90% of the re-
spondents now teach multivariable calculus in two- and 
three-dimensions only, out of a s tandard thick calculus 
textbook, with no linear algebra prerequisite. Mathe-
maticians tried to twist the calculus sequence and came 
back later to find it, jus t like those metals with memory, 
back in the same old shape again. 

There are strong forces tha t molded today's calculus, 
and those forces will still exist tomorrow. Students will 
always follow the principle of least action. Textbook 
publishers will still be guided by the laws of the mar-
ketplace. Faculty will still have limited time to devote 
to calculus teaching in a system which rewards more 
glamorous professional activity. The reform movement 
must take these forces into account. 

Students will always follow the 
principle of least action. Textbook 
publishers will still be guided by the 
laws of the marketplace. 

Unfortunately, some forces are societal and beyond 
our control. The conference held here last January on 
international comparisons of mathematics achievement 
was particularly depressing in this regard. As much 
as one might like to blame American shortcomings on 
spiral curricula which circle instead, or on middle school 
mathematics which is mostly remedial, it seems clear 
tha t the real problems are much more deeply rooted in 
our society. 

Japanese students think that mathematics is hard, 
but tha t anyone can learn it by working enough. Amer-
ican s tudents think mathematics is a knack only few are 
born with, and if you don' t have it, extra work won't 
help. Japanese parents are intensely involved with their 
children's education and are generally critical of the aca-
demic program in their local schools. American parents 

think their children are doing fine, even when they are 
not, and are generally happy with the academic pro-
gram in their local schools, even when they should not 
be. 

If American children spend their after-school hours 
working for spending money at fast-food franchises, it 
cannot be surprising that their mathematics achieve-
ment might suffer. On my campus, every student wants 
now to become an investment banker—at least they did 
until last week; the old favorite, pre-med, is dwindling 
because it 's too much science, too much "academics," 
too much hard work. 

The most visible rewards in our society go to enter-
tainers, athletes, and corporate raiders, but I have yet 
to hear of our nation being at risk because of a short-
age of, say, T V personalities. If our calculus s tudents do 
not learn, if their at tention wanders, or if they do not 
even show up in the first place, we should not burden 
ourselves with all the blame. 

I a m not arguing that we should not try to make 
tomorrow's calculus different. I am sure we can do bet-
ter and doing better could have a dramat ic effect on 
the infrastructure of mathematics and science. We can-
not do it alone, however. Like any other educational 
enterprise today, calculus reform needs broad support , 
from government, from private industry, from colleges 
and schools, from professional societies, from the media, 
from teachers, from students, from parents . Changing 
calculus may be more of a bat t le than we would ever 
imagine, but it is a battle worth fighting. 
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Views from Client Disciplines 

Cathleen S. Morawetz 

C O U R A N T I N S T I T U T E O F M A T H E M A T I C A L S C I E N C E S 

Welcome. We are here to hear a panel representing 
the client disciplines. They are the users of the stu-
dents we mathematicians turn out. I am here to rep-
resent applied mathematics in the channel connecting 
mathematics to other disciplines. 

As a professor at the Courant Inst i tute, every once 
in a while I have taught the calculus. But I have to 
admit , not very often. I a m a user, and as a user I feel 
tha t I belong with the client disciplines. 

Someone mentioned this morning tha t Leonard Gill-
man wrote in Focus tha t things were all right with cal-
culus. Why fix what isn't broke? 

I would like to read to you a little bit of what Peter 
Lax wrote to Gillman in answer to tha t . Peter is sorry 
tha t he isn't here to give the message himself. 

Dear Lenny: 

At one time the historian-essayist-moralist Carlyle 
was irritated by a friend who didn't believe in the 
existence of the devil. So Carlyle took him to the 
gallery of the House of Commons, and after listening 
to the goings-on, turned to his friend and remarked, 
"D'ye believe in the devil noo?" 

When I encounter a skeptical colleague, I feel like 
showing him today's most widely used calculus text 
and ask him "D'ye believe in the crisis in the calculus 
noo?" 

I think this story has another moral too, which is tha t 
we should do a lot of listening as well as talking about 
the calculus. Many of you have a first love—perhaps 
topology, or algebra, or some other very abstract field. 
You do not use the calculus today, not as I do. So 

I am a client and I represent the link tha t binds core 
mathematics to the client disciplines. 

Someone once said tha t I a m a card-carrying applied 
mathematician. If someone else wants to dispute tha t , 
and some people will, then I'll see them afterwards. 

As a card carrying member, I form a link to physics 
and to engineering. I a m interested in the links to biol-
ogy, although I have to confess tha t it was only rather 
late in life as a mother of an economics student tha t I 
learned of the importance of calculus to economics. I 
also come from an institution which in its research spe-
cializes in this linkage. So I a m here today to help pose 
questions for my panelists who come from the client 
disciplines. 

Everyone who can learn calculus should 
learn calculus. 

I have a profound interest in what gets taught in the 
calculus. I think I understand the needs of industry and 
the other sciences in continuing the scientific education 
of students beyond the calculus. I would like to suggest 
a slogan for the future: Everyone who can learn calculus 
should learn calculus. 

C A T H L E E N S. M O R A W E T Z is Director of the Courant 
Institute of Mathematical Sciences, New York University. 
She is a member of the Board on Mathematical Sciences of 
the National Academy of Sciences. 

Calculus for Engineering Practice 

W. Dale Compton 

N A T I O N A L A C A D E M Y O F E N G I N E E R I N G 

In considering the Calculus for a New Century, with 
its obvious emphasis on the next century, it is impor-
tant tha t we be sensitive to the context in which the 
student will be studying this important subject. The 

future environment will be determined, in a significant 
way, by the competitive position of the U.S. in the world 
marketplace. We must consider, therefore, the role tha t 
calculus can have in helping this nation achieve an im-
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proved competitiveness. 
While many measures could be given of our current 

competitiveness, it is sufficient to remind ourselves of 
the impact of the large trade deficit and of the changes 
in employment levels that have resulted from the move-
ment of manufacturing off-shore. With roughly seventy 
percent of our current manufacturing output facing di-
rect foreign competition, we can expect the competi-
tive pressures on the manufacturing sector to continue. 
Even the service sector is not immune to these pres-
sures. One example of this is the increasing fraction of 
engineering services being contracted to off-shore com-
panies. 

Calculus should encourage students to 
proceed to an engineering career—not 
by being easy, but by being exciting. 

Many factors determine our competitiveness and 
many actions will be required to improve it. Most peo-
ple agree, however, t ha t one of the principal tools for 
recovering our competitive position will be a more effec-
tive use of technology. This requires that the practice 
of engineering be more effective. To affect the practice 
of engineering one must focus on industry, the employer 
of about 75% of all engineers. Therefore, in considering 
the future capability of industry to effectively use tech-
nology, an important issue becomes the availability and 
qualifications of future engineers. 

If an adequate supply of qualified engineers is critical 
for industrial competitiveness, it is important to exam-
ine the trends in engineering enrollment. First, student 
demographics predict a sharp drop in the college-age 
population, Second, a decreasing percentage of new col-
lege students are indicating an interest in science and 
engineering. Finally, a larger proportion of entering col-
lege students will be minorities and females, a group 
that have not been strongly a t t racted to engineering as 
a profession. An important conclusion is that we must 
find a way to reduce the fraction of students who with-
draw from the study of engineering, even though they 
may have expressed an early interest in the field and 
are qualified to s tudy it. 

We must find a way to reduce the 
fraction of students who withdraw 
from the study of engineering. 

It is here tha t calculus becomes so important . Math-
ematical skills are a prerequisite to the successful prac-
tice of engineering, and calculus is the first major step 

in acquiring the skills needed for an engineering career. 
Calculus should encourage students to proceed to an 
engineering career—not by being easy, but by being ex-
citing. It must not be an artificial barrier that is used 
to discourage students from proceeding. It should en-
courage students to explore the possibilities further. It 
should help convey to the student the sense of excite-
ment tha t the practitioner of engineering experiences. 

Engineering, in the words of the Accreditation Board 
for Engineering and Technology (ABET) , is "the profes-
sion in which knowledge of the mathemat ical and natu-
ral sciences gained by study, experience, and practice is 
applied with judgment to develop ways to utilize, eco-
nomically, the materials and forces of nature for the 
benefit of mankind." 

The operative words in this s tatement are knowledge 
and judgment . Whereas mathematics has most often 
been considered as a requirement for knowledge, it is 
time for us to begin to consider its role in judgment. 
The calculus course can be a place to s tar t creating 
this sense of judgment and a sense of the excitement of 
the field through the examples that are used. 

Whereas mathematics has most often 
been considered as a requirement for 
knowledge, it is time for us to begin to 
consider its role in judgment. 

Consider the following possibilities. Engineering 
deals with systems. Many systems are large and thus 
complex. Most systems are non-linear. Hence, approx-
imate solutions are required to many system problems. 
It follows tha t the practitioner must have a good sense 
of the reasonableness of a solution. 

It is my guess that s tudents would react positively 
to a calculus that includes examples that require the 
exercise of good judgment . Wha t better time to intro-
duce the student to a sense of engineering than through 
examples of this type. Wha t better way to introduce 
some excitement into calculus. 

W . D A L E C O M P T O N is currently a Senior Fellow at the 
National Academy of Engineering. Previously, he served a 
total of 1 6 years with Ford Motor Company, first as Director 
of the Chemical and Physical Sciences Laboratory and from 
1 9 7 3 - 1 9 8 6 as Vice President of Research. From 1 9 6 1 - 1 9 7 0 
Dr. Compton was a Professor of Physics at the University 
of Illinois at Urbana, serving as Director of the Coordinated 
Sciences Laboratory from 1 9 6 5 - 1 9 7 0 . He received a Ph.D. 
degree in physics from the University of Illinois. 
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Calculus in the Biological Sciences 

Henry S. Horn 

P R I N C E T O N U N I V E R S I T Y 

After describing my own deplorable formal mathe-
matics background, I would like to make an idiosyn-
cratic list of the techniques that my own research and 
teaching now require. Then I shall condense that list 
into a recommendation for the kind of calculus course 
that I wish I had had as an undergraduate. 

My perspective comes from doing empirical research 
in ecology, studying the behavior of birds, butterflies, 
and trees, with a strong conceptual bias, and with in-
terests in population genetics, evolution, development, 
and biomechanics. 

My formal courses started with developing geometric 
intuition and the notion of rigorous proofs in high school 
geometry, and it ended in college with baby-calculus 
through an introduction to linear differential equations. 
My fanciest mathematics , namely complex phase plane 
analysis, was learned in an engineering course called 
"Electrical Engineering for Engineers who Aren' t Elec-
trical." 

The help that I currently give my children on mid-
dle school and high school homework should also count 
as formal coursework in higher math . This is part ly 
because of their appalling textbooks and the last ves-
tiges of the New Math, but it is also partly because 
of the depth and breadth of substance in the current 
secondary school mathematics curriculum. My research 
and that of close colleagues has required far more math-
ematics than I have learned formally. 

Meeting even the elementary 
mathematical needs of my area of 
biology requires more than the usual 
attention to the disciplines neighboring 
calculus: geometry, difference 
equations, nonlinear qualitative 
analysis, linear algebra, and statistics. 

In my own research I use infinite series to calculate 
the photosynthesis of layers of leaves in a forest. I look 
up s tandard derivatives and integrals in the Handbook of 
Chemistry and Physics to model butterfly movements 
as a diffusion process. I use phase-plane analysis of 
systems of differential equations to discover population 

consequences of dispersal behavior, and, in the privacy 
of my own bedroom, 1 calculate the dispersion of eigen-
values of a transition matr ix to explore the speed and 
repeatability of field-to-forest succession. Multivariate 
calculus and linear algebra are useful in statistics. 

R e a l i t y , b r e a d t h , a n d substance are 

crucial if examples are to hold the 

motivation for their own solutions. 

Colleagues studying populations, genetics, and neu-
ral networks cite crucial differences between differential 
and difference equations, with respect to stability and 
chaotic behavior. They also use combinatorics in the 
construction and analysis of genetic sequences, evolu-
tionary trees, and the like. Propagation of noise spectra 
through differential and difference equations is widely 
practiced in biology. 

A topic tha t is far more different than is usually rec-
ognized is the study of heterogeneous nonlinear systems 
in which it is necessary to carry the full complexity 
through the analysis and plot the distribution of the re-
sult. An appropriate choice among these techniques is 
needed to study effects of varying environments on pop-
ulation dynamics, of variation among individuals on pa-
rameters of population or behavior, of sensory filtering 
in physiology, and of error in estimation of parameters 
in general. 

Meeting even the elementary mathematical needs of 
my area of biology requires more than the usual at ten-
tion to the disciplines neighboring calculus: geometry, 
difference equations, nonlinear qualitative analysis, lin-
ear algebra, and statistics. In addition it requires a per-
spective more like applied mathematics or engineering 
than pure mathematics . 

An ideal calculus course from my perspective would 
have the following properties: 

1. Start with its historical origin as solutions to prob-
lems in physical dynamics, but move on a t least to 
the qualitative behavior of solutions of difference and 
nonlinear differential equations, propagation of vari-
ance, and propagation of qualitative heterogeneity 
through complex systems. Here I echo the enthusi-
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asm of many symposium speakers for discrete math-
ematics. 

Even qualitative contrasts with the traditional cal-
culus are of use to me, to say nothing of approxi-
mate solutions. These are traditionally considered to 
be advanced topics, but they are the necessary rudi-
ments to t reat the real world beyond idealized New-
tonian physics. (Incidentally, I have recently enjoyed 
jus t the kind of playing with advanced concepts that 
Thomas Tucker extolled this morning, using semi-
tutorial graphical microcomputer programs tha t are 
being developed by folks in my field.) 

2. Develop and emphasize proofs, not from first prin-
ciples, but from agreed-on intuitive principles. Un-
fortunately this depends on common sense, which as 
Voltaire observed is not so common. 

3. Use plug-in problems and template word problems to 

drill on substantive questions from a variety of aca-
demic disciplines. A partial list of disciplines whose 
examples would have direct relevance to my own is: 
ecology, molecular biology, physics, s tructural engi-
neering, fluid dynamics, fractal geometry, economics, 
and politics. Reality, breadth, and substance are cru-
cial if examples are to hold the motivation for their 
own solutions. 

H E N R Y S. H O R N , Professor of Biology at Princeton 
University, specializes in ecology and the behavior of birds, 
butterflies, and trees. The adaptive significance in biology of 
geometrical components is of particular interest to him. He 
is a member of several professional organizations including 
the Ecological Society of America and the Animal Behavior 
Society. Dr. Horn received a Ph.D. degree in ecology from 
the University of Washington. 

Calculus for Management: A Case 

Herbert Moskowitz 

P U R D U E U N I V E R S I T Y 

My views on calculus for management will be based 
on my experience and observations of our undergradu-
ate and graduate professional programs in management 
at the Krannert School of Management at Purdue Uni-
versity. As background, I will overview relevant aspects 
of the curricula in each of these programs and relate 
these to the need for calculus. Then I will s tate several 
issues regarding the nature of the calculus courses taken 
by our students . Prom this, inferences and conclusions 
will be drawn regarding whether and how the instruc-
tion in calculus should change to meet the immediate 
and future needs of students in schools of management, 
or perhaps, whether it is really needed at all! 

U n d e r g r a d u a t e M a n a g e m e n t P r o g r a m s 

There are three undergraduate programs in man-
agement at the Krannert School: Industrial Manage-
ment (IM), Management (M), and Accounting (A). The 
mathematics requirement in each of these programs are 
high and demanding compared to other comparable uni-
versities, far exceeding AACSB guidelines. 

Pre-Management students are required to take 2-3 
semesters of calculus; the 3 semesters applying specif-
ically to our IM students, who must minor in a phys-

Study 

ical or engineering science discipline. In addition, all 
pre-Management students must take a mathematical 
statistics course. Once in the management program, 
students additionally take a managerial statistics course 
(calculus-based) as well as a management science course 
whose primary emphasis is on optimization. 

The Calculus Requirement. As the Krannert School's 
undergraduate programs are currently structured, cal-
culus is essential: 

1. It is a pre-requisite for satisfying courses constituting 
the minor in the IM program. It is also a prerequisite 
or co-requisite for such required courses as Introduc-
tion to Probability, Quanti tat ive Methods (statistics 
and optimization), Micro and Macro Economics, and 
such functional area courses as Operations Manage-
ment and Marketing Management. 

2. It serves as a "mild" filter, in the sense tha t grades 
in the course, along with other courses, are used to 
determine whether a student can transit successfully 
from the Pre-Management Division into the Manage-
ment Division. 

3. It is a virtual necessary condition for acceptance 
(viz, "license") into a quality graduate professional 
or Ph .D. program in Management. 
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The Calculus Sequence. There is an option for one of 
the following two sequences, which is contingent upon 
a s tudent 's prior mathematical preparation and ability, 
determined through testing and review of a student 's 
records: 

1. The s tandard 3-course sequence oriented towards the 
physical sciences consisting of differential, integral, 
and multivariate calculus, respectively; 

2. A nonstandard sequence for the less prepared stu-
dent composed of a fundamental course in algebra 
and trigonometry, a less rigorous differential calculus 
course, and a less rigorous integral calculus course. 
More than 80% of all management students begin 

with the algebra and trigonometry course. Seventy-
five percent then take the nonstandard calculus se-
quence (all pre-IM's, however, must take the calculus 
sequence). 

Fifty percent of our students obtain a grade of A or 
Β as compared to 40% in the university in the stan-
dard calculus sequence. Moreover, almost 60% of our 
students obtain an A or Β in the nonstandard calculus 
sequence as compared to about 40% in the university. 
This high success rate is a t t r ibuted in part to an ini-
tial evaluation of the s tudent ' s background and ability, 
remedial training, and placement in the appropriate cal-
culus sequence (standard vs. nonstandard) for our stu-
dents. 

Nature of Calculus Courses. All calculus courses are 
taught by the mathematics department . The courses 
are highly structured and automated, in part to cope 
with delivering mass-produced training efficiently. The 
instructional approach is algorithmically oriented, i.e., 
"how to differentiate and integrate." Little or no em-
phasis is focused on conceptualization, modeling, or rel-
evant and meaningful management applications. Class 
sizes are very large (large lecture halls) for calculus 
courses in the s tandard sequence and approximately 40 
for courses in the nonstandard sequence. Typically, in-
structors are either not the best mathematics faculty 
or are foreign Ph .D. students majoring in mathematics . 
Neither, presumably, are familiar with calculus applica-
tions in management. 

Observations and Implications. Relatively speaking, 
although students are exposed rather extensively to the 
calculus and must use it in their economics, engineering 
and management courses, they have considerable diffi-
culty, particularly in problem and model conceptualiza-
tion and formulation. Moreover, even the well-drilled 
procedures of differentiating and integrating are forgot-
ten much too quickly and must be reviewed. Hence, the 
cc icational impact should and must be improved. 

G r a d u a t e P r o f e s s i o n a l P r o g r a m s 

There are two predominant masters in management 
programs at the Krannert School: the Master of Science 
in Industrial Administration (MSIA), and the Master of 
Science in Management (MS) programs. The MSIA is 
an 11-month general management program designed for 
students with technical degrees. The MS is a two (or 1-
1/2) year general management program, also requiring 
a specialization in a functional area of management . 

Historically, virtually 100% of the s tudents in the 
MSIA program had technical backgrounds, while about 
80% of such students entered the MS program. To-
day, the composition of the s tudents in both programs 
has changed considerably, the trend being towards more 
students with degrees in business, economics, and the 
liberal arts . Concommitantly, so have their mathemat-
ical backgrounds changed. 

The average GMAT of entering students is in the 
90th percentile. Both programs place strong emphasis 
on the use of quanti tat ive (and computing) skills for 
problem solving and decision making, hence s tudents 
are screened carefully for the quanti tat ive apt i tudes in 
the admissions process (background in calculus appears 
to be independent of the GMAT quanti tat ive score). 

Calculus is rarely used in any course 
... due to the personal computer, which 
has been delegated the task of 
performing computation and analysis. 

Due, in part , to demographics, only about 70% of 
currently enrolled students have at least one semester 
of college calculus on entering the program. In the not 
too distant past, all s tudents were well trained in cal-
culus, and this was reflected in the Masters program 
coursework. 

For example, our statistics course used to be a 
calculus-based course in mathematical statistics. How-
ever, today, calculus is rarely used in any course in our 
Masters in Management Programs, including our statis-
tics course. This is, in part , due to the lack of mathe-
matical background of s tudents in our program, which 
is more quantitatively rigorous than most MBA pro-
grams in the nation. But it is due even more so to the 
personal computer, which has been delegated the task 
of performing computat ion and analysis. 

Now, with computers, increasing effort can and is fo-
cused on solving large-scale, real-world problems with 
emphasis on a problem's "front end" (problem defini-
tion, formulation, modeling) and "rear end" (perform-
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ing "what if" and "what 's best" analyses, and inter-
preting the results from a managerial viewpoint). To 
illustrate the trend, the simplex method of linear pro-
gramming is no longer taught in our management sci-
ence course, but is solved by an appropriate software 
package integrated to a spreadsheet. Calculus in the 
MBA program, for all intents and purposes, has essen-
tially vanished—much to the delight of students. 

Calculus in the MBA program, for all 
intents and purposes, has essentially 
vanished—much to the delight of 
students. 

Is Calculus Needed? The concepts of calculus are 
clearly relevant to management in obviously pervasive 
and important ways. Hence, they should be taught to 
management students; probably to all college students. 
However, the nature and focus of what is being taught 
in a calculus course must be improved. This can be ac-
complished in a variety of ways including the following: 

1. Incentive systems must be established to reward in-
novative and solid calculus instruction. 

2. Calculus classes perhaps ought to be partitioned 
broadly into the physical, engineering, and social sci-
ences to at least allow the possibility for focusing 
more on applications tha t are relevant to students in 
these respective disciplines. 

3. Increased coordination and collaboration are neces-
sary between mathematics departments and, for ex-
ample, schools of management, to maximize topical 
relevance and develop meaningful management ap-
plications of concepts. 

4. Following the innovations in management and engi-
neering schools in particular, the computer can as-
sume a significant instructional role, via development 
and implementation of appropriate interactive soft-
ware and graphics. This will allow instructors to fo-
cus more heavily on calculus concepts, modeling, and 
interpretation, relegating computat ional work to the 
computer. 

5. Under conditions of mass-produced training, in par-
ticular, intelligent tutoring systems could be devel-
oped to "teach" novices to become experts in a given 
topical domain. Dissertations could and should be 
encouraged to develop such software systems, per-
haps in joint collaboration with faculty in computer 
science, engineering, and management . Computer 
laboratories for experimentation in interactive in-
struction should also be established to try out novel 
and imaginative instructional technologies. Such ef-
forts would simultaneously make both research as 
well as teaching contributions. 

What are the alternatives? Perhaps business as usual 
with its well-known, predictable result; perhaps, schools 
of management teaching calculus to their own students; 
perhaps, no calculus at all! 

H E R B E R T M O S K O W I T Z is the James Brooke Henderson 
Professor of Management and is a past director of Gradu-
ate Professional Programs in Management at the Krannert 
Graduate School of Management at Purdue University. His 
area of specialization is management science and quantita-
tive methods with interests in judgment, decision-making, 
and quality control. He received a Ph.D. in management 
from the University of California at Los Angeles. 

Calculus and Computer Science 

Anthony Ralston 

S T A T E U N I V E R S I T Y OF N E W Y O R K AT B U F F A L O 

I s tand second to no one in a belief that the teaching 
of calculus needs to be changed considerably if Ameri-
can university students are going to be well-served by 
depar tments of mathematics . But the title of this con-
ference epitomizes one of the things that is wrong with 
calculus teaching today. It implies that the place of cal-
culus in the mathematics firmament is still just what it 

has been for the last century or so, namely the root 
of the tree from which all advanced mathemat ics—at 
least all advanced applied mathematics—must be ap-
proached. 

You don' t have to agree with me tha t calculus and 
discrete mathematics should be coequal in the first two 
years of college mathematics to recognize tha t some-
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thing is happening out there which implies a need for 
the teaching of calculus to adapt to changes in the way 
mathematics is applied and in the clientele for college 
mathematics . This need includes, at least, a require-
ment that new subject mat ter be considered for the 
first two years of college mathematics and that there be 
some integration of the discrete and continuous points 
of view in those first two years. 

How ironic that there has been a 
steady, perhaps accelerating trend in 
recent years for college calculus to be 
dominated by the teaching of just 
those symbol manipulations which 
humans do poorly and computers do 
well. 

Let me make a few remarks about the impact of com-
puter and calculator technology on calculus and how it 
should be taught . Hand-held calculators can now per-
form all bu t a very few of the manipulations of K-14 
mathematics . Within a very few years the "all" will 
not have to be qualified and, moreover, the devices will 
cost no more than about the price of a book. How 
ironic, therefore, tha t there has been a steady, perhaps 
accelerating trend in recent years for college calculus to 
be dominated by the teaching of just those symbol ma-
nipulations which humans do poorly and computers do 
well and whose mastery, I believe, does not aid the abil-
ity to apply calculus or to proceed to advanced subject 
mat ter . 

T o o many mathematicians act like 
mechanical engineers when teaching 
calculus—they focus on crank-turning. 

Too many mathematicians act like mechanical en-
gineers when teaching calculus—they focus on crank-
turning. This must be changed. Calculus must become 
a mathematics course again, one which focuses on math-
ematical understanding and on intellectual mastery of 
the subject mat ter and not on producing symbol ma-
nipulators. The technology available must be integrated 
(pun intended) with the teaching of calculus in order to 
get rote mastery of out-dated skills out of the syllabus 
and to get mathematics back in. 

Except perhaps for engineering students, computer 
science students are now the largest single potential 
client population for depar tments of mathematics . Nev-
ertheless, too often today depar tments of mathemat ics 
have, in effect, encouraged computer science depart-
ments to teach their own mathematics because they 
have not been willing to teach discrete mathemat ics 
themselves. While I would argue that all undergrad-
uates should be introduced to the calculus since it is 
one of the great artifacts created by humankind, there 
is little disciplinary reason for computer science under-
graduates to s tudy calculus. 

T h e r e is little disciplinary reason for 
computer science undergraduates to 
study calculus. 

With the almost sole exception of the course in anal-
ysis of algorithms, there is no s tandard course in the 
computer science undergraduate curriculum which leans 
more than trivially on calculus. (Yes, I know about 
numerical analysis—I was, after all, once a numerical 
analyst—but fewer and fewer computer science under-
graduates take numerical analysis any longer, and al-
most none are required to take it.) Even in undergrad-
uate courses in the analysis of algorithms, the use of 
calculus-based material is often non-existent and, even 
when it is not, only very elementary aspects of calculus 
are used. For students headed toward graduate work in 
computer science, one cannot be quite so unequivocal 
but , even a t the graduate level, few computer science 
students have anywhere near as much use for continuous 
analysis as they do for discrete analysis. 

A N T H O N Y R A L S T O N is Professor of Computer Science 
and Mathematics at the State University of New York at 
Buffalo. Dr. Ralston currently chairs the Mathematical 
Sciences Education Board Task Force on the K-12 mathe-
matics curriculum and is a past president of the Associa-
tion for Computing Machinery. In recent years he has been 
interested in the interface between mathematics and com-
puter science education, particularly in the first two years 
of the college mathematics curriculum. He received a Ph.D. 
degree in mathematics from the Massachusetts Institute of 
Technology. 
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Calculus for the Physical Sciences 

James R. Stevenson 

I O N I C A T L A N T A , I N C . 

My original entry into this discussion came several 
years ago when I was asked by Ronald Douglas to repre-
sent the physical sciences at a workshop in New Orleans 
(also supported by the Sloan Foundation). At that time 
I was Professor of Physics and Executive Assistant to 
the President at Georgia Inst i tute of Technology. Today 
I am emeritus in both those positions, and chief execu-
tive officer of a small s tar t -up high technology company. 
Whether I have gained or lost credibility in the interim 
is an open question. In the few minutes today, I will 
emphasize a few of the points addressed at New Or-
leans. 

Physical science is empirical. The description and 
the formulation of "Laws of Nature" depend on obser-
vations rather than on logical development from axioms. 
Mathematics has always provided a convenient frame-
work for the description of physical phenomena. Can it 
do the same thing in the future? In the past the phys-
ical science community has interacted strongly with 
mathematicians and mathematical descriptions of New-
tonian mechanics have made a smooth transition from 
non-relativistic to relativistic and from non-quantum to 
quan tum descriptions. The next challenge is one of the 
reasons for today's discussion. 

Observations over the years have demonstrated that 
the important features of nature are imbedded in the 
description of non-linear phenomena. Both physical sci-
entists and mathematicians have been very clever at ar-
riving at excellent approximate descriptions. Recently 
many scientists and mathematicians have questioned 
this approach, believing instead that many secrets of 
nature may be hidden because of our insistence to force 
physical observations to be described by available math-
ematics. 

M a n y secrets of nature may be hidden 

because of our insistence to force 

physical observations to be described 

by available mathematics. 

The computat ional approach has uncovered the 
worlds of "chaos" and "fractal geometry." Will we dis-
cover sufficient cause to reformulate our "Laws of Na-
ture" in a new descriptive format? Is the invasion of 

mathematics by the empiricists of the computer going 
to result in a completely new approach to mathematics 
at the undergraduate level? Quo vadis calculus? 

The development of intuitive thinking is a most valu-
able asset to the physical scientist. Calculus instruction 
can play an important role. A quotation from Maxwell 
provides insight: 

For the sake of persons of these different types, scien-
tific truth should be presented in difFerent forms, and 
should be regarded as equally scientific, whether it ap-
pears in the robust form and the vivid coloring of a 
physical illustration, or in the tenuity and paleness of 
a symbolic expression. 

The physical scientist would argue tha t a similar 
s tatement can be made for presenting introductory cal-
culus. The meaning of slope and curvature and their re-
lation to the first and second derivative are important . 
The location of maxima, minima, and inflection points 
are also important , and the physical scientist must have 
sufficient drill to be able to look at a graph and tell im-
mediately the sign of the first and second derivatives as 
well as to estimate their magnitudes without resorting 
to calculators or computers. 

T h e content of introductory calculus is 
probably not as important to the 
physical scientist as the insight to this 
form of mathematical reasoning. 

In a similar vein the area under a curve must have an 
intuitive relation to integration. Infinite series are used 
to approximate analytical functions. Some knowledge 
of convergence as well as truncation errors are needed 
on an intuitive basis prior to releasing the power of the 
computer to grind away and produce nonsense. Intu-
ition and "back-of-the-envelope" calculations are still 
important in guiding the physical scientist to under-
stand the significance of observations. Mathematical 
intuition and physical intuition are frequently interre-
lated. 

The content of introductory calculus is probably not 
as important to the physical scientist as the insight to 
this form of mathematical reasoning. Many times a 
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student in physical science uses techniques of mathe-
matical analysis the student has never encountered in a 
mathematics course. 

Principles of mathematics taught in 
the context of a specific application 
have the danger of not being 
recognized for the breadth of their 
applicability. 

The important parameter with regard to content is 
effective communication between the mathematics fac-
ulty and the faculty teaching courses for which calculus 
is prerequisite. Most faculty in the physical sciences 
have sufficient background in mathematics so that they 
can direct students to appropriate sources or use their 
lectures to provide background coverage. The student 
can become a victim if communication between faculty 
of different disciplines is missing. 

Principles of mathematics taught in the context of a 
specific application have the danger of not being recog-
nized for the breadth of their applicability. Thus the 

mathematics faculty does have an obligation to look 
at content and the order in which it is presented to 
minimize the amount delegated to other faculty. In de-
ciding content, order of presentation, and pedagogical 
approach, an effective dialogue is most impor tant . 

In looking at Calculus for a New Century, the math-
ematics faculty has an obligation to look at the edu-
cational content of its courses. The educational con-
tent must contain a balance between the teaching of 
new skills and the development of mathematical and 
intuitive reasoning. In addition, scientists and mathe-
maticians must continue to examine the question of the 
applicability of mathematics to the description of the 
"Laws of Nature." 

J A M E S R. S T E V E N S O N , Chief Executive Officer at 
Ionic Atlanta, Inc., also serves as consultant to the presi-
dent at Georgia Institute of Technology. He is a member 
of several professional organizations, including the Ameri-
can Physical Society, the American Association of Physics 
Teachers, and the American Society for Engineering Educa-
tion. He received a Ph.D. degree in physics from the Uni-
versity of Missouri. 



A Chancellor's Challenge 

Daniel E. Ferritor 

U N I V E R S I T Y O F A R K A N S A S , F A Y E T T E V I L L E 

Since it is nearly always more fun to reform someone 
else's discipline than your own, I have looked forward 
with anticipation to this colloquium on calculus instead 
of one bent on reforming sociology. 

The reforms contemplated here, however, are differ-
ent from most. They star t , it seems to me, from es-
tablished strength, not from disarray. Calculus courses 
already command a respect (even among students who 
hope never to have to take one) which all college courses 
should command, but which few others do. 

Calculus courses already command a 
respect ...which all college courses 
should command, but which few others 
do. 

Along with respect, to be sure, calculus courses evoke 
fear, awe, resignation, delight, and even resentment. 
Some students find what they learn in our calculus 
classes an indispensable tool; others view it as a mean-
ingless hurdle. To some it is the pinnacle of mathe-
matical achievement; to others it is only a foundation 
course for years of further study. I sympathize with 
your challenge to make the experience bet ter for stu-
dents regardless of their different views and needs. 

While improving the quality of mathematics edu-
cation for all Americans is becoming an agenda for 
action throughout the country, we in Arkansas may 
be slightly behind the curve in recognizing its impor-
tance. Before a recent raising of educational s tandards 
in Arkansas, there was no requirement in mathematics 
for high school graduation. In fact, until recently, our 
own university, the strongest in the state, had no math-
ematics requirement in many of its degree programs. 
Only last year did the arts and sciences faculty include 
significant college-level mathematics requirements in its 
B.A. degree programs. 

Students bring to the University of Arkansas an ex-
treme range of mathematics skills and experiences, in-
cluding, in some cases, the apparent lack of either. It 
has been our mission for 116 years as a land-grant school 
to a t t empt to meet the needs of students whose diverse 
skills and needs are ensured by an admissions policy 
which opens our doors to most would-be students with 

a high school diploma and minimal GPA or national 
test scores. 

Because mathematics education in many of our pub-
lic schools has been limited, even able s tudents often 
come to us unprepared for college mathemat ics . At the 
same time, we are the only institution in Arkansas with 
established programs of research and doctoral study, 
many of our undergraduate programs are unique in the 
state, and many of our students come well equipped 
for challenges and expect us to provide an educational 
experience which ranks with the best available. 

To meet the needs of both groups of s tudents is no 
easy task. Our 2,500 entering students each year have 
math subscores on the ACT test ranging from 1 to 36, 
although the average composite score is well above the 
national average at nearly 21 (comparable to an SAT 
of 870-900). This range of skills makes initial place-
ment quite difficult but enormously important , and we 
have six levels at which s tudents may begin the study of 
mathematics . These range from a one-semester reme-
dial course in algebra to beginning calculus. Placement 
beyond the first course in calculus is possible, but highly 
unusual. About 20 percent of our entering students are 
placed in the remedial course, and about 20 percent 
are placed in the first semester of calculus, with others 
entering a t intermediate levels. 

Because mathematics education in 
many of our public schools has been 
limited, even able students often come 
to us unprepared for college 
mathematics. 

Our calculus courses have many of the same problems 
as those at other schools across the country. However, 
the percentage of s tudents who fail or withdraw is not 
quite as high as the 50 percent often reported nationally. 
We feel that our placement scheme has helped increase 
the success rate for s tudents in calculus as well as in 
other mathematics courses. 

Better placement, though, is not enough. Nowhere 
are the differing views of calculus more obvious than 
in the classrooms, where the perceptions of instructor 
and student can be worlds apar t . For most students, 
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calculus is the highest level of mathematical knowledge 
to which they aspire, while to many instructors, it is 
the lowest legitimate level of mathematical inquiry. 

For most students, calculus is the 
highest level of mathematical 
knowledge to which they aspire, while 
to many instructors, it is the lowest 
legitimate level of mathematical 
inquiry. 

The difficulty is further complicated by the fact that 
some students need calculus as a working tool in sub-
sequent mathematics courses, while others conclude 
their s tudy of mathematics with calculus. Both should 
gain from calculus a larger vision of the mathematical 
landscape. One teaching approach and one syllabus, 
though, may not be right for both kinds of students, 
and therein lies a major dilemma which must be re-
solved as we develop a calculus for a new century. 

Colleges and universities must do a better job of rais-
ing the success rate of entering students by staffing be-
ginning mathematics courses with instructors who are 
especially well qualified for the demands of such courses. 
This would not be an easy task even with a shared phi-
losophy and a well-defined policy, and few institutions, 
I suspect, have either. 

Colleges and universities must do a 
better job of raising the success rate of 
entering students by staffing beginning 
mathematics courses with instructors 
who are especially well q u a l i f i e d for the 
demands of such courses. 

Within our own insti tution we do not even agree on 
which instructors—those with a broad vision of the field 
or those committed to providing tools for specific uses— 
are likely to be the best teachers. Nor have we begun 
to consider radical approaches such as more stringent 
controls, supervision, and uniformity in class organiza-
tion and conduct in such courses. The current debate 
should lead to bet ter definition of the teaching problem 
and, eventually, to the improvement we all desire. 

Exacerbating the problem at an institution such as 
ours is the interaction of our graduate and undergrad-
uate programs, which is generally healthy but which 
makes instructor choice and placement a practical as 

well as philosophically challenging mat te r . In lower-
division mathemat ics , we depend heavily on graduate 
assistants as assigned teachers and as teaching assis-
tants . 

As is the case nationally, our graduate s tudents in-
clude international s tudents for whom English is a sec-
ond language. Students who experience difficulty with a 
course like calculus—and many do—look widely for an 
explanation of their difficulty. If the instructor speaks 
English with an accent, he or she is a likely target. 
While the accent may well be a factor in the s tudent ' s 
failure, even if it is not, too often s tudents , parents , and 
legislators believe it is the primary cause. 

"Why c a n ' t we have American math 

and science t e a c h e r s ? " i s a tough 

question, but it is one of the questions 

most frequently asked of me by 

Arkansas legislators. 

"Why can't we have American math and science 
teachers?" is a tough question to handle, but it is 
one of the questions most frequently asked of me by 
Arkansas legislators. We must avoid overreacting to 
such criticism and remind critics of the American tradi-
tion, from our earliest beginnings, to welcome and rely 
on imported talent. However, by the same token, we 
cannot rely solely on international s tudents and faculty. 
The decline in mathematics and science majors among 
native-born students has reached alarming proportions 
and should stimulate us to devise ways to a t t rac t more 
of our own students into such careers. 

Finally, in addition to accurate placement and fo-
cused and enlightened instruction in calculus courses, 
I see a need on the institutional level for an increased 
awareness among our s tudents and faculty of the impor-
tance of mathematics . I hope tha t efforts like this one 
at the national level will help us there. The umbrella 
project "Mathematical Sciences in the Year 2000" is, 
I understand, designed to broaden this discussion be-
yond calculus to the other courses, to the flow of math-
ematical talent, and to the issues of resources. Since 
the University of Arkansas programs span a broad area 
from remedial algebra through graduate work and re-
search programs in mathematics and statistics, we will 
be looking forward to tha t broader discussion and as-
sessment. 

I am sure I speak for many university chancellors and 
presidents, as well as for my own university, when I ex-
press support for the goals of the projects here at the 
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National Academy. While I can' t evaluate the substan-
tive changes in calculus which are suggested, I certainly 
recognize the need for a revitalization of the teaching 
and of the learning of college mathematics . 

Returning a sense of discovery and excitement to 
classrooms where calculus is taught will be a vital step 
toward university preparation of the kinds and num-
bers of mathematics graduates needed by U.S. science, 
industry, and society. It should also ensure for count-
less s tudents the pleasure of accomplishment and in-
sight which mastery of calculus is meant to bring to the 
liberally-educated individual. Even if Edna St. Vin-
cent Millay was right that "Euclid alone has looked on 

Beauty bare," every student of mathematics should be 
able to catch more than a glimpse of a similar vision. 

D A N I E L E . F E R R I T O R is Chancellor of the University of 
Arkansas, Fayetteville, where he has also served as Provost, 
Vice Chancellor for Academic Affairs, and Chairman of the 
Department of Sociology. The author or co-author of over 
40 publications in the field of sociology, Dr. Ferritor has 
worked for several years in national educational programs 
funded by grants from the federal government. He received 
a Ph.D. degree in sociology from Washington University in 
St. Louis. 

National Needs 

Homer A. Neal 

U N I V E R S I T Y O F M I C H I G A N 

I am honored to have been asked to appear on this 
panel today to discuss the prospects for major revisions 
in the undergraduate calculus curriculum. 

In 1985, I chaired a National Science Board Task 
Committee to study the state of undergraduate science, 
engineering, and mathematics education. Our commit-
tee completed its work in the spring of 1986, after draw-
ing upon published reports and information from inter-
views with faculty members, university presidents, vice 
presidents and other university officers, representatives 
of foundations and industry, as well as representatives 
of various professional societies. Included in this group 
was the President of the Mathematical Association of 
America, a former President of the American Math-
ematical Society, and an executive officer of the Sloan 
Foundation—individuals who have played a particularly 
significant role in advancing the cause of the conference 
here today. 

We found in the work of our committee that there 
were numerous reasons to be concerned. There was 
widespread evidence of serious problems in the curricu-
lum and laboratory instrumentat ion used in the instruc-
tion of both majors and general s tudents . Moreover, 
related motivational problems existed for students and 
faculty. Students found many of their key courses to be 
dull and uninspired. Faculty were often frustrated by 
the lack of s tudent interest, and the faculty themselves 
often found it difficult to keep abreast of the rapid de-
velopments in their fields in the absence of special pro-

visions for them to have the time and resources to d 
so. 

Our recommendations for action were extensive, and 
many have already been implemented, either directly by 
the National Science Foundation, or indirectly through 
new initiatives at the university, regional, or s ta te level. 
Examples include the immediate launching of the Re-
search Experience for Undergraduates program at the 
NSF, legislative hearings on the health of undergrad-
uate science, engineering, and mathematics by states 
such as New York, and the President 's request for in-
creased support for the College Instrumentat ion Pro-
gram and other related initiatives. 

No other discipline is so fundamental 
to ensuring a talented pool of future 
scientists and engineers, and a 
technologically literate generation. 

Regarding the focus of today's symposium, our task 
committee was frequently reminded of the critical role 
played by mathematics in the training of s tudents in 
all disciplines. In particular, mathematics is often the 
determining filter for all science and engineering disci-
plines, not to mention for the advanced mathematics 
programs themselves. No other discipline is so funda-
mental to ensuring a talented pool of future scientists 
and engineers, and a technologically literate generation. 
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Within mathematics , there is strong evidence that 
one of the most urgent challenges is to reform the cal-
culus curriculum. Experts here today have made the 
case for why this is so, and the impact that such re-
forms could have on a wide span of disciplines. I only 
wish to add my encouragement for this initiative and 
to congratulate those who have had the insight and the 
persistence to proceed with the formulation of strategies 
for addressing head-on such a massive problem. 

It would be very easy to view present 
calculus instruction as being an 
invariant of nature. The way it was 
taught to us could be thought to be 
the way it must be taught forever. 

There are, to be sure, numerous obstacles that lie 
ahead. Faculties in mathematics departments must em-
brace the concept that significant changes are called for 
in the calculus curriculum for the reforms to be success-
ful. Colleagues in cognate departments must cooperate 
in providing feedback on the success of the reforms, as 
viewed from the perspectives of their disciplines. Deans 
and provosts must get on board, to provide both moral 
encouragement and some significant fraction of the ac-
tual financial support required to implement and mon-

itor the revised programs. Funding agencies must com-
mit to providing the required external support over a 
sufficiently long period to insure that the revisions can 
be implemented, studied and refined. I am particularly 
pleased to see the Sloan Foundation and NSF take a 
lead in achieving this goal. 

It would be very easy to view present calculus in-
struction as being an invariant of nature. The way it 
was taught to us could be thought to be the way it must 
be taught forever, regardless of the fact tha t the tech-
nological context has changed by leaps and bounds. It 
takes unusual insights and courage to challenge such a 
tradition. Wha t you are doing is extraordinarily impor-
tant and I wish you every success. 

H O M E R A . N E A L is Chair of the Department of Physics 
at the University of Michigan. Dr. Neal was Provost at the 
State University of New York at Stony Brook before as-
suming his current position as Chairman of the Department 
of Physics at the University of Michigan. The recipient of 
Guggenheim and Sloan fellowships and a former member of 
the National Science Board, Dr. Neal headed the National 
Science Board Task Committee on Undergraduate Science, 
Mathematics, and Engineering Education. His research is in 
the area of experimental high energy physics. He received a 
Ph.D. degree in physics from the University of Michigan. 

Now Is Your Chance 

Michael C. Reed 

D U K E U N I V E R S I T Y 

I would like to talk about three things. First, let 
me say what I think about current calculus courses and 
texts. 

I think they are awful—but they're awful for a lot of 
understandable reasons. They are awful because they 
are too technical; they try to teach too much material; 
they teach very little conceptual understanding; and 
they have a tremendous lack of word problems. As we 
all know, it is the word problems that students hate the 
most, and yet it is the ability to do word problems that 
makes mathematics applicable for a physics major, a 
chemistry major, or an engineering major. 

If you look at the section on differentiation of poly-
nomials in the text you are using, you will undoubtedly 

discover at the end of that section an extremely long 
list of problems. I guess that none of the problems is 
a word problem and tha t not a single one of the exam-
ples at the beginning of the section—examples which 
are supposed to motivate why we want to know how to 
differentiate polynomials—is a word problem with any 
kind of interesting application at tached to it. 

It is the ability to do word problems 
that makes mathematics applicable. 

To try to press this point home, I have to tell you 
a story. I was standing around the common room last 
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year and there I saw a calculus exam which, as it turned 
out, had been prepared by one of our graduate students 
who, unfortunately, was standing near me. The first 
problem on the exam was to differentiate xgmx and I 
said, "That is what is wrong with calculus." I was then 
very embarrassed because the poor student was there 
and a large discussion ensued. My colleagues challenged 
me to explain what was wrong with making students 
differentiate x°inx. 

Why should I spend all my time 
worrying about how to differentiate 
stupid looking functions like that? No 
function like that has every occurred in 
the history of physics. 

Here is my answer. We live in the same building 
as the Physics Department . I guess that not a single 
member of the Physics Department could differentiate 
tha t particular function and say what the answer is. 
Furthermore they wouldn't be embarrassed by it. They 
would say, "Are you crazy? Why should I spend all my 
time worrying about how to differentiate stupid looking 
functions like tha t? No function like that has every 
occurred in the history of physics, so why should I be 
concerned that I can' t differentiate i t?" 

Well, it sounds like a joke, but it 's not a joke. It 
means tha t the teaching of calculus has developed into 
a series of technical hurdles for students to go past, 
one after the other, bearing very little relation to what 
they're suppose to get out of the course. 

Now we come to the reasons why this has happened. 
First of all, s tudents arrive at the university with very 
little motivation to think about mathematics . Tha t ' s 
because their training in K-12 is mostly plug-and-chug 
and we give them what they expect because we get trou-
ble when we don' t give them what they expect. I t 's 
much easier to teach plug-and-chug than it is to teach 
a conceptual course. 

It's much easier to teach plug-and-chug 

than it is to teach a conceptual course. 

Secondly, a great deal of calculus teaching in this 
country is done by non-tenure-track faculty, by grad-
uate students, and by part- t ime instructors who have 
been hired to fill large gaps on the teaching staff. At 
a large university, it is the best you can hope for that 
all instructors teach more or less the same thing so that 

when students go on to the next course they will have 
the same background. In a situation where you have a 
very large number of instructors who perhaps are nei-
ther very well trained nor motivated to teach well by 
continuing at tachment to the institution for which they 
teach, the best tha t you can ask for is an adequate , 
s tandard job . Finally, the lack of original textbooks 
tha t t ry to strike out in new directions is really a great 
hindrance. 

Two years ago my colleagues told me tha t I should 
either shut up about this or go teach calculus myself. 
So, I taught it myself—since I d idn ' t want to shut up 
about it, and still have not. I taught out of one of the 
s tandard texts; I tried as much as possible to put word 
problems and applications in the course. I found it very 
difficult. 

Without excellent s tandard textual material , innova-
tions will surely die out. Tha t means that at the end of 
the projects tha t many of you are considering, books or 
other materials that every student can buy for twenty, 
thirty, or forty dollars at the bookstore has to come 
out. If you are thinking about a project, you have to 
figure out how at the end of the experiment you are 
going to produce something that can be used at other 
institutions. 

Without excellent standard textual 

material, innovations will surely die 

out. 

These are some of the reasons why I think the 
projects that many of you are considering will en-
counter real obstacles to success. Even if the curriculum 
changes, much of the teaching is going to be done by 
non-tenure track people. Many of the students are go-
ing to arrive not wanting to take your new interesting 
course. Finally, there's the question of when these won-
derful text books are really going to arrive so tha t you 
can use them. When are the publishers going to agree 
to cooperate with you—as individuals or as groups—to 
produce such textbooks. 

There's a third aspect of this issue which I would 
like to address, not to my fellow administrators here on 
the panel, but to my colleagues, the mathematicians. 
Tha t ' s what I like to call the G.H. Hardy syndrome. 

I trace a lot of the evils in calculus instruction to G.H. 
Hardy. There is a common a t t i tude very well expressed 
by his posture in the picture on the front of tha t book (A 
Mathematician's Apology), tha t mathemat ics has little 
to do with the rest of the world, and, in fact, should 
properly be contemptuous of the world. 
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This a t t i tude has served us rather badly, I think, in 
the last thirty or forty years. It has bred an a t t i tude 
among mathematicians not to talk to their colleagues; 
it has made narrow mathematicians who have very few 
interests outside of their own discipline; and this has 
produced mathematicians who are not very capable of 
enlarging their courses with appropriate and interesting 
applications. 

So that is a problem within the mathematics commu-
nity, not a problem for administrators. However, there 
is another issue which is related to administrators, and 
that ' s this: Mathematicians as a group are terrible en-
trepreneurs. We are really bad. Mathematicians are 
embarrassed to s tand up for their subject, to say that 
it 's important , and to fight for it in their home institu-
tions. 

Mathematicians are embarrassed to 
stand up for their subject. 

Many mathematicians do not realize that their col-
leagues in physics, chemistry, and biology could not ex-
ist unless they were excellent entrepreneurs, because 
their laboratories depend on their skill in administra-
tion, as well as on their scientific skills. Those guys 
from those other departments are harassing their deans 
and their provosts all the time for money on behalf of 
their research, on behalf of their teaching programs, and 
for everything else. 

Mathematics departments are often afraid to do tha t . 
They think they will not be well thought of; they're too 

timid to do it; they feel it 's like P.R.; it 's self-serving. 
In many cases, they secretly believe t ha t mathemat ics 
isn't so important anyway. 

Here is my message: This is your opportunity. Here 
you are at a national colloquium tha t says there 's sup-
posed to be a new agenda for calculus. Go to your 
chancellor, go to your president, go to your dean and 
say, "All these years you have been complaining like hell 
about the calculus instruction in our insti tution. How 
many calls have I received from you saying that you got 
a call from so-and-so's mother who said, 'Why does my 
boy have to be taught by a graduate s tudent? ' " 

"Now's your chance to invest some money to make 
it better. I want so-and-so much released t ime for these 
two faculty members in the mathematics depar tment so 
they can work on restructuring calculus for three years. 
I want so-and-so many funds to support a secretary who 
will be typing the new manuscripts that the s tudents 
are going to read; and so forth." Administrators hear 
those kinds of requests from all other depar tments all 
the time. They hardly ever hear them from mathemat-
ics depar tments because mathematic ians are too t imid 
to ask. Now is your chance. 

M I C H A E L C. R E E D , co-author of Methods of Modern 
Mathematical Physics, is Chairman of the Mathematics De-
partment at Duke University. His research is in the area of 
nonlinear harmonic analysis and in the application of math-
ematics to biology. He received a Ph.D. degree in mathe-
matics from Stanford University. 

Involvement in Calculus Learning 

Linda Bradley Salamon 

W A S H I N G T O N U N I V E R S I T Y 

It is, I hope, appropriate for an English professor 
who's addressing a group of mathematicians to begin 
with an allusion to tha t eccentric figure who bridged 
both fields, Charles Dodgson (a.k.a. Lewis Carroll), to 
the effect that deans of arts and sciences like to believe 
three impossible things before breakfast . . . . We want 
to believe 

• that our colleges can present a steadily improving, 
timely curriculum which will provide both students 
and faculty with continuous challenge, and 

• that political "peace in the valley" can prevail among 
the various disciplines with which we work, with their 
very various intellectual styles and varying current 
successes, and 

• that both those goals can be accomplished within our 
budgetary means, or with clearly foreseeable new re-
sources. 

The probability that the teaching of calculus can find a 
point of intersection in that three-way matr ix is small 
enough to make Alice blink in Wonderland. 



S A L A M O N : I N V O L V E M E N T IN C A L C U L U S L E A R N I N G 33 

The good news from the dean's office is tha t one re-
peated assertion in the preparatory materials for this 
conference is false: on my campus, calculus is not the 
course about which most student complaints are reg-
istered; that dubious distinction belongs to chemistry. 
Nor do my colleagues in the sciences use performance 
in calculus, even implicitly, as a "weed-out" device, 
nor does our Medical School use it as a shorthand 
admissions indicator. Again, chemistry—particularly 
organic chemistry—admirably and accurately fulfills 
those roles. 

Paranoia ill becomes you, though you have real ene-
mies. The principal source of complaints about calcu-
lus, one where my Lone Ranger 's peace-keeping skills 
most frequently intervene, is the "Engine School." I 
must admit , as an outside observer of the mathematical 
community but as an experienced student of pedagogy, 
that engineering educators have a point. 

T h e objective of instruction in calculus 
...is to bring each student to the most 
thorough and functional understanding 
of this sophisticated subject that she 
or he can achieve ...like it or not. 

Because I cannot begin to consider whether calcu-
lus needs to cover part ial fractions in order to prepare 
for a later encounter with Laplace transformations and 
other such arcana, I want to make four points from the 
perspective of a teaching colleague and educational ad-
ministrator. They relate to classroom management and 
class size, to the use of the computer, to the role of 
mathematics in general education, and, of course, to 
money. 

All my remarks assume that the objective of instruc-
tion in calculus—I'll qualify tha t by saying "at a re-
search university," but I really mean anywhere—is to 
bring each student to the most thorough and functional 
understanding of this sophisticated subject that she or 
he can achieve . . . like it or not. (Remember, please, 
tha t I hail from the only other discipline in our col-
leges where 80% or more of the beginning students are 
unwilling draftees; I know the consequences.) 

The first implication to be drawn from a goal of 
bringing each student to his or her best achievement 
is obvious. We must take them as we find them both in 
ability and in preparation, from effectively near-zero to 
Advanced Placement. 

Because mathematics is so linear and progressive a 
discipline, s tudents ' differing readiness at entrance dic-
tates that at all but the most select institutions, there 

be several different calculus courses. I think they should 
vary not by the s tudent 's immediate use for calculus (as 
a biology or business major, say, rather than a proto-
physicist or engineer), but by the pace at which they 
move, the degree to which they pause over relevant pre-
calculus topics before introducing new material , and 
conversely, the depth and sophistication of concepts 
they have time to include. The same textbook, after 
all—if one's not enslaved to its teaching manual—can 
be creatively utilized in quite different ways. 

On a large campus, three or four different calculus 
courses—including an honors effort—might be under-
way. One of those can certainly be lean and lively; I 
doubt that all can. Selection should be thorough and 
informed, and prerequisites should be vigorously en-
forced, to the point of requiring preparatory "college 
algebra" or other euphemistic courses, if necessary. 

Wha t simply will not do is the model of a common 
syllabus for 1000 students , so that interchangeable Pro-
fessor X can, on 15 minutes ' notice, give a lecture on 
a particular topic to an anonymous mass, then whip 
back to his office and his Fourier transforms untouched 
by human minds. Count on your dean's complaining 
about tha t . 

The second implication of seeking each s tudent 's 
achievement is what the ΝΙΕ has taught us all to 
call "involvement in learning." In mathematics , this 
te rm tha t describes a t tempts at personal, internalized 
mastery surely means homework—homework tha t ' s re-
quired, evaluated, and included in the final grade. 

In mathematics ...mastery surely 

means homework—homework that's 

required, evaluated, and included in 

the final grade. 

Here's where my compulsive friends the engineers 
have a point, and you know it 's t rue. Even in a mini-
mal calculus course tha t ' s only teaching calculations— 
given the limited concentration and persistence of to-
day's students—checked homework is needed; if you 
choose to concentrate on concepts and what the kids 
call "word problems," it 's essential. 

Now, does this imperative dictate the end of large 
lectures in favor of 30-student classes? Maybe, but I 
doubt it. "Help" sessions and drop-in math labs staffed 
by grad students go a long way toward giving s tudents 
control over their own learning, as do 20 minutes for 
questions before or after each lecture. 

All across our undergraduate curricula, moreover, 
the one thing tha t computers can reliably do better 
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than we can is rote drilling in mechanics and routines. 
If the machine can do it for German adjective endings, 
with repetitions and branching tha t match the s tudent 's 
pace, surely they can do it for power series or what-
have-you. (And tha t ' s leaving aside the intrinsic rea-
sons for introducing students to computers and their 
algorithms.) As a dean, I'd rather pay for new termi-
nals or PCs or networked micros than for new assistant 
professors—even supposing the department chair can 
find us talented candidates who can articulate clearly 
in English and relate comfortably to puzzled and inse-
cure students. 

As a dean, I ' d r a t h e r pay for new 
terminals or PCs or networked micros 
than for new assistant professors. 

About the issue of surrendering the teaching of the 
logic behind integrals and derivatives to some HP cal-
culator that can score a Β on tests without studying, I 
have no right to comment, but I hope that , as a pro-
fession, you won't succumb completely. If mathemat-
ics has a role to play in the general education of our 
students—in shaping their minds as informed and dis-
ciplined instruments—it is in this domain of conceptu-
alization. 

To deal with numbers in the real world, they need 
to know not the right formula to plug in to do the job 
of the moment but skills like estimation and approx-
imation, concepts like scatter and risk, the meaning 
of graphic representation, the sheer likelihood of trial 
solutions—intuitive probability, if you will. Those ideas 
don' t require a calculus course, to be sure, and I'd wish 
all mathematics depar tments would offer a clever course 
in finite mathematics for those students who won't take 
calculus. 

T e a c h in the best way you can find to 
present the real power (and maybe 
even the beauty) of your discipline to 
an anxious or indifferent kid. 

But for those whose only mathematics course will be 
calculus—a very great many—using computerized cal-
culations tha t avoid fundamental ideas about numbers 
seriously deprives them, know it or not. Wha t could 
replace the pencil sketching, the concrete visualization 
that I see our best math students doing? Honor the 
integrity of your discipline, please; teach what it 's all 
about . 

By the same token, with all due respect to the 
"user groups" represented on the previous panel, I 
hope you won't take the service function of calculus as 
paramount . Teach the topics they need covered, sure; 
but teach in the best way you can find to present the 
real power (and maybe even the beauty) of your disci-
pline to an anxious or indifferent kid. We all know tha t 
the best means for meeting the objective with which 
I began—to help the student achieve the best under-
standing she can—is a willing, imaginative teacher who 
likes the material and will work hard at expounding it. 

The tacit purpose for my invitation to be here to-
day is not these opinions of mine, of course, but the 
question, "What will deans pay for?" or, more pre-
cisely, "Will deans pay for more mathemat ics faculty?" 
I think I know our tr ibe and its bronzed responses well 
enough to answer. 

First, we do have those engineering and business 
deans riding like sheepherders into our peaceful valley, 
and for financial reasons we have to satisfy them. We'll 
defend our mathematicians to them if you give us the 
ammo and if what you do is defensible. If what they 
demand is more, differentiated sections and more eval-
uated homework (and it sometimes is), you should be 
making peace (and common cause) with them, not com-
plaining about their students, or their demands. 

Calculus is the second largest course 
after English composition on many 
campuses, as on mine, and we deans 
simply must attend to that brute fact. 

Next, when mathematics depar tment chairs ask us 
for more slots, of course they have to get in queue with 
the other two dozen or so depar tment chairs, and avail-
able slots will be allocated on the basis of institutional 
priorities. The best rationale for at taining a high prior-
ity is unlikely to be the putative need to teach smaller 
classes per se, but if you devise genuine and compelling 
pedagogical reform that demonstrably requires addi-
tional staff used in imaginative and effective ways, we 
will certainly listen. Double your teaching staff? No. 
But relief for a worthy experiment, to continue if it suc-
ceeds? Highly probable. Calculus is the second largest 
course after English composition on many campuses, as 
on mine, and we deans simply must a t tend to tha t brute 
fact. 

Demanding folks that we are, though, we'll also ex-
pect your candidates to be talented differential geome-
ters or harmonic analysts, and tha t requirement raises 
different questions. I 'm not a graduate dean, but my 
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colleague who is both that and a mathematician reports 
mixed news about the pipeline. Are university mathe-
matics depar tments producing enough new Ph.D.s well 
prepared to teach undergraduates to satisfy the ambi-
tious goals of your proposed curriculum project, on a 
national scale? Guessing the answer to tha t , as an un-
dergraduate dean I must look to our mathematics ma-
jor program and its ability to retain students beyond 
calculus, indeed beyond graduation. In this partially 
closed system, perhaps we do indeed need to invest the 

resources that will bring us mathematicians for a new 
century. 

LINDA B R A D L E Y S A L A M O N , Dean of the College of 
Arts and Sciences at Washington University in St. Louis, is 
co-author of the Association of American Colleges' Integrity 
in the College Curriculum. She is Past Chair of the AAC 
and a trustee of the College Board. A scholar of Elizabethan 
culture currently teaching Shakespeare, she received a Ph.D. 
degree from Bryn Mawr College. 

Calculus in the Core of Liberal Education 

S. Frederick Starr 

O B E R L I N C O L L E G E 

Despite being a college president, I still a m a histo-
rian. I was asked the other day by a student perplexed 
over the mathematics competency requirement at Ober-
lin, "Why do i t?" The specific question had to do with 
calculus. I suggested that if Newton could invent it in 
his sophomore year, he can study it in his. 

Speaking as a historian, I would like to note a very 
curious exchange tha t took place between Newton and 
his friend John Locke which has very much to do, I 
think, with the subject at hand. When Newton had fin-
ished the Principia, realizing full well the importance of 
what he had done, he sent it over to Locke to get Locke's 
estimation of it. Locke looked it over, and couldn't de-
cipher the math . So he sent it to a friend in Holland and 
asked him to check it out. The friend read it and said 
tha t the ma th was okay. Locke then read everything ex-
cept the mathematics in the Principia and wrote very 
intelligently on it. 

I w a s a s k e d ...by a student [about] 
calculus. I suggested that if Newton 
could invent it in his sophomore year, 
he can study it in his. 

Now, the issue here is whether Locke, who obviously 
had absolutely no contact with the process of math-
ematics tha t underlay the Principia, was able, as an 
educated person, to deal with that work or not. The as-
sumption on which this conference rests, I would gather, 

is tha t Newton should have encouraged his friend Locke 
to study the mathematics necessary to deal with it be-
cause otherwise he would simply be dealing with the 
products of other people's thoughts and never be able 
to engage in the process. Tha t really raises the first of 
five points I would like to lay before you here. 

I don' t get the sense, reading through the various 
papers that have been prepared, and hearing the dis-
cussion, tha t there is much agreement as to the basic 
purpose of the enterprise—the reform of calculus. Is 
calculus a service course? Is it a course tha t is provid-
ing techniques, methods, manipulation, and so forth? 
Or is it truly part of some core learning tha t an edu-
cated person should have dealt with? Is it really deal-
ing with concepts, or can someone—as was asked ear-
lier this afternoon—deal with the manipulations with-
out genuine understanding? 

As a pedagogue, that is an absolutely preposterous 
proposition to me. But obviously, if calculus isn't in the 
core, if it is instead a service for others, then one can 
get by with all kinds of mischief. It seems to me tha t 
great clarity on tha t point is required before anything 
else can proceed coherently. 

My colleagues in mathematics at Oberlin have taken 
the rather uncompromising view tha t calculus has to 
do with thinking, with concepts, with the core of a lib-
eral education. From tha t they proceed to deal with 
other questions. Discrete mathemat ics , for example, is 
being offered as a separate parallel course in the sopho-
more year. There is concern for the verbal dimension 
of thought, great concern in fact, among them. There 
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is also a good deal of experimentation going on with 
computer algebra systems, both within the classroom 
and without. 

But all this flows from some clarity on the basic pur-
pose of the enterprise. You might be concerned whether 
this might lead to someone who has thought some fine 
thoughts but can ' t do anything. The answer, I think, 
is tha t the purpose of education isn't to teach you how 
to do something, but how to be anything. 

T h e purpose of education isn't to teach 
you how to do something, but how to 
be anything. 

Since the mathematicians at Oberlin are apparently 
enabling their s tudents to go on into careers in science 
at a remarkable ra te—to get their Nobel Prizes and to 
get their whole science program selected as first in the 
country among colleges—they're obviously doing some-
thing right. I would suggest that it has a lot to do with 
their very clear beginning point, namely, that calculus is 
part of the core of learning. It is not simply a "how-to" 
course. 

The second proposition tha t I would like to lay before 
you has to do with the process of study. There was a 
very interesting body of research carried out by several 
investigators at Oberlin College in the last four years 
on the undergraduate preparation of scientists in the 
United States. They focused on a group of fifty liberal 
arts colleges tha t were the most productive of scientists 
and a similar number of universities. 

David Davis-Van At ta and Sam Carrier, who did this 
research, documented, among other things, tha t there 
has been a precipitous decline in the the percentage of 
people entering careers in science and also an increase 
in the at tr i t ion rate of intended scientists as they enter 
college and proceed towards graduation. 

Calculus is part of the core of learning. 

It is not simply a iihow-to,, course. 

They showed, moreover, tha t the only institutions 
that are successfully bucking this national trend in the 
sciences are those that base their pedagogy on a kind 
of apprenticeship system—those in which the student is 
brought into the laboratory, in which there is a direct, 
hand-to-hand contact, not with graduate students, but 
with real professors. 

If tha t is t rue, and there is so clear a correlation tha t 
I 'm left with no doubt about it, then I think you've 
got to ask whether your discussions are taking this into 
account. Is mathematics open to that kind of direct 
apprenticeship-based engagement? Does the advent of 
the modern computer in fact provide a wonderful op-
portunity to go in tha t direction and to think of much 
more active forms of pedagogy than have been used in 
the past? 

My third point is very dilferent in character. I 'm con-
cerned that you might be implicating in a perverse way 
some of the negative features of a national discussion in 
which I've participated over some years regarding the 
teaching of foreign languages in the United States. In 
fact, one of the background papers drew the parallel 
and I was pleased to see at least tha t the relevance of 
this parallel was acknowledged. 

The a t tempt to improve foreign language teaching 
culminated in a Presidential Commission a few years 
back. Frankly, the mountain didn ' t quite give birth to 
a mouse but something on the scale of a ra t . It never 
really brought about the great transformation. 

Because it is in the schools where your 
problem is being formulated ...ifyou 
don't bridge the geological fault 
separating you from the schools—there 
won't be any progress. 

I think the great flaw in the Commission's approach, 
and in the thinking of the late seventies and early eight-
ies, is the assumption that you can build a house from 
the roof down. I wonder if this flaw also might not be 
present here. Can you really hold conferences and talk 
seriously about calculus at the university level and not 
spend an equal amount of Lime on the secondary school 
mathematics curriculum? It seems inconceivable to me. 

I would be most interested to know what has gone on 
since the MAA and the NCTM ten years ago cautioned 
high schools not to teach calculus unless they do it at 
a university level with university s tandards . It seems 
to me that this question lias to be opened wide, not 
just for precalculus courses,, but for the entire secondary 
school preparation, or you will not progress an inch. 
Because it is in the schools where your problem is being 
formulated, if it 's not addressed at tha t level—if you 
don't bridge the geological fault separating you from 
the schools—there won't be any progress. 

This suggests, by the way, tha t once you do cross tha t 
fault and deal with the whole process, then you can also 
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consider calculus in several dimensions, progressively, in 
the course of teaching over t ime. 

My fourth point is this—that calculus was not in-
vented here. There are people elsewhere in the world 
who know how to teach it reasonably well. In fact, 
many demonstrably are doing a bet ter job at it than we 
are. I think we're simply handicapping ourselves if we 
don' t examine very carefully the pedagogical systems, 
pre-calculus and calculus, tha t obtain in those countries 
tha t are doing a good job . 

You may say tha t such societies are different. They 
send a lower percentage on to college. Fine. Then 
demonstra te tha t tha t decisively negates the experience 
of country X. It seems to me the burden of proof lies on 
someone who would argue tha t international experience 
in this area is irrelevant. 

Do a s u r v e y . You will find a 
phenomenal ignorance of just what 

calculus is all about. 

And now, finally, a rather more practical mat ter , 
tha t takes me back also to the Locke-Newton link. I 
don ' t believe tha t calculus—or for tha t mat ter , math-
ematics in general—has a very strong constituency 
among faculties of our universities and colleges. All of 
us, all those outside the mathematically-based fields, 
are unfortunately too much in the position of John 
Locke. And we're not embarrassed about it, as Locke 
at least was. 

The problem is very serious because if you are say-
ing that mathematics , or specifically calculus, belongs 
in some core curriculum of what an educated person 
should know, you are saying that to a group of col-
leagues who themselves haven't taken calculus and who 
don' t know what it is. Ask them. Do a survey. You 
will find a phenomenal ignorance of jus t what calculus 
is all about . 

It seems to me tha t there is something very seri-
ous about this mat ter . Wha t I would suggest is rather 

naively grand, but do-able. If you do proceed from the 
first principle that mathematics in general and calculus 
in particular should be part of the equipment of an ed-
ucated person, then take time to offer an accessible cal-
culus course for your colleagues in other depar tments . 

Crack that problem. I t 's do-able. I t ' s not the po-
litical dimension I 'm concerned with here, but the in-
tellectual dimension. Until this gap is bridged in at 
least one institution to prove tha t it is possible, we are 
talking about such remote worlds tha t , al though peo-
ple might as a mat te r of political bargaining give you 
your required hours in the classroom, or your piece of 
the budget, they won't really unders tand why they are 
doing so. 

There are outposts in economics and various areas 
of the social sciences where your task will be easy. But 
most of the social scientists and nearly all those in the 
humanities are illiterates in mathematics and in calcu-
lus. Hence there is a need for teaching tha t is directed 
toward the professorial community itself simply as a 
means of making up, even at this late date , for the 
fatal neglect of mathematically-based learning in our 
primary schools, in our secondary schools, and in most 
of our colleges. Until the professors are mathematically 
literate, don' t expect them to understand why s tudents 
should be. 

S . F R E D E R I C K S T A R R , President of Oberlin College, is 
a specialist on Soviet Affairs, founding secretary of the Ken-
nan Institute for Advanced Russian Studies at the Smithso-
nian Institution, the author of numerous books in his field, 
and a member of the Trilateral Commission. As a result 
of his initiative on the so-called Oberlin Reports on Un-
dergraduate Science, the National Science Foundation and 
many private foundations have strengthened their involve-
ment with mathematics and science at the undergraduate 
level. Dr. Starr received a Ph.D. degree in history from 
Princeton University. 
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Mathematics as a Client Discipline 

George E. Alberts 

N A T I O N A L S E C U R I T Y A G E N C Y 

As a representative of (arguably) the largest em-

ployer of mathematicians in this country, I have found 

the Calculus for a New Century colloquium remark-

able. The huge turnout is a clear sign of growing con-

cern and interest. The candor and quality of the dis-

cussion have been impressive. Although the National 

Security Agency also employs large numbers of engi-

neers and computer scientists, and despite the temp-

tation to comment on the full range of fascinating is-

sues and ideas, these remarks will focus on the more 

narrow issue of the future health of the mathematics 

profession itself. In tha t regard, it seems worthwhile to 

view mathematics itself as its own "client discipline" 

in discussing reform and revitalization of the calcu-

lus. 

Tom Tucker helped set the tone for candor by sug-

gesting it might indeed be appropriate for the sec-

ondary schools to assume the responsibility for teach-

ing calculus. In his "desert metaphor" the secondary 

level might be the appropriate "sinkhole" for the calcu-

lus. "Mainstream" calculus, which controls the pipeline 

from which the mathematics teaching faculty is replen-

ished, could be taught at the secondary level. We may 

indeed "only need a few people who know the inner 

workings of calculus." I think not. 

All of what I have heard described by clients as de-

sirable seems essential for professional mathematicians 

themselves. As Gail Young wrote in his background 

paper, "the future of our subject depends on improv-

ing [calculus]." Calculus has frequently been described 

as the first real mathematics course (with the possible 

exception of a good Euclidean geometry course in high 

school). Although Anthony Ralston eloquently argues 

tha t calculus is dead, and discrete mathematics must 

take its rightful place as the core mathematical sub-

ject, I endorse Cathleen Morawetz ' remark tha t trends 

in parallel computing suggest a convergence of the two 

subjects. 

Complaints about lack of understanding, the need 

for more conceptual, intuitive, and at the same time 

more rigorous calculus echo a growing concern of our 

Agency's mathematics community—at a time when we 

need to hire more outstanding mathematicians, to do 

creative mathematics , the supply seems to be declin-

ing. 

Mathematics ' "clients" are said to be leading inno-

vators, and might well be approaching the capability 

of teaching their own calculus. Professional mathemat-

ics must begin to learn from their clients. Ron Dou-

glas suggested tha t a t t empt s to reform calculus have 

been well-intentioned but short-lived "castles in the 

sand." Oberlin President Frederick Starr remarked on 

the short at tention span of reformers. The present cal-

culus curriculum, which Tom Tucker aptly described 

as unchanged in 100 years, is more a castle made of 

stone. 

If the mathematics profession is to avoid ossification, 

its practitioners must take charge of the reform move-

ment, and, while meeting the legitimate concerns of the 

other "clients," focus on reform of the calculus to reju-

venate American mathematics as a discipline first and 

a service second. The alternative may well be the cal-

culus "super-nova" suggested as a possibility by Lynn 

Steen. 

We do indeed need to resolve the basic purpose of 

all this activity, to reassert the significance of mathe-

matics as core training for all educated people, to ad-

dress the demanding full range of problems—not, pri-

marily, because of our other constituencies, but because 

of ourselves. A lean and lively calculus, while serving 

the needs of those other constituents (which it can if 

they share in its revitalization) will a t the same time 

do something more fundamentally important : a t t rac t 

and inspire successively bet ter generations of American 

mathematicians. 

» 

G E O R G E E . A L B E R T S has served for twenty-two years 
as a professional mathematician at the National Security 
Agency, Fort George G. Meade, Maryland. He is presently 
an Agency executive and Chairman of its Mathematical Sci-
ences Panel. 
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Calculus and the Computer in the 1990's 

William E. Boyce 

R E N S S E L A E R P O L Y T E C H N I C I N S T I T U T E 

Whether or not a "crisis" exists, there is widespread 
agreement tha t improvements are possible in the cal-
culus courses offered in many colleges and universities. 
Powerful inexpensive calculators and microcomputers, 
now widely available, provide numerous opportunities 
for courses adapted to the contemporary environment. 

First, calculus should be taught so tha t numerical 
computation is seen as a natural consequence of us-
ing calculus. Most s tudents who take calculus courses 
do so to improve their capacity to solve problems in 
other fields. Generally speaking, a numerical answer is 
sought, so eventually something must be computed in 
order to obtain it. 

On the other hand, computation can also lead nat-
urally to analysis. For example, computat ion carries 
with it the obligation to consider the accuracy of the 
results. Therefore it provides an opening to discuss 
such questions as estimation of errors or remainders, 
or speed of convergence of an infinite series or iterative 
process. Ideally, analysis and computation should ap-
pear as complementary and mutually reinforcing modes 
of problem solving, each used when appropriate, and 
each enhancing the power of the other. 

Moreover, at every opportunity students should be 
encouraged to try to assess the reasonableness of their 
answers. A result tha t appears reasonable may not be 
correct, but one that appears unreasonable is almost 
certainly wrong (unless one's idea of what is reasonable 
is seriously deficient). 

In addition to computing numerical approximations, 
other aspects of computing may also be important in 
calculus. One is the rapid and accurate generation of 
the graph of a function or an equation. To do this effec-
tively it is essential to scale the problem appropriately. 
Beginners rarely, if ever, give adequate thought to this 
question, although it is crucial in obtaining a useful 
graph. Consequently, they often have difficulty in in-
terpreting the graphs their computer screens depict. 

In choosing a proper scale, it may help to do some of 
the things usually taught in the context of curve sketch-
ing, such as finding maxima and minima, checking for 
symmetry, and locating asymptotes. Thus, comput-
ing may make more clear the need to learn something 
about calculus and the behavior of functions, rather 
than merely resorting to trial-and-error computation. 

The use of symbolic computat ional packages to re-
duce the need to perform tedious and repetitive alge-
braic procedures is highly at t ract ive. However, the use 
of such packages also incurs a cost. One does not learn 
to use a sophisticated symbolic computat ion package 
(MACSYMA or Maple, for example) instantaneously. 
At least some of the time saved by using the package 
must be invested up front in learning how to use it. 

There is also the "black box" question: should we 
permit s tudents to use a symbolic computat ion pack-
age without some understanding of what the package 
is actually doing? My view is tha t in order to think 
constructively about the behavior of models of physi-
cal phenomena, one must have some specific informa-
tion about some particular functions. It is probably not 
necessary to know how to evaluate J s ec 5 χ dx, but one 
should certainly know J cos χ dx. 

The boundary between what is essential knowledge 
and what is not may be unclear, but surely we should 
insist tha t s tudents must learn to execute some proce-
dures themselves, even while relying on a computer to 
handle the more complicated cases. 

The use of a computer may not save much time in a 
calculus course, although it will give the course a some-
what different orientation. Assuming tha t it does save 
at least a few class days, what should we do with them? 
I suggest that a good use would be to a t t empt to foster 
better problem solving capability among our students . 

The problems might be mathematical ones. Virtu-
ally every meeting of a calculus class offers the opportu-
nity to expand on the day's assignment, to go a little off 
the prescribed path , and to explore interesting related 
material. If there is a little extra time in a course, this 
would be a good way to spend it. It might even help 
to a t t rac t to our discipline some of the many very good 
students who now see no at tract ive future in the serious 
study of mathematics . 

Another possibility is to do more in the area of appli-
cations and mathematical modeling. I a m not particu-
larly enthusiastic about "realistic" applications. They 
must often be couched in terminology unfamiliar to 
many students and require too much time to describe 
the underlying problem. 

It is better to use simple problems and models (even 
if "unrealistic") so that everyone can unders tand them. 
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Even simple problems can be embellished and modified 
so as to illustrate the ideas and principles of mathemat-
ical modeling. Given s tudents ' paucity of experience 
in mathematical modeling, even the simplest problems 
(other than the s tandard template problems) will prove 
challenging enough for almost all students. 

Finally, what is needed as much as anything in teach-
ing calculus is the proper a t t i tude : a recognition tha t 
the computer is here to stay; tha t it offers insight into 
the phenomena of change; and tha t it can provide a 
springboard for the discussion of interesting mathemat-

ical questions, including many of those tha t are now 
par t of s tandard calculus courses. 

W I L L I A M E. B O Y C E ie Professor of Mathematical 
Sciences at Rensselaer Polytechnic Institute. He is for-
merly Managing Editor of SI AM Review and Vice-President 
for Publications of SIAM. He is author (with Richard C . 
DiPrima) of Elementary Differential Equations and Bound-
ary Value Problems. 

The Role of the Calculator Industry 

Michael Chrobak 

T E X A S I N S T R U M E N T S 

T O make calculus instruction more applicable to 
real-world problems, educators must focus more on 
fundamental ideas, off-loading the mechanics of ex-
ecuting formulas and equations to modern comput-
ing aids. Embracing such tools—specifically, hand-
held calculators—will bring about instructional changes 
needed to better prepare students for tasks in advanced 
education and the workplace. 

Several issues must be addressed by educators and 
calculator manufacturers if this tool is to be incorpo-
rated effectively into calculus and lower-level mathe-
matics programs. 

First, calculator manufacturers must tailor their 
products, based on guidance from educators, to meet 
maintained education requirements. Close communica-
tion with the educational community must be, with new 
designs being based on the special requirements of the 
classroom. Sometimes this can be as simple as unclut-
tering a keyboard, thereby preserving and accentuating 
required functions. 

The design of the ΤΙ-30 S L R + calculator is one ex-
ample where this collaboration between educators and 
industry has been effective. Specifically tailored to re-
quirements at the high school level, this calculator was 
constructed with a hard shell case for increased dura-
bility. Solar power was chosen to eliminate the need for 
batteries. Large, brightly-colored keys were incorpo-
rated to identify mathematics function groups, to pro-
vide for ease-of-use, and to stimulate learning. 

Second, proper use of calculators in the classroom re-
quires textbooks developed with the calculator in mind. 

Indeed, some states already are making this a require-
ment. For instance, in California, publishers must now 
detail the use of calculators in their text , not as a sup-
plement, but as par t of each lesson. To achieve this, 
manufacturers, educators, and publishers must work to-
gether, incorporating effective use of calculators into in-
structional materials. 

An example of planned technology emerging in the 
textbook industry can be found in a classroom calcu-
lator kit developed by T I and Addison-Wesley. The 
two companies have worked together to produce instruc-
tional material tha t incorporates the use of a hand-held 
arithmetic calculator for an elementary mathematics 
curriculum. 

Third, the use of calculators in testing is another key 
issue. If s tudents are taught with calculators, it follows 
tha t they should be tested with them as well. Today, 
testing materials incorporating the use of calculators do 
not exist. Manufacturers can assist in the creation of 
new testing materials, providing development support 
as well as inputs based on the design and operation of 
their products. 

Currently, the Mathematical Association of Amer-
ica (MAA) has begun to reform mathematics education 
with a calculator-based placement test program. This 
effort is under the direction of the MAA's Commit tee 
on Placement Exams (COPE) , managed by John Har-
vey of the University of Wisconsin at Madison, with TI 
providing funding since 1986. 

Testing with calculators at the high school level will 
help to ensure tha t students have proficiency of calcu-
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lator use by the time they reach college. Today, this is 
usually not the case. 

While the calculator itself should never be the main 
focus in mathematics instruction, it should be viewed 
as an important tool to assist in the educational pro-
cess. Calculator manufacturers should be included in 
future mathematics reform, ensuring tha t calculators 
for the classroom are designed appropriately, and tha t 
they integrate well into textbook formats and testing 

materials. 

M I C H A E L C H R O B A K is Scientific Calculator Manager 
of Texas Instruments, Dallas, Texas. Previously, he served 
Texas Instruments as a Project Engineer and a Program 
Manager for financial and scientific calculators. He holds α 
B.S.E. from the New Jersey Institute of Technology, and an 
M.B.A. from Texas Technological University. 

Calculus: Changes for the Better 

Ronald M. Davis 

N O R T H E R N V I R G I N I A C O M M U N I T Y C O L L E G E 

Calculus is the mathematical study of change. Yet, 
for the large part , calculus has changed little in the past 
thirty years. It has remained static in a continuously 
changing environment. 

I strongly agree tha t our present calculus content and 
the way in which we teach it needs revision. Calculus 
needs to provide students with the abilities of reasoning, 
logic, and judgment . Calculus courses need to empha-
size clear thinking and not merely symbol manipulation. 
There is an underlying fundamental importance of cal-
culus for the sciences and technologies. We as teachers 
must comprehend this and must share this knowledge 
with our s tudents . 

As teachers of calculus we cannot ignore the vast 
array of available technologies that can enhance our ef-
forts. We must incorporate calculators and computers 
as aids for our teaching and as tools for our students. 
These tools will not only simplify calculation and sym-
bol manipulation, but will also require students and 
teachers to heighten their understanding of and insight 
into the concepts of calculus. 

I a m convinced tha t change will only be accomplished 
through a concerted and coordinated effort from indus-
try, business, government, and education. For two-year 
college faculty, the effort will be exceptionally taxing. 
Teaching loads of fifteen hours or more often provide lit-
tle time for curriculum development. Minimal comput-
ing support at two-year colleges restricts student and 
teacher access to computers . 

Since the transfer of courses requires two-year col-
lege calculus courses to be accountable to four-year col-
leges, two-year college faculty will move slowly in mak-

ing changes. Development of a dynamic calculus course 
will require a joint effort on the part of the mathematics 
faculties at two-year and four-year colleges. 

A sense of isolation exists for the calculus teacher at 
many two-year colleges as their depar tments often have 
little or no travel funds. They have limited opportuni-
ties to meet with other calculus teachers from two-year 
and four-year colleges. Since calculus consti tutes only 
10% of the course load at two-year colleges, it cannot 
often be given the added at tent ion tha t a revision would 
require. 

I strongly believe tha t a mathemat ics course tha t 
involves a dynamic approach to calculus and portions 
of discrete mathematics needs to be developed and im-
plemented in place of the present-day calculus. The 
teaching of such a course will require much preparat ion 
and retraining. I am, therefore, concerned tha t two-
year colleges may be unable to commit the resources to 
prepare their faculty adequately to teach this dynamic 
course. 

As a teacher I become invigorated with each oppor-
tunity to rethink course content and instructional ap-
proach. I a m excited at the prospect of a new, dynamic 
calculus course. 

R O N A L D M. DAVIS is Professor of Mathematics at 
Northern Community College, Alexandria Campus. He has 
served as Second Vice President of the Mathematical As-
sociation of America, and as Chair of the AMATYC-MAA 
Subcommittee on Curriculum at Two-Year Colleges. He re-
ceived a Ph .D . in mathematics education from the Univer-
sity of Maryland. 
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Imperatives for High School Mathematics 

Walter R. Dodge 

N E W T R I E R H I G H S C H O O L 

The high schools' perspective of calculus is two-

pronged. For some of our students calculus will be a 

course they take in high school. This course will con-

sist of our ablest s tudents taught in small classes by 

our most capable teachers. For others, calculus will 

be taken following high school. For these students 

the high school's objective is to prepare them in the 

best possible manner with the mathematical concepts 

and skills required for success in a college calculus pro-

gram. 

The universities' view of calculus is quite different 

from tha t of the secondary school. For them very of-

ten calculus is the lowest course offered, populated by 

students of varying abilities, and with teachers who are 

often not the ablest. In addition, quite often the class 

size is very large. Although this is a problem on a na-

tional scale, I do not believe it can be solved on a na-

tional basis. It must be solved within each local insti-

tution. 

If we are truly to bring about calculus reform we 

must not only change the curriculum, but must also 

change drastically our delivery systems. If calculus is 

to become more conceptual and more intuitive, edu-

cational structures must allow this to occur: student-

faculty interaction, group discussions, and laboratory 

experiences must be given top priority. A change in 

the content of the course without parallel change in the 

method and quality of instruction is doomed to fail-

ure. 

One has to ask if there really is need for change in 

calculus? One very clear outcome of the Conference is 

tha t there is a compelling need to change the content 

as well as the conceptual nature of the course. The 

graphical, algebraic, and numerical capability of calcu-

lators and computers has definitely made many of the 

skills of a traditional calculus course very suspect, if not 

archaic. 

Numerical methods of solution, implemented via the 

calculator or computer, open a whole new arena of cal-

culus to the beginning calculus s tudent . The graphi-

cal capabilities of both calculators and computers can 

enhance a s tudent 's understanding of the fundamental 

ideas of calculus. Therefore change should occur both 

for the improvement of the curriculum and the under-

standing of the student. 

Exactly what par ts of the tradit ional course can be 

eliminated is not clear. Jus t how much skill work is 

necessary and how much can be eliminated is a cru-

cial question—often mentioned at the Conference—that 

must be answered. 

The entire curriculum of the high school will be 

affected by these changes. If s tudents are to be 

successful in college, the school curriculum will also 

have to become more conceptual and will need to 

incorporate technology. Skills will have to be de-

veloped in the use of both the calculator and com-

puter. Approximation, estimation, and reasonable-

ness of answers must be emphasized. Mathematics 

will become more "decimalized." Algorithmic rea-

soning will also become a high priority educational 

need. 

The Conference has certainly st imulated thinking 

and planted the seeds for a change in the calculus. 

If this change is to come about , cooperative efforts 

between secondary school teachers and college faculty 

must be organized. Changes at one level have effects 

on the other, and the success of one will depend upon 

change in the other. 

W A L T E R R. D O D G E is a mathematics teacher at New 
Trier High School in Illinois. He has been a member of 
the AP Calculus Exam Committee, an AP Calculus Reader, 
Table Leader and Exam Leader. He is currently President-
Elect of the Metropolitan Mathematics Club of Chicago. 
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An Effective Class Size For Calculus 

John D. Fulton 

C L E M S O N U N I V E R S I T Y 

To create a Calculus for a New Century, more has 
to change in the calculus of today than course content. 
Calculus is not suited for mass education, yet calculus 
in many if not most colleges and universities is for the 
academic treasury the most productive "cash cow" in 
the university. 

To be sure, English writing courses have more stu-
dent enrollments than does calculus. But English writ-
ing classes are taught in sections of sizes twenty to 
twenty-five students . While writing courses generate 
more revenue for the university, they have been suc-
cessfully portrayed to university administrators as be-
ing more labor intensive with respect to commitment of 
teaching staff. As a result, they cost more per section 
to teach. 

In the September 1987 issue of College English, the 
National Council of Teachers of English published its 
recently adopted standards "No more than 20 students 
should be permit ted in any writing class. Ideally, classes 
should be limited to 15." 

The justification given by this Council for the class 
size is tha t 

. . . the work load of English faculty [should] be rea-
sonable enough to guarantee that every student re-
ceive the time and attention for genuine improvement. 
Faculty members must be given adequate time to ful-
fill their responsibility to their students, their depart-
ments, their institutions, their profession, the larger 
community, and to themselves. Without that time, 
they cannot teach effectively. Unless English teachers 
are given reasonable loads, students cannot make the 
progress the public demands. 

Interchange "Mathematics" with "English" and a rea-
sonable case for calculus is made as well. 

Calculus for a New Century will be labor intensive 
with respect to teaching staff. In the early stages of 
development of a new calculus, considerable experimen-
tation will be necessary. Guidelines for a new calculus 
likely will follow from such a body as CUPM. Text ma-
terial incorporating the guidelines can be expected to 
follow. In the development period, experimental classes 
taught by faculty would seem of necessity to be small 
classes, as would the control classes with which they 
would be compared. Faculty teaching the classes would 
require released time from other duties to lead this de-
velopment. 

If calculus ultimately incorporates many of the ideas 
and recommendations discussed at the Colloquium, 
then it will be essential tha t the new calculus be con-
siderably more labor intensive than the old. Also, it 
seems clear tha t a new calculus must rely more heavily 
upon experienced and committed faculty and less upon 
part- t ime faculty and graduate teaching assistants. 

A new calculus must be taught with more at tent ion 
to concepts than was the old. The assigning and grad-
ing of nonstandard problems as homework, more class-
room discussion, board work, and class presentations 
by students, more word problems, and more questions 
requiring essay responses address the effective teaching 
of concepts, but do not lend themselves to a calculus 
class with thirty-five or more students per instructor. 

If the new calculus uses technology effectively—as it 
must—expect it to be more labor intensive, not less. In 
addition to the concepts of change, limit, and summa-
tion of the old calculus, expect hand-held, micro- and 
mainframe computers to be used creatively in the new 
calculus to instill concepts such as approximation, esti-
mation, error analysis, asymptotic behavior, and good-
ness of fit. 

More frequent and longer discourse with students will 
be required to instill these numerical concepts. It has 
been alternately predicted over the years that radio, 
television, and now computers, videotapes, and elec-
tronic blackboards, would make classroom teaching ob-
solete. All of those predictions have been wrong. Like-
wise, we expect that the principal value of any cleverly 
devised expert system for the teaching of calculus will 
only be to enhance the effects of good classroom teach-
ing. 

The practitioners in our client disciplines—the en-
gineers, the biological and physical scientists, the so-
cial scientists, the business and economic scientists— 
expect a lean and lively calculus to contain examples 
and problems for students which reflect applications in 
their disciplines. Faculty will have to lead in determin-
ing these applications and translating them into the 
teaching mode for the new calculus. This effort will 
not only be labor intensive, but quite likely it cannot 
be done by graduate teaching assistants. We expect 
applied problems to be nonroutine, troublesome to stu-
dents of calculus, and requiring considerable discourse 
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with knowledgeable teaching staff. 
One goal of a Calculus for a New Century must be to 

assist more students , especially students from minority 
groups, through the filter which calculus represents and 
into the life s t ream of science, mathematics, and tech-
nology. The Professional Development Program for cal-
culus s tudents a t the University of California, Berkeley 
(described in the background paper "Success for All" by 
Shirley Malcolm and Uri Treisman) seems to have had 
spectacular success for minority students with mathe-
matics SAT scores in the 200 to 460 range. Its small 
group workshop methods seem transferable to all stu-
dents. Its fifteen- to twenty-student recitation sections 
must, however, be regarded as labor-intensive. More-
over, it would seem that any successful program for sig-
nificantly increasing the student success rate with cal-
culus will be just as labor-intensive. 

Calculus is with us now. A Calculus for a New Cen-
tury will evolve from our present calculus, yet at too 
many colleges and universities an insufficient teaching 
staff is currently assigned to calculus. Its "cash cow" 
s ta tus with many university administrators is shameful. 

Through student tuitions and in some cases through 
formula funding, calculus enrollments generate consid-
erable funds for college and university coffers. With ex-
penditures only for the teaching of large course sections, 
all too frequently taught by part- t ime faculty, with help 
from graduate teaching assistants, and with supplies 
limited to a little chalk, perhaps an overhead projector, 
and some transparencies, the net profit from calculus 
teaching can be considerable. Moreover, at many uni-
versities, graduate teaching assistants tend to pay their 
own salaries by paying their own tuitions and through 
formula funding generated by their own course registra-
tions. 

No calculus, old or new, can be effectively taught 
without sufficient teaching staff to allow regular and ex-
tensive feedback from students . Homework and quizzes 
must be graded line by line. Tests to effectively mea-
sure s tudents ' grasp of concepts in calculus should not 
be "multiple choice" tests. (Even Advanced Placement 
calculus exams have their essay portions.) 

Like no other course at the freshmen-sophomore 
level, calculus concepts build with each successive class. 
A student who gets behind in the first few classes al-
most certainly will be lost for the entire course. Early 

and regular student feedback is thus essential for the 
course. Assessment of each s tudent 's grasp of concepts 
must begin early in the course and continue frequently 
thereafter. Conferences with students , often extensive, 
should be held regularly. 

There is a need for teachers of calculus to instill in 
their s tudents the ability to communicate scientifically, 
or mathematically. To a t least some degree, then, cal-
culus teachers are teaching writing. The circling of an-
swers indicated as (a), (b), (c), or (d) on a multiple 
choice quiz will not stop a s tudent from writing such 
mathematical garbage as 3 χ 4 = 1 2 — 1 = 11 + 4 = 
15/3 = 5, which jus t as frequently occurs on student 
papers as in calculator instruction books. 

Only close scrutiny of student homework and quizzes, 
essay questions on quizzes, classroom discussion of con-
cepts, and student classroom or office presentations can 
assist in meeting an effective mathematical communica-
tion objective for the teaching of calculus. The very na-
ture of the calculus, new or old, suggests tha t it should 
be labor intensive. 

If mathematics faculty have failed to communicate 
the need for effective class size for calculus to university 
administrators, it may well be a major cause of the in-
adequacy of the old calculus. We should not necessarily 
call for small sections, but for a sufficient teaching staff 
to be assigned to calculus to allow for regular feedback 
for s tudents . 

If we have allowed class size in calculus to increase 
beyond tha t which is pedagogically sound, then this 
Colloquium has given us a new opportunity, a new be-
ginning. We must communicate the new enthusiasm for 
a new calculus—perhaps a lean and lively calculus— 
worthy of support by mathematics faculty, by faculty 
from client disciplines, and by academic administrators. 
Since the new calculus will evolve from present calculus, 
however, effective class size for calculus classes should 
be communicated as an imperative for the present. 

J O H N D . F U L T O N is Professor of Mathematics and 
Head of the Mathematical Sciences Department at Clem-
son University. He is a member of JPBM Committee for 
Department Chairs, and Chair of the MAA ad hoc Commit-
tee on Accreditation. He received his Ph.D. in mathematics 
from North Carolina State University. 



48 R E S P O N S E S 

Don't! 

Richard W. Hamming 

NAVAL P O S T G R A D U A T E S C H O O L 

I have at tended a number of similar conferences, de-
voted a lot of time to worrying about the calculus as it 
is currently taught , have thought long and hard about 
the topic, and decided that action is worth far more 
than endless talk. As a consequence, I have written a 
book tha t I thought would meet my standards of what 
the calculus course should be for the future. There are 
many other possible books besides the one I wrote, but 
at least it is something to go on rather than endless 
talk. 

Listening to all the talk has caused me to compile a 

list of "don' ts :" 

1. Don't try to optimize the calculus course. We are 
trying to provide a mathematical education, and the 
optimization of individual courses leaves too much 
to fall between them. We should view calculus as 
part of a s tudent 's total mathematical education, 
as a means to an end and not as an end in it-
self. 

2. Don't look to the past. Our society has passed re-
cently from a manufacturing society to a service so-
ciety, and our teaching should be directed towards 
our s tudents ' future needs, not to our past activi-
ties. 

3. Don't try writing a textbook by a committee. All 
too many of our texts are written by uninspired sec-
ond and third-rate minds, and it is foolish to expect 
s tudents to respond well to them. You need, more 
than anything else, an inspiring book. The particular 
contents are of less importance. 

4. Don't think that you can move by small steps from 
where you are to where you want to be. We are 
at present at a local optimum, as can be seen by 
the fact that we have essentially only one text. The 
various books that are widely used so resemble each 
other that even the proofs are the same. Anyone 
who knows the least about the calculus theory of op-
timization must realize that any small step from the 
local opt imum will be a degradation. To get to a 
better relative opt imum you must move a large dis-
tance. 

5. Don't think that discrete and continuous mathe-
matics are separate topics. Any competent math-

ematician is well aware of the fact tha t the Rie-
mann zeta function and prime numbers are closely 
related. 

6. Don't think tha t calculus is only the development of 
tangent and area problems. It is also used widely 
to get new identities from old ones and to han-
dle generating functions tha t arise jus t below the 
surface of combinatorial problems. The conver-
gence of these generating functions is of no impor-
tance. 

7. Don't neglect complex numbers as we now do; they 
are basic for the unification of various par ts of 
mathematics as well as being essential in many ar-
eas. 

8. Don't think tha t the old mechanical problems are of 
interest to the current crop of s tudents—they are not! 
Both probability and statistics are of much more in-
terest, are more useful, and can provide much more 
interesting problems. Furthermore, those engineers 
who claim tha t mechanics is more important to them 
than are probability and statistics are simply living 
in the past . 

9. Don't think that money can buy the changes you 
want: you must use persuasion. The "New Math" is 
a perfect example of what not to do. 

10. Don't present mathematics as a fixed, known thing 
for all eternity. Present the changing definitions 
that we actually have, the various a t t i tudes to-
wards mathematics, and the philosophy of mathe-
matics. We are educating students , not jus t training 
them. 

11. Don't emphasize the doing of algorithms. A friend 
of mine in Computer Science recently said to me: 
"Why think when you can program?" Adjusting this 
to the teaching of calculus: "Why teach the s tudents 
to think when you can train them to follow algo-
ri thms?" 

12. Don't s tart abstractly and move to the definite and 
concrete; rather start with the definite and exhibit 
the process of abstraction, extension, and general-
ization. They are the heart of mathematics . You 
cannot get motivation otherwise. 

13. Don't teach huge classes of 500 students . Education 
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appears to require more personal contact. I hear tha t 
the large classes are for reasons of economy. I sus-
pect they are also to let 19 professors escape teaching 
calculus. No wonder so few students major in math-
ematics! 

14. Don't continue to act as if mathematics was the ex-
clusive consumer of the calculus courses. If you want 
reality to respond, you must pay far, far more at ten-
tion to the vast sea of user's needs. 

R I C H A R D W . H A M M I N G is Adjunct Professor of Math-
ematics at the Naval Postgraduate School in Monterey, Cal-
ifornia. He worked at Los Alamos during the war, and from 
1946 to 1976 at Bell Telephone Laboratories. He is active in 
the Association of Computing Machinery, IEEE, and various 
statistical societies. He received his Ph.D. in mathematics 
from the University of Illinois. 

Evolution in the Teaching of Calculus 

Bernard R. Hodgson 

U N I V E R S I T E LAVAL 

Plutot la tete bien faite que bien pleine 
Montaigne, Essais 

One of the most remarkable features of this Collo-
quium is the huge number of at tendees (above 600), 
much more, we are told, than the organizers originally 
expected. While such a level of participation may be 
interpreted as reflecting the extreme intensity of an ac-
tual "crisis in calculus," it can more simply be seen as 
an indication of a greater awareness among the math-
ematics community of the impossibility of keeping cal-
culus teaching essentially unchanged, as it has been for 
so many decades. 

The fact that computers, micro-computers, and even 
hand-held calculators are compelling changes in the 
way all mathematics , and especially calculus, is being 
taught , has been advocated over the years by various 
people. But time now finally seems to be ripe for real 
collective action to be initiated. 

It might be instructive to recall briefly a few publica-
tions and meetings that have taken place since 1980 that 
have contributed to efforts to modify the way computer 
science is being perceived in influencing both mathe-
matics and its teaching. Although by no means exhaus-
tive, the following list nevertheless reveals the actual 
situation as an evolution which s tar ted slowly among a 
few enthusiasts and has progressed steadily so tha t now 
it concerns a great many people in various countries. 

1980: Publication of the book Mindstorms: Children, 
Computers and Powerful Ideas, by Seymour Pa-
pert . The computer is presented as an "object-to-
think-with." 

1981: In a paper published in the American Mathemati-
cal Monthly (88 (1981) 472-485), Anthony Ralston 
argues for the consideration of a separate math-
ematics curriculum for computer science under-
graduates, beginning with a discrete mathemat ics 
course rather than calculus. 

The paper "Computer Algebra" (by Pavelle, et al, 
Scientific American, Dec. 1981) makes symbolic 
manipulation systems known to the general (sci-
entific) public. 

1982: A distant early-warning signal by Herbert Wilf: 
"The disk with a college education" [Amer. Math. 
Monthly 89 (1982) 4-8). 

1983: Proceedings of a Sloan Foundation conference cen-
tered around Ralston's thesis on the balance be-
tween calculus and discrete mathematics: The Fu-
ture of College Mathematics (Springer-Verlag). 

1984: Some sessions of ICME-5 (Adelaide) devoted to 
the teaching of calculus and the effects of sym-
bolic manipulation systems on the mathemat ics 
curriculum. 

NCTM 1984 Yearbook on Computers and Educa-
tion. 

1985: NCTM 1985 Yearbook (The Secondary School 
Mathematics Curriculum) includes papers related 
to the issues raised by symbolic computat ion. 

A symposium is organized by ICMI (The Interna-
tional Commission on Mathematical Instruction) 
in Strasbourg on the topic: The Influence of Com-
puters and Informatics on Mathematics and its 
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Teaching (Proceedings published by Cambridge 
University Press, 1986). 

1986: The Tulane Conference: Toward a Lean and Lively 
Calculus. 

A symposium takes place in Tunisia on the in-
fluence of computer science on the teaching of 
mathematics as it relates especially to developing 
countries. (Proceedings published by the Inter-
national Council for Mathematics in Developing 
Countries.) 

1987: The International Federation for Information Pro-
cessing organizes a working conference in Bulgaria 
on the subject: "Informatics and the Teaching of 
Mathematics." 

This Colloquium: Calculus for a New Century. 

1988: The programs of both the AMS-MAA annual 
meeting and ICME-6 meeting (Budapest) con-
tain many activities related to computers and the 
teaching of mathematics (and especially of calcu-
lus). 

A recent event has definitely served as a catalyst in 
accelerating the evolution suggested by the preceding 
milestones, namely the commercial availability of hand-
held calculators with graphic or symbolic capabilities 
(like the Hewlett-Packard 28C, the Casio fx7000G, or 
the Sharp EL 5200). In spite of several inherent lim-
itations and their often awkward usage, these devices 
have already had a considerable effect among teachers 
of mathematics: if many of these teachers still believed 
they could safely ignore Wilf 's early-warning signal of 
1982, a vast majority now realize that these calculators 
are here to stay, tha t they can only become cheaper and 
more powerful over the years, and that students will be 
expecting to use them. 

In addition, symbolic manipulation systems, reserved 
to a small group of specialists only a decade ago, have 
now become sufficiently widespread tha t both mathe-
maticians and users of mathematics are aware of their 
usefulness. These systems have created a situation 
where a mere technician, with little mathematical back-
ground, could work on problems which, because of their 
mathematical sophistication, would escape the exper-
tise of today's typical engineer. Wha t sense will this 
technician make of the "answer" (numeric, symbolic, or 
graphic) produced by the computer? How can such a 
technician appreciate the validity and limitations of the 
mathematical model being used? 

This raises forcefully the difficult question of mini-
mal competency in mathematics for engineers and other 

users of mathemat ics . One is reminded here of a sim-
ilar situation actually occurring in statistics, where al-
most anyone can use commercially-available packages 
like SAS or SPSS to painlessly have the computer print 
pages and pages of output in all forms (tables, pie 
charts, bar graphs, etc.) , often without having the inter-
pretative abilities to thoughtfully use this information. 
(And here enters the consultant statistician!) 

But things have evolved greatly over the last ten 
years in the teaching of statistics. Instead of concen-
trat ing on tricks for the calculation of various statis-
tical parameters, teachers of statistics now stress the 
development of a sense of appreciation and judgment . 
Exploratory da ta analysis is quite typical of the shift in 
approach, where the calculator or the computer plays a 
central role in working with the da ta . 

Although the inertia of the system is far greater in 
the case of calculus, a similar change will occur. It is 
compelled on us by the wide availability of calculators 
and numeric, symbolic, or graphical software which our 
customer departments are quite eager to use. Even if 
no clear relationship has yet been identified between, 
say, procedural skills developed by lengthy hand manip-
ulations of algebraic expressions and the understanding 
of the underlying algebraic concepts, it seems beyond 
doubt that a shift will take place from purely computa-
tional to more complex interpretative abilities—in other 
words from calculation to meaning. More than ever, the 
adage of the bonhomme Montaigne prevails, and devel-
opment of mathematics judgment greatly contributes to 
this "tete bien faite." 

A lot of people in different places are now getting 
their feet wet in trying new approaches to calculus 
teaching. Attendance to this Colloquium indicates that 
this corresponds to a real need. We are now in a phase 
where experiments need to be performed, evaluated, 
and communicated to others. Identification of new cur-
ricula and production of related materials is a difficult 
and unrewarding task. But only such efforts can pro-
duce, as was wished by Robert M. Whi te in his keynote 
address, a calculus tha t is no longer a filter but a pump 
in the scientific pipeline. 

B E R N A R D R. H O D G S O N is Professor of Mathematics at 
Universite Laval (Quebec). Besides his research interests in 
mathematical logic and theoretical computer science, he is 
an active member of the Canadian Mathematics Education 
Study Group and regularly teaches courses for elementary 
school teachers. He received his Ph.D. degree from the Uni-
versite de Montreal. 
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Collective Dreaming or Collaborative Planning? 

Genevieve M. Knight 

C O P P I N S T A T E C O L L E G E 

The halls of the National Academy of Sciences echoed 
the voices of 600 plus persons who gathered to reflect 
on the current s tatus and future direction of Calculus! 
Messages were loud and clear tha t today's profile of cal-
culus compares poorly with the world of reality. If one 
moves away from the innovational uses of disks, sym-
bolic algebra, and calculators not much is going on. The 
future complexion of calculus must mirror with zest the 
magnitude in which science and technology are chang-
ing. 

The presentors spoke of urgency: 
• For the calculus reform to consider the effort a na-

tional collaborative one (however, the effort must be 
generated at local levels and coordinated through 
networking). 

• For collegiate mathematics to be less isolated and to 
link to other subjects, to professional users external 
to the classroom, and to secondary school mathemat-
ics. 

• For an in-depth analysis of the practice of teaching 
calculus tha t focuses on purpose, content, method-
ology, and assessment—beyond two-hour tests and a 
final examination. 

• For the keepers of calculus to "do something" about 
what is and and what should be. 

• For the teaching arena to capture the beauty of the 
subject with meaningful instructional activities cen-
tered around students' understanding and needs. 
After several speakers, I began to become concerned 

tha t too much time was being allocated to talking about 
"issues." Flooding my mind were the reflections gath-
ered from reading the background papers, from personal 
interactions with colleagues, and from my own twenty 
plus years of teaching calculus. As a practitioner I was 
ready to engage in an intellectual mental brainstorm 
embracing reality with the host of talent in the meeting 
room. At this junct ion the voices representing NSF 
chimed softly, "We are listening to the mathematics 
sciences community and here is our proposal. Reach 
beyond the "talking stage" and initiate the process to 
develop this new calculus curriculum." 

Lunch time was alive with groups of voices buzzing 
about the points of view presented during the morning 
session. As I circulated among the crowd listening to 
bits and pieces of conversations, I began to sense that 

the initial steps had commenced and the mathemat ics 
sciences community was generating the seeds for curric-
ula reforms in calculus. 

Speakers at the afternoon session artfully integrated 
the morning discussions to reflect their positions as 
"clients" and "administrators." The images of calcu-
lus we project to users and others are pictures tha t 
are fuzzy and out-of-focus. The Colloquium challenged 
mathematics professors to stop, to reflect, to regroup— 
and to enter into the world of technology and the 21st 
century. 

The picture of calculus now takes on many differ-
ent forms for the individuals who at tended this confer-
ence. I leave with a commitment to share my notes with 
colleagues back home. In addition, I'll shepherd some 
fine-tune analysis by all depar tments whose s tudents 
are required to take the calculus sequences. At least 30 
different topics, issues, and concerns were voiced dur-
ing the conference. I urge readers to generate from the 
following list questions to be answered by their mathe-
matical science faculty: 

• Purpose and sincerity of calculus reform 
• Management of resource and materials 
• Calculus textbooks 
• Faculty 
• Placement and assessment 
• Discrete mathematics 
• Methodology 
• Composition of calculus topics 
• Use of technology 
• Demographic da ta 
• Drop in supply of human resources 

The collective dream can become a reality. What-
ever we are now calling calculus will not survive in the 
new century. Mathematicians must assume the respon-
sibility for what will replace it. 

GENEVIEVE M. KNIGHT is Professor of Mathematics 
and Director of Mathematics Staff Development Programs, 
K - 8 , at Coppin State College. She received a Ph.D. de-
gree from the University of Maryland at College Park. Her 
research interests are in non-traditional approaches to the 
teaching and learning of mathematics in an urban school 
district. 
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Calculus—A Call to Arms 

Timothy O'Meara 

U N I V E R S I T Y O F N O T R E D A M E 

This colloquium will either be a watershed in math-
ematics education or a flop. Which it is depends en-
tirely on the kind of follow-up tha t will be taken in 
generating interest in the mathematical community at 
large. 

My initial reaction during the first few hours of 
the Colloquium was one of bewilderment and dis-
appointment. Based on the announced title of the 
event, I subconsciously expected to be presented with 
a brand new calculus on a plat ter . In actual fact, I 
heard a recitation of the problems facing us in mathe-
matics and science education, apocalyptic predictions 
for the year 2000, philosophical messages from our 
sponsors in science and engineering, and a call for 
mobilizing all sorts of forces in our society. Self-
analysis and self-criticism were conspicuous by their ab-
sence. 

My moment of t ru th came at the cocktail hour 
at the end of the first day. First, I realized tha t 
our real concern was with mathematics education at 
the college level, not with calculus. The word cal-
culus was just a snappy way of put t ing it all to-
gether. More importantly, I realized that Calculus for 
a New Century is far from being a final product—it 
is still a movement. We are in process. The next 
step in the process must be an awakening, followed 
by an involvement of the entire mathematics commu-
nity. 

We are all aware of the crises in mathematics and 
science education in our country today: a severe short-
age of mathematicians; few decent teachers in our 
schools; alarming drop-out and failure rates in many 
of our colleges; problems with the pipeline; depen-
dency on foreign talent; a disgraceful inability to nur-
ture mathematicians on our own soil and in our own 
culture. In fact, we are so accustomed to this recita-
tion that we have been lulled into accepting it as im-
mutable. 

This was the start ing point of the Colloquium. It 
will have to be repeated and repeated as the process 
continues. Those with a mercenary turn of mind will 
be interested to know that calculus accounts for half a 
billion dollars of business each year. 

On the apocalyptic side, we were reminded that 
push-button calculus is just around the corner. So why 
teach students how to find one volume of revolution 
after the other. The calculator will surely tell us all. 
Will calculus become strictly utilitarian? Need its in-
ner workings be known to any but the elite? If calculus 
is just a skill, should it be taught in our universities? I 
would hope not. Will discrete mathemat ics replace the 
continuous? 

Mathematics will continue to flourish, but where will 
its creativity come from? From our economists, our bi-
ologists, our engineers? Will our mathematicians be 
sufficiently flexible and imaginative? I hope so, but I 
am not convinced. 

Interestingly enough, little was said of the intrinsic 
beauty of mathematics . Epsilons and deltas were men-
tioned in whispers. Mathematics as par t of liberal edu-
cation for the new century was not mentioned at all. I 
find that alarming. 

Mathematics education at the college level will have 
to be stripped of rote. Concepts will have to be 
emphasized. Research mathematicians will have to 
view teaching as an honorable par t of their lives. 
And this will have to be t ransmit ted by example to 
their doctoral students who will become the next gen-
eration of professors. All of us will have to con-
vey our enthusiasm for our subject, not only to each 
other as we now do, but also to our deans who con-
trol the purse strings, and most of all to our stu-
dents. 

The next step in the process is up to us. If the sur-
prisingly large turnout at the Colloquium is any indi-
cation, then I think we are on our way. 

T I M O T H Y O'MEARA is Kenna Professor of Mathemat-
ics and Provost of the University of Notre Dame. In his 
tenth year as Provost, he maintains his research interests in 
algebra and number theory. He has published three books in 
these areas; a fourth, The Classical Groups and K-Theory, 
coauthored with Alex Hahn, will be published by Springer-
Verlag in 1988. He received his Ph.D. from Princeton Uni-
versity. 
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Surprises 

William M. Priestley 

U N I V E R S I T Y O F T H E S O U T H 

On a "typical" final examination in a calculus course 
last year, a student who was given permission to push 
but tons intelligently on the latest hand-held calculator 
could easily have ensured himself of a passing grade. 
Yet the failure rate among college calculus courses is 
surprisingly high, and surprisingly few such courses in-
corporate any use of a computer. At the same time, a 
study of enrollment trends leads to a prediction that the 
next century will find more students studying calculus 
in secondary schools than in colleges and universities. 

These unwelcome surprises from the conference "Cal-
culus for a New Century" call for concerted effort to 
avoid a fin de siecle crisis in the teaching of calculus. 
For some of us who teach wrong mathematics in liberal 
ar ts colleges, however, a pleasant surprise came out of 
the conference as well. This was the response of a small 
but significant number of participants who endorsed as 
a part ial remedy our most cherished forlorn hope and 
lost cause: the insistence upon clear writing in English 
by s tudents of calculus. 

These bewildered students have been so ill condi-
tioned by repetitive drill problems whose answers are 
so transparent as to require no explanation tha t they 
think the proper response to every mathematics prob-
lem is to dispose of it as quickly as possible without 
one word of explanation to the intended reader of their 
work. The reader, of course, is their dedicated instruc-
tor (whose role will later in life be played by their exas-
perated boss) whom they confidently expect to reward 
them highly if the correct answer can be found scribbled 
anywhere at all in their chaotic ramblings. 

The most overlooked shortcoming in the teaching of 
mathematics is the failure of teachers to insist tha t their 
students justify their answers—if not with complete sen-
tences, at least with a few suggestive English phrases. 
In the case of an optimization problem in calculus, for 
example, it is surprising how much good is done by a 
teacher who demands that students 

• Never put an "equals" sign between unequal expres-
sions, and 

• Pepper their computation with the proper use of a 
small glossary of words like let, denote, if, then, so, 
because, attain, and when. 

Students understand the theory behind the technique 
of optimization if and only if they can carry out these 
demands. 

But the list of worthwhile changes to bring to the cal-
culus is never-ending. A dean and professor of English, 
who was surely sympathetic with the idea of writing, 
admonished conference participants not to try to teach 
writing. She had already heard about too many other 
things to do. Surely almost everyone agreed with her. 

The major problem my students have at the outset of 
a calculus course, however, is tha t they don ' t (or can ' t ) 
learn from reading the textbook. No one needs to do 
a statistical survey to know tha t this is t rue generally, 
and teachers who give tests tha t calculators can pass 
probably don ' t expect their s tudents to be able to read 
mathematics . 

How can this problem be solved? Recall how New-
ton solved a famous problem and discovered the calcu-
lus: he calculated the area beneath a curve between 0 
and 1 by attacking instead the problem of finding the 
area between 0 and x. The technique of solving a hard 
problem by attacking in its place a still harder problem 
tha t ought to have been impossible is one of the most 
surprising methods learned in mathematics . 

The solution to the hard problem of getting s tudents 
to read the textbook is to at tack instead the impossible 
problem of teaching them how to write. Wha t would 
happen if all of us who instruct should insist to our 
students that we really expect them to learn to write? 
Wha t would happen if we told our classes tha t a stu-
dent cannot learn to think like a mathematician without 
learning to write like a mathemat ic ian? Some s tudents 
might actually learn, grow up and study analysis, and 
attain the background needed to teach calculus to all 
those high school students of the next century. 

As for the rest, they may never learn to write. But 
if they try to learn how to write, they will have the 
biggest surprise of their mathematical lives. They will 
learn how to read. 

WILLIAM M. PRIESTLEY is Professor of Mathemat-
ics at the University of the South and author of a calculus 
textbook written for liberal arts students. He has published 
papers in analysis, participated in an NEH-sponsored sum-
mer seminar on Frege and the foundations of mathematics, 
and is interested in using the history of mathematics to pro-
mote the better teaching of mathematics. He received his 
Ph.D. degree in mathematics from Princeton University. 



54 R E S P O N S E S 

Calculus for a Purpose 

Gilbert Strang 

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y 

The following comments are not so much about what 
was said in Washington, as about questions that were 
momentarily raised, and then dropped. Some of the 
unspoken or barely spoken needs are fundamental to 
success in the classroom—and the success of this whole 
initiative. 

One is the s tudent 's need for a clear sense of pur-
pose, and for a response that encourages more effort. 
Actually the instructor has the same need. Our ques-
tions to the panel representing the "client" disciplines 
might have been combined into a single question: Wha t 
is calculus for? If the course is to be recognized as 
valuable and purposeful by students, tha t has to be an-
swered. The afternoon audience was asking the right 
question! 

It may seem astonishing that we who teach the sub-
ject don' t know everything about that question. Of 
course it is not at all astonishing. First, there are too 
many answers. No one can be familiar with all the 
uses of calculus. But that is more than the students 
are asking, and more than they could be told. Stu-
dents need to have some clear purpose. There is a 
second reason why we don ' t answer well—we are very 
much inside the subject, teaching it but not seeing 
it. 

Calculus is a language, but what do we have to say in 
tha t language? There are many texts that explain the 
"grammar" of calculus—the rules of the language—but 
that is not the same as learning to speak it. We need 
ideas to express, things to say and do, or it is a dead 
language. 

I was struck that in Tom Tucker's list of groups 
tha t have to contribute t o a reform, authors were 
not mentioned. It was an oversight, but I think 
they are at least as important as publishers. I am 
convinced tha t the textbook itself is absolutely cru-
cial in explaining the purpose as well as the rules. 
Tha t is the job of the book, and I think it can be 
done. 

I was fascinated by the observation that calculus 
courses reflect so little of the last 100 years—almost 
nothing since Riemann. Students cannot fail to see 
that in the biographies and to draw conclusions. But 

new ideas have developed, as well as many new ap-
plications. The instructor and the book are respon-
sible for making time for new ideas in the class-
room. 

My last comments are in a different direction—about 
computers. It is one thing to believe, as we do, tha t they 
will come to have a tremendous part to play in calculus. 
It is quite another thing to see clearly what tha t part 
will be. 

I can see one effect, which may not be central 
but will make a big difference. Lynn Steen men-
tioned a recent s tudy tha t revealed tha t in more than 
half of the courses, homeworks are not graded (or 
even looked a t ) . In other words, the student gets 
no response. Tha t zero is worse than any grade. 
To work well without recognition is a lot to ask. 
We ask it because of pressures of t ime and of stu-
dent numbers. Those are pressures that the com-
puter is made for. I believe we will approach (slowly) 
a homework design in which the computer does the 
time-consuming par t and we do the thought-producing 
part . 

One difficulty is obvious, but not yet discussed. The 
computer is too quick. If we ask a direct question— 
a definite integral, or a system of linear equations— 
it answers immediately. The human part, is reduced 
to input of the problem. The student becomes—and 
knows i t—the slowest and weakest link in the system. 
Tha t is frustrating, not educating. This difficulty will 
be overcome, and I hope there will be publicity for 
successes (even partial successes) in finding the an-
swer. 

I hope the other difficulty will also be overcome—to 
make this course not a barrier but a door. We need first 
to see clearly where it leads. 

G I L B E R T S T R A N G is Professor of Mathematics at MIT. 
He is the author of the textbooks Linear Algebra and Its Ap-
plications and Introduction to Applied Mathematics. An ear-
lier book on the finite element method reflected his research 
in analysis and partial differential equations. His advanced 
degrees are from Oxford University and the University of 
California at Los Angeles. 
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of treating tha t world as it is. Shall we have a burning 
of the physics books and charge our physicists to begin 
the discipline anew? 

Research in the learning theory of physics has shown 
that students are hampered by the baggage of a world 
view tha t insists on the existence of friction. Would 
these s tudents have an easier t ime with a course in 
which they could feel more conceptually at home, even 
though the mathematics were messier? 

But would something be lost if we were to redo 
physics to match the nonlinear world it studies? If 
Galileo and Newton had had the capability of han-
dling the mathematics tha t we have today, would our 
physics be the beautiful, simple, clear structure that it 
is? 

I submit tha t one aspect of the unique character of 
physics as a discipline is that it empowers its practition-
ers to abstract the simple out of the complex, to sense 
which features of complexity can be suppressed or ig-
nored without loss of validity, and to construct sweeping 
generalizations. 

Yes, s tudents of the new lean and lively calculus will 
be equipped to deal with the nonlinear world as, indeed, 
it presents itself—but if they limit themselves (and us) 
to this level of information, we will find ourselves in a 
lose-lose situation. 

Not everything that can be done should be done, 

Virginia. 

SALLIE A. W A T K I N S is Senior Education Fellow of the 
American Institute of Physics, on leave from her position 
as Dean of the College of Science and Mathematics at the 
University of Southern Colorado. Her field of research is the 
history of physics. Dr. Watkins received a Ph.D. in physics 
from the Catholic University of America. 

Yes, Virginia ... 

Saltie A. Watkins 

A M E R I C A N I N S T I T U T E O F P H Y S I C S 

Yes, Virginia, there is a Santa Claus. And yes, 
fledgling physicist, there is a gift in the making for you. 
Thoughtful, concerned persons are designing a new cal-
culus course for your generation. It will be lean, lively, 
and t rue. I 'm going to guess some of its other charac-
teristics. 

If you learn integration, it won't be to build char-
acter; you will use calculators and computers as natu-
ral tools in the course; you will learn to solve differ-
ential and difference equations; you will develop the 
power and know the satisfaction of mathematical proof; 
you will learn to make valid approximations, to do 
modeling; you will see where all of this is going, be-
cause there will be a steady supply of real-life appli-
cations; you will solve related problems as homework 
to be turned in for grading; you will see a symbiotic 
relationship between continuous and discrete mathe-
matics in your course. Your calculus will be a richer 
course than today's , but your text will have a mass of 
less than 3.4 kilograms. There you have it, in a nut-
shell. 

But there remains a burning question which will con-
cern us both, Virginia: How will the lean and lively 
calculus affect the field of physics? We physicists 
talk about "the calculus-based introductory physics 
course"—and we mean it. Calculus is the mainstay of 
physics. 

Only yesterday, the world we physicists were able 
to s tudy was a perfect one. We neglected friction; we 
talked about physical phenomena in first approxima-
tion; we generally did violence to reality so as to arrive 
at solutions in closed form. 

Take Newton's second law of motion. In point 
of fact, F does not equal mo . Nor does F equal 
m ^ y + bji 4 - lex—except in first approximation. 

We live and move and have our being in a nonlinear 
world. Suddenly we have the mathematical capability 
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Calculus for Physical Sciences 

First Discussion Session 
Jack M. Wilson and Donald J. Albers 

We began by considering the following agenda of is-
sues: 

• Should numerical techniques be taught as part of cal-
culus? 

• Should topics from linear algebra be included? 
• Probability and statistics. 
• Wha t role for s tatements or proofs? 
• Should mathematics teachers be required to have 

more of a background in physical science? 
• Should discipline examples be included? If so, how? 

• Role of drill and practice. 
• Role of problem formulation and conception. 

• Should there be formal instruction in problem solving 
techniques? 

• Is there a special relationship between physics and 
calculus? 

• Visualization of solutions. Graphics. 
• Making physical sense of solutions. 
• Relevance to the workplace. 
• Should we do everything, or a few things well? 
• Wha t ' s in? What ' s out? 
• The TA problem: language, t ime, training, motiva-

tion. 

• Should calculus be taught as an umbrella course or 
partit ioned into various courses for various majors? 

• How do we handle large sections of calculus? 
• Is (should) technology be the driving force behind 

the new calculus? 
After initial discussion to consolidate these diverse 

issues, the group prioritized the major issues as follows: 
A. Should we do everything in calculus or a few things 

well? What should be left out? Wha t should be 
added? 

B. Wha t should be the role of proof? 
C. Is (should) technology (be) the driving force behind 

the new calculus? 

D. Visualization of solutions, graphics, and making 
physical sense of solutions. 

E. Should numerical techniques be taught as part of cal-
culus? 

The absence of the other issues from this priority list 
means tha t either group members were in agreement on 
the issue or tha t they did not view the issue as contro-
versial. 

We first discussed what items should be excluded 
from calculus and what should be added. There was 
general agreement tha t we could not develop a detailed 
list in the allotted time, but could examine a short list 
of possibilities. 

Several participants suggested tha t a zero-based bud-
geting approach be employed. There was consensus 
tha t we should reduce the amount of time spent on 
closed-form integration techniques. Some suggested 
tha t trigonometric substi tutions provide s tudents with 
a valuable review of trigonometry. Others argued tha t 
practice with integration methods help to teach pat tern-
recognition skills. 

The suggestion tha t work with volumes of solids of 
revolution and the computat ion of centroids be elimi-
nated did not get much support . Part icipants empha-
sized the need for applications such as those in which 
the integral is seen as a limit of sums. 

I n t u i t i o n , C a l c u l a t i o n , a n d P r o o f 

The elimination of epsilon-delta proofs in presenting 
limits was supported by all part icipants except the high 
school teachers, who said they must teach such ideas 
because of the presence of epsilon-delta questions on 
Advanced Placement examinations. 

A reduction of t ime on derivative calculations was 
suggested by our group. The presence of calculators and 
computers that easily and quickly compute derivatives 
lends support to this call for reduction. 

Our group also recommended the addition of more 
work with qualitative examples and exercises. For ex-
ample, s tudents might be asked to construct the graph 
of the derivative of a function given the graph of the 
function. 

The group next considered the place of numerical 
techniques, including some elementary aspects of nu-
merical analysis. There was general agreement that a 
careful selection of strategically-placed numerical meth-
ods should be included, but tha t they should not simply 
be grafted on to a s tandard text . 

The question of the role of proof in a first course in 
calculus was sharply debated. A few argued that some 
formal proofs are essential to a t t rac t strong students to 
mathematics . A few mentioned tha t client disciplines 
often apply pressure on calculus instructors to mini-
mize proofs. Some suggested tha t intuitive proofs be 
included. All agreed that concept building is a funda-
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mental goal. To tha t end, it is essential to give clear, 
concise s tatements of theorems, and tha t changes in the 
hypotheses be explored to help motivate theorems. 

T e c h n o l o g y 

The group felt tha t the question "Is calculus reform 
driven by the new technology?" in some way sub-
sumed other questions on numerical techniques, on the 
statement-proof approach, and on developing a physical 
or graphical sense of solutions. This topic brought on 
an animated discussion, but there was a surprising con-
sensus that calculus is being driven by the technology 
and that it may not be a bad thing. Although the use 
of computers in calculus teaching is very low, it was felt 
tha t the use of new technology by faculty is growing. 

Several individuals noted tha t the computer allowed 
them to present old topics from a bet ter and more easily 
understood perspective. There was also a discussion of 
the powerful graphic presentations now possible and the 
ability of the computer to explore qualitative features 
of complicated systems—a form of intuition building. 

The availability of powerful symbolic manipulation 
programs, such as those provided by the HP-28C, will 
change the terrain of calculus instruction. Skills once 
important will now be available with the punch of a 
but ton. It will still be necessary to teach some of these 
skills, but how much and in what way remain open ques-
tions. This is one area that may free time for teaching 
other skills which now may be more important . 

There was considerable discussion of the difficulty of 
retraining faculty. Students are coming to class expect-
ing the faculty to have certain skills tha t they may not 
possess. This problem is as severe, or even more se-
vere, at the college and university level as it is at the 
secondary level. 

It was also noted that the computer has radically 
changed physics research and engineering practice, but 
that these changes have not yet been fully reflected in 
the teaching of these subjects. 

I m p l e m e n t a t i o n 

It was generally agreed tha t calculus courses are un-
likely to change much until new textbooks and other 
instructional materials are produced. As a first step, 
the group recommends the formation of a blue-ribbon 
writing team made u p of teachers of calculus from all 
levels. The team might have an advisory board com-
posed of individuals from client disciplines in academe 
and industry. The first task of the writing team would 
be the creation of a draft syllabus for the new calcu-
lus. This syllabus would then be revised through review 

processes tha t might include meetings of focus groups 
at local, regional, and s tate levels, by professional or-
ganizations of teachers of mathematics , as well as at 
meetings of client discipline organizations. The revised 
syllabus could then serve as the basis for new calculus 
texts. 

It is likely tha t several individual efforts toward the 
creation of new textbooks could use this syllabus as a 
place to s tar t . Established authors might be influenced 
to include ideas from this syllabus. 

It was also suggested tha t a sourcebook of applica-
tions from client disciplines be produced in order to 
heighten the appreciation of calculus by both s tudents 
and teachers of calculus. 

On the technology side, calculator manufacturers are 
urged to produce devices tha t are very user-friendly. 
Such efforts are likely to increase their acceptance by 
teachers and their use in calculus instruction. 

J A C K M. W I L S O N is Professor of Physics at the Uni-
versity of Maryland, College Park, and Executive Director 
of the American Association of Physics Teachers. He is also 
co-director of the Maryland University Project in Physics 
and Educational Technology and has published frequently in 
chemical physics, educational physics, computers in physics 
education, and public policy issues. He received his Ph.D. 
degree from Kent State University. 

D O N A L D J . A L B E R S is Associate Dean and Chairman 
of the Department of Mathematics and Computer Science at 
Menlo College. He has served as Editor of the College Math-
ematics Journal and as Chairman of the Survey Committee 
of the Conference Board of the Mathematical Sciences. He 
is co-editor of Mathematical People. He is currently Chair-
man of the Committee on Publications of the Mathematical 
Association of America. 

Second Discussion Session 
Ronald D. Archer and James S. Armstrong 

This session, which consisted of a well-balanced mix 
of mathematicians and physical scientists, identified 
several major issues dealing with calculus content and 
instruction. Foremost among them was the need for 
continuing dialogue between mathematics faculty and 
physical science faculty. 

The calculus course should be designed by mathe-
maticians for mathemat ics majors, both pure and ap-
plied, and coordinated whenever possible with members 
of the physical science faculty. Whereas it is important 
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for mathematicians to consider the needs of the scien-
tist, conflicts should be resolved in a manner consistent 
with the goals of the calculus course. 

Although all part icipants agreed tha t applications 
can be motivating, some cautioned against distorting 
calculus with an exaggerated emphasis on physical ap-
plications. Other part icipants expressed uneasiness 
with their own ability to discuss certain applications 
outside their own discipline, especially since their stu-
dents often lack the necessary background to fully ap-
preciate these applications. 

T e c h n o l o g y 

Concerning the impact of technology on calculus in-
struction, there was strong consensus on several aspects 
of this issue: 

• Technology is here and we must deal with it. 
• Paper-and-pencil drill must precede student use of 

electronic devices. 
• These devices should ultimately enhance s tudents ' 

understanding of the complexities and intricacies of 
the calculus. 

• The proper balance between the use of electronic de-
vices and tradit ional methods has yet to be deter-
mined. 

• Caution must be exercised to avoid adding topics to 
an already over-crowded calculus curriculum just be-
cause technological advances allow teaching certain 
topics more quickly and efficiently. 

• A need exists for a well-publicized national clearing 
house for calculus software. 

C o r e C o n c e p t s 

In thinking about a core for calculus courses, the 
group conceded tha t it was probably inappropriate to 
develop a curricular outline in one morning without 
adequate t ime for reflection. Nevertheless, there was 
widespread support for incorporating the following four 
major concepts as identified in the recent publication 
Toward a Lean and Lively Calculus: 

* Change and stasis. 
* Behavior at an instant. 
• Behavior in the average. 
• Approximation and error bounds. 

There was also strong support for including formal 
proofs in the study of calculus, including epsilon and 
delta proofs. Most part icipants felt, however, tha t ep-
silon and delta proofs should be delayed until the sec-
ond semester. Part icipants urged tha t it is vitally neces-
sary to know your audience and their background before 
launching into these more sophisticated concepts. 

Important pedagogical considerations related to the 
teaching of calculus were discussed at length. It was 
noted that the flavor of the calculus course should em-
phasize: 
• The spirit and natural beauty of mathematics . 
• The way mathematicians do mathemat ics . 
• The intuitive dimension of mathemat ics . 

For example, it is highly instructive for students to 
see the teacher develop the solution to a problem from 
scratch. 

T e x t b o o k s 

Much of the concern about calculus instruction cen-
ters on current textbooks. Weaknesses in current cal-
culus textbooks include too much "plug-and-chug," too 
many topics, excessive use of highlighting and summa-
rizing sections, and too many "template" word prob-
lems. 

New textbooks, written to support calculus curricu-
lum reforms, should minimize highlighting and, in fact, 
encourage students to read the mathematics . There is a 
strong feeling among mathematicians tha t the student 
must know how to read mathematics before they can 
write good mathematics . New textbooks should also 
include physical application problems carefully chosen 
from other physical science disciplines. 

Homework should be assigned, collected, and graded 
at frequent intervals. Examinations and homework 
should reflect the course objectives. There appears to 
be significant faculty resistance to the use of common 
departmental examinations. Nevertheless, close super-
vision must be exercised over the preparation of exam-
inations by less-experienced teachers. 

Serious concern was expressed over the lack of em-
phasis on a cohesive mathematics-science curricular 
thread throughout the K-12 curriculum. This makes 
it extremely difficult for college faculties to use the nat-
ural connections between mathematics and the physical 
sciences in order to motivate the study of mathematics . 

Good teaching must be rewarded in the same manner 
that good research is rewarded. The teaching of calculus 
can be exciting to both the teacher and the students, if 
we appropriately harness the new technologies, interact 
with our colleagues, and establish a reasonable core. 

R O N A L D D. A R C H E R is Professor of Chemistry at the 
University of Massachusetts, Amherst. He has served as 
head of his department and serves as Chair of the Ameri-
can Chemical Society Committee on Education. He is Chief 
Reader for Advanced Placement Chemistry for the Edu-
cational Testing Service. An active research chemist, Dr. 
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Archer received a Ph.D. degree from the University of Illi-
nois. 

J A M E S S. A R M S T R O N G is a Senior Examiner of Math-
ematics at the Educational Testing Service. His primary re-

sponsibility is the Advanced Placement Program in Calcu-
lus. Previously, he was an Associate Professor of Mathemat-
ics at the United States Military Academy at West Point, 
New York. 

Calculus for Engineering Students 

First Discussion Session 
Donald E. Carlson and Denny Gulick 

Among the 30 participants in our session nearly ev-
eryone spoke at one time or another, and showed the 
diversity in types of departments and academic institu-
tions from which they came. The participants included 
high school teachers, college-university teachers, and a 
representative from a well-known publishing firm. Most 
were mathematicians; a few were engineers. 

S y l l a b u s 

Most of the discussion centered on the topics of the 
calculus syllabus and the problems identified with stu-
dents in calculus. Among the suggestions for inclusion 
in the calculus courses were: 
• real-life applications and modeling, 
• heavier use of approximation methods, 
• computer graphics, 
• symbolic manipulation, and 
• discrete mathematics . 

Real-life applications and models would tend to make 
more meaningful the concepts presented in the calculus. 
Not only are approximation methods important from 
the standpoint of all students of the calculus, but also 
they can be very fruitful in motivating certain aspects 
of calculus, especially if observational da ta provide the 
basis for these approximations. 

Computer graphics can give not only a visual image 
of various concepts, but also a much more realistic im-
age of functions such as exponentials and polynomials. 
In addition, symbolic manipulation, which is only now 
beginning to come into the classroom, could minimize 
the tedium of routine calculations. 

Finally, we recognize the recent effort to incorpo-
rate discrete mathematics into the first years of college 
mathematics . In all likelihood discrete and continuous 
mathematics should be intermingled. How should it be 
effected? 

If there are to be new items added to the calculus 
course, it is agreed tha t some topics in the already too-
full syllabus would have to be eliminated. Although 
our session did not dwell on which topics should be 
eliminated, the question of including only some of the 
techniques of integration arose. Also, it was suggested 
tha t perhaps some geometric applications of the integral 
could be replaced by applications more indigenous to 
engineering and physics. Finally, should less class time 
be devoted to series? 

At the same time certain participants emphasized 
that the fundamental concepts in calculus must remain 
in the course, along with at least a certain amount 
of drill work to develop manipulative skill. We must 
minimize the tedium of working problems where no 
thought at all is necessary. A basic question is the fol-
lowing: What would be an appropriate blend between 
geometrically-motivated concepts, definitions and theo-
rems, relevant applications, and rigorous proofs? 

S t u d e n t s 

The second major topic centered on the calculus stu-
dent: diverse backgrounds, work ethic, and retention of 
calculus concepts. 

We are all aware that high school preparation in pre-
calculus topics varies greatly. In addition, ever more 
students come to college having already encountered 
some calculus. Should colleges and universities meet 
the students "where they are," giving them a special 
calculus course? In mathematics , how should colleges 
and universities interface with the high school? 

Several members of the session indicated tha t stu-
dents nowadays do not seem to be highly motivated 
to study (calculus). Is that because the course is not 
packaged well? Or because the students have improper 
backgrounds? In order to have a real impact on the 
calculus curriculum, the "work ethic" of the calculus 
student will need to be changed. 

Many students have difficulty retaining the methods 
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and the concepts of the calculus. Can effective reten-
tion be accomplished primarily through routine prac-
tice and by graded homework exercises? Should it be 
accomplished through exemplary applications? Proba-
bly the answer lies in a mix of the two. Again, before 
the calculus curriculum can be really successful, we will 
need to find an appropriate mix. 

In conclusion, the participants noted that nothing 
tha t we suggest can have much effect on the calculus 
curriculum unless 
• publishers are receptive to innovative texts and soft-

ware; 
• communication between mathematics departments 

and engineering and science departments is fostered; 

• academic institutions demonstrate their concern for 
improved undergraduate education and reward ef-
forts to tha t end. 

We hope tha t the present symposium will help give 
new vigor to the calculus curriculum. 

D O N A L D E . C A R L S O N is Professor of Theoretical and 
Applied Mechanics at the University of Illinois at Urbana-
Champaign. He is active in mathematics education in Illi-
nois and is educated in both engineering and mathematics. 
He received his Ph .D . degree in applied mathematics from 
Brown University. 

D E N N Y G U L I C K is Professor of Mathematics at the 
University of Maryland. He has served as chairman of the 
undergraduate mathematics program at the University of 
Maryland and is co-author (with Robert Ellis) of a calculus 
text. 

Second Discussion Session 
Charles W. Haines and Phyllis 0. Boutilier 

The six major issues that were identified by our 
group are 
1. How do we develop mathematical maturi ty so tha t 

s tudents are bet ter able to adapt to new situations 
in the future? 

2. Personal computers and sophisticated hand calcula-
tors will soon be in the hands of many, if not, all our 
students . How do we make the best use of them? 

3. Many of the engineering disciplines are seeking ad-
ditional topics in calculus and changed emphasis in 
the first two years. 

4. Student success rate in the first year is affected by 
algebra and trigonometric skills, life styles of the stu-
dents, and faculty or teaching assistant enthusiasm 
for the course. 

5. Suitable textbooks for some anticipated changes are 
not widely available. 

6. And finally, where do we go from here? 
The issue of mathematical matur i ty arose from a dis-

cussion of particular topics tha t might or might not be 
kept in a calculus course for the future, and from the 
realization that we cannot predict what will be needed. 
Thus, one of the primary aims of the mathematics cur-
riculum, along with other par ts of the curriculum, is 
to teach students how to learn by developing the fun-
damental skills and mathematical matur i ty it takes to 
learn on their own now and in the future. Some partic-
ular suggestions (not meant to be exhaustive) are: 
• Get students comfortable with the concept of func-

tions and families of functions. 
• Encourage inferences from functions concerning their 

graphs and vice versa. 
• Make much more use of the conceptual approach, 

which lies between pure skills and pure theory. Il-
lustrate with geometrical proofs and convincing or 
plausible arguments. Pure theory probably is not 
desirable in an engineering calculus course. 

• Allow time to linger over concepts, to consider con-
sequences, etc. 

• Do examples and then generalize. 

• Emphasize relationship between symbols and ideas. 

• Develop the ability in students to read and then do 
examples. 

• Develop the material concerning topics such as se-
ries, differentials, optimization problems, substitu-
tions, and others in light of the above. 

• Develop two- and three-dimensional concepts thor-
oughly, then extend to n-dimensions. 

C o m p u t e r s a n d S o f t w a r e 

There was an overwhelming consensus tha t we must 
address the proper use of the newest generation of hand 
calculators and P C software in the calculus course, as 
they are already here and students will be using them 
even if we, as faculty, don ' t . Some criteria and issues for 
consideration when employing these technologies are: 

• They can ' t be introduced as an add-on; they must 
be integrated properly into the course. 

• When developing examples, make sure the proposer 
does the examples to make sure they work, as some 
current programs don' t do what they say they do. 
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• Concepts must be developed and understood first, 
before being used on a calculator or a computer. This 
approach can be used to enhance and expand an un-
derstanding of a concept or procedure, but we can't 
reduce mathematics to a "black box approach." 

• The emphasis should always be—are the answers rea-
sonable? 

• This technology can assist with placing more empha-
sis on geometrical concepts and intuition. 

• The idea of challenging students to "crack" software 
was proposed, as it is an interesting way of having 
them learn the concept in order to "get around it." 
The issue of repackaging the first two years of engi-

neering mathematics was discussed only briefly, as there 
were only a few representatives from engineering. Some 
of the pressures for changing the first two years comes 
from the diverse needs of the different engineering cur-
ricula. Discrete mathematics , linear algebra, numerical 
concepts, probability and statistics were mentioned as 
candidates for incorporation into the first two years. 

Questions and concerns these topics raise are: 
1. What topics do we cut from the current courses? 
2. Are the engineering disciplines willing to add another 

quarter or semester of mathematics? 
3. Should there be a common first year calculus for all 

engineering disciplines, with the second year more 
tailored to each department 's need? 

4. Should some foreign engineering educational systems 
be studied to gain insight into other ways of ap-
proaching this problem? (This could also be ex-
panded to cover other issues identified in this report.) 

5. The use of the hand calculator and PC software also 
needs to be considered here in light of "repackaging." 

6. "Lean" calculus may not be appropriate for the en-
gineering disciplines. 

S t u d e n t P r e p a r a t i o n 

The issue of many students start ing college under-
prepared in algebra or trigonometry drew many com-
ments. Consensus seemed to be that pretesting and 
placement programs can be reasonable and effective. 
With more minority students and re-entry students be-
ing recruited for careers in engineering, placement pro-
grams for calculus and precalculus mathematics will be 
desirable. 

Students should not be forced to repeat what they al-
ready know, as boredom will afflict the class, nor should 
they be in a calculus class where they are "down the 
drain" in the first two weeks due to lack of skills in 
algebra and trigonometry. Beyond carefully-designed 
placement programs, further reducing attri t ion in the 

calculus sequence must address other factors such as 
the s tudents ' s tudy habits and motivation and faculty 
at t i tudes toward the course. 

The large number of over-sized textbooks, most of 
which differ only by the number of exercises or by the 
color of the graphics, drew many comments. Most 
participants would like to see new lively texts but no 
consensus was reached regarding the content of these 
new texts. The mathematics community will be wary 
of adopting "non-standard" texts and publishers want 
reasonable expectation of sales before publishing a new 
text. 

F o l l o w - u p A c t i v i t i e s 

Most of the part icipants put great emphasis on post-
conference activities. Those activities should include: 
• Local campus seminars by part icipants to inform and 

excite his or her colleagues in mathemat ics and en-
gineering. 

• District or regional workshops to exchange ideas and 
experiences. 

• Information distributed nationally through as many 
vehicles as possible to inform the engineering com-
munity of this national initiative, as very few en-
gineers a t tended this Colloquium. At the national 
level two societies come to mind, ASEE and SIAM. 
Other discipline-specific national societies should be 
informed. Involvement of engineering faculty is nec-
essary for success. 

• Curriculum development, experimentation, assess-
ment, follow-up, feedback, i.e., a closed loop which 
if shared through a newsletter compiled and edited 
by a national committee could lead toward a bet ter 
calculus course. 

• A national committee to oversee and collect ideas, 
initiatives, experiments, etc., and to edit and dissem-
inate the material to mathematics faculty and other 
involved persons including secondary school faculty 
throughout the country. This committee needs am-
ple financial support over a five to ten year period. 

C H A R L E S W . H A I N E S is Associate Dean and Professor 
of Mechanical Engineering at Rochester Institute of Tech-
nology. H e teaches mechanical engineering and mathemat-
ics, has published in the areas of engineering analysis and 
differential equations, and is active in several professional so-
cieties. He received his Ph.D. degree from Rensselaer Poly-
technic Institute. 

PHYLLIS O. B O U T I L I E R is Professor of Mathematics 
at Michigan Technological University. She has served as As-
sistant Department Head and as Chair of the Mathematics 
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Division of the American Society for Engineering Educa-
tion. Currently she is Director of Freshman Mathematics 
at Michigan Technological University. Boutilier received an 
M.S. degree in mathematics from Michigan Technological 
University. 

Third Discussion Session 
Carl A. Erdman and J.J. Malone 

After discussing a wide variety of topics related 
to calculus instruction, the participants in our group 
decided—by majority vote—that there were four areas 
of major concern, which are presented below without 
regard to priority. 

S t u d e n t B a c k g r o u n d 

Many students arrive at college not prepared to take 
calculus. Placement tests can help remedy some of the 
problem, but they are not a cure. Calculus courses 
should not be split into fast and slow tracks as a way 
of responding to student differences. It is preferable 
to have s tudents take pre-calculus courses even though 
this may be resisted by students (and their parents). 

If calculus is taught on the secondary level, it must 
follow a s tandard syllabus such as AP. The quality of 
this course is very important , since students may be 
turned on or off to mathematics from this experience. 
Indeed, the seventh and eighth grade experiences in 
mathematics may have already fixed student at t i tudes, 
a major problem which needs at tention. Clearly, entry 
into a high school calculus course should not be at the 
expense of adequate exposure to algebraic skills. There 
is some suspicion of high school courses which are not 
similar to A P courses. 

S y l l a b u s I s s u e s 

The present calculus syllabus is overloaded; there is 
just too much material in the courses. However, there 
is no agreement as to what might be left out. We need 
some mechanism for deciding on what can be omitted. 
All of this is tied to a quantity-versus-quality agree-
ment. 

It is worth noting tha t only one-third of the partici-
pants felt tha t there was a strong need to change calcu-
lus in a dramatic fashion; many felt tha t we currently 
do a good job in calculus instruction. This may be 
a reflection of the group's makeup; all but one person 
(excluding the session leader) were calculus teachers, 

and they generally came from schools with good calcu-
lus programs. However, there were several comments 
concerning the need to have more t ime to deal with 
problem solving. A question was raised as to whether 
there was too much emphasis on training rather than 
on education. 

There was a feeling tha t the engineering community 
wanted some discrete mathemat ics topics introduced, 
but probably did not want to give up much in the way 
of traditional topics. However, it wasn' t clear tha t "dis-
crete mathematics" meant the same thing to engineers 
as it means to mathematicians. There is a need here to 
define terms. 

T e c h n o l o g y 

Those who saw a need for considerable revision in cal-
culus often cited the need to incorporate new technolo-
gies as a motivating force. Computers can be used to de-
velop intuition, to improve the pedagogy of the course, 
and to influence the choice of topics to be taught . These 
thoughts seemed to be broadly accepted. 

There seemed to be agreement on the benefits of 
freshmen having (or having access to) a personal com-
puter. However, there was no consensus as to whether 
the College should provide personal computer facilities 
or whether students should be required to buy them. 

G o a l s a n d I m p l e m e n t a t i o n 

What is the essence of calculus and how should we 
teach it? Certainly, it is not the repetitive working of 
routine problems. Some of the current calculus discus-
sion should be directed toward a bet ter definition of the 
objectives of calculus. The role of ideas or concepts as 
opposed to the role of techniques needs to be addressed. 
Some participants believed it was possible to teach con-
cepts without using e — δ techniques. 

Surveys of final examinations indicate there are few 
questions of the "state and prove" type. Is this a re-
flection of the goals of the course? It was noted tha t 
there is a need to stress understanding. But, when this 
is done, students often complain that the course is too 
theoretical. It appears that calculus instruction does 
not do a good job with either concepts or applications. 
An interesting question was posed as to whether engi-
neers really care if their s tudents have seen proofs in 
calculus. 

It was strongly felt tha t there should not be separate 
sequences for each of the various engineering disciplines. 
This wasn't practical, and the course and educational 
objectives were bet ter served with a variety of s tudents 
in the course. 
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O t h e r I s s u e s 
The issue of class size and the use of TA's was raised 

as an area of much less concern than were the previ-
ous four areas. It was noted that horror stories about 
non-English-speaking TA's abound and that some of 
them are t rue. But it was also said that some TA's 
are very good and tha t having a professor as instructor 
is no guarantee of good teaching. Some feelings were 
expressed that a valuable personal touch was lost with 
sections of large size. 

Concerns with pressures produced by the engineer-
ing curriculum were also discussed. It was thought tha t 
engineering schools press for too hectic a pace; that 
they are forcing a compression in the mathematics pre-
sentation. One cause is the fact tha t most engineering 
schools will not openly admit tha t engineering is, in 
fact, no longer a four-year program. 

Several participants suggested that a mathematics 
depar tment resident in the engineering college made co-
operation much easier and led to good curriculum plan-
ning. If the only mathematics department is in the ar ts 

and sciences college, campus politics can make cooper-
ation much more difficult. 

The final point was tha t engineering faculty needed 
to provide the mathematics faculty with examples of the 
kinds of applications they would like to see incorporated 
into the calculus. 

C A R L A. E R D M A N is Associate Dean of Engineering 
and Assistant Director of the Texas Engineering Experi-
ment Station at Texas A&M University. He has been Head 
of Nuclear Engineering at Texas A&M, a faculty member 
at the University of Virginia, and a research engineer at 
Brookhaven National Laboratory. His Ph.D. is from the 
University of Illinois at Urbana. 

J . J . M A L O N E is Sinclair Professor of Mathematics 
at Worcester Polytechnic Institute. He has also taught at 
Rockhurst College, University of Houston, and Texas A&M. 
His areas of research include group theory and near rings. 
He received a Ph.D. degree from Saint Louis University. 

Calculus for the Life Sciences 

William Bossert and William G. Chinn 

Biologists complain tha t the mathematics curriculum 
is designed to meet the specifications of physicists and 
engineers and tha t our concerns and the needs of their 
s tudents are ignored. Is this true? Are their needs for 
mathematical training really different and if so, how 
are they different and how could they be better met 
with changes in the mathematics curriculum? Several 
observations are frequently made by biologists. 

Mathematics has been less central to the life sciences 
than the physical sciences. Perhaps this was true dur-
ing the development of biology when description was 
more important than theory, but it is certainly not the 
case today. The vast majority of articles in some impor-
tant biological journals from clinical medicine to ecol-
ogy present mathematical models or the application of 
mathematical technique. The biology major in most 
colleges requires physics and physical chemistry courses 
tha t themselves need fundamental mathematical train-
ing. Many biology educators refuse to recognize the im-
portance of mathematical training, however, and allot 
only two semesters in the crowded biology curriculum 
for it. 

Within mathematics , calculus is less central to biol-
ogy than are other subjects. Although there are many 
important applications of the calculus in all areas of bi-
ology, many fundamental biological research results— 
which should be included in college biology courses— 
depend on applications of modern algebra, particularly 
combinatorics, of probability, of statistics, and of linear 
algebra. (Some illustrations are given in the background 
paper of Simon Levin.) If we do not encourage young 
biologists to take more than two or three semesters of 
mathematics in college, should they all be devoted to 
the calculus? 

For the life sciences, training in formulating prob-
lems is as important as training in solving them. Too 
often calculus courses present illustrative problems tha t 
are carefully selected to show off the technique. In biol-
ogy the problems tha t s tudents face even in elementary 
courses are either not well formulated or do not yield 
to simple techniques. Perhaps in engineering the best 
part of one's activity is applying well-studied models 
and their associated techniques to new situations, but 
that is not true for biology. Students must learn to ab-
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stract simpler formal descriptions from problems tha t 
they cannot solve, and need to be shown how to de-
pend more on qualitative and numerical methods than 
on those traditionally taught in the calculus. 

If the mathematical needs of the life sciences do differ 
in these ways, and others, what should be done about 
it? A first thought is to s tar t from scratch and design 
a new course in college mathematics specially for biol-
ogists. In two or three semesters we could package all 
of the broader range of mathematics tha t biologists feel 
are needed, taught with a problem first and qualitative 
style. 

This is not easy to do. Although some have tried it 
and several textbooks labeled "mathematics for the life 
sciences" are available, t he efforts are not altogether 
successful. A simplistic critique holds that they are 
merely expositions of the same topics of traditional pre-
calculus and calculus courses, perhaps reordered and 
with biological illustrations, and do not involve a new 
selection of topics and a "problem first then technique" 
a t t i tude that might be required. Also, they regularly 
achieve breadth by simply being longer and placing 
more demands on our students . 

There are some strong reasons for avoiding special 
discipline-oriented calculus courses. First, many stu-
dents take this first course in college mathematics be-
fore their career directions are set. Many liberal arts 
colleges do not allow students to select a major until af-
ter the freshman year when the course would normally 
be taken. Second, the value of a mathematics course as 
a liberal ar ts experience is compromised if it is taught 
with a narrow disciplinary focus. 

Third, and most important , there is a danger that 
the specialization of the calculus course will obscure the 
generality of the mathematical way of thinking tha t sep-
arate disciplines have come to mathematics to gain. It 
is useful for s tudents to see tha t the mathematical mod-
elling process and even some specific models transcend 
disciplinary boundaries. 

Separate courses may be justified when resources per-
mit, and when disciplinary education can be more ef-
ficiently begun in the calculus course. Students might 
also be usefully taught in separate sections tha t recog-
nize their differences in previous experience and com-
mitment to further training. Care must be taken, then, 
tha t the courses do not lose the conceptual and aesthetic 
essence of the mathematics . 

It might be better to depend upon significant changes 
in the calculus curriculum, such as will surely come from 
this conference, rather than striking out on our own. If 
so, what changes would be particularly important to us 
tha t could also be desirable for other "client" fields and 

hence possible to be adopted? Some first thoughts are: 
1. More illustrative examples from the life sciences. 

This obvious improvement is not a problem. Math-
ematics educators are regularly asking for teaching 
examples from applied fields. 

2. More mathematical modelling. More time should be 
spent developing models, not jus t to apply known 
techniques for drill, but to introduce new topics 
which are required because of the model and not the 
reverse. 

3. More linear algebra. Many applied fields deal with 
systems of differential equations which can be taught 
efficiently only after students can deal with matrices. 
This topic is also important to biology as the basis 
of multivariate statistics, which is too often left un-
til late in the mathematical curriculum, or worse to 
computer packages. 

4. More qualitative and numerical methods. The lim-
ited presentation of numerical methods in elementary 
mathematics courses is a puzzle to most biologists. 
Taylor's theorem should be exploited early and of-
ten in demonstrat ing numerical solutions of differen-
tial equations and optimization problems. Matrices 
are regularly taught by the presentation of important 
numerical algorithms. This might be another good 
reason for having some linear algebra in our calculus 
course: as a good example. 

5. More applications of probability and statistics. Least 
squares rarely appear in calculus courses although 
it may be more appropriate there than in a good 
statistics course. 
There is no disagreement on the value of more bio-

logical illustrations in calculus courses. We simply need 
to generate more catalogs of appropriate problems like 
the "Mathematical Models in Biology" complied by the 
MAA some years ago. These could enrich the calcu-
lus course greatly, since the life sciences at the current 
time depend on numerous realistic, yet simple models 
tha t may be more appropriate to elementary calculus 
courses than are those from physics or engineering. 

There should be bet ter communication between life 
sciences and mathematics faculty at a college to pro-
vide this input. Perhaps t eam teaching of the calculus 
course or specialty sections or adjunct courses in sep-
arate disciplines could present the biological relevance 
of the calculus. Convincing s tudents of the relevance 
requires more than adding biology illustrations to a 
mathematics course. Biologists must increase the use 
of mathematics in their own courses. 

In general, changes which broaden the range of top-
ics and deal with real problems, perhaps in qualitative 
or numerical ways if they are the only ones available, 
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would be desirable for biologists. In return we must un-
derstand that as mathematics becomes more central to 
the study and advancement of the life sciences, we can-
not relegate it to the remains of the biology curriculum, 
with a priority lower than chemistry or physics. 

One year of college mathematics is simply not suf-
ficient, not for the study of organs, cells, organisms 
or populations and communities of organisms, and cer-
tainly not for the study and practice of medicine. Biolo-
gists will not be satisfied with the calculus curriculum, 
or the mathematical programs that biologists, to the 
dismay of many mathematicians, lump under the name 
of calculus, until enough time is allowed for it to be 
taught properly. 
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ing responsibilities in biology and applied sciences at Har-
vard University. His areas of research work include function 
of the mammalian kidney and rapid evolution in animal pop-
ulations. In the past year he designed an advanced calculus 
course for biology concentrators. He received a Ph.D. degree 
in applied mathematics from Harvard University. 
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matics at the City College of San Francisco. During 1 9 7 3 -
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Calculus for Business and Social Science Students 

First Discussion Session 
Dagobert L. Brito and Donald Y. Goldberg 

Mathematics courses in American colleges and uni-
versities serve a diversity of students, programs, and in-
terests and are provided by a diverse collection of insti-
tutions of higher education. Their traditional functions 
have been to provide a set of conceptual and computa-
tional skills and to serve as a screen for the allocation 
of scarce positions in various programs, both at the un-
dergraduate and graduate level. Advances in computing 
technology as well as development of new mathematics 
have raised questions about the appropriate choice of 
concepts and skills which fulfill the first role. Changes 
in the composition of the undergraduate student body 
have raised questions about the second. 

D i v e r s i t y 

Programs in business and economics vary widely to 
meet the needs of students who have a diversity of math-
ematical preparation and career aspirations. Some un-
dergraduate business programs are open to all students; 
others find it necessary to limit admission. Many degree 
requirements include a calculus course; some require 
success in a calculus course (or sequence of courses) for 
admission to the program. 

Graduate management school curricula, in the tradi-
tion of the "case method," have little or no need for for-
mal mathematics . However, case method schools, and 
even a few law schools, may require a calculus course 

for admission. Other curricula are more quanti tat ive in 
their focus and require a higher level of mathematical 
sophistication. These quanti tat ive schools have more 
stringent mathematical requirements such as optimiza-
tion theory and econometrics, which may use differen-
tial equations, linear algebra, and other advanced math-
ematics. 

The demand for mathematical training by economics 
programs varies similarly. The traditional economics 
major may require a calculus course for the bachelors 
degree but very often calculus is not a prerequisite for 
any specific courses in the economics depar tment . Stu-
dents who plan to do graduate work in economics, or 
to enter a quantitatively oriented business school, are 
encouraged to study a substantial amount of mathe-
matics, often equivalent to a strong mathematics minor 
or even a mathematics major. 

Other undergraduate economics majors, for whom 
the degree is terminal or who plan to a t tend law school 
or a non-quantitative business school, find no need 
to take mathematics beyond the minimum required. 
A substantial number of students enroll in economics 
courses as par t of their general education or as a re-
quirement for another major; therefore, economics de-
partments are reluctant to impose a calculus prerequi-
site for most courses. There is, however, a consensus 
that training in calculus is very useful. 

In other areas of social science, some statistical meth-
ods courses are calculus-based; others are not. Other 
social science and business courses which use discrete 
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mathematical techniques may require a prerequisite 
mathematics course, but not necessarily calculus. 

F u n c t i o n s of C a l c u l u s C o u r s e s 
One difficulty encountered by the discussion group 

was identifying the variety of interrelated functions of 
the calculus courses. One function, a systemic one, is 
as a screening mechanism for admission into degree pro-
grams. Other functions identified in the discussion are 
to teach particular calculation skills, to inculcate math-
ematical maturity, and to provide significant experience 
with mathematical models. 

The screening function is often resented by instruc-
tors of business calculus or calculus for social science 
courses. Yet with this burden come obvious benefits 
to mathematics departments : large enrollments in the 
"short" calculus can be "bread and but ter" for many de-
par tments . Use of calculus—or indeed of discrete math-
ematics, of principles of economics, or other courses—as 
an allocation mechanism is not necessarily inappropri-
ate. 

Part icipants in the discussion, principally from state 
and community colleges, recognized the screening func-
tion of their courses. Broader social questions of the 
appropriateness of using courses as specific screening 
devices and implications for gender and ethnic diver-
sity in the professions were not raised in the discussion. 

Basic calculus skills—much of the algebra and geom-
etry prerequisite, manipulation of functions and simple 
differentiation and integration—were seen as essential 
to the calculus course itself. The advent of the super-
calculators certainly has lessened the need for exten-
sive technical competence, especially for s tudents tak-
ing a "short" calculus course; yet the group agreed 
that hands-on pencil-and-paper experience with some 
calculus techniques is a necessary condition for stu-
dents to understand the fundamental concepts. For 
quantitatively-oriented students in the social sciences, 
the traditional mainstream calculus course can be ex-
pected to provide in the future, as it has in the past, 
foundations for further s tudy of mathematics . 

The development of some mathematical maturi ty in 
s tudents was identified by many part icipants as a key 
function of calculus courses in which management stu-
dents and others enroll. One participant referred to the 
development of a "reading knowledge" of mathematics; 
as an example, understanding the notion of a differen-
tial equation, even without the techniques to solve one, 
was viewed as a worthy goal of an introductory course. 

Another example was tha t a glimpse—even with-
out mastery—of an important and subtle mathemati-
cal s tructure can aid the development of mathematical 

maturi ty. Understanding the nature of mathematical 
abstraction and developing confidence in using the con-
cepts of functions were viewed by others as important 
steps in the ability to use mathemat ics profitably. 

The one function of the calculus course—indeed of 
any introductory mathematics course—which was most 
enthusiastically endorsed by the group was the devel-
opment of skills and understanding in mathematical 
modelling. It may be unclear whether "modelling" 
is an identifiable skill to be taught , but all agreed 
tha t it is essential for s tudents to be able to represent 
particular problems—in business, economics, or other 
disciplines—in the language of mathemat ics . It was 
clear to all tha t the increasing power and availability 
of calculators and computers , whatever their implica-
tions for skills instruction, heighten the need for student 
capability in modelling. 

W h y C a l c u l u s ? 

One question frequently asked by students , social sci-
entists, and many mathematicians, is "Why calculus?" 
As noted above, some business and social science pro-
grams require a calculus course for the degree but not 
as a prerequisite for any course. One part icipant , from 
a s tate college, helped develop a course tailored to the 
needs of her insti tution's business program: the demand 
was not for calculus but for a mastery of the notion of 
numerical functions, particularly exponentials and log-
ari thms, sequences, matr ix algebra, and introductions 
to linear programming and probability. 

William Lucas, of the Claremont Colleges and NSF, 
rejected the notion of calculus as "the mathemat ics 
of change." Continuous change, yes—but discrete 
changes, especially those of human beings and hu-
man organizations may be modelled using new discrete 
mathematics , much of it being developed outside of 
mathematics depar tments . 

Gordon Prichett of Babson described the Quanti ta-
tive Methods course at his insti tution, an undergrad-
uate business college. The course begins with a dis-
crete approach to fundamental algebra skills in the con-
text of linear modelling. Difference equations, differen-
tial equations, and some calculus techniques are con-
sidered; a follow-up course introduces some statistical 
concepts, using the integral. The Babson course ex-
ploits classroom computers, linear programming pack-
ages, and symbolic manipulations; another notable fea-
ture is the requirement of homework collected daily. 

For t h e R e c o r d 

The discussion group, with few exceptions, was com-
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posed of college and high school mathematics faculty. 
As "providers" rather than "users" of calculus courses, 
the group sensed a need to learn from social scientists 
what , in fact, their s tudents require in their mathemat-
ics courses. Some unresolved questions and comments 
follow: 

• Has there been significant research to determine 
which mathematics skills and concepts are used in 
business and social science programs? 

• Will calculus reform efforts be directed—in term of 
grants—to social science calculus courses, or only to 
the mainstream course for physical science students? 
One participant suggested tha t grant funds be allo-
cated to development areas on the basis of student 
enrollments. (It was noted, in this regard, tha t the 
mainstream calculus mass may be too large to move; 
change may be more likely on the periphery.) 

The discussion group participants urged calculus re-
form leaders to acknowledge the importance of the non-
physical science course in general education, in prepar-
ing students for non-science professions, and in educat-
ing many of the nation's future leaders. 

· 
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Second Discussion Session 
Gerald Egerer and Raymond J. Cannon 

The discussants were primarily drawn from the field 
of mathematics . A variety of viewpoints were presented, 
reflecting the diverse na ture of the part icipants ' insti-
tutions and their personal experiences. 

It quickly became clear that there is not one ideal 
calculus course for business and social science students, 
since the mathematics requirements at represented in-
sti tutions varies from one to four semesters. There 
are also wide differences among student backgrounds, 

mathematical preparation, and motivation. However, 
participants did agree on the importance of a wide range 
of issues. 

Mathematics depar tments need to establish more 
fruitful collaboration with other disciplines. Suggested 
points of departure include interdisciplinary seminars, 
joint teaching of courses, consultation regarding course 
prerequisites, and the revision of the content of courses 
of mutual interest. 

Participants further agreed tha t mathematical tech-
niques should be routinely and extensively used in eco-
nomics courses so tha t the formal mathematical require-
ments become genuine prerequisites. This is because 
economics is becoming as mathematical as physics, as a 
cursory perusal of the major journals makes clear. The 
need for mathematics in business studies, while not so 
intense, remains nonetheless real, e.g., inventory con-
trol, production theory, operations research, statistics 
and probability. 

It was generally felt tha t the mathematics commu-
nity should not be overly defensive in its view of the 
need for a minimum level of mathematical sophistica-
tion on the par t of business s tudents . Some of the 
benefits accruing to these students as a result of such 
courses include increased analytical ability and hence 
greater acceptability by graduate schools or improved 
career opportunit ies. Furthermore mathemat ics courses 
can provide students with an important opportunity to 
construct, articulate, and interpret formal models in the 
context of their own discipline. 

Nonetheless, there was a lack of consensus as to 
how best to serve the needs of these business students . 
Should, for example, their calculus courses begin with a 
review of needed algebraic techniques or with a discus-
sion of rates of change, with the algebra to be covered as 
needed? Should the mathematics be presented in a con-
crete context (such as the theory of the firm) or should 
it be presented more "purely" so that its universality is 
stressed? (The value of UMAP modules as a source of 
applications was noted by several participants.) 

Some concern was expressed about the general at-
mosphere in which learning takes place. While society 
is broadly appreciative of the results of technology, it 
is a t best indifferent to the underlying basic scientific 
activity. 

Discussion then turned to the effect which comput-
ers and calculators are likely to have on classroom in-
struction. Questions were raised as to whether "black 
box" technology (for integration, as an example) is an 
acceptable substi tute for understanding analytical con-
cepts and procedures. W h a t is the relationship between 
developing computat ional skills on the one hand and 
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conceptual understanding on the other? 
Finally, concern was expressed tha t instructors, be-

cause they feel uneasy discussing applications outside 
their own field, might omit a certain amount of other-
wise instructive and helpful material. 

G E R A L D E G E R E R is Professor of Economics at Sonoma 
State University. He has worked both as a government and 
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Calculus for Computing Science Students 

Paul Young and Marjory Blumenthal 

According to Hamblen [1], over 25,000 bachelors de-
grees were awarded in 1983 to students who majored 
in some form of computer science, information science, 
or computing technology. Hamblen estimates that this 
total will have reached over 50,000 students per year 
by 1988. This is about twice the combined total for 
mathematics , statistics, chemistry, and physics. 

Of these 50,000 students , there are no reliable esti-
mates of how many are in technically-oriented programs 
for computer science and computer engineering, which 
typically require calculus as a prerequisite or at least as 
a corequisite. Nevertheless, accrediting organizations 
for undergraduate programs in both computer science 
and computer engineering require calculus as a part of 
accredited programs. 

In addition, a variety of recommendations, by vari-
ous ACM committees have included calculus as part of 
the recommended course sequence for computer science 
students . Thus, it can be expected tha t in the imme-
diate future there will continue to be be significant de-
mand from computer science s tudents for calculus as a 
"service" course. 

In spite of this, it is sometimes difficult to pinpoint 
the exact calculus topics which are valuable for com-
pletion of the typical computer science program. Obvi-
ously students taking numerical analysis must be well-
grounded in most of the topics covered in introductory 
calculus and linear algebra courses. But numerical anal-
ysis is not a required portion of all undergraduate (or 
even graduate) programs in computer science. 

Students taking courses in simulation and perfor-
mance evaluation must similarly be well-trained in the 

analytic methods required for series analysis, statistics, 
and queueing theory. But, again, performance evalua-
tion and modeling courses are not required of all com-
puter science undergraduates . Students taking courses 
in computer graphics and image analysis must be pre-
pared to handle the underlying analytic techniques for 
analysis of two- and three-dimensional bodies in space. 
And generally, as computer science becomes more ex-
perimental, it can be expected tha t increasingly sophis-
ticated statistical techniques will be employed in com-
puter science, and these should depend on knowledge of 
the underlying analytical techniques. 

While it is possible for many computer science un-
dergraduates to pass through their entire undergradu-
ate curriculum seeing little or no use of analytic tech-
niques, and to use no such techniques when employed 
after graduation, academic computer scientists gener-
ally see enough analytic applications, and potential for 
more such applications, tha t they are reluctant to allow 
undergraduates to complete undergraduate programs in 
computing with no exposure to analytic methods. 

Furthermore, s tudents planning graduate careers in 
computer science are more likely to see the application 
of such techniques in simulation and modeling, in per-
formance evaluation, in image processing and graphics, 
in statistics, and occasionally in analysis of algorithms. 
Hence, most of the bet ter programs in computer science 
now require calculus. This requirement is reinforced by 
the common belief tha t calculus should be par t of the 
universal culture for all scientists and engineers. 

Finally, many computer scientists regard their disci-
pline as requiring the same sort of mathematical skills 
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and abilities as required for mathematics generally. 
Hence any course which enhances, or checks, s tudents ' 
"mathematical matur i ty" is often welcomed. 

Still, it is safe to say tha t means of the analytic 
techniques (e.g., solving differential equations) taught 
in the current s tandard calculus sequence have little or 
no direct bearing on the core areas of computer science, 
including programming languages and compilers, soft-
ware and operating systems, architecture and hardware, 
and perhaps even theory and analysis of algorithms. 
(In the latter area students occasionally use integration 
to place upper- or lower-bounds on the running times 
of algorithms, and sometimes use generating functions 
to produce solutions to recurrence relations which arise 
naturally in the analysis of algorithms.) 

P u r p o s e of C a l c u l u s 
Given the above, it follows tha t computer scientists 

are not looking for particular collections of applica-
tions skills for computer science students taking cal-
culus. Fundamental understanding of the underlying 
concepts is what is important for those students. 

Thus , what is important in calculus for computer sci-
entists is mastery of fundamental concepts, the ability 
to perform basic symbolic manipulations, and above all 
the ability to use analytic models in real applications, 
to know what analytic techniques are applicable, and 
understanding how to use them. "Plug and chug" for 
fast applications in some particular application domain 
is seldom, if ever, useful for computer science students 
in these programs. 

This analysis does not imply tha t current approaches 
to teaching calculus are satisfactory for computer sci-
ence students , but it does imply tha t what may be good 
for computer science students may well be good for 
quite a variety of other s tudents as well: 
1. Students should be taught, and must understand un-

derlying concepts and intuitions. 
2. Students should be given problems that involve mod-

eling real-world problems analytically and solving 
them. Analytic, closed-form solutions should be 
stressed when appropriate, but numerical approxi-
mations should also be explored so that students gain 
an understanding both of the relationship of discrete, 
approximate solutions to continuous processes and 
of the notion of modeling large finite processes us-
ing continuous models. Integration, differentiation, 
and series summations all provide examples where 
the interplay between the discrete and the continu-
ous should be apparent . 

3. Series summations also provides an example where 
there is an opportuni ty to teach induction, recursion, 

and closed-form solutions of finite summations in the 
context of the calculus sequence. Recursion and its 
relation to induction is so fundamental to computer 
science tha t these topics must be taught in calcu-
lus courses designed to meet the needs of computer 
science s tudents . 

U s i n g C o m p u t e r s 

The panelists also discussed the role of programming 
and of computer aids in teaching calculus. It was gener-
ally believed tha t it was impractical, and indeed objec-
tionable, to require programming ability as a prerequi-
site to calculus. It was felt not only tha t programming 
cannot reasonably be required of all s tudents taking the 
course, but tha t in fact packaged mathematical software 
will often be the only computat ional technique that will 
ever be needed by many students . (Editorial comment: 
The panel did not discuss what could be achieved if an 
introductory computer science course were required as 
a prerequisite to the calculus.) 

In view of the fact tha t calculus is seldom required as 
a prerequisite to any s tandard undergraduate computer 
science course except numerical analysis, this seems un-
fortunate. It is surely true that a calculus course taught 
to students who are proficient in programming could be 
designed so tha t it simultaneously enhanced the stu-
dents ' understanding of the relationship between anal-
ysis and computing and their understanding of basic 
mathematical principles. 

While use of certain software packages (e.g., those 
which display convergence of rectilinear approximations 
to the area under a curve or convergence of tangential 
approximations to a derivative) may provide useful vi-
sual tools in helping all s tudents unders tand analytical 
methods, such tools clearly do not address underlying 
issues connecting analysis to computer science. 

D i s c r e t e M a t h e m a t i c s 

Although calculus—not discrete mathematics—was 
the topic for panel discussion, it was clear from the gen-
eral discussion tha t , with respect to computer science, 
the problem of teaching discrete mathemat ics for com-
puter science majors was of more concern to the pan-
elists than the problems of teaching calculus. Computer 
scientists typically believe t ha t discrete mathematics , 
including mathematical logic at various levels, elemen-
tary set theory, at least introductory graph theory, and 
above all combinatorics at all levels are more important 
to computer science than the calculus course. 

Those mathematics depar tments tha t have failed to 
offer such courses for computer science s tudents have 
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frequently found their computer science departments 
teaching these courses. Indeed, some computer scien-
tists believe tha t such courses are bet ter taught by com-
puter scientists who are more familiar with the appli-
cations, or equally typically, many computer scientists 
believe tha t the more elementary topics often covered 
in discrete mathematics courses are best done directly 
in the context of the computing applications, where the 
underlying concepts (say of graphs, sets, and proposi-
tional logic) are both easily motivated and simply de-
fined. 

One view of elementary discrete mathematics sup-
ported by the panelists was tha t much of this material, 
e.g., elementary graph theory, propositional logic, ele-
mentary set theory, etc., might be better taught in high 
schools rather than in the universities, and might more 
reasonably be taught in the schools than the calculus. 
One way to encourage such a development might be for 
mathematicians to develop an advanced placement test 
in discrete mathematics . 

While some panelists questioned the ability of the 
mathematics community to influence the schools and 
the Educational Testing Service, others pointed out that 
30,000 university mathematicians having two profes-
sional societies with faculty who had to read advanced 
placement tests should be influential in getting such a 
reform insti tuted in the schools and the Educational 
Testing Service. 

It was also believed tha t placing the more elemen-
tary parts of discrete mathematics in the schools, and 
emphasizing the relationship between discrete and con-
tinuous mathematics in the calculus sequence, (e.g., in 
the study of limits of sequences) would not satisfy com-
puter scientists' need for training in more difficult topics 
in discrete mathematics , but there was little agreement 
on what was important . 

One view expressed was tha t the appropriate discrete 
mathematics for mathematicians to teach for computer 
scientists is the analysis of (nonanalytic) algorithms. 
But computer scientists like to teach this themselves, 
regarding it as integral and basic to computer science. 
Wha t is needed is help in essentially mathematical top-
ics, including probability theory and statistics, combi-
natorics, and mathematical logic. 

There was little belief among the panelists that this 
sort of discrete mathematics could be integrated into 
the calculus curriculum, but there was recognition that 
some of it, for example elements of statistics and per-
haps generating functions, could at least be introduced 
in the calculus sequence, so tha t s tudents would at least 
understand the applicability of analytical methods to 
these areas when they meet these topics later in their 

careers as computer scientists. In the long run, mathe-
maticians should be alert to the possibility that discrete 
mathematics may replace calculus as a basic mathemat-
ical prerequisite for computer science students, 

A F i n a l S u g g e s t i o n 

The panel also discussed, not entirely successfully, 
the question of finding suitable computer science exam-
ples outside of numerical methods to integrate into the 
elementary calculus curriculum. The difficulty here, un-
like for more traditional fields like physics, economics, 
and some fields of engineering, reflects both the pan-
elists' inexperience with various subfields of computer 
science, and the fact that applications are scattered 
throughout various subfields of computer science which 
are often not part of the core of the discipline. 

Nevertheless, there was general agreement tha t com-
puter scientists, students from most other client disci-
plines, and indeed prospective mathematicians are not 
well served by calculus courses which do not success-
fully integrate real problems into the course. Word 
problems, problems from client disciplines, and prob-
lems that require students to think about the meaning 
of their solutions are all important in calculus courses, 
and generally not well treated in current courses. 

To help with this problem, it was suggested that a 
problem bank with motivating problems from a vari-
ety of client disciplines could be developed. Problems 
could be tailored and classified by client discipline, by 
relevance to s tandard course topics, and by degree of 
difficulty. Ideally, a da ta base of such problems could 
be maintained and distributed "on-line" via computer 
network. Such a resource could even be continually 
updated. One way to launch such a da ta base would 
be through a special panel, perhaps federally-funded. 
The panel could generate potential problems and ex-
amples, discuss their suggested problems and examples 
with colleagues from the client disciplines, and revise 
them based on feedback from colleagues and s tudents . 
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Encouraging Success by Minority Students 

Rogers J. Newman and Eileen L. Poiani 

If minority students are t o participate in Calculus for 
a New Century, then all those involved in and respon-
sible for its instruction must be concerned about what 
is happening in the present decade. 

The large and increasing minority population (in this 
report, "minority" is denned to be Black, Hispanic, or 
Native American) in the United States offers a critical 
national resource for the mathematical sciences. De-
mographic da ta show that by the late 1990's, one-third 
of American elementary school students will be of His-
panic origin. 

At the same time, the proportion of minority stu-
dents entering and persisting in higher education is slip-
ping. According to da t a from the American Council on 
Education Office of Minority Concerns, between 1980 
and 1984, Black undergraduate enrollment declined by 
4%, while Black enrollment at the graduate level fell 
by 12%. During this period, Hispanic enrollment in 
higher education increased by 12% while American In-
d ians / Alaskan natives experienced a 1% decline. More 
than half (54%) of the Hispanics enrolled in higher ed-
ucation at tended two-year institutions. At the same 
time, the proportion of Black and Hispanic full-time col-
legiate faculty remained about the same (4% and less 
than 2%, respectively). 

Among the measures of "success" in mathematics as 
perceived by the public is performance on the Scholas-
tic Apti tude Test and the American College Testing 
Program. Students from most minority groups showed 
improved scores in 1987 when compared with those in 
1985. 

F u n d a m e n t a l I s s u e s 

To launch a discussion of encouraging success in 
mathematics by minority students, the following issues 
were raised: 
1. There is no noticeable difference in the mathemati-

cal performance of minority students when compared 

with majority students with comparable mathemat-
ical background. The differences are caused by dis-
parities in background preparat ion. 

2. Many teachers have low level of expectations for mi-
nority student achievement. 

3. Teachers, counselors and school administrators pro-
vide inadequate encouragement for minority s tudents 
to pursue solid mathematics courses, such as Algebra 
I and II, as well as additional senior-level mathemat-
ics courses. 

4. Small numbers of minority s tudents aspire to careers 
in mathematics or related fields, both on the under-
graduate and the graduate levels. Indeed, there has 
been a decline in enrollment of minority s tudents in 
the calculus, and consequently among mathematics 
majors and in all other programs leading to profes-
sional careers in the mathematical sciences. There 
is a real need to a t t rac t high achieving minority stu-
dents to mathematics-related majors. 

5. Teachers need to focus on minority student strengths 
and to emphasize the need for academic discipline. 
Students must be encouraged to work hard. Most 
low income minority students do not have the family 
support system or tradition of exposure to higher 
education necessary to promote success. 

6. Students must be able to read well in order to make 
full use of textbooks and notes. 

7. We need to identify mathematically-talented stu-
dents at an early age and nurture them through ele-
mentary and secondary school. 

P r e - C o l l e g e P r e p a r a t i o n 

The group discussed several areas in which work 
should be done to address these issues. We began with 
a list of activities to improve pre-college mathematical 
preparation of minority s tudents: 
• Develop rapport with school systems for the purpose 

of encouraging more minority students to take a t 
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least two years of algebra and a t least one advanced 
mathematics course in the senior year. 

• Provide enrichment opportunities, especially for stu-
dents from low income backgrounds, including cul-
tural programs and field trips to science centers, tech-
nical industries, and college campuses. 

• Develop summer enrichment programs for minority 
s tudents by collaborative initiatives among colleges 
and universities, school systems, and funding agen-
cies. 

• Share pedagogical ideas about teaching mathematics 
in a way that makes it more inspiring and appealing 
and makes the image of mathematics more positive. 

• Use television and related media to promote math-
ematics. For example, perhaps Bill Cosby could be 
persuaded to include a mathematician, or at least 
people using mathematics , in the scripts of this pro-
grams. 

• Mathematics professional organizations should coop-
erate to support initiatives which identify and nur-
ture talented minority students in grades K-12. 

C o l l e g i a t e S t u d e n t s 
The major part of our discussion concerned colle-

giate-level mathematics . Everyone agreed tha t it is es-
sential to maintain s tandards of quality and high level 
of expectations for all s tudents in mathematics courses. 
In addition, it is especially important to identify and 
make use of minority student strengths while teaching 
mathematics . 

When students have difficulty in mathematics , it is 
sometimes (but not always) caused by poor preparation. 
Here are some suggestions for encouraging success in 
calculus among students who enter college with poor 
preparation in mathematics: 
• Provide the opportunity for personal at tention so 

tha t instructors get to know each student as an indi-
vidual and can follow his or her progress in course-
work. This is easier to achieve in small class set-
tings; it will require innovative approaches if the 
large lecture-recitation model cannot be modified. 

• Enforce regular class at tendance to complement the 
continuity of the calculus content. Motivation must 
be reinforced among poorly-prepared s tudents . 

• If "Desk-Top Calculus" is to become the norm, finan-
cial resources will be needed t o enable low income 
students, many of whom are minority s tudents , to 
acquire personal computers. 
When students with good preparation in mathemat-

ics fall behind in calculus, it is usually for lack of moti-
vation. Here are some suggestions for ways to promote 
success among such students: 

• Expose s tudents to reasons why calculus in its 
present and future forms serves as a critical entree 
into majors tha t lead to higher paying technical and 
professional careers. 

• Integrate the resources of the personal computer with 
the teaching and learning of calculus. 

• Invite guest lecturers (e.g., successful a lumni /a lum-
nae, or colleagues from client disciplines) to address 
the usefulness of calculus in other fields. (Note par-
ticularly the resources of the BAM and WAM pro-
grams of the Mathematical Association of America.) 

• Provide a network of "mathematics mentors" to help 
motivate those who need support and to guide those 
already committed to the mathematical pipeline. 

• Develop interactive approaches to the teaching and 
learning of calculus. 

A d u l t L e a r n e r s 

Adult learners form an increasing percentage of those 
studying calculus. They bring to the classroom an in-
tellectual matur i ty and curiosity which demands more 
depth of understanding about the relationship between 
mathematics and the real world than most textbooks 
provide. New materials must be developed to meet this 
growing and important need. 

The percentage of adult learners is especially high 
in two-year colleges, a group of insti tutions tha t was 
not specially addressed at the Colloquium. Perhaps 
it should have been. Many graduates of two-year col-
leges often do not pursue higher education, so calculus 
becomes their last mathematics course. The needs of 
these institutions and their s tudents require consider-
ation well beyond the brief time tha t we were able to 
provide. 

Increasing the involvement and success of minority 
students in calculus for non-mathematics major pro-
grams as well as for the mathematics major should be 
a national priority. Otherwise our nat ion will miss the 
opportunity to make full use of the potential of all of 
its students. 

To encourage continued discussion of these impor-
tant issues, our group recommends a national confer-
ence of educators and mathematicians at all levels to 
discuss issues surrounding the encouragement of minor-
ity success in mathematics . 
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Role of Teaching Assistants 

Bettye Anne Case and Allan C. Cochran 

The discussion group was concerned with the use of 
teaching assistants (TA's) in a "lean and lively" cal-
culus. Unsure of the exact nature of such a course, 
we made an a t tempt to consider some of the ma-
jor issues of calculus instruction by TA's and other 
non-regular faculty, and to project possible effects of 
change. 

Realities of the current situation, like a bad back, 
will continue to plague us whether or not we change 
the content or teaching of calculus. These grim reali-
ties include a lack of money, poorly prepared and scarce 
faculty, inadequate facilities, inadequate preparation of 
students, tension between research, teaching and service 
demands, and more. 

Much of the discussion of this group reflected the 
problems expressed in Teaching Assistants and Part-
time Instructors: A Challenge [1]. The Foreword to 
that work began the discussion and seems appropriate 
here: 

The dilemma of the beginning professor in our publish-
fast-or-perish academic world is whether to devote 
time almost entirely to research or to put effort in 
teaching. Graduate teaching assistants must walk, 
even more, a thin line to acquit their teaching duties 
effectively and responsibly and enjoy teaching while 
efficiently pursuing studies and research. Discovering 
how to help them is our goal. 

In most mathematics departments there is a se-
rious effort to help graduate students teach effec-
tively, but the number of regular faculty members in-
volved in this effort is necessarily small. Those in-
volved faculty members may not find much agree-
ment among their colleagues on these matters, and 
they find even less information on helpful activities. 
Compounding the problem is the current diversity 
of college teachers who are not in the professorial 
ranks. Both graduate departments with graduate 
teaching assistants and two- and four-year college de-
partments may have part-time and temporary teach-

ers. In graduate departments they teach the same 
level courses as graduate teaching assistants and are 
drawn from graduate students in other disciplines, 
undergraduates, moonlighters who are employed in 
government, industry, high schools or other colleges, 
and those who are sometimes called "gypsy schol-
...... » 
ars. 
The role of teaching assistants (and other non-regular 

faculty) in the teaching of calculus (lean and lively or 
not) is of serious concern. A recent survey of colleges 
conducted by the Mathematical Association of Amer-
ica Survey Committee shows the percentage distribu-
tion by type of faculty for all single-instructor sections 
[2]: 

Faculty Type: 
Mainstream 

I II III 
Non-Mainstream 

I II 

FT Professor 
F T Instructor 
Part- t ime 
Teach. Assist. 

70% 73% 82% 
9% 14% 10% 
6% 4% 3% 

15% 9% 5% 

47% 45% 
13% 12% 

13% 20% 
25% 23% 

More teaching by non-professorial faculty is indicated 
when the survey population is restricted to departments 
having graduate programs [3]: 

Individual Calculus Classes ( < 65) Taught By: 

Tenure Other Fulltime: Pt- t ime 
Track PhD Non-PhD TA Instr. 

GP1-2 46% 2% 5% 4 1 % 6% 
GP 3 6 1 % 1% 7% 23% 7% 
MA-TA 74% 2% 11% 3% 10% 

MA 73% 6% 8% 0% 13% 

The categories GP1-2 and G P 3 stand for insti-
tutions with doctoral programs classified according 
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to [4]. MA-TA stands for masters-granting depart-
ments with teaching assistants, while MA stands for 
masters-granting departments without teaching assis-
tants . 

Many of the views expressed in this discussion group 
reflect a wide range of constraints on the participant 
schools, including many shared problems: 

• It might be easier to effect change with teaching as-
sistants than across the "hard-core" regular faculty. 
At the least, TA's would not present unsolvable prob-
lems. One reason is that only the best teaching as-
sistants teach calculus. 

• The exploitation of "gypsy scholar" and "permanent 
visitor" instructors is deplorable on both ethical and 
humanistic grounds. No one had realistic solutions 
for this problem. 

• There is tension between academic freedom and 
"what should be taught" which may be heightened 
by changes in the calculus. 

• There will be a lot of expense in training people 
for a new mode. A TA present in our group de-
scribed current computer applications in his calcu-
lus class; his supervising professor pointed out that 
this TA only teaches one section to allow time for 
preparation. A 50% drop in productivity would 
be difficult (impossible) to handle in many depart-
ments. 

• There were no good ideas for how to retrain fac-
ulty. 

• Hand-held calculators are feasible, but real computer 
experiences for all calculus students would not be 
feasible in a short or medium time frame at most 
schools. 

• The need for gradual changes, for pilot sections and 
programs, was repeatedly mentioned. (Examples: 
Syracuse tried computer use in calculus in honors 
sections first; Clemson has three sections of calculus 
using the HP28C—furnished this one time at reduced 
cost.) 

• The need for sharing and keeping resource files from 

successful classroom experiences was mentioned as a 

great help in producing good instruction. 

• A large amount of time is needed for preparation, and 

there is a need for lead time in preparing demonstra-

tions. 

Discussion of departmental "coping devices" pro-
duced a variety of anecdotes and opinions: classes 
over size 60 (but under 100) having a grader but 
no recitations were often felt, given a suitable room, 
to work well. Lecture-recitation mode—100 to 700 
students—was considered as a last resort by most par-

ticipants. However, one member of the group related 
a case where a change to smaller sections brought 
more complaints and less enrollment. Subsequently, 
a change back to the lecturer-recitation mode was 
made. 

Another "coping device," uniform depar tmental tests 
and syllabi, were blamed as the cause of "chug-and-
plug" courses. Some felt tha t poor student perfor-
mances over the years forced an easier course. The 
suggestion was made that , in fact, the major coping 
device—the common syllabus—did not go far enough 
in prescribing word problems and simple proofs. 

The single recurrent theme of this discussion group 
was that teaching by teaching assistants and part-
time instructors, although a very significant problem 
at schools with graduate programs, would not be the, 
or even a, major hindrance to changes in the teaching or 
content of calculus. A generally positive a t t i tude was 
held concerning teaching by these people, along with 
concern for the dual demands of being a student and 
being a teacher. 
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Computer Algebra Systems 

First Discussion Session 

John W. Kenelly and Robert C. Eslinger 

The discussion group participants represented a va-
riety of experiences with computer algebra systems 
(CAS). They ranged from individuals with no first-hand 
personal experience to authors of some of the current 
systems. At least one-third of the participants were cur-
rently engaged in curricular activities using CAS. (A list 
of the projects represented in the group is included at 
the end of this report.) 

Amidst a lively discussion, the group reached agree-
ment on several major issues. These included recog-
nition of several forces for change in the approach to 
calculus instruction. Future s tudents will be entering 
college with increasing experience with technology, in 
particular with graphing calculators and microcomput-
ers. With this experience they will tend to see much of 
the current instructional material as being out-of-date, 
and to some extend irrelevant in today's environment. 

Pressure for change will be exerted, many believe, 
by faculty in allied depar tments . They will see the con-
tent of the current calculus course as inappropriate for 
their s tudents who operate in a computer-oriented at-
mosphere. In addition to these technological forces, the 
group felt we need to be sensitive to the pedagogical 
implications of research in cognitive psychology. 

Many in the group were concerned about skepticism 
of their mathematical colleagues toward the use of CAS 
in calculus instruction. It was noted that the math-
ematical community was, in general, very conservative 
in their choice of textbooks and reluctant to supplement 
textual material with their own notes or assignments. 
This reluctance is incongruent with the accepted need 
for experimental text material to support change in cal-
culus instruction. Unfortunately, there was no agree-
ment on the mechanisms to develop these materials. 

This discussion group benefitted especially from the 
contributions of several calculus text authors . In par-
ticular, the authors noted tha t the content of current 
texts reflects market pressures of conservative faculty 
interests in including specific topics. In this context, 
the group agreed tha t they could not select specific al-
gebraic skills, for example, tha t would be rendered ob-
solete by the use of CAS. 

B l a c k B o x S y n d r o m e 

There were also issues on which part icipants voiced 
disagreement. A primary point of dispute could be char-
acterized as the "black box syndrome." Some partici-
pants were concerned tha t s tudents would use mechani-
cal systems without understanding underlying concepts. 
Others argued tha t these systems allow students to con-
centrate on higher-level reasoning instead of on lower-
level manipulative skills. 

For example, on-going projects were described in 
which solutions to word problems were broken down 
into appropriate steps by s tudents using CAS. It was 
also pointed out tha t these systems facilitate student 
exploration, thereby leading to discovery learning. 

Disagreement also arose over the complexity of the 
user interface with CAS. Some felt tha t the difficulty in 
learning these systems was sufficient t o inhibit their use 
by many faculty and students . It was argued tha t fac-
ulty were reluctant to abandon tradit ional approaches 
to teaching for uncertain results with a system tha t 
required a substantial investment in t ime in order to 
master. There was also concern tha t s tudents ' mathe-
matical matur i ty upon entering calculus was inadequate 
to use these systems productively. In contrast, partici-
pants who were using CAS indicated tha t initial train-
ing in its use was not a significant barrier. 

In summary, part icipants in this CAS discussion 
group concluded tha t the mathemat ical community is 
in the experimental phase of developing effective use of 
CAS in the teaching of calculus. Some expressed frus-
tration with the lack of a clear s ta tement either iden-
tifying problems with current practice in calculus in-
struction or outlining objectives for change. However, 
the following major issues were identified by the group: 

• Student preparation for calculus. 
• Balance between conceptual understanding and cal-

culation. 
• Relevance of calculus to allied fields. 
• Utilization of current technologies. 
• Resistance to change. 
• Evaluation of experimental methodologies. 

C A S P r o j e c t s 

Tryg Ager, Stanford University: Building an on-line 
calculus instructional system which uses R E D U C E as 
an "algebra engine" and interactive graphics as an ex-
pository device. The project is directed toward pre-
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college calculus, but covers all material in the AP cal-
culus syllabus. 

George Andrews (with Michael Henle), Oberlin Col-
lege: Supplementary materials for calculus sections us-
ing Maple. Each exercise is designed to fit into the tra-
ditional curriculum and provide a deeper understanding 
of some aspect of the calculus. 

Dwayne Cameron, Old Rochester Regional School 
District: Using muMath in honors algebra II, precal-
culus, and calculus classes to a limited degree. 

J. Douglas Child, Rollins College: Macintosh Inter-
face to Maple. Experimental lab course to better under-
stand (and improve) student problem-solving processes. 

Joel Cohen, University of Denver: Teaching a junior-
senior level course in symbol manipulation for applied 
mathematicians, physicists, and engineers, using a num-
ber of computer algebra systems; also experimenting 
some with Maple in calculus. 

Abdollah Darai, Western Illinois University: Using 
MACSYMA for the first time in a first-year calculus 
course. 

Franklin Demana (with Bert Waits), Ohio State Uni-
versity: Developing a precalculus text that makes sig-
nificant use of graphing calculators or computer-based 
graphics. 

John S. Devitt, University of Saskatchewan: Using 
Maple as an electronic blackboard. 

Harley Flanders, University of Michigan: Developing 
software specifically for teaching calculus (and precalcu-
lus). Includes symbolic manipulation, plane and space 
graphics. Classroom testing. 

Richard P. Goblirsch, College of St. Thomas: Have 
offered calculus with numerical emphasis using comput-
ers; have begun experiments with SMP. 

Edward L. Green, Virginia Polytechnic Insti tute: 
Employ IBM P C in calculus sequence; have partially 
developed graphics packages. 

Don Hancock, Pepperdine University: Developing 
material for a calculus course using MACSYMA. The 
curriculum will emphasize the interplay between dis-
crete and continuous ideas. 

Alan Heckenbach, Iowa State University: Using 
Flanders ' Microcalc for Calculus; using muMath in 
Master of School Mathematics Program. 

M. Kathleen Heid, Pennsylvania State University: 
Projects using symbol manipulation programs: 
1. Algebra with Computers . Continuing and pending 

NSF projects using muMath and programming in 
high school algebra; examines the numeric, graph-
ical, and symbol-manipulative connections. 

2. Computer-based general mathematics , using mu-
Math for 10th and 11th grade students. 

3. Applied calculus course using muMath and graphi-
cal programs to refocus course on applications and 
concepts. (Report in upcoming issue of Journal for 
Research in Mathematics Education.) 

4. Algebra I with muMath , focuses on word problems 
using the symbol manipulator to perform routine 
procedures prior to student mastery. 
James F . Hurley, University of Connecticut: Com-

puter laboratory course using TrueBasic to graph and 
do numerical experimentation directly tied to concepts 
of calculus, and to motivate them. 

John Kenelly, Clemson University: 
1. Freshman calculus section covering regular depart-

mental syllabus. Students are issued individual 
Hewlett-Packard HP 28C calculators. 

2. State grant for 160 secondary mathematics teachers 
to receive and be trained in the use of Sharp EL5200 
super-scientific graphic calculator. Study of curricu-
lum implications of graphing calculator technology 
are part of the course. 

Andrew Sterrett , Denison University: Using Maple 
in two sections of calculus. 
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Second Discussion Session 
Paul Zom and Steven S. Viktora 

The discussion section began with a simulated dem-
onstration of the computer algebra system SMP. Next, 
a large number of participants described computer-
oriented calculus projects—some involving CAS—at a 
variety of institutions, large and small. 
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Computer Algebra Systems (CAS) already affect the 
teaching of calculus and will likely play an even greater 
role in the future. The defining feature of CAS is a 
symbol manipulator. Most systems do arithmetic, op-
erations with polynomials, linear algebra, differential 
equations, calculus, abstract algebra, and graphs. The 
group discussed how CAS are used now and what effect 
they may have on the teaching of calculus in the future. 

A surprisingly large number of colleges and universi-
ties already use computers to aid in teaching calculus. 
Most approaches seem to fall into one of two categories. 
Some institutions use what might be called special pur-
pose packages. Individual programs, whether locally or 
commercially produced, are typically used only for cer-
tain topics, not for the whole calculus course. 

Other institutions use "full service" CAS programs 
for a wide range of tasks. A common characteristic of 
these courses is an emphasis on problem solving. Ex-
ploratory projects, realistic applications, and modeling 
are stressed. 

After participants described computer-oriented proj-
ects at their own institutions, discussion turned to more 
general issues: problems, strategies, and prospects for 
the future. Four main themes and issues emerged: 

1. The need to define—and agree upon—goals and 
objectives for calculus instruction. No clear consen-
sus exists on what calculus is or should be. Perfect 
agreement is impossible, but it should be possible to 
agree upon a small finite number of acceptable calculus 
courses. 

Among the questions: Which particular traditional 
calculus skills and topics are really essential? More gen-
erally, what balance should be struck between routine 
algorithm performance—differentiation, antidifferentia-
tion, etc.—and "higher-order" activities—problem-solv-
ing, mathematical experimentation, and understanding 
of concepts? Shall we proceed conservatively (tinkering 
with the present s tandard course) or radically (design-
ing a new course from the ground up)? 

There was no systematic effort to answer all of these 
questions. It was agreed, however, tha t future calculus 
courses will differ significantly, not just in details, from 
present courses. Developments in computing will force 
such changes. 

2. How will computer algebra systems and other 
forms of computing drive, or be driven by, changes in 
calculus instruction? Discussion centered on both cur-
ricular and pedagogical mat te rs . Among curricular ef-
fects of computing, the following were cited: 

• Computers handle routine operations; hence, time 
can be spent on better things. 

• More realistic applications are possible when compu-
tations are cheap. 

• Approximation and error analysis are important and 
useful dimensions of calculus, but they are compu-
tationally expensive. Cheap, easy computing solves 
this problem. 

• Some tradit ional topics and methods arose histor-
ically from the high (human) cost of computat ion. 
Cheap machine computat ion renders them obsolete. 

• Computing may save time in the curriculum. On the 
other hand, present calculus syllabi are crowded—it 
would be a mistake simply to add more material . 

• Whether we like it or not, the calculus curriculum 
will change. Hand-held machines, if nothing else, 
will force this; too many traditional exercises become 
inane when performed by computer. 
The effects on calculus pedagogy of modern comput-

ing are just beginning to be felt, and so are hard to 
predict confidently. They might include: 

• A more active, experimental a t t i tude of s tudents to-
ward mathematics , supported by less painful manip-
ulations. Conjectures can be made and understood 
as part of the process of mathematical proof. 

• With computers, mathematical objects can be rep-
resented graphically and numerically as well as alge-
braically. This should lead to a deeper, more flexible 
understanding of "function," for example. 

• Computers permit a larger sheer number of examples 
and exercises to be worked out. This could speed 
s tudents ' development of mathematical intuition. 

• Computers could support more qualitative reasoning 
in mathematics. E.g., s tudents could see concretely 
that polynomials grow more slowly than exponential 
functions. 

• With computing to handle details, s tudents can carry 
out multi-step problems without foundering in cal-
culations. This should foster more effective problem-
solving. 

3. New approaches to calculus require new materi-
als: books, software, problem sets, etc. Who will write 
them, and with what rewards? How will re-invention 
of the wheel be avoided? Many part icipants reported 
finding s tandard text and exercise materials unsuitable 
for computer-aided courses. Writing suitable material 
is difficult and time-consuming. It was agreed tha t co-
operation is essential in developing and sharing prob-
lem materials. NSF was mentioned as a possible source 
of support for distributing materials outside the usual 
commercial channels. Meetings of people involved in 
computer projects would also help spread the word, and 
build morale. The Computer Algebra Systems in Edu-
cation Newsletter, based at Colby College, is a s tar t . 



B U C C I N O AND R O S E N S T E I N : O B J E C T I V E S , T E A C H I N G , A S S E S S M E N T 81 

4. It is widely agreed that calculus courses should 
become more conceptual. Clearly, computing can help 
support this goal. But what problems do such changes 
raise, and how will we solve them? CAS's can do much 
of what we traditionally teach. If CAS's do handle such 
tasks, what will s tudents do? Will their algebra skills 
atrophy, or perhaps, aided by better motivation and 
more varied experience, even improve? How will more 
conceptual mat ters be tested? Can a more conceptual 
calculus be taught successfully in large, bureaucratic 
settings? 

No agreement emerged on such questions. It was 
suggested, though, tha t we mathematicians should not 
apologize for asking for more resources to solve the 
problems a t tendant upon improving calculus instruc-
tion, any more than our natural science colleagues do 
for requiring their version of laboratory resources. 

The group was unable to agree on, or even discuss at 
length, every issue raised. Some open questions raised 
during the discussion follow: 

1. How will the calculus syllabus be affected by CAS? 
What topics should stay, and which should go? What 
should be added? 

2. How will changes in college calculus affect the whole 
precollege curriculum, not just the Advanced Place-

ment program? 
3. Wha t is the "right" machine (if there is one)? 
4. Wha t makes a "friendly" CAS? How do we ensure 

that CAS are easy for s tudents to use? 
5. Should programming be taught? If so, how much? 
6. Where do hand-held calculators fit in? Present cal-

culators are not yet as powerful as CAS, but they are 
relatively inexpensive and convenient. 

P A U L Z O R N , Associate Professor of Mathematics at St. 
Olaf College, is currently a visiting professor at Purdue Uni-
versity. He is co-leader of a project, supported by the Na-
tional Science Foundation and the Department of Educa-
tion, to integrate numerical, graphical, and symbolic com-
puting into mathematics. Dr. Zorn received a Ph.D. degree 
from the University of Washington. 

S T E V E N S . V I K T O U A is Chair of the Mathematics De-
partment at Kenwood Academy, Chicago. Previously he 
taught in teacher-training colleges in Ghana for five years. 
He served as President of the Metropolitan Mathematics 
Club of Chicago, and is currently an author for the Univer-
sity of Chicago School Mathematics Project. He received an 
M.A.T. in mathematics from the University of Chicago. 

Objectives, Teaching, and Assessment 

First Discussion Session 
Alphonse Buccino & George Rosenstein, Jr. 

This group unanimously agreed that calculus teach-
ing needs improvement. Opinions varied on the exis-
tence and degree to crisis. Despite the differences there 
was clear enthusiasm regarding the need for the "Cal-
culus for a New Century" program. 

O b j e c t i v e s 

The objectives of the calculus sequence must be 
reformulated within the context of the objectives for 
the undergraduate mathematics major and of under-
graduate education generally. Within this framework, 
we identified several categories of objectives, includ-
ing: 

• Transcendent purposes: communicating the power, 
excitement and beauty of calculus. 

• Understanding: calculus as a tool for modeling real-
ity. 

• Skill: symbolic manipulation. 

• Development of faculties: geometric intuition and de-
ductive skill. 

• Rite of passage: calculus as a talent filter for 
mathematics majors and students in other disci-
plines. 

• Generic skills: writing, reading, and note-taking. 

There was strong agreement tha t the higher-order 

cognitive objectives of insight and understanding should 

be emphasized. 

These higher-order objectives are strongly related 
to skill development and manipulation. In any re-
examination of the objectives of calculus, the rela-
tionship between objectives at different cognitive levels 
must be emphasized. Additionally, the responsibility 
of mathematics and mathematicians toward the other 
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disciplines tha t utilize calculus must be considered and 
clarified. Finally, calculus courses need to be fit into 
a context tha t includes goals for majors and for gen-
eral education, as well as the preparation of s tudents 
for calculus. 

T e a c h i n g 

The participants agreed tha t whatever objectives 
might emerge for a particular course, students ought to 
be cognizant of them. Daily interaction (e.g., quizzes, 
"board problems," graded homework) provide valuable 
information for the student about the objectives of 
the courses and the teacher's expectations, and for the 
teacher about the progress of the class and of individu-
als. Feedback in this form must not be merely routine 
drill. 

Instructors are often too distant from their s tudents 
and often are unaware of serious problems or signifi-
cant successes individuals may be experiencing. Conse-
quently, a climate of sensitive awareness with substan-
tial feedback should characterize calculus classes. Reg-
ular accountability and close scanning to assess s tatus 
and progress should occur. 

There was some discussion of the role of textbooks 
in teaching calculus. To a large extent, books de-
fine both the content and style of presentation in 
our s tandard courses. In particular, textbook prob-
lems seem to stress drill and template applications, 
often relegating "interesting" problems, should they 
occur, to the end of a list of forty or fifty prob-
lems. 

Although courses appear to depend on the textbook, 
it was noted that class t ime is frequently spent re-
peating the material in the text . Many believed that 
this repetition is peculiar to mathematics . Some par-
ticipants reported that students would read the book 
if the instructor made his or her expectations clear 
and endeavored to enforce them. Participants gener-
ally agreed tha t teaching students to read the text was 
worthwhile. 

Writing was another generic skill tha t teachers be-
lieved was worthy of class time. Writing for clarity 
enhanced s tudents ' higher-order thinking skills, forced 
students to consider their results, and increased stu-
dents ' appreciation for the problems of writing for the 
benefit of others. Part icipants mentioned journals and 
summaries as post-learning activities and brief "write 
everything you know about . . . " exercises as introduc-
tions to topics. 

A s s e s s m e n t 

In discussing assessment, the group focused on test-
ing to assess student progress and achievement. There 
is a substantial need for consciousness raising, faculty 
development, and technical assistance in the construc-
tion and administration of good tests based on current 
knowledge about assessment. 

However, there is also a substantial need for re-
search and development on assessment and testing to 
advance the state-of-the-art, especially with reference 
to the higher-order cognitive objectives. 

Although some members of the group questioned 
the accuracy of the profile of present tests as 90% 
manipulation and template problems, there was gen-
eral agreement tha t tests frequently do not ask stu-
dents to perform higher-order conceptual tasks. With 
some prodding, the group produced several kinds of 
questions that seemed to require more than routine 
skills. 

Assessment of transcendent objectives probably 
could not be fit into a. grading scale, but should be 
part of the evaluation of any course. These objectives 
do not fit most teaching evaluation procedures either, 
nor, apparently do sonic other higher-level objectives. 
Several members of the group expressed the view tha t 
these evaluations thereby interfered with true teaching 
effectiveness. 

W h a t T o D o 

One major omission from the Colloquium program 
was discussion of research and development on the 
teaching and learning of calculus. Development of a 
program providing support for coordinated research 
projects and activities is essential. In addition, the 
value of natural experiments tha t continually occur to 
improve calculus teaching and learning can be enhanced 
through support of such things as clearing houses, com-
munication, reporting, and travel. Research and devel-
opment should include investigation of experiences and 
practices in other nations. 

Dialogue with colleagues in other disciplines should 
occur. This can be a grass-roots effort involving such 
simple things as brown-bag lunches. Efforts pyramid-
ing upward to an integrated and synthesized perspective 
on calculus and its relation to other disciplines are also 
needed. 

Course and classroom testing is a major problem for 
all college teaching, and not just calculus. Instructors 
simply are not trained in even the rudiments of test 
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construction and administration. Each campus should 
address this problem and provide necessary technical 
assistance to improve the situation. 

Participants saw advanced technology as an oppor-
tunity for re-examining the objectives of the calcu-
lus. Because advanced calculators and recent com-
puter software trivialize many of the computational 
skills on which many courses seem to be based, we will 
soon be forced to confront the inadequacies of these 
courses. 

A L P H O N S E B U C C I N O is Dean of the College of Edu-
cation at the University of Georgia. Previously he served 
in several management positions in the Directorate of Sci-
ence Education at the National Science Foundation, and as 
Chairman of the Mathematics Department at DePaul Uni-
versity. He received a Ph.D. in mathematics from the Uni-
versity of Chicago. 

G E O R G E M. R O S E N S T E I N , J R . , is Professor of Math-
ematics at Franklin and Marshall College. He received his 
Ph.D. from Duke University in topology. His current re-
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Second Discussion Session 
Philip C. Curtis, Jr. and Robert A. Northcutt 

Our group discussed these three topics from two per-
spectives: proposed changes in orientation of the calcu-
lus course from one devoted primarily to technique to 
one devoted to conceptual understanding, and increas-
ing utilization of computing technology in instruction 
both in calculus and in preparatory subjects. 

There was general agreement tha t a change of em-
phasis in the teaching of calculus is a desirable goal— 
a change from a technique-oriented course with appli-
cations to one where the major emphasis was on un-
derstanding major concepts. There was no consensus, 
however, on the extent to which this new goal could be 
separated from the current goal of technical mastery. 

If emphasis on concepts is to be achieved, however, 
there are several necessary ingredients which are not 
now present. First, there has to be general agreement 
on the part of the teaching staff tha t this change is 
desirable and tha t individual efforts in this direction 
should form an important par t of a faculty member 's 

professional life. Teaching techniques would then need 
much more at tention and support than is now the case. 

Secondly, the orientation of the textbooks must 
change to include much more of an emphasis in both 
text and exercises on the understanding of concepts 
and their applications to problems. Central to this suc-
cess will be high-quality feedback from the instructor, 
teaching assistant, and homework reader. Understand-
ing and communication of ideas on the part of the stu-
dent will not be achieved without this feedback. 

The similarity to the problems encountered in the 
effective teaching of writing is inescapable here. Al-
though technique-oriented questions will probably not 
disappear from examinations, concept-oriented ques-
tions must form a more important part than is now the 
case. Both students and faculty should be well aware 
tha t this is the orientation of the course and of its as-
sessment. 

It is clear that this change in orientation will not 
occur quickly; it will be difficult and mistakes will be 
made. It should be realized from the outset tha t if 
this change is to be successful it will be an evolutionary 
development rather than a revolutionary one. 

It is inescapable that technology in the form of in-
creased computing power will play an increasingly im-
portant role in the teaching of calculus. It already does 
to some extent and this role will increase rapidly. The 
challenge will be to manage the role of technology in a 
way that deepens the mathematical understanding and 
capabilities of students rather than just replace what 
they now do by paper and pencil. 

The opportunities are many. Understanding the 
function concept should be greatly enhanced by the 
graphical capabilities of the new calculators. Deriva-
tives as rates of change and areas as limits of sums can 
be easily visualized where this was only imperfectly re-
alized before. More realistic problems can be confronted 
where parameters are not carefully chosen so tha t solu-
tions can be given in closed form. 

The role calculators will play in the elimination of 
symbolic calculation at this point is not as clear. Al-
gebra is the language in which mathematical problems 
are posed. Correctly s tat ing the problem, organizing it 
in such a way tha t it can be at tacked, and finding a 
route to a solution are always the more difficult par ts 
of problem solving. It is certainly conventional wisdom 
tha t at this juncture technical mastery forms an impor-
tant part of insight. The challenge will be to utilize the 
technology in such a way tha t will preserve and deepen 
the insight, but lessen the burden of tedious algebraic 
and numerical calculation. 

Our challenge will be to manage the changes pro-
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posed, rather than to let the many forces outside math-
ematics dictate the directions. Historically, we have not 
done a good job in either the implementation of new di-
rections or the necessary follow-up. "New math" is the 
classic example. The necessity to carefully plan, realis-
tically implement, and train teachers are major obsta-
cles. 

Training faculty through better apprentice/mentor 
programs, giving appropriate rewards for successful 
teaching, and increasing recognition of the professional 
aspect of calculus will help. Bad practices in class 
presentation, assessment, and materials must be elimi-
nated. The mathemat ics profession must take an active 
role in thie management process. Calculus is a par t of 
the over-all fabric of mathematics and as such, instruc-
tion prior to calculus and after calculus must reflect 
an awareness of what is happening in the calculus, and 
why. 

Many students do not now develop an overview es-
sential to understanding calculus. Technology should 
allow instructors to broaden objectives in this area. 
The function concept, change, qualitative behavior, and 
global insights can become more accessible for students. 
Problems in background review, remediation, and prac-
tice can be addressed using calculators and computers, 
but this alone will not solve the problems of apathy, mo-
tivation, or at t i tudes. Students also must bear respon-
sibility for the process of their learning. Good teaching 
requires both an active teacher and an active student. 

The introduction of technology into the calculus 
classroom will not be devoid of problems. Technology 
has a good side in its utilization, but misuse can polar-
ize many of our present faculty, instill a false expecta-
tion in problem solving, and may give rise to a host of 
materials so specialized as to make faculty resistant to 
innovation. 

Finally, there should be a conscientious effort on the 
par t of the mathematics profession to involve secondary 
school teachers in the design and in the implementa-
tion of any proposed changes. It should be the goal 
of all concerned to narrow the spectrum of preparation 
of students for calculus to an acceptable and accessible 
range. In the future, an increasing number of the bet ter 
s tudents will be receiving their single variable calculus 
instruction in the secondary schools. Consequently, a 
clearer understanding of the desired goals of calculus 
instruction is essential at all levels. 
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ics at the University of California at Los Angeles. He has 
been active for several years in the University of California's 
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Third Discussion Session 
Lida K. Barrett and Elizabeth J. Teles 

It is no secret tha t calculus, as it is now taught , is 
not understood or appreciated by most s tudents . The 
mathematical power and beauty of calculus that math-
ematicians know and relish cannot be delivered to stu-
dents in the context of our present calculus course. Our 
group identified this problem as the crucial issue in cal-
culus. 

There were basically two parts to our discussion. In 
the beginning par t , the group identified five issues of 
importance. The first centered around the fact that 
students do not understand or appreciate calculus, but 
see it as a selection of rules and problems which they 
must memorize in order to be allowed to proceed. Cal-
culus is therefore seen as a filter, or a rite of passage. 
According to Robert White , it is time for this to end: 
calculus must become a pump, not a filter. In order for 
it to become this pump, mathematicians must market 
calculus as they know it both to s tudents and to client 
disciplines. 

The second issue is that the content of calculus is seen 
as rigidly controlled by a large number of forces. Among 
these are client disciplines, accreditation boards, de-
partmental expectations, and textbooks. Accurate cur-
rent information on the needs of client disciplines might 
yield a different perspective, perhaps even support for 
more teaching of concepts and less manipulations. The 
actual specifications of accreditation boards should be 
determined. Faculty instead of the textbook should de-
termine the syllabue and the course. 

A third constraint is the quality of instruction: teach-
ing by increasing numbers of part- t ime faculty and grad-
uate students; the inability of the faculty to communi-
cate with students; and the insistence of most univer-
sities that all tenured faculty carry on research. It was 
generally agreed that institutional rewards of rank and 
salary, in most settings, are greater for mathematical 
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research than for quality teaching, curriculum-develop-
ment , or research on teaching. 

In addition, international teaching assistants as-
signed to recitation sections often fail to communicate 
with students , not only because of their accents but also 
because of their inability to comprehend the underlying 
meaning of the questions. Lastly, even though calculus 
teachers often give lip service to the problem-solving 
approach, it is often not the technique actually used in 
the classroom. 

Articulation among all levels of mathematics is a very 
important issue since success in calculus depends on the 
s tudent 's previous mathematical experience. In order 
tha t calculus be taught for understanding and appreci-
ation, precalculus and other high school courses must 
support this endeavor. Of particular importance is ar-
ticulation among high schools, two-year colleges, and 
four-year colleges and universities on the calculus course 
itself. 

Finally, the role of technology in the Calculus for 
a New Century was explored. It was readily agreed 
that technology should play an important role but that 
its use should be carefully constrained. There is just 
as much danger in the improper use of technology as 
there is in ignoring it altogether. Technology must be 
a facilitator rather than an appendage. 

To address these issues will require changes first of 
all in the reward structure for faculty, supported by ad-
ministrations and depar tments . Changes will also be 
needed in teaching methods brought about in part by 
the new technology. Other new methods could include 
greater use of a historical perspective, more student mo-
tivation for problems by ensuring that they understand 
the question before they are asked to respond, and the 
teaching of differentiation and integration rather than 
the manipulative skills of differentiating and integrat-
ing. Furthermore, long-term commitment to teaching 
must be encouraged. The primary resource needed— 
faculty t ime—must be made available and faculty effort 
must be rewarded. 

In the second half of the session, the group explored 
objectives, teaching, and assessment. Many suggestions 
were discussed in the short time available, and consen-
sus was reached in many areas. 

Students must be taught how to think about new 
problems as well as how to solve template problems. 
An alliance must be built with client disciplines to aid 

not only in the development of courses but in the de-
velopment of support for courses. Teaching style and 
presentation of material must convey enthusiasm for 
knowledge and an appreciation of the beauty of cal-
culus. 

To support bet ter teaching, the group as a whole 
recommended a newsletter-type publication that would 
contain course outlines, teaching techniques, reports of 
experiments, and examples of new types of problems 
(e.g., open-ended problems and problems tha t use mul-
tiple techniques). 

Of great importance to good teaching is a well-
organized assessment program. Assessment was seen as 
needed in a variety of ways—assessment of s tudents as 
they enter courses (i.e., placement, high enough as well 
as low enough), assessment of curriculum, assessment 
of faculty and teaching, and assessment of the accom-
plishments of the course. Whether a course meets its 
objectives is often difficult to determine. New courses, 
however, must be assessed by new s tandards , and not 
by s tandards established for old courses. 

The primary objective must be marketing of the new 
calculus as a gateway to future study in the majority of 
other disciplines. Some skills needed in client disciplines 
are changing, contact with these disciplines must be es-
tablished in order to appropriately reflect their changes 
in our courses. However, it is up to mathematicians to 
convince others that a lean and lively calculus will meet 
their needs. It is important at this time tha t mathe-
maticians become proactive rather than just reactive. 
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Calculus Reform: Is It Needed? Is It Possible? 

Gina Bari Kolata 

N E W Y O R K T I M E S 

Calculus, the "gateway to all areas of science and en-
gineering," in the National Science Foundation's words, 
and the mathematics course most dreaded by hun-
dreds of thousands of undergraduate students, is chang-
ing. Mathematicians agree that because of advances in 
computer technology, calculus cannot remain the same 
course that it has always been. And there is a growing 
feeling within the mathematics and science community 
that the course is desperately in need of revitalization. 
So the real question is whether calculus will change hap-
hazardly or whether its alterations can be planned and 
its subject mat te r and teaching invigorated. 

The National Academy of Sciences and the National 
Science Foundation hope to initiate a national debate 
over how calculus can and should be changed. In order 
to s tar t the debate, the National Science Foundation 
would like to invest about $2 million a year for the next 
several years in conferences, workshops, and demonstra-
tion projects. The program began with a Colloquium 
on the future of calculus teaching, held in Washing-
ton D.C. on October 28-29, 1987. The colloquium is 
supported by the Sloan Foundation and sponsored by 
the National Research Council of the National Academy 
and the Mathematics Association of America. 

A n U n p r e c e d e n t e d Effort 

The new effort to revitalize calculus is almost un-
precedented in educational circles. It would affect 
mathematics departments , all of which teach calculus. 
In fact, calculus is the overwhelmingly dominant math-
ematics course taught in colleges. It would affect the 
more than half a million s tudents who enroll in calculus 
courses each year. It would affect textbook publishers, 
who invest substantial resources developing and pro-
moting their calculus books, and it would affect other 
science depar tments who use the high failure rate in cal-
culus courses as a means to eliminate weaker students 
and who frequently design their own courses around 
what s tudents should have learned in calculus. 

The revitalization of calculus, however, is most em-
phatically not another instance of a "new ma th"—the 
ill-fated a t t empt to change the teaching of mathemat-
ics a t the elementary level. Bernard Madison, a mathe-
matician from the University of Arkansas and calculus 
project director for the National Research Council, says 

tha t this effort will be carefully coordinated and will 
involve everyone whoso life will be changed by a new 
calculus course. 

M a t h e m a t i c i a n s nnd educators have 
learned their lesson from the new 
math. 

Mathematicians and educators have learned their les-
son from the new math . Changes cannot be imposed on 
people and they have to occur gradually. "This is not 
just a curriculum issue," says Madison. The entire in-
frastructure of calculus must be changed. "We have to 
lay the groundwork for the project and give it the kind 
of visibility and prestige that is unquestionable. This is 
a political and social process." 

Is C a l c u l u s I r r e l e v a n t ? 

The movement to reinvigorate calculus began sev-
eral years ago with challenges to the very existence of 
calculus. Some mathematicians said tha t calculus is ir-
relevant for today's s tudents . It should be replaced by 
discrete mathematics , the sort used in computer sci-
ence. 

But others argued strongly against this extreme 
view, saying tha t calculus is of central importance, al-
though it may no longer be the course it should be. 
Several meetings were held, including one sponsored by 
the Sloan Foundation tha t took place a t Tulane Uni-
versity in January of 1986. The Tulane conference re-
sulted in a now well-known collection of papers called 
"Toward a Lean and Lively Calculus" and published by 
The Mathematical Association of America. 

At the same time, the National Research Council 
through its Board on Mathematical Sciences and its 
Mathematical Sciences Education Board was examin-
ing the s ta te of university mathematics in general, and 
finding it wanting. Madison explains: "I've been look-
ing a t various aspects of mathemat ics instruction since 
1980, and I knew there was something wrong. Mathe-
maticians in the early days thought they were jus t being 
mistreated and not given enough money." Fewer and 
fewer students were selecting mathematics as a major 
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and even fewer were going on to get Ph.D. 's in math-
ematics. Yet more students than ever before were tak-
ing mathematics courses because other departments re-
quired them. If mathematics courses were truly excit-
ing, more students might be lured to the department . 

"We have a faculty that is relatively inactive as pro-
ducing scholars. Most are primarily teachers," said 
Madison. Many are uninspired by their subject mat-
ter and fail to inspire their s tudents . The National 
Research Council is now put t ing together an agenda 
to reinvigorate all of college and university mathemat-
ics and it considers the calculus project a special—and 
crucially important—case. 

"Wie have a faculty that is relatively 
inactive as producing scholars. Most 
are primarily teachers." 

Last fall, the NSF requested funds from Congress to 
support a revitalization of calculus and now the agency 
expects tha t Congress will appropriate those funds. Re-
formers believe tha t the groundwork is laid for a change. 
But no one expects that change will be easy and no one 
expects tha t the impact of a new calculus course will 
be confined to mathematics departments . Calculus is 
not jus t an isolated course. It is essential for other sci-
ences, including physics, chemistry, biology, computer 
science, and engineering. Many colleges and universities 
require that s tudents majoring in business, psychology, 
and other social sciences take it as well. 

A D o m i n a n t C o u r s e 

Of all the mathematics courses offered at universities, 
calculus is the most well known and most often taken. 
The best da ta on enrollment in college and university 
calculus courses derives from a survey conducted every 
five years under the auspices of the Conference Board of 
the Mathematical Sciences. According to Richard An-
derson, a mathematician at Louisiana State University 
who directed the 1985 survey, more than 600,000 stu-
dents took a calculus course at a college or university in 
the fall of 1985—the most recent data . If anything, even 
more students are taking it today. More than 40,000 in-
structors teach calculus. "It 's an absolutely dominant 
course," Anderson says. 

For many students, their grade in calculus will de-
termine whether they go on to study mathematics or 
science. But, at least in large universities, fewer than 
half of all students who enroll in an introductory calcu-
lus course complete it with a grade of C or above. And 

many students who pass do so only after repeating the 
course. Ronald C. Douglas, a mathematician and dean 
of physical sciences at the State University of New York 
at Stony Brook, says that at his university as many as 
20 to 25 percent of s tudents in introductory calculus 
courses are taking the course for the second, third, or 
even fourth time. 

M a n y students who pass do so only 
after repeating the course. 

Because calculus is considered a difficult course, it 
frequently is used as a "filter"—other depar tments use 
it as a way to eliminate of less-than-stellar s tudents . 
"Math departments often complain tha t physics or 
chemistry departments don ' t want to kick out the stu-
dents so they figure they'll just send the s tudents over to 
the math department . T h a t will weed them out," says 
Ronald Graham, director of mathematics and statis-
tics research at AT&T Bell Laboratories in Murray Hill, 
New Jersey. Any changes in calculus, then, will change 
depar tments ' abilities to use the course in this way. 

It is even said tha t medical schools use calculus 
grades to distinguish among their applicants. Douglas 
says tha t he has often heard from students who moan 
tha t if their grade in calculus is not changed to an A, 
their dreams of becoming a doctor will be for naught. 

Those leading the movement to revitalize calculus 
are often asked, however, why they want the course to 
change and what, in fact, they mean by change. Cal-
culus has been around for hundreds of years—it began 
with Isaac Newton and has been developed by some 
of the greatest mathematicians that ever lived. It de-
scribes such fundamental processes as motion in physics 
and diffusion in biology. Science students through the 
centuries have studied it. It is "a monument to the in-
tellect," according to John Osborn of the University of 
Maryland. Wha t is then; to change? 

" W h a t a subject is as part of the 
discipline is often quite different from 
what it is as a p a r t of education." 

First of all, says Kenneth Hoffman of MIT, it is in 
a sense misleading to talk of changing calculus. "Each 
branch of mathematics is whatever it is and each branch 
is to some extent unchanging," Hoffman explains. Cal-
culus is calculus and no one imagines changing the 
mathematics itself. However, Hoffman continues, "what 
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a subject is as part of the discipline is often quite dif-
ferent from what it is as a part of education. Wha t 
calculus is as a part of mathematics is quite different 
from what we present to 19-year-old kids. We have 
come to realize that the way we look at calculus from a 
disciplinary point of view is not necessarily the way we 
should look at it when we teach it." 

So the real question for mathematicians and educa-
tors is: Wha t , if anything, is wrong with the way cal-
culus is being taught and what can be done to improve 
it? 

R e a s o n s for C h a n g e 

The first point tha t the advocates of a new calcu-
lus make is tha t what is being taught as calculus today 
bears little resemblance to the course 20 years ago. One 
reason for the change is tha t the group of students tak-
ing calculus is different and the course has been adapted 
in response. 

During the past 20 to 30 years, college education has 
become more commonplace. Now the masses, rather 
than just the wealthy and privileged, go to college, and 
their high school mathematics education frequently is 
woefully inadequate. To accommodate these students, 
calculus courses were made less demanding. No longer 
are students asked to do proofs, for example, only to 
work out simple problems that are exactly like worked-
out examples in their textbooks. 

Different departments at colleges and universities 
had their own reasons for wanting students to take cal-
culus, and everyone has a say in the course material. 
"Every user of calculus got a word in and calculus be-
came taught so tha t the average student could learn it," 
says Lynn Steen of St. Olaf College in Northfield, Min-
nesota. "There was a major change in the philosophy 
of textbooks that no one had planned." 

" W e no longer ask students to 
understand." 

"We no longer ask students to understand," says 
Douglas. "Now it is manipulation, pure and simple," 
meaning tha t students are just plugging numbers or 
symbols into formulas. The calculus tests reflect this. 
"What you test is what the s tudents learn," Douglas 
points out. "In fact, we have a great deal of difficulty 
using class time on anything else besides what will be 
on the tests and we have abandoned testing anything 
but manipulation." 

R e d u c i n g R o t e L e a r n i n g 

Nearly everyone who has thought about an agenda 
for a revised calculus concludes that the course must 
include a renewed emphasis on mathematical concepts 
and understanding. "When you use calculus, you can ' t 
imagine that anyone will ever give you a problem like 
one on an exam," Douglas says. "What you might en-
counter will be a conceptual underpinning or you might 
encounter a problem where the whole purpose would be 
to turn it into the kind of problem tha t occurs on an 
exam." Any student who just learned by rote to plug 
into formulas would be lost in the real world. 

"But," Douglas continues, "it 's even worse than tha t . 
We now have computers and even hand calculators tha t 
will solve these calculus problems. There are now hand 
calculators that would get a Β in most calculus courses. 
Wha t we're teaching is not only the wrong thing—in 
that it is not what s tudents will use—what we're teach-
ing is obsolete. It is like spending all your time in ele-
mentary school adding and subtract ing and never being 
told what addition and subtraction are for." 

Mathematicians who are working to revitalize cal-
culus feel quite strongly that the rote learning must go 
and tha t s tudents should learn to rely on computers and 
hand calculators to do routine calculations. In place of 
the time now spent working out problems by hand, stu-
dents should learn concepts—what mathematics is all 
about . 

N e g l e c t of T e a c h i n g 

But, the revisionists argue, more than jus t the sub-
ject mat ter of calculus must change. "There are links 
that we cannot deny and cannot ignore between what 
is taught , who teaches, and who is taught to ," says 
Bernard Madison, of the National Research Council. 
And calculus teaching i:- also in drastic need of reform. 

The crisis in calculus teaching began in the late 
1960s, according to Douglas. "For a number of reasons, 
the resources, effort, and money put into teaching calcu-
lus have fallen over the past 15 years," he says. During 
the 1970s mathematics depar tments found themselves 
squeezed for funds at the same time as mathematics en-
rollments increased dramatically. Students enrolled in 
these courses in greater numbers, they were more likely 
to want to major in the physical, biological, or social 
sciences, and they were more likely to have to take cal-
culus. 

So, to deal with the influx of calculus s tudents , uni-
versities and colleges increased the number of s tudents 
in their classes. Now it is common for calculus classes 
to be taught in lecture sections of 250 or more s tudents . 
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Once or twice a week, the students break up into recita-
tion sections, of size 30 or 40 in many schools, where a 
teaching assistant goes over the work with them. "In 
some places, the recitation sections are now larger than 
the classes used to be," Douglas remarks. 

" T h e resources, effort, and money put 
into teaching calculus have fallen over 
the past 15 years." 

One of the problems with this method is that much 
of the teaching of calculus is relegated to teaching assis-
tants . These graduate students may not be particularly 
interested in the course and may have difficulty commu-
nicating even if they try. As many as half of all teaching 
assistants are not U.S. citizens and they frequently have 
only a rudimentary command of English. 

Teaching assistants, says Graham, often "are not 
natural teachers. Many are not even math majors." In 
other cases mathematics departments press undergrad-
uate students into service. "I have seen sophomores 
teaching to freshmen," says Graham. But hard-pressed 
mathematics depar tments tha t have far too few faculty 
to handle the hoards tha t take calculus courses feel they 
have no choice but to use teaching assistants. 

Even when a bona-fide Ph .D. mathematician teaches 
calculus, the course has been made so instructor-proof 
by textbook writers tha t there is almost no opportunity 
for the mathematician to introduce any concepts that 
might reflect the beauty and excitement of the field. 
"At big universities, they standardize things and you 
teach by a syllabus," says Robert Ellis of the University 
of Minnesota. "You don' t need a mathematician to do 
this. It requires at most 5 minutes preparation to teach 
a class, and usually a mathematician can do it off the 
top of his head." 

Calculus requires that you know the 
material from the entire high school 
mathematics curriculum . . . t h a t ' s not 
true for most students. 

All too often, the mathematicians who teach calculus 
regard it as a boring burden. Typically, says Madison, 
"we will go to the classroom, teach section 3.4, go home, 
and mow the yard." Teaching calculus has become rou-
tine and mindless for the professors. 

Although other depar tments have had some success 
with impersonal large lecture sections combined with 

smaller sections taught by teaching assistants, "at least 
in calculus, this did not work," Douglas says. Calculus 
is different—it cannot be taught in an impersonal en-
vironment, according to Douglas. "Suppose you come 
into another sort of course, say freshman psychology," 
Douglas says. "You star t from scratch, you don ' t build 
on anything. And you don' t need to have mastered 
what you learned one week to go on to the next week's 
material. But calculus requires that you know the ma-
terial from the entire high school mathematics curricu-
lum. Already, tha t ' s not t rue for most s tudents . And 
the other problem with calculus is not jus t tha t it builds 
but tha t you have to keep up. If you did not do well 
on one test, the chances are you will not do well on 
the next. There is no other course on the freshman-
sophomore level like it." 

P e r s o n a l I n v o l v e m e n t 

To do well in calculus, most s tudents need the per-
sonal involvement of a professor or teaching assistant, 
according to Douglas. "They need to have homework 
assigned and they need to have homework collected and 
returned. If you are going to teach calculus well, you 
have to have someone reading papers , grading them, 
and returning them. Tha t doesn' t save money." 

The way it is now, all too many students have no 
personal involvement. Homework may not be assigned, 
and even if it is assigned, it often is not collected. Stu-
dents let the course slide, thinking they will learn the 
material at the last minute before an exam. "There is 
no feedback," Douglas says. "When students get the 
sense tha t no one is personally interested in what they 
are doing in the course, they put very little effort in. 
They put in what they think is the minimum work nec-
essary, and, of course, they often judge wrong." 

T h e r e v i t a l i z e d calculus ... "will be 
much more difficult to teach and will 
require much better prepared 
teachers." 

A new calculus, which emphasizes understanding and 
concepts and in which no student can slip by learning 
to plug into formulas by rote, will require more money 
for teaching staff and it also will require tha t the staff 
put more effort into teaching and more time into giving 
students feedback. The revitalized calculus, Madison 
points out, "will be much more difficult to teach and 
will require much better prepared teachers." 

Yet some say tha t the new calculus might be effec-
tively taught even with the resources now available and 
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even with the cost-cutting large lecture sections. "There 
are ways to teach better in large sections," says Donald 
Bushaw, who is vice-provost for instruction at Washing-
ton State University. "It 's jus t a mat ter of practical ad-
vice, making the best use of the lecture and small group 
method. There is a good deal of conventional wisdom 
tha t is not being followed everywhere." Douglas points 
out tha t if calculus were bet ter taught , fewer students 
would have to repeat it and this would also save money. 

T e x t b o o k S t a g n a t i o n 

Still another issue for the calculus reformers is to en-
courage the publication of a new kind of textbook. The 
current crop of textbooks would be all but useless for 
the new course. But developing new textbooks means 
going against an entrenched industry tha t seems very 
content to go on the way it always has. Fourteen new 
calculus books are scheduled to be published in the fall 
of 1988, according to Jeremiah Lyons, an editor at W.H. 
Freeman and Company, and none are innovative. 

Lyons explains tha t the textbooks have evolved to 
satisfy so many constituencies that publishers have gone 
beyond the bounds of reason. "The books published 
now are really our own fault," Lyons says. "We have 
gone well beyond an adequate number of exercises and 
worked-out examples." In addition to what many feel 
are bloated and expensive books, the textbook publish-
ers supply supplementary material to the instructors at 
no additional cost. This includes a solutions manual 
tha t consists of worked-out solutions to every problem 
in the text and computerized test banks—a computer-
ized compendium of as many as 3000 questions so that 
instructors can easily give weekly quizzes, without hav-
ing to make them up, and even have the quizzes printed 
for them. 

Educators "talk a great game of 
innovation, but if we move one 
standard deviation from the mean, 
they donH use our books." 

For publishers, innovation involves risk. Educators, 
says Lyons, "talk a great game of innovation, but if we 
move one s tandard deviation from the mean, they don' t 
use our books." If publishers were to experiment with a 
new sort of calculus text , they would be wary of invest-
ing the usual amount of money in it. For example, says 
Lyons, to take a chance on a new sort of text , publishers 
would want to forego the usual 1100 pages of text by 
providing far fewer worked-out examples and exercises. 

They would like to save money on il lustrations—the 
typical calculus book now has a $75,000 ar t budget—by 
using computer-generated art , simplifying the illustra-
tion program, and not using a second color. And they 
would like to get rid of the $50,000 to $100,000 budget 
for all supplementary materials for instructors. "If we 
lower the cost and reduce the basic investment, we can 
gamble more," Lyons says. 

L i n k s t o S c i e n c e C u r r i c u l a 

Yet even if the textbooks change, there is still the 
problem of the responses of other depar tments to a new 
calculus. Any changes in calculus will have a ripple ef-
fect in other sciences, particularly physics and engineer-
ing. Courses will have to be revamped and re-thought, 
which further complicates efforts to change the mathe-
matics curriculum. 

In physics, says Edward Redish, a physicist at the 
University of Maryland, "the physics curriculum is tied 
very, very closely to math ." Physics s tudents usually 
take calculus at the same time as they take introductory 
physics and the two courses are coordinated so tha t as 
s tudents learn a technique in calculus, they use it in 
physics. 

Finally, there must be some way to evaluate whether 
a revitalized calculus is, in fact, more effective. Mathe-
maticians say tha t it is even difficult to evaluate the ef-
fectiveness of the cookbook, standardized calculus tha t 
is being taught today. No one has ever done a national 
survey to determine such basic things as failure rates, 
pass rates, or even how many hours a week s tudents 
spend in calculus classes. "We need tha t kind of data ," 
says Anderson, for without it it would be impossible to 
even think of comparing a new calculus to the old. 

Among the issues that NSF and the calculus reform-
ers would like to see debated on a national level are 
what sorts of changes in calculus would best suit other 
science depar tments and how those changes could be 
accomplished. So far, those who have thought about 
the issues have reached no consensus. 

C o n f l i c t i n g A d v i c e 

Even when scientists from other depar tments do 
want to see calculus changed, they do not always agree 
on what changes should be made to bet ter serve their 
majors. Redish would like to see more stress placed 
on approximation theory and on numerical solutions to 
differential equations. Hp would like to see a great deal 
more emphasis on methods of checking qualitatively to 
see whether a number tha t comes out of a computer is 
approximately what would be expected. 
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Biologist Simon Levin of Cornell University would 
like to see more emphasis on qualitative analysis and 
less on computat ions; he would especially like to see 
his students introduced to partial differential equations, 
particularly as they describe diffusion. 

Gordon Prichett , dean of the faculty at Babson Col-
lege, a business college just outside of Boston, says that 
although business students routinely take calculus, the 
course for them is, strictly speaking, unnecessary. So, 
he says, "if we are going to teach calculus in the busi-
ness curriculum at all, it would be for breadth and for 
problem-solving ability." 

A d v o c a t e s o f t h e S t a t u s Q u o 

Redish, Levin, and Prichett , however, want to see 
calculus changed. Not everyone does. Some argue that 
the course is a classic that has withstood the test of 
time and tha t is crucially important for the other sci-
ences. Most physicists, according to Redish, are happy 
with the status quo. Redish believes that this system, 
in which physics courses are developed around the cur-
rent calculus courses, distorts physics and cheats stu-
dents of a feeling for what physics, to say nothing of 
mathematics , is all about . But, Redish cautions, "I am 
not typical. I 'm out here at the edge trying to pull my 
immense department . Most don ' t want to think about 
change. 'If it ain ' t broke, don ' t fix i t ' is an a t t i tude I 
see a lot." 

Most don't want to think about 

change. 

Anderson, who has presented the idea of revitaliz-
ing calculus to forums of engineers and other scientists, 
says tha t the engineers and scientists frequently were 
uninterested in change. "They wanted students to have 
the same math tha t they had had," Anderson says. 
"They thought of it as good training and they would 
say, 'Wha t was good enough for me is good enough for 
my students ' ." 

"What was good enough for me is 

good enough for my students." 

Still others jus t do not want to be bothered. Cal-
culus, they say, is a bread-and-butter course for mathe-
matics departments—it is one of those courses tha t keep 
mathematics depar tments in business. But it is not re-
ally worth the time and trouble to radically change it. 

And besides, any student who cannot pass calculus as 
it is currently taught ought to re-think his or her plans 
to become a scientist anyway. 

Others are concerned tha t if a committee s ta r t s tin-
kering with calculus, the course is likely to become 
worse—less useful and less meaty. Ellis of the University 
of Minnesota thinks that it would be impossible to really 
teach mathematics—as opposed to routine formulas— 
to poorly-prepared and poorly-motivated s tudents . The 
new calculus would be a much harder course than the 
course that is taught now, and it is not clear what could 
be done about the even higher failure rates tha t might 
result. Ellis also notes that a true change in calculus 
will have to have widespread support . "You can ' t im-
pose this from above. It has to be up to the professors," 
he says. 

T h e new calculus would be a much 
harder course than the course that is 
taught now, and it is not clear what 
could be done about the even higher 
failure rates that might result. 

Nelson Markley, the chairman of the University of 
Maryland's mathematics depar tment , worries tha t if 
too much is done with a computer or hand calculator, 
the students will never really learn what the calculations 
mean. "I tend to think a great deal about the analogies 
between mathematics and music," he says. "You can' t 
learn to play the piano by going to recitals. You can 
err in the direction of going too far from actual calcu-
lations." So far, the revitalization of calculus "is not 
something tha t I 'm enthusiastic about ," Markley says. 

But, Madison and others point out, change is coming 
anyway with the increasing sophistication of computers 
and calculators that do calculus problems. "The t ru th 
is that things are going to change," Madison remarks. 
"It is just a mat ter of whether we want to control tha t 
change and make it happen in a positive way or whether 
we will let it happen haphazardly. The only excuse 
for the argument for no change is tha t controlling the 
change is impossible. I've never accepted tha t . " 

GlNA BARI KOLATA is α science writer for The New 

York Times. Formerly, for more than a decade, she covered 
biology and mathematics for Science, the official journal of 
the American Association for the Advancement of Science. 
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Recent Innovations in Calculus Instruction 

Barry A. Cipra 

S T . O L A F C O L L E G E 

Good teaching doesn't come easily, and good teach-
ers are rarely satisfied with the job they've done in the 
classroom. Even if calculus were not the linchpin of 
college mathematics , instructors would probably keep 
on tinkering with the course. But because of its promi-
nence in the undergraduate curriculum, calculus is the 
focus of much educational innovation. This brief ar-
ticle will describe some recent efforts to improve the 
way tha t calculus is taught . Since an exhaustive survey 
would require several volumes, we only sample a few of 
many themes. 

L e t t h e C o m p u t e r D o I t 

Much of the current innovation in calculus instruc-
tion is centered around use of computers. As computers 
have become cheaper, smaller, friendlier, and also more 
powerful, many people have begun exploring their pos-
sible applications to the calculus curriculum. The com-
puter as tedium-reliever, as expert draftsman, as super 
blackboard, and even as teacher, are some of the possi-
bilities being looked at . 

There is widespread agreement that calculus courses 
tend to be excessively "technique-" and "skill-oriented," 
with corresponding agreement tha t calculus ought to be 
a more "concept- and "application-oriented" subject. "I 
would say the problem is tha t most calculus instruction 
focuses on computat ional details," says John Hosack of 
Colby College. Tha t is, Hosack explains, a student can 
pass the course by carrying out s tandard algorithms 
with little understanding of ideas. "We think tha t cal-
culus should reorient itself toward concepts and appli-
cations." 

The hypothesis a t Colby and at a number of other 
colleges is tha t Computer Algebra Systems, such as 
MACSYMA, Maple, or SMP, will render obsolete the 
computat ional emphasis of traditional calculus instruc-
tion. A typical Computer Algebra System can carry 
out all the routine steps of an algebra or calculus prob-
lem, including formal differentiation and integration— 
precisely the skills tha t are at the core of the current 
curriculum. Most of these systems also house numerical 
equation-solving routines and superb graphics capabil-
ities, two more topics traditionally treated in calculus. 
There is little doubt but tha t a Computer Algebra Sys-
tem could do very well on a typical calculus exam; it 

would certainly make fewer mistakes than the students . 
Indeed, Herbert Wilf wrote in 1982 of one system (mu-
Math) , calling it "the disk with the college education." 

A Computer Algebra System could do 
very well on a typical calculus exam; it 
would certainly make fewer mistakes 
than the students. 

Colby College, the University of Waterloo, Ober-
lin College, St. Olaf College, Denison University, Har-
vey Mudd College, and Rollins College are among the 
schools tha t have received grants from the Alfred P. 
Sloan Foundation or the Fund for the Improvement of 
Post-Secondary Education (FIPSE) to experiment with 
Computer Algebra Systems in calculus. Some projects 
involve software development. Doug Child of Rollins 
College, for instance, is adapting Maple for use on the 
Macintosh and writing an interface for what he calls an 
"interactive textbook." But the main thrus t is toward 
rethinking the calculus curriculum to take advantage of 
these powerful programs. 

Two replacements have been suggested for the tradi-
tional computational emphasis in calculus. One is "ex-
ploratory computat ion," in which the s tudent looks at 
a number of related examples, such as graphs of succes-
sive Taylor polynomial approximations to the sine func-
tion. The computer does all the unpleasant stuff, the 
point being to illustrate vividly some concept or—more 
ambitiously—to have the students discover concepts for 
themselves. According to David Smith of Duke Univer-
sity, by the time students had seen the 19th-degree ap-
proximation to sin x, they were asking if you couldn't 
just let the degree go to infinity. He adds tha t sequences 
and series went very smoothly thereafter. 

Every teacher's dream is to have s tudents who will 
play with the homework, modifying problems to see how 
the answers change, and posing the dangerous question 
What if? But this goal gets lost in the press of routine 
exercises. Moreover, translating tha t ideal into prac-
tice is not an easy thing to do. According to Paul Zorn 
of St. Olaf College, it 's hard to convey what you mean 
by "experimental math," especially when students have 
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preconceptions about the type of problems they are sup-
posed to do. Zorn suggests easing the students into the 
practice. "One way to do it is to give progressively more 
open-ended problems." Some instructors are now op-
timistic tha t , with machines shouldering the algebraic 
burden, s tudents will be more receptive to the idea of 
open-ended problems. 

Every teacher's dream is to have 
students who will play ...modifying 
problems ...and posing the dangerous 
question What If? 

The other suggested alternative to the traditional 
emphasis on technique is the inclusion of more realistic 
and complex applications—problems that are not artifi-
cially tailored for simplicity (textbook arc-length prob-
lems are frequently derided) but that require a num-
ber of separate steps for their complete solution. Bruce 
Char and Peter Ponzo of the University of Waterloo 
cite the development of such multi-step, multi-concept 
problems as a major component of a Sloan grant there. 
The idea, Ponzo says, is to test the student 's ability 
to put together a "long-winded" solution to a problem. 
The computer will handle the mundane calculations; 
the student will concentrate on setting up the problem 
and deciding on the sequence of formal operations that 
will lead to the solution. 

One of the material goals of the Waterloo project is 
to compile problems into a "symbolic calculation work-
book." Ponzo and Char both acknowledge tha t this 
has turned out to be rather more difficult than they 
had anticipated. Ponzo originally thought they would 
get hundreds of problems, but says "finding problems 
of tha t ilk ain't easy." The goal now is several dozen, of 
which an initial batch of five was published last April. 

Another goal of the Waterloo project is to create 
computerized tutorials in calculus and to develop "user-
friendly" software that will allow individual instructors 
to create their own tutorials in a nonprogramming, text-
editing environment. The Waterloo project uses Maple, 
which was developed at the University of Waterloo in 
the early 1980s. ("Maple" is not an acronym; it stems 
from Canada 's national symbol, the Maple leaf.) Maple 
is considered one of the easiest of the Computer Alge-
bra Systems to learn, but Char, one of the group who 
created Maple, says tha t future work will look at mak-
ing Maple even more user-friendly. "You still have to 
go through at least an hour of training in order to use 
Maple," he says, noting that this is a barrier to some 
calculus teachers who feel they don' t have the time. 

Complexity and limited access are two factors lim-
iting the use of Computer Algebra Systems in calculus 
instruction. Some faculty are themselves reluctant to 
learn the special grammar and vocabulary of the sys-
tems. Others are concerned with the amount of class 
time required to instruct s tudents in use of the systems; 
an hour spent on computer syntax is an hour not spent 
on the integral. 

"I don ' t even know how to log onto a computer," says 
Alvin White , at Harvey Mudd College, who has other, 
more serious objections as well. "The more computer 
power we have, the less the students know what they 're 
doing The infatuation with computers moves the 
student further and further from thinking and creating. 
The promise we were given by the calculator people is 
tha t we can spend more time on the underlying ideas. 
But in my experience, the time is spent on showing 
them more but tons to push." 

" T h e infatuation with computers 
moves the student further and further 
from thinking and creating." 

Proponents of the Computer Algebra Systems, how-
ever, claim tha t explaining the systems does not require 
an inordinate amount of class t ime; s tudents tend to 
pick up what they need to know either from handouts 
or from each other. Paul Zorn, who has taught an SMP-
based calculus course for several semesters, says that he 
spends "maybe half a lecture right at the s ta r t" giving 
an overview of the system. A big surprise, he adds, has 
been "how little frustration s tudents seem to experience 
using the computer." The paradigm of giving a com-
mand and getting an answer comes very quickly. "It 
doesn't seem to be a big distraction." 

Wade Ellis, J r . of West Valley College in San Jose 
echoes this observation. Ellis and a colleague, Ed Lodi, 
wrote a computer activity book called Calculus Illus-
trated, which they used last spring a t West Valley Col-
lege with a group of 15 students . Ellis describes the 
student reaction as being more or less "isn't this what 
we're supposed to do?"—a change from the "why do 
we have to use computers?" reaction of five years ago. 
"Now everyone knows they have to use computers ," El-
lis says. 

A B A S I C D i s a g r e e m e n t 

For most proponents of Computer Algebra Systems, 
an important ease-of-use feature has been the removal 
of programming as a requirement for use of the sys-
tems. Herb Greenberg of the University of Denver, 
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which has developed its own instructional software 
called "Calctool," says that s tudents should not be 
aware of programming, only of the mathematical ap-
plications. "We are not teaching programming, and the 
students are not doing programming," Greenberg says 
of the program there. 

George Andrews of Oberlin College notes that about 
20 years ago he participated in developing an experi-
mental text called Calculus: A Computer-Oriented Pre-
sentation, which he tried in class but "bailed out" when 
he found tha t "the programming got in the way." David 
Smith of Duke University adds tha t enrollment at Duke 
in a supplementary "calculus and the computer" course, 
which involves programming, is way down, from 100 ap-
proximately five years ago to a recent class of 12. Smith 
feels tha t the dwindling enrollment may be due in part 
to s tudents ' reluctance to take on extra work. 

J im Baumgartner of Dar tmouth College disagrees 
vehemently with this anti-programming outlook. He 
disputes the idea that programming detracts from the 
ideas of the course. "If you choose the problems cor-
rectly, they're simple, they're short, and they teach the 
essence of programming." Dar tmouth emphasizes pro-
gramming from the very beginning. "What we're doing 
is building a base for further down the line," Baum-
gartner says, adding that later courses assume that stu-
dents can program in TrueBASIC. (BASIC is particu-
larly popular at Dar tmouth. ) 

Many students (Baumgartner estimates 70%) come 
to Dar tmouth with Macintoshes, and these are net-
worked throughout the campus. The mathematics de-
par tment gives each student a TrueBASIC disk with 
short demo programs, the idea being to give them some-
thing simple tha t they can modify, together with prob-
lems and solutions. 

James Hurley of the University of Connecticut also 
reports success with TrueBASIC programming in cal-
culus there. "We give them something they can use 
later on," Hurley says. The programming component, 
however, is done only in special sections of "enhanced" 
calculus, which include a one-hour computer lab each 
week. Hurley adds that a big reason for their success is 
the use of TrueBASIC, to which they switched in 1985. 
The Computer Science depar tment , he says, had com-
plained about their use of old versions of BASIC, which 
often encourage "sloppy logic" and poor programming 
habits . 

The programming/ant i-programming "dispute" is 
largely a comparison of apples and oranges; presumably 
there is room for bo th in the calculus diet. Nevertheless, 
ease of use is a major selling point of the Computer Al-
gebra Systems. "If I had an extra hour per week," says 

Paul Zorn, "I'd still use SMP rather than a language 
like TrueBASIC, and do something else." 

T h e S u p e r C a l c u l a t o r 

Access may turn out to be a more serious limita-
tion than complexity, at least until Sun work stat ions 
show up on discount at K-Mart. Complexity is primar-
ily a software problem, and thus amenable to program-
ming improvements; but access is essentially an eco-
nomic problem having to do with the cost and number 
of the machines required to run the software. According 
to John Harvey of the University of Wisconsin, smaller 
colleges have an advantage in this regard over the larger 
state schools: accommodating a few hundred s tudents 
on a Computer Algebra System is economically feasible; 
accommodating several thousand students is not. 

Harvey, who is project director for a Texas Instru-
ments-funded grant to develop calculator-based place-
ment exams for the MAA, believes that powerful pocket 
calculators will be the dominant innovation at large 
schools. It 's not unreasonable, he says, to ask a stu-
dent to buy a $100 calculator for three semesters of 
calculus. Harvey anticipates having experimental sec-
tions of calculator-based calculus at Wisconsin by the 
fall of 1988. 

Powerful pocket calculators will be the 
dominant innovation at large schools. 

John Kenelly of Clemson University is a strong ad-
vocate of the new generation of pocket calculators, par-
ticularly the Casio 7000, which primarily does graph-
ics, the Sharp 5200, and the Hewlitt Packard H P 28C, 
which does graphics and some symbolic manipulation. 
Kenelly, who has been called "the 28C salesman of the 
math community," had the HP 28C on secret loan from 
Hewlitt Packard for six months prior to its release in 
January, 1987. In the summer of 1987, Kenelly taught a 
three-week course to 16 teachers of advanced-placement 
high school calculus, funded by South Carolina. Par-
ticipants were each given a Casio 7000 calculator, the 
purpose of the course being for the teachers to write 
curricula for use of the calculator in their A P courses. 

Clemson is embarking on a pilot program to begin 
using the HP 28C in freshman and sophomore engi-
neering mathematics courses, from first-semester calcu-
lus through differential equations, mat r ix algebra, and 
engineering statistics. Hewlitt Packard is loaning Clem-
son some one hundred 28C's, which the mathemat ics 
department will in turn issue each semester to s tudents 
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who are signed up for the sections that will experiment 
with use of the calculator. 

In 1987-88, six faculty members will teach one course 
each, "playing" with the 28C at appropriate "moments 
of opportunity," according to Kenelly. These same six 
hope to spend the summer of 1988 rewriting the syllabi 
for their courses to incorporate the 28C in a substantial 
way, and then teach experimental sections from these 
syllabi the following year. The summer of 1989 is then 
projected for special early training sessions for TA's and 
other faculty members. In the fall of 1989, all sections 
of engineering calculus will be using the 28C. 

Kenelly observes tha t the faculty is excited by the 
project: "We have a colleague or two who think we're 
going to bring up a bunch of button-pushing dead-
heads, but the bulk of the community is behind it." 

Kenelly adds tha t Clemson also has a grant for the 
coming year to train local high school teachers—he an-
ticipates a total of 160 participants—in curricular uses 
of the Sharp 5200 graphics calculator. (This is Kenelly's 
third calculator, and he predicts—safely enough—that 
the electronics industry will keep coming out with more. 
The 5200 currently sells for about $100, and Kenelly 
foresees the price coming down to around $50.) Kenelly 
describes the 5200 as "very friendly," especially in its 
matr ix capabilities; he says it will invert a 10x10 ma-
trix in about 15 seconds. It also has a "solve"" key 
for finding zeros of functions, which Kenelly considers 
a "must" these days. 

T h e S u p e r B l a c k b o a r d 
In a curiously opposite extreme from the economi-

cally small pocket calculator, the computer as "super 
blackboard" is another technological innovation tha t 
holds promise for large universities as well as small col-
leges. Much of what an instructor writes in chalk on a 
blackboard—especially graphs—could just as easily be 
done on a computer screen, if only the screen were large 
enough to be seen by more than the first two rows of 
s tudents . But special equipment—either new attach-
ments tha t feed the computer screen's output into an 
overhead projector or large monitors posted around the 
classroom—can overcome that handicap. Using such 
displays an instructor can, for instance, draw an in-
stant and accurate graph of the sine function on, say, 
the interval [—π,π], and superimpose graphs of the first 
several Taylor approximations. 

David Smith and David Kraines of Duke University 
are among the proponents of the computer as a super 
blackboard. With funds from Duke and the Pew Memo-
rial Trust, they have equipped two classrooms with com-
puters and display equipment (monitors). Smith and 

Kraines have writ ten about their project in an art i-
cle for The College Mathematics Journal. Their art i-
cle is part ly about the technical aspects of installation 
and display (and also about security from theft), but it 
also addresses the question of getting people to use the 
equipment. 

".Ease o f operation is the key to more 
use of computers in teaching." 

"Ease of operation is the key to more use of comput-
ers in teaching," they write. "Only a few instructors will 
make any substantial effort to plan a computer demon-
stration, especially if they must set up the computer 

We have not hounded our colleagues as aggres-
sively as we might have, but several have found uses for 
the classroom computers, sometimes in ways that might 
not have occurred to us." 

Herb Greenberg reports tha t the University of Den-
ver is planning to try out the Kodak Datashow, a device 
that transfers a computer screen display to an overhead 
projector. John Kenelly adds that Hewlitt Packard is 
working on a system to feed the infra-red signal from 
the HP 28C into the Kodak projector. 

T h e S u p e r T u t o r 

While the "super blackboard" uses the computer as 
a prop for the classroom instructor, a project under way 
at the Inst i tute for Mathematical Studies in the Social 
Sciences at Stanford University is looking to replace the 
instructor altogether! A group headed by Tryg Ager 
under the supervision of Patrick Suppes began in 1985 
to develop an intelligent tutor tha t will give interactive 
lessons in calculus by checking the validity of a s tudent ' s 
reasoning as he or she works through the steps of a com-
plicated problem or proof. The goal of the project is not 
actually to do away with the teacher, but rather to de-
sign a course " that could be taught with supervision by 
a teacher who is mainly playing the role of instructional 
manager," according to an interim report . 

Ager argues tha t a s tudent 's time with the computer 
is spent more efficiently than in tradit ional instruction. 
"You don' t have the sort of low-intensity activity like 
sitting in lectures, and the frustrating activity of do-
ing homework" with the long turn-around time between 
lectures, he says, adding tha t the computer doesn' t get 
tired of giving feedback. 

The project, which is funded by NSF's Office of 
Applications of Advanced Technology, supplements the 
Computer Algebra System REDUCE with a system of 
"equational derivations" dubbed EQD. "The idea tha t 
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students construct complete solutions to complicated 
exercises dominates our pedagogical model," accord-
ing to the interim report . The report cites the use of 
REDUCE and EQD as one of three themes, the other 
two being the development of interactive instructional 
graphics and the development of an interactive theorem-
proving system. The latter is based on work of Suppes ' 
group on proof logic, which was tried out earlier in an 
advanced course in axiomatic set theory. Ager calls it 
"a terribly difficult problem" in artificial intelligence. 

A student's time with the computer is 
spent more efficiently than in 
traditional instruction. 

The project is aimed at eventual application in high-
school calculus instruction; Ager says they would like to 
begin tests next Fall (1988). The reason for targeting 
high schools, Ager explains, is tha t the majority of high 
schools (Ager estimates 75%) have only a handful of 
s tudents ready to take calculus, too few to meet school-
board requirements for minimum class size. 

Rural high schools especially are often too small to 
offer calculus. Tom Tucker, of Colgate University, par-
ticipated in another solution to this problem, involving 
13 s tudents in five rural schools in upstate New York: 
Tucker taught them calculus over the telephone! The 
class, which "met" one hour a week in 1985/86, was 
sponsored by the state of New York, which provided 
the conference line and some fancy electronic writing 
tablets. Each location could speak and write at any 
time, except tha t Tucker's electronic pen took prece-
dence. 

Tucker says that several other states are mandat ing 
similar programs. South Carolina, for instance, is re-
quiring high schools to offer advanced placement in a t 
least one subject. John Kenelly says that South Car-
olina is considering the same system tha t Tucker used 
in New York, but adds tha t they are looking down the 
road toward even more sophisticated, computer-based 
communication systems. 

S h o u l d H i g h S c h o o l s T e a c h C a l c u l u s ? 

The quality of high-school calculus instruction—and 
mathematics instruction generally—is of concern to 
many at the college level. It is traditional for college 
professors to bemoan the poor preparation of their stu-
dents, but the problem in mathematics seems to be 
acute . Indeed, The Underachieving Curriculum is the 
title of the American report of the Second International 

Mathematics Study, which gathered da ta from eighth-
and twelfth-grade level classes in 20 countries around 
the world. According to the report , "the mathemat ical 
yield of U.S. schools may be rated as among the lowest 
of any advanced industrialized country taking part in 
the Study." 

One of the culprits pointed to by the Study is the 
excessive repetition of material from one ma th course 
to the next: "I didn ' t learn much this year tha t I didn ' t 
already know from last year. Math is my favorite class, 
but we just did a lot of the same stuff we did last year," 
a fourth-grader named Andy is quoted as saying. 

The U.S. pa t te rn is based on a valid educational the-
ory that Jerome Bruner calls the "spiral curriculum," 
in which topics are introduced early and then revisited 
repeatedly in progressively more complex forms. How-
ever, the Study points out tha t practice has not lived 
up to theory: "The logic of the spiral curriculum has 
degenerated into a spiral of almost constant radius—a 
curriculum tha t goes around in circles." 

" T h e logic of the spiral curriculum has 
degenerated into a spiral of almost 
constant radius—a curriculum that 
goes around in circles." 

The problem in high schools is pertinent to college 
calculus courses, because many students in high schools 
tha t do offer calculus are gett ing what John Kenelly 
tersely refers to as "crap calculus," in the expectation 
that these students will take "real calculus" in college. 
Schools are teaching "trashy" calculus, Kenelly says, 
and kids are skipping fourth-year "real" math to take 
it, so tha t mother and father can brag about it down at 
the country club. 

Don Small, in a paper prepared for a January 1986 
calculus workshop at Tulane University, writes, "The 
lack of high s tandards and emphasis on understanding 
dangerously misleads students into thinking they know 
more than they really do. In this case, not only is the 
excitement [of learning calculus] taken away, but an un-
founded feeling of subject mastery is fostered tha t can 
lead to serious problems in college calculus courses." 

Indeed, the problem is considered serious enough 
tha t a joint letter endorsed by the MAA and the NCTM 
was sent out in 1986 to secondary school mathematics 
teachers nationwide, urging tha t calculus in high school 
be treated as a college level course and only be offered to 
students who have a full four years ' preparat ion in alge-
bra, geometry, trigonometry, and coordinate geometry. 
The recommendation favored by the MAA and NCTM 
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is tha t high school calculus students take university-
level calculus, with the expectation of placing out of 
the comparable college course. 

Advanced-placement high school 
students actually learn calculus better 
than college students, even after 
"ability level" is factored out. 

According to Kenelly, who has a long involvement 
with the calculus AP exam, advanced-placement high 
school students actually learn calculus bet ter than col-
lege students , even after "ability level" is factored out. 
John Harvey points out one possible explanation: high 
school students get nearly 180 hours of instruction, in 
smaller classes, and oftentimes with more careful in-
struction. 

S h o u l d C o l l e g e s T e a c h C a l c u l u s ? 

While it is easy and in some ways satisfying to point 
the finger of blame at high schools, there is concern 
about the quality of calculus instruction at the college 
level as well. Large lectures taught by disinterested fac-
ulty, and classes taught by inexperienced TAs with min-
imal supervision, are among the problems cited. Many 
critics feel tha t the computer will become part of the 
problem rather than a solution. And there is nearly uni-
versal disgust with the current gargantuan textbooks. 

"Getting the faculty back in calculus is 

the most significant thing that should 

be done these days." 

"Getting the faculty back in calculus is the most sig-
nificant thing tha t should be done these days," says 
Robert Blumenthal of St. Louis University. Blumen-
thal took over as lower-division supervisor in the math-
ematics department at St. Louis University in 1986. 
The department was faced with declining enrollments 
in upper-level courses, due, it was determined, to poor 
teaching in the lower-division courses. Looked at more 
closely, the depar tment found most of the complaints 
concerned non-permanent faculty—TAs and part- t ime 
instructors. Blumenthal 's solution: have only full-time 
faculty teach calculus. 

"You need a department tha t feels calculus instruc-
tion is important and deserves the attention of the fac-
ulty. It 's our bread and butter ," Blumenthal says. 

In addition to moving away from TAs and par t- t ime 
faculty, Blumenthal eliminated common finals in calcu-
lus, which used to be multiple choice. Blumenthal was 
also unhappy with the textbook being used at the t ime. 
He feels tha t current calculus texts are too long and too 
wordy, and offers an interesting explanation: "These 
texts are written more to correct the deficiencies of the 
instructor than to help the student ." Consequently he 
was "delighted" to find that Addison-Wesley has reis-
sued the "classic" second edition of Thomas , which orig-
inally appeared in the 1950s. His depar tment changed 
to Thomas last year. 

T h e r e is nearly universal disgust witli 

the current gargantuan textbooks. 

Morton Brown of the University of Michigan is 
adamant on the issue of classroom size. The mathe-
matics department a t Michigan tried large lectures for 
several years, but abandoned them in 1985 in favor of 
smaller classes of 30-35 students that meet four times 
a week with one instructor. "In ma th it 's more like a 
language," Brown says. "You have to get in there and 
find out what the student is doing." Most of Michigan's 
40-50 sections of calculus each semester are taught by 
TAs, and most of the rest are taught by younger fac-
ulty, but Brown feels this is preferable to the lecture-
recitation format. "We think large lectures provide very 
poor teaching," he says. 

Peter Ponzo describes the opposite experience at the 
University of Waterloo. About 700 s tudents at Water-
loo take first-year calculus in lecture sections of 120-140 
students that meet three times a week. These sections 
are supplemented by a two-hour "problem lab" of 30-40 
students which meets with the professor and some grad-
uate students . Ponzo says they make a conscious effort 
to put the best teachers into calculus. The depar tment 
used to have small classes, some taught by graduate 
students, but about ten years ago it was decided tha t 
graduate students are not good teachers for first-year 
students. Graduate assistants, Ponzo says, "like to im-
press students with how much they know. They tend 
to make things far more complicated than they are." 

S h o u l d T A s T e a c h C a l c u l u s ? 

The role and effectiveness of graduate teaching assis-
tants is the focus of a s tudy by the MAA Committee on 
Teaching Assistants and Par t -Time Instructors, chaired 
by Bettye Anne Case of Florida State University. With 
support from FIPSE, the committee surveyed nearly 
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500 depar tments with graduate programs to ascertain 
pat terns of present practice and issues. A preliminary 
report was published in 1987, and the committee plans 
to publish a "Resource Manual" in 1988 which will con-
tain additional da ta along with models of training pro-
grams for TAs and part- t ime instructors. 

The first survey found tha t the majority of doctoral-
granting departments offer training programs, whereas 
the majority of master 's-granting programs do not. 
Members of the committee (all of whom are from 
doctoral-granting departments) consider training and 
supervision of TAs to be of paramount importance. 

Committee member Thomas Banchoff of Brown Uni-
versity writes, "If the TA gets the impression tha t the 
professors themselves, especially those in charge of the 
courses TAs teach, care about teaching effectively, then 
they are likely to develop well themselves and pass on 
their experience to those coming after them. On the 
other hand, if the faculty is perceived as uninterested 
in teaching or in working with students, it is this at t i-
tude tha t the s tudents will take to their own TA jobs 
and pass on to the new graduate students." 

The training of foreign TAs is of particular con-
cern. Several schools have tightened their language 
proficiency requirements. At The Ohio State Univer-
sity, for instance, international s tudents must be cer-
tified as having oral communication skills in English. 
This is done by the University, but the mathematics 
department then makes its own, independent judgment 
on whether to place the student in a classroom or hold 
him or her out for the first year as a grader. 

Beginning in 1985, s tudents are given four quarters to 
become certified, and based on experience in 1986/87, 
the depar tment now requires that international stu-
dents come in the summer as a precondition for sup-
port . According to Harry Allen, former chair of grad-
uate studies for the mathematics department at OSU, 
all but one of the international students who came in 
the summer were certified by the end of the following 
spring, whereas of those who came in the fall, only a 
couple were certified. 

Allen feels tha t the program at OSU has been highly 
successful, and points to a "drastic decline" in the num-
ber of complaints going to the undergraduate chair-
man's office over the past few years. Moreover, the 
foreign TAs themselves are positive about the training, 
in part , Allen says, because "the people who are run-
ning it are doing it the right way." 

S h o u l d Anyone T e a c h C a l c u l u s ? 

Most college mathematics teachers learn their t rade 

by the example of others and through their own expe-
rience; few have any background in educational theory, 
and most have little interest in it. Stephen Monk, of the 
University of Washington, is one of the few. Monk de-
scribes himself as a Piagetian, after the Swiss psycholo-
gist Jean Piaget, who is well known for his studies of the 
intellectual development of young children. Monk was 
moved by Piaget 's stress on s tudents ' learning through 
their own activity. Students of calculus must proceed 
from their own intuition, he says, adding tha t calcu-
lus, which is usually taught as a formal subject, can be 
understood in the way tha t ari thmetic is understood. 

Consequently, Monk is keenly interested in the group 
dynamic of the classroom and the role—or function, as 
he discriminates it—of the teacher. "I was mildly flat-
tered when I was asked to teach a large lecture course," 
he writes in an article in Learning in Groups. "The 
request indicated tha t I had joined a circle of compe-
tent teachers in my depar tment who could give the clear 
explanations tha t a large lecture demands; who are suf-
ficiently well organized, patient, and self-assured to get 
the subject across to a large, diverse audience; and who 
are free of the idiosyncrasies of style tha t are charm-
ing in a teacher with a few students but disastrous in 

a teacher with many Looking back to tha t t ime, I 
view my a t tempt to express my teacherly impulses as 
a lecturer in a large course as roughly parallel to at-
tempts to express sensitivity for the less fortunate of 
our society as a county jailer." 

"Collective work is a key ingredient to 
intellectual growth." 

Monk has worked with psychologist Donald Finkel, of 
the Evergreen State College, on the idea of using small 
"learning groups" in the classroom with the teacher 
distributing worksheets and then acting as a roving 
"helper" rather than as "the expert ." "The evidence 
tha t collective work is a key ingredient to intellectual 
growth surrounds us," they write. "Yet to judge by 
the typical college course, most teachers do not believe 
tha t it is either appropriate or possible to foster these 
important processes in the classroom." They call this 
a t t i tude in which the teacher shoulders all responsibility 
in the classroom the "Atlas complex." 

David Smith, of Duke University, has also embarked 
on another daring innovation in his calculus classes: 
writing assignments. "Failure to read and analyze in-
structions prevents s tudents from getting s tar ted on a 
problem, and their ability to understand a solution pro-
cess is related to their ability to explain in English what 
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they have done," he writes in an article in SIAM News 
(March 1986). Smith now requires, on at least one 
problem from each assignment, tha t s tudents explain 
in complete sentences how they set up the problem, 
the sequence of operations, and their interpretation of 
the result. His exams, which are wide-open, take-home 
tests (he even allows collaboration!), require writing on 
almost all problems. Typical instructions: "Evaluate 
each of the following six limits, if possible. State in a 
sentence or two what your technique is. If the limit fails 
to exist, say why." 

A few of the students at Duke were really hostile 
to the idea of writing, according to Smith. They did 
it to get the grade, but thought he was being unfair. 
Most, however, were intrigued with the idea. Smith de-
scribes their course evaluations as being cautiously posi-
tive. Faculty were also interested but somewhat nervous 
about the t ime commitments and their own competence 
in grading s tudents ' work. Smith acknowledges that he 
was able to handle the time commitments (upwards of 
one hour per paper) in par t because he had fewer stu-
dents last year. However, he also points out that a writ-
ing center workshop at Duke helped him learn what to 
look for. One piece of advice he found helpful: Look for 
key features in a paper; if these aren' t there, don ' t try 
to read it, ask for a rewrite! 

T h e R i s e ( a n d Fal l ) o f D i s c r e t e M a t h 
While calculus is traditionally considered the math-

ematics course for first-year s tudents , discrete mathe-
matics has been proposed as an avant-garde alternative. 
Many of the modern usages of mathematics , particu-
larly in computer science, are based not on the analysis 
of continuous phenomena, but rather on combinatorial 
and recursive principles. Engineers need calculus right 
away, computer scientists don' t , the proponents of dis-
crete mathematics argue. Why not teach people what 
they need to know? 

The answer may be tha t it just doesn't work very 
well. Two schools tha t tried put t ing discrete mathe-
matics into the first year, Dar tmouth College and the 
University of Denver, have taken it back out. 

In 1983 the mathematics department at Dar tmouth 
College proposed a new curriculum in which a four-
quarter sequence of calculus through differential equa-
tions was reduced to three, and a new course in discrete 
mathematics , which could be taken at any time after the 
first calculus course, was offered. "As it turned out, it 
was a disaster," says J im Baumgartner . 

The main problems were with the discrete mathe-
matics course and the second-quarter multivariate cal-
culus course. The discrete mathematics course hadn ' t 

been placed in the sequence, and it therefore a t t rac ted a 
tremendous variety of students, with anywhere from one 
to five courses of mathematics in their backgrounds. It 
was also hard to know what to teach, Baumgartner says, 
so the course varied widely from quarter to quarter , de-
pending on who taught it. He adds tha t the Computer 
Science Department at Dar tmouth dropped the course 
as a requirement, which also hurt . Finally, the Mathe-
matics Department was hoping that the discrete math-
ematics course would make things easier in upper-level 
courses by introducing proofs, induction, and so forth, 
but it didn' t seem to be doing tha t . Discrete mathe-
matics at Dar tmouth , Baumgartner summarizes, was a 
"total failure." 

Multivariate calculus in the second quarter was also 
a mistake, according to Baumgar tner . There was a 
"sophistication problem," he says—the students just 
weren't picking it up. (He notes, however, tha t ad-
vanced students , who took it as their first course at 
Dar tmouth , did pret ty well.) Students disliked the mul-
tivariate course intensely (more than usual, Baumgart-
ner says), and the majority disliked the discrete math-
ematics course and found it quite difficult. 

The third-quarter Differential Equations course was 
the most successful, according to Baumgartner . Its only 
weak point was the introduction of series here rather 
than in a prior calculus course. In the new program 
infinite series will move back to calculus and the differ-
ential equations course will get more of a linear algebra 
slant. 

Dar tmouth ' s new four-quarter mathematics sequence 
is largely a return to the original program: two quar-
ters of calculus, including series and a chunk of matr ix 
algebra, a quarter of multivariate calculus with linear 
algebra, and a quarter of differential equations. Discrete 
mathematics is being dropped discreetly. 

At the University of Denver, Herb Greenberg and 
Ron Prather , who is now at Trinity College, used a 
Sloan grant to experiment with a combination of cal-
culus and discrete mathematics . Their idea was to 
teach a "discrete structures and calculus" course in the 
first quarter, differential calculus in the second quar-
ter, and integral calculus in the third quarter . The ex-
periment began in 1983, and was abandoned two years 
later. The department , which combines mathemat ics 
and computer science, now offers a three-quarter calcu-
lus sequence and one quarter of discrete mathemat ics . 

"Student evaluations were negative and somewhat 
surprising," Greenberg says. Students did not find the 
discrete structures course at all easy (Greenberg reti-
tled the course "Destruct Creatures") , and, more im-
portantly, they did not see the relevance of it. Even 
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the computer science majors, Greenberg says, said it 
had nothing to do with the computer science they were 
studying, and called the course "a complete waste of 
time." 

Greenberg was also disappointed by the lack of 
"carry-over" from discrete mathematics to calculus; for 
instance, s tudents seemed to have no idea tha t proof 
by induction was a useful technique outside of the first 
quarter . The reason may simply be students ' lack 
of experience in high school (and earlier) with non-
computat ional mathematics . "They weren't mature 
enough to understand it," Greenberg says. 

calculus. "The success of innovations depends predom-
inantly on the enthusiasm of the person doing it," says 
Frank Morgan, now of Williams College. Programs and 
funding to improve calculus instruction will certainly in-
crease in the coming years, and new ideas will continue 
to be discussed. 

Morgan, however, seasons his enthusiasm with a con-
cluding note of realism: "Any system you come up with, 
after awhile the students figure out how to get through 
it with the least amount of work." 

E n t h u s i a s m v s . R e a l i s m 

Many other individuals around the nation are doing 
innovative work in calculus instruction. Their efforts 
are in large par t self-rewarding: they impart to their 
s tudents their own excitement at doing and learning 
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Calculus for Engineering 

Kaye D. Lathrop 

S T A N F O R D L I N E A R A C C E L E R A T O R C E N T E R 

The engineering with which I a m most concerned 
is research and development engineering, usually con-
ducted by individuals with a t least a master 's degree. 
Research and development problems usually require ex-
tensions of existing technology, and indeed, part of the 
research and development effort is directed toward find-
ing new ways of solving engineering problems. 

The individuals who conduct this research must be 
extremely competent applied mathematicians. They 
must be able to derive the equations that describe the 
systems with which they are working and they must 
be able to extract solutions from these equations with 
enough ease to permit parameter surveys and sensitiv-
ity analyses. If the equations they derive are not those 
for which s tandard solutions are available or for which 
usual numerical methods apply, they must be capable 
either of developing suitable approximate solution tech-
niques or of approximating the equations to be solved to 
render them tractable. These people will have program-
ming support , access to supercomputers and access to 
experts in appropriate disciplines, but they will often 
become the expert in the particular class of problem 
being addressed. 

For most students who expect to do 
graduate work in the physical sciences, 
the conventional college calculus course 
is not sufficient. 

For the people described above, calculus is a funda-
mental par t of their mathematical training. For these 
people, and indeed for most s tudents who expect to do 
graduate work in the physical sciences, the conventional 
college calculus course is not sufficient. Even the spe-
cial four quarter (or three semester) courses sometimes 
offered for those majoring in engineering or the physical 
sciences are at the same time neither broad enough nor 
deep enough. 

C h i c k e n s a n d E g g s 

In addition to this problem of insufficiency, calcu-
lus suffers from a chicken and egg problem. Applied 
physics and most engineering is best taught using cal-
culus and differential equations as a known subject, but 

most freshmen students don ' t speak these languages. 
At the same time calculus is not learned except by 
working examples. Since the best examples are those 
which motivate the student, these are most likely to 
be those selected from the s tudents ' field. To some ex-
tent this latter need is recognized by the offering of spe-
cial courses tailored to disciplines—calculus for business 
majors or calculus for mathematic ians . Although such 
courses do not resolve the paradox of needing to know 
calculus to learn the subject, they do lead to the pro-
liferation of first level classes, some of which might as 
well be called "calculus for those who don ' t want to take 
calculus." 

Calculus should be part of a 
curriculum of computational 
mathematics. 

The real need is for a calculus curriculum to provide 
early a solid base of understanding and practical tools 
for subsequent engineering and physical science courses, 
and to provide later another coverage of calculus, both 
deeper and broader. I happen to believe tha t such a 
repetition of subject mat ter also greatly increases pro-
ficiency and understanding. 

Another form of the chicken and egg problem occurs 
within mathematics itself. There is a tendency in some 
t reatments of calculus to emphasize the proving of the-
orems and the pathologies of functions. Especially for 
engineering s tudents , this more abstract information is 
best reserved for second courses in calculus. Even then 
this type of information is best illustrated by examining 
it in the context of examples relating the significance of 
the result obtained to practical applications. 

P r o b l e m s w i t h P r o b l e m S e t s 

In addition to coordinating the pace of s tudents ' 
mathematical development with their engineering or 
physical sciences development, it would be most desir-
able to train them simultaneously in both areas. One 
way this might be done is by teaching calculus using 
problem sets and illustrative examples from engineer-
ing and physical sciences applications. This is not a 
novel idea. There has been a trend in this direction, 
and I think it should be accelerated. 
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It is clearly more work to prepare such educational 
examples and care must be taken to choose problems 
and illustrations appropriate to either basic or advanced 
levels of the students , but the payoff should be bet ter 
motivation and clearer understanding of both subjects. 
Older texts seem to use predominately abstract exam-
ples of functions, and to spend inordinate amounts of 
time integrating and differentiating special functions, 
finding areas and volumes and so on, with little regard 
for the relevance of these acts. This s tate of affairs could 
be improved. 

Every student in calculus should be 
deeply exposed to the derivation and 
use of numerical approximation 
methods. 

In a related vein, many calculus texts use problems 
tha t can be solved by following recipes, and typical 
homework exercises involve a couple of hours of repet-
itively following the recipes. In general, more t ime 
should be devoted to making the ideas clear and less 
time devoted to rote learning. 

In particular, calculus, engineering, and physics 
courses should spend proportionately more time on the 
topics of problem formulation and problem solving. Too 
often s tudents ' only exposure to the thinking that goes 
into the process of formulating and then solving a prob-
lem is the verbalization of the process by the instructor 
in the classroom. When one has mastered the solu-
tion of a particular class of problems, particularly if 
this mastery was gained some long time ago, there is a 
tendency to present the problem formulation and solu-
tion as a smooth, seamless, effortless process, forgetting 
the struggle, the trial and error, and the dead ends tha t 
are pursued before success is obtained. 

As s tudents progress to more advanced courses, pro-
portionately more time should be spent on the tech-
niques of problem solving. Examples in texts should 
include case histories discussing the reasoning that goes 
into a variety of approaches. Classroom lectures should 
include periods when experts are confronted with new 
(even unsolved) problems and asked to a t tempt a solu-
tion and describe what they are thinking as they do so. 
This sort of thing can be a close approach to the actual 
research process. 

U s i n g C o m p u t e r s 

Many t rea tments of calculus, especially in books tha t 
have been revised over a period of years, scarcely rec-
ognize the use of computers. This is a serious omission 

on at least two counts. Present day computer programs 
provide extremely powerful symbol manipulation, in-
cluding the capability of integrating and differentiating. 
The student should become aware very early of the ca-
pabilities of these programs. 

More fundamentally, every student in calculus should 
be deeply exposed to the derivation and use of numeri-
cal approximation methods. In the fields of engineering 
and physical sciences, almost all solutions are obtained 
by numerical methods. The successful professional will 
use computat ional evaluations far more often than the 
techniques of classical calculus. The understanding of 
calculus is extremely important and the language of cal-
culus is a useful shorthand, but once the applicable 
equations are derived, the greatest challenge becomes 
the determining of numerical solutions. 

Tha t is not to say that all the classical analysis that 
is taught is of limited use. Indeed, the validation of nu-
merical approximations—that is, the experimentation 
necessary to show that a computer code produces cor-
rect solutions—is a discipline in its own right tha t usu-
ally involves comparison of evaluations of analytic solu-
tions, where such are available, with solutions produced 
by numerical approximations. 

T h e successful professional will use 
computational evaluations far more 
often than the techniques of classical 
calculus. 

Both analysis and approximation are useful, but the 
curriculum should combine them synergistically rather 
than treat them disjointly. In my view, calculus should 
be part of a curriculum of computat ional mathemat-
ics, with the initial course emphasizing numerical differ-
entiation and integration and with subsequent courses 
covering first ordinary differential equations and then 
partial differential equations. 

G e o m e t r y 
For research and development in engineering, clear 

visualization of the problem geometry and a clear un-
derstanding of the problem solution as a function of key 
problem parameters are imperative. I believe the cal-
culus curriculum should emphasize analytic geometry 
and combine it early with the use of computer graph-
ics displays. CAD systems modeling three-dimensional 
solids are commonly available to the engineer. Students 
should become familiar with these powerful tools tha t 
can describe all geometric aspects of the actual system 
and permit viewing from any desired vantage point. 
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As students begin to generate numerical solutions, 
they should a t the same time become familiar with the 
tools available to display these solutions. They should 
also be trained in the techniques of processing masses of 
da t a to extract significant information. Visual detection 
of anomalies is an extremely important and powerful 
tool, both to detect errors in solution techniques and to 
discover new effects. 

As computers make possible the solution of more 
and more complex problems, the importance of prop-
erly sifting the output becomes greater and greater. In 
high energy physics, for instance, terabits of experimen-
tal da t a are repeatedly mined with sophisticated tools 
to extract new physical effects. Monte Carlo evalua-
tions of theoretical models gives equal amounts of da ta 
to be similarly sifted. 

Dif f eren t ia l E q u a t i o n s 

The more advanced par t of the calculus curriculum 
should concentrate on solutions of the most important 
classes of the differential equations of engineering and 
the physical sciences. In the last twenty years an enor-
mous body of knowledge has been accumulated about 
these equations and about their practical means of so-
lution. 

In my view, a coherent t reatment of solution tech-
niques does not exist, even though "black box" com-
puter algorithms exist for ordinary differential equa-
tions and are beginning to emerge for part ial differen-

tial equations. Use of these solution techniques is ex-
tremely important in much research and development in 
engineering and the physical sciences. Hence s tudents 
should be trained in these areas, being given a com-
bination of classical analytical methods and numerical 
methods. 

S u m m a r y 

My suggestions for calculus for engineering and phys-
ical sciences can be summarized concisely: more math-
ematical training should be offered the undergraduate , 
and more of that training should be computer oriented. 
In particular, I'd recommend tha t universities 
• Make the calculus curriculum broader (numerical 

methods) and deeper (two, perhaps three full years 
through partial differential equations). 

• Closely integrate the calculus curriculum with the 
engineering and physical sciences curriculums. 

• Emphasize computational mathematics as well as 
conventional analysis. 

K A Y E D. L A T H R O P is Associate Laboratory Director 
and Head of the Technical Division of the Stanford Linear 
Accelerator Center in Stanford, California. He has served 
as Associate Director for Engineering Sciences for the Los 
Alamos National Laboratory, and as Chairman of the Math-
ematics and Computation Division of the American Nuclear 
Society. 

The Coming Revolution in Physics Instruction 

Edward F. Redish 

U N I V E R S I T Y O F M A R Y L A N D 

The current introductory physics curriculum has 
been highly stable for almost thirty years and is nearly 
uniform throughout the country. It is closely linked 
with the introductory calculus sequence in that the or-
dering and content of the physics courses are strongly 
determined (sometimes inappropriately) by the stu-
dents ' mathematical skills, and in that the calculus 
course frequently uses examples from physics. 

Despite its apparent stability, there are indications 
that three revolutions are beginning to make an impact 
on the curriculum: the explosion of new knowledge and 
materials in physics, new insights into the process of 
learning gleaned from studies in cognitive psychology, 

and the power and widespread availability of the com-
puter. 

I suggest that these changes, with the computer act-
ing as a lever on the first two, are making inevitable a 
revolution in the way we teach physics. These changes 
will require associated changes in the calculus sequence 
which will have to carry the burden of introducing a 
wider variety of mathematical techniques to scientists 
and engineers than is currently the case. These new 
techniques include numerical and approximation tech-
niques, the study of discrete equations, and pathological 
functions. 
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P h y s i c s a n d C a l c u l u s 

Physics and mathematics have been close colleagues 
throughout their history. Newton's development of the 
theory of mechanics was intimately tied to his invention 
of the calculus. The understanding of the theory of elec-
tromagnetism was achieved when Maxwell completed 
his set of partial differential equations. The mathemat-
ical studies of transformation theory and tensor analysis 
at the end of the nineteenth century, when applied to 
Maxwell's equations, led Einstein to develop his special 
and general theories of relativity. This close interplay 
continues today in a variety of forefront research, in-
cluding the development of string theory and the theory 
of chaos. 

Explosion of new knowledge, ...new 
insights into the process of learning, 
...and the power ...of the computer 
... are making inevitable a revolution in 
the way we teach physics. 

The close connection between physics and mathe-
matics is nowhere more obvious than in the structure 
of the undergraduate physics majors ' curriculum. The 
s tandard curriculum covers a variety of subjects includ-
ing: 

• mechanics 
• electricity and magnetism 
• thermodynamics and statistical mechanics 
• modern physics and quan tum mechanics. 

These subjects form the foundation of fundamen-
tal material on which more specialized subjects, such 
as condensed mat ter physics, atomic and molecular 
physics, nuclear physics, plasma physics, and particle 
physics, are built. 

The s tandard approach to these subjects is a spiral. 
They are first covered in an introductory manner in a 
survey course in the freshman and sophomore year, re-
done in individual courses in the junior and senior years, 
and finally covered one more time in graduate school. 
Both the spiral character and the specific ordering of 
topics in the physics curriculum is primarily controlled 
by the mathematical sophistication the student is as-
sumed to have. 

The control imposed by mathematics is very rigid 
and even influences the detailed order of presentation 
in individual courses. For example, the first semester 
of physics is usually taken with first year calculus as a 
corequisite. In teaching mechanics, nearly every text-
book author introduces the subject by considering the 

physical example of motion in a uniform gravitational 
field, with Newton's Laws of motion presented a t a later 
stage. The primary reason for this is tha t the former 
can be solved algebraically without the use of differen-
tial equations and is an appropriate place to introduce 
the concept of derivative. The latter requires a more 
complete understanding of the concept. 

From the point of view of the physics this is highly 
inappropriate. The uniform gravitational field is a very 
special and peculiar case. Pu t t ing it first gives it a pri-
macy which is both undeserved and misleading. 1 Many 
other examples could be given, including the delay of 
the presentation of the harmonic oscillator, the placing 
of electrostatics, the study of normal modes of oscilla-
tion, the t rea tment of quan tum mechanics, etc. 

On the other hand, physics content plays a significant 
role in the calculus sequence. Many s tandard calculus 
textbooks make heavy use of physics problems as ex-
amples and to help motivate s tudents concerning the 
real-world relevance of the material presented. 

Both the spiral character and the 
s p e c i f i c ordering of topics in the 
physics curriculum is primarily 
controlled by the mathematical 
sophistication the student is assumed 
to have. 

Only a relatively small number of s tudents actually 
major in physics. However, in most universities the 
same introductory physics course taken by majors is 
also taken by engineers, chemists, and mathematics ma-
jors. Almost all physical scientists trained in American 
universities take a physics course of the s tandard type. 
The structure and content of introductory physics with 
calculus therefore has a profound implication for the 
training of all our (hard) scientists. 

C u r r i c u l a r S t a b i l i t y 

Calculus-based physics for scientists and engineers 
is taught in a variety of formats and conditions, but 
it is almost always found in the format of a three or 
four semester (occasionally three quarters) introductory 
sequence with calculus as a corequisite (or occasionally 
with one semester as a prerequisite). For majors, this 
introduction is followed by the spiral described above. 

The physics curriculum was stabilized in a semi-
formal sense in a series of conferences and articles [3], 
[19] in the late '50's and early '60's. At tha t t ime, a 
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mini-revolution took place in the style of physics teach-
ing, shifting emphasis towards concept and understand-
ing and away from development of technical skills. 

The content of this course is very stable. Despite the 
existence of dozens of introductory physics texts and 
the yearly publication of many more, their approaches 
differ only in detail. A recent survey of ten of the most 
popular first-year physics texts by Gordon Aubrecht [1] 
strongly confirms this. 

T h e widely-held view among physicists 
that physics is the most cumulative 
and mathematical of the sciences 
... leads to a strong tendency to teach 
physics semi-historically. 

This stable content is a result of the widely-held view 
among physicists tha t physics is the most cumulative 
and mathematical of the sciences. Even scientific revo-
lutions such as quan tum mechanics and special relativ-
ity are viewed by most professional physicists as exten-
sions rather than replacements of previous theories. In 
the research forefront, techniques from older models of-
ten coexist with current dogma. This leads to a strong 
tendency to teach physics semi-historically. 

The present introductory curriculum gives the stu-
dent an overview of the basic techniques of those par ts 
of historical physics which still survive from the period 
1600 (Galileo) to about 1940 (nuclear physics of fission 
and fusion). The content from after 1916 (the Bohr 
model of the a tom) is usually slim, since going further 
requires treading on the slippery ground of quantum 
mechanics. Quan tum mechanics is a less intuitive sub-
ject than the others, and one which relies heavily on the 
mathematics of differential equations and matrices. It 
is usually suppressed in the introductory course. 

A R e v o l u t i o n Is B r e w i n g 

This characterization of the physics curriculum may 
lead one to project long-term stability in the way 
physics is taught at the introductory level. Nonetheless, 
there is evidence on the horizon of a major revolution 
in the teaching of physics tha t is driven by revolutions 
in three major areas of relevance: physics research, ed-
ucational psychology, and available technology. Jack 
Wilson, Executive Director of the American Associa-
tion of Physics Teachers (AAPT) refers [21] to these 
three drivers of change as "the three C's:" 

• Contemporary 

• Cognitive 
• Computer . 

Predicting the future is a chancy business under any 
circumstances, but predicting major changes in any hu-
man activity is a long shot. As I discuss the impact 
of each of these revolutions, the reader should bear in 
mind tha t these views are necessarily speculative and 
idiosyncratic. 

C o n t e m p o r a r y P h y s i c s 

As a result of the perceived cumulative s tructure of 
physics, the current introductory course has a strong 
overlap with the courses taught at the tu rn of the cen-
tury. (The changes agreed upon thir ty years ago dealt 
primarily with style rather than content.) For example, 
the material covered in 21 of the 23 chapters in Robert 
Millikan's turn of the century book [16] is contained 
in current t ex t s . 2 According to Aubrecht 's survey, only 
about 20% of current introductory texts have chapters 
on the physics of the past 50 years and those only spend 
about 5% of their chapters on tha t material . 

John Rigden, AIP Director of Physics Programs and 
former editor of the American Journal of Physics s tated 
the issue compellingly in one of his editorials [18]: 

Great-grandparents and grandparents and parents 
took . . . the same physics course as contemporary stu-
dents are now taking. . . . No new information appears 
in a new edition of a physics textbook. 

This wouldn't be a problem if physics were a static 
field. It is not. In the past thir ty years we have seen 
an explosion of new understanding and power in a va-
riety of subfields of physics, ranging from the discovery 
of the substructure of protons and neutrohs, to high 
temperature superconductivity, to the discovery of the 
three-dimensional s tructure in the clustering of galax-
ies. These discoveries cover all possible scales of length, 
time, and mass. 

T h e excitement and vitality of 
contemporary physics is not conveyed 
in the current introductory course, nor 
are the student's skills developed in a 
manner appropriate for the new 
physics. 

There have even been major breakthroughs in fields 
long thought to be well understood. Current develop-
ments in Newtonian mechanics are evolving into a the-
ory of chaotic behavior which may lead to a change in 
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our way of viewing physics as deep as tha t produced by 
the discovery of quan tum mechanics. 

The excitement and vitality of contemporary physics 
is not conveyed in the current introductory course, nor 
are the s tudent ' s skills developed in a manner appropri-
ate for the new physics. Recently, however, the leaders 
of both the research and teaching communities are be-
ginning to take a broad interest in including contempo-
rary physics in the introductory courses. This interest 
is displayed in two recent conferences held in Europe 
and the United States [2], [14]. 

C o g n i t i v e S c i e n c e 

Psychological studies of what students know and how 
they learn are producing fundamental changes in the 
theories of learning and education. The few studies that 
have been done on physics students indicate that there 
are profound difficulties in the way we teach physics 
[5], [15], [17]. The traditional assumption tha t the stu-
dent is a tabula rasa on which new descriptions of the 
universe may be written appears to be false. 

Students bring to their first physics 
course well-formed yet often incorrect 
preconceptions about the physical 
world. 

Students bring to their first physics course well-
formed yet often incorrect preconceptions about the 
physical world. The present structure of introductory 
physics does not deal with this well. A number of pre-
and post-course tests taken at a variety of universities 
show tha t a course in physics does little or nothing to 
change the average student 's Aristotelian view of the 
universe [10], [11]. As we learn how students learn and 
change their views from "naive" to "expert," we can 
design our courses so as to facilitate this transition. 

C o m p u t e r T e c h n o l o g y 

The immense growth in the power of high-tech tools 
in the past thir ty years has had a profound impact on 
the way professional physics is done. The most power-
ful and influential of these tools is the computer. More 
computat ional power is packed into a desk-top com-
puter the size of a breadbox than was available in the 
largest mainframes thir ty years ago . 3 

Approximately 75% of contemporary research physi-
cists use computers. At the time our current "stable" 
curriculum was designed, the number was more like 5%. 

(These numbers are based on informal surveys and con-
sultation of the research literature.) The result is tha t 
the computat ional skills required by the professional 
must all be learned a t the graduate level. 

Certainly many students learn to program as under-
graduates, and indeed, some are already superb pro-
grammers by the time they enter college. But program-
ming as taught in high schools, in computer science de-
partments , and learned on one's own to write games 
with is not the same as learning to do physics with the 
computer. 

The physicist who wants to do physics with a com-
puter needs a wide variety of skills, not all of them 
numerical. Estimation skills are essential, not only for 
the experimentalist who must have a good idea of the 
rate at which da ta must be taken, but for the numeri-
cal analyst who must have a reasonable idea of what an 
appropriate discretization is. An important skill is to 
be able to tell when to do an exact analytic calculation, 
when to approximate, and when to use the computer. 
This skill requires substantial experience. 

Computers are necessary tools at the undergraduate 
level as part of a s tudent 's training as a professional. 
But in addition, the availability of the computer opens 
immense opportunities for the physics teacher. If the 
student has the computer available from an early stage, 
a larger class of problems and subjects may be intro-
duced, avoiding the previously imposed mathematical 
constraints. 

A l t e r n a t i v e C u r r i c u l a 

At the University of Maryland, members of the 
Maryland University Project in Physics and Educa-
tional Technology (M.U.P.P.E.T.) have been investigat-
ing the impact of the computer for the introductory 
physics curriculum since 1984. Students are taught to 
use the computer in their first semester, and its presence 
has permit ted a number of interesting modifications of 
the s tandard curriculum: 

1. Newton's law can be introduced in discrete form as 
the first topic in mechanics. This allows the student 
to think about the physics before becoming involved 
in special cases (uniform accelerations) or mathemat-
ical complexities (calculus, vectors). 

2. A wider variety of projectile motions can be studied 
than is possible when only analytic techniques are 
used. These include motion with air resistance, in a 
fluid, with electromagnetic forces, etc. This gives a 
bet ter balance of analytic and numerically solvable 
problems and relates bet ter to the real world than a 
curriculum with only idealized solvable models. 
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3. Non-linear dynamics can be studied. This permits us 
to teach fundamental concepts of numerical physics, 
to introduce some contemporary topics, and, by 
showing examples of chaotic systems, to make bet-
ter connections between mechanics and statistical 
physics/ thermodynamics than was previously possi-
ble. 

4. Even first-year college s tudents can develop enough 
computer power to do creative independent work 
on open-ended projects whose answers may not be 
known. This can provide an exposure to how science 
is really done. 

5. Flexible, powerful, pre-prepared interactive pro-
grams can permit the student to investigate the so-
lution of a wide variety of problems in a fraction of 
the time it would have taken with pencil and paper. 
This can permit even mediocre students to develop 
an intuitive feeling for problems previously accessible 
only to the best s tudents . 
Other uses of the computer have been made by other 

groups, including the development of Socratic tutorial 
programs [4], the modularization and organization of 
the physics curriculum into a Keller-plan no-lecture for-
mat (Project PHYSNET, Michigan State University), 
and the extensive use of microcomputer-based labora-
tories [20], [6], Although these applications have a sub-
stantial effect on the physics curriculum, they do not 
produce obvious and significant modifications of the 
way the physics and mathematics curricula interact. I 
will therefore not discuss them here and leave the inter-
ested reader to seek out the references. 

In addition to the Maryland project, new interest in 
the impact of computers on the teaching of physics is 
indicated by the large.number of universities introduc-
ing upper-class courses in computational physics and a 
number of new textbooks taking that point of view. 

"No new information appears in a new 
edition of a physics textbook." 

A recent text by R.M. Eisberg and L.S. Lerner [7] 
provides a fairly s tandard introduction that includes 
a number of numerical examples and problems. 4 A 
widely used advanced text , Computational Physics by S. 
Koonin [13] contains numerous programs and numerical 
examples. The first truly computer-based introductory 
text is about to appear, written by Harvey Gould and 
Jan Tobochnik [9]. 

The A A P T leadership has called for a review of the 
current curriculum [12] and has been funded by NSF to 

organize conferences and workshops to discuss the shape 
of a new curriculum. While it may be a few years be-
fore a generally acceptable formula is found, and before 
enough colleges and universities get enough computer 
resources for the change to be broadly accepted, the 
smell of revolution is definitely in the air. 

I m p l i c a t i o n s for M a t h e m a t i c s 

If we presume tha t the postulated revolution in 
physics teaching does in fact take place, and if we also 
presume tha t the service calculus courses are to con-
tinue to play a strong and relevant role in introduc-
tory physics, then the emphasis of the course should 
change somewhat. Although all of the subjects I pro-
pose adding to the traditional course are taught some-
where in the mathematics curriculum at many major 
universities, we must operate under the understanding 
tha t the primary service sequence for scientists is the 
three or four semester sequence in calculus. Given the 
heavy schedule of most scientists in the first and second 
year of their college, it is not possible to require tha t 
a significant number of additional mathemat ics courses 
be taken in the underclass years. 

W e must operate under the 
understanding that the primary service 
sequence for scientists is the three or 
four semester sequence in calculus. 

Therefore, to make the introductory course more rel-
evant, I propose tha t as the mathematical needs of sci-
entists become broadened, especially by an expanded 
interaction with the computer, the content of the intro-
ductory mathematics service sequence be broadened to 
include topics which do not formally fall under the topic 
"calculus." However, for simplicity, I will continue to 
refer to this sequence as "the calculus course." 

Specifically, I would like to see the traditional calcu-
lus course extended to include more emphasis on: 

• practical numerical methods; 
• qualitative behaviors; 
• approximation theory; 
• s tudy of discrete systems; 

• pathological functions. 

Many individual mathematics teachers idiosyncrat-
ically include some discussion of one or more of these 
subjects in their courses; but most tradit ional calculus 
textbooks ignore them entirely. 
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N u m e r i c a l M e t h o d s 

Practical numerical methods form the heart of com-
puter approaches to real-world problems, yet these are 
consistently ignored in the traditional introductory se-
quence. The problems of numerical integration and dif-
ferentiation are suppressed in favor of extensive discus-
sion of how to differentiate and integrate large num-
bers of special cases, despite the fact that the real-world 
problems most scientists face will almost certainly have 
to be treated numerically a large fraction of the time. 

Even when practical rules, such as Simpson's rule of 
integration, are mentioned, almost never is there any 
discussion of where they are appropriate, how they can 
be improved, or the fact that there may be better al-
ternatives. Practical solution methods for differential 
and integral equations are rarely discussed in the stan-
dard calculus sequence. Methods such as power series 
solutions, useful in proving general results but not very 
helpful in solving a new equation, are strongly empha-
sized. A better balance needs to be struck. The ques-
tion of stability and improvability of methods should 
also be mentioned. 

As discussions of numerical methods replace some of 
the discussions of analytic ones, a good understanding 
of the qualitative behavior of functions becomes even 
more important than before. Some of this is already 
present in traditional discussions of the theory of differ-
ential equations and the phase plane; but in the absence 
of discussions of numerical methods, their relevance is 
obscured. 

By approximation theory I mean the process of how 
to understand the relevance of approximation schemes 
to specific situations, and of how to develop new 
schemes. If s tudents are not even aware of the possibil-
ities, for example, of the optimization of power series, 
they will be unable to seek out references on their own. 
Some broad introduction to the variety of practical and 
powerful methods available should be given. 

D i s c r e t e E q u a t i o n s 

Since students are usually introduced to discrete 
equations in the context of approximations to contin-
uous equations in a numerical analysis, physics, or en-
gineering course, they develop the mistaken impression 
tha t a discrete equation is a poor relation of the con-
tinuous one, and that any differences between them 
is a "failure" of the discrete equation. Discrete equa-
tions are themselves the relevant mathematical models 
in a number of circumstances, such as iterated function 
problems. They have their own unique set of character-
istics. 

Some of these discrete equations lead naturally to the 
discussions of functions which were considered "patho-
logical" by mathematicians and scientists for many 
years, and which were thought to be irrelevant to physi-
cal phenomena. This has turned out not to be the case. 
For example, a discussion of the Cantor set and related 
fractals would be very valuable. Usually these are left 
to more advanced courses, such as topology, and there, 
their real-world applications tend to be ignored. 

Functions which were considered 
"pathological" by mathematicians and 
scientists ... were thought to be 
irrelevant to physical phenomena. This 
has turned out not to be the case. 

Anyone who proposes the addition of new material 
to a course currently packed to bursting with a super-
fluity of material has some obligation to identify what 
should be removed to make room. I would be happier to 
see less discussion of out-moded analytical techniques 
which have limited applicability. I also believe tha t 
some room could be made by not analyzing the very 
large number of analytical examples usually treated. 
Specific cuts will of course have to be decided by the 
community through extensive discussion. 

Despite these proposed changes, I suspect tha t a 
large majority of physics teachers feel, as I do, tha t the 
calculus sequence provides a strong base for the fun-
damental mathematical skills of all physicists; tha t the 
primary emphases should be retained, including the em-
phasis on the study of smooth, non-pathological func-
tions, on analytic techniques and theorems, and above 
all, on the rigor and structure of mathematical thought. 

No te s 

1. One of the few texts which reverses the traditional order 
is the classic Feynman Lectures in Physics [8] based on 
the teaching of Nobel Laureate Richard P. Feynman. 

2. Although the content is similar, Millikan's emphasis is 
somewhat different from modern texts. 

3. A contemporary student would probably feel more com-
fortable with the explanation "a breadbox is about the 
size of a desktop computer" than with the one given here. 
When was the last time you saw a breadbox? 

4. This text may have come a bit before its time: it in-
cluded a number of problems appropriate for the pocket 
programmable calculator. It is already out of print. 
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Calculus in the Undergraduate Business Curriculum 

Gordon D. Prichett 

B A B S O N C O L L E G E 

If there is widespread common concern that a core 
course in the s tandard undergraduate business school 
curriculum is irrelevant and unneeded, it is a concern 
over the calculus. Although there has been, for twenty-
five years, a stalwart cadre of supporters of calculus in 
the business core, there has been little common agree-
ment on either the level or the topics which are critical 
to the success of such a core course. To gain a clear 
insight into the appropriate role of calculus in the busi-

ness curriculum in the 1990s, it is important to sketch 
the evolution of the present role played by calculus in 
the life of a business student. 

T h e P a s t 

In 1963 Richards and Carso [3] reported tha t only 4 
of 71 AACSB (American Assembly of Collegiate Schools 
of Business) schools responding to a questionnaire re-
quired differential calculus. Tull and Hussain [4] in a 
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1966 report on AACSB schools show 38 out of 84 re-
quiring differential calculus. Something seems to have 
occurred in the early sixties that suddenly convinced 
schools of business tha t calculus was important to their 
curriculum. 

We should recall the tempestuous climate of edu-
cational concern of the early sixties, the emergence of 
many new mathematics incentives, and the widespread 
criticism of any curriculum tha t did not have "strong" 
mathematical underpinnings. It may be worth noting 
tha t the Harvard Business School introduced a calculus 
requirement for entering students in the early sixties 
which survived only until the late sixties! 

Two questions are critical to our present concerns: 
1. Why was calculus suddenly inserted into the busi-

ness curriculum? 
2. Who designed the appropriate calculus course for 

this specialized educational track? 
In the business school reports of the 1950s, a few 

schools like Carnegie Mellon and the Sloan School of 
MIT emerged as models of futuristic curriculum em-
phasis. The background ambience of engineering and 
economics depar tments within both these schools, cou-
pled with strong positions taken up by specific apostles, 
made one semester of calculus appear to be minimal 
mathematical background for management students . 

The push toward calculus was further supported by 
works like Samuelson's Foundations of Economic Anal-
ysis. Some, like Kemeney, Snell and Thompson, decided 
tha t business applications made it preferable to teach 
finite vs. continuous versions of the same concepts and 
tools, but they were fighting two batt les—the general 
batt le for more emphasis on mathematics , and a bat t le 
for a variant approach which few of their fellow mathe-
maticians endorsed. 

Many business calculus courses ...are 
taught by mathematicians ...unfamiliar 
with the general business curriculum. 
... This marriage of an orphaned course 
to a distant curriculum leads one to 
today's concerns. 

The schools tha t took calculus most seriously ex-
pected students to do a full year, and they were content 
to let existing service faculty in mathematics depart-
ments teach it. Many business calculus courses began 
and still reside in mathematics departments and are 
taught by mathematicians, a great number of whom 
are unfamiliar with the general business curriculum. 

Since business schools had not utilized calculus in the 
past and were not familiar with many of the applications 
of calculus beyond those in economics, course design 
was left to mathematicians and textbook authors . This 
led to a calculus course designed in a wilderness sepa-
rating pure mathematics from a very specialized use of 
mathematics . This marriage of an orphaned course to 
a distant curriculum leads one to today's concerns. 

T h e P r e s e n t 

There is not a s tandard introductory calculus course 
in today's business curriculum. Although AACSB re-
quirements do not explicitly s ta te that calculus is a 
necessary prerequisite for an accreditable school, any 
school not offering calculus in their core would most 
likely come under criticism for the exclusion. It should 
also be noted, however, tha t of the approximately 1200 
business programs in the United States, only 237 are 
accredited by the AACSB. Many nonaccredited schools 
offer no calculus requirements, many claiming (justifi-
ably) that their students are far too weak in algebra 
to undertake even a superficial calculus course. Busi-
ness schools do not a t t rac t a great many quantitatively 
strong students, so weak ari thmetic and algebraic skills 
plague teachers of the business calculus course. 

Teaching business calculus today is, to 
most, a thankless task. 

The present calculus course offered by those schools 
requiring calculus is frequently referred to as a watered-
down version of calculus, and looked at with distain 
by many pure mathematicians. One must realize tha t 
much of what is taught in the s tandard calculus for 
mathematics students has evolved from studying the 
pathologies of special functions or special situations 
which enjoy an important role in the life of a mathe-
matician, but which almost never occur in the life of a 
practitioner in management. 

A typical business calculus course would be selected 
from the following menu, in which parentheses surround 
topics tha t are usually optional and often omit ted: 

1. Review of algebra and sets 
2. Formulas, equations, inequalities, graphs 
3. Linear equations and functions (Applications: 

Break-even analysis; Linear demand functions) 
4. Systems of linear equations and inequalities (Ap-

plications: Supply and demand analysis; Intro-
duction to linear programming) 
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5. Exponential and logarithmic functions 
6. Mathematics of finance 
7. Introduction to differential calculus 

a. Limits and continuity 
b . The difference quotient and definition of the 

derivative 
c. The simple power rule d(xn)/dx = nxn~l 

d. The derivative of [f{x)]n 

e. The product and quotient rules 
f. The derivatives of exponential and logarithmic 

functions 
g. Maxima and minima of functions 
h. Maxima and minima applications 
i. (Sketching graphs of polynomials) 
j . (Relative rates of change) 
k. (The chain rule and implicit differentiation) 
1. (Calculus of two independent variables) 

8. Integral calculus 
a. Antiderivatives: The indefinite integral 

b . Integration by substi tution 
c. Integrals of exponentials 

d. The integral of ( m i + δ ) - 1 

e. Area and the definite integral 
f. Interpretive applications of area 
g. (Improper integrals) 
h. (Numerical integration) 
i. (Integration by parts) 
j . (Differential equations) 

A quick look at the preceding outline should shock 
any teachers sensitive to the fact tha t they have only 
one semester to bring a class of students with a wide 
variety of backgrounds and quanti tat ive abilities to a 
common level of proficiency in most of the above topics. 
Teaching business calculus today is, to most, a thankless 
task. Add to this the pressure today to perform well 
on teaching evaluation surveys, the philosophy used by 
many schools tha t calculus is a primary sieve to weed 
out poor s tudents , and the general discrediting of the 
integrity of the course by most mathematicians, and 
one wonders with whom the course is staffed in any 
college or university. Clearly the design and role of the 
calculus course in the business curriculum needs review 
and restructuring. 

T h e F u t u r e 

To understand why so much must be taught in one 
semester, one must have a bet ter understanding of the 
scope of the entire business curriculum. As with engi-
neering students, most business students have almost 
no room for electives in their program. As more and 

more emphasis is being placed on broadening the lib-
eral arts base of the business curriculum, more courses 
are at tached to the front end of the curriculum, but few 
courses yield space elsewhere in the curriculum. 

At present most business s tudents are required to 
take three quanti tat ive methods courses: Business Cal-
culus or some equivalent mathematics course; Statistics 
(this course is essentially descriptive and inferential, 
requiring little probability theory); and Information 
Systems (a course involving elementary programming 
and computer applications). Electives include Manage-
ment Science (applications of operations research), Fi-
nite Mathematics (a course tha t might bet ter be taught 
in the spirit of an applied discrete mathemat ics course), 
and further courses in Management Information Sys-
tems. Little physical or life science is required of or 
taken by business s tudents . 

Calculus is not a true curricular 

prerequisite to studying in an 

undergraduate business program. 

From this it is clear tha t calculus is not a critical 
prerequisite for any of the technical courses in the stan-
dard business curriculum. In fact the only courses tha t 
require calculus, excluding case by case instances, are 
some introductory economics courses. In most circum-
stances the applications of calculus in these courses are 
what many term as "toy problems" and these applica-
tions could easily be presented without relying on the 
calculus. Hence calculus is not a t rue curricular pre-
requisite to studying in an undergraduate business pro-
gram. (Recall the decision of Harvard Business School 
to drop the calculus requirement.) 

A N e w C o u r s e 
For years calculus has been used by colleges and uni-

versities as a credentialing hurdle, as a prerequisite to 
assure sufficient "mathematical sophistication." This 
remains the primary justification for maintaining a full 
semester calculus course in the business curriculum. 
It is time to design a new introductory quanti ta t ive 
methods course to measure this vital prerequisite. The 
t reatment of calculus should be embedded in a course 
which will assure tha t all business s tudents have suf-
ficient mathematical sophistication, receive content of 
real educational value, and encounter the mathemat ics 
and quanti tat ive problems of management education. 

The design of such a course should be inspired by 
the goals of teaching clear reasoning, critical and an-
alytical thinking, and good organizational and writing 
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skills. The course must aseure that students who com-
plete it have sufficient mastery of fundamental arith-
metic and algebraic skills, and can apply the use of cal-
culators and computers to obtain and process quantita-
tive information. In addition, this course must address 
specific mathematical techniques frequently applied to 
solve problems encountered in management education. 
Above all, the underlying intent of such a course is to 
impart educational challenge and value to first-year stu-
dents of management, with utility and relevance as a 
catalyzing rather than driving force of the course. 

Such a course may be properly called Foundations 
of Quantitative Methods in Management; a suggested 
course outline might be: 

1. Linear equations and functions (Applications: 
Break even analysis; Linear demand functions) 

2. Introduction to linear programming techniques 

a. Problem formulations and applications 

b. Graphical solutions 

c. Computer solutions using a computer package 

3. Exponential and logarithmic functions 

4. Mathematics of finance 

a. Use of the calculator 

5. Introduction to differential calculus 

a. The difference quotient and definition of the 
derivative 

b. The simple power rule, d(xn)/dx — nxn~x 

c. The derivative of [/(x)]™ 

d. The product and quotient rules 

e. The derivatives of exponential and logarithmic 
functions (Applications: Response functions; 
Marginal analysis in business and economics) 

f. Computer computat ions using a package such 
as MACSYMA 

g. Maxima and minima of functions (Applica-
tions: Inventory control models) 

6. Integral calculus 

a. Antiderivatives: The indefinite integral 

b. The integral J xndx, η φ ί 

c. Integral of ex 

d. Area and the definite integral 

e. Numerical integration 

f. Computer integration using a program such as 
MACSYMA 

g. Interpretive applications of the integral (Appli-
cations: Marginal analysis) 

h. Difference and differential equations (Applica-
tions: Rumor spreading models) 

E x c l u s i o n a n d I n c l u s i o n s 

Much material tha t has been prevalent in the past 
has been excluded from the above outline. 

1. Limits: They should be taught in the context of 
the definition of the derivative, not in general 

2. Continuity (define only) 
3. Curve sketching 
4. Chain rule and implicit differentiation; treat case 

by case 
5. Calculus of two independent variables 
6. Improper integrals: Discuss in the statistics course 

if probability is introduced as an integral 
7. Techniques of integration 

In place of these omitted topics, special emphasis is 
given to certain topics not highlighted in the past: 

1. Linear programming: Problem formulation, with 
graphic and computer solutions 

2. The use of programs such as MACSYMA to com-
pute derivatives, integrals, and solutions to com-
plicated equations 

3. Numerical integration 
4. Interpretations of the derivative and integral 
5. Concept of optimization 
6. Difference and differential equations with applica-

tions 

A n A g e n d a for t h e 1 9 9 0 ' s 

Since the object of the above outline for a quanti ta-
tive methods course in the business curriculum is the 
same as the object of recent suggestions by Graham 
[6] for changes in mathematical preparation for science, 
viz., "to help create new mathematics curricula tha t 
are interesting, sophisticated, innovative, and well in-
tegrated with the applications of mathematics ," I will 
follow the example of Steen in a recent article on math-
ematics and science (7) and suggest tha t the following 
agenda is worth start ing on: 

1. Firm prerequisites should be established for students 
entering the quantitative methods course for busi-
ness. A core course should not be used as a sieve. 
Students should be required to make up deficiencies, 
or not be admitted to the curriculum. 

2. Only teachers who are familiar with the business cur-
riculum and appreciate the role of quantitative meth-
ods in business should teach business mathematics. 
Mathematics depar tments must work more closely 
with the curriculum for which they are a service de-
par tment . 

3. The design and maintenance of a good business 
mathematics program should be justly rewarded both 
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professionally and financially. Ways must be found 
to reward quality performance and innovation within 
a mathematics depar tment in pedagogical areas not 
classically considered mathematically pure. 

4. The chief objective of a core course in quantitative 
methods for managers should be the teaching of crit-
ical and analytical skills. Clear reasoning, a sense 
of confidence in one's ability to solve mathematical 
problems, and well-developed organizational and ex-
pository skills are critical to success in management 
education in the 1990's. 

5. Any core course in quantitative methods for man-
agers must incorporate the use of computers and cal-
culators. To exclude computers and calculators from 
solving quanti tat ive problems in the 1990s would be 
equivalent to a t tempting solutions to trigonometric 
problems fifty years ago without tables. 

6. The quantitative methods course should be linked 
to other courses in the business school curriculum. 
Understandable and believable reasons why skills 
learned from mathematics transfer directly to skills 
needed in management must be included in every 
quanti tat ive core course. 

7. Teaching and evaluating writing and organizational 
skills should be an integral part of teaching any quan-
titative methods course. The expository skills of most 
college s tudents are dismal; it is time to correct the 
problem, not point the finger. We must embrace 
writing across the curriculum as a primary initiative 
of the 1990's. 
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Calculus for the Biological Sciences 

Simon A. Levin 

C O R N E L L U N I V E R S I T Y 

Any consideration of the teaching of calculus to biol-
ogists must recognize that calculus is just one of a vari-
ety of mathematical tools that increasingly are proving 
important to the biologist, and tha t therefore the teach-
ing of calculus must be viewed within the context of a 
broader mathematics education. The relevant math-
ematical tools will vary depending on the biological 
specialty. For example, for the ecologist or geneticist, 
statistics and experimental design are integral parts of 
the curriculum; but for the biochemist, such courses are 
considered a luxury. 

However, needs change, and often over very short 
time scales. For example, in the last decade, comput-

ing has become an essential part of any scientist 's train-
ing. Probability and combinatorics, which within bi-
ology were once primarily the province of population 
geneticists and ecologists, have grown in importance 
for molecular biologists interested in sequence analy-
sis. Even topological methods are finding applications 
within the core areas of biology. Such potential for 
change in the areas of mathematics tha t may prove use-
ful argues for the value of training biologists broadly in 
mathematical methods, ra ther than restricting at ten-
tion to narrow and classical areas. 

There is a tradeoff, however. The typical biology 
curriculum, especially within areas such as molecular 
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biology and biochemistry, is packed tight with required 
courses in biology and the physical sciences. There is 
little slack, and little room for flexibility. A year of 
mathematics is recognized as being essential, but it is 
unlikely tha t most biology programs can afford to add 
additional mathematics as a general requirement. Thus, 
new topics can be introduced only if one is willing to 
eliminate others, or to sacrifice depth for breadth. 

Needs change, and often over very 
short time scales. 

My argument is tha t some such compromise is es-
sential, and that the way to achieve it is to emphasize 
conceptual understanding at the expense of analytical 
computat ional ability. This is a painful exchange, be-
cause understanding in mathematics cannot be achieved 
without repetitive drill and problem solving. Nonethe-
less, it must be recognized tha t the biologist's needs are 
different in kind than the physicist's or engineer's. The 
biologist needs to understand the role of models in biol-
ogy and medicine; to know what mathematics is, what 
it can do, and what methods are available; and to know 
where to go to obtain deeper capabilities. 

M a t h e m a t i c a l M o d e l s 

Models in biology serve as pedagogical tools, as aids 
to understanding, and as rough approximations that 
guide t reatment or experimentation. On the other 
hand, al though there are exceptions to the general rule, 
mathematical models rarely serve as devices for exact 
prediction in the way tha t models can in physics. Thus 
the most important mathematical problems facing the 
biologist are conceptual, involving the proper formula-
tion of a model, rather than analytical. 

Some examples should strengthen this argument. A 
physician, in prescribing a drug regimen, should under-
stand the importance of the underlying kinetics, the 
meaning of the half-life of the drug within the body, 
and the notion that the system eventually will reach an 
approximate steady-state, although the plasma level of 
the drug may fluctuate substantially between dosages. 
This will alert h im or her to the importance of testing 
plasma levels at a fixed point in the dosage cycle, and to 
the necessity of establishing quanti tat ive relationships 
between dosage levels and steady-state plasma levels. 

There is sufficient variation among individuals, how-
ever, tha t generic models cannot be completely reliable, 
even when standardized by weight or age. Steady-state 

levels must be determined empirically. The model, how-
ever, has performed an invaluable role in suggesting 
what needs to be measured. More generally, identifying 
what biological quantities need to be measured—the re-
fractory t ime of a neuron following firing, the binding 
constant of a ligand in relation to a particular substrate , 
the heritability of a genetic character, the diffusion rate 
of a particular compound across a membrane, the max-
imal rate of increase of a bacterial population—is one 
of the most common uses of models. 

Because of the difficulty of controlling individual and 
environmental parameters, the biological model more 
typically is used to describe an idealized situation. For 
example, the Hardy-Weinberg conditions, which specify 
the genotypic frequencies to be achieved in a population 
in the absence of any selective differences among indi-
viduals, describes an idealization tha t may represent an 
excellent approximation under some conditions, and a 
very poor one under others. 

T h e most important mathematical 
problems facing the biologist are 
conceptual, involving the proper 
formulation of a model, rather than 
analytical. 

Similarly, the Lotka-Volterra model, simplistically 
describing the interaction between predator and prey 
species, represents the biological analogue of the fric-
tionless pendulum. The structural instability of the 
system makes it totally inadequate in describing any 
real biological interaction; but as a pedagogical tool, the 
model is sufficient to illustrate how a particular mecha-
nism can lead to inherently oscillatory behavior. Often, 
the role of the model is simply to abstract and isolate 
a piece of a larger system, in the recognition tha t it is 
difficult or impossible to achieve such isolation in any 
real system, no mat ter how controlled. 

The preliminary conclusions are that the teaching 
of calculus must be integrated with the teaching of 
other mathematical topics, such as analytic geometry, 
dynamical systems, linear algebra, and computat ional 
methods. Furthermore, considerable at tention should 
be paid to discussion of the proper role of mathematical 
models, to the conceptual insights that can be achieved 
through the qualitative theory of dynamical systems, 
and to an appreciation of how analytical approaches in-
terface with computational ones. 

The availability of high speed computers has ren-
dered archaic the practice of equipping the s tudent with 
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a slide rule; and similarly, it has reduced the necessity of 
training students to be facile in the clever manipulation 
of integrals. Indeed, there still is value in introducing 
the student to the slide rule and to log tables, in or-
der to provide a perspective on logarithms and powers; 
similarly, there is considerable value to introducing the 
s tudent to the techniques of integration, and to provide 
some drill. However, such techniques cannot be viewed 
as ends unto themselves, but must take their place in 
an integrated and balanced curriculum whose primary 
goal is to teach the relevance of mathematics in biolog-
ical and medical applications. 

C a l c u l u s for B i o l o g i s t s 

Setting aside the importance of teaching discrete 
mathematics , which is outside the charge of this partic-
ular report, I turn at tention next to the key ingredients 
of a two-semester sequence in calculus for biologists. 
In so doing, I do not distinguish numerical methods as 
a separate topic, since such methods are taught most 
effectively when integrated with mathematical applica-
tions. Assuming some background in analytic geometry 
and complex numbers, I propose tha t the essential in-
gredients are: 

1. Introduction to limits, rates, and the differential cal-
culus 

2. Differentiation rules and formulas 
3. Curve plotting and the theory of maxima and min-

ima; Taylor's theorem 
4. Introduction to first-order differential equations 
5. Introduction to the integral calculus 
6. Integration rules and formulas 
7. Integration and the solution of differential equations 

a. Solution of linear equations 
b . Methods for nonlinear equations 

8. Areas, averages 
9. Introduction to vectors and matrices, with eigenval-

ues 
10. Partial differentiation: Taylor's theorem for several 

variables, and the theory of maxima and minima 
11. Systems of differential equations 

a. Solution of linear systems 
b . Qualitative theory for nonlinear systems 

12. Differential equations of higher order 
13. Partial differential equations, especially of parabolic 

type 
14. Other topics, as time permits , including infinite se-

ries, volumes, and areas 
Naturally, there is no single way to teach this mate-

rial, and some aspects of the above outline—for exam-
ple, the preference for teaching integration as motivated 

by the solution of differential equations—are mat te rs 
of personal taste . Other substantive choices also have 
been made in the above syllabus, going beyond those 
identified in the previous section. 

For example, the inclusion of parabolic partial dif-
ferential equations as an essential topic is motivated 
by the widespread applicability of concepts of diffusion 
throughout biology. On the other hand, other than the 
use of Fourier analytical methods for time series anal-
ysis, infinite series play little role in the training of a 
biologist. The Taylor expansion is important as a con-
cept; however, it need not be viewed within the context 
of infinite series, since in applications it almost always 
would be t runcated after the first few terms. 

B i o l o g i c a l E x a m p l e s 

Most of the topics listed are s tandard for a basic cal-
culus course, but their presentation to biologists can be 
improved considerably by the development of biological 
examples. One should build on models tha t are fairly 
simple in biological content, and that offer the potential 
for addressing a variety of mathematical issues within 
the same biological framework. 

Often, the role of the model is simply 
to abstract and isolate a piece of a 
larger system, in the recognition that 
it is difficult or impossible to achieve 
such isolation in any real system, no 
matter how controlled. 

For example, various methods for graphing the re-
lationship between the amount of a ligand bound to a 
substrate and the dosage level are used by pharmacol-
ogists for discovering the mechanisms underlying bind-
ing, and for distinguishing among competing binding 
models. So-called allosteric models postulate tha t the 
receptor molecule undergoes a conformational change 
when a single drug molecule is bound to it, and that this 
change affects binding and dissociation rates for other 
sites on the receptor molecule. Depending on whether 
binding thereby is facilitated or inhibited, this is known 
as positive or negative cooperativity. It introduces a 
particular nonlinearity into the model, representing the 
fact that binding rates change with concentration. By 
examining binding curves directly, and various trans-
forms such as double reciprocal plots, one can use qual-
itative information regarding curvature and extrema to 
distinguish among the various hypotheses. 
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Such examples are likely to be closer to the heart 
of the biologist than are the usual examples from en-
gineering, although the latter should not be neglected 
completely. It is an unfortunate fact that most begin-
ning biology students know very little biology, and may 
not be as strongly motivated by biological examples as 
one would hope. Examples therefore must be kept as 
simple as possible, so that the focus is on learning the 
mathematics rather than on learning the biology. 

Furthermore, it is important tha t the student be 
clear in knowing whether the particular mathematics 
learned is of general relevance and applicability, or 
whether it is particular to the example used to moti-
vate it. The importance of maintaining this distinction 
is an argument for presenting ideas fairly abstractly, us-
ing biological examples for occasional motivation. 

O p t i m i z a t i o n 

The theory of maxima and minima is important to 
biologists not only as an aid to graphing, but also in re-
lation to fundamental biological and management con-
cepts: principles of optimal design, maximal rates of 
increase of populations, optimal t reatment regimes in 
medicine or optimal harvesting regimes in fisheries, and 
evolutionary adaptat ion. Most of these are best treated 
within the later sections of the course, embedded within 
a dynamical systems description. The change of popu-
lations through evolutionary processes is the single most 
important organizing principle in biology. The funda-
mental philosophical problem is to understand the rela-
tionships and distinctions between the process of adap-
tat ion and the possible a t ta inment of optima. 

It is an unfortunate fact that most 

beginning biology students know very 

little biology. 

The simplest models of gene frequency change as-
sume that there is a fixed selective value associated 
with each genotypic combination. For the dynamical 
systems appropriate to these assumptions, it is possible 
to demonstrate tha t the average fitness of all individu-
als in the population increases monotonically with time, 
tending asymptotically to a local maximum. Thus, such 
models can be used to illustrate a variety of concepts: 
maxima and minima, local versus global extrema, the 
asymptotic behavior of ordinary differential equations, 
multiple steady states, linearization, and stability. 

More complicated models, incorporating the evolu-
tionary tradeoffs and constraints tha t are familiar to 

the biologist, provide opportunit ies for illustrating the 
use of Lagrange multipliers. Other such examples come 
from fisheries or epidemic management , where there is 
an explicit economic or effort constraint . Similar mod-
els appear in behavioral biology, where time or energy 
must be allocated to tasks such as foraging for food, 
grooming behavior, or other activities, and in physio-
logical ecology, where the principles underlying a plant 's 
allocation of resources to growth and reproduction, or 
to roots and shoots, is of fundamental interest. 

D y n a m i c a l S y s t e m s 
Dynamical systems have a pervasive influence in the 

understanding of biology, and it is hard to think of an 
area where they are not an essential part of basic in-
struction. In biochemistry and pharmacology, the dy-
namics of enzyme-substrate and drug-receptor associa-
tions are among the most basic of concepts. Chemother-
apy models, even with simple first-order kinetics, give 
rise to systems of differential equations representing the 
flow of the chemicals through a network of compart-
ments. Formally identical models are applicable to the 
flow of materials and energy through ecosystems. Thus 
even the linear theory is of direct relevance to a wide 
variety of problems, spanning the biological spectrum. 

Indeed, the most basic model of drug dynamics is of 
the form dx/dt = I — kx, where I is the dosage rate and 
k is the per unit ra te of elimination. The physician is 
familiar with the fact that this model predicts a steady-
state level I/k, tha t there is a characteristic half-life 
determined by k, and tha t this half-life determines the 
time to rid the body of the drug if I is suddenly set 
to zero, or the time to reach a new equilibrium if I is 
abruptly changed from one value to a new one. 

Thus this model has immediate applicability and rel-
evance, and furthermore serves as a start ing point for 
the investigation of such extensions as allowing I to 
vary periodically (as would be the case for any dosage 
regimen other than a continuous intravenous), or allow-
ing for an explicit delay representing the time it takes 
for the drug to make its way into the plasma. An-
other direction for extension is to consider the multi-
compartment systems tha t are more appropriate to 
drug dynamics, and thereby to account for the dis-
tr ibuted delays associated with the gradual entry of the 
drug into the plasma. 

The consideration of nonlinear dynamical systems 
substantially broadens the range of applications, and 
provides a framework for the discussion of a variety of 
important concepts: steady states, linearization, t ran-
sient dynamics, asymptotic stability, bifurcation, peri-
odic solutions, and chaos. As advanced and esoteric 
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as some of these topics may seem, they all are finding 
application in biological investigations. Understanding 
these concepts undoubtedly is of more value to the bi-
ologist than is the ability to make specific analytical 
computations. 

The change of populations through 
evolutionary processes is the single 
most important organizing principle in 
biology. 

Qualitative shifts in the physiological behavior of an 
individual, from one basin of at t ract ion to another, may 
correspond to a shift from a healthy to an unhealthy 
s tate . In some cases, this may correspond to a break-
down of a regulatory mechanism, and the transition 
from a homeostatically maintained stable equilibrium 
to a fluctuating or even chaotic dynamic. In other cases, 
the healthy s tate may exhibit carefully regulated peri-
odicity, as in cardiovascular dynamics, or in the daily 
circadian rhythms of the body. Qualitative changes in 
behavior may be associated with internal changes, such 
as the breakdown of normal regulatory mechanisms, or 
with external changes, such as the intake of a toxin. 

Attention to dynamic phenomena is equally impor-
tan t in other areas of biology. For the neurobiologist, 
the sustained repetitive and sometimes chaotic firing 
in networks of neurons represents a behavior tha t can 
be understood only within the context of the mutual 
excitatory and inhibitory interactions within the net-
work, and the transition from normal to more erratic 
behaviors can be understood in terms of bifurcations 
tracking changes in critical internal and external pa-
rameters. The genetic control of development similarly 
is mediated through networks of regulatory pathways. 

For the ecologist or epidemiologist, periodic phenom-
ena in the dynamics of populations or disease long have 
been central subjects for investigation, and the various 
hypotheses regarding the mechanisms underlying them 
have been well studied within the context of dynam-
ical systems theory. Indeed, even simpler notions as-
sociated with transient behavior have been of critical 
importance. 

A n E x a m p l e f r o m E p i d e m i o l o g y 

Again, it is worthwhile to illustrate with an example. 
One of the simplest and classical models of the trans-
mission dynamics of infectious diseases assumes that 
the host population is of constant size, and broken into 

three categories: susceptible (5 ) , infectious (7), and re-
covered (immune) (R). Individuals move among these 
classes according to certain rules, including the possibil-
ity of losing immunity and returning to the susceptible 
class. Because the time scale of a particular epidemic is 
assumed to be short compared to the change in popu-
lation density, it is tiesumed tha t bir ths balance deaths. 
The usual resultant model takes the form 

dS/dt = b-kSI-bS 

dl/dt = kSI - b l - v l 

dR/dt = vl -bR 

Here b is the birth (=dea th ) rate, ν is the recovery 
rate of infectious individuals, and kSI, the incidence 
function, represents the assumption tha t the rate tha t 
new infections occur is proportional to bo th the number 
of susceptible individuals and the number of infectives. 
Naturally, any of the assumptions can be modified, and 
so the above model again serves as a s tar t ing point for 
investigation, and as a way to introduce concepts. 

Because population size is constant (it needn' t be 
in more general models, such as those tha t incorporate 
disease-induced mortal i ty) , it is convenient to t reat S, J, 
and R as fractions, so tha t S +1 + R = 1; this assump-
tion is implicit in the particular formulation above, and 
allows reduction of the apparent 3-dimensional system 
to two dimensions. 

The simplest concept that emerges from the system 
above is that of the threshold transition rate. It is easily 
seen, because S cannot exceed unity, tha t no outbreak 
can occur unless k > b + υ; tha t is, if A: < b + v, the 
number of infectives will decrease monotonically, what-
ever the initial values. This simple concept is of great 
importance to disease management, because it gives a 
measure of the amount by which the transmission of a 
disease must be reduced in order to prevent outbreaks. 

By similar reasoning, one can demonstrate tha t no 
outbreak can occur unless the proportion of susceptibles 
exceeds a threshold value (6 + v)/k. Thus , vaccination 
strategies aimed a t reducing the susceptible population 
below tha t threshold can succeed in the control of the 
disease. Finally, when the threshold condition is ex-
ceeded and outbreaks are possible, the above model pre-
dicts tha t the population will settle down to a situation 
in which a stable fraction (b + v)/k of the individuals 
are susceptible. 

Thus, as with some of the other examples mentioned, 
this example has sufficient reality to motivate the im-
portance of the underlying concepts. More complicated 
versions, for example those tha t incorporate a latent 
period, or different susceptibility classes, or seasonality, 
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can be used to introduce more complicated dynamics; 
and equally importantly, to demonstrate how models 
are used in the investigation of biological phenomena, 
and in the management of applied biological problems. 

D i f f u s i o n P r o c e s s e s 

Finally, the above outline makes a case for the early 
consideration of partial derivatives, and for some discus-
sion of part ial differential equations. In defense of the 
lat ter recommendation, I make reference to the ubiqui-
tous nature of diffusion phenomena in biology. Diffusion 
models have been used successfully to describe the flow 
of heat and materials within animals and plants, the 
movement of solutes in ecosystems, the spread of par-
ticulates from smokestacks, and the passive spread of 
animals and plants. Early applications of these mod-
els addressed the spread of species introduced into new 
habi ta ts , the rates of spread of advantageous genes, and 
the chemotactic movement of bacteria. 

Fundamental work in neurobiology has used diffusion 
models to describe the transmission of neural impulses, 
and basic models in genetics have used diffusion approx-
imations for stochastic processes to determine the gene 
frequencies to be expected under the primary influence 
of random genetic drift. Diffusion-based models have 
been fundamental to the understanding of geographical 
gradients and pat terns in the distribution of terrestrial 
and oceanographic species, and in the frequencies of dif-
ferent genetic types. Finally, some of the most original 
and stimulating models of how development takes place 
have been structured on a discussion of pat tern forma-
tion in systems involving chemicals tha t react with one 
another while diffusing through a medium. Thus, there 
is considerable motivation for including at least an in-
troduction to these concepts in the basic calculus course 
for biologists. 

D e m o n s t r a t i n g R e l e v a n c e 

Although I made specific recommendations concern-
ing topics to be included in a one-year calculus course 
for biologists, my fundamental recommendations con-
cern the objectives of such a course. The primary goals 
of teaching biologists mathematics should be to teach 
them how models can be used in biology and medicine, 
and to introduce them to a broad range of basic con-
cepts even at the expense of training tha t makes stu-
dents facile in performing calculations. 

Too often, the biologist takes calculus as a freshman, 
and has forgotten all tha t he or she learned long before 
graduation from college, primarily because the issue of 
relevance has never been addressed. Our goal in teach-
ing mathematics should be to demonstrate relevance, 
by our choice of topics and examples, by our method of 
presentation, and by our emphasis on concepts. 

T h e primary goals of teaching 
biologists mathematics should be to 
teach them how models can be used 
... even at the expense of training that 
makes students facile in performing 
calculations. 

As biologists so taught realize the importance of 
mathematical concepts, such concepts will become bet-
ter integrated into biological investigations, and ulti-
mately into the teaching of biology. This has occurred 
in some instances, for example in the teaching of enzyme 
kinetics, population genetics, and population ecology; 
but there is considerable potential for improvement. 

Our goal should be to provide biologists with a bet-
ter appreciation and understanding of mathematics and 
models, and thereby to move the subject in the direc-
tion of more quanti tat ive rigor. In my opinion, the fail-
ure to do this in the past has been because we have 
assumed tha t the needs of biologists are identical to 
those of physicists and engineers, and tha t biologists 
are somehow mathematically more backward and less 
quanti tat ive. 

We need to recognize the different nature of the sub-
ject, and to tailor our courses so tha t they are of max-
imal use to the biologist, and can convince the biolo-
gist of the need to think mathematically and rigorously. 
Only then will we have met the challenge facing us. 
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The Matter of Assessment 

Donald W. Bushaw 

W A S H I N G T O N S T A T E U N I V E R S I T Y 

The content of a calculus course, and even the spirit 
in which it is taught , do not exist in isolation. They 
have external associations with prerequisites, courses 
for which calculus itself is prerequisite, applications, the 
Zeitgeist, career plans of students, numbers and quality 
of students, and all sorts of other pressures and con-
straints; about these the aspiring reformer of calculus 
can do little. But things can be done about the choice 
of instructional materials, technological aids, and modes 
of instruction. 

The content and spirit of any course, calculus for ex-
ample, are also commonly associated with many kinds 
of evaluations: of s tudents who want to enter the course, 
of s tudents in the course, of students who have com-
pleted the course, of texts, of teachers, of the content 
and spirit themselves. 

Any . . . r e f o r m should anticipate the 
need to keep the evaluation aspects of 
the new calculus in harmony with its 
intended content and spirit, and 
include ways of meeting that need. 

A reform of calculus that ignores evaluation—that 
a t tempts to put the new wine of a "lean and lively calcu-
lus" into an old bottle made of evaluation techniques de-
veloped, perhaps inadequately, for old courses—is very 
likely to perish. Any such reform should anticipate the 
need to keep the evaluation aspects of the new calculus 
in harmony with its intended content and spirit, and 
include ways of meeting that need. 

For this reason, it is important that anyone consider-
ing calculus reform be aware of some information about 
academic evaluation. The subject is large, and the allot-
ted space is small, so this t reatment is perforce sketchy. 
The most useful part of the essay may be the list of 
references, which provide openings into pertinent parts 
of the li terature. 

A F e w D e f i n i t i o n s 

Talk of evaluation and assessment is very much in 
the higher education air these days, and rightly so. The 
terminology, however, is muddy. In this essay the term 

"assessment" will be taken as generic, and will be meant 
to apply to any systematic procedure for judging the 
quality of an educational process or of the outcomes of 
that process. 

It will be useful for our purposes to identify three 
major forms of assessment: 
• In-course Testing: In-course or final assessment of 

student progress; 
• Teaching Evaluation: Assessment of the quality of 

the educational process, usually by direct observa-
tion in courses; 

• Outcomes Assessment: Assessment of s tudent abil-
ities, a t t i tudes, accomplishments, etc., presumably 
acquired through some specific educational experi-
ence or experiences. 
These three categories of assessment are fuzzy sets. 

For example, a final examination, surely a form of in-
course testing, can also be considered a form of out-
comes assessment. It can also be regarded as a type of 
teaching evaluation: when a whole class's performance 
on a final examination is disappointing, we tend to ask 
ourselves what we did wrong; and examination results 
in multi-section courses are sometimes used quite delib-
erately as measures of the effectiveness of the instructors 
involved. 

I n - c o u r s e T e s t i n g 

The most common type of assessment is in-course 
testing, which uses many devices: graded homework, 
quizzes, examinations, oral presentations, team proj-
ects, term papers, etc. It provides a base for grading; it 
provides students with information about "where they 
stand;" it can provide the instructor with valuable clues 
about individual or epidemic student difficulties; and, 
when properly done, it can provide experiences of much 
intrinsic educational value. Good advice on this subject 
is contained in books like those by Eble [6], McKeachie 
[14], and Lowman [13]; more technical information ap-
pears in such books as tha t by Gronlund [11]. 

T e a c h i n g E v a l u a t i o n 

The purpose of teaching evaluation is to obtain infor-
mation about the quality of instruction in a particular 
class, or by a particular instructor. The two purposes 
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for teaching evaluation most often mentioned are the 
identification of areas where improvement is in order 
and the provision of part of the base for personnel de-
cisions. 

Teaching evaluation is not limited to the use of 
questionnaires to be filled out by students. "Stu-
dent evaluation" can be, and usually is, an impor-
tan t element in teaching evaluation, but the lat ter can 
also include systematic evaluation by colleagues, self-
evaluation (or, bet ter , self-reporting), and assessment 
of student progress—not to mention subjective judg-
ments by administrators, or the venerable supposition, 
still unfortunately current in some quarters, tha t in-
struction is satisfactory unless there is clear contrary 
evidence, e.g., an exceptionally large number of student 
complaints. 

Justice simply cannot be done to some 
"central ideas" ...by using only 
elementary mathematical symbolism or 
multiple-choice responses. Writing is 
often the natural vehicle. 

Teaching evaluation is discussed seriously in a large 
number of articles and several recent books, including 
those by Centra [4] and Seldin [16] and that edited by 
French-Lazovik [9]; see also the recent article by Mc-
Keachie [15]. A report on teaching evaluation addressed 
specifically to instructors of postsecondary mathematics 
is in preparation by a committee of the Mathematical 
Association of America chaired by the author of the 
present paper. 

O u t c o m e s A s s e s s m e n t 

The broadest form of assessment is outcomes assess-
ment, which is usually done for purposes of student cer-
tification, program evaluation and improvement, or ac-
countability to some monitoring agency or to the public. 

Placement testing, as a form of assessment of out-
comes of previous educational experience, really belongs 
here, and in some schools is the most prominent form of 
outcomes assessment. Many of the things that will be 
said about outcomes assessment or assessment in gen-
eral therefore apply also to placement testing, which 
nevertheless will not be emphasized in this paper. 

Outcomes assessment can be performed in many 
ways through a variety of generally available instru-
ments: many placement examinations, GRE general 
tests and subject tests, the Fundamentals of Engineer-
ing Examination (formerly EIT) , the LSAT, the MS AT, 

the C O M P system of ACT, and the Academic Profile 
just now being launched by ETS . There are also locally 
produced written examinations as well as senior theses, 
oral examinations, surveys of graduates, analysis of job 
placement data, and various special ways of assessing 
writing proficiency. 

Until recently outcomes assessment has not been con-
spicuous in higher education, except in areas relating to 
placement, licensing, testing for admission to graduate 
and professional schools, and the like—primarily for the 
benefit of the individual s tudent . 

But in very recent years, part ly in response to 
widespread dissatisfaction with—or at least uncertainty 
about—the quality of higher education, there has been 
an upsurge of interest in "assessment" as a vehicle for 
program improvement or institutional accountability. 
This is often expressed in s tate mandates or in crite-
ria newly adopted by accrediting agencies. "A year or 
two ago, only a handful of states had formal initiatives 
labeled 'assessment. ' Now, two-thirds do" (Boyer [3]). 
Useful information about assessment in this sense is 
contained in the volumes edited by Ewell [8] and Adel-
man [1]. 

B a s i c P r i n c i p l e s 

Although the three major types of assessment are 
usually discussed separately, the li terature presents a 
near-consensus on certain principles that apply to all of 
them, principles based in part on research and in part 
on practical experience and good common sense. Here 
are some of them: 

1. Before any program of assessment is developed, 
that which is to be assessed should be clearly identified. 

In-course testing should really be designed to mea-
sure a t ta inment of class objectives; teaching evaluation 
should not be practiced without some reasonable un-
derstanding (shared by assessors and assessed) on what 
characterizes effective teaching; and outcomes assess-
ment should presuppose some s tandards related to stu-
dent competency. 

An important corollary to this principle is tha t em-
phases in in-course tests should agree with emphases 
in the course syllabus. Tests in a possible new calcu-
lus course that is more sharply focused on central ideas 
and on the role of calculus as the language of science 
should themselves be focused on the same themes. Stu-
dents can learn quickly to give short shrift to "central 
ideas" and "roles" if it is known tha t "central ideas" and 
"roles" do not come up at exam time. Likewise, instruc-
tors in such a course should be evaluated on their ability 
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to teach those things tha t are considered most impor-
tant in the course, and in a manner compatible with 
the intended spirit of the course. Outcomes assessment 
should be conducted under the analogous requirement. 

2. Ideally, an assessment program should be multidi-
mensional. 

For in-course testing, for example, one test is hardly 
ever enough. Even if tests were infallible, as they never 
are, the common practice of giving several tests in a 
course would be methodologically sound as well as hu-
mane. Studies show tha t when there are several tests 
before a final examination, performance on the final it-
self is improved. But there are various kinds of written 
tests, and also such potential assessment devices as as-
signed homework, separate essays, oral exams or inter-
views, evaluations of student notebooks or journals, and 
old-fashioned observation of classroom participation. 

The common view that mathematics should perhaps 
be exempted from the current call for "writing across 
the curriculum" is questionable. Courses such as the 
"lean and lively calculus," where there is to be increased 
emphasis on ideas and decreased emphasis on mere 
memorization of procedures, will be natural settings for 
testing systems that rely not merely on problems with 
numerical answers or multiple-choice questions bu t also 
on writing. 

If writing about mathematics is to be an important 
element of assessment, then it should be an important 
element of the rest of the course. Justice simply cannot 
be done to some "central ideas" of the calculus by using 
only elementary mathematical symbolism or multiple-
choice responses. Writing is often the natural vehicle, 
and its use in a calculus class will be both a contribu-
tion to the improvement of writing skills generally and 
an opportunity to use writing as an effective device for 
learning. See for example Griffin [10], Herrington [12], 
or Emig [7]. 

In any case, a mix of reasonable testing methods can 
be expected to give more valid evaluations, and a richer 
educational experience, than any one of them alone. 

With obvious modifications, the same remarks ap-
ply to teaching evaluation and outcomes assessment, 
where exclusive reliance on one assessment instrument 
or practice is almost always inadequate and is strongly 
discouraged by specialists in these fields. 

3. Assessment instruments should be designed with 
care and if possible checked for validity and reliabil-
ity. When commercially produced instruments are avail-
able, they are often better—and cheaper, all things 
considered—than local productions. 

There is probably no need to dwell on the first of 

these observations; any experienced teacher knows how 
easy it is for something to go wrong in the production of 
a test , and how much damage can be done by a defective 
test. 

To my knowledge, there now exist no generally avail-
able examinations tha t come anywhere near matching 
the vision of calculus emerging from the Tulane confer-
ence. This does not mean tha t there will not be any; 
indeed, the production of such an examination might 
be a good way of redefining tha t vision—of implicitly 
defining its objectives—for instructors and writers. 

Let there be no facile talk about the 
evils of "teaching to the examination." 
If an examination is well crafted, 
...then "teaching to" it can be a very 
good thing. 

And please, let there be no facile talk about the evils 
of "teaching to the examination." If an examination is 
well crafted, and is complemented by other means of as-
sessment in accordance with Principle 2, then "teaching 
to" it can be a very good thing. In general, performance 
criteria—and a good test should be a faithful expres-
sion of performance criteria—should provide guidance 
for the performers as well as for those who are respon-
sible for evaluations of performance. 

4. Finally, ways should be sought to get something 
out of assessment besides ratings or scores of some kind. 

It is a commonplace of the li terature on teaching 
evaluation that teaching evaluation should be coupled 
with a system of faculty development opportunities, so 
when the instructor is found to need improvement in 
some respect, there is a resource through which that 
improvement can be accomplished effectively. As sug-
gested earlier, outcomes assessment is often par t of a 
system of program review and planning and may lead 
to program improvements at tained by diversion of re-
sources or by some other means. Even in-class test-
ing, except perhaps at the very end of a course, should 
help both student and instructor identify weaknesses 
and should provide a base for more effective teaching 
and learning afterwards. 

All three of the major types of assessment tha t have 
been identified, and many of the specific methods of im-
plementing them tha t have been mentioned, with corre-
sponding methods of follow-up, might arise in the devel-
opment of a new or substantially redefined course such 
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as the "lean and lively calculus." Carefully selected as-
sessment methods should be expected to contribute in 
important ways to the educational experience and also 
to the review and continuing improvement of the course. 
Thus anyone who is expected to benefit from advice on 
what forms the new calculus might take and on how it 
should be taught can also be expected to benefit from 
good advice on the assessment activities that go with 
it. 
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Calculus Reform and Women Undergraduates 

Rhonda J. Hughes 

B R Y N M A W R C O L L E G E 

One of the goals of the current initiative to reform 
the calculus curriculum in colleges and universities is to 
make science-based careers more accessible to women. 
Nevertheless, any program for reform should reflect evi-
dence tha t women appear to do as well in calculus, as it 
is now taught , as do men. There is much to be learned 
from the relative success of women in calculus and in 
college mathematics , and this paper will examine ev-
idence for tha t success, offer some explanations for it, 
and explore pedagogical possibilities for preserving that 
success in the midst of major reform of calculus as we 

now know it. 

For most women, enrollment in calculus represents 
survival of their interest in mathematics despite over-
whelmingly negative cues from our culture—women in 
calculus are already going against society's expecta-
tions for them. Statistics indicate tha t for most young 
women, interest in mathematics wanes in the adolescent 
years, and tha t the trend of avoiding mathemat ics con-
tinues throughout high school, accompanied by lower 
SAT scores in mathematics and reduced expectations 
of success in mathematical and scientific endeavors [1, 
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3]. There is some recovery in college (where calculus is 
usually taken), and then the attr i t ion recurs in the grad-
ua te years [2], Any program for calculus reform must 
bear in mind this complicated picture, and take into 
account the strengths and needs of women students. 

The present interest in calculus reform was gener-
ated by a variety of concerns, including the widespread 
use of computers and the instructional possibilities they 
present, the realization tha t other topics might bet ter 
serve the needs of undergraduates, and the failure of 
many calculus courses to capture the interest of stu-
dents. Nevertheless, it is also a reflection of a gen-
eral soul-searching among members of the mathematics 
community. 

T h e r e is considerable evidence, both 
anecdotal and statistical, that women 
are doing well in calculus. 

A study of Undergraduate Programs in the Mathe-
matical and Computer Sciences (1985-86) showed that 
the number of computer science degrees in 1984-85 has 
more than tripled since 1979-80, while the number in 
mathematics and statistics was up only slightly from 
the level in 1980, and below the level in 1975 [4]. In 
a recent report on graduate mathematics enrollments 
by the Conference Board of the Mathematical Sciences 
(CBMS), it was noted that in 1986, 45.8% of graduate 
students enrolled in mathematics (at the top thirty-nine 
institutions) were foreign, as compared with 19.6% in 
1977 [5]. The report s tates tha t "it is clear tha t we 
are failing to a t t rac t many of the very best potential 
[American] mathematicians." The number of Ph.D. 's 
awarded to U.S. citizens has fallen steadily from 774 in 
1972-73 to 386 in 1985-86, while the relative percentage 
dropped from 78% to 51% [6]. In addition, the 1984 
David Report warned that the community faces serious 
and urgent problems of revitalization and renewal, in 
the face of inadequate federal funding [7]. It is only nat-
ural tha t this pressing need for self-examination should 
spawn a movement to rethink and improve the manner 
in which we teach calculus, presently the focal point of 
mathematics education at the college level. 

For those of us who have been concerned for years 
about the failure of mathematics to a t t ract young 
women and minorities, this climate of reform and the 
accompanying flurry of activity is somewhat ironic. In 
the CBMS report, the committee cites a letter from 
one American-born graduate student stating that the 
foreign graduate students form close-knit groups, and 

he has few students to talk with [5]. This form of 
isolation is particularly damaging in the sciences, but 
it is by no means a new experience for women and 
minority graduate students . Indeed, many women I 
have known have experienced the same isolation as the 
above-mentioned American male. Thus the enthusiasm 
of the entire mathematical community for this issue is 
most welcome. As a consequence, calculus may undergo 
rejuvenation in a manner tha t will a t t rac t more young 
people, regardless of sex or race, to careers in mathe-
matics, science, and science-based fields. 

W o m e n S u c c e e d i n C a l c u l u s 

There is considerable evidence, both anecdotal and 
statistical, tha t women are doing well in calculus ( the 
criteria I use to determine that a student is "doing well" 
are grades and continuation in mathemat ics or science 
courses). Indeed, in 1986 46% of baccalaureate math-
ematics majors were women [2]. If calculus were an 
obstacle for women, one would expect the percentage 
of women majors to be somewhat lower. Moreover, the 
attr i t ion tha t occurs at the graduate level, reflected in 
the fact that (in 1986) 35% of mathemat ics master 's 
degrees, and only 17% of Ph.D. 's in mathematics were 
awarded to women [2], can hardly be a t t r ibuted to dif-
ficulties in calculus. A casual survey of calculus grades 
for women and men in several calculus courses taught a t 
a variety of institutions over a ten-year period yielded 
the following data : 

Grade Women Men % Women % Men 

A 50 79 30.67 19.85 
Β 55 106 33.74 26.63 
C 34 112 20.86 28.14 
D 18 57 11.04 14.32 
Ε 6 44 3.68 11.06 

The da ta are from twenty-three first-year calculus 
sections at Harvard University, the University of Ohio, 
Tufts University, Temple University, and Villanova Uni-
versity; the instructors were both women and men. The 
da ta supports in a variety of ways anecdotal impres-
sions that women do well in calculus: more than half 
of the women received A's or B's, and the failure rate 
for women is extremely low. In fact, the women appear 
to do bet ter than the men, although the larger pool of 
men in the sample may account for the let ter 's higher 
failure rate and lower grades. A thorough investigation 
along these lines would be most informative. 

There are several possible explanations for the phe-
nomena observed in this modest experiment. The most 
obvious one has already been mentioned: those women 
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who get to calculus are already somewhat motivated, 
having survived educational and cultural influences tha t 
may have been less than encouraging of their mathe-
matical and scientific interests. The low failure rate 
for women convincingly supports this hypothesis. An-
other explanation is offered by the fact tha t (in 1983) al-
most 60% of college freshwomen who intended to major 
in mathematics reported "A" averages in high school, 
while the corresponding figure for men is about 45% 
[1]; thus, based on high school performance, the women 
in college mathematics courses are as strong as (if not 
stronger than) the men. 

Even the brightest women often 
exhibit a marked lack of self-
conndence, and are disproportionately 
discouraged by setbacks. ...For this 
reason, encouragement and support in 
calculus ...may fuel women students 
for the road ahead. 

A discouraging postscript is tha t despite their mo-
tivation, ability and successful performance, even the 
brightest women often exhibit a marked lack of self-
confidence, and are disproportionately discouraged by 
setbacks; the lack of encouragement at earlier stages 
seems to take its toll. For this reason, encouragement 
and support in calculus are vital elements in counter-
acting the damage that may have already been done, 
and may fuel women students for the road ahead. 

T e a c h i n g M e t h o d s 
The Methods Workshop at the 1986 Tulane Calculus 

Conference offers several goals for Instruction in Cal-
culus tha t involve modifications in both the manner 
in which calculus is taught , and in the course content. 
One of the difficulties cited by this Workshop in teach-
ing calculus effectively is tha t calculus is a "stepchild" 
in many departments , with large enrollments and lim-
ited at tent ion from tenured faculty [8]. These courses, 
given low priority by depar tments or institutions, are 
frequently taught by TA's, instructors, or non-tenured 
faculty. The language difficulties of some foreign TA's 
may exacerbate this problem [5]. 

In my own case I benefitted significantly from what 
might have been the failure of a department to give 
highest priority to the teaching of calculus. Indeed, 
both of my calculus teachers were women, both un-
tenured, and one of them gave me considerable en-
couragement and individual at tention (the classes were 

small—about twenty, as I recall). Alas, for the remain-
der of my mathematical education (nine years worth), 
I did not have another woman teacher. 

Junior faculty often have greater rappor t with stu-
dents than do older faculty, and this can benefit women, 
as well as men. As only about 6% of tenured faculty 
in the mathematical sciences at four-year colleges and 
universities are women [1], as opposed to 15% of all 
full-time faculty [4], a move towards having calculus 
taught by higher-ranking faculty significantly reduces 
the chance of a woman teaching calculus. In fact, pro-
vided TA's can speak English, and have some teaching 
experience, I do not feel tha t their use as calculus in-
structors is bad per se [9]. 

The reformed calculus would be a streamlined course, 
more conceptual, more relevant to real-world problems, 
and taught in a more open-ended, probing fashion than 
current versions [8], These aims are difficult to fault; 
women students are certainly equal to the challenge 
of the "new calculus," and should benefit from these 
changes as much as men students . 

A C a s e S t u d y 

However, as far as women are concerned, changes in 
content may be less crucial than changes in methodol-
ogy. As women progress along the pa th towards more 
advanced mathematics , we know tha t they fall by the 
wayside. Wide-scale change could undo some of the 
subtle positive influence of a successful experience in 
first-year calculus. Therefore, given the conflicting goals 
of smaller classes with more individual at tention, and 
the presence of tenured faculty, I feel there is more to 
be gained by both women and men students from the 
personal at tention smaller classes afford. (An interest-
ing point, made by one of my colleagues, is tha t when 
classes are too small, there may be only one or two 
women, resulting in feelings of isolation by the women 
students. Perhaps the opt imum class size for women is 
somewhat larger than one might expect.) 

When classes are too small, there may 

be only one or two women. ... Perhaps 

the optimum class size for women is 

somewhat larger than one might 

expect. 

A women's college provides a convenient setting for 
considering the effect of various programs on women 
students. Many of the suggestions made by the Tulane 
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Methods Workshop are already in place at my institu-
tion, with varying degrees of success. In spite of our 
small size, we still face many of the same problems in-
herent in a larger institution. (I spent ten of my most 
formative years at a state university, and have experi-
enced some of those difficulties first-hand.) 

For us, a large calculus class has at most sixty stu-
dents. We teach both large and small calculus sections, 
a small section having a maximum of thirty students. 
There is a t present only one course to meet the needs of 
aspiring mathematicians and scientists, as well as those 
of s tudents fulfilling a mathematics requirement. De-
spite the administrat ion of placement exams, a wide 
variation in preparation of the students still occurs in 
the first-year course. The Methods Workshop states 
tha t "it is essential to have an effective diagnostic and 
placement program," and tha t the success of the pro-
posed calculus curriculum hinges on this [8]. We have 
found this goal elusive, for a variety of reasons: (i) over-
prepared students, (ii) underprepared students, and (iii) 
ABT's (All But Trigonometry). 

Students in the first category have already had cal-
culus in high school, in some cases the equivalent of one 
year, but they have not received advanced placement 
credit. Well-meaning advisors who are not mathemati-
cians often project their own uneasiness about math-
ematics onto the students, encouraging them to take 
courses for which they are overprepared. If the student 
is really able, she should be strongly urged to try the 
next course, for the presence of such students makes 
those who have never had calculus (a small minority of 
our students) quite uneasy, with good reason. ( I do not 
remember this being a problem at a state institution.) 

Underprepared students are usually identified by the 
placement exam and enrolled in precalculus, but some 
are only marginally underprepared, or may merely lack 
confidence. We usually send these students to calculus, 
but keep an eye on them for the first few weeks. The 
third category is a subset of the underprepared student, 
and there are usually several such students each year. 

A precalculus course is usually inappropriate, and 
quite boring for most of these students; we do not want 
them to sit through a course waiting for the last three or 
four weeks of trigonometry. In order to deal with this 
problem, we have devised a series of non-credit mini-
courses, taught by a graduate or advanced undergradu-
ate student, tha t treat trigonometry, exponentials and 
logarithms, and other topics in separate two-week mod-
ules. If these are carefully coordinated with the calcu-
lus sequence, a student has the opportunity to brush 
up on material she feels uncertain about, or become 
acquainted with the basics of trigonometry before it 

is introduced in calculus. (The logistics here are dif-
ficult, for trigonometric functions appear fairly early in 
the syllabus). In institutions with teaching assistants, 
the minicourses should be easy to organize. Of course, 
the student doing the teaching should have some ex-
perience, as well as solid evidence of being an effective 
teacher. Even though we have a small s tudent body, we 
are fortunate in usually having such students available. 

Another advantage of manageable class size is tha t 
papers may be regularly graded, providing the valuable 
feedback recognized by the Tulane Workshop as cru-
cial [8]. We employ large numbers of mathematics and 
science students to grade papers for us. For a class of 
sixty students, it is not uncommon for homework to be 
collected twice a week and be thoroughly graded. Since 
homework is generally graded by the s tudent graders, 
I usually give quizzes (I don ' t count them) so the stu-
dents have some idea of how I grade, and what types 
of questions I think are important , before the actual 
exams. 

T h e d i f f e r e n c e between "feedback" and 
"support" is like the difference 
between "eating" and "dining." 

A reasonably successful means of helping s tudents 
in calculus, as well as actively involving mathemat ics 
majors in reviewing courses they have already taken, 
is our Math Clinic. This operation is run solely by 
undergraduate students, on a voluntary basis. They are 
available a couple of nights a week to help students with 
questions about their mathematics courses. Although 
the faculty is occasionally tempted to intervene, we have 
not done so for many years. Directorship of the Clinic 
passes from one student to another, and they do an 
admirable job of keeping the operation afloat. 

C o n c l u s i o n 

These details are offered in the hope tha t they give 
some picture of how calculus is presently managed at 
a small women's college. Roughly 30% of our s tudents 
major in mathematics and science, and most of them 
pass through our calculus course. Nevertheless, far 
more effective than any of these s t ructural aspects of 
our course is the patience, encouragement, and suppor t 
I see my colleagues offering their s tudents . While this is 
easier to do at a small college, I have vivid memories of 
dedicated professors trying to do the same thing with 
classes of one or two hundred s tudents . 

While the MAA report frequently mentions the im-
portance of "feedback," there is virtually no mention of 
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offering support to students who need it, perhaps be-
cause the latter is far more difficult to "package." How-
ever, the difference between "feedback" and "support" 
is like the difference between "eating" and "dining." If 
mathematics as a profession is to recover from its cur-
rent malaise, and the vast untapped resource of women 
and minorities is to be realized to the fullest extent, we 
must allow our students to dine on the fruits of math-
ematics. A "lean and lively" calculus, thoughtfully im-
plemented with the needs of s tudents in mind, could 
well contribute to this goal. 
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Calculus Success for All Students 

Shirley M. Malcom and Uri Treisman 

A M E R I C A N A S S O C I A T I O N F O R T H E A D V A N C E M E N T O F S C I E N C E 

U N I V E R S I T Y O F C A L I F O R N I A AT B E R K E L E Y 

Consider these facts about student achievement in 
mathematics: 

• In 1985 according to the National Research Council, 
31,201 doctorates were awarded by U.S. universities; 
689 or 2.2% of these were awarded in mathematics . 
Of the 689 Ph.D. 's , 15.4% went to women and 34.7% 
to non-U.S. citizens with temporary visas. 

• Not one American Indian or Puer to Rican received 
a doctorate in mathematics in 1985; 7 Blacks and 5 
Mexican Americans received degrees for a total of 12 

doctorates (1.7%) awarded to members of minority 
groups under-represented in science and engineering. 

• Between 1982 and 1983, 2,839 master 's degrees were 
awarded in mathematics , 953 or 33.6% to women 
and 23.2% to non-resident aliens. Minorities—68 
Blacks, 48 Hispanics, and 6 American Indians— 
received 4.3% of the degrees. 

• In 1983, 11,470 bachelor's degrees were awarded in 
the mathematical sciences—629 to Blacks, 27 to 
American Indians, and 253 to Hispanics. Under-
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represented minorities received 7.9% of bachelor's de-
grees in mathematics . 

• In 1985, 23 American Indians, 173 Blacks, 41 Mexi-
can Americans, and 31 Puer to Ricans received doc-
torates in all natural sciences and engineering fields. 
The 268 minority Ph.D. 's (2%) in natural sciences 

and engineering had successfully negotiated the calcu-
lus barrier, as did those persons who received master 's 
and bachelor's degrees in these fields. As the minor-
ity proportion of our school age population increases to 
over a third, our concern must be with the hundreds of 
thousands of capable minority students who are felled 
by the calculus hurdle. 

Those of us who are concerned about increasing the 
diversity of persons involved in science and engineer-
ing in this country and in broadening the pool of talent 
available to an economy based increasingly in science 
and technology must also be concerned about the di-
rection of efforts by the mathematical community to 
reform the calculus. 

Hundreds of thousands of capable 
minority students [are] felled by the 
calculus hurdle. 

As the base for science and engineering, mathemat-
ics holds a unique position among the science and en-
gineering fields; as the base for commerce and trade, 
mathematics holds a unique position in business and fi-
nance; and as the critical filter to an increasing number 
of careers for women and minorities, mathematics also 
holds a unique position in the movement for social and 
economic equity for these groups. 

It is critical tha t the larger social context of educa-
tion, the economy, demographics, and national need be 
factored into what might otherwise be considered just 
an a t tempt by the discipline to reform itself in response 
to a changing intellectual context. 

S o c i a l C o n t e x t for C a l c u l u s R e f o r m 

Mathematicians have been concerned for some time 
about problems tha t have appeared within the disci-
pline: 
• The increasing image of mathematics departments as 

primarily "service depar tments" in mod institutions; 
• The decreasing proportion of students who declare 

an intention to major in mathematics; 

• The decreasing number of bachelor's, master 's , and 
doctorate degrees in mathematics; 

• The decreasing proportion of U.S. citizens among 
those receiving Ph.D. 's in mathematics; 

• The increasing proportion of remedial course work 
being offered in college mathematics depar tments 
and the corresponding decrease in upper-level course 
work in mathematics . 

These and other indicators have led to serious discus-
sion both within and outside of the mathematics com-
munity. The link between these issues and equity con-
cerns have been the subject of discussion at some of the 
highest policy levels. These included discussions by the 
Mathematical Sciences Advisory Commit tee of the Na-
tional Science Foundation and by the 1987 American 
Association for the Advancement of Science (AAAS) 
Congressional Seminar, "Reclaiming Human Talent." 

G u e s s W h o ' s C o m i n g t o C o l l e g e ? 

If one s tar ts to look a t the changing population 
trends in this country, concern about social equity is-
sues in relation to higher education becomes a national 
call to action. Lynn Arthur Steen cites many of these 
trends in his recent Science article [1] "Mathematics 
education: A predictor of scientific competitiveness," 
including: 

• The declining number of 18-24 year olds, the propor-
tion from which the college age population is largely 
drawn. The nearly 30% decline between now and the 
end of the century will take place jus t at the t ime 
large numbers of teachers retire and the baby boom 
echo produces a 30% increase in the size of the school 
age population. Who will teach these children? 

As the critical niter to an increasing 
number of careers for women and 
minorities, mathematics also holds a 
unique position in the movement for 
social and economic equity for these 
groups. 

• The increasing proportion of this school age popula-
tion who are members of minority groups. Accord-
ing to Harold Hodgkinson [2], by around the year 
2000 "Americans will be a nat ion in which one of 
every three of us will be non-white." If we add to 
these groups those others within the society who have 
tended to be less well served by the educational sys-
tem (e.g., women and persons with disabilities), we 
are looking a t over two-thirds of the school popula-
tion. 
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In an issues paper included in The Condition of Ed-
ucation [3], Phillip Kaufman pointed out that a decline 
in the 18-24 year old age group does not automatically 
translate into a decline in college enrollment. He cited 
as evidence the fact tha t the projected decline for the 
1980's did not take place. As a mat ter of fact, college 
enrollments increased in the early 1980's due largely 
to the increase in college going rates by 18-21 year 
olds (mostly among whites) and increased enrollment 
by women, particularly older women. 

Women increased as a proportion of all college stu-
dents, from 49.9% in 1978 to 52.9% in 1985 and ac-
counted for 63.3% of the increase in college at tendance 
between 1978 and 1985. While the proportion of part-
t ime students has remained fairly constant over the 
1978-1985 time period (around 35% of all college stu-
dents) , women's share of part- t imers increased. 

Minority college-going rates have remained stable 
during this time; in the case of Blacks, the rate has ac-
tually declined. American Indian, Black, and Hispanic 
students are more likely to be found in two-year college 
programs than are white s tudents . 

Our national need for scientifically and 
technically-trained talent requires that 
we succeed in addressing the issue of 
mathematics as a gateway or barrier. 

Despite the counter-example that Kaufman cites for 
the nonlinear relationship between 18-24 year old cohort 
size and college enrollment, he concludes that the pro-
jected declines were merely postponed. He suggests that 
while national declines may be moderate, the effects will 
likely be different on different types of institutions. He 
further suggests tha t prestigious institutions with large 
applicant bases and low-priced community colleges are 
less likely to feel the enrollment declines, while all other 
institutions are likely to experience considerable losses. 

The growing minority proportion of the college age 
population must be enabled to grow at least propor-
tionately among the college at tending population or the 
continued existence of many institutions (or the via-
bility of depar tments within those institutions) will be 
seriously jeopardized. 

M a t h e m a t i c s : G a t e w a y or B a r r i e r 

As critical as the question of who is coming to col-
lege is the question of the skills tha t they will bring 
with them. At present, large proportions of American 

Indian, Black, and Hispanic s tudents leave high school 
under-prepared to pursue quantitatively-based fields of 
study in higher education, having neither taken the ap-
propriate courses nor obtained the requisite skills to en-
ter a calculus sequence in college. Young women also lag 
behind young men in high school mathematics course-
taking, but this is largely at the highest level of courses, 
such as trigonometry and calculus. 

Early in the 1970's Lucy Sells coined the phrase 
"critical filter" to describe the overwhelming effect tha t 
mathematics preparation has on the career aspirations 
of women and minorities, especially in limiting their 
participation in careers in science and engineering. Al-
though it was her interest in barriers to careers in sci-
ence and engineering fields tha t led Sells to examine the 
high school mathematics preparation of women and mi-
norities entering the University of California at Berke-
ley and the University of Maryland, she quickly dis-
covered that inadequate mathematics preparation also 
limits participation in other fields as well, such as busi-
ness, architecture, and the health professions. 

The trend is clearly toward an increasing number 
of majors tha t require calculus as an entry ticket: if 
you cannot obtain tha t ticket, an increasing number 
of fields are closed to you. The implications of failing 
go far beyond grade point average or eligibility to play 
sports. And the implications for our national need for 
scientifically and technically-trained talent requires that 
we succeed in addressing the issue of mathematics as a 
gateway or barrier. 

S t u d e n t s Fa i l ing C o u r s e s 

Success in college-level calculus obviously depends 
on the past preparation of s tudents as well as on the 
amount of productive effort tha t s tudents spend on their 
course. The Professional Development Program (PDP) 
at the University of California a t Berkeley has demon-
strated that "good" backgrounds in mathematics and 
"smarts" are necessary but not sufficient conditions for 
success in calculus courses. 

Minority students can be successful in 

calculus. 

By looking a t Asian s tudents a t Berkeley who were 
succeeding, P D P staff could see tha t Black and His-
panic students were employing unproductive behaviors 
in their calculus courses: studying alone without feed-
back from peers, studying for much less time than was 
needed to master the material; passing over material 
tha t they did not understand; and failing to ask for help. 
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With each passing day, such students found themselves 
deeper and deeper in the hole. 

Contrast this with the performance seen after inter-
vention when capable minority students replaced unpro-
ductive study behaviors with productive ones. These 
same minority s tudents succeeded. Berkeley's P D P 
shows tha t minority students can be successful in calcu-
lus. Other examples, such as the extensive participation 
in A P Calculus programs a t mostly Hispanic Garfield 
High School in East Los Angeles, reinforce the lessons 
from Berkeley. There are no inherent barriers to minor-
ity student success in calculus. 

A c h i e v i n g P r o f i c i e n c y 

The key to the success of Berkeley's P D P program 
is the discovery tha t one can promote high levels of 
achievement among Black and Latin calculus students 
by adapt ing techniques being used by Chinese under-
graduates. A significant number of Chinese students 
achieve proficiency in mathematics largely through their 
work in informal s tudy groups. These groups provide 
students the opportunity to discuss with other students 
their mathematics homework and their performance on 
tests and quizzes. 

These discussions accomplish a number of important 
objectives: they provide students with critical feedback 
about the accuracy and quality of their work, and they 
force students to explain to the satisfaction of others, 
how complex proofs were derived or how difficult prob-
lems were solved. 

The process of forming clear explanations was the 
key to the success of these groups: one cannot explain 
a difficult concept to another unless tha t concept is well 
understood. 

The P D P Mathematics Workshop a t tempts to create 
an instructional setting where students would be forced 
to talk with others as they did mathematics . The work-
shops enroll 15-20 undergraduate calculus students who 
are all members of the same calculus lecture section. 
Workshops meet for two hours per day, twice a week. 
Since workshop participants are in the same class, they 
are assigned the same homework, must prepare for the 
same tests, and must struggle with the same material. 
This common experience allows them to ehare a com-
mon foundation for the work tha t they are assigned in 
the workshops. 

The focus for this work is a worksheet—a collection 
of difficult, challenging problems that test skills and 
concepts tha t s tudents must master if they are to be 
successful in later work in calculus. When students ar-
rive a t a workshop session, they are given the day's 

worksheet. Students work alone a t first and then are 
encouraged to share the results of their labors with four 
or five others. 

Those who have successfully completed problems 
must explain to others how a solution or proof was de-
rived. Listeners challenge what they hear and critique 
what has been presented; if the explanation is clear (and 
correct), others in the group will repeat what has been 
said until each person can replicate the steps to a suc-
cessful solution or until a bet ter , more elegant means of 
working with the problem has been discovered. 

A workshop leader—who is usually a graduate stu-
dent in mathematics or physics (or some other quan-
titative field)—is responsible for bo th the creation of 
these worksheet problems and for monitoring the work 
of s tudents in the workshops. The leader walks about 
the meeting room and observes the groups closely, pay-
ing particular at tention to the content of conversations 
students are having. 

These conversations provide important insights into 
the s tudents ' thought processes: they provide a window 
through which one can observe how well or how poorly 
important concepts have been understood. When stu-
dents appear to be "on target" they are left alone with 
their deliberations; when they appear to flounder, the 
workshop leader can intervene. Once on target , stu-
dents re turn to their labors. 

T h e process of forming clear 
explanations was the key ... one cannot 
explain a difficult concept to another 
unless that concept is well understood. 

The workshops provide students with the opportu-
nity to practice skills tha t they are expected to exhibit 
on tests and quizzes; moreover, their practice occurs 
in the presence of a skilled mathematician who is able 
to provide them with instant feedback on their efforts. 
Thus, bad habits can be quickly dealt with and good 
habits can be immediately strengthened and reinforced. 

E x p e c t a t i o n s of C o m p e t e n c e 

An additional, critical feature of the workshop pro-
gram's success is tha t there is no hint of a "remedial" 
focus in any of the work tha t s tudents do. Students 
are encouraged to see themselves as competent and as 
capable of achieving high s tandards of academic excel-
lence. Significantly, the performance of workshop stu-
dents since the program's inception more than justifies 
this assumption of competence. 
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Black students at Berkeley (and in most predomi-
nantly white universities) are at greater risk of aca-
demic failure and are more likely to drop out of col-
lege than any other comparable group of undergradu-
ates. It is particularly significant, therefore, tha t since 
1978 approximately 55% of all Black s tudents enrolled 
in the workshops have earned grades of B- or bet ter 
in first year calculus, while only 2 1 % of non-workshop 
Blacks earned comparable grades. The mean calculus 
grade point average of Black workshop students was 2.6 
(JV=231); the comparable mean for Blacks not in the 
workshop was 1.9 (iV=284). 

During this period, only 8 workshop students in 221 
failed calculus. Comparable failure rates for Blacks not 
in the program were substantially higher (105 of 284 
failed the course). Significantly, the program has had 
dramatic impact on students with a weak foundation in 
mathematics: the mean grade in calculus among poorly 
prepared Black workshop students (students with SAT 
Math scores between 200 and 460) was four-tenths of a 
grade point higher than tha t of non-workshop students 
who entered the university with strong preparation in 
mathematics (SAT Math scores between 550 and 800). 

T h e r e a r e no inherent barriers to 

minority student success in calculus. 

Participation in the workshops was also associated 
with high retention and graduation rates. Approxi-
mately 65% of all Black workshop students (47/72) who 
entered the university in 1978 and in 1979 had gradu-
ated or were still enrolled in classes as of spring semester 
of 1985. The comparable rate for non-workshop Black 
students who entered the university in those years was 
47% (132/281). Of particular significance was the fact 
tha t 44% of the workshop graduates earned degrees in 
a mathematics-based field such as engineering, environ-
mental design (architecture), or one of the natural sci-
ences. Comparable findings have been reported for His-
panic workshop students who appear to have persisted 
in the university and earned grades in mathematics at 
rates tha t are almost identical to those reported for 
Black workshop students . 

C o u r s e s F a i l i n g S t u d e n t s 

Other critical issues in the success of students in 
college-level calculus include the nature of the course 
and the nature and quality of the instruction. There 
has been a tendency to blame lack of success almost 

exclusively on the student . This has been especially 
true for students who are non-tradit ional. While lack 
of background or lack of effort may account for many 
problems, we must a t least consider the possibility of 
the courses failing the student . 

If we look at programs a t the precollege and college 
level tha t promote success in science and engineering 
by minority and women students (including mastery of 
the calculus) we see a number of characteristics emerge 
which suggest lines of inquiry that should be explored in 
any re-examination of the intellectual underpinnings of 
calculus. Unless the restructuring s tar ts with a commit-
ment to results tha t serve all s tudents who are intellec-
tually capable of mastering calculus, the effort may only 
have been an interesting intellectual exercise doomed to 
failure. 

S t r a t e g i e s T h a t S u c c e e d 

Research and experience with special programs tell 
us tha t there are no inherent barriers to success in math-
ematics, science, or engineering by women, minority, or 
disabled s tudents if they are provided with appropriate 
instruction and support systems: 

• High expectations by s tudents and their teachers 
that the student will succeed. There is no "presump-
tion of failure." 

• Presence of a support s t ructure and safety net. 
Bridge programs ready the s tudents for the rigors of 
college-level work, especially in mathemat ics . Diag-
nostic testing identifies problems which are addressed 
in summer programs. Problems in class performance 
are not allowed to snowball but are handled through 
immediate feedback, referral, and tutoring. 

• Capable and appropriate instruction tha t links math-
ematics to science and engineering. Where the rela-
tionship between a science experiment or a design 
problem and the mathematics is made clear, stu-
dents seem to perform better and are more highly 
motivated. Too often the trend has gone in the 
wrong direction—not only a separation of mathemat -
ics from the hands-on activities by faculty in math-
ematics, but also a substi tution of mathemat ics for 
hands-on experience and practical understanding by 
faculty in the sciences. 

• Purpose of instruction is to enable s tudents to suc-
ceed, not to weed them out to reduce the numbers 
in highly-competitive programs. 

• Cooperative learning, peer tutoring, and other forms 
of instruction are utilized, including the use of tech-
nology where appropriate. 
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• A willingness to take students from where they are 
to where they need to be. 

The key to success is to make sure that the learning 
environment can work for them; tha t the real goal of 
instruction is learning; tha t the best possible teaching is 
available at this entry level; t ha t content is tied as much 
as possible to real-world problems as they are likely to 
be encountered, utilizing the tools tha t are likely to 
be available; and tha t the institutions and departments 
are committed to providing the resources necessary to 
support learning. 

One can address the problem of poor precollege 
mathematics preparation by raising entry s tandards, 
by working with precollege-level instructors to improve 
their content-base and instructional abilities, or by ac-
cepting the need to provide remedial instruction on a 
transitional basis until reforms of the entire system take 
effect. Many institutions have chosen the first option, 
preventing contact with the under-prepared. Unless 
changes are insti tuted now, this option may soon be 
unavailable. 

R e c o m m e n d a t i o n s for A c t i o n 

1. Keep in mind the results of research on what it takes 
to help women, minorities, and disabled students suc-
ceed in mathematics . 

2. Start restructuring by considering the needs of those 
students who form the overwhelming majority of the 
future talent pool for science, mathematics , and en-
gineering, even though they have been inadequately 
utilized in the past . 

3. Include in the discussions people who have experi-
enced success in teaching calculus to significant num-
bers of students from these groups. 

4. Recognize the need to build a system of precollege 
instruction tha t supports the reforms of calculus (in-
cluding content, skills, and pedagogy). 

5. Promote dialogue on these issues among mathe-
maticians, mathematics educators, and mathematics 
teachers. 

6. Promote interaction of mathematicians with faculty 
from engineering, physical, biological, and social sci-
ences as well as non-science fields that require calcu-
lus, as a source of real-world problems to be included 
in instruction as well as allies in reconnecting math-
ematics to the other content areas. 

7. Work to change the image of mathematics from tha t 
of a difficult and abstract subject. 

8. Work to change the image of mathemat ic ians and 
other people who use mathemat ics extensively to in-
clude the widest variety of people possible. Be par-
ticularly conscious of the need to show examples 
of people working in groups or as teams to solve 
mathematics-based problems. 

9. Study the structure and promote replication of ef-
fective models such as the Professional Development 
Program of the University of California at Berkeley, 
and successful efforts at women's colleges and minor-
ity insti tutions. 

10. Implement new models which address the serious re-
cruitment and retention issues for mathemat ics ma-
jors, especially among women. When intervention 
programs have been insti tuted to increase participa-
tion of members of under-represented groups in sci-
ence and engineering, they have been found to be 
equally effective and valid for all s tudents . 
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The Role of Placement Testing 

John G. Harvey 

U N I V E R S I T Y O F W I S C O N S I N 

Had I, about 30 years ago, been placed in a state of 
suspended animation when I completed my introduc-
tory calculus courses and had I been revived this year, 
I would be as much at home with the present entry-level 
college mathemat ics curriculum as I a m presently. 

It is t rue tha t as a student I took only two 3-credit 
introductory calculus courses tha t were preceded by a 3-
credit analytic geometry course and that today I teach a 
sequence of three 5-credit introductory courses for en-
gineering, physical sciences, and mathematics majors. 
However, the instructional techniques I used and the 
primary expected outcomes—a repertoire of analytical 
skills and techniques—are about the same. 

In the intervening 30 years analytic geometry, vector 
calculus, multivariable calculus, and elementary differ-
ential equations have joined the s tandard core curricu-
lum and account for most of the increase in the time 
devoted to introductory calculus. But , even as a gradu, 
ate student, I discovered tha t these topics were already 
covered in introductory calculus courses at some uni-
versities. Thir ty years has changed surprisingly little in 
introductory calculus. 

Thirty years has changed surprisingly 
little in introductory calculus. 

In contrast , the introductory curriculum in many 
mathematically related areas has not been static. Af-
ter a stint in suspended animation I would not even 
recognize introductory college courses in physics, chem-
istry, or electrical engineering. In physics these courses 
now include the elements of quan tum mechanics and el-
ementary particle theory; in chemistry they include new 
knowledge about the structure of a toms and the interac-
tion of molecules. And electrical engineering has been 
transformed into computer engineering where there is 
less an emphasis on power and motors and more on 
computer technologies. 

It may be unfair to make these comparisons or to 
conclude tha t introductory mathematics courses need 
changing. After all, what was true 30 years ago in 
mathematics is still t rue. Although new knowledge 
in physics and chemistry has altered our conception 
of those worlds and computer technologies have com-
pletely changed the way electrical engineering is done, 

mathematics describes the world as well today as it did 
then. Perhaps the introductory college mathematics 
curriculum may not need changing—only fine tuning, 
as Sherman Stein's colleagues suggested ([17], p . 167). 
However, most part icipants in the 1987 Tulane Confer-
ence to develop curriculum and teaching methods for 
calculus a t the college level concluded otherwise ([17]), 
and I believe tha t many college faculty agree with them. 

In addition, it seems to me tha t this is a pro-
pitious time to initiate changes intended to improve 
both our entry-level courses and instruction in those 
courses. The cost of computers seems to decline 
steadily; presently, I can do many complex tasks on 
a computer costing less than $4,000 tha t could only 
be done on a computer costing $400,000 in 1977 and 
$4,000,000 in 1967. In addition, calculators are becom-
ing portable computers, are increasingly able, and are 
very inexpensive. (At present the Casio fx-7000G, the 
Sharp EL5200, and the Hewlett-Packard HP-28C can 
be purchased for $55.00, $69.99, and $175.00, respec-
tively.) These tools make it possible for us to forsake 
tables, point plotting, and routine computat ion in fa-
vor of teaching concepts, problem solving, and more 
detailed and more realistic applications. 

C o n f r o n t i n g D i v e r s i t y 

If I had been in s ta te of suspended animation, there 
are a few things tha t I would not recognize. Among 
them are mathemat ics placement testing, remedial 
courses, disproportionately large enrollments in precal-
culus courses, and the (limited) use of calculators and 
computers. Two of these changes—remedial courses 
and precalculus enrollments—are ones tha t most col-
legiate mathematicians view with disfavor. The use of 
calculators and computers is a change tha t many of us 
would like to encourage. Mathematics placement test-
ing may help us to accomplish these goals. 

Colleges and universities now admit a 
m u c h m o r e diverse group of students 

than they did, say, in the 1950's. 

Colleges and universities now admit a much more 
diverse group of students than they did, say, in the 



136 ISSUES: T E A C H I N G AND L E A R N I N G 

1950's. A majority of our students do continue to resem-
ble the college-intending high school senior of the 50's; 
such students are white, from middle-income families, 
have completed a college preparatory curriculum tha t 
includes at least three years of high school English, a 
year of algebra, a year of plane geometry, and possibly, 
a second year of algebra and trigonometry, and enter 
college in the fall of the year they graduate from high 
school. But we also have a large group of students who 
come from minority groups; by the year 2000 they will 
comprise at least 30% of public high school enrollment 
([1], p. 39). In addition, we now have a heterogeneous 
group of non-traditional s tudents . Twenty-nine percent 
of all s tudents enrolled in four-year institutions ([16], p. 
80) are part- t ime students . Other characteristics of our 
non-traditional s tudents are shown in Table 1, adapted 
from Boyer ([1], p . 50). 

Characteristics: Par t -Time Full-Time 

Age: 25 or older 67% 13% 
Dropped out since entering college 58% 16% 
Employed full-time 59% 4% 
GPA of at least Β 6 1 % 55% 

Non-Traditional Students at Four Year Institutions 

T A B L E 1 

As the entering college population became more di-
verse it became difficult (and often impossible) to place 
students accurately in mathematics courses by using ex-
isting da ta such as high school transcripts or grade point 
averages. Da ta about high school mathematics courses 
also proved to be unreliable for s tudents who had re-
cently graduated from high school since these courses 
varied widely in content. As a consequence, it was not 
possible to conclude tha t they had provided adequate 
preparation for college-level courses. Moreover, non-
tradit ional s tudents often remembered little about the 
mathematics courses they had previously taken. 

Faced with rising course dropout and failure rates, 
many colleges and universities introduced mathemat-
ics placement tests. To help colleges and universities 
develop their placement programs, the Mathematical 
Association of America (MAA) established a Place-
ment Testing ( P T ) Program in 1977 administered by 
the Committee on Placement Examinations (COPE) . 
The growth of MAA's P T Program is probably a good 
indicator of the overall growth of mathematics place-
ment testing in the United States; Table 2 indicates the 
number and kind of schools who subscribed to the P T 
Program since 1980. 

Year Total 
Two Year 
Colleges 

Four Year 
Colleges Universities 

1980 129 - - -1981 226 - - -1982 203 - - -1983 295 36 125 134 
1984 327 50 107 146 
1985 321 59 131 97 
1986 301 62 110 96 
1987 379 72 143 119 

M A A P l acemen t Test ing P r o g r a m , 1 9 8 0 - 1 9 8 7 

T A B L E 2 

E f f e c t i v e n e s s of P l a c e m e n t T e s t i n g 

Placement testing programs do seem to be effective. 
I base this conclusion on several kinds of information. 

• Many institutions have well established placement 
testing programs that seem to work well. For exam-
ple, the University of Wisconsin at Madison has a 
placement program tha t is more than 20 years old. 
We use the scores from three tests as the sole source 
of the da ta we use to place s tudents in our entry-
level mathematics courses: intermediate (i.e., high 
school) algebra, college algebra, trigonometry, engi-
neering calculus, and business calculus. 

• Second, a recent survey of subscribers to the P T Pro-
gram indicated tha t 93% of the responding institu-
tions used at least one of the P T P tests for placement 
during the previous year ([3], 1987). Other kinds of 
information were also used: 

1. The number and kind of previous mathematics 
courses (62%), 

2. Grades in previous mathemat ics courses (58%), 
3. SAT quanti tat ive score (39%), 
4. A C T mathematics score (37%), 
5. SAT qualitative score (17%), 
6. High school rank in class (17%), 
7. High school grade point average (14%), 
8. ACT verbal score (8%). 

If these da t a are representative of all colleges and 
universities tha t have a placement testing program, 
then it is clear that placement test scores are the 
most heavily used among the factors most usually 
considered in making placement decisions. 

• Several studies document the effectiveness of place-
ment programs. In a study conducted by the Ameri-
can Mathematical Association of Two-Year Colleges, 
it was concluded tha t the P T Program tests B A / 1 B 
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and SK were "useful placement instruments" [14]. In 
a study conducted at the United States Coast Guard 
Academy [13] it was shown tha t the P T P test CR was 
most highly correlated with grades cadets received 
in the introductory calculus and analytic geometry 
course. 

Finally, in a study conducted at Tallahassee Com-
munity College [2] it was shown that seven of eight 
students who disregarded the placement advice, but 
only nine of 37 students who followed the advice, 
failed to complete intermediate or basic algebra with 
a grade of C or bet ter . 

From evidence such as this, I conclude tha t present 
placement testing programs are successful in helping 
colleges and universities to place students in entry-level 
mathematics courses. However, these placement pro-
grams are based upon present high school and college 
curricula, the instructional techniques used in teaching 
those curricula, the technologies presently utilized, and 
present college and university entrance requirements. 
Thus, any noticeable change in any one of these areas 
may make it necessary—at least, very impor tant—to 
change the placement testing programs. 

C h a n g i n g M a t h e m a t i c s C u r r i c u l a 

Any change in the introductory calculus courses will 
necessitate a change in both college precalculus courses 
and in the high school courses we normally consider as 
prerequisites for calculus: algebra, geometry, and pre-
calculus. This seems clear to me when I examine the 
proposals for change in the report of the Tulane Confer-
ence [11], especially when I consider the history of the 
"new m a th" revolution tha t sprang from the report of 
the College Board's Commission on Mathematics [7]. 

Two sets of recommendations made by Tulane Con-
ference part icipants deal with changes in the content of 
and instruction in introductory calculus. Even though 
these two sets were authored by disjoint groups of con-
ference part icipants, there is remarkable agreement be-
tween them. On the surface the changes suggested by 
these two groups may seem minor and would not ap-
pear to require a noticeable change in the curricula we 
teach or the ways we teach it. However, I believe this is 
not t rue even if the recommendations made about the 
use of technologies are disregarded. 

Both groups suggest tha t a revitalized introductory 
calculus is one (a) in which s tudents see a broader range 
of problems and problem situations, become more pre-
cise in writ ten and oral presentations, and better de-
velop their analytical and reasoning abilities, and (b) 

from which s tudents gain a bet ter understanding of con-
cepts, develop a bet ter appreciation of mathemat ics and 
its uses, and learn bet ter to use mathemat ics resource 
materials ([11], pp. vii-ix, xvi). 

W e a r e not teaching many ... higher-
order skills: the problem-solving 
abilities we teach to and expect from 
students are, generally, ones requiring 
routine application of procedures and 
techniques. 

These goals involve both the teaching and the learn-
ing of higher-order thinking skills and an improvement 
in s tudents ' problem-solving abilities. At present we 
are not teaching many of these higher-order skills: the 
problem-solving abilities we teach to and expect from 
students are, generally, ones requiring routine applica-
tion of procedures and techniques. 

If calculus is revitalized along the line suggested by 
the Tulane Conference, then s tudents will need to enter 
those courses with a bet ter (i.e., higher order) under-
standing of and ability to apply the algebraic, geomet-
ric, and analytical concepts they have already learned. 
Thus, it will be necessary for placement tests to change 
so as to determine if s tudents have met these new pre-
requisites for calculus since at present most placement 
tests examine primarily low-level skills. 

For example, my analysis (see Table 3) of the 
test items on the MAA's P T Algebra and Calculus-
Readiness Tests revealed tha t all of the items tested 
low-level skills: recall of factual knowledge, mathemat -
ical manipulation, and routine problem-solving. 

Algebra Calculus-
Level of Thinking Readiness 

Recall factual knowledge 0 8 
Perform math , manipulations 22 10 
Solve routine problems 10 6 

Classification of P T Program Test I tems 

T A B L E 3 

A revitalized calculus will also require changes in the 
courses prerequisite to it. The changes needed appear 
to be those already endorsed by the National Council of 
Teachers of Mathematics [15] and outlined by The Col-
lege Board [4], [5]), and so it seems possible tha t high 
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school college preparatory courses will change. How-
ever, we will also need to change entry-level college 
courses so tha t they, too, reflect the changed prereq-
uisites for calculus. 

C h a n g i n g T e c h n o l o g i e s 

At the Tulane Conference the Content Workshop rec-
ommended the immediate use of calculators in calculus 
and envisioned tha t a symbolic manipulation calculus 
course would eventually become the norm. It is clear 
tha t if calculators are going to be used in entry-level 
college mathematics courses, then students should be 
able to use them when taking placement tests and that 
the placement tests should be designed for calculator 
use. 

If calculators are going to be used in 
entry-level college mathematics 
courses, then students should be able 
to use them when taking placement 
tests. 

With the financial support of Texas Instruments, 
the MAA Calculator-Based Placement Test Program 
( C B P T P ) Project is presently developing a calculator-
based version of each of the six present P T Program 
tests. The project has progressed far enough to yield 
some results: 

• When a calculator is used during testing, some items 
on present placement tests must be replaced; 

• It is possible to design items tha t test mathematics 
content—not just calculator skills; 

• Use of a calculator can permit expansion of the test-
ing of both higher-order thinking and problem solv-
ing skills. 

The three present C B P T P Project test panels are 
basing their development of "calculator-active" items 
on the assumption that s tudents will have a scien-
tific, non-programmable calculator like the Texas In-
struments TI-30. When it can be assumed tha t s tudents 
in entry-level college mathematics courses actively use 
graphics calculators like the Casio 7000G or the Sharp 
EL5200, or graphics and symbolic manipulation calcu-
lators like the Hewlett-Packard HP-28C, then a next 
generation of placement tests will be needed that accu-
rately reflect bo th the way tha t mathematics is being 
taught and learned and the prerequisites of the courses 
in which students are placed. 

T e s t A d m i n i s t r a t i o n 
As soon as present technologies are bet ter incorpo-

rated into education, they will affect not only the con-
tent but also the administration of placement tests. For 
one thing, it will be easy to produce parallel or equiv-
alent versions of placement tests. To anticipate this 
ability, for the past three years C O P E has been work-
ing on the distractor analyses for each i tem on each test 
in order to describe each multiple-choice response with 
a formula. This makes it possible to develop computer 
programs tha t can, within parameters specified by the 
distractor analyses, randomly generate parallel i tems 
and parallel forms of each of the P T Program tests. 

It is already possible to administer placement tests 
using computers. Indeed, the College Board has devel-
oped the Computerized Placement Tests [6] tha t uses 
a limited, fixed pool of test items; the tests are fairly 
expensive to use. However, it seems unlikely to me tha t 
large colleges and universities will use computer admin-
istration of their placement tests because they need to 
test large numbers of s tudents simultaneously and test-
ing sessions are held only infrequently. 

P r o g n o s t i c T e s t i n g 

In their most recent report , the Carnegie Founda-
tion for the Advancement of Teaching related tha t the 
first problem they encountered was the discontinuity be-
tween schools and colleges ([1], p. 2). According to the 
Carnegie report, school and college educators work in 
isolation from each other, s tudents find the transit ion 
from high school to college haphazard and confusing, 
and there is a mismatch between faculty expectat ions 
and the academic preparation of entering s tudents . All 
of these claims are probably t rue and are already influ-
encing college entrance and placement testing. 

Prognostic testing is one way of 
smoothing the transition from high 
school to college. 

Prognostic testing is one way of smoothing the tran-
sition from high school to college. In a prognostic test-
ing program, college-intending high school juniors are 
given a placement test; based upon the score on tha t 
test, the junior student is given a "prognosis" of what 
mathematics course he or she would enroll in if he or 
she takes no additional mathemat ics courses during the 
senior year and if he or she performs as well on the col-
lege placement test tha t is used to place s tudents into 
entry-level mathematics courses. 
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Prognostic mathematics testing originated at Ohio 
State University (OSU) in 1977 when students in one 
Columbus area high school were tested. In 1985 the 
Ohio Early Mathematics Placement Testing ( E M P T ) 
Program tested 65,217 students in 80% of Ohio's pub-
lic, private, and parochial high schools. Until 1986 the 
E M P T Program only advised students whether they 
would be placed in a remedial course. From 1979 to 
1985, the percentage of the OSU freshman class with 
remedial placement dropped from 43% to 25% [9], The 
E M P T Program, directed by Bert Waits a t OSU, is a 
program of the Ohio Board of Regents; the results of 
E M P T testing are used by all s tate-supported colleges 
and universities in Ohio. 

The results from the Ohio E M P T Program are so 
encouraging tha t several states, colleges, and universi-
ties have s tar ted or are planning to s tar t similar pro-
grams. Similar programs exist in Illinois, Louisiana, 
and Oregon. The University of Wisconsin at Madison 
is planning to initiate a program in 1987. Several states, 
colleges, and universities have contacted C O P E for in-
formation on prognostic testing. 

C h a n g i n g E n t r a n c e R e q u i r e m e n t s 

One response to large remedial enrollments and the 
disparity between faculty expectations and student aca-
demic preparation is to raise entrance requirements. In 
1982, admission requirements were being changed or re-
viewed by the public higher education systems in 27 
states [18]. This change is probably overdue; at present, 
only 67% of ail colleges and universities require any 
mathematics course for admission ([1], p . 88). How-
ever, most s tudents presently entering our institutions 
already exceed any mathemat ics entrance requirement 
we might reasonably impose. Consider these two cases: 

Only 67% of all colleges and 

universities require any mathematics 

course for admission. 

• The University of Wisconsin a t Madison is a re-
stricted admissions university; at present it requires 
entering s tudents to have completed two years of high 
school mathematics—one year each of algebra and ge-
ometry. In order to graduate, Wisconsin students must 
complete an additional mathematics course if they did 
not have two years of high school algebra and a year 
of geometry when they were admit ted. Table 4 shows 
for the years 1985 and 1986 the number of high school 

courses our entering freshmen reported they had taken 
and the entry-level courses in which they were placed. 

College Years of Η . S. Mathematics 
Placement < 2.5 < 3.5 < 4.5 > 4.5 

Inter. Algebra 1985 98 281 452 69 
1986 85 316 397 30 

College Algebra 1985 2 209 1468 580 
1986 0 318 1561 473 

Trigonometry 1985 0 11 185 151 
1986 0 14 225 129 

Calculus 1985 1 17 672 932 
1986 0 14 625 750 

Course P l a c e m e n t of Wiscons in F re shmen 

T A B L E 4 

As is easily seen from these da ta , most University of 
Wisconsin freshmen report tha t they had taken at least 
two and one-half years of mathemat ics in high school. 
Yet in each of 1985 and 1986 a majority of the s tudents 
who had taken a t least three and one-half years of high 
school mathemat ics were placed into intermediate or 
college algebra. 

• Ohio State University is an open admissions univer-
sity. However, da t a from OSU are similar to those from 
Wisconsin. In 1986, 206 OSU freshmen had taken less 
than two years of college preparatory mathemat ics , 478 
had taken a t least two but less than three years, 1615 
had taken at least three but less than four years, and 
4280 students had taken four or more years of college 
preparatory mathemat ics . 

Increasing the mathematics entrance 
requirement may not necessarily 
eliminate the need for remedial 
mathematics courses. 

The placement procedures at OSU assign s tudents 
to one of five placement levels indicating readiness for 
calculus, for precalculus mathemat ics , or for remedial 
mathematics . More than 60% of the s tudents with 
less than four years of college preparatory mathemat -
ics, about 54% of the s tudents with three years of col-
lege preparatory mathematics , and about 86% of the 
s tudents with less than three years of college prepara-
tory mathematics had remedial mathematics placement 
scores [10]. 
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These two cases indicate tha t increasing the mathe-
matics entrance requirement may not necessarily elim-
inate the need for remedial mathematics courses or for 
an effective placement testing program. However, in-
creasing the entrance requirement may reduce the num-
ber of students who end up in remedial mathematics 
courses. 

C o n c l u s i o n 
1. Present placement programs successfully help place 

students in entry-level mathematics courses. 
2. A revitalized calculus will make necessary new place-

ment tests tha t assess higher-order thinking skills 
and problem solving abilities. 

3. A revitalized calculus will make it necessary to re-
vitalize both high school and college mathematics 
courses that are prerequisite to the calculus. 

4. Placement tests will need to be revised in order to 
provide for the use of new technologies in learning 
and teaching mathematics . 

5. Prognostic placement testing of high school juniors 
has shown some encouraging results and should be 
expanded. 

6. Raising college entrance requirements will not change 
the need for an effective placement testing program. 
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Calculus from an Administrative Perspective 

Richard S. Millman 

W R I G H T S T A T E U N I V E R S I T Y 

Unfortunately, what administrators hear are com-
plaints. To be sure there are complaints both enlight-
ened and unenlightened about all subjects. My favorite 
comes from the 1820 letter of Farkas Bolyai to Janos 
Bolyai [3]: 

You should detest it . . . it can deprive you of all your 
leisure, your health, your rest, and the whole happi-
ness of your life. This abysmal darkness might perhaps 
devour a thousand towering Newtons, it will never be 
light on earth . . . . 

This criticism is from a man who studied the inde-
pendence of the parallel postulate and was warning his 
son not to pursue it. Fortunately, like many children, 
Janos didn ' t listen and eventually showed that the par-
allel postulate is independent of the others by finding a 
non-Euclidean geometry. 

Scholars all agree that calculus is a fascinating sub-
ject which has had a profound effect on science in par-
ticular and human intellectual development in general. 
Even the skeptic, Bishop Berkeley [1], said that calcu-
lus " . . . is the general key by help whereof the modern 
mathematicians unlock the secrets of Geometry, and 
consequently of Nature." 

Ever since the inception of calculus, there has been 
and will always be criticism of it from learned individ-
uals and those of lesser intellectual skills. Certainly the 
calculus curriculum is not "devouring a thousand tower-
ing Newtons"—our students are not quite at tha t level 
(at least at public universities). On the other hand, 
many valid discussion points are derived from both the 
informed and uninformed questions which are addressed 
to mathematicians. 

Calculus shows its many faces in different ways, de-
pending upon the angle of the viewer. As em admin-
istrator, as a depar tment chair, and as a professor of 
mathematics , I've seen the subject from different per-
spectives. While mathematicians are well aware of the 
lat ter two viewpoints, it is useful to understand the con-
cerns tha t a dean has with calculus. 

No mat te r what your vantage point, what is ulti-
mately important , of course, is whether the students 
who finish the course understand and retain the mate-
rial well enough to use this knowledge in their future 
work. There are, however, many issues which compli-
cate this primary objective. In my present position as 
a Dean and from discussions with administrative col-

leagues, I have come to appreciate the myriad problems 
which surround calculus, none of which have to do with 
the chain rule, et al. 

An administrative view of calculus should, I believe, 
focus on four areas in this order of priority: 

• quality of curriculum; 

• accountability of the course; 

• a t t i tude of the department; 
• effectiveness/cost of the program. 

Many of the items on this list would apply far more 
broadly than just to calculus. 

Q u a l i t y of C u r r i c u l u m 

First and foremost is the quality of material pre-
sented in the course. I don ' t mean tha t we should react 
to occasional lapses in a professor's response to a max-
imum/minimum question, but rather tha t we need to 
address the problem, when it arises, of long-term pas-
sage of misinformation. Fortunately, this is the aspect 
of calculus tha t is both the most easily monitored and, 
in the unusual event tha t there is a problem, the most 
easily corrected. Mathematics depar tments do this effi-
ciently and well. 

A second point concerning quality is the idea of "re-
alism" in calculus. We have all heard at AMS meetings 
of Professor X who decides tha t differential forms are 
the "only real way" to present integration at the fresh-
man and sophomore level. While my prejudice as a 
differential geometer is in favor of tensor notat ion and 
manipulations, the junior or senior levels would be far 
better for such vigorous pursuits (and I have my doubts 
even there!). 

We need to refrain from teaching "big C" calculus— 
tha t is, calculus for engineers, physical scientists and 
mathematicians—when the audience is business stu-
dents or prospective biologists. This is the notion of 
realism. Can we expect biology majors or business stu-
dents to work hard on subjects tha t they will never use 
and for which they will not have a real appreciation? 

Fortunately we mathematicians have, over the last 
twenty years, realized the error of our ways and split 
calculus into a plethora of different sequences to address 
these mat ters . The lesson is tha t we must listen to the 
advice of our customers. 
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Although the students may think they are the cus-
tomers, it is actually the university who is the consumer 
of the service aspect of any department . It is the uni-
versity faculty who decide whether calculus, physics, or 
chemistry will be required of various majors. University 
faculty members in all disciplines are the ones who need 
to be listened to carefully about what they would like 
in a mathematics course. 

It is not enough for us as 
mathematicians to know that the 
course is a good one—we must be able 
to show it to others. 

To be sure, outsiders may not know the mathemat-
ics tha t we do and cannot dictate to us what is most 
valuable. For example, there may be items they would 
like excluded which are actually prerequisites for other 
subjects tha t they prefer to include. The key point, 
however, is tha t they do have a good feeling for what 
is necessary. They may be myopic, but some myopia is 
not necessarily bad. 

As we design curriculum, we should beware of the 
beast tha t loves to pack courses with "favorite topics." 
(I must confess to feeding the beast on occasion: I can ' t 
seem to get through the entire undergraduate calculus 
sequence without emphasizing the notion of torsion and 
curvature of plane curves. Afeo culpa.) 

During my naive youth, I tried to persuade a group 
of mathematicians tha t conic sections could be learned 
easily by anybody who wanted them in later life and 
were not needed in college calculus. By dropping the 
week devoted to ellipses, parabolas, etc., the calculus 
curriculum would loosen up a bit. Tha t turned out to 
be someone else's favorite topic and I was summarily cut 
off at the knees. Not only do we pack in the number 
of hours, but because our students have trouble with 
a vast amount of the material covered, we are forcing 
many of them into a five-year degree program. 

Changes in student preparation constitute another 
important item. No one can deny that the infusion of 
the "new math" fifteen years ago had a negative effect 
on the competence of mathematics students as they en-
tered college. Whether this should have happened or 
not, whether it is the fault of the high school teacher, 
the math educator or mathematician is no longer rele-
vant. In the short run, we must deal realistically with 
entering students as they present themselves. 

We must understand what these individuals know, 
what they don' t know, and what they are prepared to 
do. As administrators, it is important that we realize 

the various depar tments are well aware of the chang-
ing caliber and preparation of the s tudents for s tudying 
their disciplines. In a nutshell, do these s tudents have 
a chance to pass or are they forced to fail? Because the 
long run problem is so important to calculus, a dean 
would applaud efforts of an academic depar tment (es-
pecially mathematics) to work with middle schools and 
high schools, as well as with the College of Education 
to obtain bet ter prepared college s tudents . 

A c c o u n t a b i l i t y 
It is not enough for us as mathematic ians to know 

tha t the course is a good one—we must be able to show 
it to others. While we may resent this intrusion on 
our expertise there is no longer a choice, especially for 
public institutions. In addition to the administrat ion of 
the university (even from the non-academic side, such 
as Vice Presidents for Student Affairs, University Legal 
Counsel, etc.) there are also legislators who are quite 
concerned with the value of an education. The s tandard 
questions tha t are asked are often naive—sometimes to 
the point of ignorance—but tha t is not the issue. These 
questions must be answered and deserve to be answered. 

One way to respond to the outside pressures on low 
level mathemat ics courses (calculus, in part icular) is to 
ask if the depar tment is willing to consider mastery lev-
els, fundamental learning levels, or exit examinations 
for any of the sequences. For calculus, this could mean 
a modular approach; tha t is, s tudents will go to a cer-
tain level (say the chain rule) and must pass an exam 
on that level before proceeding to the next one. In 
addition, an increasingly popular notion is the "value 
addedness" for all courses of study. Can we really show 
tha t students who have finished the calculus sequence 
with a C know it in enough detail tha t they will be 
able to handle subsequent physics, chemistry, or busi-
ness courses? 

O u r courses must be demonstrably of 
the highest quality. 

I 'm not suggesting tha t we all need to move toward 
these modes of education; I 'm only asking whether a de-
par tment is willing to consider it every once in a while. 
I hope, but am not convinced, tha t adminis t ra tors rec-
ognize the danger of thinking of all innovative changes 
as good ones. Innovation really means tha t something 
is quite new, not necessarily bet ter . On the other hand, 
we do need to be willing to consider al ternate means of 
presenting calculus, even if we are ultimately to reject 
them. Our courses must be demonstrably of the highest 
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quality. ("To be thus is nothing; But to be safely thus." 
Macbeth III, i 48). 

When I 'm asked, as dean, to defend a particular 
instructional decision, it is very useful to be able to 
point to measures of the quality of instruction. Does 
the mathematics depar tment quantify in some fashion 
and adequately reward teaching a t all levels or is there 
merely lip service paid? Is there a mechanism in the 
department to ensure tha t new instructors are teaching 
at an appropriately high level? Are pedagogical articles 
and thoughts rewarded? Of course, the reward for an 
article in a mathematics education journal must depend 
on its quality jus t as tha t for a research article. Just do-
ing something shouldn' t be enough—even deans aren' t 
tha t gross. However, it is important tha t faculty real-
ize tha t good pedagogy in all of its forms is considered 
meritorious. 

A t t i t u d e s 
The next major point is tha t of the a t t i tude of the 

calculus instructors. Students really appreciate an ex-
cited, dedicated teacher in the classroom. If the at t i-
tude is "Calculus is a chore and I 'm here just to get my 
time in so tha t I can look at my advanced courses and 
do my research," the students will complain bitterly, 
with good reason. 

While we rarely learn something new about the sub-
ject of calculus when teaching it, we do discover quite a 
bit about how students think and learn calculus. This 
can be fascinating and is a partial reward for good 
teaching. We do a disservice to both our students and 
our subject when we regard calculus as a chore and 
then compound it by communicating tha t a t t i tude to 
our students. 

Unfortunately, there are many mathematicians who, 
while they enjoy the discipline tremendously, do not 
convey the excitement they feel to their s tudents . One 
can present an exceptionally clear and well thought 
out lecture on trigonometric substitution without be-
ing enthusiastic. Students will learn from such a lec-
ture. However, it is so much better to have presented 
the ideas with a certain panache, so that the s tudents 
can get an idea of why someone might become a math-
ematician (as well as learn the specific calculus skills). 
Certainly the instructors in all disciplines who are the 
most popular with students are those who are the most 
enthusiastic about their teaching. Enthusiasm is con-
tagious. While it won't subst i tute for content, we need 
more excitement in the classroom. 

Unfortunately, these are litigious times in higher ed-
ucation. Thus we must not only t reat all students uni-
formly, but must do so across all sections and show that 

the treatment is indeed homogeneous. This responsibil-
ity usually falls on the depar tment chair, rather than 
any individual instructor, but it is one tha t needs to 
be monitored extremely carefully because of the heavy 
usage of adjuncts, part- t ime people and new faculty. [2] 
Most departments have a common syllabus which is a 
fine first s tar t at a uniform t reatment . Many have com-
mon final exams and a few insist tha t all exams in a 
course be the same across all sections. While the lat ter 
is difficult to administer, the former is not and is an 
excellent way to demonstrate tha t s tudents are treated 
equitably. 

I've learned to loathe any conversation which s tar ts 
with "I was always bad in math , but " The usual 
comments describe how hard mathematics is and how 
it 's not surprising, therefore, tha t little Johnny or Janie 
is having trouble with it . A useful response is to quote 
the international s tudy of high school s tudents [4] which 
deals not only with accomplishments, bu t a t t i tudes . It 
is clear that mothers ' a t t i tudes in J a p a n ("Work harder 
and it will come to you") are quite different than the 
mothers ' a t t i tudes in the United States ("It 's jus t too 
hard for you") . Pointing out the careful research tha t 
has been done through this study helps to enlighten 
people from outside of the physical sciences. They even 
begin to unders tand what a "spiral curriculum" is and 
what its manifold drawbacks are. (One doesn ' t have to 
do differential geometry to have a manifold drawback.) 

E f f e c t i v e n e s s v s . C o s t 
A final point to be made concerns cost analysis of 

the effectiveness of the calculus curriculum. This is not 
meant to be an equation which describes the cost per 
left-handed student credit hour, but rather emphasizes 
that there are real financial implications which come 
not only from class sizes but from grading structures 
and repeat / incomplete policies. Most depar tments do 
not have enough resources to offer the number of sec-
tions that we would like and so need to teach to full 
classrooms. Students who must drop or repeat a class 
or take an incomplete are occupying chairs tha t others 
need. They use up an instructor 's time and effort and 
are detrimental to class morale in the long run. 

Some drop out is certainly unavoidable. On the other 
hand, it severely impacts the faculty work load, both in 
terms of efficiency and in forcing the students into cur-
ricula which are becoming five-year programs instead 
of four. The Accreditation Board of Engineering and 
Technology (ABET) is extremely concerned tha t the 
engineering curriculum is becoming standardized a t five 
years rather than four, even though we all think of it as 
a four-year course of study. 
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The double-hump camel curve for grades happens in 
mathematics , chemistry and physics, but as dean I only 
hear complaints about the mathematics aspect. Why 
is thie? Does it happen at your university? If so, why? 
Answers to such questions would be useful not only to 
mathematicians, but to anyone who has experienced un-
enlightened inquiry from legislators and others. 

Students who must drop or repeat a 
class ...are occupying chairs that 
others need. They use up an 
instructor's time and effort .... 

Changing class size is one way to economize. Wha t 
is the difference between teaching classes of 30, 40, 60 
or 200? I have taught calculus in sections of 40 and in 
sections of 80 and quite frankly I see no difference in 
effort except when grading papers. I do recognize that 
visits outside the classroom to one's office can take up 
an enormous amount of time and many of my colleagues 
have complained about such things. But when teach-
ing large classes, I didn ' t notice any more office visits 
than usual. (Does this mean that s tudents ' visits during 
office hours are not a linear function of students?) 

I am not advocating large lecture sections (in fact, 
classroom structures at some universities would pre-
vent this), but rather that people look carefully at these 
ideas. It is important not to use conventional wisdom, 
but rather to be able to point to various comparative 
studies tha t have been done in the past . While some 
have been done in general, there are none I know of that 
are specific to college mathematics . 

C o n c l u s i o n 
It is increasingly clear that we need to resolve issues 

through a more organized study of them than has been 
done in the past. As resources get tighter, and as leg-
islators look more and more carefully at what we are 
doing, we will no longer have the luxury of saying "It 's 
clear to anybody who knows mathematics that this pro-
cedure is right." This translates into an obligation to 
devote some of our scholarly energy towards mathemat-
ics education at the collegiate level. 

I am delighted tha t the National Science Foundation 
is prepared to infuse money into such efforts. The chal-
lenge to us as mathematicians is to decide what specific 
projects and comparative studies need to be done; to set 
up unbiased studies to explore the issues; and to reach 
some conclusions. The challenge to us as college admin-
istrators is to find the resources to implement conclu-
sions of these studies in a fair and equitable manner. 

The task cannot be left to our colleagues in the College 
of Education or to government bureaucrats . 

A knowledge of the MAA's committee s tructure is 
very useful in this regard. I 'm delighted tha t there 
are subcommittees tha t deal with service to engineers 
(chair, Donald Bushaw), preparat ion of college teachers 
(chair, Guido Weiss), role of part- t ime faculty and grad-
uate teaching assistants (chair, Bettye Anne Case), and 
many others. These committees provide valuable facts 
to quiet some of the criticism tha t we hear. This allows 
mathematicians to cite specific sources when respond-
ing to complaints. We will thus appear to be listening 
carefully, caring and responding in good faith with a 
tremendous spirit of cooperation. I can ' t overempha-
size this point. 

As an administrator I say there's a real world out 
there. As a mathematician I say tha t boundary condi-
tions exist. Whichever way one puts it, the implications 
are that we must work within a certain context, listen 
to people, and present well thought-out responses to 
others ' concerns, whether those concerns be frivolous, 
unenlightened or substantive. 

C a n y o u h e a r the shape of calculus 
from its complaints? "" _ 

In 1966 Mark Kac won a Chauvenet prize for his 
beautifully written paper, "Can You Hear The Shape 
Of A Drum?" This article asked whether you could tell 
what the shape of a domain in Euclidean space was jus t 
by knowing the eigenvalues of its Laplacian. Although 
that problem is unresolved in 3-space, the analogous 
one in our context is clearly false. 

Can you hear the shape of calculus from its com-
plaints? No, absolutely not. W h a t you can hear, how-
ever, are the concerns of people who have spent t ime 
and money in an effort to get a good education. They 
have a right to ask us questions about our calculus cur-
riculum, even if those questions are naive. It is cru-
cial tha t we not only provide our students with a high 
quality calculus experience, but tha t we answer their 
questions in a responsive, thoughtful manner . 

One of the early (1734) critics of calculus, Bishop 
Berkeley [1], asked: "And what are these fluxions? The 
velocities of evanescent increments. And what are these 
same evanescent increments? They are neither finite 
quantities, nor quantities infinitely small, nor yet noth-
ing. May we not call them the ghosts of departed quan-
tities? " To not answer questions carefully is to run 

the risk that we become ghosts of depleted qualities. 
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How can publishers part icipate in and support inno-
vation within the calculus course? I want to examine 
the current state of affairs within textbook publishing, 
giving special at tention to the calculus. By demonstrat-
ing the assumptions and the current s tandards which we 
bring to bear on our editorial actions, we will be bet ter 
able to assess the options open to us—instructors and 
publishers—as we consider ways of providing textbooks 
for emerging, innovative courses. 

Clearly, innovative textbooks will not be published 
in a vacuum, in the hope tha t courses might be coaxed 
into existence by their appearance. With rare excep-
tions, textbooks are adopted by instructors for existing 
courses; instructors do not adapt course outlines to ac-
commodate idiosyncratic textbooks. 

Wha t is both refreshing and challenging about these 
times in publishing is trying to assess the direction of 
change. Publishing is a profession in which informa-
tion is constantly being gathered and evaluated. Edi-
tors work within a strange time system: decisions about 
publishing must be made today, and the outcome of our 
choices or decisions will not become visible for several 
years. Authors , too, are partners in this process of in-
ference making. Correct decisions will result in the pub-
lication of the new generation of authori tat ive mathe-
matics textbooks. The increased national concern for 
the state of mathematics education at all levels, and 
the creation of boards and councils, are very welcome 
signs of the seriousness of these discussions. 

P r e s s u r e for C o n f o r m i t y 

Throughout my twenty years in publishing, the orga-
nization and texture of calculus texts have changed very 
little. And yet, every sales representative and math-
ematics editor will tell you no mathemat ic ian is ever 
pleased with the calculus textbook currently in use. Ev-
ery instructor has a pet topic or two which is not done 
correctly, or a particular notat ion convention which im-
mediately signals the worthiness of a given book. For 
years we have heard dissatisfaction about the s tandard 
books, and yet there has been no radical change in the 
books we are publishing. And, it goes without saying, 
there has been no serious depar ture from the conven-
tional text in adoption pat terns . This stasis is demon-
strated vividly by the fact tha t many of the better-
selling texts are in third, fourth, and fifth editions. 

Quanti tat ive—not qualitative—expansion has been 
the striking change in the past twenty years: there are 
many more calculus texts , and each text is approxi-
mately 1100 pages in length, or greater. When there 
were fewer books, instructors had some familiarity with 
the texts and committees had the time to give care-
ful consideration to the few new texts or new editions 
which were published each year. A text had an iden-
tity, a set of distinguishing features tha t were known 
to instructors. And these characteristics came from the 
background and the interests of the author . Calculus 
texts were relatively easy to rank by a few simple mea-
sures: theoretical or applied; rigorous or less rigorous 
(there were no "short" or easy calculus texts) ; books 
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intended for s tudents in physics and engineering; hon-
ors calculus, and so forth. 

Beginning in the early 1970s, enrollments grew and 
more publishers entered mathematics . The number of 
books published each year increased. With more and 
more calculus texts being published, instructors were 
forced to become more critical of the new entries. After 
all, not even editors spend evenings and weekends read-
ing through introductory textbooks. There was and is 
t remendous selective pressure (to borrow a trope from 
Peter Renz) to converge toward the mean, as estab-
lished by the best-selling books. The successful books, 
after all, passed the scrutiny of the curriculum gatekeep-
ers. Therefore, these texts must be filling the perceived 
textbook needs of the course. It follows that for a new 
textbook to gain a profitable measure of adoptions, the 
new text must come close to the best sellers, and offer 
just a bit more of one feature or another. 

" T h e major revolution in calculus texts 
in the last decade has been the 
introduction of a second color." 

One thing leads to another. If publishers are dissuad-
ing their authors from innovation, because innovative 
books do not sell, what aspects of a textbook can be 
improved upon? Sherman Stein [1, p. 169] character-
ized this dilemma from a calculus author 's perspective: 

It seems that a calculus author has the freedom to 
make only two decisions: Where to put analytic geom-
etry and whether the title should be "Calculus with 
Analytic Geometry" or "Calculus and Analytic Geom-
etry." Thus the major revolution in calculus texts in 
the last decade has been the introduction of a second 
color. 

C o m p e t i t i o n w i t h o u t I n n o v a t i o n 

There are a few other arenas in which authors and 
publishers sought ways to distinguish their books while 
leaving the core calculus content and outline intact. 
These are the very features which, in the end, conspire 
to inhibit innovation and change. Let's examine the 
features which are found described in the promotional 
material announcing a new calculus textbook or revi-
sion. 

The number of exercises has been increased signifi-
cantly, and they now number six to eight thousand. The 
exercises are placed following each major section within 
a chapter, and a review set is found a t the end of each 
chapter. Does anyone actually count the number of ex-
ercises, including the lettered A, B, C . . . , subparts of 

questions? Yes, they do. Is there an opt imum num-
ber of exercises for a text? No, in this dimension of 
textbook making, the guiding rule seems to be tha t one 
cannot have too many exercises. 

W e can give you more book, for more 
money. Not different books: more 
book. 

The same can be said for the number of worked-out 
examples. The range of applications has been widened 
considerably, to include examples drawn from biology 
and economics, for instance. These addit ional exam-
ples are not replacing existing ones from engineering 
or physics. Usually, there are simply more examples 
(and step-by-step solutions) added to each succeeding 
edition. 

Publishers are asking for acceptance for our texts 
from a calculus textbook marketplace which is becom-
ing increasingly crowded, and in which modifying the 
traditional content of the calculus is out of bounds for 
us. And yet the impetus to publish a new text which 
is a commercial success in this lucrative market contin-
ues. Wha t other aspects of a book can be revised and 
improved upon, if the mathematical content must be 
standardized in relation to existing books and course 
outlines? As I mentioned above, we can give you more 
book, for more money. Not different books: more book. 

There have been dramat ic improvements in the num-
ber and quality of the graphics in calculus texts . Almost 
all are done in two colors now, and it won't be too far 
into the future before even more colors will be used. 
The use of two colors and high quality airbrush tech-
niques have resulted in figures of exceptionally good 
quality. This trend towards more and bet ter illustra-
tions will continue. Computer-generated curves are be-
coming routine, and color graphs of functions will soon 
be incorporated into our textbooks. 

The other area in which publishers can modify the 
existing textbook model, without cut t ing into content, 
is by incorporating pedagogical devices. More heads, 
use of margins for key terms, learning objectives and 
summaries, lists of applied examples—all these elements 
are an essential par t of the textbook presentation. 

I have described some dimensions of the textbook-
making process in order to demonstra te several points. 
In an increasingly crowded and standardized publish-
ing marketplace, publishers seek to outdo each other 
and capture your at tent ion and your adoption in ways 
which ensure the preservation of content, in an accept-
able order, and at the same time create some special 
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identity for each book. It is no accident that each of 
the features cited here contributes to a longer, more 
costly book. Herein is our dilemma. 

Ronald Douglas [1, p . 13] s tated the dilemma of 
publishers in these words: "Everyone is dissatisfied with 
the current crop of calculus textbooks. Yet, if an author 
writes and manages to get published a textbook which 
is a little different, most colleges and universities will 
refuse to use it. How can we break out of this dilemma?" 

E c o n o m i c C o n s t r a i n t s 

The current models for calculus publishing have been 
in place for twenty years. Each year brings new books 
and more revisions. In order to break out of this quanti-
tative growth pat tern , two crucial factors must be con-
sidered. First, publishers must be confident that new 
directions in calculus teaching and course organization, 
though many of these courses will be experimental in 
design, will be in place for awhile. Second, no pub-
lisher is going to sponsor the publication of an innova-
tive textbook in calculus tha t demands an investment 
comparable to tha t of a mainstream text. Instructors 
seeking textbooks for their alternative calculus courses 
must be willing to accept a few tradeoffs. The reasons 
for this should be obvious. 

The investment in a mainstream, three semester cal-
culus textbook published in two colors will easily sur-
pass $350,000 before the first copy is off the press. In 
addition, the unit cost for each copy (paper, printing, 
and binding) will be $6.00, average. Given these costs 
for entry into a market, no wonder there is enormous 
pressure to position a textbook close to the center of 
the market. 

There are several means by which publishers can 
respond to the coming evolutionary changes in calcu-
lus. Our strategy for undertaking innovative publish-
ing projects can be stated very directly: publishers will 
sponsor innovative projects intended for modest seg-
ments of an introductory market, but only at an in-
vestment level commensurate with the expected rate of 
return on our investment. 

Publishers and authors now have 

expedient and economical modes of 

production by computer available. 

Publishers and authors now have expedient and 
economical modes of production by computer avail-
able. For the first time we are seeing microcomputer-
controlled laser printing of text pages which are of sat-

isfactory appearance. It is because of this recent de-
velopment that the option of publishing innovative al-
ternatives to the big textbooks is a reality. The com-
puter is having a forceful impact not only on the content 
of mathematics courses, but also on the text materials 
made available for the teaching of these same courses. 

Stephen Maurer was direct in his assessment of pub-
lishers and our willingness to respond to change in the 
curriculum: "It 's no use telling publishers to change 
their ways. They are hemmed in by market forces. We 
must show them tha t a new type of book will a t t rac t a 
market before we can expect them to help." [1, p. 81] 
Publishers are always responsive to numbers, so tha t is 
very sound advice. 

M a k i n g I n n o v a t i o n A f f o r d a b l e 
If we agree that substantial investment is not possible 

for small segments of the calculus market , what custom-
ary features are instructors willing to give up in order 
for a publisher to keep the costs of publishing down? 
Let's look at the potential for changing textbook re-
quirements, along with alternative and more affordable 
modes of book production. 

First, we should not be thinking of new textbooks of 
the same bulk as existing ones. Eleven hundred pages 
is too much, even of a good thing. In addition to be-
ing very selective about what topics to include or not 
(precalculus topics, for instance), an obvious area to re-
alize reductions in page length is to sharply reduce the 
space given to exercises. Does anyone need eight thou-
sand exercises? Most depar tments have exercises on file 
and these can easily be put into an exercise bank on a 
microcomputer. Exercises can be generated as needed. 
This would reduce the publishing costs directly related 
to length. 

Next, are we willing to dispense with the pleasing 
but ultimately excessive use of color in our new genera-
tion textbooks? The preparation of fine line graphics is 
very expensive. And the additional cost of separations 
and two- and four-color printing drives the investment 
in books up, in several ways. Not only are two-color 
books more expensive for artwork and film, but also 
the cost of two-color printing is prohibitive unless we 
do print runs of 7500, 10,000, or more copies. In order 
to justify printing in those minimum quantities, we are 
rapidly depart ing from the realm of "innovative publish-
ing." Can we live with one-color printing, and use the 
flexibility of type styles and sizes currently available in 
many scientific word processing software packages in-
stead of a second color? Imaginative use of different 
type styles and sizes can provide the same visual dis-
tinctions and schemes as two-color type. 
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The next obvious area to look for ways to econo-
mize is in artwork. The average investment in a com-
plex calculus illustrations program is $75,000, for a first 
edition. Substantial savings can be realized if authors 
can provide illustrations which are of reproducible qual-
ity, thus alleviating the need for costly rendering. I 
have seen excellent computer-generated figures in many 
manuscripts. It seems wasteful for publishers to be re-
drawing from perfectly acceptable camera-ready ar t . In 
fact, experienced textbook authors will appreciate the 
precision and control they have over the preparation of 
figures which they generate by computer. 

Eleven hundred pages is too much, 
even of a good thing. 

If we can agree that our innovative texts will not be 
as big as their more orthodox relatives (a virtue in any 
event), if we can be satisfied with one-color printing, 
and if we rely wherever possible on computer-generated 
illustrations, then we are beginning to describe an af-
fordable publishing venture. 

G r a t u i t o u s A n c i l l a r i e s 

What we have not considered are the additional ma-
terials which are par t of the s tandard textbook "pack-
age." You have no doubt noticed the size of the cartons 
which arrive, sometimes unbidden, from publishers. It 
is no longer sufficient to publish only a textbook. So-
called ancillaries provide another means for each new 
or existing textbook to distinguish itself. The devel-
opment, production, and distribution of ancillary ma-
terials for an introductory mathematics textbook can 
represent additional costs approaching $100,000. 

The ancillary or supplementary package consists of 
a complete and a partial solutions manual; a stu-
dent s tudy guide; a computerized testing program; a 
computer-based tutorial program; and overhead trans-
parencies. Most of these items are given free to po-
tential adopters of a text, although the student study 
guides and, in some instances, the student solutions 
guides are sold to students . The free supplements are 
published a t the publisher's expense, usually provided 
for in the marketing budget. This is another stimulat-
ing set of reasons to ensure the standard outline and 
content of the book which stands at the center of the 
book package: the text has a family to support . 

If we can agree to dispense with some ancillary items, 
we will be relieved of one constraint in our budget. 

No one admits to really using the supplements, any-
way. I sometimes have the feeling tha t publishers un-
dertake the production and distribution of supplements 
and other pedagogical aids, in some course areas, on the 
basis of matching other publishers and their packages. 

Presumably, new calculus textbooks will have quite 
distinctive features in terms of mathemat ical content, 
organization, and approach to the subject. Therefore, 
in functional but unadorned book form, instructors will 
be able to see what ' s been done, and either accept or 
reject on those bases. In this more specialized and more 
modest segment of the calculus market , textbook deci-
sions will not depend on such incidentals as the avail-
ability of supplements. 

V i a b l e M a r k e t s 
Reducing the physical requirements of textbooks and 

their a t tendant supplements will remove some of the fi-
nancial disincentives facing publishers, as we consider 
new publications. The wonders and portabili ty of desk-
top publishing provide us with alternative composition 
and sources for accurate line illustrations, tables, and 
graphs. These economies, too, will encourage publish-
ers to enter emerging course areas. 

The question of markets still confronts us, though. 
While the investment facing publishers might be more 
modest, and therefore more at tract ive than undertak-
ing large textbooks, our vision is national in scope. 
In established publishing companies it costs a certain 
amount of overhead just to turn on the publishing ma-
chine. Contributions to operating costs and other ex-
pense requirements preclude our undertaking the text-
book equivalent of vanity publishing. No publisher is 
willing to publish for a single course being offered in 
one college. T h a t kind of limited enterprise does not re-
quire the editorial, production, and marketing resources 
of even a modest-sized college publisher. 

The stability and predictability of s tandard courses 
are two of their assets, in the eyes of publishers. If we 
publish a differential equations text from an engineer-
ing college in the northeast , we can be confident the 
course looks the same in other colleges. One publisher, 
in partnership with an author and several manuscript 
reviewers, can enter a national, coherent market. 

The more cooperation and sharing of ideas tha t ex-
ists among instructors at different colleges, the more 
at tractive such innovative courses will be for publish-
ers. While we all decry the monolithic nature of intro-
ductory textbooks, publication for fragments of small, 
isolated experimental markets is not a viable alterna-
tive. If cooperation among mathematicians helps pub-
lishers identify several, ra ther than many, fragmentary 



L A Y T O N : H I G H S C H O O L P E R S P E C T I V E 149 

proposed future directions in calculus instruction, we 
will be responsive. 

At the outset of this paper I spoke of publishing as a 
data-collecting and data-evaluation business. Publish-
ers are relieved, frankly, to see tha t concerted efforts 
are at work and national commissions are in place to 
support changes in the calculus courses. Too often our 
relations with a discipline are limited to one-on-one ven-
tures with authors, and we have little sense or spirit of 
cooperation with a discipline. 

Some publishers are entrepreneurial risk-takers. 
New, interesting departures from existing textbook 
models do find their way into print, eventually. But tha t 
is a very slow and unpredictable process. Having access 
to the proposed "high-level" information base will be 
of tremendous help to publishers (and authors) in eval-
uating the extent of a potential market for a calculus 
project. 

With access to such data , and a willingness to use 
efficient and economical methods of production, inno-
vative textbooks will be available. The publication of 

innovative alternatives to tradit ional calculus textbooks 
will certainly help the diffusion process for alternative 
approaches to the course. Wi th the right da t a in hand, 
and a moderate investment requirement, publishers will 
be your enthusiastic partners in fostering change in cal-
culus instruction, and publishing. 

Reference 

[1] Douglas, Ronald G. (ed.) Toward A Lean and Lively 
Calculus. MAA Notes, No. 6. Washington, D.C.: Math-
ematical Association of America, 1986. 

J E R E M I A H J . LYONS is Senior Editor at W. H. Freeman 
and Company and Scientific American Books. Previously he 
held editorial positions at Addison-Wesley and PWS Pub-
lishers. He was a member of the Committee on Corporate 
Members of the Mathematical Association of America, and 
is a former chairman of the Faculty Relations Committee of 
the Association of American Publishers. 

Perspective from High Schools 

Katherine P. Layton 

B E V E R L Y H I L L S H I G H S C H O O L 

The population of high school students who are af-
fected by calculus can be broken into three groups: 
mathematics students who take A P calculus, those who 
are enrolled in a non-AP calculus course of some kind, 
and those in the precalculus classes such as second year 
algebra, mathematical analysis, or trigonometry who 
will take calculus at college. 

If a school has an A P calculus program, the students 
enrolled will be the very best mathematics students. 
These s tudents make up the main pool for future math-
ematics majors. Many are already turned onto the ex-
citement and beauty of mathematics . This joy of math-
ematics must be carefully cultivated. These students 
must be nurtured both at the high school and college 
levels. Special consideration should be given to them 
when they enter college. 

At the college level, mathematics departments need 
to seek out these students and give them special coun-
seling to get them properly placed in mathematics in 
their freshman year. Remember, these students have 
come from small mathematics classes where they have 
been nourished and have had much opportunity to in-

teract with their teacher and with each other. Usu-
ally their high school teachers are among the strongest 
teachers in the mathematics depar tment . 

I f a school has an AP calculus 
program, the students enrolled will be 
the very best mathematics students. 
These students make up the main pool 
for future mathematics majors. 

Students enrolled in a non-AP calculus course also 
need special care and careful counseling which leads to 
correct college placement in mathemat ics . They have 
experienced some calculus and may believe they know it 
all; some may become complacent, cut class, and end up 
being unsuccessful. These students need to be reminded 
that at tending class is important and tha t homework 
must be done; they too need the involvement and con-
cern of their professors. 
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I would like to see non-AP calculus courses at the 
high school eliminated and students enrolled in other 
mathematics courses such as probability, statistics, dis-
crete mathematics , or elementary functions including 
an introduction to limits. 

P r e p a r a t i o n for C a l c u l u s 

If the calculus course is to change, then so must the 
precalculus courses. (By precalculus courses, I mean al-
gebra, geometry, advanced algebra, trigonometry, and 
mathematical analysis.) Currently, much of the con-
tent in these courses is geared to preparing students 
for calculus. A large portion of the content is devoted 
to gaining skill in numerical and algebraic operations. 
Students learn much of their mathematics by memo-
rization and may not have had much experience with 
being expected to understand concepts. Instructional 
time is spent on factoring, simplifying rational expres-
sions, graphing, simplifying radicals, solving equations, 
and writing two column proofs. 

How much skill is really needed in these areas in light 
of the new calculators and computer software? Students 
still need some proficiency in numerical and algebraic 
skills and they need some expertise in symbol pushing. 
In order to make the best use of a calculator, s tudents 
need computat ional facility with paper and pencil, and 
the ability to do mental ari thmetic. 

Yet to use a software package effectively, students 
need strong conceptual understandings of the subject 
mat ter and then computers can take care of the me-
chanical details. The question arising here involves one 
of instructional psychology: how much expertise does a 
student need in performing mechanical procedures in 
order to understand concepts and to be an effective 
problem solver? 

U n d e r s t a n d i n g C o n c e p t s 

If the desired products are students who can think, 
who have an understanding of concepts, who have de-
veloped logical maturity, and who have the ability to 
abstract , infer, and translate between mathematics and 
real world problems, then this type of training must 
begin early in their mathematical experience. 

More time in high school needs to be spent on under-
standing concepts, developing logical reasoning, guiding 
s tudents ' thoughts , and helping them develop thinking 
skills. Students need numerical and graphical experi-
ences to help them develop intuitive background. Stu-
dents need guidance and experience with the use of both 
calculators and computers. These tools should be an in-
tegral part of the overall mathematics program. Issues 

of reasonableness of answers, appropriate use of tech-
nology, and round-off errors must be considered. 

In changing the precalculus program, one needs to 
be careful not to overload the courses. Selected content 
must be eliminated if new material is added or if teach-
ers are to teach more for concepts and understanding. 

I believe students need considerable facility with ba-
sic algebraic skills, geometric facts, and numbers facts 
but the time and drill spent in these areas can be re-
duced, as can the current content. Both Usiskin and 
Fey have made suggestions for content in the precalcu-
lus area ([2], [3]). 

A N e w P r e c a l c u l u s C o u r s e 

The current calculus course is too full of techniques 
which students often memorize without understanding 
the fundamental concepts. Changes in calculus will re-
quire and depend upon changes in the precalculus pro-
gram. 

New courses must be constructed that stress devel-
opment of concepts as opposed to purely mechanical 
understanding. Students and teachers will spend more 
time setting up problems, analyzing and interpreting re-
sults, and creating and solving realistic problems. Stu-
dents will have more experiences with estimation, algo-
ri thms, iterative methods, recursion ideas, experimental 
mathematics , and da ta analysis (how to get da ta , what 
do these da ta mean, and how to transform, compare, 
and contrast the da ta) . 

Much more experience with functions will be in-
cluded. Students will consider those given by a formula, 
generated by a computer, and arising from data . There 
will be more emphasis on analysis of graphs. Experience 
with a deductive system will be included. 

While in groups students will have the opportuni ty 
to read about mathemat ical ideas new to them and 
work out problems using these ideas. They need to 
construct examples illustrating concepts and find coun-
terexamples. There should be opportunit ies to solve 
non-standard problems and problems which are multi-
step; these problems must push s tudents beyond the 
blind use of formulas. 

G o a l s of C a l c u l u s 

In the publication, "Toward A Lean and Lively Cal-
culus" [1], there is a s tatement of goals giving competen-
cies with which students should leave first-year calculus. 
These include the ability to give a coherent mathemat i -
cal argument and the ability to be able not only to give 
answers but also to justify them. In addition, calculus 
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should teach students how to apply mathematics in dif-
ferent contexts, to abstract and generalize, to analyze 
quantitatively and qualitatively. Students should learn 
to read mathematics on their own. In calculus they 
must also learn mechanical skills, both by hand and by 
machine. 

As for things to know, students must understand the 
fundamental concepts of calculus: change and stasis, 
behavior a t an instant and behavior in the average, and 
approximation and error. Students must also know the 
vocabulary of calculus used to describe these concepts, 
and they should feel comfortable with that vocabulary 
when it is used in other disciplines. 

Students must understand the 
fundamental concepts of calculus: 
change and stasis, behavior at an 
instant and behavior in the average, 
and approximation and error. 

At the Sloan Conference where these competencies 
were thought through, the content workshop developed 
a suggested calculus syllabi for the first two semesters 
of calculus [1]. This is a course I would like to see 
implemented. However, if a new calculus course is im-
plemented without changes in precalculus courses, then 
the calculus program must place additional emphasis 
on functions, approximation methods, recursion ideas, 
da ta analysis, interpretation of graphs, use of calcula-
tors, developing number sense to recognize incorrect an-
swers, checking answers for reasonableness, and dealing 
with the question of round-off error. Helping students 
to build a conceptual understanding will be extremely 
important . 

S t u d e n t s 

Many students are used to getting through math-
ematics classes by memorizing recipes for doing prob-
lems. These techniques seem easier to them than having 
to reason through a problem using mathematical con-
cepts, i.e., having to think their way through a prob-
lem. They find mathematics difficult and look for an 
easy way out; memorization appears to work. 

Students often are more computer literate than many 
of their teachers. Many will have computers at home 
and will have used some of the mathematics software 
packages. New high-powered calculators will be in the 
hands of many students . Even now students are ques-
tioning the value of learning certain arithmetic oper-
ations since they know their calculators can do them 

more quickly and accurately than they can. Calculators 
capable of displaying graphs were in the classrooms last 
fall and, of course, some students questioned the time 
spent on curve sketching. All this calculator and com-
puter power must be used to make time for a more 
useful, exciting, and relevant mathemat ics curriculum 
for the students . 

P a r e n t s 

Parents also will need to be educated. Many par-
ents were students during the "new ma th " era and may 
have been burned. Others will say " tha t ' s not what 
we learned." Parents have expectations about the skills 
their children should know. The mathematical commu-
nity must convince them tha t it is all right for s tudents 
to use technology wisely and with discretion. 

T e s t i n g 

There are two areas to consider here: teacher-made 
tests and the various kinds of standardized tests. 

Testing influences both student and teacher behav-
ior in the classroom. If s tudents know they will only 
be tested on techniques, they will listen (or day-dream) 
during concept building experiences but will not worry 
about them. When they study for tests, some will 
only memorize procedures and techniques. Currently 
teacher-made tests test mostly techniques or skills. 
These are easier to write, easier to grade, and are the 
types most teachers experienced when they were stu-
dents. 

Students should be tested on the understanding of 
concepts, should be able to explain ideas, and should 
be expected to write about mathemat ics . The difficulty 
of questions should be graded from quite easy to chal-
lenging. Since many teachers use or model their tests 
after tests that come with textbooks, publishers must 
also be educated. Calculator use should be encouraged 
in testing: tests must include questions tha t make good 
use of the calculator. 

Tests that test mostly techniques or 

skills ...are easier to write, easier to 

grade, and are the types most teachers 

experienced when they were students. 

Teachers need to try various forms of testing: s tudent 
portfolios containing work completed, open-ended ex-
ams, take-home exams, open-book exams, group exams, 
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oral exams, and s tandard questions in nonstandard set-
tings, i.e., giving a graphical version of the derivative of 
a function and asking for the graph of the function. 

Standardized tests, as the saying goes, tend to drive 
the curriculum. For the curriculum to change, these 
tests must change too: AP Calculus, Scholastic Apti-
tude Test, College Entrance Examination Board Math-
ematics Achievement Test, National Assessment of Ed-
ucational Progress, American College Test, and s tate 
and local competency tests. When will effective calcu-
lator questions be included on these important national 
tests? 

M a t e r i a l s 

The proposed new courses suggest heavy use of cal-
culators and at least classroom demonstration of com-
puter experiences. The latter necessitates the availabil-
ity of well-thought through and simple-to-use software. 
Teachers want to know quickly how to use a piece of 
software and to know if it is dependable. If something 
goes wrong, instructions for what to do must be clear 
and efficient. Guidelines for use of the software with a 
given topic are also needed. Calculator exercises and 
suggestions for use in discussing a concept and explor-
ing mathematical ideas are needed. 

When will effective calculator questions 

be included on ...important national 

tests? 

I would like to see both computers and calculators 
become an integral part of the curriculum. This, of 
course, implies that appropriate assignments are avail-
able which allow students to use these tools to explore 
mathematical ideas. These materials need to be very 
user-friendly so even the inexperienced student can use 
them with ease. We are concerned here not with teach-
ing how to program the computer but with using the 
computer to teach and explore mathematics . 

Textbooks integrating the technology and stressing 
the concepts approach are necessary. In many states 
the schools must furnish each student with a book free 
of charge. In planning a new calculus program and sug-
gesting changes in the precalculus program, one must 
remember tha t high schools cannot change textbooks 
very often. Most schools are on a four to eight-year 
cycle. 

E q u i p m e n t 
Each student will need a calculator. I would like to 

see a scientific one with graphing capability used in the 

precalculus classes. Calculus s tudents would need one 
with a "solve" key and an "integrate" key. Computers 
need to be available for both classroom demonstrat ion 
and for s tudent use. In addition, a large screen monitor 
is necessary so a class of 30-40 students can see class-
room demonstrat ions of materials on the computer . For 
the most effective use of a classroom tool, a computer 
and large screen monitor should be in each mathemat ics 
classroom. 

I cannot leave the discussion of materials and equip-
ment without stressing the shortage of funds. Mathe-
matics depar tments in many schools cannot afford the 
necessary technology, software, and textbooks. Fund-
ing from industry, business, and s tate or federal gov-
ernments is necessary. 

T e a c h e r s 

Teachers are the key factor in a successful mathemat -
ics program. There are many competent high school 
mathematics teachers doing a fine job with 150 young 
people 180 days a year. Teachers need to be convinced 
tha t a change is necessary and then must be given the 
time, tools, resources, and training to do the job . I have 
been told by many mathemat ics supervisors t ha t high 
school teachers are the hardest to change and are least 
responsive to in-service education. They are reluctant 
to change what they believe has worked. 

Many current teachers were educated in the late '50's 
and '60's, and if my experience is typical, most have a 
pure mathematics background. This early training does 
influence what content they feel is impor tan t . These 
teachers have been teaching for eighteen to twenty-eight 
years. They are committed, experienced, capable, but 
some are very tired! 

T e a c h e r T r a i n i n g 

Teacher training will be a key to success for a new cal-
culus program and precalculus curriculum. In-service, 
summer programs, or college courses available during 
the school year are several ways this training could be 
packaged. California has had considerable success train-
ing teachers during the summer and then using these 
experienced teachers to conduct workshops, speak a t 
conferences, and give in-service programs. Much train-
ing will be needed, not only for the calculus teachers, 
but also for the teachers of the precalculus classes of al-
gebra, geometry, advanced algebra, and trigonometry. 

A good training program requires several features. 
Teachers must be given released time or be compensated 
for at tending; materials and registration fees should not 
come out of their pockets. Courses should be presented 
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by outs tanding teachers familiar with the high school 
environment who are modelling what should happen in 
the high school classroom. 

Teachers need continual support such as monthly 
meetings to share experiences and to discuss what 
works, what does not work, and what went wrong. They 
should have the opportuni ty to observe each other. 
Care needs to be given as to when and where this train-
ing is provided. A late afternoon or evening workshop is 
not always the best experience since teachers are tired 
after teaching five classes during the day and often must 
prepare for the next day. 

Teacher training will be a key to 
success for a new calculus program and 
precalculus curriculum. 

A vital issue is the teachers ' feelings of confidence 
and comfort. This issue must be addressed. If classes 
become more open-ended and more exploratory in na-
ture, teachers will feel less in control and will not always 
be an authority on the topic. There are teachers who 
fear something different or new. They need to be will-
ing to learn with their students and must be given the 
necessary tools and confidence to do so. 

Calculators and computers must become integral 
parts of calculus and precalculus courses; this is not true 
in many schools at this t ime. Often it is not because the 
equipment is not available, but because teachers are un-
trained and thus uncomfortable using the computer or 
calculator. Another critical issue is one of time: teach-
ers rarely have time to find ways to implement use of 
this technology in class. 

T h e r e a r e teachers who fear something 

different or new. 

It is easier to teach mechanical material. It is much 
harder to get s tudents to "think" and understand con-
cepts. It is also easier to write and grade exams test-
ing basic skills. One aspect of "easier" is the issue of 
time: time in class, time to plan lessons, and time to 
write tests. It takes less time in all these areas to deal 
with skills and mechanics instead of concepts. Teachers 
will need guidelines and models for writing new types 
of test questions, and for conducting different types of 
classroom experiences which help in concept building. 

In planning the new curriculum, one must also be 
aware of the quality of people entering the teaching 
profession, since many have weak mathematical back-
grounds tha t need to be strengthened. 

T e a c h i n g 

We want students who can think, reason, apply con-
cepts, express themselves with clarity, and use tech-
nology effectively. To accomplish these goals, s tudents 
need to be given opportunities to talk, write, and think 
about mathematics . 

Students should be expected to read and write us-
ing the mathematics vocabulary of the course. Other 
expectations should include complete and coherent an-
swers which are well thought out, well developed, and 
well written on both tests and homework, and well ex-
pressed in class discussions. Students should spend time 
at the board explaining their work, and there should be 
opportunities for group work. 

As mathematics teachers we need to take responsi-
bility for all aspects of s tudents ' mathematical develop-
ment. We must not ignore algebraic errors when stu-
dents are writing up solutions to mathematical prob-
lems or explaining their reasoning in solving a problem. 
We should not accept sloppy work; we must encourage 
students and work with them to improve their work. 

Problems need to be assigned tha t are thought pro-
voking, not just skill oriented, and tha t require detailed 
answers. These must be graded carefully. In all courses, 
teachers should use a variety of techniques such as con-
crete materials, chalk and talk, group work, computer 
demonstrations, films/videos, games, and discussion to 
help students learn and unders tand mathemat ics . In 
this environment students will put thoughts into words, 
help each other refine answers, and explore ideas. 
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A Two-Year College Perspective 

John Bradbum 

E L G I N C O M M U N I T Y C O L L E G E 

I s tar t from the premise that it is intuitively obvious 
from the most casual observation that both the teach-
ing and learning of calculus is in serious disarray. A fur-
ther premise is tha t if anything of significance, however 
slight, is to be done in the a t tempt to rectify the situa-
tion, then funded pilot projects are a necessary step in 
the process. 

"If you don't know where you are 
going, any road will get you there." 

This paper comments on some of the questions which 
need to be addressed in the design of these projects, of-
fers suggestions of ways that two-year college faculty 
can effectively help in designing and carrying out the 
projects, and makes recommendations on disseminat-
ing the results of the projects in a manner which would 
be useable by the greater mathematics community, es-
pecially by two-year college faculty. 

As a first step, I recommend a complete perusal of 
the report [1] of the 1986 Tulane workshop on calculus 
by anyone interested in joining the trek toward a lean 
and lively calculus. Although this report covers many 
of the questions and ideas that must be considered, I 
shall repeat some of them in this paper as a means of 
further emphasizing them. 

My instructional design professor used to say, "If 
you don' t know where you are going, any road will 
get you there." Where is calculus going? Where does 
calculus fit in the development of mathematical ideas? 
Where does calculus fit in the development of s tudents ' 
mathematical maturi ty? Wha t are the proper service 
functions of calculus? These questions are partially an-
swered in the papers in [1], but I do not feel tha t com-
plete enough answers are given there to move to the 
instructional design stage for calculus. 

T h e R o l e of P r o o f 

The central issue that must be addressed in any re-
form of calculus concerns the nature of proof. Where 
is the development of the idea of the nature of proof 
deliberately emphasized in the sequence of mathemat-
ics courses from beginning algebra through calculus? 
When I took plane geometry as a high school sophomore 

and solid geometry as a high school junior, everyone 
knew that you do proofs in those two courses. It now ap-
pears tha t someone looked a t the titles of those courses 
and decided that since "geometry" but not "proof" is 
in the titles, then proof is not an appropriate topic in a 
geometry course. 

One of the problems we deal with in a t t empt ing to 
teach calculus today is tha t proof is not a par t of most 
s tudents ' mathematical backgrounds. Proof is no longer 
a large part of the geometry course and the algebra 
courses deal not with proof but with manipulative skills. 
The debate over the appropriate level of rigor in teach-
ing calculus needs to be preceded by a discussion con-
cerning whether calculus now represents s tudents ' first 
introduction to mathematical proofs. Certainly some 
proofs are still done in calculus, either using intuitive 
premises or very formally constructed premises. 

I believe that proof is the very essence 
of mathematics. 

I believe tha t proof is the very essence of mathemat -
ics. Many students end their formal mathemat ics train-
ing with calculus or shortly thereafter and the nature of 
proof should be a part of tha t training. As a two-year 
college teacher, I regularly teach all the courses in the 
sequence from basic algebra through calculus. In terms 
of the textbooks available, with the possible exception 
of analytic geometry, I do not see the idea of develop-
ing the nature of proof deliberately being given a high 
priority. 

Since most two-year colleges teach tha t whole se-
quence, such institutions need answers to the question 
of where the nature of proof is deliberately and con-
sciously taught in the sequence. Those answers may be 
contained in decisions on the content and style of the 
calculus or in s tatements about the prerequisite skills 
and knowledge of entering calculus s tudents . However 
the answers are given, whether traditional or newly for-
mulated, we do need them. 

E s t a b l i s h i n g P r i o r i t i e s 

Questions about the role of proof as well as other 
questions raised in [1] need to be answered before de-
sign of instructional content and style for the various 
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projects can begin. Information needs to be gathered 
from various sources, especially about the service func-
tions of calculus. When the questions are answered, 
the expected outcomes of calculus instruction need to 
be clearly prioritized—there are techniques for doing 
that—in order to make the difficult decisions about 
what topics to include or not include, and which ideas 
to give primary emphasis and which to give lesser em-
phasis. 

Another reason for having a clearly prioritized list of 
expected outcomes is that it facilitates the process of 
evaluating the success of the project. The prioritized 
list is also a necessary part of the information to be 
disseminated in follow-up workshops in order for oth-
ers to judge the effectiveness of the instruction and to 
determine if they wish to try the instructional package 
developed in tha t particular pilot project. 

I have been teaching calculus for twenty years and I 
no longer have favorite topics to teach. I have fun days 
in teaching calculus, but I cannot count on any particu-
lar topic being fun to teach on any given day. Therefore, 
I would not argue for inclusion of any topic because I 
enjoy tha t topic, but would rather point to a prioritized 
listing of what calculus is supposed to accomplish. 

Certain topics may be included for completeness, if 
completeness is high enough on the list of outcomes to 
outrank competing topics which meet other outcomes. 
Proof, as I have argued, should have high priority. Since 
most instructors rely heavily on calculus proofs based on 
intuitive premises, the course should also include some 
convincing examples of cases where intuition has led to 
incorrect conclusions. 

S t u d e n t C h a r a c t e r i s t i c s 

Another question which needs to be answered before 
the actual design of the instruction can proceed con-
cerns the prerequisite mathematical skills and knowl-
edge on which the instruction is to be built. Although 
students in calculus have widely differing mathemati-
cal backgrounds, s tudent 's actual mathematical skills 
and knowledge, study skills, and learning skills fit into 
a fairly narrow interval. 

For example, a couple of years ago I was really dis-
appointed in my s tudents ' learning abilities and discov-
ered that my colleagues in other fields agreed that this 
group of students was the worst ever. We assumed that 
the four year schools had dipped lower into the student 
pool to keep their enrollment figures up, leaving less 
able students for the two-year colleges. Yet our regis-
t rar assured me that on paper this was the best group of 
students we had ever had. Realism rather than wishful 

thinking in stating the prerequisite skills and knowledge 
leads to a more effective instructional design. 

I may appear to be pointing an accusing finger in the 
preceding paragraph, but a two-year college mathemat -
ics teacher usually cannot afford such a luxury. We have 
enough students in our calculus classes who have taken, 
at our own schools, the sequence of courses leading up 
to calculus who do no better than the other s tudents 
to keep us from pointing fingers. My earlier suggestion 
that two-year college mathematics teachers can use an-
swers to the questions of where the nature of proof is 
deliberately taught in the sequence of courses also ap-
plies to most questions about the development of basic 
mathematical ideas. 

The characteristic of two-year college s tudents tha t 
is most often mentioned is tha t they tend to be older 
than other lower division undergraduates . Age is bo th 
a blessing and a hinderance: these s tudents tend to be 
more serious about school, but have more responsibil-
ities and demands on their t ime. Consequently, the 
majority of them are par t - t ime. 

Most two-year colleges are commuter schools. These 
two characteristics—part-time and commuter—are the 
variables that most affect instructional planning. Two-
year college students need to plan schedules in advance 
(babysitting, jobs, t ransporta t ion, etc.) and need a 
fairly fixed schedule and fixed time commitment for 
schoolwork for the entire semester. A large indepen-
dent project assigned on short notice shows a lack of 
instructor 's awareness and planning. 

S t y l e a n d C o n t e n t 

Peter Renz' paper, "Style versus Content: Forces 
Shaping the Evolution of Textbooks" [1, pp. 85-100], 
speaks specifically to the important issue of style of in-
struction. Other papers in the same volume speak to 
this issue by discussing sample questions and examples 
used in teaching calculus. The order of topics, for ex-
ample, has a great effect on the instructional outcomes 
and is an important part of instructional design. I have 
seen useable textbooks issued in a new edition with the 
changes consisting primarily of a reordering of topics. 
Many times the new edition is not a workable text even 
though the style of presentation is the same. 

The papers in [1] which deal with the utilization 
of computers and symbolic manipulation packages for 
teaching and learning calculus point out many possibil-
ities for change in calculus instruction. However, care 
must be taken so that the computer does not take over 
the role of performing Mathemagic, tha t is, "snowing" 
the students, which the teacher can too easily do al-
ready. 
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Computers can show many things quickly, but stu-
dents still need t ime to think. They need guidance in 
how to look at computer output jus t as they need guid-
ance in reading mathematics texts. The prioritized list 
of outcomes, the choice of topics selected, and the avail-
ability of hardware and software are the major deter-
mining factors in designing instruction which uses com-
puters in a meaningful way. The first two factors are 
far more important than the third, since hardware and 
software continually change. 

Computers can show many things 
quickly, but students still need time to 
think. 

One needs to exercise caution when deleting topics 
from a course. Most topics originally had valid rea-
sons for being included, although those reasons may no 
longer be apparent from the t reatment of the topic or 
even in the topic itself. One must be aware of the rea-
sons the topic was included in the first place and make 
conscious decisions about those reasons when deleting 
a topic. I give two examples—one from trigonometry 
and one from calculus—to clarify this point. 

In tr igonometry one can be asked to give the value 
of sin (75°) or s in (57r /12) . It is a very simple mat ter to 
get a value by punching a few but tons or, as in my day, 
by looking it up in a table. However, one purpose of 
that type of problem is to give students an opportunity 
to practice with various formulas: 

(a) sin(57r /12) = sin(ir/6 + π /4 ) 

(b) sin(5ir/12) = SHI(2T/3 - τ / 4 ) 

(c) s i n (5T / 12 ) = βΐη(1/2)[5τ/6]. 

In deleting this type of problem from trigonometry, 
one is in effect saying tha t adequate practice is provided 
elsewhere or tha t practicing with these formulas to be-
come better acquainted with them is not worthwhile. 

Techniques of integration is a frequently mentioned 
candidate for deletion from calculus. In terms of its im-
portance to calculus, I agree. However, I have told my 
students for years tha t the real purpose of tha t chapter 
is to sharpen their skills in algebra and trigonometry. If 
tha t chapter is removed, we are saying implicitly either 
tha t other topics provide adequate sharpening or tha t 
s tudents do not need to have their skills in algebra and 
trigonometry sharpened. 

T e a c h i n g 
If one is looking for experienced calculus teachers to 

help in the design and implementation of pilot projects, 

I would suggest a heavy dose of two-year college math-
ematics teachers. Two-year college faculty are first and 
foremost teachers. A typical regular teaching load is 
15-17 hours per semester, often with an overload class 
or part- t ime contract on top of tha t . 

A large number of two-year college mathemat ics in-
structors regularly teach calculus, are conscious of what 
it takes to be an effective teacher, and are willing to help 
improve the outcomes of teaching calculus. In designing 
and implementing different instructional strategies for 
calculus, the knowledge and experience these teachers 
bring to the task is very useful. 

The feedback that experienced teachers can give on 
what is working and what is not working is invaluable 
in revising the material for the second and subsequent 
classes using the material . Sometimes s tudents send 
mixed signals. At that point, decisions about the in-
structional process need to be based on teaching expe-
rience rather than on the mixed signals. 

T w o - y e a r college faculty are first and 
foremost teachers. 

Since teaching is such a large part of the professional 
lives of two-year college instructors, we want teaching 
to go well. We stand ready to help 
• to improve calculus instruction; 
• to select topics and teaching strategies for calculus; 
• to provide feedback concerning new instructional 

packages; 

• to disseminate information about successful pilot 
projects in a useable form. 

The designers of calculus projects need to be very 
careful in the way tha t success is defined. Assuming 
that each pilot project has a prioritized list of expected 
outcomes, such a list for a particular project would be 
used in evaluating the success of tha t project. I strongly 
recommend tha t s ta tements about the success rates of 
students not be included in the definition. The success 
rates of generally ill-prepared s tudents who do not put 
in the necessary study time are not going to change 
dramatically in the short- term, so project success (or 
failure) should not be tied to so insensitive an indicator. 

D i s s e m i n a t i o n 

If calculus is to be reformed, then information about 
successful projects needs to be widely disseminated in 
a useable form. Not every school has to j u m p on the 
calculus bandwagon at the first opportunity. There is a 
small list of particular schools tha t will strongly influ-
ence any change that is proposed. If an overwhelming 
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majority of the schools on the list accept the change, 
then the change will become general and widespread. I 
recommend tha t leaders of this reform movement write 
down their own minimal lists of schools and persistently 
work on those schools to be involved as much as possi-
ble in each step of the development and implementation 
process. 

My hope is tha t many two-year colleges will be ac-
tively involved in the coming changes. Whether a two-
year college is involved in the initial phases or not, it will 
change its calculus content when the schools to which 
most of its calculus students transfer have changed, 
since calculus is clearly in the transfer track. 

Second, as par t of promoting general acceptance of a 
change in calculus and also as a consequence of a general 
acceptance of tha t change, workshops need to be held to 
explain the change in calculus and to explain new ways 
to think about calculus and new ways to teach calculus. 
A final writ ten report for each pilot project is useful in 
spreading the word about the projects. Talks and panel 
discussions about the projects at regional and national 
meetings are helpful in selling the ideas generated by 
the projects. However, I do not feel tha t those types of 
efforts are enough. 

With the heavy teaching load tha t two-year college 
faculty carry, we tend not to be as well read as we 
would like. For us, relying primarily on printed ma-
terial to spread the word is not enough. I recommend 
tha t each funded project contain, as part of the design 

of the project, a workshop component to be used in dis-
seminating information about the project and about the 
continuing results of the project. The workshop com-
ponent needs to be funded in such a way tha t the work-
shop can be given several times in various locations. I 
further recommend tha t the workshops be given at na-
tional, regional, affiliate, and section meetings of AM-
ATYC and MAA. Cooperation of these organizations 
should be readily available. 

I look forward to the improvement of calculus in-
struction over the coming years and to a return to en-
joyment in my own teaching of calculus. 
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Calculus in a Large University Environment 

Richard D. Anderson 

LOUISIANA S T A T E U N I V E R S I T Y 

There is no single large university environment. The 
large university category includes the Harvards, the 
MITs, the Berkeleys, and the Michigans, all with highly 
select s tudent bodies, as well as state universities of the 
South and Midwest with open admission policies. The 
roles of beginning calculus necessarily differ, from those 
of a course by-passed by many students in select univer-
sities to a course for which only a small percent of en-
tering freshmen are eligible as in universities with open 
admission policies. 

But in their lack of initiative for significant educa-
tional reform, the universities of the country are re-
markably similar. Except for the addition of some new 
(optional) topics and the deletion of a few (generally 

harder) technical topics, the mainstream calculus books 
of today look remarkably like those of fifty years ago. 
And yet, in that time frame, the technical and scientific 
world has changed radically. 

There has been one important development in calcu-
lus reform in universities over the past 15 or 20 years, 
namely the growth of non-mainstream courses, e.g., 
business or life science calculus. The 1975 and 1985 Un-
dergraduate Surveys show a growth in the percentage 
of non-mainstream calculus from 22.5% of all university 
calculus enrollments in 1975 to 3 1 % in 1985. The 1970 
Survey did not list such "soft" or terminal calculus at 
all—presumably because it was not yet sufficiently well 
recognized for the committee then in charge to have 
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listed it separately. 
One can conjecture that , in universities, the growth 

in enrollments in calculus courses (or sequences) not 
leading to upper division mathematics played a role in 
reducing the pressure for reform in mainstream calculus 
since it was easier to believe that the engineering and 
physical science students really did need the emphases 
and drillwork of traditional calculus. 

I n t h e i r Jack o f initiative for significant 
educational reform, the universities of 
the country are remarkably similar. 

Large universities share certain characteristics which 
affect their propensities for change in the calculus cur-
riculum. 

• They are big, with multiple sections taught by a wide 
variety of faculty. 

• Calculus is the core of the mathematics service course 
sequences for students of engineering, physical sci-
ences, computer sciences, business, life sciences, and 
mathematics itself. 

• The user faculties on campus are sensitive to any 
changes which run counter to their ideas of what stu-
dents should know. Since they don' t have much oc-
casion to consider details of service course curricula, 
they are inclined to be conservative about calculus— 
what was good for them is good for their students. 
Because they have diverse individual criteria as to 
what is important , any change will step on many 
toes. They are more willing to add new thrusts, 
e.g., linear algebra, to their s tudents ' programs than 
to make hard decisions about dropping old thrusts . 
They almost all find calculus useful as a "screen" in 
winnowing their students. 

R o l e of U n i v e r s i t i e s 

It is important tha t the large university environment 
be a vital part of any efforts to change the nature of 
the teaching of calculus. The universities of our country 
are the focus of a very major part of basic research in 
science, in engineering, and certainly in mathematics . 

They should also be an important origin of educa-
tional innovation. However, the reward system in uni-
versities is such that faculty time and effort spent on 
research totally dominate time and effort spent on edu-
cational reform. And thus educational reform has suf-
fered. Very few faculty have either interest in educa-
tional reform or time for such work. 

There is now much evidence tha t important elements 
of the research community are paying at tent ion to basic 
educational needs. We must all work to see to it tha t 
the initiatives now begun are actively carried through 
at the university level as well as at the college level. 

S c i e n c e a n d E n g i n e e r i n g 

With the help of the engineering community, ever 
present in the university environment and highly cog-
nizant in their own educational programs of the roles of 
technology, we in mathematics have an opportunity to 
ally ourselves to forces of change. It is odd indeed tha t , 
by all accounts, upper division education in engineer-
ing has changed radically in the past third of a century, 
whereas the basic science and mathemat ics courses for 
engineers in the lower division have changed very little. 

From discussions with a number of people in vari-
ous disciplines at various universities, it seems likely to 
me that the engineering community is readier to accept 
changes in calculus induced by the age of technology 
than is the physical science community. While many 
physical science faculty do employ computers in their 
research, the nature of research in the physical sciences 
as well as in mathematics requires individuals to get 
away by themselves in order to think. 

Upper division education in 
engineering has changed radically in 
the past third of a century, whereas 
the basic ... mathematics courses for 
engineers in the lower division have 
changed very little. 

Much of tha t process in mathematics , a t least, in-
volves conjecturing, drawing pictures, and trial-and-
error methods and generally these require paper and 
pencil activities. Wha t we seek in calculus for the next 
century is a balance between the old and the new: pa-
per and pencil activities to assist in understanding and 
in problem solving but not in routine computat ions or 
algorithmic processes bet ter done by computers and cal-
culators. 

The coming reformation of calculus in large universi-
ties is complicated by the fact tha t there are many local 
fingers in the pie. Engineers, computer scientists, physi-
cal scientists, life scientists, and business administrat ion 
people as well as mathematicians all have their own spe-
cial and differing needs for calculus level courses. Cal-
culus is the dominant introductory mathematics course 
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for s tudents in the first two years in these various dis-
ciplines. 

Technology has brought great changes in the way 
mathematics is used in the work place, away from pa-
per and pencil procedures toward the use of calcula-
tors and computers . Symbolic manipulation and com-
puter graphics are not only changing the way engineers 
and others use mathematics in the work place, but 
they clearly will force major changes in university level 
calculus—students ' first step on the access route to the 
work place. 

T h e rote algorithmic paper and pencil 
procedures which have been ...largely 
unchanged in calculus over the past 50 
years, at least, are irrelevant in terms 
of even current work place use. 

The rote algorithmic paper and pencil procedures 
which have been developed over the past century-and-
a-half and have been largely unchanged in calculus over 
the past 50 years, a t least, are irrelevant in terms of 
even current work place use. Tha t does not say that 
the concepts and ideas of calculus are irrelevant, but 
only tha t we must design our educational practices in 
calculus to conform to s tudents ' future needs, both in 
the post-calculus learning environment and in the fu-
ture work place. 

C a l c u l u s in U n i v e r s i t i e s 

The 1985-86 Survey on Undergraduate Programs in 
the Mathematical and Computer Sciences [1] reveals 
much background statistical da ta on calculus in univer-
sities. Although the "university" category used there is 
from Department of Education lists not identical with 
AMS Group I, II, and III Institutions, percentage fig-
ures for enrollments, faculty and teaching phenomena 
are close to those applicable for any reasonable defini-
tion of "large universities." The da ta is for calculus 
taught in mathematics depar tments in the fall term of 
1985 and include enrollments in the first, second, or 
third terms in the engineering and physical science cal-
culus, and in the business and life sciences calculus. 

In universities 40% of all undergraduate mathemat-
ics enrollments are in calculus, with a 27% to 13% split 
between engineering-physical science calculus to busi-
ness and life-science calculus. 72% of all mathematics 
enrollments at the calculus level or above are in calculus 
itself; 8 1 % of all such enrollments are in calculus or its 

natural successors, i.e., differential equations, advanced 
calculus, and advanced mathematics for engineers. 

Thus calculus is overwhelmingly the dominant math-
ematics course taken by undergraduate s tudents in uni-
versities. Total enrollments in calculus as well as total 
undergraduate mathematics enrollments in universities 
were essentially unchanged from 1980 to 1985. 

In university calculus courses, approximately 38% of 
all s tudents are taught in sections of under 40, 20% in 
sections of size 40 to 80, 12% in lectures of more than 
80 without recitation sections, and 29% in lectures of 
more than 80 with recitation sections. (The remaining 
1% are taught in self-paced or other format.) Only 5% 
of calculus sections in universities have any required 
computer use. 

The average age of the full time university math-
ematics faculty is 44 with 65% over age 40 (up from 
45% in 1975). 90% of all full time mathemat ics fac-
ulty in universities have doctorates, 63% of whom are 
tenured. Presumably almost all of the non-doctorate 
full time faculty would teach only courses below the 
calculus level. 

In universities ...72% of all 

mathematics enrollments at the 

calculus level or above are in calculus 

itself. 

No specific da ta is available from the Survey on the 
percentage of calculus sections taught by teaching assis-
tants , but anecdotal information suggests that whereas 
teaching assistants teach about one-fifth of all sepa-
rate university sections in mathematics , the majority 
of these sections are at a level below calculus. In many 
universities, only select advanced graduate students are 
assigned calculus-level courses. However, there are a 
few (selective) major s tate universities with very lit-
tle course load below the calculus level; at such places, 
teaching assistants teach much of the introductory cal-
culus sections. 

W h a t D o S t u d e n t s L e a r n ? 

Student learning procedures consist primarily of 
working textbook problems—usually several or many 
of the same sort—following model procedures given in 
the textbook or by a teacher. Thus students learn vari-
ous paper-and-pencil algorithms for producing answers 
to special types of problems. They customarily read the 
text only to find procedures for working such problems. 
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Almost no student below the Α-level (and few A stu-
dents) can cite, much less accurately s ta te , and even less 
prove, any of the theorems related to elementary calcu-
lus. Student dependence on memorized procedures to 
produce answers follows a similar pat tern of learning 
in pre-calculus mathematics . In calculus, however, it 
requires much wider and more readily recalled back-
ground information, primarily from algebra, trigonom-
etry, and elementary functions. 

Almost no students below the A-level 
can cite, much less accurately state, 
and even less prove, any of the 
theorems related to elementary 
calculus. 

The intellectual achievement for most students in 
learning calculus is, nevertheless, considerable. They 
have had to learn about new concepts much more 
rapidly than in earlier courses, and they have had to 
develop command of a wider and more diverse "bag 
of tricks." They have learned to solve problems from a 
variety of geometrical and physical applications. Unfor-
tunately, many of the tricks in the calculus bag appear 
irrelevant in an age where the computer and the calcu-
lator are rapidly replacing paper and pencil as the tools 
of the trade. 

R o l e s of C a l c u l u s 

In considering any significant change, much less a 
reformation of calculus, it is important for all to keep in 
mind the various roles traditionally played by calculus 
in our universities. We should not, unwittingly, reform 
calculus without taking into account the many useful 
by-products of the study of calculus. Here are some 
roles to keep in mind. 

• Calculus embodies a unity and beauty as one of 
the great and useful intellectual achievements of 
mankind. However, many current courses pay only 
lip service to these aspects of calculus. In reforming 
calculus, we should overtly seek to acquaint all stu-
dents with the unity, beauty, and power of calculus. 

• Calculus represents modelling of a mathematical sys-
tem with a richly diverse set of applications; physi-
cal, geometric, biological, and managerial. Calculus, 
together with the real number system on which it is 
based is, along with Euclidean geometry, an ultimate 
mathematical model. 

• Calculus as currently taught has been the course in 
which most engineering and physical science students 

really learn algebra and trigonometry: algebraic top-
ics are used and reviewed until they come together 
as necessary background for a new and more pow-
erful subject. In the age of symbolic manipulat ion 
and computer graphics, we must seek to identify and 
strengthen those aspects of calculus as well as those 
aspects of algebra and trigonometry which will be 
important in the work place of the future. 

• With its many graphical representations, calculus 
has been a rich source for the (further) development 
of s tudents ' geometric intuition. Along with geomet-
ric aspects of linear algebra, introductory multivari-
ate calculus offers vital exposure to three and higher 
dimensional geometry. 

Calculus as currently taught has been 
the course in which most engineering 
and physical science students really 
learn algebra and trigonometry. 

• Calculus has been the mathemat ical and intellectual 
screen by means of which students in engineering, in 
the sciences, and in mathemat ics are judged as ready 
for more advanced work. It is "the universal prereq-
uisite." Both the rapid assimilation of new concepts 
and the control of a broad framework of background 
information required in successful s tudy of the calcu-
lus are s tudent experiences involving characteristics 
which are manifestly important for further study. 

F o r c e s A g a i n s t R e f o r m 

Inertia. One should never underest imate the inert ia 
and resistance to change in a large system. The edu-
cational system is naturally conservative, with all uni-
versities structured along traditional depar tmental and 
college lines. Significant changes affecting introductory 
courses like calculus which are prerequisite to almost all 
courses in both mathematics and user disciplines must 
have at least grudging approval of most or all of the 
departments and colleges concerned. 

For example, even interchanging the order of intro-
duction of topics has great implications for normally 
concurrent physics courses. Thus any major changes 
in emphasis in calculus must be carefully planned and 
coordinated with user depar tments . 

Tradition. Virtually all current mathematic ians and 
users of mathemat ics have grown up with a calculus 
course largely unchanged in both content and presenta-
tion over at least the past half-century. There have been 
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cycles of relative emphasis on proof and of varying or-
ders of presentation of topics but , by and large, student 
learning has been almost totally involved with repetitive 
use of paper-and-pencil processes for producing answers 
to special types of problems. Based on earlier mathe-
matics experiences, s tudents , mathematics faculty, and 
user faculty expect s tandard skills and judge success or 
failure by a s tudent 's ability or inability to work special 
types of problems. In my experience, when questioning 
users OT mathematic ians about the content of calculus, 
there is strong instinctive reaction to judge as important 
those topics the faculty were taught and were successful 
in learning (or, for mathematics faculty, in teaching). 

Qualifications and Attitudes. The bulk of students 
taking calculus in universities are taking it as a means of 
gaining access to other subjects. Their primary concern 
is to get through the course with the least diversion from 
their other interests. 

Virtually all current mathematicians 
and users of mathematics have grown 
up with a calculus course largely 
unchanged in both content and 
presentation over at least the past 
half-century. 

Furthermore, most have achieved what they have 
by working lots of problems by memorized paper-and-
pencil algorithmic procedures following textbook or 
teacher examples. Their natural inclination is to want 
more of the same. They don' t want to be shown more 
than one way to do a problem, they don' t want to know 
why but only how, and few of them have been exposed 
to problems about which they need to think hard or 
long. 

Many have not learned how to read the text ex-
cept to follow the step-by-step illustrative examples. 
Many have difficulty even reading the word problems. 
A change to conceptual calculus with a downplaying of 
formal paper-and-pencil procedures will run into stu-
dent resistance and must be phased in with companion 
changes at the school level. 

Textbooks. Texts are writ ten and published to be 
sold. They represent the publishers ' views of what the 
teaching community wants. Thus current texts cover 
a wide variety of topics (for faculty choice) and have 
pages of s tandard, similar problems, following illustra-
tive examples. 

Texts are frequently adopted via committee recom-
mendation, with committees looking for "teachable" 
books, those similar to ones liked in the past and those 
consistent with somewhat tradit ional values. New texts 
with radical changes only rarely get adopted, thus au-
thors don' t write them and publishers don ' t publish 
them. 

There is uncertainty among us and among many of 
our colleagues about what topics are important in cal-
culus for tomorrow and also uncertainty about the need 
for gradual continuing change after an initial "reforma-
tion." We do not yet understand how completely or 
rapidly symbolic manipulation and computer graphics 
will effect either societal use of calculus or the teaching 
of calculus nor, at an even more fundamental level, do 
we understand which aspects of calculus will turn out to 
be most important for users in the evolving and forever 
changing age of technology. 
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A Calculus Curriculum for the Nineties 

David Lovelock and Alan C. Newell 

U N I V E R S I T Y O F A R I Z O N A 

There is little disagreement with the premise that 
the mathematical fluency of our educated population is 
near an all time low. More serious than the lack of gen-
eral literacy is the fact tha t America is not producing a 
generation of s tudents who will become the mathemat-
ical scientists and innovators of the future. Our best 
brains are being siphoned off into business, medicine, 
and other careers before the mathematical science com-
munity has even had an opportunity to persuade them 
tha t understanding nature , social behavior, economics, 
not to mention the vast changes in technology from a 
quantitative point of view, is a worthwhile pursuit . 

There are many reasons for this. First, it might be 
argued tha t , except for rare periods, America has never 
encouraged its bright, young people into science. Immi-
grants have always done the job for us. Second, the peer 
pressure of material success suggests that tough, rugged 
Lee Iacocca is a better role model than the nerd who 
teachers mathematics on the television at six o'clock on 
a Monday morning. Young people are not exposed to 
role models of a sufficiently heroic type in the mathe-
matical sciences. 

America is not producing a generation 
of students who will become the 
mathematical scientists and innovators 
of the future. 

Third, and perhaps the only area in which we might 
take action so as to have immediate impact, is the early 
experience of s tudents with mathematical thinking and 
ideas. Presently, the preparation of our young people 
in English and mathematics , the two subjects which 
should surely dominate a high school education, is pa-
thetic. 

C h a n g e s i n A t t i t u d e 

Therefore the first suggestions which we offer address 
less the details of the curriculum in calculus and more 
the a t t i tudes tha t we must adopt: 

• There must be a concerted effort, working with local 
high schools and high school teachers, to see that stu-
dents are bet ter prepared in algebra, geometry and 

trigonometry and, most importantly, tha t they are 
aware of the self-discipline required to learn mathe-
matics. Real learning requires work. 

• We must stress tha t mathemat ical knowledge is cu-
mulative and tha t scientific knowledge has a verti-
cal s tructure. All tests and examinations should re-
flect this fundamental premise. Regular homework 
should be a priority. Homework drill is essential. 
Tests should be cumulative. 

T h e preparation of our young people in 

English and mathematics ... is pathetic. 

• Let us now agree once and for all tha t not all s tudents 
have equal abilities and introduce some stratification 
(honors sections, sections which coordinate with el-
ementary physics or business courses, etc.) into the 
organization of classes. 

• Above all, we must put our best teachers, the most 
caring and inspiring, in the first year courses. 

• A program that emphasizes mathematical thinking 
and word problems will require more instructor time 
per student. Consequently, it will be necessary to 
restructure the incentive and reward system for uni-
versity professors. Research is vital, no one questions 
tha t . But there is presently far too much recognition 
given in American universities for mediocre research 
and far too little for excellence in teaching. This at t i-
tude has not only led to an imbalance in distribution 
of personal time and effort, but also has skewed the 
internal distribution of faculty among depar tments 
within a university. 

C h a n g e s i n C u r r i c u l u m 

We continue with a similar list of fundamental prin-
ciples directed at the calculus curriculum itself: 

• We must understand tha t the calculus sequence is 
the basic set of courses in mathematical thinking to 
which a student is exposed. Although the sequence 
must be responsive to the university community as 
a whole and must prepare students to handle the 
mathematics used in the courses of other disciplines, 
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the teaching of mathematics at this level should not 
have a purely service connotation. 

• It is important that s tudents be exposed to logical 
thought processes, problem solving and other areas of 
mathematics such as probability and number theory 
which stress these activities. The actual material 
covered is not as important as the confidence induced 
by gaining understanding through mathematics and 
simple logical arguments. 

A b o v e al l , we must put our best 
teachers, the most caring and inspiring, 
in the first year courses. 

• We must use to the fullest extent the products of 
modern technology. Homework can be monitored 
and corrected and help can be given on computers. 
The prerequisites of a given course can be introduced 
on VCR tapes which can be used on home televi-
sions, or on discs which can be used in most s tandard 
personal computers. Much of the material which a 
s tudent must do alone (lots of examples, homework, 
etc.), all the repetition which is so necessary in learn-
ing mathematics , can be done better by the student 
with technological aids. 

• Many students are computer literate (they can oper-
ate the computer, play games, etc.), but very few can 
write a good program or use packages effectively. All 
summing operations (series, integrals, etc.) should 
be done numerically. There is no harm in intro-
ducing students to exact methods; it increases their 
literacy and fluency; but it should be stressed tha t 
there is no difference in principle between calculat-
ing s in 2 πχ dx and s/l + x2 s in 2 πχ dx. Each is 
a number and the latter number is no less good than 
the former just because it cannot be exactly calcu-
lated but must be approximated. 

Mathematics education cannot be 

egalitarian. 

* The curriculum should stress word problems, the art 
of judicious approximation, and the importance of 
converting conservation laws and problems in op-
timization into mathematical language. After all, 
practically all laws used in engineering and science 
are derived from looking at balances of mass, concen-
trat ion, momentum, heat, energy. Moreover, many 

of the challenges in modern business involve choosing 
optimal configurations of the coordinates to achieve 
certain desirable ends. 

Before writing down an outline of a curriculum, it is 
important to re turn to the idea tha t mathematics edu-
cation cannot be egalitarian. We suggest therefore that 
the best students be separated into classes which cover 
an expanded curriculum in the tradit ional three courses. 
However, the extra depth and amount of material intro-
duced should be recognized and so we recommend tha t 
each of these three courses receive four hours credit. 

In order to coordinate the curriculum between the 
brighter and the less qualified student, we suggest tha t 
the vast majority take calculus as a sequence of either 
three or four three-credit hour courses. The first option 
would cover less material but still emphasize mathe-
matical thinking, problem solving, approximation tech-
niques, and the importance of computers . The four 
course option would allow the less qualified student to 
have an equal preparation should he or she decide to 
continue in a course of studies where all the calculus 
material is required. 

In addition, it should be possible for a s tudent ma-
joring in engineering or the physical sciences (or any 
other interested student for tha t mat ter ) to choose a 
calculus track which coordinates calculus topics with 
relevant material in the parallel science sequence (e.g., 
motion problems, Newton's laws, calculation of chem-
ical compositions). After all, most major universities 
run over twenty sections of each calculus course each 
semester. Diversity and choice should have their place 
in the education system. 

Real learning requires work. 

We want to stress again, however, tha t except for 
vital prerequisite material, the exact topics introduced 
are not crucial. We see the role of the national mathe-
matics leadership in suggesting a curriculum as limited 
to preparing a readable framework about which indi-
vidual instructors and teachers can build and which an 
average student can understand. Wha t is important is 
tha t we structure the curriculum so as to nur ture the 
s tudents ' abilities to develop clear thinking, do word 
problems and be willing to use modern technology with 
confidence. Former s tudents who have some work ex-
perience are far more apt to say tha t it is their ability 
to think and learn rather than their precise knowledge 
of a given topic which is important to them in later life. 
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T h e H o n o r s C u r r i c u l u m 

For honors work we do not suggest any radical 
changes from present practice. However, we do recom-
mend inclusion of a wider range of topics in the calculus 
sequence. In particular, the mathematical background 
of almost all s tudents studying the quanti tat ive sciences 
should include 

• writing programs and using computer packages effec-
tively, 

• basic ideas in probability and statistics, 

• the solution of linear equations, matrices, linear in-
equalities, 

• game theory and the choice of strategies, 

• a little number theory. 

The last member of this list is included, not because 
it has immediate application but because many of the 
problems and ideas can be understood without a great 
deal of background, results can be numerically checked, 
and many tools required in constructing logical proofs 
(e.g., induction) can be readily introduced. 

W h a t i s important is that we structure 
the curriculum so as to nurture the 
students' abilities to develop clear 
thinking, do word problems and be 
willing to use modern technology with 
confidence. 

We now introduce what we call the Honors Cur-
riculum consisting of three substantial courses, each 
with 4 hours credit. Specific comments will follow each 
semester's outline; general comments will be given at 
the end. 

1ST S E M E S T E R : Number systems, functions, limits, 
continuity, differentiation, finite differences, indefinite 
integrals, special functions. 

Comments: Little change from the present curriculum 
for the first 1 and 1/3 semesters. Introduces a little 
number theory. At least one-sixth of the teacher's t ime 
should be spent on the mathematizat ion of word prob-
lems. Emphasize pictures and curve sketching. 

2ND S E M E S T E R : A mathematical laboratory emphasiz-
ing computer programming and use of packages. Defi-
nite integration by Riemann sums. Introduction of nu-
merical methods. Techniques of exact integration. Im-
proper integrals. Series, Taylor series, maximum and 

minimum problems. Solution of systems of linear equa-
tions. Matrices, determinants . Linear inequalities and 
programming. 

Comments: Introduction to the idea and implementa-
tion of approximations. Techniques of exact integration 
are exhibited only once; the student using exercises and 
drills, is responsible for mastering this material out of 
class. Numerical verification of all results should be en-
couraged. A microcomputer laboratory is essential and 
the student should expect to spend at least three home-
work hours per week working on the computer . If t ime 
permits, a little game theory and choice of strategies 
might be introduced here. A knowledge of solutions of 
linear equations, matrices and determinants is impor-
tant for the differential equations course, which is often 
taken in the third semester. 

3RD S E M E S T E R : An introduction to probability and el-
ementary concepts in statistics (mean, variance, least 
squares fitting). Analytic geometry. Coordinate sys-
tems and the differences between Euclidean and other 
manifolds. Tangent lines, arc length. Vectors and the 
description of curves surfaces. Part ial derivatives, Tay-
lor series, maxima and minima in higher dimensions. 
Multiple integrals. Line and surface integrals. The no-
tions of circulation and flux. The theorems of Gauss, 
Green, and Stokes. 

Comments: Except for the inclusion of probability, this 
program is not a great deal different from the present 
curriculum. We suggest, however, t ha t proofs be re-
placed by a demand tha t the student understand the 
results sufficiently well to carry out nontrivial compu-
tations of circulation, heat flux, etc. 

T h e R e g u l a r C u r r i c u l u m 

The regular curriculum, which would consist of four 
three-credit hour courses, would omit special functions 
and number theory from semester one, would include 
special functions in semester two but exclude solutions 
of linear equations. Semester three would be new and 
include much of the discrete mathematics , probability, 
statistics, systems of linear equations, matrices, linear 
programming, game theory and strategies and a little 
number theory. Semester four, which would be required 
of students following certain of the engineering and sci-
ence majors, would be the same as the honors section 
without probability and statistics. 

L o g i c a l S e q u e n c e 

One of the primary aims of a mathematical educa-
tion is to teach students to think logically and correctly 
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about the problems at hand. The problem need not be 
mathematical in origin or nature , but the solution will 
require logic. It is therefore important that this logical 
attack be seen in action. For example, in the s tandard 
calculus course we should not be teaching limits, then 
differentiability, then continuity—as do so many texts 
(and hence courses). We should, instead, be stressing 
the logic involved. For example: 

Here is the definition of a limit, but who wants to 
"dwell in Hell"? Here are a few useful results involving 
limits which can be obtained from tha t definition. Here 
are a few good theorems which also can be proved from 
tha t definition. Here is how we can combine these re-
sults and these theorems to produce more results, with-
out going back to the initial definition. However, if new 
functions appear (and they do) we will then need re-
sults associated with them (presumably derived from 
the original definition of limit) to use these theorems. 

OK, so some functions have limits and some don' t . 
Let 's concentrate on those tha t do. Wha t other prop-
erties might these functions have? Ah, continuity. Now 
repeat the above paragraph with "limit" replaced by 
"continuity." Are there any important functions tha t 
are not continuous? 

OK, so some functions are continuous and some are 
not . Let's concentrate on those tha t are. Wha t other 
properties might these functions have? Ah, differen-
tiability. Now repeat the earlier paragraph with "limit" 
replaced by "differentiability." Are there any important 
functions that are not differentiable? 

One of the primary aims of a 
mathematical education is to teach 
students to think logically and 
correctly. 

Those "theorems" tha t are missing from the known 
theorems should also be mentioned (no formula for lim-
its of composite functions until we have continuity, no 
result for the integral of products or quotients). 

C h e c k i n g A n s w e r s 

An important aim of mathematics is to solve prob-
lems we haven't seen before. However, it is equally im-
portant to develop the expertise to decide whether the 
results we get are right. We should be emphasizing 
habits tha t promote this. For example: 
• While it is true that a curve can be sketched cor-

rectly ueing only a few results, every available re-
sult and theorem should be used to ensure tha t the 

curve "hangs together." Asymptotes, first and sec-
ond derivative texts , χ and y intercepts, symmetry, 
regions where the function is positive and negative, 
while frequently giving overlapping information, also 
lead to inconsistencies if an error has been made . But 
more importantly, they give the student confidence 
that the result is correct without looking at the back 
of the book. 

• Check constructed formulae by using special cases. 
For example, in calculating volumes via integrals in 
terms of a cross-sectional area, the formula for the 
area, A(x), must be constructed. Before integrating, 
check A(0) and A at any other value where the result 
is known independently of the formula. 

• Habitually check indefinite integrals by differentia-
tion. 

• Does the answer make sense? The age-old example 
of this (from absolute extrema) has someone row-
ing from an island and then walking along a straight 
shoreline to a destination in minimum time. Faulty 
mathematics suggests tha t the person should row 
past the destination and walk back. 

• Wha t does the answer tell us? The problem (again 
from absolute extrema) of finding the dimensions of 
a cylindrical can, holding 1 liter, with minimum sur-
face area should be interpreted in terms of the shape 
of the resulting cylinder. (Who cares tha t the radius 
is approximately 5.4 cms?) Much more important is 
the conclusion tha t the cross section of the cylinder 
is a square, and even more important is the question 
"Why don' t manufacturers make them tha t way?" 

M a t h e m a t i c a l E x p e r i m e n t a t i o n 

That mathematics is an experimental subject needs 
to be emphasized more. Contrary to classroom demon-
strations, most real problems are not done correctly, or 
even the right way, the first t ime. We should spend 
time explaining our intuition as well as our knowledge. 
This means doing things that don ' t work! For ex-
ample, some time should be spent trying to integrate 
sec(a), and then when it is finally done (by writing 
sec(x) = cos(a:)/(l — sin 2 x)) we should point out how 
most texts do it (by a trick substi tution) presumably 
based on knowing the answer. We shouldn' t be en-
couraging the idea tha t mathematics is just a bunch of 
tricks. 

Related to this is the fact that mathematic ians are 
not above thinking like physicists when necessary (all 
functions are infinitely differentiable and have conver-
gent Taylor series). One of the main reasons for doing 
this is tha t , as a result, we might be able to guess the 
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answer. Knowing a tentative answer frequently helps in 
proving it. (To a student, knowing what the answer is 
means looking in the back of the book!) 

As an example, consider the following problem: Find 
all functions tha t satisfy the conditions of the mean 
value theorem, for which c is always the mid-point, i.e., 
find all functions f(x) whose derivative at (a -f- b)/2 is 
always (/(&) —/(α)) /(6—a) for all a,b. If we could guess 
the answer, we might then define g(x) = / (E)—guess, 
and show tha t g{x) = 0. So let 's assume tha t the answer 
has a Taylor series expansion and substi tute it in the 
condition on / to see what we get. Lo and behold, a 
quadratic! So tha t would now be our guess, which then 
won't depend on the Taylor expansion assumption. 

We need to get the student away from the notion 
that mathematics is just a collection of formulae tha t 
need to be memorized. This can be done in at least 
two ways, by giving interpretations and applications of 
the formulas, and by stressing tha t memory does not a 
good mathematician make. 

For example: The interpretation of the mean value 
theorem in terms of average velocity, or the formula for 
1 + 4 + 9 + . . . being used by spies to count how many 
cannonballs were in a pile, by knowing how many layers 
the (square) pyramid has. We should stress the use 
of tables of integrals, and tables of infinite series, and 
point out, tha t faced with the problem of integrating 
powers of sin(a) and cos(x) we look it up! We should 
be stressing, in techniques of integration, not how to do 
the integrals which appear in a table of integrals, but 
how to get from the integral at hand to the integral in 
the table. 

We need to stress tha t "little" things make a big 
difference in mathematics , and attention must be paid 
to them. The results involving the existence of abso-
lute extrema on closed intervals, as opposed to open 
intervals, is one example. Jus t as dramatic, and an 
important topic which is seldom covered, is sketching 
one-parameter families of curves, such as x2 + c/x2, 
and discussing the three cases for c (positive, negative, 
zero). This also stresses tha t a mathematical problem 
is frequently solved by looking at different cases. 

A good place to demonstrate the different case con-
cept is in the previously mentioned extreme value prob-
lem involving rowing and walking. Tha t is actually an 
infinite domain problem which can be split into three 
cases, land between the closest point to the island and 
the destination, land past the destination, and land be-
fore the closest point. All three cases should be ana-
lyzed, not jus t one as is often the case. 

C o m m o n S e n s e 

We must emphasize how nature , symmetry, and com-
mon sense can frequently help in understanding a prob-
lem or its solution. For example, knowing tha t the cir-
cle is the shape which has a maximum area for a fixed 
perimeter helps make sense of the solution to the prob-
lem of cutt ing a piece of string into the perimeters of 
a circle and a square, the sum of whose areas is to be 
a maximum. After solving the problem involving the 
shortest distance from a point to a curve, we should ex-
plain tha t common sense says tha t the answer could be 
obtained by considering a small circle centered at the 
point. Then imagine increasing its radius until it jus t 
touches the curve. Intuition suggests tha t at this point, 
the tangent to the curve should be at right angles t o the 
radius. Is it? Snell's laws should also be mentioned in 
this context (why does nature behave the way it does?) 
to build up some intuition in this area. 

In f in i t e S e r i e s 

The s tandard t rea tment of infinite series leaves much 
to be desired. If the course follows the usual pa t tern , 
the good student comes away with the ability to decide 
whether a series converges or diverges, with the idea 
that divergent series are diseased and all convergent se-
ries are healthy, but no feeling for what the illness is. 
They leave with no real idea why convergence series are 
categorized as absolutely or conditionally convergent, 
and no understanding why we care about convergence 
or divergence. The main justification for emphasizing 
the various tests for convergence seems to be tha t they 
make good exam questions. 

T h e good student comes away ... with 
the idea that divergent series are 
diseased and all convergent series are 
healthy, but no feeling for what the 
illness is. 

We must de-emphasize these tests. Who cares? We 
must stress why a knowledge of convergence or diver-
gence is impor tant . We must stress why the distinc-
tion between conditional convergence and absolute con-
vergence is important . To introduce conditional con-
vergence without mentioning Riemann's rearrangement 
theorem seems pointless. We should point out tha t di-
vergent series are not useless, by doing the "brick prob-
lem" (given bricks of the same size, is it possible to place 
one brick on top of another, in a vertical plane, in such 
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a way that no par t of the top brick is above the start-
ing brick?). But overall we must give examples on the 
use of Taylor series. The previously mentioned example 
involving the mean value theorem is one such applica-
tion. Evaluating definite integrals is another. Solving 
y" — y — 0 is a third. 

C h a n g i n g A t t i t u d e s 

• It should be repeatedly explained to students that 
the answer alone is not good enough. What is re-
quired is the correct logic leading to the solution. 
There are plenty of examples where the answer is 
right, but the technique is flawed. Don't check the 
answer by looking at the back of the book: find some 
other way of convincing yourself tha t you are right 
or wrong. 

• Some material should be covered in class even though 
it does not lend itself to testing by examination. For 
example, the proof tha t s in(x) /x goes to 1 as Ε goes 
to 0 is the entire justification for using radians in 
calculus, but it is not usually important enough to 
examine. 

• Some material should not be covered in class even 
though it does lend itself to testing by examination. 
Covering every single technique of integration gen-
erates nice exam questions and kills time, but is it 
justified? 

• Like it or not, computers are here (and we believe to 
stay), so let 's learn how to use them effectively. 

N e w M a t e r i a l 

There are a number of topics, absent from a standard 
calculus sequence, to which students should be exposed. 

Mathematical induction. Somehow students never 
seem to get this in any course. Apart from the useful-
ness of the technique, it also puts the ability to create a 
proof within the grasp and expertise of most students. 
It also stresses the experimental aspect of mathemat-
ics, assuming the actual conjecture is not given, just 
the problem (i.e., "what is 1 4- 4 + 9 . . . , " as opposed to 
"prove tha t 1 + 4 + 9 . . . = . . . " ) . 

Approximations. T h a t some integrals, such as erf(a:), 
have no closed form representation should be discussed 
within the context of the approximation of integrals. 
Various arc length integrals should also be done numer-
ically. With the easy access to computers, s tandard 
problems tha t lead to uncontrived, non-standard alge-
bra should be done as a mat ter of routine. 

For example, finding the shortest distance from (0,1) 
to sin(s) (as opposed to the textbook classic, x2), leads 
to solving the equation x — cos(x)-|-sin(a:) cos(a:) = 0. In 
the past we have avoided such problems like the plague, 
as though they didn ' t exist. We should no longer shrink 
from such tasks. 

Problems with no solution. Most s tudents are un-
der the impression tha t all problems have solutions. 
("I have a problem, what are you going to do about 
it?") Non-closed-form integrals come as a shock. Pos-
ing problems which have no solutions is impor tant . For 
example, find the area of a four-sided figure given the 
four side-lengths. Trying to decide what information 
is relevant in solving a problem is also a skill t ha t re-
quires fostering. The s tandard is to give exactly the 
right amount of information to solve the problem, which 
is fine when learning a technique. 

However, we should also give problems where there 
is overlapping relevant information (in addit ion to giv-
ing the rower/walker's velocity, mention tha t he can 
walk so far in so many seconds), too little relevant in-
formation (no means of calculating the rower/walker 's 
velocity from the da t a supplied), or irrelevant informa-
tion (the rower/walker has red hair, has recently signed 
a recall petition, has a girl friend at the destination, 
etc.). 

Problems using many techniques. Calculus has be-
come very compartmentalized. Problems using diverse 
techniques should be tackled. For example, after sur-
face area of solids of revolution, find the shape of the 
cone of fixed volume and minimum surface area. Since 
most s tudents (and faculty!) don ' t know the formula 
for the surface area of a cone, this problem is usually 
avoided earlier when extrema are covered. Now, with 
the benefit of integration, this formula can be derived, 
and the extrema problem rc-at tempted. 

It should be repeatedly explained to 
students that the answer alone is not 
good enough. What is required is the 
correct logic leading to the solution. 

After arc lengths has been completed, one can do the 
following problem (based on Greenspan and Benney's 
Calculus). A plane is flying horizontally 5 miles from 
the end of the runway, and is 1 mile high. It plans to 
land horizontally following a cubic equation. (Before 
and after, it follows a horizontal straight line.) W h a t 
is the maximum slope of the curve it follows? How far 
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does it fly? If its horizontal speed is 150 mph, what is 
its maximum vertical acceleration? 

Finite difference calculus. Many students never hear 
of finite difference calculus, functional equations or re-
currence relations, let alone see them. They bring to-
gether a number of different ideas and techniques. Some 
students believe tha t f(x + h) - f(x) + f(h). Why not 
solve it? Show tha t ln(x) is essentially a consequence 
of f(xy) = f(x) + f(y). 

Euler's formula. By introducing cis(a) in the context 
of a little complex arithmetic, at the end of the first 
semester (after exponentials) many of the techniques of 
integration can be bypassed, and many of the trigono-
metric identities can safely be forgotten! 

Non-mathematical techniques. We should always 
point out other ways of doing things. For example: 

a. A gardener has a kidney-shaped lawn to sod. 
He needs to know the area to order the correct 
amount of sod. (Solution: Cut out kidney-shaped 
piece of card to scale. Cut out what 1 square yard 
is. Weigh both on a chemical balance!) 

b. Someone wants the volume of some strange shaped 
container. (Solution: Fill it with liquid, measure 
amount of liquid used.) 

c. Derive Snell's law of reflection. (Solution: Re-
flect source about mirror. Join eye to source via 
a straight line, reflect line back.) 

U s e of C o m p u t e r s 

This is not a negotiable item—it is essential. Com-
puter labs must be accessible to mathematics students 

and faculty, at all levels. These labs should have pack-
ages emphasizing demonstrat ions, drill and practice, ex-
perimentation, numerics, and graphics, in addition to 
program writing. Software such as MACSYMA, Eu-
reka, and Gnuplot should be readily available. 

With the increase in the number of such labs around 
the country, it is inevitable, and highly desirable, tha t 
specialized educational computer packages will continue 
to be developed by faculty, released to mathematics stu-
dents, and placed in the public domain. We recommend 
tha t minimum cost distribution of such software be en-
couraged. Furthermore, a central library of such soft-
ware should be established and vigorously maintained. 
Access to it should be via modem. 
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Computers and Calculus: The Second Stage 

R. Creighton Buck 

U N I V E R S I T Y O F W I S C O N S I N 

Computers have finally reached the mathematics 
classrooms. Recent joint AMS-MAA summer meetings 
have highlighted talks and workshops dealing with var-
ious aspects of educational software. Leading calculus 
texts offer floppy disks with programs intended to add 
visual or numerical reinforcement to topics treated in 
the textbook. The computer magazine Byte features 
four universities identified as having made significant ef-
forts to computerize their instruction in many subjects, 

including mathemat ics . It is clear tha t there is strong 
interest among college and university mathematic ians , 
yet this interest is restrained by caution, inadequate 
technical experience, funding problems, and sometimes 
a degree of skepticism. 

For many students , the first course in calculus has 
been a very difficult transit ion from the algebra and 
geometry courses they have taken previously, both in 
content and style. The routine algebra courses usu-
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ally focus on formal manipulation of symbols according 
to specified rules, accompanied by a collection of algo-
ri thms which solve related classes of problems. 

The geometry course may begin with an extensive 
nomenclature for plane and solid figures and their com-
ponent parts , move to a collection of algorithms for cer-
tain geometric constructions, and then to a relatively 
short list of s ta tements tha t describe various relation-
ships among components parts making up geometric 
figures. (Sample: "If two sides of a triangle are equal 

then ") Some of these may be given formal proofs, 
based on a list of accepted axioms. Additional topics 
often covered are right triangle trigonometry and a brief 
introduction to coordinate geometry with emphasis on 
lines and circles. 

While some of the assigned problems in either course 
will be interesting and challenging, most are likely to fit 
into templates given in the text. Only a few will be seen 
by s tudents as having direct connection with realistic 
applications. 

C o m p l e x i t y of C a l c u l u s 

In contrast to these courses, calculus deals with a 
vastly more complex collection of skills and concepts: 

1. Scalar and vector functions of one or more vari-
ables; differentiation, integration and their prop-
erties; definition and properties of the s tandard 
transcendental functions. 

2. Mathematical models for physical concepts such 
as velocity, acceleration, center of mass, moments 
of inertia, work, pressure, gradient, gravitation 
and planetary motion, . . . (and this in spite of the 
fact that only one out of six high school graduates 
has taken a course in physics!). 

3. A mathematical and computat ional approach to 
geometric concepts such as area, volume, length 
of a curve, area of a surface, curvature. 

4. Infinite series, used both as a tool in numerical 
computat ion and as a way to define and work with 
specific functions, or to construct new functions. 

5. Polar and spherical coordinates, advanced two and 
three dimensional analytic geometry, conies and 
quadric surfaces, vector analysis and its applica-
tions. 

6. Assignments tha t require the s tudent to build a 
mathematical model for a concrete realistic sit-
uat ion involving time-dependent components or 
other variables, and then use the model to answer 
specific questions about its behavior or properties; 
this may involve solving a differential equation or 
optimizing a related quantity, or perhaps carrying 

out other mathematical procedures suggested by 
the model itself. 

It is important to keep in mind tha t , in addition to 
traditional mathematical knowledge, a growing number 
of s tudents now arrive a t college with various levels of 
experience with computers and programming, some of 
which may have involved isolated mathemat ical con-
cepts such as factoring, sorting, and various graphing 
techniques. This adds another nonhomogeneous bound-
ary condition for the college instructor who is trying to 
design a suitable modern calculus course for the incom-
ing students. 

C u r r e n t U s e s o f C o m p u t e r s 

Of the calculus software I have examined, many pack-
ages are tied implicitly to familiar texts even if not as-
sociated with its author or publisher. In use, many 
will be run in the classroom with a suitable projection 
appara tus and screen as a demonstrat ion tha t replaces 
or supplements the usual chalk and blackboard treat-
ment of a concept or technique. The use of color and 
partial animation may give a much more professional 
touch tha t the teacher could not have provided. 

Some other programs are intended to be used by stu-
dents in a tutorial mode as a review or drill to test a 
specific technique (e.g., formal differentiation), usually 
with immediate feedback on success or failure. These 
may also replace a portion of routine homework if there 
is an adequate bookkeeping system for s tudent IDs and 
performance records. 

Other programs will permit a s tudent to enter a func-
tion and then ask for its graph or its zeros, or even a 
display of its successive derivatives given as explicit for-
mulas. Programs are also available tha t permit a stu-
dent to ask for the formal solution to any second order 
constant coefficient homogeneous ordinary differential 
equation, or the numerical solution of any first order 
initial value problem. Similar programs now exist in a 
limited form on hand held calculators, and more sophis-
ticated calculators are just over the horizon. 

B a s i c Q u e s t i o n s 

This situation obviously poses several crucial ques-
tions to those responsible for planning the content and 
administration of undergraduate mathemat ics courses. 
When should a s tudent be allowed or encouraged to 
turn to the computer for assistance or insight? When 
should the computer be used in the classroom? 

Here is one obvious ground rule: Don' t do it with a 
computer if you can do it bet ter with gestures, pencil 
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and paper, chalk and blackboard, or any other tradi-
tional way. However, the word "better" must be inter-
preted correctly. We know tha t an uninterested student 
will seldom learn; thus, one must reach a balance be-
tween the role of computers as interactive information 
sources, and as theatrical a t t ract ions. 

Don't do it with a computer if you can 
do it better with gestures, pencil and 
paper, chalk and blackboard, or any 
other traditional way. 

However, a third question seems to be more central, 
and much harder to answer: How does the existence and 
wide availability of computers modify the objectives of 
the calculus course? 

A satisfactory answer to these questions requires the 
collective work of individual mathematicians, with sup-
port and recognition from their departments . These 
mathematicians must be willing to spend time in a 
thoughtful analysis of the mathematical content of cal-
culus and then carry out experiments to test whether 
access to computers results in more effective instruction 
and bet ter educated s tudents . 

A s k i n g t h e R i g h t Q u e s t i o n s 

The star t ing point in this project may be to pose 
the right questions. Perhaps several samples will clarify 
this. 
• Some students who have difficulty with calculus seem 

to be deficient in spatial intuition. Is it possible to 
help these students with special graphics programs? 
Or is this a case where the use of tactile wire or 
plaster models is bet ter? 

• At present "curve tracing" is a s tandard topic in cal-
culus, ostensibly for the purpose of producing a rea-
sonably accurate graph of a specific function or equa-
tion, but also to reinforce the techniques of differen-
tiation. Now that a computer (or even a hand-held 
calculator) will display the graph immediately, is this 
still important? What do we really mean when we 
say "skill in curve tracing is an essential component 
of calculus?" 

(One possible answer: We want students, based on 
their mathematical knowledge and computer exper-
imentation, to be able to look a t an equation of the 
form y = f(x), where the formula for / contains one 
or more parameters, be able to say: "The graph of 
this sort of function has one of the following shapes, 
depending on the values of the parameters o, b ") 

• When a student has access to programs tha t do for-
mal differentiation, should we continue to stress rou-
tine differentiation exercises? (After all, we now al-
low students to use calculators to assist with their 
arithmetic on homework and tests!) Clearly, a stu-
dent ought to know how and when to use the formu-
las for differentiating the sum, product , or reciprocal 
of functions, and understand the use of the "chain 
rule" for composite functions, since these supply es-
sential skills and insight in many other mathematical 
areas. But at what point in this learning process do 
we let the student replace paper and pencil manip-
ulation by a canned production-style differentiation 
machine? 

• It is important that the student be able to describe 
the geometrical meaning of a s ta tement such as: 

f'(x)f"(x) > 0 for all χ between -4 and 4. 

Is ability to answer this helped if the s tudents have 
seen appropriate classroom demonstrat ions and car-
ried out experimentation on their own? 

• Integration presents a different problem, since we 
must deal both with the definite integral, and with 
anti-differentiation. Accurate numerical integration 
programs obviously should be available. (Students 
already have access to these on some hand calcula-
tors.) However, substi tut ion (change of variable) in 
either indefinite or definite integrals remains a use-
ful and very important technique in many areas of 
analysis, and so must be retained. When should this 
approach to the evaluation of a definite integral be 
required, and when is a numerical integration accept-
able? 

• Simple max /min problems provide some of the more 
interesting elementary applications of calculus. How-
ever, programs can quickly do a search to locate the 
absolute maximum and minimum of a function of 
one variable on an interval. Shall such programs be 
permitted? Can good problems be selected which 
require students to locate local extrema? 
Problems of this type in more than one variable re-
quire finding critical points; this in turn often leads to 
the solution of complicated non-linear systems. Do 
we provide s tudents with the sophisticated black box 
Newton-type programs t ha t are appropriate here? If 
so, can we make an honest a t t empt to explain their 
nature? 

• Wha t about advanced analytic geometry? Certainly, 
lines and planes in space must be covered in order to 
work with normals, tangent planes, and properties 
of curves in space. But what about the usual t reat-
ment of general conies and quadric surfaces? Is this 
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something tha t is now best replaced by a well cho-
sen picture gallery or labeled samples, while all the 
rest is left to be covered in a linear algebra course as 
illustrations of quadratic forms and eigenvalue com-
putat ion? 

• Is there no value for today's calculus student in work-
ing through the proofs of the optical properties of the 
parabola and ellipse, or any of the other classical ge-
ometric theorems? 

• In the study of infinite series, which computer pro-
grams should be demonstrated in class and which 
made available to students? For example, should 
they have access to a program tha t takes an explicit 
function as input, and supplies a stipulated number 
of coefficients of its MacLaurin series? 

• Calculus courses usually include some introduction 
to differential equations. In the past , this has often 
been a compendium of special techniques, tied to spe-
cific classes of equations. Should all this be replaced 
by a discussion of initial valued problems, both or-
dinary and systems, followed by experiments with a 
black-box differential equations solver? Would this 
rob the student of useful basic mathematical experi-
ences and skills? Would such a s tudent be less able 
to deal with certain applied problems tha t do not 
immediately fit the s tandard pat terns? 

A N e w S y l l a b u s 

I hope tha t it is clear tha t there are more questions 
to be asked about the factors tha t should be examined, 
as one moves toward computerization of the calculus se-
quence. The end product might be a radically different 
topic sequence for the calculus course. 

At what point ...do we let the student 
replace paper and pencil manipulation 
by a canned production-style 
differentiation machine? 

Here is an outline for the first four days in one such 
course. I t 's purpose is provocative rather than descrip-
tive. (Since it was devised during a canoe trip, it cer-
tainly has not been tested in class, nor researched ex-
haustively!) 

The course s tar ts by discussing familiar functions: 
polynomials and rational functions. These are identified 
as specific algorithms, accepting a numerical input and 
delivering a numerical output . Several different formats 
or conventions are suggested for describing a function. 
For example, one might write P() = 6 ( ) 2 + () — 2 as well 

as P ( u a r ) = 6 * (var"2) + var — 2. The natura l domain 
of a function is the set of admissible inputs. Sequences 
are presented as functions on the integers; here it is 
appropriate to include sequences defined recursively. 

Each student receives a disk containing the programs 
PLOT, TABLE, and ZEROS and an assortment of oth-
ers. Some are demonstrated in class, and the simple 
procedures for use and function input are explained. 
The assigned problems require s tudents to use the com-
puter programs to answer questions about specific func-
tions, and then to carry out experiments on their own. 

Among the demonstrat ion functions is a polynomial 
of degree 5 with one parameter . As different values 
for the parameter are chosen, the effects are seen in the 
graph and in the na ture and location of the roots; as the 
number of visible zeros change, the existence of complex 
roots is mentioned, and related to the graph. 

Further exploration of functions; experimentation 
with combinations of functions and discussion of the 
architecture of TABLE, P L O T , and ZEROS. Introduc-
tion of the functions sin and cos, defined by their series. 
Brief discussion of how series are "summed" and the 
sources of error. Intuitive explanation of the concept 
of convergence of series. Discussion of t ime and posi-
tion functions tha t model motion on a line ("dog on a 
road") . 

The assigned problems deal with the new types of 
functions; use of P L O T and ZEROS to solve equations 
such as 3 + 2t - t2 - sin(4i + 1). 

The ZOOM command is used to examine a polyno-
mial plot in neighborhoods of a point on the graph. 
Conclusion: "In a microscope, curves look like straight 
lines." Counterexamples: (t2 — .1) s i n ( l / ( i 2 — .1)). Con-
clusion: "Some functions are smooth everywhere and 
some are not." 

Recall "slope of a line;" definition of: "local slope 
of a curve." Conclusion: "Smooth functions have local 
slopes at each point on their graph." Return to func-
tions tha t model motion, and interpret slope as velocity. 

Demonstrate program SLOPE, a program tha t gives 
the approximate local slopes of smooth functions. Dis-
cussion of nature of the algorithm, as compared with 
"the exact slope;" formulation of several definitions of 
"limit." 

DERIVATIVE introduced as an algorithm tha t takes 
a smooth function / as an input and delivers a function 
/' = D(f). Sample calculations for linear and quadrat ic 
functions; graphs of / and / ' are compared. 

L o o k i n g t o t h e F u t u r e 
I am sure this is enough of a sample. My choice of 

topics was not quite off-the-cuff. The six objectives I 
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listed earlier for the calculus course are some of those 
tha t have been traditionally cited by textbook authors, 
publishers, and curriculum designers. However, as we 
move toward the next century, I believe tha t other ob-
jectives should be mentioned. In the last 40 years, the 
rate of change in all sciences has accelerated, and the 
level of mathematical sophistication used in these sci-
ences has increased dramatically. 

I n the last 40 years, the rate of change 
in all sciences has accelerated, and the 
level of mathematical sophistication 
used in these sciences has increased 
dramatically. 

The calculus sequence seems to offer an ideal oppor-
tunity for us to give students their first exposure to 
certain simple tools and unifying viewpoints of mod-
ern analysis tha t will make their future path smoother, 
whatever their ul t imate interests. I would hope that 
computers can be used intelligently in calculus instruc-
tion in such a way tha t room could be found for such 
topics. 

My first candidates are function spaces and linear 
operators. As students gain experience with specific 
functions, and are more a t home with the use of for-
mulas using symbols that represent arbitrary functions 
in some specific class, they will find tha t the concept 
"function" has begun to acquire the same concreteness 
held by "number." 

The moment when a student finds it natural to think 
of an arbitrary continuous function as a point-like ob-
ject having a specific location with respect to other sim-
ilar point-like objects represents a major insight! (Is 

it perhaps the mathematical equivalent of a "rite of 
passage," with a t tendant matur i ty implications?) Such 
students then find it easy to move on to the idea of a 
geometric linear space whose "points" are functions. 

As students gain experience ... using 
symbols that represent arbitrary 
functions ... they will find that the 
concept "function" has begun to 
acquire the same concreteness held by 
"number." 

Linear operators are even easier to bring in. In my 
outline, the calculus instructor has already introduced 
the concept of a linear operator by showing tha t "dif-
ferentiation" is merely another type of function tha t 
accepts a suitable numerical function as its input and 
then delivers a numerical function as its output . 

I own an elementary calculus text from 1831 tha t 
uses fluxions and fluents. I a m willing to predict tha t 
our current elementary texts may look equally strange 
and out-of-date to an undergraduate in 2020. 

R. C R E I G H T O N B U C K is Hilldale Professor of Mathe-
matics at the University of Wisconsin at Madison. He has 
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tion of America and of the American Mathematical Society. 
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Present Problems and Future Prospects 

Gail S. Young 

N A T I O N A L S C I E N C E F O U N D A T I O N 

In 1935, the year I took calculus, the content and 
spirit of the course were essentially the same as now. 
But there were major differences in the environment. 

Then a college education was still primarily for an 
elite—a social elite, not an intellectual elite. The stu-
dents knew they were expected to graduate, tha t there 

was a stigma for failure. 

Some mathemat ics was a usual requirement for grad-
uation, as "mind-training," but calculus—a sophomore 
course—was taken almost exclusively by students in 
the physical sciences, engineering, and mathemat ics , a 
small part of the student body, a homogeneous group. 
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Almost all were concurrently taking physics. One of our 
problems is tha t this homogeneity has disappeared. 

Since it was a sophomore course, the preparation of 
the calculus student was controlled by the department. 
When polar coordinates came up, the teacher knew pre-
cisely what the students had been taught before. Tha t 
preparat ion was usually a year course covering college 
algebra, trigonometry, and plane and solid analytic ge-
ometry. Wi th the placing of calculus in the freshman 
year, s tart ing in the '60s, control over the preparation 
passed to the secondary schools. 

In the '60s tha t was not bad. Whatever one thinks 
of its content, the New Math had changed the entire at-
mosphere of secondary school mathematics . In fact, in 
the first CBMS Survey, 1965, 75% of reporting depart-
ments said it was the New Math that made the change 
to freshman calculus possible. 

Tha t enthusiasm, tha t push for change, has long 
ended, stopped by the crushing problems of our schools. 
We are left with the heterogeneous preparations, but in 
students who no longer have the same enthusiasm and 
confidence. 

C a l c u l u s in C o n t e x t 

Since before Sputnik few students took calculus, for 
staffing purposes it could be considered to be essentially 
an upper-division course. In the first few years of teach-
ing, a Ph .D. rarely taught a course above calculus, and 
often did not even teach calculus. Only three times in 
my first five years did I teach a course above calculus, 
though I got pret ty good at "Mathematics for Home 
Economics." 

Now 3 1 % of our undergraduate mathematics stu-
dents take calculus, and hardly anyone regards it as 
a privilege to teach it, nor as a compliment to one's 
ability. 

Calculus is our most important course, 
and the future of our subject 
...depends on improving it. 

These changes are all for the worse and it is hard to 
see what can be done about some of them. Calculus 
is our most important course, and the future of our 
subject as a separate discipline depends on improving 
it. 

Students no longer enter calculus with enthusiasm. 
One reason, I think, is tha t many students, particularly 
the bet ter ones, have had experience with the computer, 

and expect that their college and university mathemat -
ics courses will use computers heavily. However, the 
1985 CBMS Survey showed tha t only 7% of the courses 
used computers at all. From anecdotal evidence, much 
of tha t usage seems to be as a large calculator, for such 
topics as Simpson's Rule. I do not believe the main rea-
son for bringing the computer into calculus is to make 
the students happier, but tha t would be a desirable re-
sult. 

I a m one of the people who believe that the computer 
will revolutionize our subject as greatly as did Arabic 
numerals, the invention of algebra, and the invention of 
calculus itself. All these were democratizing discoveries; 
problems solvable only as research and by an elite sud-
denly became routine. The computer will do the same 
for our mathematics , and calculus is the place to begin. 

Our calculus course (as well as differential equations) 
comes from the British curriculum of the last part of the 
last century with the British emphasis on hard problems 
and little theory. It is a course not in the spirit of 
contemporary mathematics , and needs change for tha t 
reason alone. Wha t is left of the British tradition now is 
an emphasis on working many problems, finding, say, 25 
centroids, without really understanding what a centroid 
is. Tha t in itself is reason to change. 

U s i n g C o m p u t e r s 

To my mind, the most important change will be 
the introduction of symbol manipulat ion (SM). Perhaps 
this should come before calculus. The present calculus 
is really a collection of algorithms with a little theory 
and a few applications. It is not easy for a s tudent to 
see tha t . After learning the common subst i tut ions for 
changing variables in indefinite integrals, I thought tha t 
given some function to integrate, my task was to in-
vent some substitution to make it integrable. Tha t the 
whole topic could be covered by one algorithm never 
entered my head. I had no concept of an algorithm. 
But practically every method in a first calculus course 
is an algorithm, never clearly stated, never explicit. 

Once a topic is reduced to an algorithm, we are in 
the realm of the computer, and the problem becomes 
one of optimal programming. Once programmed, there 
is no need to repeat it. Except for its possible effect 
on moral character, I see no point in mastering hand 
computat ion of square roots, with calculators available 
at $5.95 tha t will do it with one key punch. Nor do I 
see any point in finding the part ial fraction expansion 
of a rational function if a computer can do it. 

The intellectual merits of the above discussion, how-
ever, are not relevant. The fact is tha t we can now do all 
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the manipulation in calculus on the computer cheaply 
enough for classroom use. I mention MAPLE and mu-
MATH as examples. One can also consider the HP-
28C, a hand-held calculator that can do algebra, and 
tha t is clearly a precursor of more powerful SM calcula-
tors. These developments make the introduction to SM 
inevitable, if not by us, by our customer depar tments . 

T h e computer will revolutionize our 
subject as greatly as did A r a b i c 
numerals, the invention of algebra, and 
the invention of calculus itself. 

Are there problems in introducing SM? Yes, of 
course. Here is one I can' t handle. In research papers 
using SM, one sees a hand calculation, then SM, then 
more hand calculation, then more SM, . . . . How do 
people learn the necessary hand techniques? Is that a 
real problem? I've seen indications that students learn 
hand techniques bet ter with SM. 

At a different level, how do you get the necessary 
training for the faculty? What equipment do you need, 
and where does the money come from? Do you have 
the necessary additional space? It will probably not be 
possible to use as many graduate students and part-
t ime faculty as one can in the present course. How do 
you handle tha t? Where are texts? Etc. 

Besides these local problems, there are ones that will 
require national effort, to carry out necessary experi-
mentation. For example, how much hand computation 
will still be needed? Such questions seem to me to re-
quire research at a number of schools. 

N u m b e r s a n d G r a p h s 

But SM is not the only use of the computer in cal-
culus. One could say tha t the objective of most real-
world problems in calculus is to give a foreman some 
directions. For that , one needs numbers. In most of 
my career, we have not been able to give calculus stu-
dents numerical problems of the sort they might actu-
ally meet, because of the time required. One gave a few 
simple problems with the Trapezoidal Rule or Simpson's 
Rule, or approximated the sum of a Taylor's Series at 
some point, and tha t was it. 

W e c a n do better. 

We can do bet ter . In addition, there are other 
choices. I suspect, for example, that to evaluate a def-
inite integral with. the computer, SM is not the way to 

go. One should instead immediately tu rn to numerical 
integration, and the question of indefinite integration 
becomes wildly irrelevant for tha t purpose. 

Computer graphics must have a place. For the other 
two uses, I know tha t it is ra ther easy to learn the nec-
essary techniques; I don' t know about graphics. But 
the ignorance of geometrical techniques by our s tudents 
could be largely remedied by graphics. For example, one 
could sketch a volume determined by several equations. 
Is it too much to ask for all three techniques? 

In my opinion computer methods will let us cut in 
half the t ime required to teach our present course, t ha t 
is, the current set of algorithms done by the computer 
and not by the student, and the same amount of theory 
and applications. If so, what do we do with the ext ra 
time? One choice is to use it for topics tha t do not now 
usually get into the first two years. This possibility was 
discussed extensively in the report of a conference at 
Williams College [1]; Kemeny's talk is particularly rel-
evant. I believe tha t for many types of s tudents (social 
science majors, for example), this would be best. But 
for students going into fields where analysis is much 
used, why not use the time to teach a bet ter under-
standing of calculus and how to apply it? 

T e a c h i n g A p p l i c a t i o n s 

Let me discuss applications first. Consider the stan-
dard topic of force exerted by water on the face of a 
dam. When I took calculus, the necessary physics had 
been taught all of us earlier in the year (in Physics), 
and we all had done simple problems. We had only to 
learn how to set up sums by appropriate part i t ions tha t 
would converge on the one hand to the total force on 
the dam, and on the other hand to the definite integral 
of a function. 

We had a good basis for an intuitive unders tanding 
of the first, and there were results in the text for the 
second. There were many exercises devoted to finding 
the force on improbable dam faces, which dams, how-
ever, all had the common property that the resultant 
integral could be calculated by indefinite integration. 

The only major change I see from then to now is tha t 
most current s tudents have no knowledge of fluid pres-
sure, and must use not physical intuition, but faith as 
justification. In such topics we are not teaching the ap-
plication of mathematics , and our good students know 
that . 

Our applications should be taught as modelling. 
We are dealing with continuous models; fluids, gases, 
electrical currents are continuous functions in calcu-
lus. Reasons for the use of continuous models instead 
of discrete ones should be given, and some examples 
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where discrete models are bet ter should be given. There 
should be enough explanation of the underlying physics, 
economics, whatever, so tha t the student can under-
s tand the basis for the model. The fact tha t the model 
is not reality should be explained over and over. Should 
there be some purely computer t reatments , perhaps a 
simulation? 

Computer methods will let us cut in 
half the time required to teach our 
present courses. ... Why not use the 
time to teach a better understanding of 
calculus and how to apply it? 

How much of such t reatments can be done is a sub-
ject for experiment, but a few good models will beat our 
present array of poorly understood problems apparently 
intended mostly for civil engineers. 

T e a c h i n g T h e o r y 

We do a poor job of theory. I am not here calling 
for rigor; I have long been convinced tha t epsilon-delta 
proofs won't work with students who have no great tal-
ent or interest in mathematics per se. (There is the pos-
sibility of approaching epsilontics from numerical anal-
ysis, as error and control of error. Tha t might work.) 
Wha t is possible, I believe, is the sort of clear explana-
tion found, e.g., in Courant 's Calculus, at times being 
close to a rigorous proof. 

It is difficult to persuade most s tudents tha t a proof 
that the limit of a sum is the sum of the limits is neces-
sary or interesting. On the other hand, the "proof" that 
a function continuous and monotone on a closed interval 
is integrable there is perceived differently, as a clarifi-
cation of what is going on in integration. At present, 
time pressures force most teachers to rush through such 
a topic, to be understood only by the best s tudents . 

With a course of this nature and with freedom from 
the necessity of manipulative skills, more students will 
go on to take higher courses, more students will be able 
to actually use calculus in their major fields, and more 
graduates will be mathematically competent . 
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EXAMINATIONS 





Final Examinations for Calculus I 

The following thirteen examinations represent a cross 
section of final examinations given in 1986-87 for stu-
dents enrolled in the first calculus course. The exami-
nations come from large universities and small colleges, 
from Ph. D. granting institutions and two year colleges. 

Brief descriptive information preceding each exam-
ination gives a profile of the institution and circum-
stances of the examination. Unless otherwise noted, no 
books or notes are allowed during these examinations; 
calculator usage is explicitly noted where the informa-
tion was provided. Except for information on problem 
weights and grading protocol, the texts of the examina-
tions are reproduced here exactly as they were presented 
to the students. 

I N S T I T U T I O N : A public Canadian university with nearly 
20,000 students that in 1987 awarded 15 bachelor's de-
grees, 4 master's degrees, and 6 Ph.D. degrees in math-
ematics. 

E X A M : A two-hour exam (calculators not allowed) for 
all students (except engineers) taking first term calculus. 
Of the 2500 students who enrolled in the course, 50% 
passed, including 15% who received grades of A or B. 

4. A spot light located on the ground shines on the 
wall 12m. away. If a man 2m. tall, walks from the 
spotlight toward the wall a t a speed of 9 6 m . / n u n . , 
how fast is his shadow on the wall decreasing when 
he is 4m. from the wall? 

5. Given f(x) = x/(x - 2 ) 2 . 

a. Find 

i. the domain of / 

ii. the asymptotes of / 

Hi. intervals where / is increasing and decreasing 

iv. relative extrema of / . 

b. Further, find the intervals where / is concave up 
and concave down and the points of inflection. 
And sketch an accurate graph of / . 

6. If 1200 c m 2 of material is available to make a box 
with a square base, rectangular sides and no top, 
find the volume of the largest possible box. 

7. a. Find J{x3/y/x2 + l)dx 

b. Evaluate f*(\/^/x) cos ( § \ / z ) dx 

c. Show tha t /2 1ο*/(1 + ax)dx — 1, where α is a 
positive constant. 

1. a. Use the definition of continuity to show that the 
given function is discontinuous at χ — 1. 

2x - 1 if χ < 1 
f(x) ~ \ 0 if χ = 1 

if χ > 1 

b. Evaluate lim 
x—*1 x — 1 χ — 

c. Evaluate lim t a n ( 3 z ) / a . 

2. a. Use the limit definition of derivative to find / ! ( 0 ) 

i f / ( * ) = » / ( » ' + 1)· 
b. Find £ [Bia(coe(elf*))]. 

d 
Find — 

dx 

ζ In ζ 

vTTz2 

Find the equation of the line tangent to the curve 

2 ( x 3 + y2fl2 = 27xy at the point (2,1). 

If g(-l) = 1, g'(-l) = 2 and / ' ( l ) = - 1 , evaluate 

£ [ / ( i ( - 5 » ) ) ] a t * = 2 -

I N S T I T U T I O N : A state university in the Midwest with 
20,000 undergraduate and 6,000 graduate students that 
in 1987 awarded 45 bachelor's degrees, 14 master's de-
grees, and 7 doctor's degrees in mathematics. 

E X A M : A two-hour exam (calculators allowed) on el-
ementary calculus for business students. Of the 1440 
students who enrolled in the course, approximately 74% 
passed, including 40% who received grades of A or B. 

1. Find each of the following limits which exist. 

x2 + 2x 
h m — 

x—> — 4 ΧΔ 

8 

lim 

Gx + 8 

3 z 2 - 4z + 7 

oo — 5x2 + 9x -

lim ^ 
z-»-oo 1 -f 4 e _ 

11 

b . lim 
x—2 x* 

d. lim 
x—oo 1 + 4e 

-f 2x - 8 

- 6x + 8 

16 
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2. Find the derivative of each of the following functions. 

a. /(as) = V 9 + 4 x 2 

b. f{x) = (3x + 2 ) ^ 9 + 4 x 2 

c. f{x) = 3e(-
4l'+2:c+3) 

d. f(x) - - 2 In ( 2 x 3 - 3x + ±) 

« ϊ 2 a ; - 1 

e-f{x) = ^Ti 
f. / ( x ) = e ( - 4 l ' + 2 * + 3 ) ( 4 a : - 1) 

3. Let f(x) = x* - 8 x 3 + 216. 

a. Determine those intervals of the x-axis on which 
f(x) is increasing and those intervals of the x-axis 
on which / ( x ) is decreasing. 

b . Determine where / ( x ) has a relative maximum 
value and where / ( x ) has a relative minimum 
value. 

c. Determine those intervals of the x-axis on which 
the curve y — f[x) is concave upward and those 
intervals of the x-axis on which the curve y — f(x) 
is concave downward. 

d. Find all inflection points on the curve y = f(x). 

e. Sketch the curve y = f(x) carefully and neatly. 

f. Determine where / ( x ) has an absolute maximum 

value on the closed interval [2,8]. 

4. Find each of the following. 

a. / 3xV9 + 4 x 2 dx b . f - - d x 
J J x 3 - 6 x 2 - 9 

c. / l 6 x e ( - 4 * 3 + 1 ) c i . x d. / 4 [ l n ( x 2 ) ] 3 \ d x 

e. f — dx f. f n V 1 6 + 5xdx 
J 1 -f 3 e - 4 1 J o 

5. Set up the trapezoidal rule ready for calculating an 

approximation to J" 5 3e~^4+9x2 χ dx using 8 subinter-

vals. 

6. Determine which of the following improper integrals 
converges, and find the value of each convergent one. 

a - J T ? m i d x b - / o ° ° χ 2 e ~ x ' d x 

7. Determine where the graph of each of the following 
functions has a relative maximum point, a relative 
minimum point, a saddle point. 

a- / ( x , y) - 3 x 2 - 4xy + by2 - 14x + 24τ/ - 17 

b- f{z, y) = x2 ~ 4xy + 2i/ 4 + 1 1 

8. Use the method of Lagrange multipliers to find the 
maximum value of / ( x , y) = — 32x 2 + 3xy — 2y2 + 45 
subject to the constraint g(x,y) = 16x 2 + y2 = 32. 

I N S T I T U T I O N : A southern urban two-year college with 
5,000 students. 

E X A M : A two-hour exam (calculators allowed) for the 
first term of calculus for science and business students. 
Of the 28 students who enrolled in the course, 64% 

•passed, including 40% who received grades of A or B. 

1. Answer either a or b but not both: 

a. If / ( x ) = 2 x 2 - 3x + 1, find / ' {y/3/2) by using 
the definition of the derivative. 

b. By means of an appropriate Riemann Sum, find 

/ ! 1 ( 2 x 2 - 3 x + l)<fe. 

2. Answer a or b but not both: 

a. Find the area of the region bounded by χ = y2 

and χ + y = 2. 

b. Find the volume of the solid of revolution gen-
erated when the region bounded by χ = y2 and 
χ + y — 2 is revolved about the line y — 1. 

3. Do either a or b but not both: 

a. Use Newton's Method to est imate s tar t ing 
with οχ = 2 and finding 0 3 . 

b. Est imate ( .94) 3 - l / ( . 9 4 ) 3 by using differentials. 

4. Answer either a or b below, but not both: 

a. Sketch the graph of y = x 4 / 4 - ( 4 x 3 ) / 3 + 2 x 2 - 1 
by finding the local max and local min; point(s) of 
inflection; intervals where the graph is increasing; 
decreasing; concave upward; concave downward. 

b. Est imate J1 x 4 dx using the Trapezoidal Rule with 
η = 4. 

5. Do either part a or b, but not both: 

a. A drinking glass is in the shape of a t runcated cone 
with a base radius of 3cm, a top radius of 5cm, and 
an alt i tude of 10cm. A beverage is poured into the 
glass at a constant rate of 48cm 3 / s ec . Find the 
rate at which the level of the beverage is rising 
in the glass when it is at a depth of 5cm. [Note: 
Volume of a cone = ( l /3)7r(radius) 2 (al t i tude) .] 

I 5 

| 3 | 
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b . Two straight roads intersect at right angles, one 
running north and south, while the other runs east 
and west. Bill jogs north through the intersection 
at a steady rate of 6 miles per hour. Sue pedals her 
bicycle west at a steady rate of 12 miles per hour 
and goes through the intersection one half hour 
after Bill. Find the minimum distance between 
Bill and Sue. 

6. For each of the following functions, determine both 
f'(x) (you need not simplify / ' ( x ) ) and J f(x)dx. 

a. f(x) - 21x6 + 1 5 Ε 2 - 3x + e* 

b . f(x) = 3a: ( e 1 ' ) + χτ/ΊΠ^χ2" 

d. f{x) = e m ( x 4 + 2 i I + i ) 

e. / ( z ) = (nnx)(eca") 

I N S T I T U T I O N : A midwestern liberal arts college with 
1750 students that in 1987 awarded 24 bachelor's de-
grees in mathematics. 

E X A M : A two-hour exam (calculators allowed) from one 
section of first-term calculus taken all students whose 
intended course of study requires calculus. Of the 160 
students who originally enrolled in the course, approxi-
mately 88% passed, including 50% who received grades 
of A or B. 30 students were in the section that took this 
exam. 

1. Differentiation. 

a. Define f'{x). 

b. On the pictures below, indicate Ay and dy. 

V = / ( « ) 

x+ Ax χ χ + Ax 

c. According to Newton's law of heat transfer, the 
rate at which the temperature of a body changes 
is proportional to the difference between the tem-
perature of the body (call the temperature of the 
body u) and the temperature Τ of the surround-
ing medium. Express this law as a mathematical 
equation. 

d. Given / ( 2 ) = e, / ' ( 2 ) = - 1 , g(2) = 4, g'{2) = 3, 
r (x ) = [f{x)]g(xl Find r ' (2 ) . 

e. Find & if y/x + x/y = 4. 

2. Integration. 

a. Consider the function f(t) = l/t defined on the 
interval [1,2]. Let / '„ be the part i t ion of [1,2] 
into η equal subintervals, and in each subinterval 
[ x i _ i , X i ] , choose U ••- x*_i. Then the sum 5„ is 
defined to be 

Sn - / (*ο)(ϋ ι - «υ) + f(h)(x2 - x i ) + · · · 
xn xn — 1 )• 

Find the two sums, 52 and 5 3 . 

b . If you had the use of the tables in your text or a 
calculator, you should be able to find the number 
to which the sums in part a above will converge 
( that is, the number which will be approached) as 
η increases. W h a t number would you look up (or 
enter into your calculator)? 

c. Let G(x) = / 0

X VlG-t2 dt 

i. Which is correct? 

G(2) = - G ( - 2 ) or G(2) = G ( - 2 ) 

it. W h a t is G(0)? 

Hi. W h a t is G'(2)? 

iv. Wha t is G(4)? 

d. Find the indicated antiderivatives. 

i. J{t + 1)/Vidt it. / v f y ( t 3 / 2 + 1) dt 
3. Graphs and derivatives. For each of the following 

functions, find / ' ( x ) . Give the answer, then find the 
critical points, if any, and draw a graph of y — f(x). 

a. f(x) = 3 x 4 - 8 x 3 + Ox 2 - 5 

b . /(as) = 4 x / ( x 2 + 2) 

c. / ( x ) = In x / x 

d. f(x) = χ2χ~χ* 

e. / ( x ) = x~x 

4. The following two questions both refer to the func-
tion / ( x ) = In x / x graphed in par t c of question 3 
above. 

a. Write the equation of the line tangent to the graph 
at χ = y/e. 

b. Find the area undor the graph from χ = -y/i to 
χ = e 2 . 
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I N S T I T U T I O N : A western land-grant university with 
15,000 students that awarded 29 bachelor's, 9 master's, 
and 3 doctoral degrees in mathematics in 1987. 

E X A M : A three-hour exam (calculators not allowed) 
given to all students in a first term calculus for en-
gineering, science, and mathematics students. Of the 
435 students who enrolled in the course, 46% withdrew 
before the final exam, 6% failed the course, and 24% 
received grades of A or B. 

1. Find the equation of the line tangent to the graph of 
y = f(x) a t the point (0, - 4 ) where f(x) = tana: -
4 + 3x. 

2. Determine all relative extreme values of y = x 5 — 20x. 
(Justify your results.) 

3. Find the derivatives of the following functions: 

a. f{x) = ( x 2 - l ) / ( x 2 + 1) 

b. / ( x ) = ( 1 / x s i n x ) 2 / 3 

c. f(x) = ex' 

d. f{x) = ( Inχ ) 1 "* 

e. f{x) = a r c t an ( (x + l ) / ( x - 1 ) ) 

4. Evaluate the following limit in two distinct ways: 

lim 
8 x 3 1 

.1 2x - 1 

5. Sketch the graph of f(x) — x 3 —6x 2+12x—4, showing 
all principal features (such as asymptotes, extrema, 
and inflecton points). 

6. Approximate \[YJ by using differentials. 

7. A crate open at the top has vertical sides, a square 
bot tom, and a volume of 4 cubic meters. If the crate 
has the least possible surface area, find its dimen-
sions. 

8. Compute the following: 

b. / x 2 / ( l - x 3 ) < i x 

c. £ ( t » - ( ! / « » ) ) ' Λ 

d. f x-y/z — 1 dx 

e. / 0

2 1 / V 1 6 - x 2 dx 

9. Evaluate lim ( s in3x) /x for 

a. xo = t t / 3 b . xo = 7r/6 

c. x 0 = 0 

10. Suppose tha t the equation y = ( 2 s ) / ( l + 2V) defines 
y as a differentiable function of x. Use implicit dif-
ferentiation to determine 

11. A board 5 feet long slides down a vertical wall. At 
the instant the bo t tom end is 4 feet from the base of 
the wall, the top end is moving down the wall at the 
rate of 2 feet per second. At tha t moment, how fast 
is the bo t tom sliding along the horizontal ground? 

12. Assume tha t the half-life of radon gas is 4 days. De-
termine a formula which gives the time required for 
10% of a given quanti ty of this gas to become harm-
less. 

13. Evaluate the area under the curve y — 2" 
interval [ | , 1]. 

on the 

14. Find a formula for the inverse of / ( x ) = 
3x + 5 

15. Sketch the graph of f(x) = l n ( 2 - x - s 2 ) . [Note tha t 
χ must be such that 2 - χ - x 2 > 0.] 

16. Determine whether the following s ta tements are true 
or false: 

a. The function / ( x ) = 1/x is its own inverse. 

x 2 + 5x + 6 
b. Defining /(—2) = 1 makes / ( x ) = 

continuous at χ — —2. 
χ + 2 

c. lim ( ν τ - ϊ + x) = 1 

d. J^taaxax— — l n | c o s x | | = — (In 1 — In 1) = 0. 

e. If lim / ( x ) = lim / ( x ) , t h e n / ( x ) is continuous 

a t the point χ = a. 

I N S T I T U T I O N : A highly selective private northeastern 
university with 4,500 undergraduate and 4t500 gradu-
ate students. In 1987, 68 students received bachelor's 
degrees in mathematics, 2 received master's, and 11 re-
ceived mathematics Ph.D. degrees. 

E X A M : A three-hour exam for all students enrolled in 
first term calculus. Course enrollment rose from 230 to 
275 during the term, and 94% of the enrolled students 
passed; 62% received grades of A or B. 

1. If f(x) = x 2 cos x, then / ' ( π / 2 ) = 

(Α) π (Β) - π 2 / 4 (C) ττ 2 /4 
(D) - π (Ε) π - τ 2 / 4 
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2. For what value of the constant c will the tangent 
line to the curve y = χ 4 -f c x 2 — cx + 1 at the point 
(x,y) — (1 , 2) intersect the x-axis a t χ = 2? 

(A) - 1 (B) 3 (C) - 6 (D) 2 (E) 15 

3. Which of the following gives the best approximation 
for / (1 .01) if f{x) = 2 / x 7 + 3 x 4 ? 

(A) 5.00 (B) 5.02 (C) 5.01 
(D) 4.98 (E) 4.99 

4. The equation of the tangent line to the curve x 2 + 
y2 + 3x j / 3 + 4 x 3 y = 1 at the point (1,0) is 

(A) y = - ( 1 / 2 ) * + 1/2 (B) y = ( l / 2 ) x - 1/2 
(C) y = χ - 1 (D) y = 2x - 2 
(E) y = - 2 x + 2 

5. I f / ( x ) = C O S T ( x 2 - ( l / 2 ) x ) , then / ' ( l ) = 

(A) 3/2 (B) (2 /3)x (C) - ( 3 / 2 ) * 
(D) - 3 / 2 (E) (3 /2)π 

6. The curve y — 4 x 3 - 3 x 2 + 2x - 1 has a point of 
inflection at χ — 

(A) 1 (B) 1/2 (C) 1/3 (D) 1/4 (E) 1/5 

7. The curve y = x 2 / 3 + 1 2 / x 2 has a 

(A) relative minimum at χ = 6 

(Β) relative minimum at χ = *J% 

(C) relative maximum at χ = 6 

(D) relative maximum at χ = Vg 

(E) point of inflection at χ = 0 

8. If a solid right circular cylinder of volume V is made 
in such a way as to minimize its surface area then 
the rat io of its height to its base radius is 

(Α) π (Β) 1/2 (C) 0 (D) 1 (E) 2 

9. A ladder of length 15 ft. is leaning against the side 
of a building. The foot of the ladder is sliding along 
the ground away from the wall at 1/2 ft./sec. How 
fast is the top of the ladder falling when the foot of 
the ladder is 9 ft. from the wall? 

(A) 3/2 ft./sec. (B) 3/4 ft./sec. 
(C) 3/8 ft./sec. (D) 1/3 ft./sec. 
(E) 1/2 ft./sec. 

10. Consider the following two statements: 
P. If a function is continuous then it is differentiable. 
Q. If a function is differentiable then it is continuous. 

(A) Ρ and Q are both t rue. 

(Β) Ρ and Q are both false. 

(C) Ρ is t rue and Q is false. 

(D) Ρ is false and Q is true. 

11. For which values of the constants α and 6 will the 
function / ( x ) defined below be differentiable? 

(Α) α = 6 = 1 
(C) ο = 1, b = - 1 
(E) o = 3, b= 1 

χ < 1 
+ χ + 1 χ > 1 

(Β) o = 1, 6 = 2 
(D) o = 2, b = 0 

12. The total area enclosed between the curves y = χ 
and y = x 3 is 

(A) 1 (B) 1/2 (C) 1/3 (D) 1/4 (E) 1/5 

13. The area bounded by the curve y = π sin(irx) and the 
x-axis between two consecutive points of intersection 
is 

(A) 1 (B) 2 (C) 3 (D) π (Ε) π / 2 

14. If the acceleration of a particle moving in a straight 
line is given by α = 10t 2 and the particle has a veloc-
ity of 2 ft./sec. at t — 0, then the distance traveled 
by the particle between t = 0 and t = 3 sec. is 

(Α) 2 7 π Λ . (Β) 147/2 ft. (C) 135/2 ft. 
(D) 41 ft. (E) 83 ft. 

15. If f(x) = f* s i n 2 1 cos 0 * dt then / ' ( π / 4 ) is 

(A) 1/2 (B) 1/4 (C) 1/8 (D) 1/16 (E) 1/32 

16. £,2sm2xdx = 

(A) 0 (B) 1/2 (C) 1 (D) 2 (Ε) π 

17. The region bounded above by the curve y = χ — χ 2 

and below by the x-axis is rotated about the x-axis. 
The volume generated is 

(Α) π / 6 (Β) π /30 (C) π /12 (D) π / 1 5 (Ε) π / 3 

18. The region in problem 17 is rotated about the y-axis. 
The volume generated is 

(Α) π / 6 (Β) π /30 (C) π / 1 2 (D) π /15 (Ε) π / 3 

19. The length of the curve y = ( 2 / 3 ) x 3 / 2 between χ = 1 
and χ = 2 is 

(A) 1 
(C) 3v/3 
(E) ( 2 / 3 ) ( 3 v

/ 3 - 2\/2) 

(B) y/2-1 
(D) 1/2 

20. The average value of the function f(x) = x3 between 
χ = 0 and χ = 2 is 

(A) 1/4 (B) 1/3 (C) 1/2 (D) 1 (E) 2 
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21. The following table lists the known values of a certain 
function / 

X 1 2 3 4 5 6 7 

/(*) 0 1.1 1.4 1.2 1.5 1.6 1.1 

If the trapezoid rule is used to approximate f^'f(x) dx 
the answer obtained is 

(A) 7.9 
(D) 7.35 

(B) 7.5 
( E ) 7.05 

(C) 6.8 

22. If Simpsons's rule is used to estimate / ( E ) dx for 
the function given in problem 21, the answer ob-
tained is 

(A) 7.9 

(D) 7.35 
(B) 7.5 

( E ) 7.05 
(C) 6.8 

23. If f(x) = e " n 2 x , then / ' (π /2 ) = 

(A) 2 (Β) 1 (C) 0 (D) - 1 ( E ) - 2 

24. If f(x) = In ( s i n - 1 ( x / 2 ) ) then / ' ( l ) = 

(Α) 1/π (Β) (2λ/3)/ιγ (C) (πν^2)/4 
(D) πχ/2 (Ε) π / 2 

25. If lim ( ε Ι + 1 ) / ( Ε 4 + 1ηχ) = 4 and lim 
In: 

I - » 0 O 

then 
z - x x x3 - f 1 

Β 

(A) 4 = 0, Β = oo (B) A = 0 , 5 = 0 
(C) A = oo, Β = 0 (D) A = oo, Β = oo 
( E ) A=1,B = 1 

26. lim (xlnx + x2)/(x2+ 2) = 
x—*OO 
(A) 0 (B) oo (C) 1 (D) 2 ( E ) 1/2 

27. The temperature , T, of a body satisfies the equa-
tion dT/dt = kT, t in seconds. If T(0) = 30° and 
T(5) = 5°, then ifc = 

(A) - 1 (B) - I n 2 

(C) -(1/5)In6 (D) - ( 1 / 3 ) l n 3 
( E ) - ( 1 / 7 ) In 5 

/•3 
28. / 

Jo 
: dx 

(A) 1/3 (B) 2 /3 (C) 4 / 3 (D) 8/3 ( E ) 16/3 

29. / s in 2 χ co s 3 χ dx = 
Λ) 

(A) (4>/2)/81 (B) (5y/2)/7 (C) (3v^)/17 
(D) 4fgj» ( E ) 7 y ^ / 1 2 0 

f2 

30. / xex dx = 

(A) 1 (Β) 0 (C) e (D) e 2 ( E ) 1/e 

31. J [2x + 3 ) / ( E 3 - 2 E 2 - 3x) dx = 

(A) 21n3 + ln2 (B) (1/4)In3 - 21n2 
(C) (1/2) In 3 + (1/2) In 2 (D) 2 In 3 - (1/3) In 2 
( E ) In 3 - I n 2 

32. The integral / 
Jo 

dx 

ο xp 

(A) diverges for ρ > 1, converges for ρ < 1 

(Β) diverges for ρ > 1, converges for ρ < 1 

(C) converges for ρ > 1, diverges for ρ > 1 

(D) converges for ρ > 1, diverges for ρ > 1 

(Ε) diverges for all ρ 

I N S T I T U T I O N : A southwestern public university with 
12,000 students that in 1987 awarded 24 bachelor's and 
5 master's degrees in mathematics. 

E X A M : A three-hour exam (calculators not allowed) 
given to 18 students in one section of first term calculus 
for engineering, mathematics, and science majors. Of 
the 269 students who enrolled in the course, 42% com-
pleted the course with a passing grade; 60% of those who 
passed received grades of A or B. 

1. An object shot upward has height χ = —5t2 + 30i m 
after t seconds. Compute its velocity after 1.5 s ec , 
its maximum height, and the speed with which it 
strikes the ground 

2. Two cars leave an intersection P. After 60 s e c , the 
car traveling north has speed 50 ft/sec. and distance 
2000 ft. from P, and the car traveling west has speed 
75 ft/sec. and distance 2500 ft. from P. At tha t 
instant, how fast are the cars separating from each 
other? 

3. Find the maximum and minimum of f{x) = xy/l — x2 

on the interval [—1,1]. 

4. Find the coordinates of all local maxima and minima 
o f / ( a 0 = a : 7 ( l - | - : c 4 ) . 

5. Find the point on the graph of the equation y — y/x 
nearest to the point (1 ,0) . 

6. An athletic field of 400-meter perimeter consists of 
a rectangle with a semi circle at each end. Find the 
dimensions of the field so tha t the area of the rect-
angular portion is the largest possible. 
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7. Differentiate: 

a. / ( x ) = e 5 l ( x 2 - 3x + 6) 

b . g(x) = l/(l + e-') 

8. In a certain calculus course, the number of s tudents 
dropping out each class day was proportional to the 
number still enrolled. If 2000 started out and 10% 
dropped after 12 classes, estimate the number left 
after 36 classes. 

9. Differentiate: 

a. f(x) = ln (x 2 + x) 

b. g(x) = ln(sec χ + tan x) 

10. Use the logarithm function to differentiate: 

a. y = (2 + sin as)* b . y = xllx 

11. Evaluate arccos( l /2) - a r c c o s ( - l / 2 ) . 

12. Differentiate / ( x ) = χ arcsin χ + arccos(2x + 1). 

13. Differentiate f(x) — χ cosh χ — sinh x. 

14. Find 

a. l i m ( ( l - x ) / ( e * - e ) ) 
x—»i 

b. lim (x — π / 2 ) t a n χ 

x—nr/2 
15. Assume the population of a certain city grows at a 

rate proportional to the population itself. If the pop-
ulation was 100,000 in 1940 and 150,000 in 1980, pre-
dict what it will be in year 2000. 

16. Evaluate: 

a. f*{x2 — 4x + 4) dx b. J^2(sin χ cos x) dx 

17. Find % 

a. y = J£m x' y/tdt b. y = J£ sec t dt 

18. Compute the area under the graph f(x) = χ + sin χ 
over the interval [0, π /2 ] . 

19. Show tha t 2 < f* 1/(1 + s in 2 χ) dx < 4. [HINT: If 

f(x) < g(x) on [a,b] then f*f(x)dx < f*g(x)dx.] 

I N S T I T U T I O N : A midwestern community college with 
approximately 8500 full time students. 

E X A M : A two-hour exam (calculators allowed) given to 
60% of the students who completed a first term calcu-
lus course for students specializing in business or liberal 
arts. Of the 142 students who enrolled in the course, 
30% withdrew, 1 % failed, and 37% received grades of A 
or B. 

1. A manufacturer has been selling lamps a t a price of 
$15 per lamp. At this price, customers have pur-
chased 2,000 lamps per month. Management has de-
cided to raise the price to ρ dollars in an a t t emp t to 
improve profit. For each $1 increase in price, it is 
expected tha t sales will fall by 100 lamps per month. 

If the manufacturer produces the lamps a t a cost of 
$8 each, then express the monthly profit for the sale 
of lamps as a function of price p. Then maximize the 
profit by finding the price ρ a t which greatest profit 

2. Find each derivative. 

a. / ' ( 2 ) if / ( x ) = Vx 3 f 4x 

b. g{x)= i x 6 + 3 x 2 

c. h(x) = xex 

d. j(x) - l n (x 2 + 4x) 

e. n(x) = (z + l ) / ( x - l ) 

3. A fine restaurant has purchased several cases of wine. 
For a while, the value of the wine increases; but even-
tually, it passes its prime and decreases in value. In t 
years, the value of a case of the wine will be changing 
at the rate of 62 - 12i dollars per year. If the an-
nual storage costs remain fixed at $2 per case, then 
when should the restaurant sell the wine in order to 
maximize profit? [ H I N T : Profit depends upon value 
"minus" storage costs.] 

4. Use implicit differentiation to find j j | if x2y + 2y2 = 
30. 

5. It is estimated tha t t days from now a citrus farmer's 
crop will be increasing at the rate of 0.3t 2 -f 0.6i + 1 
bushels per day. By how much will the value of the 
crop increase during the next 6 days if the market 
price remains fixed at $7 per bushel? 

6. Evaluate these integrals: 

a. / (

4 ( 6 x 2 - t - 3 v

/ i ) < i x 

b. / 2 e 2 * + 1 < i a ; 

c. / ( 3 x 2 ) / ( x 3 + l ) d x 

d. f{x2 + l ) ( x 3 + 3x + l ) 5 dx 

e. J xex dx [Use parts.] 

f. f™3/x2dx 



186 E X A M I N A T I O N S 

7. At a certain factory, the output is Q = 120K1/2L1/3 

units, where Κ is the capital investment in $1000 
units and L is the size of the labor force measured 
in worker-hours. Currently, capital investment is 
$400,000 and labor force is 1000 worker-hours. Use 
the total differential of Q to estimate the change 
in output which results if capital investment is in-
creased by $2000 and labor is increased by 4 worker-
hours. 

8. A sociologist claims that the population of a certain 
country is growing at the rate of 2% per year. If the 
present population (1987) of the country is 200 mil-
lion people, then what will the population be in the 
year 2000? [ H I N T : Solve the separable differential 
equation & = .02P.] 

9. Sketch carefully the graphs of / ( x ) = 2x — x2 and 
g(x) = 2x — 4. Then find the area of the region 
enclosed by the two graphs. 

10. Determine the maxima and minima for the function 
f{x, y)-x2 + xy + y 2 - 3x. 

I N S T I T U T I O N : A western public university with 23,000 
undergraduate and 10,000 graduate students that in 
1987 awarded 350 bachelor's degrees, 19 master's de-
grees, and 13 Ph.D. degrees in mathematics. 

E X A M : A three-hour exam (calculators not allowed) 
given to 71 students in one section of a first term calcu-
lus course for students intending to major in the life sci-
ences and economics. Of the 914 students who enrolled 
in the course, 79% passed the course, 44% of whom re-
ceived grades of A or B. 

1. Differentiate the following: 

a. £ s e c ( e 3 * ) 

b. f 3 « « 
ax 

c. £ a r c s i n ( x * ) 

d. j j : ln(arctan a:) 

2. Find the area of the 3-sided region in the first quad-
rant enclosed by the straight lines y = χ and y = x /8 
and the curve y = 8 / x 2 . Draw a picture. 

3. Consider the region enclosed between the curves y = 
2x2 and y = x 2 + 1 as shown: 

a. Suppose the region is rotated about the axis χ = 5. 
Write down a definite integral which would give 
the volume. Do not evaluate this integral. 

b. Same as part (a), except let the axis be the line 

y = 7. 

4. A spring, whose natural length is 10 ft., requires 40 
ft-lbs. of work to be stretched from a length of 13 ft. 
to a length of 17 ft. How much work would it require 
to stretch it from a length of 15 ft. to a length of 21 
ft.? 

5. An object is removed from an oven and left to sit in a 
70° room. After 2/3 's of an hour it is 170°, and after 
2 hours it is 120°. Assuming tha t Newton's law of 
cooling applies, how hot was the object when it was 
removed from the oven? (Note: You may leave your 
answer in any reasonable form; the actual numerical 
answer will contain a 

6. Find the following indefinite integrals, using substi-
tution if necessary: 

a. / ( e 3 * ) / ( l + e 3 * ) 5 d x 

b. J^x/{y/x-l)dx 

7. Using integration by parts twice, find / x 2 sin χ dx. 
(Recall you can check your answer by differentia-
tion.) 

8. Solve the following differential equation, making use 
of an integrating factor. Then evaluate your constant 
using the initial condition. 

j | = 3 - y / (2x + 1); 2/(4) = 5 

(Assume 2x + 1 > 0 always.) 

9. At time t — 0 a tank contains 13 gallons of water in 
which 2 pounds of salt are dissolved. Water contain-
ing 6 pounds of salt per gallon is added to the tank 
at the the rate of 8 gallons per minute. The solu-
tions mix instantly and the mixture is drained at the 
rate of 3 gallons per minute. Write down a differen-
tial equation which relates the amount of salt s (in 
pounds) to the t ime t. Do not solve this equation. 
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10. Using Theorem 19.3, find the solutions of the follow-
ing two differential equations, use the initial da t a to 
evaluate your constants, and identify the appropriate 
graphs. 

a. y" + 6y' + 9y = 0; y(0) = 0 and y'(0) = 2. 

b. y" + 5y' + 4y = 0; y(0) = 2 and y'(0) = - 5 . 

(A) (B) 

( C ) 

(E) 

(D) 

(F) 

E X A M : A three-hour exam (calculators not allowed) 
administered in 1985 to 35,000 high school students 
by the advance placement (AP) program. This is the 
"AB" exam for students who have studied the prescribed 
curriculum. 35% of those who took the exam received 
grades of 4 or 5, the highest two grades available. 

1. Kx-*dx 

(A) - 7 / 8 
(D) 3/8 

(B) - 3 / 4 
(E) 15/16 

(C) 15/64 

2. If f{x) = (2x + l ) 4 , then the 4th derivative of f(x) 
at χ — 0 is 

(A) 0 (B) 24 (C) 48 (D) 240 (E) 384 

3. I f y = 3 / ( 4 + x 2 ) , then g = 

(A) - 6 x / ( 4 + x 2 ) 2 (B) 3x / (4 + x 2 ) 2 

(C) 6z / (4 + x 2 ) 2 (D) - 3 / ( 4 + x2)2 

(E) 3 /2z 

4. If = cos(2x), then y = 

(A) - ± c o s ( 2 x ) + C (B) - ± c o s 2 ( 2 x ) + C 
(C) ±sin(2x) + C 
(E) - ± s i n ( 2 z ) + C 

(D) ±s in 2 (2x ) + C 

5. lim ( 4 n 2 ) / ( n 2 + 10,000η) is 
η—• oc 

(A) 0 (B) 1/2,500 (C) 1 
(D) 4 (E) nonexistent 

6. If f{x) = x, then / ' ( 5 ) = 

(A) 0 (B) 1/5 (C) 1 (D) 5 (E) 25/2 

7. Which of the following is equal to In 4? 

(A) l n 3 + l n l (B) I n 8 / I n 2 

(C) J*eldt (D) f*\nxdx 

(E) tfi/tdt 

8. The slope of the line tangent t o the graph of y = 
ln(x/2) at χ = 4 is 

(A) 1/8 (B) 1/4 (C) 1/2 (D) 1 (E) 4 

9. If j \ e~x2 dx = k, then e'** dx = 

(A) -2k (B) -k (C) -k/2 
(D) k/2 (E) 2k 

10. If y = l O ^ 2 - 1 ) , then % -

(Α) (Ιηίομο** 2- 1) (Β) (2x)10< a ; 2 - 1 ) 

(C) ( x 2 - l )10(* 2 - 2 > (D) 2 x ( l n l 0 ) 1 0 ( l 2 - 1 ) 

(E) x 2 ( l n l 0 ) 1 0 ( l 2 " 1 ) 

11. The position of a particle moving along a straight line 
at any t ime t is given by s(t) = t 2 + At + 4. W h a t is 
the acceleration of the particle when t = 4? 

(A) 0 (B) 2 (C) 4 (D) 8 (E) 12 

12. If f{g(x)) = l n (x 2 + 4), f(x) = l n (x 2 ) , and g(x) > 0 
for all real x, then g(x) = 

(A) l / v ^ + 4 (B) l / ( x 2 + 4) 
(C) \ίχΎΤΑ (D) x 2 + 4 
(E) x + 2 

13. If x 2 + xy + y 3 = 0, then, in terms of χ and y, j | = 

(A) - ( 2 x + y ) / (x + 3 y 2 ) 

(B) - ( x + 3 y 2 ) / ( 2 x + y) 

(C) - 2 x / ( l + 3y 2 ) 

(D) - 2 x / ( x + 3 y 2 ) 

(E) - ( 2 x + y ) / ( x + 3 y 2 - l ) 

14. The velocity of a particle moving on a line at time t 

is ν = 3txl2 + 5t3/2 meters per second. How many 

meters did the particle travel from t = 0 to t = 4? 

(A) 32 (B) 40 (C) 64 (D) 80 (E) 184 

15. The domain of the function defined by / ( x ) = 
ln (x 2 - 4) is the set of all real numbers χ such 
tha t 

(A) |x| < 2 (B) |x| < 2 (C) |x| > 2 
(D) |x| > 2 (Ε) χ is a real number 
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16. The function defined by / ( x ) = x3 — 3 x 2 for all real 
numbers χ has a relative maximum at χ — 

(A) - 2 ( Β ) 0 (C) 1 (D) 2 ( E ) 4 

17. Jtxe-'dx = 

(A) l - 2 e ( Β ) - 1 (C) 1 - It'1 

(D) 1 ( E ) 2e - 1 

18. If y = cos 2 χ — s in 2 x, then y' — 

(A) - 1 ( Β ) 0 
(C) - 2 s i n ( 2 x ) 
( E ) 2(cos χ — sin x) 

(D) -2 (cos χ 4- sin x) 

19. If / ( χ ι ) + / ( X 2 ) = f{xi + X 2 ) for all real numbers xi 
and X 2 , which of the following could define f? 

(A) / ( * ) = » + 1 ( B ) / ( x ) = 2x 
(C) f{x) = 1/x (D) / ( x ) = e* 
( E ) / ( x ) = x 2 

20. If y = Arctan (cos x), then | | = 

(A) — sin z / ( l + cos 2 χ) (B) — (Arcsec(cosx)) 2 s inx 
(C) (Arcsec(cosx)) 2 (D) l / ( ( A r c c o s x ) 2 4-1) 
( E ) 1/(1 4 -cos 2 x) 

21. If the domain of the function / given by / ( x ) = 

1/(1 - x 2 ) is {x : |x| > 1}, what is the range of 

/ ? 

(A) {x : - 0 0 < χ < - 1 } 

(B) {x : - 0 0 < χ < 0} 

(C) {x : - 0 0 < χ < 1} 

(D) {x : - 1 < χ < 0 0 } 

( Ε ) {χ : 0 < χ < 0 0 } 

22. / 1

2 ( x 2 - l ) / ( x 4 - l ) d x = 

(A) 1/2 (B) 1 (C) 2 (D) 5/2 (E) In 3 

23. £ ( l / x 3 - 1/x 4- x 2 ) at χ = - 1 is 

(A) - 6 (B) - 4 (C) 0 (D) 2 ( E ) 6 

24. If f_2(x
7 + k)dx = 16, then k = 

(A) - 1 2 (B) - 4 (C) 0 (D) 4 ( E ) 12 

25. If fix) = ex, which of the following is equal to / ' ( e ) ? 

(A) l i m ( e - + f c ) / * (B) l im(e*+" - e')/h 

(C) l i m ( e ^ - e)/h (D) Um(e*+'' - l)/h 

( E ) Um(e '+* - ee)/h 

26. The graph of y2 = x2 4- 9 is symmetric with respect 
to which of the following? 

I. The x-axis 

II. The j/-axis 

III. The origin 

(A) I only 
(C) III only 
(Ε) I, II, and III 

( Β ) II only 
(D) I and II only 

27. / 0

3 | x - l | d x = 

( A ) 0 ( B ) 3/2 ( C ) 2 ( D ) 5/2 ( E ) 6 

28. If the position of a particle on the x-axis at time t 
is — 5 i 2 , then the average velocity of the particle for 
0 < t < 3 is 

( A ) - 4 5 ( B ) - 3 0 ( C ) - 1 5 ( D ) - 1 0 ( E ) - 5 

29. Which of the following functions are continuous for 
all real numbers x? 

I. y = x2'3 

II. y = ex 

III. y — t an χ 

( A ) None ( Β ) I only ( C ) II only 
(D) I and II ( Ε ) I and III 

30. / tan(2x) dx = 

( A ) - 2 1 n | c o s ( 2 x ) | 4 - C ( B ) - | In | cos(2x) | 4- C 

( C ) i l n | c o s ( 2 x ) | 4 - C ( D ) 2 In |cos(2x) | 4- C 

( E ) i s e c ( 2 x ) t a n ( 2 x ) 4 - C 

31. The volume of a cone of radius r and height h is 
given by V = ^irr2h. If the radius and the height 
both increase at a constant rate of 1/2 centimeter 
per second, a t what rate, in cubic centimeters per 
second, is the volume increasing when the height is 
9 centimeters and the radius is 6 centimeters? 

( A ) Iir ( B ) IOTT ( C ) 24π ( D ) 54π ( Ε ) 108π 

32. $*l3zmiZx)dx = 

(A) - 2 ( Β ) - 2 / 3 (C) 0 

33. The graph of the deriva-
tive of / is shown in 
the figure at the right. 
Which of the following 
could be the graph of / ? 

(D) 2 /3 ( E ) 2 

y =f\x) 
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III. tif(x)dx<ftg(x)dx 

34. The area of the region in the first quadrant tha t is 
enclosed by the graphs of y = x3 + 8 and y = χ + 8 
is 

(A) 1/4 (B) 1/2 (C) 3/4 (D) 1 ( E ) 65/4 

35. The figure at the right 
shows the graph of a sine 
function for one complete 
period. Which of the fol-
lowing is an equation for 
the graph? 

(A) y = 2 Bin ( f a s ) 

(C) y = 2sin(2x) 
( E ) y = sin(2x) 

(B) y — sin(7r») 

(D) y = 2 sin(xx) 

36. If / is a continuous function defined for all real num-
bers χ and if the maximum value of f(x) is 5 and 
the minimum value of / ( x ) is —7, then which of the 
following must be true? 

I. The maximum value of / ( | x | ) is 5. 
II. The maximum value of | / ( x ) | is 7. 

III. The minimum value of / ( | x | ) is 0. 

(A) I only (Β) II only 
(C) I and II only (D) II and III only 
(Ε) I, II, and III 

37. lim (x esc x) is 

(A) - o o (Β) - 1 (C) 0 (D) 1 ( E ) oo 

38. Let / and g have continuous first and second deriva-
tives everywhere. If / ( x ) < g(x) for all real x, which 
of the following must be true? 

I- ?{*) < 9'{*) f ° r a 1 1 " a l x 
II. / " ( x ) < g"(x) for all real χ 

(A) None 
(C) III only 
(Ε) I, II, and III 

(Β) I only 
(D) I and II only 

39. If / ( x ) = In x / x for χ > 0, which of the following is 
true? 

(A) / is increasing for all χ greater than 0. 

(B) / is increasing for all χ greater than 1. 

(C) / is decreasing for all χ between 0 and 1. 

(D) / is decreasing for all χ between 1 and e. 

( E ) / is decreasing for all χ greater than e. 

40. Let / be a continuous function on the closed interval 
[0,2]. If 2 < f(x) < 4, then the greatest possible 
value of f(x) dx is 

(A) 0 (B) 2 (C) 4 (D) 8 ( E ) 16 

41. If lim / ( x ) = L, where L is a real number, which of 
χ —* α 

the following must be true? 

(A) / ' ( a ) exists. 

(B) f{x) is continuous at χ = a. 

(C) / ( x ) is defined at χ = a. 

(D) / ( a ) = L. 

( E ) None of the above 

42. d_ rx 

dx J2 β v T + 1 1 dx = 

(A) x/Vl + *2 (Β) ν Ί + x 2 - 5 

( D ) χ / ν Ί - f x 2 - Ι / Λ / 5 (C) v T + x 2 

(Ε) 1 / ( 2 ν / Ϊ Τ ΐ ϊ ) - 1 / ( 2 ν / 5 ) 

43. An equation of the line tangent to y = x 3 + 3x + 2 
at its point of inflection is 

(A)2 / = - 6 z - 6 ( B ) y = - 3 x + l 
(C) y = 2x + 10 (D) y = 3x - 1 
(E) y = 4x + 1 

44. The average value of f(x) — x2\/x3 + 1 on the closed 
interval [0,2] is 

(A) 26/9 (B) 13/3 (C) 26/3 (D) 13 ( E ) 26 

45. The region enclosed by the graph of y = x 2 , the line 
χ = 2, and the x-axis is revolved about the y-axis. 
The volume of the soli'l generated is 

(Α) 8π (B) f π (C) ψ π (D) 4π (Ε) § π 
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F R E E - R E S P O N S E Q U E S T I O N S : 

1. Let / be the function given by /(as) = f f r f · 

a. Find the domain of / . 

b . Write an equation for each vertical and each hor-
izontal asymptote for the graph of / . 

c. Find f'(x). 

d. Write an equation for the line tangent to the graph 
of / at the point ( 0 , / ( 0 ) ) . 

2. A particle moves along the x-axis with acceleration 
given by a(t) = cost for t > 0. At t — 0 the velocity 
v(t) of the particle is 2 and the position x(t) is 5. 

a. Write an expression for the velocity v(t) of the 
particle. 

b. Write an expression for the position x( i ) . 

c. For what values of t is the particle moving to the 
right? Justify your answer. 

d. Find the total distance traveled by the particle 
from t = 0 to t = π / 2 . 

3. Let R be the region enclosed by the graphs of y — 
e~x, y — e 1 , and χ = In4. 

a. Find the area of R by setting up and evaluating a 
definite integral. 

b. Set up, but do not integrate, an integral expres-
sion in terms of a single variable for the volume 
generated when the region R is revolved about the 
x-axis. 

c. Set up, but do not integrate, an integral expres-
sion in terms of a single variable for the volume 
generated when the region R is revolved about the 
y-axis. 

4. Let f(x) = 14πχ 2 and g(x) = k2 βΐη(πχ)/(2Α) for 
k > 0. 

a. Find the average value of / on [1,4]. 

b . For what value of k will the average value of g on 
[0,k] be equal to the average value of / on [1,4]? 

5. The balloon shown at the 
right is in the shape of a cy-
linder with hemispherical 
ends of the same radius as 
that of the cylinder. The 
balloon is being inflated at 
the rate of 261π cubic cen-
timeters per minute. At 
the instant the radius of 
the cylinder is 3 centime-
ters, the volume of the bal-
loon is 144π 

cubic centimeters and the radius of the cylinder is 
increasing at the rate of 2 centimeters per minute. 
(The volume of a cylinder with radius r and height 
h is TTr2h, and the volume of a sphere with radius r 
is ( 4 / 3 ) π Γ 3 . ) 

a. At this instant, what is the height of the cylinder? 

b. At this instant, how fast is the height of the cy-
linder increasing? 

6. The figure below shows the graph of / ' , the derivative 
of a function / . The domain of the function / is the 
set of all χ such tha t — 3 < χ < 3. 

[ N O T E : This is the graph of the derivative of / , not 
the graph of / . ] 

a. For what values of x, —3 < χ < 3, does / have a 
relative maximum? A relative minimum? Justify 
your answer. 

b . For what values of χ is the graph of / concave up? 
Justify your answer. 

c. Use the information found in par ts a and b and 
the fact tha t /(—3) = 0 to sketch a possible graph 
o f / . 

I N S T I T U T I O N : A major midwestem research university 
with approximately 40,000 students. In 1987, 75 stu-
dents received bachelor's degrees, 30 received master's 
degrees, and 11 received Ph.D. degrees in mathematics. 

E X A M : A two-hour exam (calculators not allowed) on 
first term calculus for science and engineering students. 
Of the 1650 students who enrolled in the course, approx-
imately 85% passed, including 40% who received grades 
of A or B. 

1. For each of the following find 

a. y — ( co s (5x ) ) 3 ' 2 

b. y — . 
V^xTT 

c. y = χ tan χ 
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d. y = — -

y 
+ y' 2 x 3 4 - 1 

2. Find the following limits. If the limit is a finite num-
ber, write tha t number. If there is no finite limit, 
write +oo , — oo, or "none." 

a. lim —=— 
i - i - x2 - 2x + 1 

7 x 5 - 3 x 2 4-1 
lim 

x 6 4 - 1 

lim 
sin(x — 3) 

τ->3 χ — 3 

d. lim / o ( 3 < 2 - l)dt 

3. For the function y = a:3 — 6 x 2 + 9x — 3 answer the 
following questions. 

a. Give the coordinates of all relative minima and 
relative maxima (if any). Justify your answer. 

b. Give the coordinates of all inflection points (if 
any). Justify your answer. 

c. For what interval(s) is the function concave up? 
For what intervals(s) is it concave down? 

d. Sketch the graph using the information from a-c . 

4. Let f(x) = 3 x 2 - 5x + 1. 

a. State carefully what properties of / guarantee that 
the Mean Value Theorem applies to / on the in-
terval [1,2]. 

b. This theorem asserts the existence of a certain 
number c. Find this c for / on [1,2]. 

5. A flood light is positioned on the ground shining on 
a white wall 30 feet away. A woman 5 feet tall s tarts 
at the wall and walks towards the light a t a ra te of 4 
ft . /sec. How fast is the height of her shadow on the 
wall increasing when she is 10 feet from the light? 

6. Find the following indefinite integrals. Do not sim-
plify your answers. 

f 3 x 4 + 2x J 

a. / — dx 

J t 2 \ 2t 

c. J sin(2x -(-1) dx 

d. f(4z: 4 - 2 x 4 - 1 ) dx 

7. Find the solution to the differential equation ^ = 
( x 3 4- l ) y 2 subject to the initial condition y = 1 when 
χ = 2. 

8. Suppose tha t / ( x ) is continuous for all real values of 
χ and symmetric about the y-axis, F is an antideriva-
tive of / , and F has values F(0) = 3, F ( l ) = 5, and 
F{2) = 9. Find 

a- Sof(x)dx 

b. J^fi^dx 

9. Evaluate the following definite integrals, 

a. / ° χ x ( x 2 4- l ) 5 dx 

10. Let / ( x ) be the function with graph as shown. An-
swer the following questions from the graph. You 
should not t ry to find an equation for / ( x ) . 

y 
9 

1 
\ 1 / 

Ν J I \ 1 
1 

a. Find f*f(x)dx 

b. For what number a, 0 < a < 4, does f" f(x) dx 
have the smallest value? 

11. Find the area enclosed by the two curves y — 2x2 4 - 1 
and y — x2 4- 5. 

12. Suppose that / * f(t) dt = χ + f* t f(t) dt. Give an 
explicit algebraic expression (not involving integrals) 
for / ( x ) . 

13. For each par t set up do not evaluate the integral(s) 
which give(s) the result. Both parts relate to the 
given graph of y = cos x. 

1/2 

0 τ/6 τ/3 τ/2 

a. Find the volume of the solid formed by rotat ing 
the shaded region about the x-axis. 

b . Find the volume of the solid formed by rotat ing 
the shaded region about the y-axis. 
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14. An object s tar ts from rest and moves with a velocity 
in m/sec given by ν = t2 — 2t, where t is time in 
seconds. 

a. Find the displacement of the object between the 
times t — 0 and t — 3. 

b . Find the total distance travelled by the object be-
tween the times t = 0 and t = 3. 

c. Wha t is the average acceleration between times 
ί = 0 and t = 3? 

15. For what value(s) of χ does the slope of the tangent 
line to the curve y = —x 3 4- 3 x 2 + 1 have the largest 
value? Justify your answer. 

16. Set up the computat ion to find an approximate value 
for the integral J*(l/x) dx, using the trapezoidal rule 
with η = 4 subintervals, but do not do the final arith-
metic. 

17. Find the length of the curve y = (§) x 3 / 2 from (0,0) 

to (3, 2V3). 

I N S T I T U T I O N : A private western university with about 
4,000 undergraduates that in 1987 awarded 50 bache-
lor's degrees in mathematics. 

EXAM: A three-hour exam (calculators allowed) on first 
tern calculus for a mixture of engineering, business, and 
science students. Of the 277 students who enrolled in 
the course, 4 1 were in the particular section that was 
given this exam. Approximately 32% of the students in 
the course received grades of A or B. 

1. Find formulas (in split-rule form) for the function 
graphed below. 

2 

1 

1 

\ / ( * ) 

1 

-1 0 
1 

1 
1 

2 3 

2. Find | | for each of the following: 

b. y = sin 2(3£), χ = cos(3i) 

c. t a n ( l + xy) = 86. 

3. Suppose the position of a moving object at t ime t 
(seconds) is given by s = (t2 + l ) J feet. Find each 
of the following: 

a. The average rate of change of s between t — 0 and 
t = 1. 

b . The instantaneous velocity a t t — 1. 

c. The acceleration at t — 1. 

4. Evaluate each of the following limits: 

,· ein J(5i) 
a. h m 5 \ ' 

b. l i m ^ i ^ 

c. l i m ^ r i i i 

5. Suppose y = f(x) = 

a. State the equations of any horizontal or vertical 
asymptotes to the graph of / ( x ) . 

b . Find jj* (the derivative of the inverse function) 
and evaluate it at χ = 3. 

c. Sketch the graph of / ( x ) 

d. Find £f(f(x)) 

6. Sketch the graph of y = 3 x 4 + 16x 3 + 24x 2 - 2, after 
completing tables for the sign of y' and y". Label 
turning points. Also, find the values of a and b such 
that the curve is concave down for α < χ < 6. 

7. A printer is to use a page tha t has a total area of 96 
in 2 . Margins are to be 1 in. at both sides and 1^ in. 
at the top and bot tom of the page. Find the (outer) 
dimensions of the page so tha t the area of the actual 
printed mat ter is a maximum. 

8. A variable line through the point (1,2) intersects the 
x-axis at the point i4(x, 0) and the y-axis a t the point 
•B( u»y)i where χ and y are positive. How fast is 
the area of triangle AOB changing at the instant 
when χ = 5, if χ increases at a constant rate of 16 
un i t s / sec? 

9. Let / ( x ) = — 2. Find a point χ = c between 
a = 1 and b — 2 at which the slope of the tangent 
line equals the slope of the line connecting ( 1 , / ( 1 ) ) 
and ( 2 , / ( 2 ) ) . Also, what is the name of the theorem 
that guarantees the existence of the point χ = c? 

10. a. Find all functions y(x) such that ^ = x 2 + ^ 

c. / x 3 ( 2 - 3 x 4 ) 7 d x 
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I N S T I T U T I O N : A large midwestern state university with 
approximately 25,000 students. In 1987, 50 students 
received bachelor's degrees, 6 received master's degrees, 
and 3 received Ph.D. degrees in mathematics. 

E X A M : A two-hour exam (calculators not allowed) on 
elementary calculus for business students. Students are 
allowed one 5/8 "crib card." Of the 640 students who 
enrolled in the course, approximately 60% passed, in-
cluding 27% who received grades of A or B. 

1. Find the equation of the tangent line to the curve 
y = 4 x 3 — 3x + 30 at the point where χ = —2. 

2. Evaluate the following limits: 

a. lim 
X - .3 

lim 

x2 + Ax - 21 

χ - 3 

3 x 4 — χ 

b. lim 
h-,0 

(x + fr)2-

x—toe 1 -|- 5 x 4 

3. a. If y = In ( x 4 + x 2 ) + ex', find g. 

b . If F(x) = (x + l ) 4 ( x + 2 ) 3 , find F'(x). 

χ + 1 
c. If y = 

x 3 + 2 
find y ' ( l ) . 

d. If x 2 + xy + y3 = 3, use implicit differentiation to 
find j | in terms of χ and y. Evaluate j | a t the 
point (1 ,1) . 

4. Find the absolute maximum and the absolute mini-
mum of F ( x ) = x 2 — 4x + 1 in the interval 1 < χ < 4. 

5. a. If y = i/x, find the differential dy. 

b. Use differentials to estimate τ/Ϊ8. 

6. Sketch the graph of y = x 3 — 6 x 2 and use it to identify 

a. x-intercepts 

b. critical points 

c. inflection points 

d. intervals in which y is decreasing 

e. intervals in which y is concave up 

7. Evaluate the following integrals: 

χ dx 

x2+ 1 
c. f xex dx (by parts) 

d- Λ 4 ( 3 ν ^ + ^ ) dx 

e. / ( 2 x _ 1 + Zex)dx 

8. Sketch the curves y = x 2 and y = 2x and compute 
the area between them. 

9. The Pullman company knows tha t the cost of making 
χ spittoons is C(x ) = 50 + χ + 

a. Find the number χ of spit toons tha t must be made 
in order to minimize the cost. 

b. Wha t is the minimum cost? 

10. Let F(x, y) = 8 x 2 + 6y 2 - 8x + xy + 10. Find 

a. 2^(1,2) b. Fy(l,2) 

c. F „ ( l , 2 ) d. Fxy(l,2) 

, Χ a 3 y 2 

11. a. Find the critical points of F(x, y) = — + —— xy. 
«3 Δ 

b. Determine any relative maximum, relative mini-
mum, or saddle points. 

12. Use the method of Lagrange multipliers to find the 
minimum of .F(x, y) = x 2 + y2 subject to the con-
straint 4x + 2y = 10. 



Final Examinations for Calculus II 

The following twelve examinations represent a cross 
section of final examinations given in 1986-87 for stu-
dents enrolled in the second calculus course. The exami-
nations come from large universities and small colleges, 
from Ph. D. granting institutions and two year colleges. 

Brief descriptive information preceding each exam-
ination gives a profile of the institution and circum-
stances of the examination. Unless otherwise noted, no 
books or notes are allowed during these examinations; 
calculator usage is explicitly noted where the informa-
tion was provided. Except for information on problem 
weights and grading protocol, the texts of the examina-
tions are reproduced here exactly as they were presented 
to the students. 

I N S T I T U T I O N : A southeastern land-grant university 
with 12,500 students that in 1987 awarded 65 bachelor's 
degrees, 26 master's degrees, and 5 doctor's degrees in 
mathematics. 

E X A M : A final exam (calculators allowed) from one 
section of second term calculus for engineering stu-
dents. Of the 390 students who originally enrolled in the 
course, 72% passed, including 38% who received grades 
of A or B. 32 students were in the section that took this 
exam. 

1. Find the area of the region bounded by the curves 
y — 6 — x2 and y = x. 

2. Consider the region R bounded by the E-axis, the 
curve y = 1/x, and the lines χ = 1, χ = 4. Find the 
volume, V, of the solid obtained when R is 

a. revolved around the x-axis. 

b. revolved around the j/-axis. 

3. Find the length of the curve y = x3!2 from (0,0) to 

(5, Λ/5). 

4. In 1977 the world's population was 4.3 billion persons 
and growing at a ra te of 2.12% per year. If this 
continues, 

a. how long will it take for the world's population to 
double? 

b. what will the population be in 2000 AD? 

5. Find y': 

a. y = In s 2 / 3 

c. y = ε ^ + ϊ 

e. y — xx 

g. y = esc s/x 

i. y = χ2 s i n - 1 χ 

6. Antiderivatives 

a. fyes'dy 

b. / ( 3 / e V l + e - 4 * 

c. J see 2 z / ( l - tan z) dz 

d. J χτχ7 dx 

e. J t a n ( e / x ) / x 2 dx 

1 

b . y = ln(sec x) 

d. y -tail 3x 

f. y = 2 * 2 + 1 

h. y = log 2 e*' 

j . y = t a n _ 1 ( x x ) 

xV9x2 - 1 

1 
g" J t2 + it + 5 

h. J x~3\nxdx 

i. / cos 3 (2x) dx 

1 

dx 

dt 

dx 
(2 + x2)3'2 

χ 

(x + l)(x2 + 1) 
dx 

7. Determine whether the following series are absolutely 
convergent, conditionally convergent, or divergent; 
show your work. 

Jfc=0 
k + 1 

k = l 
3* 

Vk 
k = l 

8. Write the Taylor series expansion for c = 0 and 

a. ex b. sin a; 

c. COSE 

9. Find allx's for which the following power series con-
verge. 

~ (-i)kxk

 b f ; ( i B " 4 ) f c 

Σ 
k = l 

k2 

k=0 
3* 
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I N S T I T U T I O N : A midwestern church-related college with 
400 undergraduates that in 1987 awarded 5 bachelor's 
degrees in mathematics. 

E X A M : A two-hour exam (calculators allowed) given 
to students in a second term calculus course. Of the 7 
students who enrolled in the course, 6 passed, 3 of whom 
received a grade of A or B. 

1. a. Sketch (carefully label) the region bounded by the 
two curves, y = x2 and y — χ + 2. 

b. Find the volume of the solid generated by revolv-
ing the above region about the x-axis. 

2. a. Determine the eigenvalues of A — 

b. Determine the eigenvectors for A. 

c. Carefully and thoroughly discuss the graph of the 
equation 2 x 2 — 4xy + by2 = 6. 

3. a. Carefully sketch (with labels) the graphs of r — 
1 + cos Θ, r = 2 — cos Θ. 

b. Identify by name these curves. 

c. Determine the points of intersection of these 
curves. 

d. Determine the area inside r — 2 — cos β that is 
outside r = 1 + cos Θ. 

4. Determine the following: 

a. J(xex)/{l + x2)dx 

b. / ( 2 x 2 + 3 ) / ( x ( x - l ) 2 ) d x 

c. l i m ( x + l ) l n i 

d. J~l/(x{]nx)')dx 

5. Determine the most general form of the solution of 
the system of equations 

"1 4 2" Xl 

2 5 1 5 
1 1 - 1 . E 3 . 4 

6. a. Determine the equation of the plane through the 
points P(5, 2, - 1 ) , Q{2,4, - 2 ) , R(l, 1,4). 

b . Determine a unit vector tha t is perpendicular to 
the above plane. 

7. Assume A f 2 X 3 is a vector space. Which of the fol-
lowing are subspaces of A f2 X 3? 

a- W = { { d 0 u ) 1 whe re6 = a + c } 

h U = {(d I j ) 1 W h e r e 6 + d = 1 } 

8. a. Write the equations of the tangent(s) to the curve 
x(t) = t2 - 2t + 1, y(i) = t 4 - 4 i 2 + 4, at the point 
(1 .4) . 

b. Is there any point at which the curve has a vertical 
tangent? Explain. 

I N S T I T U T I O N : A public Canadian university with 14,000 
students that in 1987 awarded 52 bachelor's degrees, 5 
master's degrees, and 2 Ph.D. degrees in mathematics. 

E X A M : A three-hour exam (calculators allowed) for all 
students in a year-long course for social science stu-
dents. Of the 820 students who enrolled in the course, 
69% passed, including 32% who received grades of A or 
B. 

1. I N V E N T O R Y C O N T R O L P R O B L E M : The success of 

"Le declin de 1'empire americain" inside Canada has 
given hope to the Memphremagog Music company 
located in Saint-Benoit du-Lac, Quebec and they are 
now optimistic tha t Canadians might even star t buy-
ing Canadian music. They have predicted tha t they 
can sell 20,000 records in the next year and thus a de-
cision must be made as to the number of production 
runs. Since each run involves a production set-up 
cost of $200 they do not want too many runs. On 
the other hand there are storage costs involved with 
keeping records on hand so they do not want the pro-
duction runs to be too big. The total storage cost for 
the year is $.50 times the average number of records 
on hand during the year. 

a. Let χ be the number of records produced in one 
run. Assume that the records are sold at a con-
stant rate in the period from the beginning of 
one run until the beginning of the next run and 
tha t a run is sold out just as the next one s tar ts . 
Draw a diagram to indicate the production pro-
cess throughout the year. 

b . Wha t will be the average number of records on 
hand from the beginning of one run until the be-
ginning of the next? Why is this number also the 
average number on hand during the year? 

c. Find the number of runs that the Memphremagog 
Music company should have so as to minimize its 
total set up and storage costs. 

d. Show tha t the value obtained does indeed corre-
spond to minimum cost. 
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e. [Optional cultural question.] What other famous 
musical organization, aside from the Memphrem-
agog Music company, is located in Saint-Benoit 
du-Lac, Quebec? 

2. The Camrose (Alberta) Souvenir corporation spe-
cializes in the manufacture of models of oil drilling 
rigs. Production involves a fixed cost of $5000 for 
market research and tooling up, but experience has 
shown tha t the marginal cost is constant at $2 per 
oil rig. All items produced are sold. The demand 
equation for the rigs is χ — 10000 — 1000p. 

a. Find the cost function. 

b. Sketch the cost and revenue functions on the same 
graph using the production level as the indepen-
dent variable (abscissa). 

c. Wha t range of production levels should the com-
pany analyze? 

d. For what levels of production does the company 
make a profit? 

3. The economists at the Bank of New Brunswick have 
discovered a new semi-cyclic law governing mort-
gage rates; if t is time, in years, measured from 
April 12, 1964 then the interest rate r is given by 
r(t) = sin(ln[x 3 + ln(sinE 3 )]) . On the other hand the 
New Brunswick board of realtors has noticed tha t 
housing s tar ts varies with the mortgage rate accord-
ing to the formula N{r) = 4.591 • (10) 3 · e-(Sr2+2.n) 
At what rate was the number of housing starts chang-
ing seven years after the April 12, 1964 date? Do not 
simplify your answer; at certain points in your calcu-
lation you may simply indicate which quantities you 
would evaluate numerically. 

4. Because of a drop in demand for salmon the minister 
of fisheries has decided to reduce the allowable catch 
for British Columbia fishermen. The demand has 
been dropping according to an exponential function. 
The records for the month of January 1986 were lost, 
but the demand for March and May were 400 and 100 
metric tonnes respectively. 

a. Find a numerical relationship between the rate at 
which the demand is dropping and the demand at 
any point in time. 

b. Tell the minister what the demand was in January 
1986. Simplify your answer as much as possible. 

c. Tell the minister when the demand for salmon will 
be zero. 

5. In order to predict how many branch plants it should 
set up in northern Saskatchewan to produce its uni-
que brand of junk food, the Aunt Sarah corporation 

has made a population study of the Beuval region. In 
1970 the population was 25. It was found tha t s tar t -
ing in 1970 people entered the region (this included 
births and immigration) at the rate of 20 + 200< peo-
ple per year where t is years measured from January 
1, 1970. Wi th the passage of t ime people also leave 
the region (due to deaths and emigration) and it was 
found tha t if there are ρ people in the region at a 
given time, then t t ime units later pe~'u of these 
people will still be there. 

a. Out of the 25 people in the Beuval region in 1970 
how many will be there in 2000? 

b. Approximately how many people entered the re-
gion in the first two months of 1972? 

c. Of the people who entered the region in the first 
two months of 1972 how many will still be there 
in the year 2000? 

d. Find an expression for the population of the Beu-
val region in the year 2000. Do not evaluate this 
expression. 

6. The CCCC (Canadian Calligraphy and Clacker Com-
pany) produces two kinds of typewriters, manual and 
electric. It sells the manual typewriters for $100 and 
the electric typewriters for $300 each. The com-
pany has determined tha t the weekly cost of pro-
ducing a; manual and y electric typewriters is given 
by C(x, y) = 2000 + 50a; + x2 + 2y2. Assuming tha t 
every typewriter produced is sold, find the number 
of manual and electric typewriters tha t the company 
should produce so as to maximize profits. Show that 
the value obtained does indeed correspond to maxi-
mum profit. 

7. Different items that a consumer can purchase have 
different "utility" values, i.e., how much the i tem is 
"worth." If the consumer considers two items at a 
time, then they will have a joint utility value. Sup-
pose tha t a consumer has $600 to spend on two com-
modities, the first of which costs $20 per unit and the 
second $30 per unit. Further let the joint utility of χ 
units of the first commodity and y units of the sec-
ond commodity be given by U(x,y) = lQx6yA. Use 
the method of Lagrange multipliers to determine how 
many units of each commodity the consumer should 
buy in order to maximize utility. [Note: a joint util-
ity function which is of the form U(x,y) — C • xayh 

is called a Cobb-Douglas utility function.] 

8. Evaluate: 

3 a:3 

a. / 2 7 χ 4 + 5 dx b. / cos(4z + 2) dx 

c. Jxlnxdx 
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9. Use an appropriate 2 n t l Taylor Polynomial to esti-
mate \/Ϊ7. Do not simplify the arithmetical quanti-
ties tha t you obtain. 

I N S T I T U T I O N : A mid-Atlantic suburban community col-
lege with 3500 students that awarded 750 associate de-
grees in 1987. 

E X A M : A two and one-half hour exam (calculators al-
lowed) for the second term of calculus for engineer-
ing, science, and mathematics students. Students are 
allowed to use a handbook of tables, together with an 
instructor-supplied set of basic formulas. Of the 16 stu-
dents who enrolled in the course, 93% passed, including 
63% who received grades of A or B. 

1. Find the area under the curve r{x) = s/x + 1 from 
χ = — 1 to χ — 8. Sketch the region. 

2. Find the area between the curves f(x) = x3 and 
g(x) — x. Sketch the region. 

3. Find the volume of the solid of revolution generated 
by revolving the region bounded by y = l/x, the 
x-axis, χ — 1, and χ — 6 about the x-axis. Sketch. 

4. Find all points of intersection of the curves r — 2 — 
2 cos θ and r = 2 cos Θ; sketch the system. 

5. Using the curves in problem 4, find the area between 
the curves. 

6. Find an equation of the curve where d2y/dx2 = 18x— 
8 if the curve passes through ( 1 , - 1 ) and the slope of 
the tangent line is 9 a t ( 1 , - 1 ) . 

7. Find four derivatives: 

a. y = In 3 5x b. y — l n (5x ) 3 

c. / ( i ) = t 2 e - B t d. r(0) = 2cos(20 2 ) 

e. x2y = t a n _ 1 ( x / y ) 

8. Evaluate five integrals (without using tables): 

a - Γη — — — ζ dx 
J o ( x 3 + 2 ) 4 

b. f*xexdx 

c. jZ2t-ldt 

d. / * + 2 , dx 
J X3 + X2 

/
cos 3Θ 
— τ — άθ 
s in 4 30 

f. / s i n 4 2 x d x 

9. Simplify: 

a. lim ( l + i ) n ~ 3 b . lim ( l + £ ) n 

10. Find the angle of rotation for the conic \/3x2 + 3xy — 
V3/2. 

11. For the conic x2 + 4 j / 2 + 8y + 6x = 3, determine the 
coordinates (ft, k) for the origin in the x'y' plane. 

12. Identify each conic and sketch: 

a. x2 -6x+ I2y = 3 b . y2 = 4a:2 + 64 

13. Find each limit, if it exists: 

a. l im( l - c o s 0 ) / 0 2 b. lim x2/ex 

c. lim cot xf In χ d. lim (sec a: — tan x) 
X-.0+ X- .1T /2+ 

14. Write the Taylor polynomial for η = 4 a t c = 1 for 
f(x) = e~x. 

15. Determine whether each of the following converges 
or diverges: 

„i dx r + x du 
a " J n 1 - x2 0 0 u 2 + 4u + 5 

J-a -JT^X 
dx 

I N S T I T U T I O N : A publicly-funded Canadian university 
with approximately 30,000 students that in 1987 awarded 
125 bachelor's degrees, 15 master's degrees, and 6 Ph.D. 
degrees in mathematics. 

E X A M : A three-hour exam (calculators allowed) given 
to all students completing a year-long calculus course 
for students of finance, commerce, business, and eco-
nomics. Students are allowed one 85 χ 11 "aid sheet" 
in the student's own handwriting. Of the 750 students 
who enrolled in the course, 69% passed, including 19% 
who received grades of A or B. 

1. You have $1500 to invest for 120 days. Which of the 
following investment strategies is bet ter , and by how 
much? 

(A) 8% annual interest compounded daily. 

(B) 8.25% simple annual interest. 

2. Calculate j\(x + 1) dx. 

3. If y = f{x), find J(x + yy') dx. 

4. If y3 - x + 1, find l i m ( y - l)/x. 
x — 0 " 
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5. Let g(x,y) = xyf{x,y), where / ( 2 , 1 ) = 1, §£(2,1) 

= - 1 , §£(2,1) = - 1 . Find the value of g ( 2 , 1 ) . 

6. Compute 
1 1/2 

1/3 1/4 

ι - i 

7. Find a saddle point and a local minimum point for 
f(x, y) = as3 + y3 - 3xy. 

8. Find (graphically or otherwise) the maximum value 
of 6x + 4y, subject to 5x + Ay < 100, 2x + y < 30, 
7x + 4y < 108, ζ > 0, y > 0. 

9. Find the volume obtained by rotating y = x2 about 
the y-axis, 0 < χ < 2. 

10. If β 1» = 10, find 

11. Evaluate J"̂  e - ' * ' using Simpson's rule with four 
intervals. 

12. Evaluate: 

a. J x3 ln(5x) dx 

b . J(x2 + 3 ) / ( x 2 + 2x + 1) dx 

c. J ex cosh 2x dx 

13. Given / ( x ) = H e - * 

a. Graph f(x) for — 2 < χ < 4, showing all local 
extrema and inflection points. 

b. Find the absolute maximum and absolute mini-
m u m of f(x) for —2 < χ < 4. 

c. Evaluate f* f(x)dx. 

14. A factory assembles sedan cars with 4 wheels, 1 en-
gine and 4 seats, trucks with 6 wheels, 1 engine and 
2 seats, and sports cars with 4 wheels, 1 engine and 
2 seats. 

a. How many wheels, engines and seats are required 
to assemble χ sedans, y trucks and ζ sports cars? 

b . How many sedans, trucks and sports cars respec-
tively can be assembled using exactly 218 wheels, 
47 engines and 134 seats? 

c. If sedans sell for $10,000, trucks for $12,000 and 
sports cars for $9,000, find the total value of out-
put in part b. 

d. If an extra pair of wheels, an extra engine, and 
an extra pair of seats become available, can the 
output value in part c be increased? Is so, how 
much? 

15. A rectangular 3-story building is to be construct-
ed of material costing $100 per square metre for 
floors, $200 /m 2 for roofing, side and back walls, and 
$400 /m 2 for the front wall. If $144,000 is available 
for materials, then, neglecting all other costs, find 
the dimensions of the building tha t will enclose the 
greatest volume. 

I N S T I T U T I O N : A southwestern public university with 
45,000 students that in 1987 awarded 36 bachelor's de-
grees, 10 master's degrees, and 1 Ph.D. in mathematics. 

E X A M : A three-hour, closed book final exam (calcula-
tors allowed) from one section of second term calcu-
lus for engineering and science students. Students are 
allowed to use pre-approved outline notes during the 
exam. Of the 1150 students who originally enrolled 
in the course, 77% passed, including 35% who received 
grades of A or Β—4% A's, 31% B's. 113 students were 
in the section that took this particular exam. 

1. Using limit theorems (like "the limit of a sum is the 
sum of the limits"), prove that 

2n 
lim 

n- . -oc 3 n z + 1 
sin η = 0. 

2. State (with reasons) whether the infinite series 

00 
£ ( - l ) f c / ( ( * + 2)lnA:) 

k-2 

is absolutely convegent, conditionally convergent, or 
divergent. 

3. Evaluate the improper integral / 0°° f'(x)dx if f(x) = 
x 3 e _ z . (Note tha t / ' appears in the integral). 

4. Find the interval of convergence of 

00 

£ ( - x ) V ( 2 * l n * ) 
fc=3 

5. Let Ω denote the banana-shaped region between 
the graph of y = x 2 and tha t of y = x 3 . Find 

6. Write down (but do not evaluate) a formula using 
only a single integral of a function of one variable for 
the area of the region inside the graph of r — 3 cos θ 
but outside the graph of r = cos Θ, where 0 < θ < ττ. 
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7. For each limit below, find the limit if its exists and 
call the limit non-existent otherwise: 

a. l imf l -2hWk b. lim n2ln 

c. lim sin n / n 1 / 3 

71—* — DC 

8. Find the Taylor series expansion in powers of χ — 2 
for cos 3s . 

9. Find the Taylor series in powers of χ for an an-
tiderivative of x _ 1 ln ( l + x). 

10. Show tha t the point (x,y) = (97r 2 ,0) is in the inter-
section θ = 7Γ. 

11. You're suppose to design a fully enclosed rectangu-
lar box (having all six of top, bot tom, front, back, 
left, and right) whose cost is exactly $60, where the 
material from which the six faces are made costs $2 
per square foot. Find the dimensions /, w, and h of 
such a box having the largest possible volume of all 
such boxes. 

12. Find lim ln (2 / ( l + z ) ) / ( x - 1) 

13. Find lim (y/x~+l)l'x 

4. Graph y — ex/x and identify the value of χ t ha t 
corresponds to a vertical asymptote , the value of y 
tha t corresponds to a horizontal asymptote , and the 
value of (z, y) at which a minimum occurs. [Note: 
y' = (ex(x - l ) ) / x 2 ; y" = (ex((x - l ) 2 + l ) ) / x 3 . ] 

5. / ( 9 x + 2 7 ) / ( x 4 + 9 z 2 ) d x 

6. a. lim (1 - ( 3 / x ) ) Z l 

x —*oo 

b. lim ( z l n x ) / ( x 2 + 1) 

7. Argue the case for convergence or divergence. Find 
the value if convergent: 

pOO X 
a - Jo ( x 2 + 9) : 

dx 
vT + 1 

: dx 

8. Find the Taylor polynomial for f{x) — In χ if α = 1 
and η = 4. Also give Λ 4 . 

9. The region in the first quadrant bounded by the 
graphs of y — l/y/x, x = 1, x = 4 and y = 0 is 
revolved about the x-axis. Find the volume of the 
solid of revolution. 

OO 
10. a. Explain why Σ is divergent. 

n = l 

b. Find the exact sum of the geometric series 

I N S T I T U T I O N : A midwestern liberal arts college with 
2200 students that in 1987 awarded 8 bachelor's degrees 
in mathematics. 

E X A M : Two two-hour exams (calculators not allowed) 
from two different sections of second term calculus taken 
primarily by prospective mathematics, computer sci-
ence, economics, and science majors. Of the 75 stu-
dents who originally enrolled in the course, approxi-
mately 83% passed, including 55% who received grades 
of A or B. 24 students were in the section that took 
the first of these exams, 18 in the section that took the 
second exam. 

1. Find the area bounded by the graphs of y2 = 1 — χ 
and 2y = χ + 2. (Use a horizontal element of area.) 

2. Find y' if 

a. y — s i n _ 1 ( 5 x - 1) 

b . y = ln (3x 4 + 5 ) 3 / 2 

c. xy2 = ex - ey 

d. y - (2x + 3 ) s i n 3 ( x 2 ) 

3. Find: 

a. f(2x)/(y/9 - x 4 ) d x b . / x l n x d x 

Σ 2 - η + 1 

η=2 

c. If o n = (2n + l ) / ( 4 n + 3) then lim an =? 

1. Evaluate the following limits: 

a. lim (ex+3x)1/x 

b. lim 
- 3 V ( z 2 + 2 x - 3 ) (x + 3 ) / 

2. Differentiate the following functions. Derivatives 
need not be simplified. 

a. b . x l n x 

c. ( c o s x ) I + 1 d. sin3e-2x 

3. Evaluate the following integrals: 

a. / l / ( x + x 3 ) d x b . / y/4 - x2/x dx 

c. fxe-*xdx d. / ~ l / vxTTdx 
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4. Set up integrals tha t could be evaluated (but do not 
evaluate) to find the volume of the solid generated 
by revolving the region bounded by the graphs of 
y = sb3, χ = 2, and y = 0. 

a. about the se-axis; 

b . about the t/-axis; 

c. about the line χ — 3. 

5. An above-ground swimming pool has the shape of a 
right circular cylinder of diameter 12 ft and height 
5 ft. If the depth of the water in the pool is 4 ft., find 
the work required to empty the pool by pumping the 
water out over the top . 

6. Find the local extrema for f(x) — x l n x , χ > 0. 
Discuss concavity, find the points of inflection, and 
sketch the graph of / . 

7. The rate at which sugar decomposes in water is pro-
portional to the amount that remains undecomposed. 
Suppose that 10 lb. of sugar is placed in a container 
of water at 1:00 P.M., and one-half is dissolved at 
4:00 P.M. How much of the 10 lb. will be dissolved 
at 8:00 P.M? 

8. A person on level ground, | k m from a point at which 
a balloon was released, observes its vertical ascent. 
If the balloon is rising at a constant rate of 2 m / s e c , 
find the rate at which the angle of elevation of the 
observer's line of sight is changing at the instant the 
balloon is 100 m. above the level of the observer's 
eyes. [ N O T E : 1 k m = lOOOm.j 

9. Find a second degree Taylor polynomial for f(x) — 
sin(x) around α = ττ/4. Use this polynomial to es-
t imate sin(46°), but do not simplify. Find an upper 
bound on the error of your estimate. 

I N S T I T U T I O N : A highly selective northeastern private 
university with 6,500 undergraduates that in 1987 award-
ed 28 bachelor's degrees, 3 master's degrees, and 10 doc-
tor's degrees in mathematics. 

E X A M : A three-hour final exam (calculators not al-
lowed) for all students who take second term calculus. 
Of approximately 160 students who originally enrolled 
in the course, 92% passed, including ^7% who received 
grades of A or B. 

1. / 3 4 ( 2 x ) / ( x 2 - 3x + 2)dx = 

(A) In 3 - In 2 (B) ln(3/4) 
(C) I n 2 - l n 3 (D) 6 1 n 2 - 2 1 n 3 
(E) Does not converge. 

2. / " x e " 3 * ' dx = 

(A) 1/6 (B) - 2 / 9 (C) 0 
(D) 1 (E) Does not converge. 

3. Which integral gives the 
volume generated when 
the area under the arc of 
y = s'mx, 0 < χ < π is 
rotated about the verti-
cal line χ = 2π? 
(A) f* ir s in 2 χ dx 

(C) f* 2-κχ sin χ dx 

(E) /g 2πχ sin χ dx 

r 2x 
2 (B) JJ* 2πχ s in 2 χ dx 

(D) f* 2π(2τ—χ) sin χ dx 

ι 
x2y/x2 — 1 

(A) 1 

(D) 9 / 2 6 

dx 

(B) (i/S-l)/2 (C) * / « 

The area of the region R shaded below can be rep-
resented by which of the following? (H is the region 
outside the circle r = 3 cos θ but inside r = 2 - cos θ 
and above the x-axis.) 

^^^^^^^^^ 1 ι * % 

π/2 f9 _ 

3 
(Α) Γ 

Λ73 1 

(D) Γ \{2 
Λ / 3 1 

(Ε) Γ \{2 
Λ / 3 1 

f ( 2 - c o s f l ) 2 

άθ 
2 

ir/2 
— COS 

2 — cos 

— COS 

— COS 

B)dB- / - ( 3 c o s 0 ) d 0 Λ73 2 

θ)2άθ- ί / 3 i ( 3 c o s 0 ) 2 d 0 
Jo 2 

θ)2άθ- Γ** \{·Άζοαθ)2άθ 
Λ/3 2 

θ)2άθ- Γ i ( 3 c o s 0 ) 2 d f l 

Λ/3 2 

6. L6 dx is closest to: 
J 0 χ 

(A) .302 
(D) .602 

(B) .282 
(E) .988 

(C) .588 
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7. The first few terms of the Taylor series for / ( x ) = 
x/(l + x) about χ = 0 are: 

(A) χ + x2 + x3 + x* + x5 · • • 

(B) χ - x 2 + x 3 - x 4 + x 5 · · · 

(C) χ - x2 + 2x3 - 3 x 4 + 4sb5 · · · 

(D) x - x 2 + 2!x 3 - 3!x 4 + 4!x 5 · · • 

(Ε) χ - 2\x2 + 3!x 3 - 4!aj4 - 5!x 5 · • · 

8. Let χ be a positive but small quantity. Use the first 
few terms of the Taylor series for the functions x, 
sin x, and ex — 1 to determine which of the following 
inequalities is correct: 

(A) χ < sin χ < ex — 1 

(B) sin χ < χ < ex - 1 

(C) ex - 1 < sin χ < χ 

(D) ex — 1 < χ < sin χ 

(Ε) sin χ < ex - Κ χ 

9. A medication has a half life of 6 hours. A person 
takes a first dose of the medication now, the second 
dose in six hours, and continues to take the medicine 
every six hours. If the dose is 10 grams, the amount 
of medication in the blood immediately after the n-th 
dose will be: 

(A) 20(1 - (*)») grams 

(B) 2 0 ( 1 0 ( § ) n - 1 ) grams 

(C) 20(1 - (§)«+!) grams 

(D) 20 grams 

(E) 2 0 ( § ) n grams 

10. If & = cosx /e» and y(0) - 0, then y ( f ) = 

(A) 0 (B) In 2 (C) 1 (D) 1/2 (Ε) - 1 

11. A boat is driven forward by its engine, which exerts 

a constant force F. It encounters water resistance 

which exerts a force proportional to its velocity. Let 

ν = f(t) be the velocity of the boat at time t, m be 

the boat ' s mass, and k be a positive number. Which 

of the following equations describes the situation? 

(A) dv/dt = ±(F - kv) (B) dv/dt = ±kv 

(C) dv/dt = i ( F + kv) (D) dv/dt = ±Fkv 

(E) dv/dt = ±(Ft - kv) 

12. Find the solution to y" + y' — 6y — 0 which satis-
fies the following conditions: i) as t —» oo, y —• 0; 
ii) 2/'(0) = 6. 

(A) y = e _ t ( 2 s i n 3 x + 3cos2x) 

(B) y = 6 e 2 f + 2 e ~ 3 t 

(C) y = - 2 e " 3 t 

(D) y = - 3 e - 2 t 

(E) y = e " ' ( 3 s i n 2 x + 2cos3x) 

13. Which of the following is the graph of the solution 
d2y dy 

to -y-^- ;—Η y = 0 and with the initial condition 
dt* dt 1/(0) = 0, 3/'(0) > 0? 

(A) (B) 

(E) 

14. e W 2 * 4 = 

(A) y e * 
(D) 1 + i 

(B) i (C) 1 
(E) cos 

15. To approximate the value of In 5, use the fact tha t 
i»5 1 

In 5 = j j j dt and estimate the integral by dividing 
the interval of integration into four equal pieces and 
using the trapezoidal rule. Which of the following 
sums will you get? 
(A) § [In 2 + I n 3 + I n 4 + I n 5] 

(B) i [ l + 2 ( i ) + 2 ( l ) + 2 ( l ) + J] 
(C) + i + I + 

(D) ! [ l + 2 ( i ) + 2 ( i ) + 2 ( i ) + | ] 

(E) + 

16. a. Find the second degree Taylor polynomial (i.e., 
up to and including the quadrat ic term) for the 
function f(x) = y/x about the point χ = 16. 

b. Wha t approximation does par t (a) give for \ / Ϊ 5 ? 
(You may leave your answers a sum.) 

c. Est imate the error in the above approximation. 
You may use the fact tha t 3.8 < \ / l 5 < 3.9. You 
must justify all steps. You may leave powers of 
3.8 or 3.9 unsimplified in your answers. 
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17. A part manager plans to put 100 goldfish in a man-
made pond in her park. The bir thrate (goldfish per 
week) of goldfish is proportional to the population 
of goldfish, with proportionality constant 10. Given 
the size and the ecological conditions of the pond, the 
manager calculates that the death rate (goldfish per 
week) is proportional to the interactions between the 
fish (i.e., is proportional to the square of the goldfish 
population) with proportionality constant .04. 

a. Write a differential equation which describes this 
si tuation. (Let Ρ = f(t) be the number of goldfish 
in the pond.) 

b. Will the number of fish reach an equilibrium? If 
so, what is it? 

c. For what value of Ρ is the fish population increas-
ing most rapidly? You must give a complete math-
ematical justification of your answer. 

d. Graph the number of fish versus t ime. 

e. Describe in words what would happen if the park 
manager originally put 350 goldfish into the pond. 

18. Barnacles grow on the outside of a cylindrical dock-
post. The density of barnacles at a depth d feet below 
the surface of the water is given by 25 — (3/4)d bar-
nacles per square foot, from the ocean floor to the 
surface of the water. It has a radius of 1/3 ft. 

a. Wha t Riemann sum approximates the total num-
ber of barnacles on the dockpost? Please justify 
your answer carefully. 

b. Use your answer to part (a) to find an integral 
which represents the total number of barnacles on 
the dockpost. 

c. Find the total number of barnacles on the dock-
post. 

19. A contagious fatal disease is spreading through a 
growing population. Let I denote the number of in-
fected individuals and let S denote the number of 
susceptible individuals. Assume that in the absence 
of the infection, the growth of S would be exponen-
tial: S grows at a rate proportional to itself with 
proportionality constant 2. Assume that if everyone 
were infected, the population would die out exponen-
tially according to the law I = / ( ) e - 3 e and hence the 
death rate of the infected population is proportional 
to I. Now suppose that the spread of the infection is 
directly proportional to the product of S and I with 
factor of proportionality .5. 

a. Write a system of differential equations for dS/dt 
and dl/dt describing the above situation. 

b . Is there any pair of positive values of S and J at 
which both 5 and / are constant for all t ime? If 
so, what are these values of S and I? 

c. Sketch various trajectories of the system of equa-
tions in the first quadrant of the S — I plane. 
(Please draw arrows indicating direction.) 

d. Wha t is the average value of S? You need not 
justify your answer. 

I N S T I T U T I O N : A private Midwest university with 7,500 
undergraduate and 2,000 graduate students that in 1987 
awarded 33 bachelor's degrees, 6 master's degrees, and 
6 Ph.D. degrees in mathematics. 

E X A M : A two-hour ezam (calculators not allowed) 
given to all students in a second term calculus course 
for students enrolled in the colleges of Business and 
Arts and Letters. Of the 263 students who enrolled in 
the course, 87% passed the course, including 66% who 
received grades of A or B. 

1. The limit of sequence 1 / 2 , 2 / 3 , 3 / 4 , 4 / 5 , . . . is 

(A) 5/8 (B) 1/e (C) 1 
(D) y/2 (E) diverges 

2. In the partial fraction decomposition of ( 3x 2 — lOx + 
12)I{x — l ) ( x 2 — 4), the numerator of the te rm with 
denominator χ — 2 is 

(A) - 2 (Β) - 1 (C) 0 (D) 1 (E) 2 

3. The sum of the infinite series £ ( 5 ~ n - 5 - ( n + 1 > ) is 
Tl = l 

(A) 4 /5 (B) oo (C) 0 
(D) 4/25 (E) 1/5 

4. The graph of y = 3 sin ( π / 2 — χ) most closely resem-
bles 

(A) 

(B) 
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(D) 

( E ) 

5. The coefficient of z 1 0 in the Taylor series for s in(2z 2 ) 
is 

(A) 1/20 
(D) - 1 / 6 

(B) 4/15 
( E ) - 1 / 1 0 

( C ) 0 

6. Let ζ be defined by the implicit equation ln(xy+yz + 
zx) = 1. Then £ 

(A) + 

( C ) 

( E ) 

is 

x + y 
X + ζ 
y + ζ 
X + y 

(B) = ± £ 
χ + y 

(D) -!L±K 
v ' x + z 

y + ζ 

7. If / ( z , y) = ζ sin(x + y), then = 

(A) sin(z + y) + χ cos(z + y) 

(B) zcos (z + j/) 

( C ) cos(z + y) — ζ sin(x + y) 

(D) 2 cos(z + y) — ζ sin(z + y) 

( E ) —zsin(z + y) 

8. Let / ( z ) = -y/z. The 3rd degree Taylor polynomial 
about 1 for / ( z ) is 

(A) l - ^ + K ^ - K v ^ ) 3 

(B) l + ( z - l ) - i ( z - l ) 2 

( C ) i + I ( a ; - i ) _ i ( z - l ) 2

 + i ( z - l ) 3 

z 2 z 3 

(D) 1 + χ + Ύ - τ 

( E ) l + ( z - l ) + i ( z - l ) 2 + | ( z - l ) 3 

9. The sum of the infinte series ( 4 / 5 ) 4 - ( 4 / 5 ) 8 + 
( 4 / 5 ) 1 2 - ( 4 / 5 ) 1 6 + - - - i s 

(A) 256/881 (B) 369/125 
( C ) 5/4 (D) 256/369 
( E ) series diverges 

10. The improper integral 1/x2 dx equals 

(A) diverges (B) 1 ( C ) - 1 
(D) 0 ( E ) e 

11. The function / ( z , y ) = y 3 - z 3 - 3y + 12z + 5 pos-
sesses the critical points (2, —1), (2,1) , (—2, —1), and 
( - 2 , 1 ) . The point ( 2 , - 1 ) is 

(A) a saddle point. 

(B) a local maximum. 

( C ) a local minimum. 

(D) an absolute maximum 

( E ) an absolute minimum. 

12. If y = l n | c o s 2 z | then ^ = 

(A) - 2 t a n 2 x (B) 2 sec2z 
( C ) s in2z (D) - c s c 2 z 
(E) 1/(| cos 2z|) 

13. d ( z l n ( z + y)) = 

(A) (ln(z + y) + z / ( z + y)) dx + x/(x + y) dy 

(B) (ln(z + y) + z / ( z + y)) dy + z / ( z + y) dx 

( C ) ln(z + y) <fz + z / ( z + y) dy 

(D) ln(z + y)dy + z / ( z + y) dx 

( E ) z / ( z + y) dx + l / ( z + y) dy 

14. The volume generated by revolving about the z-axis 
the area bounded by the graphs of y = ζ 2 , ζ = 1, 
and ζ = 2 is 

(Α) 32π /5 
(D) 7ττ/3 

(Β) 31π /5 
(Ε) 4π 

( C ) 8 π / 3 

15. How many of the following infinite series converge? 
i) 1 + 1/7 + 1/7 2 + · · · + 1/7" + • · · 

ii) 3 / 2 - ( 3 / 2 ) 2 + ( 3 / 2 ) 3 - ( 3 / 2 ) 4 + . · · 

iii) 1 - 1 + 1 - 1 + 1 - 1 + · · · 
iv) 1 + 1/2 + 1/3 + 1/4 + · · · + 1/n + • · · 
ν) 1 + 1/2! + 1/3! + 1/4! + · · · + 1/n! + · · · 

(A) 0 (Β) 1 ( C ) 2 (D) 3 ( E ) 4 

16. / z e _ I £ i z = 

(A) xe-x+e-x (B) -xe~x + e~x 

(C)-xe-x-e-x (D) (x2/2)e~x 

( E ) ( z 2 / 2 ) - e - * 
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(Β) l n ( x l n x ) 
(D) - l / ( x 2 l n x ) 

17. The Taylor series for / * 1/(1 + t2) dt is 

(A) 1 + x + x 2 / 2 + x 3 / 3 + · · • 

(B) x 2 / 2 ! - x 4 / 4 ! + x 6 / 6 ! - x8/& + · · · 

(C) 1 - χ 2 / 2 + χ 4 / 4 - ^ 6 / 6 + · · · 

(D) χ - x 3 / 3 + x 5 / 5 - x 7 / 7 + · · · 

(Ε) 1 - 2x + 3 x 2 - 4 x 3 + · · · 

18. The volume obtained by revolving about the i/-axis 
the region bounded by the graphs of / ( x ) 
/ ( x ) = x 3 is 

(Α) π / 6 (Β) π /12 (C) π /10 
(D) π / 2 0 (Ε) π / 2 

19. J*J^ 2(cosx)/(l + s inx) dx 

(A) l n l (B) In 2 (C) 1 
(D) 2 (Ε) π / 2 

20. l im(csc2x) / ( co tx ) = 
X-tO 

(A) Does not exist (B) 2 
(C) 1 (D) 1/2 
(Ε) - 1 

21. / l / ( x l n x ) d x = 

(A) l n l n x 
(C) l n x + x 
(E) l nx + l / ( l n x ) 

22. The surface x 2 + y2 + z2 - 2x + 4j/ - %z + 10 = 0 is 
a sphere with center 

(A) ( - 2 , 4 , - 6 ) (B) ( 2 , - 4 , 6 ) (C) - 1 , 2 , - 3 ) 
(D) ( 1 , - 2 , 3 ) (E) ( 4 , 8 , - 1 2 ) 

23. The solution of the differential equation = y cos χ 
given that y = 8 when χ — 0 is 

(A) y — 8 + am.x (B) y = 4 \ / s inχ 
(C) y = 8 e e i n i (D) y = 8 + e c o s x 

(E) y — 8 - cos χ 

24. The area bounded by the graphs of / ( x ) = x 2 and 
g(x) = x 3 is 

(A) 1/12 (B) 1/6 (C) 1/4 
(D) 1/2 (Ε) 1 

25. Let N(t) denote the size of a population of animals at 
time t. Suppose the growth rate of the population is 
directly proportional to 100 — Ν and the constant of 
proportionality is 7. Furthermore, N(0) = 10. Then 
N(t) for any time t is given by 

(A) N{t) = 1 0 e - 7 t 

(B) N{t) = 100 - 9 0 e - 7 t 

(C) N{t) = 100 - It 

(D) N{t) = 100/(100 - 9 0 e " 7 t ) 

(E) N{t) = 10 + 90e 7 t 

26. J*ein<>*mxUx = 

(A) e - 1 (Β) - 1 (C) e* - 1 
(D) 2 (Ε) 1/π 

27. The following is a table of values of the function y 

/ ( * ) 

Use the trapezoidal rule (with η = 4) to find the 

approximate value of / ( x ) dx. 

(A) 1/8 (B) 11/4 (C) 2 
(D) 11/2 (E) 4 

28. The fifth te rm of the geometric series whose first term 
is 2 and whose ratio is —2 is 

(A) - 6 (B) - 1 / 1 6 (C) 32 
(D) 0 (E) - 8 

29. The function f(x, y) = y/{x2 + y2 + 9) has the fol-
lowing critical points. 

(A) (0,0) only (B) (0,3) only 
(C) (0, 3) and (0, - 3 ) (D) (0, - 3 ) only 
(E) (0,0) , (0,3) , and ( 0 , - 3 ) 

30. If π < α < 3π /2 and t a n a = 1 then sec a = 

(A) - 2 (Β) -λ/2" 
(C) -2/V3 (D) - 1 
(E) does not exist 

I N S T I T U T I O N : A public Canadian university with 14,000 
students that in 1987 awarded 52 bachelor's degrees, 5 
master's degrees, and 2 Ph.D. degrees in mathematics. 

E X A M : A three-hour exam (calculators allowed) for all 
students in a year-long course for mathematics, physics 
and computer science students. Of the 190 students en-
rolled in the course, 33% passed, including 13% who 
received grades of A or B. 

A N S W E R Q U E S T I O N S 1-4: 

1. Find the following limits, if they exist. Explain your 
reasoning. 

Bin ( ! ( * - ! ) ) 
a. lim 

1 

b. lim (l + b/tV 
t-»o+ v ' 

c. lim (sin ζ + z ) / (cos ζ — Zz) 
Z —* DC 

d. Hm £((2 + Λ)1η(2 + Λ ) - 2 1 η 2 ) 

χ 0 0.5 1.0 1.5 2 

/ («) 3 2 1 2 3 
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Determine convergence or divergence of the following 
series. Justify your answers. 

1 1 1 
a. 1 + — + — + - = + •• • 

y/2 \ / 3 \ /4 
, In 3 In 4 In 5 In 6 
b - Ί Γ - Τ - + Ί Γ - Ί Γ + · · · 

oo 2* 
C - £ 0 3 * + ( - 2 ) * 

Evaluate these integrals and explain clearly what the 
improper integral in part (c) means. 

to dx 
_ 2 + χ - 6 

/ x 2 arcsin(3x) dx 

Jo dt 
3 + t 2 

4. a. Find the solution to the differential equation 
(sec x)y' + y — 4 satisfying the condition y — 1 
when χ = 0. 

b. Find the general solution of the differential equa-
tion y" — 4y' + by = x. 

A T T E M P T ANY T H R E E Q U E S T I O N S : 

5. Consider the function / ( x ) = ( e - I ) / ( x + l ) for χ G R, 
χ φ - 1 . 

a. Find the local extreme values of / and the inter-
vals where / is increasing and decreasing. 

b . Find the points of inflection of / and the intervals 
where its graph is concave up and concave down. 

c. Find all asymptotes . 

d. Using this information (and any other information 
you need), sketch the graph of y = f(x). 

6. a. Let 0 < Κ < 1. Sketch the region bounded by 
the curves y — x 2 , y = 1/x, and y = Κ (only the 
par t where y > Κ should be considered). Find 
the area of this region as a function of K. 

b. Compute the volume of revolution obtained by re-
volving the region defined in par t (a) about the 
x-axis. 

7. a. Define what is meant by the radius of convergence 
of a power series. If the radius of convergence is 
R, what does this tell you about the convergence 
of the power series? Give examples of power series 
with R = 0, 1, and oo (no proofs required). 

b. Write down the power series for ex and find its 
radius of convergence. Use this to find a power 
series for e _ t and give its radius of convergence. 

c. Using (b.), and explaining the theorems which you 
use, find a power series for F(x) — e—t2 dt. 

d. Show tha t 0.09666 < F(0.l) < 0.09668. 

8. a. State and prove the Intermediate Value Theorem. 

b. Prove that the polynomial p(x) — x3 — 3x + 1 has 
at least 2 roots in the interval [0,2]. 

9. a. Show tha t the curve given parametrically by 
x(f) = e _ t cost and y(t) = e - t s in i for 0 < t < oo 
has finite length, and find this length. 

b. An object of mass m falling near the surface of the 
earth is retarded by air resistance proportional to 
its velocity so tha t , according to Newton's second 
law of motion, m ĵj- - mg — kv where ν = v(t) 
is the velocity at time t, and g is the acceleration 
due to gravity near the earth 's surface. Assuming 
the object falls from rest at time t — 0, find the 
velocity v(t) for any time t > 0. Show v(t) ap-
proaches a limit as t —» oo. Find an expression for 
the distance fallen after time i. 

I N S T I T U T I O N : A publicly-funded Canadian university 
with approximately 30,000 students that in 1987 awarded 
125 bachelor's degrees, 15 master's degrees, and 6 Ph.D. 
degrees in mathematics. 

E X A M : A three-hour exam (calculators allowed) given 
to all students completing a year-long calculus course for 
specialist students in mathematics. Of the 100 students 
who enrolled in the course, 39% passed, including 14% 
who received grades of A or B. 

A N S W E R B O T H Q U E S T I O N S 1 AND 2. 

1. State and prove one of the following theorems. 

a. The Fundamental Theorem of Calculus (both 
parts) . 

b. The Intermediate Value Theorem for Continuous 
Functions. 

c. Taylor's Theorem with Remainder for a function 
/ which is η + 1-times differentiable on a neigh-
bourhood of a point a. (Give whatever form of 
the Remainder you wish.) 
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2. The graph of a function / defined on R is given below. 

41 

-5 -4 -3 -2 -1 0 1\ 2 3 / 4 5 6 7 8 9 

Sketch the graphs of the following functions. 

a. β f{t) A b. f'(x) 

c. l/[f(x)]2 d. / ( 2 - x) 

e. l + / ( x 2 ) f- / ( / ( * ) ) 

A N S W E R ANY F O U R O F QUESTIONS 3 - 8 . 

3 a Let f(x) = { 1 if * = 0 
^ ' ^ ( s i n x ) / x otherwise. 

State whether / ' ( 0 ) and / " ( 0 ) exist, and if so, 
calculate these derivatives. 

b. Verify tha t 

f2x s in i J [ x s in2i 
/ dt = I at 

Jo * Jo * 

Γ — 
Λ ' 2 

s in 2 χ 

and deduce that the improper integral 

sin t 

f t 
dt 

converges. 

-4. Let In — t a n n χ dx. Show that 

a. / „ = l / ( n + 1 ) - J n + 2 (n = 0 , 1 , 2 , . . . ) 

b. t a n x < (4χ)/ττ (0 < χ < τ / 4 ) 

c. lim / „ = 0 

d. 1 - 1/3 + 1/5 - 1/7 + 1 / 9 = T / 4 

e. 1/2 - 1/4 + 1/6 - 1/8 + = (1/2) log2. 

5. Consider the following property (P) of a set 5 of real 
numbers: 

(p> x e X * T T x - 2 e S -

a. Prove tha t , if 5 is bounded and satisfies (P), then 
sup S > 1. 

b. Determine, with justification, all sets 5 tha t sat-
isfy (P) and for which sup 5 = 1 . 

c. Give an example, with justification, of a set 5 for 
which i) ( P ) holds, ii) sup 5 = 2, iii) 2 g 5 . 

6. a. Find the solution to the equation (1 + x2)y' + (1 — 
x)2y = x e _ I which satisfies y = 0 when χ = 0. 

b. Sketch the graph of the solution obtained in 
part (a). 

7. Consider I = y/x s i n (x 2 ) dx. 

a. By using a series expansion of s i n x 2 , evaluate / 
to 4 decimal places. 

b. By dividing the interval [0,1] into four par ts , ap-
proximate the value of I by using either the t rape-
zoidal rule or Simpson's rule. 

8. a. Determine lim x l o g x . 

b . Determine the volume of the solid of revolution 
obtained by rotat ing the region bounded by the 
curves y — 0 and y = x l o g x (0 < χ < 1) about 
the x-axis. 



Final Examinations for Calculus III 

The following seven examinations represent a cross 
section of final examinations given in 1986-87 for stu-
dents enrolled in the third calculus course. The exami-
nations come from large universities and small colleges, 
from Ph. D. granting institutions and two year colleges. 

Brief descriptive information preceding each exam-
ination gives a profile of the institution and circum-
stances of the examination. Unless otherwise noted, no 
books or notes are allowed during these examinations; 
calculator usage is explicitly noted where the informa-
tion was provided. Except for information on problem 
weights and grading protocol, the texts of the examina-
tions are reproduced here exactly as they were presented 
to the students. 

I N S T I T U T I O N : A western state university with 16,000 
students that in 1987 awarded 36 bachelor's degrees, 9 
master's degrees, and 3 Ph.D. degrees in mathematics. 

E X A M : A two-hour exam (calculators allowed) given 
to 26 students in one section of a third term calcu-
lus course for science, mathematics, and computer sci-
ence students. Of the 349 students who enrolled in the 
course, 74% passed the course, including 32% who re-
ceived grades of A or B. 

1. Find the length of the arc of χ = ί 3 , y 
t = - 1 to t = 0. 

t2 from 

2. Find the area inside the graph of r = eos 20. 

3. Find the limits of these sequences, if they exist: 

a. an = (sin n ) / n 

b . o n = sin (I + £) 
c. o n = \/n2 + η 

d. o„ = (1 - 2 / n ) - n 

4. Test and decide if the following series are absolutely 
convergent, conditionally convergent, or divergent. 
State the test used. 

„_2 Inn ' ' 

„ = 2 In n J 

4 1 
5. Evaluate JQ ι dx if it converges. 

- ^ . Ι·λ ln( l + x) , . ,. 
6. Est imate J 0 —* dx to within .001. 

7. Find the sum £ ( - 1 ) 2k r2k 

k=0 
(2k)\ 

8. Find the Taylor series at χ — 0 for f(x) = 

(in powers of x). 

e* + e 

9. Find the limit lim ν / Γ + ° " ] ~ 
x — 0 x£ 

10. Find the third Taylor polynomial P$(x) for f(x) = 
\Jx — 1 in powers of {x — 5). 

oo (2χ — 5) f c 

11. Find the interval of convergence of Σ — , 

I N S T I T U T I O N : A southwestern public university with 
12,000 students that in 1987 awarded 24 bachelor's and 
5 master's degrees in mathematics. 

E X A M : A three-hour exam (calculators not allowed) 
given to 21 students in one section of third term calcu-
lus for engineering, mathematics, and science majors. 
Of the 138 students who enrolled in the course, 50% 
passed, including 38% who received grades of A or B. 

1. Given x(t) = (e*, 2e e , 3e ' ) . Determine the arclength 
of x(t) for t e [0,1]. 

2. Let x(t) = (x(t),y(t)) - (3 cos t, 4sin t); t G (0 ,π ) . 
Find d2y/dx2. 

3. Determine the maximum absolute value of the cur-
vature of y — f(x) = \n(x); χ > 0. 

4. Determine the unit tangent vector and the curvature 
Κ of x(t) = (t c o s i . t s in i ) and show that Κ > 0 for 

t e R. 

5. Let x(t) — ( c o s t , s i n t , s i n 2 t ) . Show tha t the curva-

ture of x(t) vanishes a t t — l / 2a rccos ^ ± y / 1 7 / 1 2 ^ . 

6. Find the unit normal vector of x(t) = (3i, sin t, cos t). 
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7. Using the chain rule, find ^ if W=exp(-x)y2 s'mz; 
χ — t, y = 2t, and ζ - At. 

8. Find the equation to the tangent to y + sin(xy) = 1 
at (0,1) by evaluating the gradient of the respective 
level curve f(x,y) = 0. 

9. Compute the directional derivative of / ( x , y ,z) — 
x2y2z2 at ( 1 , - 1 , 2 ) in the direction of (1, 0,1). 

10. Find all unit vectors u for which the directional deriv-
ative of f(x,y,z) = x 2 — xy — yz at ( - 1 , - 1 , 1 ) in the 
direction of u vanishes. 

I N S T I T U T I O N : A private midwestern liberal arts college 
of 2200 students that in 1987 awarded 17 bachelor's de-
grees in mathematics. 

E X A M : A three-hour final exam (calculators allowed) 
from the only section of the third term of a calculus 
course for prospective mathematics and science majors. 
Of the 20 students who enrolled in the course, 85% 
passed, including 33% who received grades of A or B. 

1. Find the cosine of the angle between the two line 
segments which start at (0, 0, 0) and end at (2, 3, —4) 
and (5, —2,4), respectively. 

2. Let ζ = χ 2 - 2y 2 , χ = 3s + 2t, and y = 3s - 2t. Find 
z, in two ways. 

3. Let ζ = (2x 2 - 3 x 2 ) / ( x y 3 ) . Calculate xzx - yzy. 

4. Let ζ = x2 + xy + y2. Find the directional derivative 
of ζ a t (3 ,1,13) in the direction Γ+ \/ϊΐ. 

5. Solve y" - y' - 2y = e2x given y(0) = y'(0) = 1. 

6. Suppose a particle has position f(t) = t2i + (t + 
t3/3)j + (t - t3/3)k at time t. Find the particle's 
velocity and acceleration, and decompose its acceler-
ation into tangential and normal components. 

7. Solve xy' = y + y/x2 + y 2 . 

8. Write two triple integrals—in rectangular and cylin-
drical coordinates—for the volume bounded below 
by ζ — χ2 + y 2 and above by ζ = 2y, and evaluate 
one of them. 

9. Find the length of the curve χ = 3 t 2 , y = 3i - i 3 for 
0 < t < 2. 

10. Invert the order of integration in 

f(x,y)dydx. 

11. If (x ,y) φ (0 ,0) , / ( x , y ) = ( 4 x y ) / ( 4 x 2 + y 2 ) . As 
(x, y) approaches (0,0) along a line through the ori-
gin, / ( x , y ) approaches 1. Wha t is the slope of the 
line? 

12. Find the y-coordinate of the centroid of the first-
quadrant region bounded by y = x 3 and y = yfx. 

13. Sketch the first-octant portion of the graph of x 2 + 
2z 2 = 3y 2 and find the equations of the tangent plane 
and normal line at (2, - 2 , —2). 

14. Find the minimum distance from ( 1 , - 1 , 4 ) to the 
surface x 2 + y 2 + z2 + 2x — Ay + Az ~ 16. 

15. Find the equation of the plane passing through 
(1, 2, 3) and (3, —2,1) which is perpendicular to the 
plane with equation 3x — 2y + Az = 5. 

I N S T I T U T I O N : A private university in the south with 
6,600 undergraduates that in 1987 awarded 8 bachelor's 
degrees, 3 master's degrees, and 3 Ph.D. degrees. 

E X A M : A four-hour final exam (calculators allowed) 
from the only section of third term calculus for Arts and 
Sciences students. (A separate course serves engineer-
ing students.) Of the 20 students who enrolled in the 
course, 50% passed, including 20% who received grades 
of A or B. 

1. a. Find an equation of the line through ( 2 , - 1 , 5 ) 
parallel to the line l(t) = (3f, 2 + t,2 - t) where 
— oo < ί < oo. 

b. Find the parametric equation of the line of in-
tersection of the planes 2x + y + ζ = 4 and 
3x — y + ζ = 3. 

c. Find an equation of the plane passing through 
( 1 , 0 , - 1 ) , (3 ,3 ,2) and ( 4 , 5 , - 1 ) . 

d. Find the distance between the parallel planes 2x — 
y + 2z = A and 2x - y + 2z = 13. 
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2. Find (a) the unit tangent, (b) the unit normal, (c) the 
unit binormal, (d) the curvature, (e) the torsion a t 
each point of the curve 

7(0 = (*,^ *',£)• 

Also, if 7 gives the pa th of a moving particle, what 
are the (f) tangential and (g) normal accelerations of 
this particle at time f ? 

3. Write down parameters equations for the two dimen-
sional torus centered at the origin obtained by rotat-
ing (x — 2 ) 2 + ζ2 — 1 about the z-axis. 

4. a. Wha t is the partial differential equation obtained 
from the equation 

d2u d2u d2u 
5 h 2 1- 2 — - = 0 

dx2 dxdy dy2 

by subst i tut ing χ = 2s — t, y = s — tl 

b. Suppose tha t y — g{x,z) satisfies the equation 
F(x, y, z) = 0. Find | * in terms of the partials of 
F. 

5. a. An open topped rectangular box is to have a total 
surface area of 300 in 2 . Find the dimensions which 
maximize the volume. 

b. Find the minimum distance between the circle 
x2 + y2 = 1 and the line 2x + y = 4. 

6. a. Find and classify all critical points of the function 
/ ( x , y ) = 2 y 2 - x ( x - l ) 2 . 

b. Find the maximum and minimum values of 
f(x,y,z) = χ — y + 2z on the ellipsoid Μ = 
{(x,y,z) :x2 + y2 + 2z2 - 2}. 

7. Find the total mass of an object with density 
6(x, y,z) = 2 + 3 bounded by x2 + y2 = 4 and 
ζ = \Jx2 + y2 and the xy-plane. 

8. Evaluate J j R cos(y — x)/(y + x) dx dy where R is the 
region bounded by the lines x + y = 2 , x + y = 4, 
x = 0, y = 0. 

9. Write the parametric equation of the surface given 
by the equation ζ = 4 — (χ 2 + y 2 ) and then find the 
area of the part of this surface which lies above the 
zy-plane. 

10. Let F(x,y) = ln(y/ t ) dt and compute §£ and 
OF 

dy • 

11. Compute the line integral of F = (—y, x) around the 
cardiod r = 1 + sin θ where 0 < θ < 2ir and find the 
area enclosed by this curve. 

12. Compute 

a. § i—ydx + xdy)/(x2 + y 2 ) , if 7 is a closed curve 
about the origin. 

b. § (xdx + ydy)/(x2 + y 2 ) if 7 is a closed curve 
about the origin. 

13. Let / ( f ) = ^ ( f / l l ^ l 3 ) where q is a constant and f — 
xi+yj+zk. Let V be a region surrounding the origin 
and let 5 be its surface. 

a. Compute JJS f • η ds. 

b. Compute $ f -ds where 7 is a closed curve within 
the unit spnere. 

c. Explain the different effects of the singularity at 
(0, 0, 0) on the value of the integrals. 

14. By first showing that 

J J J \\Vf\\2dxdydz = J Jf^zda 

V 9V 

conclude tha t the steady s ta te temperatures within a 

region V are determined by the surface temperatures 

where the temperatures u satisfy V 2 u = + + 

β!» - η " 

I N S T I T U T I O N : A major midwestern public research uni-
versity with 27,000 undergraduate and 9000 graduate 
students. In 1987, this university awarded I84 bache-
lor's degrees, 32 master's degrees, and 13 doctor's de-
grees in mathematics. 

E X A M : A three-hour final exam (calculators allowed) 
from one section of third term calculus for engineering 
and science students. Of the 1200 students who origi-
nally enrolled in the course, 87% passed, including 55% 
who received grades of A or B. 150 students were in the 
section that took this particular exam. 

1. Locate and classify all the critical points on the sur-
face ζ = χ 3 + y 3 - 3xy. 

f x = 2 - i λ f x = l + 2 s 1 | 

2. Let I i : I y = - 1 + 3t \ and L2 : < y = 7 + 4s \ . 
[z - 2t J [ z = 3 - 2 s J 

Find the following: 

a. The point where L2 intersects the xy plane. 

b . The point where Li and L2 intersect. 

c. The equation of the plane containing Li and L2. 
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d. The equation of the line through the point of in- 10. Suppose Τ is the region between the spheres x2 + 
tersection (part b) and perpendicular to the plane 
(part c). 

3. Sketch the region of integration and evaluate 

y2 + z2 = 1 and x2 + y2 + z2 = 5. Evaluate 

e - ( x ' + ! / 3 + i ' ) 

f Γ ^-dxdy. 
Jo J^y x 

4. Consider the curve with the parametric equations 
x = 3 i 2 , y = 2 t 3 . 

a. Carefully sketch the graph of the curve. 

b . Find the unit tangent vector Τ and the unit nor-
mal vector Ν at the point (3, —2). 

c. Find the equation of the tangent line at the point 
( 3 , - 2 ) . 

d. Find the equation of the normal line at the point 

( 3 , - 2 ) . 

e. Find the curvature at the point ( 3 , - 2 ) . 

f. Find the equation of the osculating circle at the 
point ( 3 , - 2 ) . 

5. Let w — f(u) and suppose u = x3 — y3. Find an 
expression for ^ and 

6. The circle (y - l ) 2 + ζ2 — 1 (lying in the yz-plane) 
is revolved around the ζ-axis. 

a. Write the equation of the solid of revolution. 

b . Set up but do not evaluate a triple integral in 
cylindrical coordinates to calculate the volume of 
the solid. 

7. Find the equation of the line tangent at (1, —2, —3) to 
the curve of intersection of the surface ζ — 5—4i 2—y 2 

and the plane χ — y + 2z = —3. 

8. Consider the surface x2 + y2 — z2 = 1. 

a. Sketch the surface. 

b . Use Lagrange multipliers to find the point(s) on 
the surface which are closest to (4 ,0 ,0 ) . 

c. Is there a point on the surface farthest away from 
(4 ,0 ,0)? Is so, find it; if not, explain why not. 

9. Let w(t) = (t, | t 3 , i 2 ) be the position vector of a 

particle moving in three space. 

a. Find the distance tha t is travelled by the parti-
cle along the curve as it moves from ( 1 , | , 1 ) to 
(3 ,18 ,9) . 

b . W h a t is the speed of the particle a t (1 , | , 1)? 

Ill tJ \Jx2 + y2 + z2 

dV. 

11. Find the centroid of the region R shown. Assume 

p{x,y) = 1. 

, -2 -ψ/, m i 2 l . 

ψ 
12. Show tha t the surface area of the region S on the 

cone ζ = a\Jx2 + y2 which lies about the region R, 
satisfies the following relationship: 

Area of S = \ / a 2 + 1 (Area of R). 

χ ^ R 

13. Consider the surface yfx + y/y + yfz — 1. 

a. Find the plane tangent to the surface a t (a, 6, c) 
(where a > 0, b > 0, c > 0). 

b . Show tha t the sum of the s-intercept, y-intercept, 
and z-intercept of this plane is 1. 

I N S T I T U T I O N : An eastern liberal arts college for women 
with 2600 students that in 1987 awarded 25 bachelor's 
degrees in mathematics. 

E X A M : A two and one-half hour exam (calculators al-
lowed) from one section of third term calculus for fresh-
men and sophomore science and mathematics majors. 
Of the 70 students originally enrolled in the course, 
approximately 90% passed, including 67% who received 
grades of A or B. 30 students were in the section that 
took this particular exam. 

Suppose the temperature at the point (x,y, z) is 
given by the function T(x, y, z) = y 2 e 2 x + 3 t . Wha t is 
Tz (0 ,2 ,1)? Wha t is the significance of this number 
in terms of how the tempera ture changes? 
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2. Let /(as, y) = x / (x + y) and suppose a particle is at 
the point (1,0) . Wha t direction should the particle 
travel in order that the function / decrease as rapidly 
as possible? 

3. Wha t is the equation of the plane tangent to the 
surface ζ = f{x,y) at the point (x0, yo, f(xo, J/o))? 

4. Let f(x, y) = |1 + x 2 — y\. Does fx(0,1) exist? Does 
/ „ (0 ,1 ) exist? Be sure to give reasons for your an-
swers. 

5. Suppose f(x,y) = e 9 ^ ' - 1 ) . What does the contour 
line for / = 1 look like? 

6. Find all the critical points of xy* + cos χ but do not 
classify them. 

7. Use the method of Lagrange multipliers to find the 
point (or points) (x, y) on the circle x2+y2 = 4 where 
the value of the function x 3 + y 3 is greater than or 
equal to its value at any other points on the given 
circle. 

8. Evaluate JJRxydA over the region enclosed by the 

curves y = \x and y = -y/x. 

9. Below are some values of a differentiable function 
f(x,y). The numbers are placed directly over the 
corresponding points so, for example, / (2 .5 ,2 ) = 
1.899, / (2 .5 ,2 .5) = 1, / ( 4 , 1 ) = 4, / ( 4 , 2 ) = 2.203, 
etc. Assuming tha t nothing unexpected happens be-
tween the given values, answer the following ques-
tions. 

a. If ϋ is a unit vector in the northwest direction, 
which of the following numbers best approximates 
/* (3 ,2 )? 

(A) -y/2 (Β) - 1 (C) 0 (D) 1 (E) y/2 

b. Which of the following numbers best approxi-
mates fx (3,2)? 

(A) 0 (B) 0.1 (C) 0.2 (D) 0.5 (Ε) 1 

ί 
t 

I- ' 

2- 1.695 1.797 Ί.399 ί 2.101 2.203 2.306 2.407 

3 

J , I . I ι I , L 

1 2 3 5 5 

I N S T I T U T I O N : A midwestern public university with 
8500 students that in 1987 awarded 30 bachelor's and 5 
master's degrees in mathematics. 

E X A M : A two-hour final exam (calculators allowed) for 
one section of the third term of a calculus course for en-
gineering, physical science, and mathematics students. 
Of the 106 students who enrolled in the course, 71% 
passed, including 25% who received grades of A or B. 

1. Find a rectangular equation of the curve F(t) = 
i + 2tf and sketch the curve in the xy-plane. 

2. Find the length of the curve whose parametric equa-
tions are χ - 3t, y = 2 t 3 / 2 where 0 < t < 4. 

3. Find the equation for the plane through the points 
P ( l , 2 , 3 ) and Q(2 ,4 ,2 ) that is parallel to α = 
( - 3 , - 1 , - 2 ) . 

4. For 4 x 2 + y2 - z2 = 16, 

a. Find and name the traces in the coordinate planes 
and in other planes as needed; 

b. Sketch the surface; 

c. Name the surface. 

5. Find parametric equations for the tangent line to 
the curve χ = e ' , y — tel, ζ — t2 + 4 at the point 
P ( l , 0 , 4 ) . 

6. Find the critical points and then the extrema of 
f(x,y) = x2y-6y2 - 3 x 2 . 

7. Let / ( x , y, z) = x2 + 3yz + ixy 

a. Find the directional derivative of f(x,y,z) at the 
point P(l, 0, —5) in the direction of α = (2, —3, 1). 

b. Find a vector in the direction in which / increases 
most rapidly at Ρ and find the rate of change of 
/ in that direction. 

8. Reverse the order of integration and evaluate the re-

sulting integral: J0 ycos(x2)dxdy. 

9. Find the volume of the solid in the first octant bound-
ed by the sphere ρ = 2, the coordinate planes and 
the cones φ — τ/6 and φ = π / 3 . (Draw appropriate 
pictures.) 

10. Use the change of variables χ = 2u, y — 3v to 
express the integral f fR ( x 2 / 4 + y 2 / 9 ) dxdy, where 
R - {{χ, y) I ( x 2 / 4 + y 2 / 9 ) < 1}, as a double inte-
gral over a region 5 in the itv-plane. (Do not evalu-
ate.) 
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A Special Calculus Survey: Preliminary Report 

Richard D. Anderson and Donald 0. Loftsgaarden 

L O U I S I A N A S T A T E U N I V E R S I T Y 

U N I V E R S I T Y O F M O N T A N A 

A preliminary report from a special survey of calcu-
lus, conducted during October 1987 by the MAA-CBMS 
Survey Committee: 

The MAA Survey Committee has, over the past 
month and with support from NSF (under Grant SRS-
8511733), conducted a survey among four-year colleges 
and universities to get much more detailed statistical 
information on calculus than that available elsewhere. 
The (CBMS) Surveys conducted every five years tradi-
tionally are concerned with the fall term only and lump 
all calculus courses in just two categories with no dif-
ferentiation by level. 

The same survey questionnaire was sent to a strat-
ified random sample of about one-sixth of the almost 
1500 mathematics depar tments . The preliminary re-
sults reported below are projections to the total indi-
cated four-year college and university populations. A 
much more detailed report including breakdowns by 
class of institution is to be submitted shortly to Focus 
and the Notices of the AMS. 

This survey sought information on mainstream (M) 
calculus, i.e., freshman-sophomore calculus courses or 
sequences designed as a basis for eventual student ac-
cess to upper-division mathematics courses, and non-
mainstream (N-M) calculus, i.e., calculus courses or se-
quences (such as most business calculus) not intended 
specifically for student access to upper-division math-
ematics courses. The calculus courses considered were 
Calculus I, II, III, and IV with Calculus I the beginning 
semester or quarter course. Unless otherwise specified, 
all da ta here refer to phenomena in the two semesters 
or three quarters of the academic year AY 1986-87. 

At the time of the preparation of this preliminary 
report, the full da ta were still being analyzed. It is 
believed tha t the percentage figures cited here are quite 
accurate, bu t some of the total enrollment figures may 
be off by a few percent (probably low). The over-all 
response ra te from the sample was a little over 50%, 
with a higher response rate from the public university 
category and a somewhat lower response rate from the 
private college category. 

E n r o l l m e n t s a n d S u c c e s s R a t e s 

For all of AY 1986-87, there were a total of slightly 

more than 300,000 enrollments in mainstream Calcu-
lus I and just under 260,000 in non-mainstream Calcu-
lus I. Thus 54% of all Calculus I enrollments were in 
mainstream calculus. There were also 16,000 to 17,000 
enrollments in each of Calculus I (M) and Calculus I 
(N-M) in the summer of 1987. Total semester or quar-
ter enrollments in all of Calculus I to Calculus IV in AY 
1986-87 were 975,000. 

In AY 1986-87, there were a little more than 140,000 
students who completed (with a D or bet ter) the final 
course of the first year of mainstream calculus (Calcu-
lus II for semester schools and Calculus III for quarter 
schools) and there were about 113,000 students who en-
rolled in the next te rm of calculus I'eyond the first year 
of mainstream calculus. About 85% of all enrollments 
in non-mainstream calculus were in Calculus I whereas 
less than 50% of mainstream calculus enrollments were 
in Calculus I. 

Slightly over 20% of all s tudents in Calculus I (M 
or N-M) were enrolled in lecture-recitation section for-
mats . Almost three-fourths of all enrollees in Calculus 
I passed the course with a D or bet ter (with 11-12% of 
all enrollees getting a D). Enrollees in lecture-recitation 
sections had a 3% better passing rate than enrollees in 
single-instructor sections. 

More than four-fifths of all enrollments in Calculus I 
were in institutions using the semester calendar. 

S e c t i o n S i z e s 

The average of sections in calculus taught on the 
semester basis in AY 1986-87 are shown below: 

Mainstream Non-Mainstream 
Section I II III I II 

Single Instr. 29 26 26 38 35 
Lecture 126 108 95 153 115 

In mainstream calculus the typical lecture section was 
split into about four recitation sections and in non-
mainstream calculus the figure was about five. 

W h o T e a c h e s C a l c u l u s ? 

The table below shows the percentage distribution 
by type of faculty for all single-instructor sections in 
AY 1986-87 for institutions on the semester schedule: 
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Mainstream Non-Mainstream 
Faculty Type: I II III I II 

F T Professor 
F T Instructor 
Part- t ime 
Teach. Assist. 

70% 73% 82% 
9% 14% 10% 
6% 4% 3% 

15% 9% 5% 

47% 45% 
13% 12% 
13% 20% 
25% 23% 

For classes taught in the lecture-recitation section for-
mat , almost 100% of the recitation sections were han-
dled by TA's. Almost 100% of the lecture sections in 
mainstream calculus were taught by professorial faculty, 
as contrasted to 80% in non-mainstream calculus. 

From this da ta as well as section size data , it is clear 
tha t , as expected, departments generally give priority 
to mainstream calculus. 

C h a r a c t e r i s t i c s o f C a l c u l u s C l a s s e s 

A little more than 60% of all single-instructor main-
stream semester calculus sections met four hours per 
week whereas about 50% of all mains t ream quarter cal-
culus sections met five hours per week. 

About 3% of all calculus s tudents have some com-
puter use required in homework assignments. 

About 55% of all calculus s tudents on semester 
schedules rarely or never had their homework picked 
up and graded. About 30% of calculus s tudents on 
semester schedules were not given short quizzes. If they 
were, almost all the quizzes were instructor designed. 
About one-eighth of such calculus s tudents took group 
or departmental-designed hour exams and about 50% 
took group or departmental finals. 

Two Proposals for Calculus 

Leonard Gillman 

U N I V E R S I T Y O F T E X A S , A U S T I N 

A reprint of "From the President's Desk" in the 
September 1987 issue of Focus, the Newsletter of the 
Mathematical Association of America: 

In 1946, in the town of Sullivan, Indiana, a man was 
accused of murdering his estranged wife in what was an 
open and shut case. The county put its greenest at tor-
ney in charge, and no lawyer seemed willing to under-
take the defense. Finally, Norval Kirkhan Harris (later 
Judge Harris), a well-known local attorney, agreed to 
take it on. He decided on the line tha t the whole 
thing was an unfortunate accident, and he played up 
the phrase unsparingly. ("You say you were at the gro-
cery the morning of this unfortunate accident. Where 
were you the afternoon of this unfortunate accident?") 
At the final summation, the prosecutor got up and be-
gan, "I intend to show tha t this unfortunate accident 
. . . " (The entire courtroom from the judge down burst 
into a guffaw, and the defendant got away with a'measly 
2-1/2 years for manslaughter.) 

I a m reminded of the incident every t ime I encounter 
the phrase iAe crisis in calculus. There is no crisis in cal-
culus. Students come into the course unprepared—yes. 
Textbooks are too big—of course. Emphasis should be 
modified to reflect the world of computers—certainly. 
Crisis—no. 

Any crisis tha t may exist is in education, or in so-
ciety. Up to World War II, only a minor portion of 
college-age youth went on to college, and of those, only 
a small fraction took calculus. Students typically began 
with a full semester of analytic geometry or a preced-
ing semester of trigonometry. Calculus was big stuff; a t 
Columbia University, where I studied, the final require-
ment for the mathemat ics major was a comprehensive 
exam in calculus and analytic geometry. In those days, 
a class of 40 students was considered huge. There was 
little concern with "motivating" s tudents; when a pro-
fessor told you something was impor tant , you learned 
it. 

T h e P r o b l e m 

Today, we bellow at 100 poorly prepared s tudents a t 
a t ime and "cover" in two terms what used to use up 
three. Students are reluctant to ask questions in front 
of so many people, and no sensible exchange of ideas 
is possible anyhow. Faced with s tudent evaluations, we 
play to the gallery, giving easy quizzes and grades tha t 
s tudents did not earn. (Why should I split a gut trying 
to buck the system? If they d idn ' t study, tha t ' s their 
problem. I'll go back to my research or my garden or 
whatever.) 
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I am unpersuaded by results purport ing to show that 
learning is independent of class size. To me, the ex-
periments prove once again tha t the s tandard tests are 
insufficient. We test only a small, easily quantifiable 
par t of what we hope the student is learning. We leave 
out subject mat ter tha t cannot be easily adapted to the 
test, as well as searching questions that require thought-
ful responses and equally thoughtful, time-consuming 
grading. And we perforce omit a host of delicate intan-
gibles, such as the little ways the instructor responded 
to a question or attacked a problem, which can make 
a lasting impression on students and shape their at-
t i tudes. Certainly I can never forget a discussion in 
George Adam Pfeiffer's class at Columbia when one 
of the s tudents—a very bright one, by the way—was 
wrestling with epsilon and delta. Finally, in desper-
ation, he blurted out, "But suppose I choose epsilon 
large?" "Ah," said Pfeiffer, "but you don't choose ep-
silon. / choose epsilon." 

American s tudents spend hours watching television. 
Tha t most of what they look at is without merit is the 
minor crime. The major one is the fact of passive look-
ing, encouraging them to sit back and let things come 
to them. "Good" television programs are still television 
programs: Sesame Street and Square One are still pas-
sive entertainment. There is no opportunity for viewers 
to hold up the show while they sit back and reflect, to 
mull over ideas and express them in their own words—as 
they can when reading a book. The constant, mindless 
blare trains people not to listen. Mathematics requires 
intense concentration; television encourages nonconcen-
trat ion. I sometimes wonder how many of my students 
are capable of concentrating on one idea, uninterrupted, 
for ten full minutes. 

Today there are vast numbers of families where both 
parents work, or in which there is only one parent (who 
perforce works). Parents therefore have less time to 
spend with their kids, stimulating their curiosity, an-
swering their questions, reading to them, relaxing with 
them, inculcating a love of books. (If they can. Allan 
Bloom, in The Closing of the American Mind, asserts 
tha t though families may eat, play, and travel together, 
they do not think together.) As a result, s tudents don' t 
know anything. They don' t know who Grant and Lee 
were (reported by E.D. Hirech in Cultural Literacy). A 
history colleague tells of a s tudent 's question: "I keep 
forgetting. Which side was Hitler on?" I remember a 
college algebra class being tr ipped by a problem because 
they don ' t know a revolution of the moon takes about 
a month. (Can they never have remarked on the simi-
larity of the words?) In 1980 I gave a counting problem 
tha t depended on knowing the number of days in tha t 

year, but the class stumbled because they didn ' t know 
it was a leap year; the day of th': test was February 
29th. 

Neither can we count on mathematical prerequisites, 
on the elementary facts. Wha t we really hope for is 
some true mathematical understanding; but you can' t 
understand ideas without knowing the facts they rest 
on. It is always exciting to me to announce to a cal-
culus class tha t we are about to enter a new realm of 
mathematical power—in computing areas, we will j u m p 
from parallelograms and trapezoids or other polygons to 
curved boundaries. Many students fail to share my ex-
citement. The big j u m p in power I am so excited about 
is to them a confused blur. They have no clear picture 
of what they have been able to do thus far. They are 
not confident about computing the area within a par-
allelogram. As for trapezoids, they are not ever sure 
what they are. 

Our students live in a world of morale-sapping 
hypocrisy. (When was the last t ime you braked on the 
yellow light?) They see America being run by crooks. 
(Where is Richard Nixon now tha t his country needs 
him?) The glamorizing of senseless violence by the 
movies and TV pays off in real life: during 1986, the 
city of Detroit averaged one child murder per day. Wha t 
our young people see about them are not incentives to 
scholarship and learning but causes for despair. If all 
our values are a mess, what ' s the point of clean living? 

T w o P r o p o s a l s 
Mathematicians cannot single-handedly solve the 

problems of society, bu t we can do bet ter than leave 
out related rates. Updating the curriculum Is a wor-
thy goal but addresses only one of the variables under 
our control. I suppose it is an improvement to go from 
outmoded methods of teaching ill-prepared s tudents a 
ragged curriculum to outmoded methods of teaching ill-
prepared students a spruced-up curriculum, but we can 
set our sights higher. I have two proposals, both sim-
ple, although to put them into effect may require some 
unglamorous hard work. But I think they would go a 
long way toward setting our classes on a more realistic 
footing. 

Proposal 1: Let computers handle the drill. In learn-
ing a subject, there are two things you have to do— 
absorb the ideas, and acquire skill in the routines. T h e 
appropriate setting for learning ideas is some thoughtful 
give and take with a teacher. For skill with the routines, 
you have to have a lot of jus t plain drill. Today we don ' t 
need humans to oversee routine drill. Tha t task should 
be taken over by computers . This requires spme truly 
first-rate programs; but such thinp.n are possible. 



218 R E A D I N G S 

Advantages of computer drill are well known, but I 
will mention some anyhow. Students do their practic-
ing at times convenient to them. They work at their 
own pace. They not only get feedback but instant feed-
back. (In contrast, homework papers are often graded 
without comment by a teaching assistant and returned 
several days after being handed in.) Students work in 
privacy, with no one scolding or laughing at them or 
chiding them for being slow. A well-designed program, 
with thoughtful conditional branching, will offer guid-
ance while at the same time allowing students to pick 
the topics they need practice on. The instructor is freed 
to devote full time to the exchange of ideas. Finally, 
classes can meet less often, and large classes can be di-
vided into smaller ones. 

Proposal 2: Enforce the prerequisites. Not only do 
we award grades that were not earned, but we do a dis-
service at the beginning when we admit students who 
are not qualified for the course. These students usually 
do poorly and end up soured on math . Instructors feel 
obliged to review background material in class, cutting 
into time for the regular syllabus, degrading the charac-
ter of the course, and shortchanging the better-prepared 

students. 
I propose we all be brave and enforce the prerequi-

sites. This is consistent with the MAA-NCTM reso-
lution of last fall on calculus in high school. Ju s t re-
member to check your plan with your engineering and 
business colleagues, pointing out tha t they too will gain 
from the new standards—otherwise, they may put in 
their own mathematics courses. 

The resolution just referred to lists algebra, trigon-
ometry, analytic geometry, complex numbers, and el-
ementary functions, studied in depth, as prerequisites 
for the high school calculus course. For the college pre-
calculus course, I would say be sure to include a thor-
ough t reatment of the conic sections (with the byprod-
uct of freeing up the calculus course from tha t hereto-
fore obligatory chapter) . I t ' s a difficult course to han-
dle, because the s tudents know some of the material 
and become easily bored; but tha t ' s a poor reason for 
put t ing them directly into calculus, where the material 
is assumed to be known. Do an honest job, make the 
course exciting—there is plenty of exciting material— 
and entrust it to your conscientious teachers. And don ' t 
inflate the grades. 

Calculus in Secondary Schools 

Text of a letter endorsed by the governing boards of 
the Mathematical Association of America and the Na-
tional Council of Teachers of Mathematics concerning 
calculus in the secondary schools: 

M e m o 

T O : Secondary School Mathematics Teachers 

FROM: The Mathematical Association of America 

The National Council of Teachers of Math. 

DATE: September, 1986 

RE: Calculus in the Secondary School 

Dear Colleague: 

A single variable calculus course is now well estab-
lished in the 12th grade at many secondary schools, and 
the number of s tudents enrolling is increasing substan-
tially each year. In this letter, we would like to discuss 
two problems tha t have emerged. 

The first problem concerns the relationship between 
the calculus course offered in high school and the suc-
ceeding calculus courses in college. The Mathemati-
cal Association of America (MAA) and the National 
Council of Teachers of Mathematics (NCTM) recom-
mend that the calculus course offered in the 12th grade 
should be treated as a college-level course. The expec-
tation should be that a substantial majority of the stu-
dents taking the course will master the material and will 
not then repeat the subject upon entrance to college. 
Too many students now view their 12th grade calculus 
course as an introduction to calculus with the expecta-
tion of repeating the material in college. This causes 
an undesirable a t t i tude on the par t of the s tudent both 
in secondary school and in college. In secondary school 
all too often a student may feel "I don ' t have to s tudy 
this subject too seriously, because I have already seen 
most of the ideas." Such students typically have con-
siderable difficulty later on as they proceed further into 
the subject mat ter . 
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MAA and NCTM recommend thai all students taking 
calculus in secondary school who are performing satis-
factorily in the course should expect to place out of the 
comparable college calculus course. Therefore, to verify 
appropriate placement upon entrance to college, stu-
dents should either take one of the Advanced Placement 
(AP) Calculus Examinations of the College Board, or 
take a locally-administered college placement examina-
tion in calculus. Satisfactory performance on an A P 
examination carries with it college credit at most uni-
versities. 

The second problem concerns preparation for the 
calculus course. MAA and NCTM recommend that 
students who enroll in a calculus course in secondary 
school should have demonstrated mastery of algebra, ge-
ometry, trigonometry, and coordinate geometry. This 
means tha t students should have at least four full years 
of mathematical preparation beginning with the first 
course in algebra. The advanced topics in algebra, 
trigonometry, analytic geometry, complex numbers, and 
elementary functions studied in depth during the fourth 
year of preparation are critically important for s tudents ' 
latter courses in mathematics . 

It is important to note that at present many well-
prepared students take calculus in the 12th grade, place 
out of the comparable course in college, and do well 
in succeeding college courses. Currently, the two most 
common methods for preparing s tudents for a college-
level calculus course in the 12th grade are to begin the 
first algebra course in the 8th grade or to require stu-
dents to take second year algebra and geometry con-
currently. Students beginning with algebra in the 9th 
grade, who take only one mathematics course each year 
in secondary school, should not expect to take calculus 
in the 12th grade. Instead, they should use the 12th 
grade to prepare Uicmselves fully fur calculus as fresh-
men in college. 

We offer these recommendations in an a t t empt to 
strengthen the calculus program in secondary schools. 
They are not meant to discourage the teaching of 
college-level calculus in the 12th grade to strongly pre-
pared students . 

L Y N N A R T H U R S T E E N 

President 
Mathematical Association 
of America 

J O H N A . D O S S E Y 

President 
National Council of 
Teachers of Mathematics 

Calculators in Standardized Testing of Mathematics 

Recommendations from a September 1986 Sympo-
sium on Calculators in the Standardized Testing of 
Mathematics sponsored by the The College Board and 
the Mathematical Association of America: 

In the ten years tha t inexpensive hand-held calcula-
tors have been available, a great deal of consideration 
has been given to their proper role in mathematics in-
struction and testing. In September 1986, the College 
Board and the Mathematical Association of American 
arranged a Symposium on Calculators in the Standard-
ized Testing of Mathematics to focus on a specialized 
but essential aspect of this debate. 

The part icipants found in this arena of rapid change 
a variety of old and new issues. Many of the old issues 
again yield the same educational conclusions, ones that 
cause everyone to be frustrated with the delays that 
surround implementation of calculator usage. 

At the same time, rapid changes in technology and 
price are presenting fresh issues. In particular, falling 

prices have essentially resolved the old equity issue of 
student access to calculators and have introduced in-
stead a more important issue of student access to ade-
quate preparation for using these devices appropriately 
and well. 

Likewise, the earlier complications arising from dif-
ferent calculator capabilities that generated test admin-
istration policies which gave upper limits to the type of 
calculators permit ted have been superseded. The new 
issue is that test makers now must specify the minimum 
level of sophistication necessary for a calculator to be 
appropriate for use in taking a given examination. Ex-
cess sophistication in a machine can be self-defeating; 
surplus machine capabilities may detract far more than 
they contribute to a s tudent 's performance. 

R e c o m m e n d a t i o n s 

1. The symposium endorses the recommendations made 
by the National Council of Teachers of Mathemat-



220 R E A D I N G S 

ics, the Conference Board of the Mathematical Sci-
ences, the Mathematical Sciences Education Board, 
and the National Science Board tha t calculators be 
used throughout mathematics instruction and test-
ing. 

2. The symposium calls for studies to identify content 
areas of mathemat ics tha t have gained importance as 
a result of new technologies. How achievement and 
ability in these areas are measured should be studied, 
and new testing techniques should be considered. 

3. The symposium points to a need for research and 
development on: 
a. i tem types and formats; 
b. characteristics of new item types; 
c. s tudent responses to items that allow the use of a 

calculator; and 
d. instructional materials that require the use of a 

calculator. 
4. The symposium believes tha t a mathematics achieve-

ment test should be curriculum based and that no 
questions should be used that measure only calcula-
tor skills or techniques. 

5. The symposium recognizes tha t choosing whether or 
not to use a calculator when addressing a particu-
lar test question is itself an important skill. Conse-
quently, not all questions on a calculator-based math-
ematics achievement test should require the use of a 
calculator. 

6. The symposium gives strong support to the devel-
opment of examinations in mathematics that require 
the use of a calculator for some questions. In partic-
ular, we support The College Board in its study of 
mathematics achievement examinations tha t require 
the use of calculators, and we commend the Math-
ematical Association of America for its intention to 
develop a new series of "calculator-based" placement 
examinations in mathematics . 

7. The symposium recommends tha t nationally devel-
oped mathematics achievement tests requiring the 
use of a calculator should provide descriptive ma-
terials and sample questions tha t clearly indicate 
the level of calculator skills needed. However, there 
should be no a t t empt to define an upper limit to the 
level of sophistication that calculators used on such 
tests should have. Any calculator capable of perform-
ing the operations and functions required to solve the 
problems on a particular examination should be al-
lowed. 

8. The symposium notes tha t different standardized 
tests in mathematics are used to serve different ed-
ucational purposes. Therefore, some tests need to 
be revised as soon as possible to allow for the use of 

calculators, whereas others may not need to change 
very soon. In every case, however, the integrity of the 
test must be maintained in order for its relevance to 
the mathematics taught in schools and colleges to be 
sustained. 

9. Because of the importance of the SAT in the college 
admission process, as well as the na ture of its math-
ematical content, the symposium carefully examined 
the use of calculators on tha t test. We recommend 
that calculators not be used on the SAT at this t ime. 
However, this issue should be reconsidered period-
ically in light of the s ta tus of school mathemat ics 
preparation. 

P a r t i c i p a n t s : 

Col l ege B o a r d S ta f f M e m b e r s : 

J A M E S H E R B E R T , Executive Director, Office of Aca-
demic Affairs 

G R E T C H E N W . R I G O L , Executive Director, Office of 
Access Services 

H A R L A N P . H A N S O N , Director, Advanced Placement 
Program 

R O B E R T O R R I L L , Associate Director, Office of Aca-
demic Affairs 

E d u c a t i o n a l T e s t i n g Staf f M e m b e r s : 

C H A N C E Y O. J O N E S , Associate Area Director 
J A M E S B R A S W E L L , Senior Examiner, Test Develop-

ment 
B E V E R L Y R. W H I T T I N G T O N , Senior Examiner, Test 

Development 

T h e C o l l e g e B o a r d ' s M a t h e m a t i c a l S c i e n c e s A d -
v i s o r y C o m m i t t e e : 

J E R E M Y K I L P A T R I C K , MSAC Chair: University of 
Georgia 

J . T . S U T C L I F F E , St. Mark's School, Texas 
C A R O L E. G R E E N E S , Boston University 

T H O M A S W . T U C K E R , Colgate University 

E D W A R D S I E G F R I E D , Milton Academy, Massachusetts 
R . O . W E L L S , J R . , Rice University 

T h e M A A C o m m i t t e e o n P l a c e m e n t E x a m i n a -
t i o n s : 

J O H N W . K E N E L L Y , C O P E Chair: Clemson University 
J O A N R. H U N D H A U S E N , Colorado School of Mines 
BILLY Ε . R H O A D E S , Indiana University 

L I N D A H. B O Y D , DeKalb College 

J O H N G. H A R V E Y , University of Wisconsin 

J A C K M. R O B E R T S O N , Washington State University 
J U D I T H C E D E R B E R G , St. Olaf College 
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M A R Y M C C A M M O N , Pennsylvania State University 

I n v i t e d S p e a k e r s : 

J O A N P . L E I T Z E L , Ohio State University 
B E R T K . W A I T S , Ohio State University 
J A M E S W . W I L S O N , University of Georgia 

I n v i t e d P a r t i c i p a n t s : 

G E O F F R E Y A K S T , Chair: AMATYC Education Com-
mittee; CUNY, Manha t tan Community College 

D O N A L D K R E I D E R , Treasurer: Mathematical Associa-
tion of America; Dar tmouth College 

A L F R E D B . W I L L C O X , Executive Director, Mathemat-
ical Association of America 

M I C H A E L J . C H R O B A K , Texas Instruments Corpora-
tion 

G E R A L D M A R L E Y , UC/CSU Project; California State 
University, Fullerton 

S T E V E W I L L O U G H B Y , NCTM: New York University 

S H I R L E Y H I L L , Chairman: Mathematical Sciences Ed-

ucation Board of the National Research Council 

T A M M Y R I C H A R D S , Texas Instruments Corporation 

NSF Workshop on Undergraduate Mathematics 

Text of a report prepared in June 1986 as a sequel to 
the National Science Board Task Committee Report on 
Undergraduate Science, Mathematics, and Engineering 
Education: 

The mathematical sciences are both an enabling force 

and a critical filter for careers in science and engineer-

ing. Without quality education in mathematics we 

cannot build strong programs in science and engineer-

ing. NSF policy for science and engineering education— 

both precollegiate and collegiate—must be built on this 

central fact: mathematics is not jus t one of the sci-

ences, but is the foundation for science and engineer-

ing. 

In our view the most serious problem facing un-

dergraduate mathematics is the quality of teaching 

and learning for the three million students in all 

fields who study undergraduate mathematics each term. 

We are concerned about the professional vitality of 

the faculty, the "currency" of the curriculum, and 

the shortage of mathematically-trained students, es-

pecially those preparing for careers in mathematics 

teaching or research. These problems are all interre-

lated and must be addressed collectively and simulta-

neously. 

The explosion of new applications of mathematics 

and the impact of computers require major change in 

undergraduate mathematics . Moreover, recent trends 

towards unification of basic theory must be integrated 

into the curriculum. These trends reinforce the ur-

gency of an NSF initiative in undergraduate mathe-

matics based on the themes of leadership and lever-

age elaborated in the report of the NSB Task Commit-

tee on Undergraduate Science and Engineering Educa-

tion. 

We propose programs in four categories: faculty, 

student support , curriculum development, and global 

projects. Within each category we list programs in or-

der of priority, but overall there should be a t least one 

program supported from each category. 

F a c u l t y 

A. S U M M E R F A C U L T Y S E M I N A R S . A nation-wide, cen-

trally coordinated, continuing series of at t ract ive 

seminars linking new mathematics with curricular 

reform. Seminars should cover a wide spect rum of 

issues and levels, from two-year college concerns to 

exposition of recent research. Some seminars should 

be taught by industrial mathematicians to facilitate 

the transfer of mathematical models into the cur-

riculum. To be effective there must be enough sem-

inars of sufficient durat ion to provide a significant 

renewal opportunity to at least 5 0 % of the Nation's 

two- and four-year college and university faculties 

at least once every five years. (That suggests posi-

tions for 1 0 % — a b o u t 3 , 0 0 0 people—per summer in 

a steady state.) Budget Est imate: $3-$4 million per 

year. 

B. F A C U L T Y - I N D U S T R Y L I N K A G E S . A special program 

of limited duration in which NSF would help ini-

t iate nation-wide models for faculty to become ac-

quainted with how mathematics is used in indus-

try and government. These models could include 

faculty summer internships and arrangements for 



222 R E A D I N G S 

faculty-student teams to work on real problems. The 
goal of NSF should be to establish a nation-wide 
system of industry programs to be sustained in-
definitely by support from industry. Budget Es-
t imate: Star t-up funds of $1 million over three 
years. 

C . I N D I V I D U A L T E A C H I N G G R A N T S . Like research 
grants, teaching grants would provide support to 
individuals with innovative plans to renew specific 
mathematics courses or create new ones. At least 
100 grants (say two per year per state) is a minimum 
number to have significant effect. 

D. F A C U L T Y F E L L O W S H I P S . To supplement sabbaticals, 
perhaps matched by a teaching fellowship from the 
host depar tments . Proposed level: At least 100 per 
year. 

S t u d e n t s 

A. N S F U N D E R G R A D U A T E F E L L O W S H I P S . A program 
of stipends for talented undergraduates, adminis-
tered by departments , to provide active mathemati-
cal experiences to undergraduates outside class, e.g., 
working with precollege students, summer opportu-
nities for research apprenticeships, assistants in high 
school summer institutes, individual study, and spe-
cial seminars. We are especially concerned about the 
continued low number of women and the almost to-
tal absence of minority students among those who 
pursue careers in the mathematical sciences. Special 
efforts to encourage talented women and minority 
students should be included under this program. 
In steady state, this program should provide sup-
port for approximately the top 25% of undergraduate 
mathematics majors (about 4,000 students) . Budget 
Estimate: $4-$5 million per year. 

B. S T U D E N T I N T E R N S H I P S . TO provide undergraduates 
with opportunities in industry or government to em-
ploy mathematics in a realistic setting. Initial Rec-
ommendation: 10-12 pilot programs. 

C u r r i c u l u m 

A. C A L C U L U S R E N E W A L . A multi-year special under-
taking, perhaps involving several consortia of insti-
tutions, to transform both texts and teaching prac-
tice in calculus—the major entry point (and impedi-
ment) to college mathematics , science, and engineer-
ing. This is of immediate priority. Budget Estimate: 
$500,000 per consortium per year. 

B. M O D E L P R O G R A M S . A continuing series of projects 
to identify and develop examples of courses, mathe-
matics majors, instructional environments, and cur-
ricular experiments tha t are right now successfully 
stimulating interest in undergraduate mathematics , 
backed up by dissemination activities (perhaps linked 
with the Summer Seminars) to st imulate others to 
develop their own programs. Budget Est imate: $2 
million per year. 

G l o b a l N e e d s 

A. A S S E S S M E N T O F C O L L E G I A T E M A T H E M A T I C S . A 

major study of s tandards, human resources, career 
pat terns, curriculum pat terns , and related issues 
must be undertaken to enable all institutions re-
sponsible for undergraduate mathematics to under-
stand clearly the na ture and magnitude of the prob-
lems facing collegiate mathematics . This study must 
deal both with introductory courses tha t represent 
the primary undergraduate mathemat ics experience 
for most students, and with the mathemat ics ma-
jor that forms the base for a wide variety of post-
baccalaureate careers. Because of preparations al-
ready underway for such an assessment, it is very 
important tha t this project be supported from the 
FY 1987 budget. Budget Est imate: $1 million over 
two years. 

B. Consider the establishment of I N S T I T U T E S F O R U N -

D E R G R A D U A T E E D U C A T I O N IN T H E M A T H E M A T I C A L 

S C I E N C E S to develop professional and research exper-
tise in issues related to undergraduate mathemat ics 
education. 

C u r r e n t P r o g r a m s 

Three current NSF programs are also very impor-
tant to the renewal of collegiate mathematics—research 
support for mathematics , instructional scientific equip-
ment, and graduate fellowships. For different reasons, 
all three programs are now making inadequate impact 
on undergraduate mathematics: 

• As documented in the David Report , the NSF re-
search budget for mathematics is out-of-balance with 
respect to support for other disciplines, thus insur-
ing tha t many capable young investigators get cut 
off early from the frontiers of the discipline. Avail-
ability of research support for a larger number of 
mathematicians is crucial to regenerating the profes-
sional vitality of the faculty which is so important to 
education. 
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• For various reasons, mathematics departments do 
not seek resources for such things as computers as 
vigorously as they should. Consequently, they do not 
apply for their fair share of support from programs 
such as CSIP. Both NSF and the mathematics pro-
fession must work to insure that significant resources 
for computing are available and utilized by collegiate 
mathematics departments . 

• Because of the decline in interest among Americans 
for graduate study in mathematics , too few mathe-
matics graduate students receive support from NSF 
Graduate Fellowships. The community must work 
to reverse this trend, and NSF must be prepared to 
support increased numbers of graduate students in 
mathematics . 

O t h e r N e e d s 

These program recommendations do not address all 
the problems facing collegiate mathematics . The bur-
den of remedial mathematics and the lack of pub-
lic understanding tha t mathematics is pervasive and 
important significantly impede the ability of colleges 
and universities to maintain high-quality undergradu-
ate programs in mathematics—the former by draining 
resources, the latter by limiting resources. These issues 
are able to be addressed by other NSF programs, so we 
recommend tha t new undergraduate resources not be 
used in these areas. 

M a k i n g P r o g r a m s Ef f ec t ive 

Finally, we make a few recommendations for how 
NSF can most effectively develop undergraduate math-
ematics programs in a way tha t resonates with the ex-
isting professional structures of the mathematical sci-
ences: 

1. I N T E R N A L S T R U C T U R E . There is a need that fund-
ing be specifically directed to support and improve 
undergraduate mathematics education. Such fund-
ing should not divert funds from mathematical re-
search nor should such funds be diverted to math-
ematical research or to other educational problems. 
We propose that a well-defined unit staffed by math-
ematical scientists knowledgeable about educational 
problems be established to deal with problems in 
undergraduate mathematics education. The unit 
should have a specific budget of sufficient size to re-
flect the very significant role undergraduate math-

ematics plays in science and engineering educa-
tion. 

2. Generally, but not exclusively, programs supported 
should have implications national in scope. Projects 
should be undertaken by broadly based consor-
tia, networks, professional societies, and other na-
tional organizations. Programs calling for pro-
posals should be focused in intent but not be so 
specific as to rule out innovative and imaginative 
approaches. Proposals addressing significant lo-
cal problems should receive significant local fund-
ing or contributions in kind. Proposals addressing 
broad national concerns should not necessarily be ex-
pected to a t t rac t significant funding other than from 
NSF. 

3. Professional societies and other national organiza-
tions need to assume a significant responsibility in 
defining and obtaining consensus as to national con-
cerns, informing their members of NSF programs, 
disseminating results, and identifying necessary hu-
man resources. In light of the low response rate of 
mathematicians to NSF educational proposals, we 
recommend tha t a consortium of professional soci-
eties provide the community with proposal consul-
tants . It may be necessary in the short run for NSF 
to fund such an activity. 

4 . The results of course and curriculum development 
need to be widely disseminated. There should be 
both short- term and long-term evaluative follow ups 
of the effectiveness of various programs supported 
under this effort. 
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Transition from High School to College Calculus 

Donald B. Small 

C O L B Y C O L L E G E 

Report of a CUPM subcommittee concerning the 
transition from high school to college calculus, reprinted 
from T H E A M E R I C A N M A T H E M A T I C A L M O N T H L Y , Oc-

tober, 1987: 

There is a widespread and growing dissatisfaction 
with the performance in college calculus courses of many 
students who had studied calculus in high school. In 
response to this concern, in the fall of 1983, the Com-
mittee on the Undergraduate Program in Mathematics 
(CUPM) formed a Panel on Calculus Articulation to 
undertake a three-year study of questions concerning 
the transition of students from high school calculus to 
college calculus and submit a report to CUPM detail-
ing the problems encountered and proposals for their 
solution. 

The seriousness of the issues involved in the Panel 's 
study is underscored by the number of students involved 
and their academic ability. During the ten-year period 
1973 to 1982, the number of students in high school 
calculus courses grew at a rate exceeding 10% annually. 
Of the 234,000 students who passed a high school cal-
culus course in 1982, 148,600 received a grade of B- or 
higher [2]. Assuming a continuation of the 10% growth 
rate and a similar grade distribution there were approx-
imately 200,000 high school students in the spring of 
1985 who received a grade of B- or higher in a calculus 
course. Thus possibly a third or more of the 500,000 
college students who began their college calculus pro-
gram (in Calculus I, Calculus II, or Calculus III) in the 
fall of 1985 had already received a grade of B- or higher 
in a high school calculus course. 

The students studying calculus in high school consti-
tute a large majority of the more mathematically capa-
ble high school s tudents . (In 1982, 55% of high school 
students at tended schools where calculus was taught 
[2].) Students who score a 4 or 5 on an Advanced 
Placement (AP) Calculus examination normally do well 
in maintaining their accelerated mathematics program 
during the transition from high school to college. How-
ever, this is a very small percentage of the students who 
take calculus in high school. For example, in 1982, of 
the 32,000 students who took an Advanced Placement 
calculus examination, just over 12,000 received scores of 
4 or 5, which represents only 6% of all high school stu-
dents who took calculus that year. The primary concern 

of the Panel was with the transition difficulties associ-
ated with the remaining almost 94% of the high school 
calculus students. 

P r o b l e m A r e a s 
Past studies and the Panel 's surveys of high school 

teachers, college teachers, and s tate supervisors suggest 
that the major problems associated with the transit ion 
from high school calculus to college calculus are: 

1. High school teacher qualifications and expectations. 
2. Student qualifications and expectations. 
3. The effect of repeating a course in college after having 

experienced success in a similar high school course. 
4. College placement. 
5. Lack of communication between high schools and col-

leges. 
(Copies of the Panel 's Report including the surveys and 
summaries of the responses can be obtained from the 
Washington Office of the MAA.) 

These problems were addressed by first considering 
accelerated programs in general, high school calculus 
(successful, unsuccessful), and the responsibilities of the 
colleges. 

A c c e l e r a t e d P r o g r a m s 

Accelerated mathematics programs, usually begin-
ning with algebra in eighth grade, are now well estab-
lished and accepted in most school systems. The suc-
cess of these programs in a t t rac t ing the mathematically 
capable students was documented in the 1981-82 test-
ing that was done for the "Second International Math-
ematics Study." The Summary Report [9] states with 
reference to a comparison between twelfth grade pre-
calculus students and twelfth grade calculus s tudents 
in the United States: 

We note furthermore that in every content area (sets 
and relations, number systems, algebra, geometry, el-
ementary functions/calculus, probability and statis-
tics, finite mathematics), the end-of-the-year average 
achievement of the precalculus classes was less (and in 
many cases considerably less) than the beginning-of-
the-year achievement of the calculus students. 

The report continues: 

It is important to observe that the great majority of 
U.S. senior high school students in fourth and fifth 
year mathematics classes (that is, those in precalculus 
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classes) had an average performance level that was at 
or below that of the lower 25% of the countries. The 
end-of-year performance of the students in the calculus 
classes was at or near the international means for the 
various content areas, with the exception of geometry. 
Here U.S. performance was below the international 
average. 

Thus those students in accelerated programs cul-
minating in a calculus course perform near the inter-
national mean level while their classmates in (non-
accelerated) programs culminating in a precalculus 
course perform in the bo t tom 25% in this international 
survey. The poor performance in geometry by both the 
precalculus and calculus s tudents correlates well with 
the statistic tha t 38% of the students were never taught 
the material contained in the geometry section of the 
test [9, p . 59]. The test da ta underscores the concern 
expressed by many college teachers that more emphasis 
needs to be placed on geometry throughout the high 
school curriculum. This da t a does not, however, indi-
cate that accelerated programs emphasize geometry less 
than non-accelerated programs. 

The success of the accelerated programs in com-
pleting the "normal" four year high school mathemat-
ics program by the end of the eleventh grade presents 
schools with both an opportunity and a challenge for a 
"fifth" year program. There are two acceptable options: 

1. Offer college-level mathematics courses that would 
continue the s tudents ' accelerated program and thus 
provide exemption from one or two semesters of col-
lege mathematics. 

2. Offer high school mathematics courses that - -mid 
broaden and strengthen a s tudent 's backgromi ' l and 
understanding of precollege mathematics . 

Not offering a fifth year course or offering a watered-
down college level course with no expectation of students 
earning advanced placement are not considered to he ac-
ceptable options. 

A great deal of prestige is associated with offering 
calculus as a fifth year course. Communities often view 
the offering of calculus in their high school as an in-
dication of a quality educational program, j 'a rents , 
school board officials, counselors, and school adminis-
trators often demonstrate a competitive pride in their 
school's offering of calculus. This prestige factor can 
easily manifest itself in strong political pressure for a 
school to offer calculus without sufficient regard to the 
qualifications of teachers or s tudents . 

It is important tha t this political pressure be resisted 
and tha t the choice of a fifth year program be made 
by the mathematics faculty of the local school and be 
made on the basis of the interest and qualifications of 

the mathematics faculty and the quality and number of 
accelerated s tudents . School officials should be encour-
aged to develop public awareness programs to extend 
the prestige and support tha t exists for the calculus 
to acceleration programs in general. This would help 
diffuse the political pressure as well as broaden school 
support within the community. 

Schools that elect the first option of offering a col-
lege level course should follow a s tandard college course 
syllabus (e.g., the Advanced Placement syllabus for cal-
culus). They should use placement test scores along 
with the college records of their graduates as primary 
measures of the validity of their course. 

For schools tha t elect the second option, a variety of 
courses is possible. The following course descriptions 
represent four possibilities. 

A N A L Y T I C A L G E O M E T R Y . This course could go well 
beyond the material normally included in second year 
algebra and precalculus. It could include Cartesian and 
vector geometry in two- and three-dimensions with top-
ics such as translation and rotation of axes, characteris-
tics of general quadratic relations, curve sketching, po-
lar coordinates, and lines, planes, and surfaces in three-
dimensional space. Such a course would provide spe-
cific preparation for calculus and linear algebra, as well 
as give considerable additional practice in tr igonometry 
and algebraic manipulations. 

P R O B A B I L I T Y AND S T A T I S T I C S . This course could 
be taught at a variety of levels, to be accessible to 
most s tudents , or to challenge the strongest ones. It 
could cover counting methods and some topics in dis-
crete probability such as expected values, conditional 
probability, and binomial distributions. The statistics 
portion of the course could emphasize exploratory da t a 
analysis including random sampling and sampling dis-
tributions, experimental design, measurement theory, 
measures of central tendency and spread, measures of 
association, confidence intervals, and significance test-
ing. Such an introduction to probability and statistics 
would be valuable to all s tudents , and for those who 
do not plan to study mathematics , engineering, or the 
physical sciences, probably more valuable than a calcu-
lus course. 

D I S C R E T E M A T H E M A T I C S . This type of course could 
include introductions to a number of topics t ha t are ei-
ther ignored or t reated lightly within a s tandard high 
school curriculum, but which would be st imulating and 
widely useful for the college-bound high school s tudent . 
Suggested topics include permutat ions , combinations, 
and other counting techniques: mathematical induc-
tion; difference equations; some discrete probability; el-
ementary number theory and modular ari thmetic; vec-
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tor and matr ix algebra, perhaps with an introduction 
to linear or dynamic programming; and graph theory. 

M A T R I X A L G E B R A . This course could include ba-
sic ari thmetic operations on matrices, techniques for 
finding matr ix inverses, and solving systems of linear 
equations and their equivalent matr ix equations using 
Gaussian elimination. In addition, some introduction to 
linear programming and dynamic programming could 
be included. This course could also emphasize three-
dimensional geometry. 

H i g h S c h o o l C a l c u l u s 

There are many valid reasons why a fifth year pro-
gram should include a calculus course. Four major rea-
sons: (1) calculus is generally recognized as the start ing 
point of a college mathematics program, (2) there ex-
ists a (nationally accepted) syllabus, (3) the Advanced 
Placement program offers a nation wide mechanism for 
obtaining advanced placement, and (4) there is a large 
prestige factor associated with offering calculus in high 
school. Calculus, however, should not be offered un-
less there is a strong indication tha t the course will be 
successful. 

S u c c e s s f u l C a l c u l u s C o u r s e s 

The primary characteristics of a successful high 
school calculus course are: 
1. A qualified and motivated instructor with a mathe-

matics degree that included at least one semester of a 
junior-senior real analysis course involving a rigorous 
t reatment of limits, continuity, etc. 

2. Administrative support , including provision of addi-
tional preparation time for the instructor (e.g., as 
recommended by the North Central Accreditation 
Association). 

3. A full year program based on the Advanced Place-
ment syllabus. 

4. A college text should be used (not a watered-down 
high school version). 

5. Advanced placement for s tudents (rather than mere 
preparation for repeating calculus in college) is a ma-
jor goal. 

6. Course evaluation based primarily on college place-
ment and the performance of its graduates in the 
next higher level calculus course. 

7. Restriction of course enrollment to only qualified and 
interested s tudents . 

8. The existence of an alternative fifth year course that 
s tudents may select who are not qualified for or in-
terested in continuing in an accelerated program. 

The bot tom line of what makes a high school calculus 
course successful is no surprise to anyone. A qualified 
teacher with high but realistic expectations, using some-
what s tandard course objectives, and s tudents who are 
willing and able to learn result in a successful transi-
tion at any level of our educational process. Problems 
appear when any of the above ingredients are missing. 

U n s u c c e s s f u l C a l c u l u s C o u r s e s 

Two types of high school calculus courses have an 
undesirable impact on students who later take calculus 
in college. 

One type is a one semester or part ial year course that 
presents the highlights of calculus, including an intuitive 
look at the main concepts and a few applications, and 
makes no pretense about being a complete course in 
the subject. The motivation for offering a course of this 
kind is the misguided idea tha t it prepares s tudents for 
a real course in college. 

However, such a preview covers only the glory and 
thus takes the excitement of calculus away from the col-
lege course without adequately preparing s tudents for 
the hard work and occasional drudgery needed to un-
derstand concepts and master technical skills. Profes-
sor Sherbert has commented: "It is like showing a ten 
minute highlights film of a baseball game, including the 
final score, and then forcing the viewer to watch the 
entire game from the beginning—with a quiz after each 
inning." 

The second type of course is a year-long, semi-
serious, but watered-down treatment of calculus tha t 
does not deal in depth with the concepts, covers no 
proofs or rigorous derivations, and mostly stresses me-
chanics. The lack of both high s tandards and emphasis 
on understanding dangerously misleads s tudents into 
thinking they know more than they really do. 

In this case, not only is the excitement taken away, 
but an unfounded feeling of subject mastery is fostered 
tha t can lead to serious problems in college calculus 
courses. Students can receive respectable grades in a 
course of this type, yet have only a slight chance of pass-
ing an Advanced Placement Examination or a college-
administered proficiency examination. Those who place 
into second te rm calculus in college will find themselves 
in heavy competition with bet ter prepared classmates. 
Those who elect (or are selected) to repeat first term 
calculus believe they know more than they do, and the 
motivation and willingness to learn the subject are lack-
ing. 
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C o l l e g e P r o g r a m s 
Several studies ([1], [3], [5], [6], [7]) have been con-

ducted on the performance in later courses by students 
who have received advanced placement (and possibly 
college credit) by virtue of their scores on Advanced 
Placement Calculus examinations. The studies show 
tha t , overall, s tudents earning a score of 4 or 5 on either 
the AB or BC Advanced Placement Calculus examina-
tion do as well or bet ter in subsequent calculus courses 
than the students who have taken all their calculus in 
college. It is therefore strongly recommended tha t col-
leges recognize the validity of the Advanced Placement 
Calculus program by the granting of one semester ad-
vanced placement with credit in calculus for s tudents 
with a 4 or 5 score on the AB examination, and two 
semesters of advanced placement with credit in calculus 
for s tudents with a 4 or 5 score on the BC examination. 

The studies reviewed by the Panel do not indicate 
any clear conclusions concerning performance in sub-
sequent calculus courses by students who have scored 
a 3 on an Advanced Placement Calculus examination. 
The t reatment of these students is a very important 
transition problem since approximately one-third of all 
s tudents who take an Advanced Placement Calculus ex-
amination are in this group and many of them are quite 
mathematically capable. 

It is therefore recommended that these students be 
treated on a special basis in a manner tha t is appro-
priate for the institution involved. For example, sev-
eral colleges offer a student who has earned a 3 on an 
Advanced Placement Calculus examination the oppor-
tunity to upgrade this score to an "equivalent 4" by 
doing sufficiently well on a Department of Mathemat-
ics placement examination. Another option is to give 
such students one semester of advanced placement with 
credit for Calculus I upon successful completion of Cal-
culus II. A third option is to give one semester of ad-
vanced placement with credit for Calculus I and provide 
a special section of Calculus II for such students. 

Other important transition problems are associ-
ated with s tudents who have studied calculus in high 
school, but have not at tained advanced placement ei-
ther through the Advanced Placement Calculus pro-
gram or effective college procedures. These students 
pose an important and difficult challenge to college 
mathematics departments , namely: How should these 
students be dealt with so tha t they can benefit from 
their accelerated high school program and not succumb 
to the negative and (academically) destructive a t t i tude 
problems tha t often result when a student repeats a 
course in which success has already been experienced? 
There are three major factors to consider with respect 

to these students . 

1. The lack of uniformity of high school calculus courses. 
The wide diversity in the backgrounds of the stu-
dents necessitates tha t a large review component be 
included in their first college calculus course to guar-
antee the necessary foundation for future courses. 

2. The mistaken belief of most of these s tudents tha t 
they really know the calculus when, in fact, they do 
not. Thus they fail to s tudy enough at the begin-
ning of the course. When they realize their mistake 
(if they do), it is often too late. These s tudents of-
ten become discouraged and resentful as a result of 
their poor performance in college calculus, and be-
lieve tha t it is the college course tha t must be a t 
fault. 

3. The "Pecking Order" syndrome. The bet ter the stu-
dent, the more upsetting are the understandable feel-
ings of uncertainty about his or her position relative 
to the others in the class. Although this is a common 
problem for all college freshmen, it is compounded 
when the student appears to be repeating a course in 
which success had been achieved the preceding year. 
This promotes feelings of anxiety and produces an 
accompanying act of excuses if the s tudent does not 
do at least as well as in the previous year. 

The uncertainty of one's position relative to the rest 
of the class often manifests itself in the s tudent not 
asking questions or discussing in (or out of) class for 
fear of appearing dumb. This is in marked contrast to 
the highly confident high school senior whose ques-
tions and discussions were major components in his 
or her learning process. 
The unpleasant fact is tha t the majority of s tudents 

who have taken calculus in high school and have not 
clearly earned advanced placement do not fit in either 
the s tandard Calculus I or Calculus II course. The stu-
dents do not have the level of mastery of Calculus I 
topics to be successful if placed in Calculus II and are 
often doomed by a t t i tude problems if placed in Calculus 
I. In modern parlance, this is the rock and hard place. 

An additional factor to consider is the negative effect 
that a group of students who are repeating most of the 
content of Calculus I has on the rest of the class as well 
as on the level of the instructor 's presentations. 

What is needed are courses designed especially for 
students who have taken calculus in high school and 
have not clearly earned advanced placement. These 
courses need to be designed so that they: 

1. Acknowledge and build on the high school experi-
ences of the students; 

2. Provide necessary review opportunit ies to ensure an 
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acceptable level of understanding of Calculus I top-
ics; 

3. Are clearly differentiiom high school calculus courses 
(in order tha t s tudents do not feel tha t they are es-
sentially just repeating their high school course); 

4. Result in an equivalent of one semester advanced 
placement. 
Altering the traditional lecture format or rearrang-

ing and supplementing content seem to be two promis-
ing approaches to developing courses that will satisfy 
the above criteria. For example, Colby College has 
successfully developed a two semester calculus course 
tha t fulfills the four conditions. The course integrates 
multivariable with single variable calculus, and thereby 
covers the traditional three semester program in two 
semesters [10]. 

Of course, the introduction of a new course entails 
an accompanying modification of college placement pro-
grams. However, providing new or alternative courses 
should have the effect of simplifying placement issues 
and easing transition difficulties tha t now exist. 

R e c o m m e n d a t i o n s 

1. School administrators should develop public aware-
ness programs with the objective of extending the 
support tha t exists for fifth year calculus courses to 
accelerated programs including all of the fifth year 
options. 

2. A fifth year program should offer a student a choice 
of courses (not just calculus). 

3. The choice of fifth year options should be made by 
the high school mathematics faculty on the basis of 
their interest and qualifications and the quality and 
number of the accelerated students. 

4. If a fifth year course is intended as a college level 
course, then it should be treated as a college level 
course (text, syllabus, rigor). 

5. A fifth year college level course should be taught with 
the expectation that successful graduates (B- or bet-
ter) would not repeat the course in college. 

6. A fifth year program should provide an alternative 
option for the student who is not qualified to continue 
in an accelerated program. 

7. A mathemat ics degree tha t includes a t least one 
semester of a junior-senior real analysis course involv-
ing a rigorous treatment of limit, continuity, etc., is 
strongly recommended for anyone teaching calculus. 

8. A high school calculus course should be a full year 
course based on the Advanced Placement syllabus. 

9. The instructor of a high school calculus course should 
be provided with additional preparation time for this 

course. 
10. High school calculus students should take either the 

AB or BC Advanced Placement calculus examina-
tion. 

11. The evaluation of a high school calculus course 
should be based primarily on college placement and 
the performance of its graduates in the next level 
calculus course. 

12. Only interested students who have successfully com-
pleted the s tandard four year college preparatory 
program in mathematics should be permit ted to take 
a high school calculus course. 

13. Colleges should grant credit and advanced placement 
out of Calculus I for s tudents wilh a 4 or 5 score on 
the AB Advanced Placement calculus examination, 
and credit and advanced placement out of Calculus II 
for students with a 4 or 5 score on the BC Advanced 
Placement calculus examination. Colleges should de-
velop procedures for providing special t rea tment for 
students who have earned a score of 3 on an Ad-
vanced Placement calculus examination. 

14. Colleges should individualize as much as possible the 
advising and placement of s tudents who have taken 
calculus in high school. Placement test scores and 
personal interviews should be used in determining 
the placement of these s tudents . 

15. Colleges should develop special courses in calculus for 
students who have been successful in accelerated pro-
grams, but have clearly not earned advanced place-
ment. 

Colleges have an opportunity and responsibility to de-
velop and foster communication with high schools. In 
particular: 

16. Colleges should establish periodic meetings where 
high school and college teachers can discuss expecta-
tions, requirements, and student performance. 

17. Colleges should coordinate the development of en-
richment programs (courses, workshops, insti tutes) 
for high school teachers in conjunction with school 
districts and state mathematics coordinators. 
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Calculators with a College Education? 

Thomas Tucker 

C O L G A T E U N I V E R S I T Y 

Reprint of a lead article that appeared in the January 
1987 issue of F o c u s , the Newsletter of the Mathemati-
cal Association of America: 

The title of this article should sound familiar; it is a 
variation on Herbert Wilf's "The Disk with the College 
Education," which appeared in the Monthly in January, 
1982. In that article, Wilf sent a "distant early-warning 
signal" tha t powerful mathematical computer environ-
ments like muMATH, which were jus t then becoming 
available on microcomputers, would someday soon ap-
pear in pocket computers. 

Tha t day may have arrived. The Casio fx7000-G, in-
troduced in early 1986, is no bigger than the usual $10 
hand calculator, but plots functions on its small dot ma-
trix screen. In January 1987, Hewlett-Packard released 
its HP-28C; again, a normal-sized hand calculator that 
not only plots curves but also does matr ix operations, 
equation-solving, numerical integration, and, last but 
not least, symbolic manipulation! 

Neither the Casio ($55-$90) nor the HP-28C (around 
$180) are cheap by calculator s tandards , b u t any stu-
dent who has bought a calculus textbook without flinch-
ing can afford a Casio and in a couple of years I would 
expect the textbook to cause more flinching than the 
HP-28C. The questions these calculators raise for math-
ematics educators are the same Wilf asked in 1982 (after 
which he "beat a hasty re t rea t") . The answers are not 
any clearer today. 

Here is a more detailed look at the two calculators. 
The Casio fx7000-G differs from other key-stroke pro-
grammable, scientific calculators by having a larger dot 
matr ix screen tha t makes graphing possible and tha t 
allows the user to see clearly the expressions being eval-
uated. The plotter can graph many functions at once. 
The window (range of x- and (/-coordinates) can be con-
trolled by the user and can be easily magnified to zoom 
in on a particular portion of the graph. A moving pixel 
tracing out a given curve can be stopped at any time to 
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specify a zooming-in point. The plotter can be used in 
this way to find the points of intersection of two curves. 

The calculator, however, has no built-in routine to 
solve an equation numerically, nor does it have a Simp-
son's rule key for numerical integration like some other 
scientific calculators. Since every key has three func-
tions, the keyboard is cluttered with symbols and ab-
breviations: 

The HP-28C does a lot more than the Casio, and it 
is perhaps unfair to compare them at all. It is truly the 
first in a new generation of calculators. Although thin 
enough to fit easily in a breast pocket, it folds open to 
reveal two keyboards. On the right is a four-line screen 
and below it an array of 37 but tons tha t looks vaguely 
like a s tandard calculator keyboard. On the left is a 
35-button alphabetic keyboard—there is only a single 
"shift key" so each key has only two functions. 

But where are the sin, cos, and exp but tons? And 
why does the top row of six but tons on the right key-
board have no labels at all? Because the HP-28C is 
menu-driven, and the top row contains all-purpose func-
tion keys! If you want sin, press the TRIG but ton, 
which activates a trigonometry menu at the bo t tom of 
the screen, and then press the function but ton directly 
below SIN (press NEXT to see six more functions on 
the TRIG menu). 

There are other menus for logs and exponentials, 
equation-solving, user-defined functions, statistics, plot-
ting, matr ix operations and editing, binary arithmetic, 
complex arithmetic, string operations, stack operations, 
symbolic manipulation', program control (DO UNTIL, 
etc.), special real ari thmetic (modulo, random number 
generator, etc.) , printing (yes, one can buy a thermal 
printer with infrared remote control), and, of course, a 
catalog of all operations. 

Like other Hewlett-Packard calculators, the HP-28C 
is a stack machine with operators and operands entered 
in reverse Polish. Stack entries can be commands, real 
or complex numbers, lists, strings, matrices, or alge-
braic expressions such as '2 * 3 + 5' or 'X * SIN(X)' . 
Expressions can be evaluated by pressing the EVAL key, 
which can be used like the " = " key on algebraic calcu-
lators by those averse to reverse Polish. 

If 'X * SIN(X) ' is at the top of the stack and you 
want it symbolically differentiated, put the variable of 
differentiation ' X ' on the stack and press the derivative 
but ton. To compute its degree 5 Taylor polynomial 
centered at 0, enter 5 and press TAYLR on the algebraic 
menu. To compute its definite integral from 0 to 1 enter 
the list 'Χ' , 0, 1 and a tolerance .0001 and press the 
integral but ton. 

To plot 'X * SIN(X)' , press DRAW on the plotting 

menu: Window parameters are controlled by the user 
as on the Casio fx7000-G; x- and y-coordinates of any 
point on the screen can be found by moving cross-hairs 
to the desired point and pressing INS. 

To find a root of the equation 'X = TAN(X) ' , put it 
on the stack followed by an initial guess, or an interval, 
or an interval and a guess; then press R O O T on the 
equation-solving menu. 

To invert the 2 by 2 matr ix with rows [1,2] and [3, 4], 
enter [[1, 2] [3, 4]] on the stack and press l/x. To find its 
determinant, press D E T on the array menu. To solve a 
system of equations, put the left-side coefficient matr ix 
on the stack, followed by the right-side vector, and then 
press -f. To multiply two matrices on the stack, press 
x . 

The numerical routines are high quality. There are 
12 digits of accuracy displayed and 16 digits internal. 
For example, with display set at three digits to the right 
of the decimal point, '2Λ39 EVAL' yields 549755813888; 
multiply the result by 2 and 1.100 Ε 12 appears; divide 
tha t by 2 and 549755813888 reappears . The routines 
are also fast. A short program writ ten to multiply a 
matr ix times itself 100 times ran in about 2 minutes for 
a 6 by 6 matrix! 

There are some problems. Memory is limited com-
pared to a microcomputer: 8 by 8 mat r ix multiplication 
is about all the calculator can handle and a request for 

(λ- 1) 
the degree 5 Taylor polynomial for ee overflows the 
symbolic differentiator (try computing the fifth deriva-
tive without regrouping to see why—Wilf 's micro took 4 
minutes to get the degree 9 polynomial in his 1982 art i-
cle). Although the matr ix algebra routines are accurate 
and fast, the HP-28C has never met a square matr ix it 
couldn't invert (presumably, matr ix entries such as 1 Ε 
500 should tell the user something is wrong). 

How hard are these calculators to use? Although jus t 
clearing the Casio fx7000-G memory can be a challenge 
without the manual, s tudents used to a scientific cal-
culator should feel comfortable after an hour or two. 
Hewlett-Packard designs more for engineers than for 
precalculus s tudents , and the HP-28C is no exception. 
It takes ten hours to become proficient enough to begin 
to realize the potential of this calculator, and one could 
spend weeks exploring the nooks and crannies of the 
machine. Luckily, documentation isn' t too bad. Ba-
sically, if a s tudent can learn PASCAL, he or she can 
learn to use the HP-28C. 

Who will use the HP-28C? It is not powerful enough 
to help a professional mathematic ian do symbolic ma-
nipulation the way MACSYMA helped Neil Sloane. 
(See his January 1986 Notices article "My Friend MAC-
SYMA.") But plenty of calculus s tudents would find 
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the HP-28C handy when they are asked on their next 
test to differentiate (1 + x 2 ) " " 1 1 , and so would I if I 
had to graph tha t function. The calculator can' t solve 
a twenty-variable linear program by the simplex algo-
ri thm, but it could be programmed to do eight or nine 
variables, and I can already see using the HP-28C in my 
linear algebra class to find eigenvectors and eigenvalues 
for arbi trary 5 by 5 matrices using the power method. 

One might cringe at a student integrating 1/(1 + x 2 ) 
from 0 to 1 by pressing a bu t ton and getting .785 (actu-
ally, it takes about 20 button-pushes to get the expres-
sion on the stack and another 10 to enter the integra-
tion parameters and perform the integration, although 
it all takes less than a minute). But what about the arc 
length of y = x 3 from χ = 0 to χ = 1? Something lost, 
something gained. 

Mathematicians are traditionally wary of technology. 
Perhaps their qualms are justified. To think of the area 

under the curve y = 1/(1 + x 2 ) from 0 to 1 as .785 
and not π / 4 is to miss all the beauty of a mysterious 
relationship between circles and triangles and areas and 
rates of change. Mathematicians are notoriously slow 
to come to grips with technology. 

At the Sloan Conference on Calculus at Tulane last 
January, a syllabus was proposed that recommended 
the use of programmable calculators with a Simpson's 
rule but ton, although such calculators have existed for 
five years. The part icipants at tha t conference had no 
idea tha t a Casio fx7000-G or an HP-28C was loom-
ing on the horizon. How long will it take to recognize 
pedagogically the existence of these calculators, which 
many students will already have? Must it be "some-
thing gained, something lost?" Can ' t it jus t be "some-
thing gained?" Good questions to ask, but like Wilf in 
1982, it is probably time to beat a hasty retreat . 

W h o Still Does Math with Paper 

Lynn Arthur Steen 

S T . O L A F C O L L E G E 

Reprint of a "Point of View" column that appeared in 
T H E C H R O N I C L E O F H I G H E R E D U C A T I O N on October 
14, 1987: 

Mathematics is now so widely used in so many differ-
ent fields tha t it has become the most populated—but 
not the most popular—undergraduate subject. Each 
te rm an army of three million students labors with 
primitive tools to master the art of digging and fill-
ing intellectual ditches: instead of using shovels and 
pick axes, they use paper and pencil to perform mil-
lions of repetitive calculations in algebra, calculus, and 
statistics. Mathematics, the queen of the sciences, has 
become the serf of the curriculum. 

People who use mathematics in the workplace— 
accountants, engineers, and scientists, for example— 
rarely use paper and pencil any more, certainly not for 
significant or complex computat ions. Electronic spread-
sheets, numerical-analysis packages, symbolic-algebra 
systems, and sophisticated computer graphics have be-
come the power tools of mathematics in industry. Even 
research mathematicians use computers to help them 
with exploration, conjecture, and proof. In the col-
lege classroom, however, mathematics has—with few 

and Pencil? 

exceptions—remained in the paper-and-pencil era. 

Academic inertia alone is not a sufficient explana-
tion for this s tate of affairs. Other disciplines—notably 
chemistry, economics, and physics—have adapted their 
undergraduate curricula to include appropriate use of 
computers. 

In contrast, many mathematic ians believe tha t com-
puters are rarely appropriate for mathemat ics instruc-
tion; theirs is a world of mental insight and abstract 
constructions, not of mechanical calculation or concrete 
representation. Most mathematicians, after all, choose 
mathematics at least in part because it depends only 
on the power of mind rather than on a variety of com-
putational contrivances. 

All tha t is going to change in the next two or three 
years, which in education are the equivalent of a twin-
kling of an eye. The latest pocket calculators with 
computer-like capabilities can perform at the touch of a 
few but tons many of the laborious calculations taught 
in the first two years of college mathemat ics . They can, 
among other things, graph and solve equations, perform 
symbolic differentiation as well as numerical and some 
symbolic integration, manipulate matrices, and solve si-
multaneous equations. Although such computat ions do 
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not form the heart of the ideal curriculum as it exists 
in the eye of the mathematician, they do account for 
the preponderance of the achieved curriculum tha t is 
actually mastered by the typical undergraduate. 

Computat ion has become significant for mathemat-
ics because of a major change not just in scale but of 
methods: the transit ion from numerical mathematics, 
the provinee of scientists, to symbolic and visual mathe-
matics, the province of mathematicians. Large comput-
ers have been doing "real" mathematics for years, but 
cost and relative scarcity kept them out of the class-
room. No more. Mathematics-speaking machines are 
about to sweep the campuses, embodied both as com-
puter disks and as pocket calculators. Beginning this 
fall, college s tudents will be able to use such devices 
to find the answers to most of the homework they are 
assigned. 

Much as professors like to believe that education 
s tandards are set by the faculty, the ready availabil-
ity of powerful computers will enable students to set 
new ground rules for college mathematics . Template 
exercises and mimicry mathematics—staples of today's 
texts—will vanish under the assault of computers that 
specialize in mimicry. Teachers will be forced to change 
their approach and their assignments. They will no 
longer be able to teach as they were taught in the paper-
and-pencil era. 

Change always involves risk as well as benefit. We 
have no precedents for learning in the presence of 
mathematics-speaking calculators. No one knows how 
much "patterning" with paper-and-pencil methods is 
essential to provide a foundation for subsequent ab-
stractions. Preliminary research suggests tha t it may 
not be as necessary as many mathematics teachers 
would like to believe. 

On the other hand, many students tolerate (and sur-
vive) mathematics courses only because they can get 
by with mastery of routine, imitative techniques. A 
mathematics course not built on the comfortable foun-
dation of mindless calculation would almost surely be 
too difficult for the student whose sole reason for taking 
mathematics is tha t it is required. 

Despite such risks, mathematics—and society—has 
much to gain from the increasing use of pocket comput-
ers in college classes: 

• Undergraduate mathematics will become more like 
real mathematics , both in the industrial work place 
and in academic research. By using machines to ex-
pedite calculations, s tudents can experience math-

ematics as it really is—as a tentat ive, exploratory 
discipline in which risks and failures yield clues to 
success. Computers change our perceptions of what 
is possible and what is valuable. Even for unsophis-
ticated users, computers can rearrange the balance 
between "working" and "thinking" in mathemat ics . 

• Weakness in algebra skills will no longer prevent 
s tudents from pursuing studies tha t require college 
mathematics . Jus t as spelling checkers have en-
abled writers to express ideas without the psycho-
logical block of worrying about their spelling, so the 
new calculators will enable students weak in algebra 
or tr igonometry to persevere in calculus or statis-
tics. Computers could be the democratizer of college 
mathematics . 

• Mathematics learning will become more active and 
hence more effective. By carrying most of the compu-
tational burden of mathematics homework, comput-
ers will enable s tudents to explore a wider variety of 
examples, to s tudy graphs of a quanti ty and variety 
unavailable with pencil-and-paper methods , to wit-
ness the dynamic nature of mathemat ical processes, 
and to engage realistic applications using typical— 
not oversimplified—data. 

• Students will be able to explore mathemat ics on their 
own, without constant advice from their instruc-
tors. Although computers will not compel s tudents 
to think for themselves, these machines can provide 
an environment in which student-generated mathe-
matical ideas can thrive. 

• Study of mathematics will build long-lasting knowl-
edge, not jus t short-lived strategies for calculation. 
Most s tudents take only one or two terms of col-
lege mathemat ics , and quickly forget what little they 
learned of memorized methods for calculation. Inno-
vative instruction using a new symbiosis of machine 
calculation and human thinking can shift the balance 
of mathematical learning toward understanding, in-
sight, and mathematical intuition. 
Mathematics-capable calculators pose deep questions 

for the undergraduate mathemat ics curriculum. By 
shifting much of the computat ional burden from stu-
dents to machines, they leave a vacuum of time and 
emphasis in the undergraduate curriculum. No one yet 
knows what, if anything, will replace paper-and-pencil 
computat ion, or whether advanced mathemat ics can be 
built on a computer-reliant foundation. W h a t can be 
said with certainty, however, is t ha t the era of paper-
and-pencil mathematics is over. 
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Computing in Undergraduate Mathematics 

Paul Zorn 

S T . O L A F C O L L E G E 

An "issues paper" prepared in conjunction with a 
June 1987 conference organized by the Associated Col-
leges of the Midwest to examine the role of computing 
in undergraduate mathematics as part of an effort by 
the staff of the National Science Foundation to increase 
the impact of computing on undergraduate departments 
of mathematics. Views expressed in this paper are those 
of the author, and do not necessarily reflect the views 
of the National Science Foundation. 

Modern computing raises unprecedented opportuni-
ties, needs, and issues for undergraduate mathemat-
ics. The relation between computing and mathemat-
ics is too young, and changing too quickly, to admit 
definitive positions. None are taken here. In math-
ematical language, this paper is not an authoritat ive 
monograph but a topical survey with many open ques-
tions. 

We do not assert tha t computing serves every worth-
while purpose of undergraduate mathematics . The in-
teresting issues are genuine questions: Where in the 
curriculum is computing appropriate, and why? Wha t 
does computing cost—in t ime, money, and distrac-
tion from other purposes? If computers handle rou-
tine mathematical manipulations, what will s tudents 
do instead? Will s tudents ' manipulative skills and in-
tuition survive? Should we teach things machines do 
bet ter? 

So much said, it would be disingenuous to deny the 
viewpoint tha t motivates this paper, and is implicit 
throughout—that we can and should use modern com-
puting more than we have done to improve mathemat-
ical learning and teaching. Although we will argue 
tha t the computing resource has scarcely been tapped, 
this paper is not simply a plea for computers in the 
classroom. Mathematical computing is educationally 
valuable only as it alters and serves curricular goals of 
undergraduate mathematics . It follows tha t curricular 
goals should guide teaching uses of computing, not the 
other way around. 

W h a t i s C o m p u t i n g ? 

Until recently, computing in undergraduate mathe-
matics usually meant writing or running programs (in 

Basic or Pascal) for floating point numerical operations. 
Much more is now possible: symbolic algebra, sophis-
ticated graphics, interactive operating modes—all with 
little or no programming required of the user. Comput-
ing should be understood broadly, comprising hardware, 
software, and peripheral equipment. 

Other forms of educational technology, such as video-
discs, might someday become important teaching tools. 
They are not addressed here. Covering everything 
that now exists would be difficult; anticipating what 
may exist is impossible. Our scope is comprehen-
sive only in the sense tha t many kinds of educational 
technology, like computing, amount to new ways of 
representing and manipulating mathematical informa-
tion. 

M a t h e m a t i c s a n d C o m p u t i n g 

Computing drives the modern mathemat ica l revolu-
tion. As Gail Young puts it in [3], 

. . . [W]e are participating in a revolution in math-
ematics as profound as the introduction of Arabic 
numerals into Europe, or the invention of the cal-
culus. Those earlier revolutions had common fea-
tures: hard problems became easy, and solvable not 
only by an intellectual elite but by a multitude of 
people without special mathematical talent; prob-
lems arose that had not been previously visualized, 
and their solutions changed the entire level of the 
field. 

Like Arabic numerals and the calculus, computing is 
a sharper tool, but it is also more than tha t . Comput-
ers do more than help solve old problems. They lead 
to new problems, new approaches to old problems, and 
new notions of what it means to solve problems. They 
change fundamental balances tha t have defined the dis-
cipline of mathematics and how it is pursued: continu-
ous and discrete, exact and approximate , abs t rac t and 
concrete, theoretical and empirical, contemplative and 
experimental. Computers change what we think possi-
ble, what we think worthwhile, and even what we think 
beautiful. 

Computing is becoming common place (if not ubiqui-
tous) in mathematical research, even on classical prob-
lems. Without computers, research in many new ar-
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eas would stop. Computing figured, more or less fun-
damentally, on the way to several recent spectacular 
advances, including the four color theorem and the 
Bieberbach conjecture. With numerical, graphical, and 
symbol-manipulating abilities, computers check calcu-
lations, test conjectures, process large da ta sets, search 
for s tructure, and represent mathematical objects in 
new ways. They make possible entirely new viewpoints 
on problems in mathematical research—viewpoints that 
are more empirical than deductive, more experimental 
than theoretical. 

Computing has changed how mathematics is used at 
least as much as it has changed how mathematics is cre-
ated. The changes are broad and deep, touching areas 
from arithmetic to statistics to differential equations. 
This part of the computer revolution, moreover, is hap-
pening in public. Changes at the rarefied research level 
may affect only a few people; changes a t the "user" 
level reach a much broader constituency. Already, un-
dergraduates freely—if sometimes naively—use sophis-
ticated numerical "packages" in science and social sci-
ence courses. Seeing computing all around them, stu-
dents naturally expect some in mathematics courses, 
too. 

It seems axiomatic (certainly to students!) tha t 
the profound effects of computing on research and ap-
plied mathematics should be reflected in undergrad-
uate mathematics education. Honesty to our disci-
pline and our own best interests as mathematics teach-
ers both dictate so. Honesty requires at least tha t 
we keep ourselves and our students abreast of impor-
tan t developments in our field. Self-interest says we 
should do more than report what happens outside: we 
should avail ourselves of the enormous opportunities 
computers offer for teaching and learning mathemat-
ics. 

Despite all this, computing has not yet changed 
the daily work of undergraduate mathematics very 
much. The standard freshman calculus course, for 
example, still consists largely of paper and pencil 
performance of mechanical algorithms—differentiation, 
graph-sketching, antidifferentiation, series expansion, 
etc.—just what machines do best. Graphical and nu-
merical methods are usually treated as side issues. With 
a little computing power, they could illuminate impor-
tant interplays between discrete and continuous ideas, 
exact and approximate techniques, geometric and ana-
lytic viewpoints. 

Statistical as well as anecdotal evidence shows that 
mathematics lags behind the other undergraduate sci-
ences in teaching uses of computing. In 1985 and 1986, 
for example, only 32 of approximately 2800 proposals 

to the NSF's College Science Instrumentat ion Program 
came from mathematics depar tments . Galling as it is 
to be elbowed from the trough, this paucity of mathe-
matics proposals is only a symptom. Our real prob-
lem is not too few proposals, but the opportunit ies 
mathematicians miss to revitalize leaching and learn-
ing. 

P r o b l e m s of t h e P a s t 

Reasons for the lag in undergraduate mathematical 
computing are easy to guess. The clearest difference 
between mathematics and the physical sciences is in 
the roles experiment and observations play in each. Al-
though mathematics has an essential (if informal) ex-
perimental aspect, especially in research, mathemat ics 
is not a laboratory discipline in the formal, ritualis-
tic sense tha t applies to the other sciences. The value 
of "instruments," whether computers or chemicals, to 
support the experimental side of the natura l sciences 
is taken for granted, but there is no similar consensus 
about undergraduate mathemat ics . This may change, 
but for now, the idea of mathemat ical "instrumenta-
tion" is still a novelty. Machines to support undergrad-
uate mathematical experimentation are just appearing, 
and we are jus t learning to use them. Unlike our col-
leagues in the natural sciences, we mathemat ic ians must 
convince our depar tments and college adminis t ra tors— 
and sometimes ourselves—not jus t t ha t we need partic-
ular items of equipment, but tha t we need equipment 
at all. 

Computing may reshape college mathemat ics slowly 
also because computers raise harder, more fundamen-
tal pedagogical questions in mathematics than in other 
disciplines. Computers can thoroughly transform ac-
tivities in a chemistry laboratory, but they need not 
change the basic ideas studied there. By contrast , mod-
ern computers handle so much of what we mathemat i -
cians traditionally teach tha t we are forced to rethink 
not only how we teach, but also what and why. Ironi-
cally, computers may have contributed so little in un-
dergraduate mathematics just because they can do so 
much. 

The cost of computer programming, measured in 
time and distraction, has been another impediment 
to mathematical computing. Is the effort of imple-
menting, say, a simple Riemann sum program in Ba-
sic worth the mathematical insight it offers? Similar 
questions might seem to apply in other sciences, but 
experimental da ta generated in natura l science labo-
ratories is well suited to routine numerical manipula-
tions; a few programs go a long way. Mathematical 
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computing, being less circumscribed, is harder to "pack-
age," and the programming overhead is correspondingly 
higher. 

P r o s p e c t s for t h e F u t u r e 

Given this history, why should things change? The 
simplest reason might be called "manifest destiny." 
Like it or not, computing is already changing un-
dergraduates ' views of and experience with mathe-
matics, and the rate of change is increasing. In 
freshman calculus, symbol-manipulating and graph-
sketching programs on handheld calculators already re-
duce a good share of canonical exam questions to 
button-pushing. (See [4] and [5]; note particularly their 
metaphorical titles.) We mathematicians can either 
applaud or condemn these changes, but we can't ig-
nore them. We will either anticipate and use com-
puting developments, or we will have to fend them 
off. 

Good omens for computing in undergraduate math-
ematics can also be seen in hardware and software 
improvements. Mathematical computing is becoming 
more powerful, cheaper, and easier to use. For ex-
ample, "computer algebra systems" (Macsyma, Maple, 
Reduce, SMP, and others) are start ing to appear on 
student-type machines. These systems do much more 
than algebra; they are actually powerful ("awesome," in 
studentspeak) and flexible mathematics packages tha t 
perform a host of routine operations—symbolic alge-
bra, formal differentiation and integration, series expan-
sions, graph-sketching, numerical computations, matr ix 
manipulations, and much more. Because no program-
ming is needed (one-line commands handle most opera-
tions), all this power costs virtually nothing in distrac-
tion. For good or ill, computing is changing the mix of 
"working" and "thinking" that determine what it is to 
know and do mathematics . 

The possibilities and problems computing raises for 
teaching would be important even if undergraduate 
mathematics were thriving. On the contrary, too 
few students s tudy mathematics; of those who do, 
too few learn it deeply or well. Freshman calcu-
lus is a squeaky wheel, but general complaints are 
heard up and down the curriculum: students can' t 
figure, can' t estimate, can' t read, can' t write, can' t 
solve problems, can' t handle theory and so on. Lack-
ing computers didn' t cause all these problems, and 
having computers won't solve them all. Neverthe-
less, the climate for change is favorable (see, e.g., 
[2])-

B e n e f i t s a n d O p p o r t u n i t i e s 

Computing can benefit undergraduate mathemat ics 
teaching in many ways. Understanding the context is 
important: Our goal is not more computers, but bet ter 
mathematical learning. 

1. To make undergraduate mathematics more like "real" 
mathematics. Mathematics as it is really used has 
many parts : formal symbol manipulat ion, numeri-
cal calculation, conjectures and experiments, "pure" 
ideas, modeling, and applications. Undergraduate 
students, especially in beginning courses, see mainly 
the first two at the expense of the others. Another 
mixture of ingredients might give s tudents a bet-
ter sense of context, and help them calculate more 
knowledgeably and effectively. By handling routine 
operations, computing can free time and at tention 
for other things. 

2. To illustrate mathematical ideas. Analytic con-
cepts such as the derivative have numerical, geo-
metric, and dynamical (i.e., time-varying) as well 
as analytic meaning. Pursuing graphical, numeri-
cal, and dynamical viewpoints is tedious or impossi-
ble by hand techniques. Doing so is easy and help-
ful with computing, especially if algebraic, graph-
ical, and numerical manipulation are all available. 
Given these, a student might compute difference 
quotients algebraically, tabulate numerical values 
as a parameter varies, and observe the geometric 
behavior of the associated secant lines at various 
scales. 

3. To help students work examples. Mathematicians 
know the value of concrete examples for under-
standing theorems and their consequences. Stu-
dents need examples, too, but the points examples 
make are often obscured by computat ional difficul-
ties. With computers, s tudents can work more and 
better examples. In matr ix algebra and statistics, 
large-scale problems become feasible. In calculus, 
subtle points can be clarified. The fundamental 
theorem, for example, is often misunderstood be-
cause students have insufficient experience with the 
"left side"—the integral defined by Riemann sums. 
With a machine to crunch the numbers, the "left 
side" makes numerical and geometric sense. When 
the area-under-the-graph function can be tabulated, 
graphed, and geometrically differentiated, for several 
integrands, then the idea of the theorem is hard to 
miss. 

4. To study, not just perform, algorithms. Algorithmic 
methods—for matr ix operations, polynomial factor-
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ization, finding gcd's, and other operations—are now 
a way of mathematical life. Students continually per-
form algorithms, but seldom study them in their own 
right. Rudimentary algorithm analysis (e.g., the O-
notation) could be an important and timely appli-
cation of elementary calculus. Recursion, iteration, 
and list processing, viewed as general mathematical 
techniques, also deserve more at tention than they 
get. Treating these topics efficiently means imple-
menting them, or seeing them implemented, on com-
puters . 

5. To support more varied, realistic, and illuminating 
applications. Limited by hand computat ions, many 
applications of college mathematics are contrived and 
tr i te. There are too many farm animals, rivers, 
and exotic fencing schemes. Computing allows both 
larger-scale versions of traditional applications (e.g., 
larger matrices, larger da t a samples) and new ap-
plications altogether (e.g., ones requiring numerical 
methods.) More flexible, less circumscribed appli-
cations not only do more, they also show more of 
the mathematics underlying them. Physical appli-
cations, for example, should be part of the histor-
ical, mathematical , and intuitive fiber of elemen-
tary calculus. Hand techniques restrict the scope 
of feasible physical problems to those few that can 
be solved in closed form, using elementary func-
tions. Other conceptually simple applications, like 
many from economics, lead to high-order polyno-
mial equations, and so are also taboo. Only sim-
ple numerical methods (root finding, numerical inte-
gration, etc.) are needed to make such applications 
tractable. 

6. To exploit and improve geometric intuition. Graphs 
of all kinds give invaluable insight into mathematical 
phenomena. With computer graphics, attention can 
shift from the mechanics of obtaining graphs—a sub-
stantial topic in elementary calculus—to how graphs 
represent analytic information. Sophisticated graph-
ics (surfaces in three dimensions, families of curves, 
fractals) practically require computing. They ease 
difficult learning transitions: from one variable to 
several, from function to family of functions, from 
real domain to complex domain, from pointwise to 
uniform convergence, from step to step in iterative 
constructions. 

7. To encourage mathematical experiments. The pol-
ished theorem-proof-remark style of mathematical 
writing hides the fact that mathematics is created 
actively, by trial, error, and discovery. Students can 

learn the same way, if the labor of experimenting is 
not too great. With computing, s tudents can dis-
cover tha t square matrices "usually" have full rank, 
that differentiable functions look straight a t small 
scale, and that there is pa t te rn to the coefficients of 
a binomial expansion. 

Mathematical experimentation is good both as a 
teaching tool and as an active, engaged a t t i tude to-
ward mathematics . We mathematic ians often try 
to inculcate this a t t i tude in s tudents , begging them 
to "try something." Interestingly, the opposite 
problem—an excessively experimental a t t i tude , or 
"hacking"—plagues computer science. Will comput-
ers breed mathematical hackers? Would tha t be a 
bad thing? 

8. To facilitate statistical analysis and enrich probabilis-
tic intuition. Da ta analysis in mathemat ical statis-
tics is highly computat ional . Machines allow larger 
samples, and thus greater reliability and verisimil-
itude. Students see more analysis, and more of 
its power, with less distraction. Comput ing in un-
dergraduate statistics is already becoming routine. 
As methods of da ta analysis becomes easier, choos-
ing methods and interpreting their results becomes 
harder. Informed statistical analysis requires sound 
probabilistic intuition. Probabilistic viewpoints are 
also essential, of course, in classical analysis and in 
modern physical applications. By simulating random 
phenomena, computers illustrate probabilistic view-
points concretely. Monte Carlo integration meth-
ods, for example, combine ideas from elementary cal-
culus and probability, and show relations between 
them. 

9. To teach approximation. The idea of approxima-
tion is important throughout mathemat ics and its 
applications. When students use mathematics—in 
other courses and in careers—they will certainly 
use numerical methods. Yet s tudents ' learning 
experience, especially in beginning courses, is al-
most entirely based on exact, algebraic methods: 
explicit functions, closed-form solutions, elemen-
tary antiderivatives, and the like. Numerical and 
graphical illustrations of approximation ideas are 
computationally expensive, bu t essential for under-
standing. Machine computing makes them possi-
ble. 

To use approximation effectively, s tudents need some 
idea of error analysis. Error est imate formulas 
are especially intractable for hand computat ion be-
cause they usually involve higher derivatives, upper 
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bounds, and other mysterious ingredients. High-
level computing (root-finding, symbolic differentia-
tion, numerical methods) helps students understand 
error estimation without foundering in distracting 
calculations. 

10. To prepare students to compute effectively—but skep-
tically—in careers. Applied mathematics students 
who pursue technical professions (engineering, actu-
arial science, business, and industry) will use math-
ematical computing in many forms. Some kinds of 
software (e.g., differential equation solvers, statisti-
cal analysis packages) are s tandard; students should 
see some of them in advance. Even more important 
than working knowledge of particular programs is a 
sound mathematical understanding of how those—or 
any—programs address the problems they purpor t 
to solve. Arbitrary choices—estimates, simplifica-
tions, stopping rules—are always implicit in appli-
cations software. Duly skeptical users must under-
s tand these choices and how they affect computed 
results. 

11. To show the mathematical significance of the com-
puter revolution. The relation between mathematics 
and computer science offers excellent object lessons 
in the interconnectedness of knowledge. As a mat ter 
of general education, and for practical reasons, stu-
dents should learn something about the mathemati-
cal foundations of computing, and about the mathe-
matical problems computing raises. 

12. To make higher-level mathematics accessible to stu-
dents. Undergraduates in the natural sciences have 
always participated in serious research. Comput-
ing offers similar opportunities in mathematics as it 
strengthens the concrete, empirical side of mathe-
matical research. With powerful graphics, s tudents 
might investigate the fine structure of Mandelbrot 
sets, observe evolution of dynamical systems, and ex-
plore geodesies on complex surfaces. 

R e s o u r c e R e q u i r e m e n t s 

No one doubts tha t educational uses of computing re-
quire hardware and software. It is less well understood 
tha t resource requirements only begin there. Chemistry 
depar tments require more than chemicals and equip-
ment to support their laboratory courses. In the same 
way, more than hardware and software is needed if the 
benefits of having hardware and software are to be re-
alized. 

College mathematics teachers who use computing 
face common problems. Some problems are local (e.g., 

securing institutional support) and some are national. 
Many stem from the fact tha t computing is relatively 
new to mathematics . Mathematicians are jus t begin-
ning the resource management tasks our scientific col-
leagues have worked at for decades: convincing ad-
ministrators, purchasing and maintaining equipment, 
modifying time-hardened courses, developing curricu-
lar rationales, and articulating what we are doing. Un-
dergraduate science depar tments write proposals, carry 
out supported projects, and administer grants as a 
mat ter of habit . In mathematics departments , these 
habits are less ingrained, and "machinery" to sup-
port them—administrat ive help, program and deadline 
information, accounting procedures—is usually primi-
tive. 

1. Technical support. Natural science depar tments 
maintain a complete appara tus of support services 
for their laboratory courses: equipment mainte-
nance, classroom demonstrat ion equipment, dedi-
cated space, and paid student assistants. As math-
ematics departments develop and use their own ver-
sions of "instrumentation," the same support needs 
arise. 

2. Institutional support. Most colleges have computers , 
but not necessarily the right ones, or in the right 
places, for mathematical use. Less tangible forms of 
institutional support are just as important : teach-
ing loads tha t credit faculty t ime for developing and 
staffing mathematical laboratories, tenure and pro-
motion procedures tha t reward such work, and ad-
ministrative support for matching money for grant 
proposals. 

3. Time. Realizing the mathematical benefits of com-
puting, whatever they are, costs t ime—ours and our 
s tudents ' . Not all benefits will prove worth having, 
but for those we judge worthwhile, time should be 
provided, and accounted for honestly. Instructional 
computing, like other new things, often begins with 
a trail-blazing depar tment zealot, for whom the work 
is its own reward. Eventually, ownership and re-
sponsibility should be shared. Unless t ime is made 
available, computing will remain the zealot's private 
province. 

4. Courseware. It seems historically inevitable tha t 
computing will change mathematics courses and 
course materials. If we mathematicians are to man-
age the process, we need hardware, software, and 
"courseware"—instructional material (manuals, ex-
ercises, tests, discursive material , and full text-
books) tha t thoughtfully integrates, ra ther than sim-
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ply appends, the computing viewpoint into substan-
tial mathematics courses. The necessary hardware 
and software exist, or will soon. The laggard, in-
evitably, is courseware. Robust courseware is ex-
pensive and time-consuming to develop, and it must 
find a precarious balance between being too spe-
cific to be portable and being too general to be use-
ful. 

5. Technical information. Hardware and software cha-
nge rapidly. In order to choose equipment wisely 
and use it effectively, mathematicians need techni-
cal specifications for hardware and software, crit-
ical reviews of educational software, reliable price 
data, and (hardest of all) a sense of the future. Be-
cause hardware usually outruns software, the naive 
strategy (choose software, then hardware to run 
it) guarantees obsolete hardware. Should our pro-
fessional societies marshal the expertise we need? 
How? 

6. Shared experience. Who is doing what? Where? 
With what equipment? Wha t worked? How was 
topic X treated? Undergraduate mathematical com-
puting, like any quickly developing field, depends 
on communication if the wheel is not repeatedly 
to be reinvented. Several models exist: The Sloan 
Foundation supports several college projects and 
a newsletter on teaching uses of computer alge-
bra systems, and occasional conferences on the sub-
ject. The Maple group at the University of Wa-
terloo publishes a users' group newsletter and or-
ganizes electronic communications for an interest 
group in teaching uses of computer algebra. The 
College Mathematics Journal carries a regular col-
umn (see[l]) on instructional computing. The MAA 
and its Sections sponsor minicourses nationally and 
short courses regionally. More such efforts are 
needed. 

O p e n Q u e s t i o n s 

Technical, financial, institutional, and logistical con-
siderations notwithstanding, the most difficult and in-
teresting questions computing raises are mathemati-
cal and pedagogical. Although few answers are haz-
arded here, most users face some of these questions, at 
least implicitly. As a discipline, we face them all regu-
larly. 

1. Will computers reduce students' ability to calculate 
by hand? If so, is that a bad thing? When comput-
ers do routine manipulations in mathematics courses, 

students must do something else. How will stu-
dents who have never mastered routine calculation, 
or those who enjoy it, fare in such courses? Will 
seeing the results but not the process of calcula-
tions help them understand, or further mystify them? 
If hand computation builds algebraic intuition— 
"symbol sense"—will machine computat ion destroy 
it? 

2. How should analytic and numerical viewpoints be 
balanced? To estimate J**j γ^τ dx numerically as 
1.57 is routine. To see analytically tha t the answer 
is ^ is memorable. Both facts are worth know-
ing. Will students learn them both in the calcu-
lus course of the future? To paraphrase Richard 
Askey, exact solutions are precious because they are 
rare. Will s tudents learn this? Will we remember 
it? 

3. How does computing change what students should 
know? Traditional courses are full of methods and 
viewpoints that arose to compensate for the limita-
tions of hand computation. Do new computat ional 
tools render these topics obsolete? More generally, 
should we teach mathematical techniques machines 
can do bet ter? Some things, surely, but which, and 
why? Part ial fraction decomposition? The square-
root algorithm? For topics we keep, will we for-
bid computers? Wha t will replace topics we dis-
card? 

4. Will the mechanics of computing obscure the mathe-
matics? We teach mathematics , not computing, and 
mathematics syllabi are already full. How will we use 
computing to teach mathematics without distracting 
technical excursions? How will we gauge whether 
computing effort is commensurate with the mathe-
matical insight it gives? Can computing save teach-
ing time? Anecdotal evidence suggests tha t calculus 
students can use high-level programs without undue 
difficulty or distraction. Can pre-calculus s tudents 
do the same? 

5. How will computing affect advanced courses? Math-
ematical computing frequently occurs in lower-level 
courses, like calculus, which have other educational 
goals than preparation for advanced courses. Will 
alumni of such courses be bet ter or worse pre-
pared for advanced mathematics? Should advanced 
courses change along with introductory courses? Can 
computing improve advanced courses in their own 
right? 

6. Computing and remediation. Remedial course em-
phasize mechanical operations. Will relegating rou-
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tine operations to machines reduce the need for reme-
diation? Or could deeper, more idea-oriented courses 
require more remediation for weaker students? In ei-
ther case, how can computing help students in re-
medial courses? Can such students use advanced 
computing, or do they lack some necessary sophis-
tication? 

7. CAI vs. tool-driven computing. Tn some applica-
tions, computers act as intelligent tutors , leading stu-
dents through carefully prescribed tasks. In others, 
computers are flexible tools: students decide where 
and how to use them. Where is each model use-
ful? 

8. Equity and access to computing. Sophisticated com-
puting on powerful computers is still financially 
expensive and, for most people, not always on 
hand. Calculators, for the price of four books, al-
ready handle graphical, numerical, and algebraic 
(including matrix) calculations. Sophisticated cal-
culators might both radically "democratize" high-
level computing, and make it as natural as hand-
held arithmetic computation. Will they? Should 
they? 

9. Will computing help students learn mathematical 
ideas more deeply, more easily, and more quickly? 
Conjeeturally, yes, but the conclusion is not foregone. 
For undergraduate mathematics , this is the bo t tom 
line. 
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B O S S E R T , W I L L I A M . Harvard University, Cambridge 

MA 20318. [Professor, Aiken Computational Labora-
tory] 617-495-3989. 

B O U T I L I E R , P H Y L L I S . Michigan Technological Univer-

sity, Houghton MI 49931. [Director] 906-487-2068. 
B O Y C E , W I L L I A M . Rensselear Polytechnic Institute, 

Troy NY 12180. [Professor, Dept of Mathematical Sci-
ences] 518-276-6898. 

B R A B E N E C , R O B E R T . Wheaton College, Wheaton IL 

60187. [1006 North Washington] 312-260-3869. 
B R A D B U R N , J O H N . AMATYC MAA, Elgin IL 60123. 

[1850 Joseph Ct] 312-741-4730. 
B R A D E N , L A W R E N C E . Iolani School, Honolulu HI 

96826. [563 Kamoku St] 808-947-2259. 
B R A D Y , S T E P H E N . Wichita State University, Wichita 

KS 67208. [Associate Professor, Dept of Math 1845 
North Fairmount] 316-689-3160. 

B R A G G , A R T H U R . Delaware State College, Dover DE 

19901. [Chair, Dept of Mathematics] 302-736-5161. 
B R I T O , D A G O B E R T . Rice University, Houston TX 

77251. [Professor, Department of Economics] 701-527-
4875. 

B R O A D W I N , J U D I T H . Jericho High School, Jericho NY 

11753. [Teacher, 6 Yates Lane] 516-681-4100. 
B R O W N E , J O S E P H . Onondaga Community College, 

Syracuse NY 13215. [Associate Professor, Dept of Math-
ematics] 315-469-7741. 

BROWN, CLAUDBTTE. National Research Council-
MSEB, Washington DC 20418. [2101 Constitution Av-
enue NW] 

B R O W N , D O N A L D . St. Albans School, Washington DC 

20016. [Chairman Dept Math, Mount St. Alban] 202-
537-6576. 

B R O W N , J A C K . University of Arkansas, Fayetteville AR 

72701. [Student, Box 701 Yocum Hall] 501-575-5569. 

BROWN, ROBERT. University of Kansas, Lawrence KS 
66045. [Director Undergrad Studies, Dept of Mathemat-
ics] 913-864-3651. 

BROWN, MORTON. University of Michigan, Ann Arbor 
MI 48109. [Professor, Dept of Mathematics] 313-764-
0367. 

BRUBAKER, MARVIN. Messiah College, Grantham PA 
17027. [Professor] 717-766-2511. 

BRUNELL, GLORIA. Western Connecticut State Univer-
sity, New Milford CT 06776. [Professor, 8 Howe Road] 
203-355-1569. 

BRUNSTING, JOHN. Hinsdale Central High School, 
Hinsdale IL 60521. [Dept. Chair, 55th and Grant 
Streets] 312-887-1340. 

BUCCINO, ALPHONSE. University of Georgia, Athens 
GA 30602. [Dean, College of Education] 404-542-3030. 

BUCK, CREIGHTON. University of Wisconsin, Madison 
WI 53705. [Professor, 3601 Sunset Drive] 608-233-2592. 

BUEKER, R . C . Western Kentucky University, Bowling 
Green KY 42101. [Head, Dept of Mathematics] 502-745-
3651. 

BURDICK, BRUCE. Bates College, Lewiston ME 04240. 
[Assistant Professor, P.O. Box 8232] 207-786-6143. 

BYHAM, FREDERICK. State Univ College at Fredonia, 
Fredonia NY 14063. [Associate Professor, Dept of Math 
and Computer Science] 716-673-3193. 

BYNUM, ELWARD. National Institutes of Health, 
Bethesda MD 20892. [Director MARC Program, West-
wood Bid. Room 9A18] 301-496-7941. 

CALAMIA, LOIS. Brookdale Community College, East 
Brunswick NJ 08816. [Assistant Professor, 12 South 
Drive] 201-842-1900. 

CALLOWAY, JEAN. Kalamazoo College, Kalamazoo MI 
49007. [Professor, 1200 Academy Street] 616-383-8447. 

CAMERON, DWAYNE. Old Rochester Regional School 
District, Mattapoisett MA 02739. [Coordinator, 135 
Marion Rd.] 617-758-3745. 

CAMERON, DAVID. United States Military Academy, 
West Point NY 10996. [Head, Dept of Mathematics] 
914-938-2100. 

CANNELL, PAULA. Anne Arundel Community College, 
Annapolis MD 21401. [1185 River Bay Rd] 301-260-
4584. 

CANNON, RAYMOND. Baylor University, Waco TX 
76798. [Professor, Mathematics Dept] 817-755-3561. 

CAPPUCCI, ROGER. Scarsdale High School, Scarsdale 
NY 10583. [Teacher] 914-723-5500. 

CARLSON, CAL. Brainerd Community College, Brainerd 
NY 56401. [Teacher, College Drive] 218-829-5469. 

CARLSON, DONALD. University of Illinois-Urbana, Ur-
bana IL 61801. [Professor, 104 South Wright Street] 
217-333-3846. 

CARNES, JERRY. Westminster Schools, Atlanta GA 
30327. [Chair Math Dept, 1424 West Paces Ferry Road] 
404-355-8673. 

CARNEY, ROSE. Illinois Benedictine College, Lisle IL 
60532. [Professor, Dept of Math 5700 College Road] 
312-960-1500. 
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C A R R , J A M E S . Iona College, New Rochelle NY 10801. 
[Assistant Professor, PDept of Mathematics] 914-633-
2416. 

C A S C I O , G R A C E . Northeast Louisiana University, Mon-
roe LA 71209. [Assistant Professor, Dept of Mathemat-
ics] 318-342-4150. 

C A S E , BETTYE-ANNE. Florida State University, Talla-
hassee FL 32306. [Professor, Department of Mathemat-
ics] 904-644-2525. 

C A S T E L L I N O , F R A N C I S . University of Notre Dame, 
Notre Dame IN 46556. [Dean, College of Science] 

C A V I N E S S , B . F . National Science Foundation, Washing-
ton DC 20550. [Program Director, 1800 G Street NW 
Room 304] 202-357-9747. 

C H A B O T , M A U R I C E . University of Southern Maine, 
Portland ME 04103. [Chair, Dept of Math 235 Science 
Bldg] 207-780-4247. 

C H A N D L E R , E D G A R . Paradise Valley Community Col-
lege, Phoenix AZ 85032. [Instructor, 18401 North 32nd 
Street] 602-493-2803. 

C H A R , B R U C E . University of Tennessee, Knoxville TN 
37996. [Associate Professor, Dept of Computer Sci] 615-
974-4399. 

C H I L D , D O U G L A S . Rollins College, Winter Park FL 
32789. [Professor, Dept Math Sciences 100 Holt Ave] 
305-646-2667. 

C H I N N , W I L L I A M . 539 29th Avenue, San Francisco CA 
94121. [Emeritus, City College of San Francisco] 415-
752-1637. 

C H I P M A N , C U R T I S . Oakland University, Rochester MI 
48309. [Associate Professor] 313-370-3440. 

C H R I S T I A N , FLOYD. Austin Peay State University, 
Clarksville TN 37044. [Associate Professor, Dept of 
Mathematics] 615-648-7821. 

C H R O B A K , M I C H A E L . Texas Instruments Inc., Dallas 
TX 75265. [Product Manager, P.O. Box 655303] 214-
997-2010. 

C L A R K , R O B E R T . Macmillan Publishing Co., New York 
NY 10022. [Editor, 866 3rd Avenue 6th floor] 212-702-
6773. 

C L A R K , C H A R L E S . University of Tennessee, Knoxville 
TN 37996. [Professor, Dept of Mathematics] 615-974-
4280. 

C L E A V E R , C H A R L E S . The Citadel, Charleston SC 
29409. [Head, Dept of Math & Computer Science] 803-
222-8069. 

C L I F T O N , R O D N E Y . Brown University, Providence RI 
02912. [Professor, Division of Engineering] 401-863-2855. 

C O A L W E L L , R I C H A R D . Lane Community College, Eu-
gene OR 97401. [356 Paradise Court] 503-747-4501. 

C O C H R A N , A L L A N . University of Arkansas, Fayettevile 
AR 72701. [Professor, Dept of Mathematical Sciences 
SE] 501-575-3351. 

C O H E N , M I C H A E L . Bay Shore High School, Merrick NY 
11566. [Teacher, 2036 Dow Avenue] 516-379-5356. 

C O H E N , S I M O N . New Jersey Institute of Technology, 
Newark NJ 07102. [Dept of Mathematics] 201-596-3491. 

C O H E N , J O E L . University of Denver, Denver CO 80208. 
[Associate Professor, Dept Math & Computer Science] 
303-871-3292. 

C O H E N , M I C H A E L . University of Maryland, College 
Park MD 20742. [Associate Professor, PSchool of Public 
Affairs Morrill Hall] 301-454-7613. 

C O L L I N S , S H E I L A . Newman School, New Orleans LA 
70115. [Chair, Math Dept 1903 Jefferson Ave.] 503-899-
5641. 

C O L L U M , D E B O R A H . Oklahoma Baptist University, 
Shawnee OK 74801. [Assistant Professor, 500 West Uni-
versity] 405-275-2850. 

C O M P T O N , D A L E . National Academy of Engineering, 
Washington DC 20418. [Senior Fellow, 2101 Constitu-
tion Avenue NW] 202-334-3639. 

C O N N E L L , C H R I S . Associated Press. 

C O N N O R S , E D W A R D . University of Massachusetts, 
Amherst MA 01003. [Professor, Dept of Mathematics 
& Statistics] 413-545-0982. 

C O O N C E , H A R R Y . Mankato State University, Mankato 
MN 56001. [Professor, Box 41] 507-389-1473. 

C O P E S , L A R R Y . Augsburg College, Minneapolis MN 
55075. [Chair, 731 21st Avenue South] 612-330-1064. 

C O R Z A T T , C L I F T O N . St. Olaf College, Northfield MN 
55057. [Associate Professor] 507-633-3415. 

C O V E N E Y , P E T E R . Harper & Row Publishers Inc., New 
York NY 10022. [Editor, 10 East 53rd Street] 212-207-
7304. 

C o x , L A W R E N C E . National Research Council-BMS, 
Washington DC 20418. [Staff Director, 2101 Constitu-
tion Avenue NW] 202-334-2421. 

C O Z Z E N S , M A R G A R E T . Northeastern University, 
Boston MA 02115. [Associate Professor, Dept of Math 
360 Huntington Ave] 617-437-5640. 

C R A W L E Y , P A T R I C I A . Nova High School, Sunrise FL 
33322. [Dept Head, 2021 N.W. 77th Avenue] 305-742-
6452. 

C R O O M , F R E D E R I C K . University of the South, S ewanee 
TN 37375. [Professor, University Station] 615-598-1248. 

C R O W E L L , R I C H A R D . Dartmouth College, Hanover NH 
03755. [Professor, 16 Rayton Road] 603-646-2421. 

C R O W E L L , S H A R O N . O'Brien & Associates, Alexandria 
VA 22314. [Associate, Carriage House 708 Pendleton St] 
703-548-7587. 

C U M M I N G S , N O R M A . Arapahoe High School, Littleton 
CO 80122. [Teacher, 2201 East Dry Creek Rd] 303-794-
2641. 

C U R T I S , P H I L I P . UCLA, Los Angeles CA 90024. [Pro-
fessor, Dept of Mathematics] 213-206-6901. 

C U R T I S , E D W A R D . University of Washington, Seattle 
WA 98195. [Professor, Padelford Hall] 206-543-1945. 

C U T L E R - R O S S , S H A R O N . Dekalb College, Clarkston 
GA 30021. [Associate Professor, 555 North Indian 
Creek] 404-299-4163. 

C U T L E R , A R N O L D . Moundsview High School, New 
Brighton MN 55112. [Teacher, 1875 17th Street NW] 
612-633-4031. 
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DANCE, ROSALIE. District of Columbia Public Schools, 
Washington DC 20032. [Teacher, Ballou High School 
3401 4th St. SE] 202-767-7071. 

DANFORTH, KATRINE. Corning Community College, 
Corning NY 14830. [Associate Professor, P.O. Box 252] 
607-962-4034. 

DANFORTH, ERNEST. Corning Community College, 
Corning NY 14830. [Associate Professor, P.O. Box 252] 
607-962-9243. 

DARAI, ABDOLLAH. Western Illinois University, Ma-
comb IL 61455. [Assistant Professor, Dept of Math Mor-
gan Hall] 309-298-1370. 

DAVIDON, WILLIAM. Haverford College, Haverford PA 
19041. [Professor, Mathematics Dept] 215-649-0102. 

DAVIES, RICHARD. OTG U.S. Congress, Washington 
DC 20510. [Analyst, Office of Technology Assessment] 
202-228-6929. 

DAVISON, JACQUE. Anderson College, Anderson SC 
29621. [Instructor, 316 Boulevard] 803-231-2165. 

DAVIS, NANCY. Brunswick Technical College, Shallotte 
NC 28459. [Instructor, Rt 2 Box 143-2A] 919-754-6900. 

DAVIS, RONALD. Northern Virginia Community Col-
lege, Alexandria VA 22205. [Professor, 3001 North 
Beauregard St] 703-845-6341. 

DAVIS, FREDERIC. United States Naval Academy, An-
napolis MD 21402. [Professor, Mathematics Dept] 301-
267-2795. 

DAWSON, JOHN. Penn State York, York PA 17403. 
[Professor, 1031 Edgecomb Avenue] 717-771-4323. 

DE-COMARMOND, JEAN-MARC. French Scientific Mis-
sion, Washington DC 20007. [Scientific Attache, 4101 
Reservoir Road NW] 202-944-6230. 

DEETER, CHARLES. Texas Christian University, Fort 
Worth TX 76129. [Professor, Dept of Math Box 32903] 
817-921-7335. 

DEKEN, JOSEPH. National Science Foundation, Wash-
ington DC 20550. [Program Director, 1800 G Street NW 
Room 310] 202-357-9569. 

DELIYANNIS, PLATON. Illinois Institute of Technology, 
Chicago IL 60616. [Associate Professor, Dept of Mathe-
matics] 312-567-3170. 

DELLENS, MICHAEL. Austin Community College, 
Austin TX 78768. [Instructor, P.O. Box 2285] 512-495-
7256. 

DEMANA, FRANKLIN. Ohio State University, Colum-
bus OH 43210. [Professor, Dept of Math 231 West 18th 
Avenue] 614-292-0462. 

DEMETROPOULUS, ANDREW. Montclair State Col-
lege, Upper Montclair NJ 07043. [Chair, Dept of Math 
& Computer Science] 201-893-5146. 

DENLINGER, CHARLES. Millersville University, 
Millersville PA 17551. [Professor, Dept of Math & Com-
puter Science] 717-872-4476. 

DEVITT, JOHN. University of Saskatchewan, Saskatoon 
Sask. Canada S7N0W0. [Asociate Professor, Dept of 
Mathematics College Drive] 306-966-6114. 

DiFRANCO, ROLAND. University of the Pacific, Stock-
ton CA 95211. [Professor, Mathematics Dept] 209-946-

3026. 
DlCK, THOMAS. Oregon State University, Corvallis OR 

97331. [Assistant Professor, Mathematics Dept] 503-754-
4686. 

D l E N E R - W E S T , MARIE. Johns Hopkins University, 
Baltimore MD 21205. [550 North Broadway 9th floor] 
301-955-8943. 

DlON, GLORIA. Penn State Ogontz, Abington PA 
19001. [1600 Woodland Avenue] 215-752-9595. 

DlX, LlNDA. National Research Council-OSEP, Wash-
ington DC 21408. [Project Officer, 2101 Constitution 
Avenue NW] 202-334-2709. 

DJANG, FRED. Choate Rosemary Hall, Wallingford CT 
06492. [Chairman Math, P.O. Box 788] 203-269-7722. 

DODGE, WALTER. New Trier High School, Winnetka IL 
60093. [Teacher, 385 Winnetka Ave] 312-446-7000. 

DONALDSON, JOHN. Amer. Society for Engineering 
Education, Washington DC 20036. [Deputy Executive 
Director, 11 Dupont Circle Suite 200] 202-293-7080. 

DONALDSON, GLORIA. Andalusia High School, Andalu-
sia AL 36420. [Chair Math Science Division, P.O. Box 
151] 205-222-7569. 

DORNER, GEORGE. Harper College, Palatine IL 60067. 
[Dean, Algonquin/Ruselle Roads] 312-397-3000. 

DORNER, BRYAN. Pacific Lutheran University, Tacoma 
WA 98447. [Associate Professor, Dept of Mathematics] 
206-535-8737. 

DoSSEY, JOHN. Illinois Slate University, Eureka IL 
61530. [Professor, RR # 1 Box 33] 309-467-2759. 

DOTSETH, GREGORY. University of Northern Iowa, 
Cedar Falls IA 50613. [Dept of Math & Computer Sci-
ence] 319-273-2397. 

D O U G L A S , R O N A L D . SUNY - Stony Brook, Stony 
Brook NY 11794. [Dean, Physical Sciences fc Math] 516-
632-6993. 

DREW, JOHN. College of William and Mary, Williams-
burg VA 23185. [Associate Professor, Math.Dept] 804-
253-4481. 

DUTTON, BRENDA. Spring Hill College, Mobile AL 
36608. [4000 Dauphin St.] 205-460-2212. 

DWYER, WILLIAM. University of Notre Dame, Notre 
Dame IN 46556. [Chair, Dept of Mathematics] 

DYER, DAVID. Prince George's College, Largo MD 
20772. [Associate Professor, Math Dept 301 Largo 
Road] 301-322-0461. 

DYKES, JOAN. Edison Community College, Ft. Myers 
FL 33907. [Instructor, 8099 College Parkway SW] 813-
489-9255. 

DYMACEK, WAYNE. Washington and Lee University, 
Lexington VA 24450. [Associate Professor] 703-463-8805. 

EARLES, GAIL. St. Cloud State University, St. Cloud 
MN 56301. [Chair, Dept of Math & Statistics] 612-255-
3001. 

E A R L E S , R O B E R T . St. Cloud State University, St. 
Cloud MN 56301. [Professor, Dept of Math & Statistics] 
612-255-2186. 

EBERT, GARY. University of Delaware, Newark DE 
19716. [Professor, Math Sci Dept] 302-451-1870. 
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EDISON, LARRY. Pacific Lutheran University, Tacoma 
WA 98447. [Professor] 206-535-8702. 

EDLUND, MlLTON. Virginia Polytech & State Univ, 
Blacksburg VA 24061. [Professor, Dept of Mechanical 
Engineering] 703-951-1957. 

E D W A R D S , C O N S T A N C E . IPFW, Ft. Wayne IN 46805. 
[Associate Professor, Math Dept] 219-481-6229. 

EDWARDS, BRUCE. University of Florida, Gainesville 
FL 32611. [Associate Chair, Dept of Math 201 Walker 
Hall] 904-392-0281. 

EGERER, G E R A L D . Sonoma State University, Rodnert 
Park CA 94928. [Professor, Dept of Economics] 707-664-
2626. 

EHRET, ROSE-ELEANOR. Holy Name College, Oakland 
CA 94619. [Professor, 3500 Mountain Blvd] 415-436-
0111. 

ElDSWICK, JACK. University of Nebraska, Lincoln NE 
68588. [Professor, Dept of Mathematics and Statistics] 
402-472-3731. 

EMANUEL, JACK. University of Missouri-Rolla, Rolla 
MO 65401. [Professor, Dept of Civil Engineering] 314-
341-4472. 

ERDMAN, CARL. Texas A & Μ University, College Sta-
tion T X 77843. [Associate Dean, 301 Wisenbaker Engr 
Res Center] 409-845-5220. 

ESLINGER, ROBERT. Hendrix College, Conway AR 
72032. [Associate Professor, Dept of Mathematics] 501-
450-1254. 

ESTY, EDWARD. Childrens Television Workshop, Chevy 
Chase MD 20815. [4104 Leland Street] 301-656-7274. 

E T T E R B E E K , W A L L A C E . Calif State University, Sacra-
mento CA 95819. [Professor, Math Dept 6000 J Street] 
916-278-6361. 

FAIR, W Y M A N . University of North Carolina, Asheville 
NC 28804. [Professor, Mathematics Dept 1 University 
Heights] 704-251-6556. 

FAN, SEN. University of Minnesota, Morris MN 56267. 
[Associate Professor, Math Discipline] 612-589-2211. 

FARMER, THOMAS. Miami University, Oxford OH 
45056. [Associate Professor, Dept of Math & Stat] 513-
529-5822. 

FASANELLI, FLORENCE. National Science Foundation, 
Washington DC 20550. [Associate Program Director, 
1800 G Street NW Room 635] 202-357-7074. 

FERRINI-MUNDY, JOAN. University of New Hampshire, 
Durham NH 03824. [Associate Professor, Dept of Math-
ematics] 603-862-2320. 

F E R R I T O R , D A N I E L . University of Arkansas, Fayet-
teville AK 72701. [Chancellor, 425 Administration 
Building] 501-575-4148. 

FIFE, J A M E S . University of Richmond, Richmond VA 
23173. [Professor, Dept of Math/Computer Sci] 804-289-
8083. 

FlNDLEY-KNIER, HILDA. Univ of the District of 
Columbia, Washington DC 20008. [Associate Professor, 
2704 Woodley Place NW] 202-282-7465. 

FlNK, J A M E S . Butler University, Indianapolis IN 46208. 
[Head, Dept of Mathematical Sciences] 317-283-9722. 

FlNK, JOHN. Kalamazoo College, Kalamazoo MI 49007. 
[Associate Professor] 616-383-8447. 

FISHER, NEWMAN. San Francisco State University, San 
Francisco CA 94132. [Chairman, Mathematics Dept 
1600 Holloway Ave] 415-338-2251. 

FLANDERS, HARLEY. University of Michigan, Ann Ar-
bor MI 48109. [Professor, Dept of Mathematics] 313-
761-4666. 

FLEMING, RICHARD. Central Michigan University, Mt. 
Pleasant MI 48859. [Professor, Dept of Mathematics] 
517-774-3596. 

FLINN, TIMOTHY. Tarleton State University, Stephen-
ville TX 76402. [Associate Professor, Dept of Mathe-
matics Box T-519] 817-968-9168. 

FLOWERS, PEARL. Montgomery County Public 
Schools, Rockville MD 20850. [Teacher Specialist, 850 
Hungerford Dr CESC 251] 301-279-3161. 

FLOWERS, J O E . Northeast Missouri State Univ, 
Kirksville MO 63501. [Professor, Div of Math Violette 
Hall 287] 816-785-4284. 

FOLIO, CATHERINE. Brookdale Community College, 
Lincroft NJ 07738. [Math Dept Newman Springs Road] 
201-842-1900. 

FRAGA, ROBERT. Ripon College, Ripon WI 54971. 
[Box 248] 414-748-8129. 

FRANCIS, WILLIAM. Michigan Technological Univer-
sity, Houghton MI 49931. [Associate Professor, Dept of 
Mathematical Sciences] 906-487-2146. 

FRANKLIN, KATHERINE. LOS Angeles Pierce College, 
Northridge CA 91324. [Associate Professor, 8827 Ju-
milla Ave] 818-700-9732. 

FRAY, BOB. Furman University, Greenville SC 29613. 
[Professor, Mathematics Dept] 803-294-2105. 

FRIEDBERG, STEPHEN. Illinois State University, Nor-
mal IL 61761. [Professor, Dept of Math 119 Doud Drive] 
309-438-8781. 

FRIEL, WILLIAM. University of Dayton, Dayton OH 
45469. [Assistant Professor, Mathematics Dept] 513-229-
2099. 

FRYXELL, JAMES. College of Lake County, Grayslake 
IL 60030. [Professor, 19351 W. Washington Street] 312-
223-6601. 

FULTON, JOHN. Clemson University, Clemson SC 
29634. [Professor, Dept of Mathematics] 803-656-3436. 

GALOVICH, STEVE. Carleton College, Northfield MN 
55057. [Professor, Dept of Math & Computer Science] 
507-663-4362. 

GALWAY, ALISON. O'Brien & Associates, Alexandria 
VA 22314. [Associate, Carriage House 708 Pendleton St] 
703-548-7587. 

GASS, FREDERICK. Miami University, Oxford OH 
45056. [Associate Professor, Dept of Math and Statis-
tics] 513-529-3422. 

GEGGIS, DAVID. PWS-Kent Publishing Co., Boston 
MA 02116. [Managing Editor, 20 Park Plaza] 617-542-
3377. 

GENKINS, ELAINE. Collegiate School, New York NY 
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10024. [Head Math Dept, 241 West 77th St] 212-873-
0677. 

GETHNER, ROBERT. Franklin and Marshall College, 
Lancaster PA 17604. [Professor] 717-291-4051. 

GEUTHER, KAREN. University of New Hampshire, 
Durham NH 03824. [Assistant Professor, Dept of Math-
ematics] 603-862-2320. 

GlAMBRONE, AL. Sinclair College, Dayton OH 45402. 
[Professor, Math Dept] 513-226-2585. 

GILBERT, JOHN. Mississippi State University, Mississipi 
State MS 39762. [Associate Professor, Dept of Math 
P.O. Drawer MA] 601-325-3414. 

GILBERT, WILLIAM. University of Waterloo, Water-
loo Ont. Canada N2L3G1. [Professor, Pure Math Dept] 
519-888-4097. 

GlLFEATHER, FRANK. University of Nebraska, Lincoln 
NE 68588. [Professor, Department of Mathematics] 402-
472-3731. 

GlLMER, GLORIA. Math-Tech Connexion Inc., Milwau-
kee WI 53205. [President, 2001 West Vliet Street] 414-
933-2322. 

GLEASON, ANDREW. Harvard University, Cambridge 
MA 02138. [Professor, Dept of Math 1 1 0 Larchwood 
Drive] 617-495-4316. 

GLEICK, J l M . New York Times. 
GLENNON, CHARLES. Christ Church Episcopal School, 

Greenville SC 29603. [Instructor, P.O. Box 10128] 803-
299-1522. 

GLUCHOFF, ALAN. Villanova University, Villanova PA 
19085. [Assistant Professor, Dept of Math Sciences] 215-
645-7350. 

GOBLIRSCH, RICHARD. College of St. Thomas, St. 
Paul MN 55105. [Professor, 2115 Summit Avenue] 612-
647-5281. 

G O D S H A L L , W A R R E N . Susquehanna Twp High Shool, 
Harrisburg PA 17109. [Teacher, 414A Amherst Drive] 
717-657-5117. 

GOLDBERG, SAMUEL. Alfred P. Sloan Foundation, New 
York NY 10111. [630 Fifth Avenue Suite 2550] 

GOLDBERG, MORTON. Broome Community College, 
Binghamton NY 13902. [Professor, P.O. Box 1017] 607-
771-5165. 

GOLDBERG, DOROTHY. Kean College of New Jersey, 
Union NJ 07083. [Chairperson, Dept of Math Morris 
Ave.] 201-527-2105. 

GOLDBERG, DONALD. Occidental College, Los Ange-
les CA 90041. [Assistant Professor, Dept of Math 1600 
Campus Road] 213-259-2524. 

G O L D S C H M I D T , DAVID. University of California, Berke-
ley CA 94720. [Professor, 970 Evans Hall] 415-'642-0422. 

G O L D S T E I N , J E R O M E . Tulane University, New Orleans 
LA 70118. [Dept of Mathematics] 504-865-5727. 

GOODSON, CAROLE. University of Houston, Houston 
TX 77004. [Associate Dean, 4800 Calhoun] 713-749-
1341. 

GORDON, SHELDON. Suffolk Community College, East 
Northport NY 11731. [Professor, 61 Cedar Road] 516-
451-4270. 

GRAF, CATHY. Thomas Jefferson High School, Burke 
VA 22015. [Teacher, 6101 Windward Drive] 703-354-
9300. 

GRANDAHL, JUDITH. Western Connecticut State Uni-
versity, Danbury CT 06810. [Associate Professor, 181 
White Street] 203-797-4221. 

GRANLUND, VERA. University of Virginia, Char-
lottesville VA 22901. [Lecturer, Thornton Hall] 804-924-
1032. 

GRANTHAM, STEPHEN. Boise State University, Boise 
ID 83725. [Assistant Professor, Dept of Mathematics] 
208-385-3369. 

GRAVER, JACK. Syracuse University, Syracuse NY 
13244. [Professor, Dept of Mathematics] 315-472-5306. 

GRAVES, ELTON. Rose-Hulman Institute of Technology, 
Terre Haute IN 47803. [Associate Professor, Box 123] 
812-877-1511. 

GREEN, EDWARD. Virginia Tech, Blacksburg VA 24061. 
[Professor, Dept of Mathematics] 703-961-6536. 

GROSSMAN, MICHAEL. University of Lowell, Lowell 
MA 01851. [Associate Professor, 185 Florence Road] 
617-459-6423. 

GROSSMAN, STANLEY. University of Montana, Mis-
soula MT 59801. [Professor, 333 Daly Avenue] 406-549-
3819. 

GUILLOU, LOUIS. Saint Mary's College, Winona MN 
55987. [Dept of Mathematics and Statistics] 507-457-
1487. 

GULATI, BODH. Southern Connecticut State Univ, 
Cheshire CT 06410. [Professor, 954 Ott Drive] 203-397-
4486. 

GULICK, DENNY. University of Maryland, College Park 
MD 20742. [Professor, Dept of Mathematics] 301-454-
3303. 

GUPTA, MURLI. George Washington University, Wash-
ington DC 20052. [Professor, Dept of Mathematics] 202-
994-4857. 

GUSEMAN, L .F . Texas A & Μ University, College Sta-
tion TX 77843. [Professor, Dept of Mathematics] 409-
845-3261. 

GUSTAFSON, KARL. University of Colorado, Boulder 
CO 80309. [Professor, Campus Box 426-Mathematics] 
303-492-7664. 

GUYKER, JAMES. SUNY College at Buffalo, Buffalo 
NY 14222. [Professor, Math Dept 1300 Elmwood Ave.] 
716-837-8915. 

HABER, JOHN. Harper & Row, New York NY 10022. 
[Editor, 10 East 53rd Street] 212-207-7243. 

HAINES, CHARLES. Rochester Institute of Technology, 
Rochester NY 14623. [Associate Dean, College of Engi-
neering] 716-475-2029. 

HALLETT, BRUCE. Jones & Bartlett Publishers, Brook-
line MA 02146. [Editor, 208 Fuller St] 617-731-4653. 

HALL, LEON. University of Missouri, Rolla MO 65401. 
[Associate Professor, Dept of Math & Statistics] 314-
341-4641. 

HAMBLET, CHARLES. Phillips Exeter Academy, Exeter 
NH 03833. [Instructor] 603-772-4311. 
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HAMMING, RICHARD. Naval Postgraduate School, 
Monterey CA 93943. [Code 52Hg] 408-646-2655. 

H A M P T O N , C H A R L E S . The College of Wooster, Wooster 
OH 44691. [Chair, Mathematical Sciences Dept] 216-
263-2486. 

HANCOCK, DON. Pepperdine University, Malibu CA 
90265. [Associate Professor, Math Dept Natural Science 
Division] 213-456-4241. 

HANSON, ROBERT. James Madison University, Har-
risonburg VA 22807. [Coordinator, Dept of Math & 
Computer Science] 703-568-6220. 

HARTIG, DONALD. Calif. Polytechnic State University, 
San Luis Obispo CA 93407. [Professor, Math Dept] 805-
756-2263. 

H A R T , T H E R E S E . National Research Council-MS 2000, 
Washington DC 20418. [2101 Constitution Ave. NW] 
202-334-3740. 

HARVEY, J O H N . University of Wisconsin-Madison, 
Madison WI 53706. [Professor, Dept Math 480 Lincoln 
Drive] 608-262-3746. 

HAUSNER, MELVIN. CIMS/NYU, New York NY 10012. 
[Professor, 251 Mercer Street] 212-998-3190. 

HAYNSWORTH, HUGH. College of Charleston, Charles-
ton SC 29424. [Associate Professor, Dept of Mathemat-
ics] 803-792-5735. 

HEAL, ROBERT. Utah State Unversity, Logan UT 
84322. [Associate Dept Head, Mathematics Dept] 801-
750-2810. 

HECKENBACH, ALAN. Iowa State University, Ames IA 
50011. [Associate Professor, Dept of Mathematics] 515-
294-8164. 

H E C K L E R , J A N E . MAA - JPBM, Washington DC 

HECKMAN, EDWIN. Central New England College, 
Westboro MA 01581. [Professor, 4 Lyman Street] 617-
366-5527. 

HEID, KATHLEEN. Pennsylvania State University, Uni-
versity Park PA 16802. [Assistant Professor, 171 Cham-
bers Building] 814-865-2430. 

HELLERSTEIN, SIMON. University of Wisconsin, Madi-
son WI 53706. [Professor, Dept of Math Van Vleck Hall] 
608-263-3302. 

HENDERSON, JlM. Colorado College, Colorado Springs 
CO 80903. [Assistant Professor, PDept of Mathematics] 
303-473-2233. 

HENSEL, GUSTAV. Catholic University of America, 
Washington DC 20064. [Assistant Dean, Dept of Mathe-
matics] 202-635-5222. 

HERR, ALBERT. Drexel University, Philadelphia PA 
19104. [Associate Professor, Dept Math/Comp Sci 32nd 
it Ches tnu t Ste] 215-895-2672. 

HlLDING, STEPHEN. Gustavus Adolphus College, St. 
Peter MN 56082. [Professor, Dept of Mathematics] 507-
931-7464. 

HlLLTON, THOMAS. Educational Testing Service, 
Princeton NJ 

HlLL, T H O M A S . Lafayette College, Easton PA 18042. 
[Dept of Mathematics] 215-250-5282. 

HlLL, S H I R L E Y . University of Missouri, Kansas City 
MO 64110. [Professor, Dept of Mathematics] 816-276-
2742. 

HlMMELBERG, CHARLES. University of Kansas, 
Lawrence KS 66045. [Chair, Dept of Mathematics] 913-
864-3651. 

HlNKLE, BARBARA. Seton Hill College, Greensburg PA 
15601. [Chair, Dept of Math & Computer Science] 412-
834-2200. 

HODGSON, BERNARD. Universite Laval, Quebec 
Canada G1K7P4. [Professor, Dept De Maths Stat. & 
Actuariar] 418-656-2975. 

HOFFER, ALAN. National Science Foundation, Wash-
ington DC 20550. [1800 G Street NW] 

HOFFMAN, DALE. Bellevue Community College, Belle-
vue WA 98005. [Professor, 12121 S.E. 27th Street] 206-
747-8515. 

HOFFMAN, KENNETH. Massachusetts Institute of Tech-
nology, Washington DC 20036. [Professor, 1529 18th 
Street NW] 202-334-3295. 

HOFFMAN, ALLAN. National Academy of Sciences, 
Washington DC 20418. [Executive Director COSEPUP, 
2101 Constitution Avenue NW] 

HOLMAY, KATHLEEN. J P B M Public Information, 

Washington DC 
HORN, P . J . Northern Arizona University, Flagstaff AZ 

86011. [Assistant Professor, Box 5717] 602-523-6880. 
HORN, HENRY. Princeton University, Princeton NJ 

18544. [Professor, Dept of Biology] 609-452-3000. 
HOWAT, KEVIN. Wadsworth Publishing Co., Belmont 

CA 94002. [Publisher, 10 Davis Drive] 415-595-2350. 
Hsu , Yu-KAO. University of Maine, Bangor ME 04401. 

[Professor, Room 111 Bangor Hall] 207-581-6138. 
HUANG, JANICE. Milligan College, Milligan College TN 

37682. [Associate Professor, Dept of Mathematics] 
HUDSON, ANNE. Armstrong State College, Savannah 

GA 31413. [Professor, Dept of Math & CS 11935 Aber-
corn St] 912-927-5317. 

HUGHES-HALLETT, DEBORAH. Harvard University, 
Cambridge MA 02138. [Senior Preceptor, Dept of Math-
ematics] 617-495-5358. 

HUGHES, RHONDA. Bryn Mawr College, Bryn Mawr 
PA 19010. [Associate Professor, Dept of Mathematics] 
215-645-5351. 

HUGHES, NORMAN. Valparaiso University, Valparaiso 
IN 46383. [Associate Professor] 219-464-5195. 

HUNDHAUSEN, JOAN. Colorado School of Mines, 
Golden CO 80401. [Dept of Mathematics] 303-273-3867. 

HUNSAKER, WORTH E N . Southern Illinois University, 
Carbondale IL 62901. [Professor, Dept of Mathematics] 
618-453-5302. 

HUNTER, JOYCE. Webb School of Knoxville, Knoxville 
TN 37923. [Teacher, 9800 Webb School Drive] 615-693-
0011. 

HURLEY, SUSAN. Siena College, Loudonville NY 12209. 
[Science Division] 518-783-2459. 

HURLEY, JAMES. University of Connecticut, Storrs CT 
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06268. [Professor, 196 Auditorium Road Rm 111] 203-
486-4143. 

H V I D S T E N , M I C H A E L . Gustavus Adolphus College, St. 
Peter MN 56082. [Assistant Professor, Dept of Mathe-
matics] 507-931-7480. 

I N T R I L I G A T O R , M I C H A E L . UCLA, Los Angeles CA 

90024. [Professor, Dept of Economics] 213-824-0604. 
J A C K S O N , A L L Y N . American Mathematical Society, 

Providence RI 02940. [Staff Writer, P.O. Box 6248] 401-
272-9500. 

J A C K S O N , M I C H A E L . Earlham College, Richmond IN 

47374. [Assistant Professor, PP] 317-983-1620. 
J A C O B , H E N R Y . University of Massachusetts, Amherst 

MA 01003. [Professor, Dept Math/Stat Lederle Re-
search Tower] 413-545-0510. 

J A N S O N , B A R B A R A . Janson Publications Inc, Provi-
dence RI 02903. [President, 222 Richmond Street Suite 
105] 401-272-0009. 

J A Y N E , J O H N . Univ. of Tennessee at Chattanooga, 

Chattanooga TN 37413. [Professor, Math Dept] 615-
755-4545. 

J E N K I N S , F R A N K . John Carroll University, University 

Heights OH 44118. [Assistant Professor, Mathematics 
Department] 216-397-4682. 

J E N K I N S , J O E . SUNY University at Albany, Albany 
NY 12222. [Chair Dept of Math, 1400 Washington Ave.] 
518-422-4602. 

J E N S E N , W A L T E R . Central New England College, Dud-

ley MA 01570. [Head, 10 Shepherd Avenue] 617-943-
3053. 

J E N , H O R A T I O . W.C.C. College, Youngwood PA 15601. 
[Professor] 412-925-4184. 

J O H N S O N , D A V I D . Lehigh University, Bethlehem PA 

18015. [Associate Professor, Mathematics Dept #14] 
215-758-3730. 

J O H N S O N , J E R R Y . Oklah oma State University, Stillwa-

ter OK 74078. [Professor, Dept of Mathematics] 405-
624-5793. 

J O H N S O N , LEE. Virginia Polytech & State University, 
Blacksburg VA 24061. [Professor, Dept of Mathematics 
460 McBryde Hall] 703-961-6536. 

J O H N S O N , R O B E R T . Washington and Lee University, 

Lexington VA 24450. [Professor, Dept of Mathematics] 
703-463-8801. 

J O N E S , L I N D A . National Research Council-MS 2000, 
Washington DC 20418. [2101 Constitution Ave NW] 
202-334-3740. 

J O N E S , E L E A N O R . Norfolk State University, Norfolk VA 

23504. [Professor, Dept of Mathematics] 
J O N E S , W I L L I A M . Univ of the District of Columbia, 

Washington DC 20011. [Assistant Professor, Dept of 
Math4200 Connecticut Avenue NW] 202-282-3171. 

J U N G H A N S , H E L M E R . Montgomery College, Gaithcrs-

burg MD 20878. [Professor, 220 Gold Kettle Drive] 301-
926-4403. 

KAHN, ANN. Mathematical Science Education Board, 
Washington DC 20006. [Consultant, 818 Connecticut 
Ave NW Suite 325] 202-334-3294. 

K A L L A H E R , M I C H A E L . Washington State University, 
Pullman WA 9 9 1 6 4 . [Professor, Mathematics Dept] 509-
335-4918. 

Κ Α Ν Ι Α , M A U R E E N . Earl Swokowski. LTD, West Allis 
WI 53227. [Executive Assistant, 12124 West Ohio Av-
enue] 414-546-3860. 

K A P U T , J A M E S . Educational Tech Center-Harvard 
Univ., North Dartmouth MA 02747. [473 Chase Road] 
617-993-0501. 

KARAL, FRANK. NYU - Courant Institute, New York 
NY 10012. [Professor, 251 Mercer Street] 212-998-3162. 

K A R I A N , ZAVEN. Dension University, Granville OH 

43023. [Dept of Math Sciences] 614-587-6563. 
K A S P E R , R A P H A E L . National Research Council-

CPSMR, Washington DC 20418. [Executive Director, 
2101 Constitution Avenue NW] 

K A T Z E N , M A R T I N . New Jersey Institute of Technology, 

West Paterson NJ 07424. [Associate Professor, 11 Wash-
ington Drive] 

K A T Z , V I C T O R . Univ of the District of Columbia, 
Washington DC 20011. [Professor, Dept of Math4200 
Connecticut Avenue NW] 202-282-7465. 

K A Y , DAVID. University of North Carolina, Asheville 
NC 28804. [Professor, Mathematics Dept 1 University 
Heights] 704-251-6556. 

K E E V E , M I C H A E L . Norfolk State University, Norfolk 

VA 23504. [Instructor, Math & Computer Sci Dept] 804-
623-8820. 

K E H O E - Μ Ο Υ Ν Ι Η Α Ν , MARY. Cape Cod Community 
College, West Barnstable MA 02668. [Professor] 617-
362-2131. 

K E N E L L Y , J O H N . Clemson University, Clemson SC 
29631. [Alumni Professor, 327 Woodland Way] 803-656-
5217. 

K E Y N E S , H A R V E Y . University of Minnesota, Minneapo-
lis MN 55455. [Professor, School of Math 127 Vincent 
Hall] 612-625-2861. 

KlMES, THOMAS. Austin College, Sherman TX 75090. 
[Chairman, Dept of Mathematics] 214-892-9101. 

K I N G , E L L E N . Anderson College, Anderson SC 29621. 
[Instructor, 316 Boulevard] 803-231-2162. 

K I N G , R O B E R T . Westmar College, LeMars IA 51031. 

[Assistant Professor, 115 7th Street SE] 712-546-6117. 
KlRKMAN, ELLEN. Wake Forest University, Winston-

Salem NC 27109. [Associate Professor, Box 7311 
Reynolds Station] 919-761-5351. 

K L A T T , G A R Y . Unversity of Wisconsin, Whitewater WI 

53190. [Professor, Math Dept 800 West Main] 414-472-
5162. 

K N I G H T , G E N E V I E V E . Coppin State College, Columbia 

MD 21045. [Professor, 2500 W. North Ave., Baltimore, 
21216] 301-333-7853. 

K O K O S K A , S T E P H E N . Colgate University, Hamilton NY 
13346. [Assistant Professor, Dept. of Mathematics] 315-
824-1000. 

K O L M A N , B E R N A R D . Drexel University, Philadelphia 

PA 19104. [Professor] 215-895-2683. 
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K O P E R A , ROSE. National Research Council-BMS, 
Washington DC 20418. [2101 Constitution Ave NW] 
202-334-2421. 

K R A M A N , J U L I E . National Research Council-MSEB, 
Washington DC 20006. [818 Connecticut Ave NW Suite 
325] 202-334-3294. 

K R A U S , G E R A L D . Gannon University, Erie PA 16541. 
[Chair, Math Dept University Square] 814-871-7595. 

K R E I D E R , DON. Dartmouth College, Sharon VT 05065. 
[Vice Chairman, Math & CS Dept RR # 1 Box 487] 

K U H N , R O B E R T . Harvard University, Cambridge MA 
02138. [Lecturer, Dept of Mathematics] 617-495-1610. 

K U L M , G E R A L D . Amer Assoc for Advancement of Sci-
ence, Washington DC 20005. [Associate Program Direc-
tor, 1333 Η Street NW] 202-326-6647. 

K U L N A R O N G , G R A C E . National Research Council-
MSEB, Washington DC 20006. [818 Connecticut Ave 
NW Suite 325] 202-334-3294. 

KUNZE, R A Y . University of Georgia, Athens GA 30602. 
[Chair, Dept of Mathematics] 404-542-2583. 

LATORRE, D O N A L D . Clemson University, Clemson SC 
29631. [Professor, Dept of Mathematical Sciences] 803-
656-3437. 

L A C E Y , H .E . Texas A & Μ University, College Station 
TX 77843. [Head, Dept of Mathematics] 

L A M B E R T , M A R C E L . Universite du Quebec a Trois-
Rivieres, Trois-Rivieres Que Canada G9A5H7. [Dept 
Head, Department de Math-Info] 819-376-5126. 

LANE, B E N N I E . Eastern Kentucky University, Rich-
mond KY 40475. [Professor, Wallace 402] 606-622-5942. 

L A N G , JAMES. Valencia Community College, Orlando 
FL 32811. [Professor, 1800 South Kirkman Road] 305-
299-5000. 

L A U B A C H E R , M I C H A E L . Holland Hall School, Tulsa 
OK 74137. [Teacher, 5666 East 81st Street] 918-481-
1111. 

L A U F E R , H E N R Y . SUNY at Stony Brook, Long Island 
NY 11794. [Professor, Dept of Mathematics] 516-632-
8247. 

LAX, P E T E R . NYU-Courant Institute of Math Science, 
New York NY 10012. [251 Mercer Street] 212-460-7442. 

L E C K R O N G , G E R A L D . Brighton Area Schools, Brighton 

MI 48116. [Teacher, 7878 Brighton Road] 313-229-1400. 
LEE, KEN. Missouri Western State College, St. Joseph 

MO 64507. [Professor] 816-271-4284. 
L E I N B A C H , C A R L . Gettysburg College, Gettysburg PA 

17325. [Chair, Computer Science P.O. Box 506] 717-337-
6735. 

L E I T H O L D , L O U I S . Pepperdine University, Pacific Pal-
isades CA 90272. [Professor, 336 Bellino Drive] 213-454-
2500. 

LEITZEL, J A M E S . Ohio State University, Columbus OH 
43210. [Associate Professor, Dept of Math 231 West 
18th Avenue] 614-292-8847. 

L E V I N E , M A I T A . University of Cincinnati, Cincinnati 
OH 45221. [Professor, Dept of Mathematical Sciences] 
513-475-6430. 

LEVY, BENJAMIN. Lexington High School, Lexington 
MA 02173. [Teacher, 215 Waltham Street] 617-862-7500. 

LEWIN, JONATHAN. Kennesaw College, Marietta GA 
30061. [Associate Professor] 404-423-6040. 

LEWIS, KATHLEEN. SUNY at Oswego, Oswego NY 
13126. [Assistant Professor, Dept of Mathematics] 315-
341-3030. 

LEWIS, GAUNCE. Syracuse University, Syracuse NY 
13126. [Mathematics Dept] 315-343-0788. 

L I N L E Y , D A V I D . Nature. 

LlPKIN, LEONARD. University of North Florida, Jack-
sonville FL 32216. [Chairman, Dept of Math 4567 St. 
Johns Bluff Rd] 904-646-2653. 

LlSSNER, DAVID. Syracuse University, Syracuse NY 
13210. [Professor, Math Dept] 315-423-2413. 

LlTWHILER, DANIEL. U.S. Air Force Academy, Col-
orado Springs CO 80840. [Head, Dept of Math Sciences] 
303-472-4470. 

LlUKKONEN, JOHN. Tulane University, New Orleans 
LA 70118. [Associate Professor, Mathematics Dept] 504-
865-5729. 

LOCKE, PHIL. University of Maine, Orono ME 04469. 
[Associate Professor, 236 Neville Hall] 207-581-3924. 

LOFQUIST, GEORGE. Eckerd College, St. Petersburg 
FL 33712. [Math Dept P.O. 12560] 813-864-8434. 

LOGAN, DAVID. University of Nebraska, Lincoln NE 
68588. [Professor, Dept of Mathematics] 

LOMEN, DAVID. University of Arizona, Tucson AZ 
85721. [Professor, Mathematics Dept] 602-621-6892. 

LOVELOCK, DAVID. University of Arizona, Tucson AZ 
85721. [Dept of Mathematics] 602-621-6855. 

LOWENGRUB, MORTON. Indiana University, Blooming-
ton IN 47405. [Professor, Bryan Hall 104] 812-335-6153. 

LUCAS, WILLIAM. National Science Foundation, Wash-
ington DC 20550. [1800 G Street NW Room 639] 202-
357-7051. 

LUCAS, JOHN. University of Wisconsin-Oshkosh, 
Oshkosh WI 54901. [Professor, Dept of Math Swart Hall 
206] 414-424-1053. 

LUKAWECKI, STANLEY. Clemson University, Clemson 
SC 29634. [Professor, Dept of Mathematical Sciences] 
803-656-3449. 

LUNDGREN, RICHARD. University of Colorado at Den-
ver, Denver CO 80202. [Chairman, Math Dept 1100 
14th Street] 303-556-8482. 

LYKOS, PETER. Illinois Institute of Technology, Chicago 
IL 60616. [Consultant, Dept of Chemistry] 312-567-3430. 

MADISON, BERNARD. National Research Council, 
Washington DC 20418. [Project Director MS 2000, 2101 
Constitution Ave. NW] 202-334-3740. 

M A G G S , W I L L I A M . EOS - American Geophysical 
Union, Washington DC 20009. 

MAGNO, DOMINIC. Harper College, Palatine IL 60067. 
[Associate Professor, Algonquin/Ruselle Roads] 312-397-
3000. 

MAHONEY, JOHN. Sidwell Friends School, Washington 
DC 20016. [3825 Wisconsin Avenue NW] 202-537-8180. 
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MALONE, J . J . Worcester Polytechnic Institute, Worces-
ter MA 01609. [Professor, Dept of Math Sciences 100 
Institute Rd] 617-793-5599. 

MANASTER, ALFRED. University of California-San 
Diego, La Jolla CA 92093. [Professor, Dept of Mathe-
matics C-012] 619-534-2644. 

MANITIUS, ANDRE. National Science Foundation, 
Washington DC 20550. [Deputy Director Div. of Math 
Sc., 1800 G Street NW] 

MARCOU, MARGARET. Montgomery County Schools, 
Chevy Chase MD 20815. [Teacher, 5 Farmington Ct.] 
301-656-2789. 

MARSHALL, JAMES. Western Carolina University, Cul-
lowhee NC 28723. [Assistant Professor, P.O. Box 684] 
704-227-7245. 

MARSHMAN, BEVERLY. University of Waterloo, Water 
loo Ontario Canada N2L3G1. [Assistant Professor, Dept 
of Applied Mathematics] 519-885-1211. 

MARTINDALE, J O H N . Random House Inc., Cambridge 
MA 02142. [Editorial Director, P215 1st Street] 617-491-
2250. 

MARXEN, DONALD. Loras College, Dubuque IA 52001. 
[Professor] 319-588-7570. 

MASTERSON, JOHN. Michigan State University, East 
Lansing MI 48824. [Professor, Math Dept 211 D Wells 
Hall] 517-353-4656. 

MASTROCOLA, WILLIAM. Colgate University, Hamilton 
NY 13346. [Associate Professor, Dept of Mathematics] 
315-824-1000. 

MATHEWS, JEROLD. Iowa State University, Ames IA 
50011. [Professor, Dept of Mathematics] 515-294-5865. 

MATTUCK, ARTHUR. Massachusetts Institute of Tech-
nology, Cambridge MA 02139. [Dept of Mathematics 
Room 2-241] 617-253-4345. 

MAYCOCK-PARKER, ELLEN. Wellesley College, Welles-
ley MA 02181. [Assistant Professor, Dept of Mathemat-
ics] 617-235-0320. 

MAZUR, JOSEPH. Marlboro College, Marlboro VT 
05344. [Professor] 802-257-4333. 

MCARTHUR, JAMES. Bethesda-Chevy Chase High 
School, Bethesda MD 20814. [Teacher, 4301 East West 
Highway] 301-654-5264. 

McBRIDE, RONALD. Indiana University of Pennsylva-
nia, Indiana PA 15701. [Professor, Mathematics Dept] 
412-357-2605. 

McCAMMON, MARY. Penn State University, University 
Park PA 16802. [Math Dept 328 McAllister Bldg] 814-
865-1984. 

MCCARTNEY, PHILIP. Northern Kentucky Univer-
sity, Annapolis MD 21401. [Professor, 1886 Crownsville 
Road] 301-224-3139. 

McCLANAHAN, GREG. Anderson College, Anderson 
SC 29621. [Instructor, 316 Boulevard] 803-231-2165. 

McCOLLUM, MARY-ANN. Jefferson County Gifted 
Program, Birmingham AL 35226. [Teacher, 1707 Kest-
wick Cir.] 205-879-0531. 

M C C O Y , PETER. United States Naval Academy, An-
napolis MD 21402. [Professor, Mathematics Dept] 3 0 1 -

267-2300. 
McCRAY, LAWRENCE. National Research Council-

CPSMR, Washington DC 22050. [Associate Executive 
Director, 2101 Constitution Ave. NW] 202-334-3061. 

MCDONALD, KIM. Chronicle of Higher Education. 
MCDONALD, BERNARD. National Science Foundation, 

Washington DC 20550. [1800 G StreetNW] 
McGEE, I A N . University of Waterloo, Waterloo Ontario 

Canada N2L3G1. [Professor, Applied Math Dept] 519-
885-1211. 

McGlLL, SUZANNE. University of South Alabama, Mo-
bile AL 36688. [Chair, Dept of Mathematics and Statis-
tics] 205-460-6264. 

MdNTOSH, HUGH. The Scientist. 
McKAY, FRED. National Research Council-MS 2000, 

Washington DC 20418. [2101 Constitution Avenue NW] 
McKEON, KATHLEEN. Connecticut College, New Lon-

don CT 06320. [Box 1561] 203-447-1411. 
MCLAUGHLIN, RENATE. University of Michigan-Flint, 

Flint MI 48502. [Professor, Dept of Mathematics] 313-
762-3244. 

MCNEIL, PHILLIP. Norfolk State University, Norfolk 
VA 23504. [Professor, Dept. Math 2401 Corprew Av-
enue] 804-623-8820. 

MELLEMA, WILBUR. San Jose City College, San Jose 
CA 95128. [Instructor, Math Dept 2100 Moorpark] 408-
298-2181. 

MELMED, ARTHUR. New York University, New York 
NY 10003. [Research Professor, SEHNAP-23 Press Bldg 
Washington Square] 212-998-5228. 

MESKIN, STEPHEN. Society of Actuaries, Columbia MD 
21044. [Actuary, 5626 Vantage Point Road] 202-872-
1870. 

METT, COREEN. Radford University, Radford VA 
24142. [Professor, Dept of Mathematics and Statistics] 
703-831-5026. 

MlLCETICH, J O H N . Univ of the District of Columbia, 
Washington DC 20011. [Professor, Dept of Math4200 
Connecticut Avenue NW] 202-282-7328. 

MILLER, ALICE. Babson College, Babson Park MA 
02157. [Assistant Professor] 617-239-4476. 

MINES, LINDA. National Research Council-MSEB, 
Washington DC 20006. [818 Connecticut Ave NW Suite 
325] 202-334-3294. 

MlSNER, CHARLES. University of Maryland, College 
Park MD 20742. [Professor, Physics Department] 301-
454-3528. 

MITCHELL, GEORGE. Indiana University of Pennsylva-
nia, Indiana PA 15701. [Professor, 120 Concord Street] 
412-357-2305. 

MOCHIZUKI, HORACE. Univ California - Santa Bar-
bara, Santa Barbara CA 93106. [Professor, Dept of 
Mathematics] 805-961-3462. 

MOODY, MICHAEL. Washington State University, Pull-
man WA 99164. [Assistant Professor, Mathematics 
Dept] 509-335-3172. 

MOORE, LAWRENCE. Duke University, Durham NC 
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27706. [Associate Professor, PDept of Mathematics] 919-
684-2321. 

M O O R E , J O H N . Univ California - Santa Barbara, Santa 
Barbara CA 93106. [Professor, Dept of Mathematics] 
805-961-3688. 

M O R A W E T Z , C A T H L E E N . NYU-Courant Institute of 
Math Science, New York NY 10012. [Director, 251 Mer-
cer Street] 212-460-7100. 

M O R L E Y , L A N N Y . N o r t h e a s t Missouri State Univ, 
Kirksville MO 63501. [Head, Div of Math Violette Hall 
287] 816-785-4547. 

M O R R E L , B E R N A R D . IUPUI, Indianapolis IN 46223. 
[Associate Professor, Dept of Math 1125 East 38th 
Street] 317-274-6923. 

M O R T O N , P A T R I C K . Wellesley College, Wellesley MA 
02181. [Assistant Professor, Dept of Mathematics] 617-
235-0320. 

M O S K O W I T Z , H E R B E R T . Purdue University, West 
Lafayette IN 47907. [Professor, Krannert Graduate 
School of Management] 317-494-4600. 

M O S L E Y , E D W A R D . Arkansas College, Batesville AR 
72501. [Professor] 501-793-9813. 

M O V A S S E G H I , D A R I U S . CUNY - Medgar E v e r s College, 
Brooklyn NY 11225. [Professor, 1150 Carroll Street] 
717-735-1900. 

M U L L E R , E R I C . Brock University, St. Catherine On-
tario Canada L2S3A1. [Professor] 416-688-5550. 

M U R P H Y , C A T H E R I N E . Purdue University Calumet, 
Hammond IN 46323. [ H e a d , Dept of Mathematical Sci-
e n c e s ] 219-989-2270. 

N A I L , BILLY. C l a y t o n S t a t e College, M o r r o w GA 30260. 
[Professor, 5900 Lee S t r e e t ] 404-961-3429. 

N A R O D I T S K Y , V L A D I M I R . San J o s e S t a t e University, 
San Jose CA 95192. [Associate Professor, Dept of Math 
& Computer Science] 408-277-2411. 

N E A L , H O M E R . University of Michigan, Ann Arbor Ml 
48109. [Chair, Dept of Physics 1049 Randall Lab] 313-
754-4438. 

N E L S O N , R O G E R . Ball State University, Muncie IN 
47306. [Associate Professor, Dept of Math Sciences] 317-
285-8640. 

N E L S O N , J A M E S . University of Minnesota, Duluth MN 
55812. [Associate Professor, 10 University Avenue] 218-
726-7597. 

N E W M A N , R O G E R S . Southern University, Baton Rouge 
LA 70813. [Professor, Dept of Mathematics] 504-771-
4500. 

N O R D A I , F R E D E R I C K . Shippensburg University, Ship-
pensburg PA 17257. [Associate Professor, P621 Glenn 
Street] 717-532-1642. 

N O R P L E E T , S U N N Y . St. Petersburg Junior College, 
Tarpon Springs FL 34689. [Teacher, 1309 Vermont Av-
enue] 813-938-7049. 

N O R T H C U T T , R O B E R T . S o u t h w e s t Texas State Uni-
versity, San Marcos TX 78666. [Professor, Mathematics 
Department] 512-245-2551. 

N O V A K , C A R O L Y N . Syracuse University, Utica NY 
13502. [Student, 213 Richardson Avenue] 315-733-4590. 

N O V I K O F F , A L B E R T . New York University, New York 
NY 10012. [Dept of Math 251 Mercer Street] 212-982-
5019. 

N O V I N G E R , P H I L . Florida State University, Tallahassee 
FL 32306. [Associate Professor, Dept of Mathematics] 
904-644-1479. 

O ' B R I E N , R U T H . O'Brien & Associates, Alexandria VA 
22314. [President, Carriage House 708 Pendleton St.] 
703-548-7587. 

O'DELL, RUTH. County College of Morris, Randolph 
NJ 07869. [Associate Professor, PRoute 10 and Center 
Grove Road] 201-361-5000. 

O ' D E L L , C A R O L . Ohio Northern University, Ada OH 
45810. [Associate Professor, Dept of Math & Computer 
Science] 419-772-2354. 

O ' M E A R A , T I M O T H Y . University of Notre Dame, 
Notre Dame IN 46556. [Provost, Administration Build-
ing Room 202] 219-239-6631. 

O ' R E I L L Y , M I C H A E L . University of Minnesota, Morris 
MN 56267. [Math Discipline] 612-589-2211. 

O F F U T T , E L I Z A B E T H . Spriugbrook High School, 
Bethesda MD 20814. [Teacher, 9304 Elmhirst Dr.] 301-
530-6238. 

O R T I Z , C A R M E N . Inter American Univ of Puerto Rico, 
Humacao PR 00661. [Lecturer, P.O. Box 204] 809-758-
8000. 

O S E R , H A N S . SIAM News. 
O S T E B E E , A R N O L D . St. Olaf College, Northfield MN 

55057. [Associate Professor] 507-663-3420. 
OST, L A U R A . Orlando Sentinel, Orlando FL 
P A G E , W A R R E N . NYC Technical College SUNY, Brook-

lyn NY 10705. [Professor, 30 Amberson Ave. Younkers 
NY] 914-965-3893. 

P A L L A I , D A V I D . Addison-Wesley Publishing Co., Read-
ing MA 01867. [Senior Editor, Route 128] 617-944-3700. 

P A L M E R , C H E S T E R . Auburn University-Montgomery, 
Montgomery AL 36193. [Professor, Dept of Mathemat-
ics] 205-271-9317. 

P A O L E T T I , L E S L I E . Choate Rosemary Hall, Wallingford 
CT 06492. [Teacher, P.O. Box 788] 203-269-7722. 

P A R T E R , S E Y M O U R . University of Wisconsin, Madison 
WI 53706. [Dept of Mathematics Van Vleck Hall] 608-
263-4217. 

P A S S O W , ELI. Temple University, Bala Cynwyd PA 
19004. [Professor, 30 North Highland Avenuel 215-664-
6854. 

P A T T O N , C H A R L E S . Hewlett-Packard Co., Corvallis OR 
97330. [Software Engineer, 1000 N.E. Circle Blvd. MS 
34-L9] 503-757-2000. 

P A U G H , N A N C Y . Woodbridge Township School District, 
Woodbridge NJ 07095. [Supervisor, P . O . Box 428 School 
Street] 201-750-3200. 

P E A C O C K , M A R I L Y N . Tidewater Community College, 
Portsmouth VA 23703. [Assistant Professor, State Rte. 
135] 804-484-2121. 

P E N N E Y , D A V I D . University of Georgia, Bogart GA 
30622. [Associate Professor, 235 West Huntington Road] 
404-542-2610. 
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PENN, HOWARD. United States Naval Academy, An-
napolis MD 21402. [Professor, Mathematics Dept] 301-
267-3892. 

PETERSEN, KARL. University of North Carolina, 
Chapel Hill NC 27514. [Professor, Dept of Mathemat-
ics] 919-962-2380. 

PETERSON, DORN. James Madison University, Har-
risonburg VA 22807. [Physics Dept] 703-568-6487. 

PETERSON, BRUCE. Middlebury College, Middlebury 
VT 05753. [Professor] 802-388-3711. 

PETERSON, IVARS. Science News. 
PETZINGER, KEN. College of William and Mary, 

Williamsburg VA 23185. [Professor] 804-253-4471. 
PHUA, Μ Ε Ε - S E E . Univ of the District of Columbia, 

Washington DC 20011. [Dept of Math4200 Connecticut 
Avenue NW] 202-282-7465. 

PlCCOLINO, ANTHONY. Dobbs Ferry Public Schools, 
Yonkers NY 10710. [Math Coordinator, 33 Bonnie Briar 
Rd] 914-793-2645. 

PlRTLE, ROBERT. John Wiley & Sons, New York NY 
10158. [Editor, 605 3rd Avenue 5th floor] 212-850-6348. 

PLOTTS, RANDOLPH. St. Petersburg Junior College, 
St. Petersburg FL 33733. [Instructor, 6605 5th Avenue 
North] 813-341-4738. 

POIANI, EILEEN. Saint Peter's College, Jersey City NJ 
07306. [Professor, 2641 Kennedy Boulevard] 201-333-
4400. 

POLLAK, HENRY. , Summit NJ 17901. [40 Edgewood 
Road] 201-277-1143. 

POLUIKIS, JOHN. St. John Fisher College, Rochester 
NY 14618. [Professor, 3497 East Avenue] 716-586-4600. 

PONZO, PETER. University of Waterloo, Waterloo On-
tario Canada N2L3G1. [Professor, Applied Math Dept] 
519-885-1211. 

PORTER, JACK. University of Kansas, Lawrence KS 
66045. [Professor, Dept of Mathematics] 913-864-4367. 

POSTNER, MARIE. St. Thomas Aquinas College, 
Sparkill NY 10976. [Assistant Professor, PRoute 340] 
914-359-9500. 

POWELL, WAYNE. Oklahoma State University, Stillwa-
ter OK 74075. [Associate Professor, Dept of Mathemat-
ics] 405-624-5790. 

PRESS, FRANK. National Academy of Sciences, Wash-
ington DC 20418. [President, 2101 Constitution Avenue 
NW] 202-334-2100. 

PRICE, CHIP . Addison-Wesley Publishing Company, 
Reading MA 01867. [Editor-in-Chief, Route 128] 617-
944-3700. 

PRICE, ROBERT. Addison-Wesley Publishing Company, 
Reading MA 01867. [Editor-in-Chief, Route 128] 617-
944-3700. 

PRICHETT, GORDON. Babson College, Wellesley MA 
02157. [Vice President, Babson Park] 617-239-4316. 

PRIESTLEY, W . M . University of the South, Sewanee TN 
37375. [Professor] 615-598-5931. 

PROSL, RICHARD. College of William and Mary, 
Williamsburg VA 23185. [Chair, Dept of Computer Sci-
ence] 804-253-4748. 

P R O T O M A S T R O , G E R A R D . St. Peter's College, Bloom-
field NJ 07003. [Professor, 96 Lindbergh Blvd.] 201-333-
4400. 

P U R Z I T S K Y , N O R M A N . York University, Downsview 
Ontario Canada M3J1P3. [Associate Professor, Dept of 
Mathematics] 416-736-5250. 

Q U I G L E Y , S T E P H E N . Scott Foresman and Co., Glen-
view IL 60025. [Editor, 1900 East Lake Avenue] 312-
729-3000. 

QUINE, J . R . Florida State University, Tallahassee FL 
32306. [Professor, Dept of Mathematics] 904-644-6050. 

Q U I N N , J O S E P H . University of North Carolina, Char-
lotte NC 28223. [Chairman, Dept of Mathematics] 704-
547-4495. 

RADIN, ROBERT. Wentworth Institute of Technology, 
West Hartford CT 06119. [Professor, 781 Farmington 
Avenue] 203-233-8106. 

RAGER, KEN. Metropolitan State College, Denver CO 
80204. [Professor, 1006 11th Street] 303-556-3284. 

R A J A H , M O H A M M E D . Miracosta College, Oceanside CA 
92056. [Professor, 1 Barnard Drive] 619-757-2121. 

R A L S T O N , A N T H O N Y . SUNY - Buffalo, Buffalo NY 
14260. [Professor, Dept of Computer Science 226 Bell 
Hall] 716-878-4000. 

RAMANATHAN, G.V. University of Illinois-Chicago, 
Chicago IL 60680. [Professor, Dept of Math Statistics 
CS; Box 4348] 312-996-3041. 

RAMSEY, THOMAS. University of Hawaii, Honolulu 
HI 96822. [Associate Professor, PMath Dept 2565 The 
Mall] 808-948-7951. 

RAPHAEL, LOUISE. National Science Foundation, 
Washington DC 20550. [Program Director, DMS 1800 
G Street NW] 202-357-7325. 

RASMUSSEN, DOUG. Chemeketa Community College, 
Salem OR 97309. [Instructor, P.O. Box 14007] 503-399-
5246. 

RAY, DAVID. Bucknell Unviersity, Lewisburg PA 17837. 
[Professor, Dept of Mathematics] 717-524-1343. 

REDISH, EDWARD. University of Maryland, College 
Park MD 20742. [Professor, Dept of Physics] 301-454-
7383. 

R E E D , M I C H A E L . Duke University, Durham NC 27706. 
[Chair, Dept of Mathematics] 919-684-2321. 

REED, ELLEN. Trinity School at Greenlawn, South 
Bend IN 46617. [107 South Greenlawn Avenue] 219-287-
5590. 

R E I C H A R D , R O S A L I N D . Elon College, Elon College NC 
27244. [Assistant Professor, Dept of Mathematics P.O. 
Box 2163] 919-584-2285. 

RENZ, P E T E R . Mathematical Association of America, 
Washington DC 20036. [1529 18th Street NW] 

RICE, PETER. University of Georgia, Athens GA 30602. 
[Professor, Mathematics Dept] 404-542-2593. 

RlESS, RONALD. Virginia Polytech & State Univer-
sity, Blacksburg VA 24061. [Dept of Mathematics 460 
McBryde Hall] 703-961-6536. 

RlSEBERG, JOYCE. Montgomery College, Rockville MD 
20850. [Professor, 51 Mannakee Street] 301-279-5203. 
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R O B E R T S , W A Y N E . Macalester College, St. Paul MN 
55113. [Professor, 1500 Grand Avenue] 612-696-6337. 

R O D G E R S , P A M E L A . O'Brien &: Associates, Alexan-
dria VA 22314. [Senior Associate, Carriage House 708 
Pendleton St.] 703-548-7587. 

R O D I , S T E P H E N . Austin Community College, Austin 
TX 78723. [Chair, Dept of Math & Phys Sci 2008 Lazy-
brook] 512-495-7222. 

R O E C K L E I N , P A T R I C I A . Montgomery College, Rockville 
MD 20850. [Associate Professor, 51 Mannakee Street] 
301-279-5199. 

R O G E R S , L A U R E L . University of Colorado, Colorado 
Springs CO 80933. [Assistant Professor, PDept of Math 
P.O. Box 7150] 303-593-3311. 

R O I T B E R G , J O S E P H . Hunter College, New York NY 
10021. [Professor, 695 Park Avenue] 212-772-5300. 

R O I T B E R G , Y A E L . New York Institute of Technology, 
Old Westbury NY 11568. [Associate Professor] 516-686-
7535. 

R O L A N D O , J O S E F I N A . St. Thomas University, Miami 
FL 33054. [Professor, 16400 N.W. 32nd Avenue] 305-
625-6000. 

R O L A N D O , T O M A S . St. Thomas University, Miami FL 
33054. [Professor, 16400 N.W. 32nd Avenue] 305-625-
6000. 

R O L W I N G , R A Y M O N D . University of Cincinnati, Cincin-
nati OH 45221. [Professor, Dept of Mathematical Sci-
ences] 513-475-6430. 

R O S E N H O L T Z , IRA. University of Wyoming, Laramie 
WY 82071. [Dept of Mathematics] 307-766-3192. 

R O S E N S T E I N , G E O R G E . Franklin and Marshall College, 
Lancaster PA 17604. [Professor, Box 3003] 717-291-4227. 

R O S E N S T E I N , J O S E P H . Rutgers University, New 
Brunswick NJ 08904. [Professor, Dept of Mathematics] 
201-932-2368. 

R O S E N T H A L , W I L L I A M . Ursinus College, Collegeville 
PA 19426. [Assistant Professor, Dept of Math and Com-
puter Science] 215-489-4111. 

R O S E N , LlNDA. National Research Council-MSEB, 
Washington DC 20006. [Project Officer, 818 Connecti-
cut Avenue NW Suite 325] 202-334-3294. 

R O S S , K E N N E T H . University of Oregon, Eugene OR 
97403. [Professor, Dept of Mathematics] 503-686-4721. 

R O U S S E A U , T . H . Siena College, Loudonville NY 12180. 
[Head, Dept of Mathematics] 518-783-2440. 

R O X I N , E M I L I O . University of Rhode Island, Kingston 
RI 02881. [Professor] 401-792-2709. 

R U B E N S T E I N , P A T R I C I A . Montgomery College, 
Gaithersburg MD 20879. [Professor, 19038 Whetstone 
Circle] 301-948-2737. 

R U S S O , P A U L A . Trinity College, Hartford CT 06106. 
[Assistant Professor, PDept of Mathematics] 203-527-
3151. 

RYFF, J O H N . National Science Foundation, Washington 
DC 20550. [Program Director, 1800 G Street NW Room 
339] 202-357-3455. 

S A C H D E V , S O H I N D A R . Elizabeth City State University, 

Elizabeth City NC 27909. [Chairman, Dept of Math & 
Computer Sci Box 951] 919-335-3243. 

SADLOWSKY, ROGER. Columbia Heights High School, 
New Brighton MN 55112. [Teacher, 2393 Pleasant View 
Dr.] 612-574-6530. 

SAHU, ATMA. University of Maryland, Princess Anne 
MD 21853. [Assistant Frofessor] 301-651-2200. 

SALAMON, LlNDA. Wnshington University, St. Louis 
MO 63130. [Dean, College of Arts fc Science] 314-889-
5000. 

SALZBERG, HELEN. Rhode Island College, Providence 
RI 02908. [Professor, Dept of Math & Computer Sci] 
401-456-8038. 

S A M P S O N , K I R S T E N . JPBM, Washington DC 
SANDEFUR, JAMES. Georgetown University, Washing-

ton DC 20057. [Professor, Mathematics Dept] 703-687-
6145. 

SATAGOPAN, K . P . Shaw University, Raleigh NC 27606. 
[Associate Professor, 4303-3 Avent Ferry Road] 919-755-
4877. 

SAYRAFIEZADEH, MAHMOUD. Medgar Evers College-
CUNY, Brooklyn NY 11225. [Associate Professor, 1150 
Carroll St.] 718-735-1897. 

SCHEPPERS, J A M E S . Fairview High School, Boulder CO 
80303. [Chair Math Dept, 1515 Greenbriar Blvd.] 303-
499-7600. 

SCHICK-LENK, JUDITH. Ocean County College, Toms 
River NJ 08723. [College Dr] 201-255-0400. 

SCHLAIS, HAL. University of Wisconsin Centers, 
Janesville WI 53534. [2909 Kellogg Avenue] 608-755-
2811. 

SCHMEELK, JOHN. Virginia Commonwealth University, 
Richmond VA 23284. [Associate Professor, 1015 West 
Main St] 804-257-1301. 

SCHMIDT, HARVEY. Lewis and Clark College, Portland 
OR 97219. [Associate Professor, Campus Box 111] 503-
293-2743. 

SCHNEIDER, DAVID. University of Maryland, College 
Park MD 20742. [Associate Professor, Dept of Mathe-
matics] 301-454-5002. 

SCHREMMER, ALAIN. Community College of Philadel-
phia, Philadelphia PA 19130. [Associate Professor, 1700 
Spring Garden Street] 215-751-8413. 

SCHROEDER, BERNIE. Univ. of Wisconsin-Platteville, 
Platteville WI 53818. [Associate Professor] 608-342-
1746. 

SCHURRER, AUGUSTA. Univ of Northern Iowa, Cedar 
Falls IA 50614. [Professor, Dept of Math & Computer 
Science] 319-273-2432. 

SCHUTZMAN, ELIAS. National Science Foundation, 
Washington DC 20550. [Program Director, 1800 G 
Street NW] 202-357-9707. 

SEIDLER, ELIZABETH. Mercy High School, Baltimore 
MD 21239. [Teacher, 1300 East Northern Parkway] 301-
433-8880. 

SEIFERT, CHARLES. University of Central Arkansas, 
Conway AK 72032. [Chairman, Math & Computer Sci 
Dept Main 104] 501-450-3147. 
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SELDEN, JOHN. Tennessee Technological University, 
Cookeville TN 38505. [Assistant Professor, Math Dept 
Box 5054] 615-372-3441. 

SELDON, ANNIE. Tennessee Technological University, 
Cookeville TN 38505. [Assistant Professor, PPMath 
Dept Box 5054] 615-372-3441. 

SELIG, SEYMOUR. National Research Council-BMS, 
Washington DC 20418. [2101 Constitution Ave NW] 
202-334-2421. 

SESAY, M O H A M E D . Univ of the District of Columbia, 

Silver Spring MD 20910. [Professor, 8750 Georgia Av-
enue #118A] 301-565-2623. 

SESSA, KATHLEEN. D.C. Heath and Co., Lexington 
MA 02173. [Developmental Editor, 125 Spring Street] 
617-860-1544. 

SHARMA, MAN. Clark College, Atlanta GA 30314. [Pro-
fessor, Dept of Math 240 James Brawley Dr] 404-577-
6685. 

S H A R P , J A C K . Floyd J unior College, Rome GA 30161. 
[Associate Professor, P.O. Box 1864] 404-295-6357. 

SHIPLETT, RAY. Calif State Polytechnic University, 
Pomona CA 91768. [Dean, 3801 West Temple Avenue] 
714-869-3600. 

SHOOTER, WILLIAM. Gloucester County College, 
Sewell NJ 08080. [Coordinator] 609-465-5000. 

SlEBER, JAMES. Shippensburg University, Shippensburg 
PA 17257. [Professor, Dept of Math fc Computer Sci] 
717-532-1405. 

SlEGEL, MARTHA. Towson State University, Towson 
MD 21204. [Professor, Dept of Mathematics] 301-321-
2980. 

SIMPSON, D A V I D . Southwest State University, Marshall 
MN 56258. [Professor] 507-537-6141. 

SINGH, PREMJIT . Manhattan College, Riverdale NY 
10471. [Assistant Professor, PDept of Math & Computer 
Sci] 212-920-0385. 

SKIDMORE, ALEXANDRA. Rollins College, Winter Park 
FL 32789. [Professor] 305-646-2516. 

S K I T Z K I , RAY. Shaker Heights High School, Shaker 
Heights OH 44120. [Teacher, 15911 Aldersyde Drive] 
216-921-1400. 

SLACK, STEPHEN. Kenyon College, Gambier OH 43022. 
[Associate Professor, Mathematics Department] 614-427-
5267. 

SLINGER, CAROL. Marian College, Indianapolis IN 
46222. [Head, Dept of Math 3200 Cold Spring Road] 
317-929-0281. 

SLOUGHTER, D A N . Furman University, Greenville SC 
29613. [Assistant Professor, Mathematics Dept] 803-294-
3233. 

SLOYAN, S T E P H A N I E . Georgian Court College, Lake-

wood NJ 08701. [Professor, Dept of Mathematics] 201-
364-2200. 

SMALL, DON. Colby College, Waterville ME 04601. [As-
sociate Professor] 207-872-3255. 

SMITH, DAVID. Duke University, Durham NC 27706. 
[Associate Professor, Dept of Mathematics] 919-684-
2321. 

S M I T H , R O B E R T . Millersville University, Millersville PA 

17551. [Professor, Dept of Math & Computer Science] 
717-872-3780. 

S M I T H , R O S E - M A R I E . Texas Woman's University, Den-

ton TX 76204. [Chair, Dept of Math P.O. Box 22865] 
817-898-2166. 

S M I T H , RlCK. University of Florida, Gainesville FL 
32611. [Associate Professor, Dept of Mathematics] 904-
392-6168. 

S N O D G R A S S , A L I C E . John Burroughs School, Webster 

Grove MO 63119. [Teacher, 440 East Jackson Rd] 314-
993-4040. 

S O L O M O N , J I M M Y . Mississippi State University, Mis-

sissipi State MS 39762. [Professor, Dept of Math P.O. 
Drawer MA] 601-325-3414. 

S O L O W , A N I T A . Grinncll College, Grinnell IA 50112. 

[Associate Professor, Dept of Mathematics] 515-269-
4207. 

S P A N A G E L , D A V I D . St. John Fisher College, Rochester 

NY 14618. [Instructor, Dept of Math & CS 3690 East 
Ave] 716-385-8190. 

S T A H L , NEIL. Univ Wisconsin Center-Fox Valley, 
Menasha WI 54952. [Associate Professor, PMidway 
Road] 414-832-2630. 

S T A K G O L D , IVAR. University of Delaware, Newark DE 

19716. [Professor, Dept of Math 501 Ewing Hall] 302-
451-2651. 

S T A R R , F R E D E R I C K . Oberlin College, Oberlin OH 

44074. [President] 
S T E A R N S , W I L L I A M . University of Maine, Orono ME 

04469. [Associate Professor, 228 Neville Hall] 207-581-
3928. 

STEEN, L Y N N . St. Olaf College, Northfield MN 55057. 
[Professor, Dept of Mathematics] 507-663-3114. 

S T E G E R , W I L L I A M . Essex Community College, Reister-

stown MD 21136. [Associate Professor, 12717 Gores Mill 
Rd] 301-522-1393. 

S T E P P , J A M E S . University of Houston, Houston TX 

77004. [Professor, Dept. of Mathematics] 713-749-4827. 
S T E R N , R O B E R T . Sunders College Publishing, Philade-

phia PA 19105. [Senior Editor, 210 West Washington 
Square] 
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