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Preface

Mathematical Time Capsules offers teachers historical modules for immediate use in the mathematics classroom.

Relevant history-based activities for a wide range of undergraduate and secondary mathematics courses are included.

The genesis of this volume was a Contributed Papers Session on Using History of Mathematics in Your Mathematics

Courses, organized by the editors at the Joint Mathematics Meetings, San Antonio, Texas, in January of 2006. That

session was very well attended, which prompted Andrew Sterrett from MAA publications to suggest that we put

together our second volume for the MAA Notes series.

Purpose

For a wide variety of reasons, instructors are looking for ways to include the history of mathematics in their courses.

It is not uncommon to see requests for “how to” posted to the History of Mathematics Special Interest Group of the

MAA (www.homsigmaa.org) email list, such as this 2008 posting:

. . . I am a newcomer to HOM. Where and how should a newcomer begin? Right now, I would liketo include

HOM in a meaningful way in the courses that we teach. Weteach courses from college arithmetic to linear

algebra.

In response to such inquiries, we hope to serve the broader mathematical community by offering practical suggestions

on how to use the history of mathematics quickly and easily in the mathematics classroom.

A time capsule can be defined as a container preserving articles and records from the past for scholars of the

future. Of course our volume does not fit that precise definition, but readers who open this book will find articles

and activities from mathematics history that enhance the learning of topics typically associated with undergraduate

or secondary mathematics curricula. Each capsule presents one topic or perhaps a few related topics, or a historical

thread that can be used throughout a course. The capsules were written by experienced practitioners to provide other

teachers with the historical background, suggested classroom activities, and further references and resources on the

chapter subject. An instructor reading a capsule will have increased confidence in engaging students with at least one

activity rich in the history of mathematics that will enhance student learning of the mathematical content of the course.

Most of the historical topics contained in a capsule can be implemented in one class period with minimal additional

preparation on the part of the teacher.

How to use Mathematical Time Capsules

Teaching styles have been categorized along a spectrum from lecture-oriented practices at one extreme to student-

centered approaches in which the teacher guides student work in the classroom. Mathematical Time Capsules respects

the diversity of teaching styles which individual teachers adopt. Some of the capsules are, in some sense, ready-

made lectures the instructor can adopt and adapt as appropriate. Examples of those include Victor Katz’s “Copernican

Trigonometry,” Roger Cooke’s “Numerical Solution of Equations,” or Jim Tattersall’s “Finding the Greatest Common

Divisor and More. . . .” Other capsules clearly engage the students more actively, such as Vicky Klima’s “A Different

Sort of Calculus Debate.” But the capsules should not be categorized as appropriate for one pedagogical approach or

the other. For example, “Finding the Greatest Common Divisor and More. . . ” could be adapted for use as a student

project to be presented by the student(s) in class after the Euclidean algorithm is covered.

The reader may note that the authors of the capsules demonstrate a variety of approaches to integrating history. The

differences are consistent with the nature of this volume, created with respect for the diversity of our authors and our

vii
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readers. We acknowledge that many teachers prefer to develop their own course materials, and we encourage readers

to modify the offerings of the authors.

Mathematical Time Capsules is organized in three sections. The first capsules have as their target mathematical

topics that are usually addressed in courses taught in secondary school, at two-year colleges, or during the first two

years of the undergraduate mathematics curriculum. These courses are not often taken by mathematics majors, and

include, for example, algebra, geometry, mathematics for elementary teachers, trigonometry, or precalculus.

The third section of capsules address topics included in courses traditionally taken by mathematics majors, such as

calculus, differential equations, number theory, abstract algebra, differential equations, and analysis.

As an interlude between the first and third, we offer some ideas that can be applied to a wide variety of courses

throughout the undergraduate (including two-year college) or secondary curriculum. These interlude capsules (15, 16,

and 17) are of a general pedagogical nature, not mathematical, and could be adapted for use in any course.

We could have arranged the capsules differently, and we ask that the reader not limit investigating the offerings in

this book thinking that lower-level material is in the front and upper-level material at the back. For example, a teacher

interested in historical ideas for a numerical methods course should consider Roger Cooke’s “Numerical Solution

of Equations,” Randy Schwartz’s “Rule of Double False Position,” Clemency Montelle’s “Roots, Rocks, and Newton-

Raphson Algorithms for Approximating
p
2 3000 Years Apart,” and Dick Jardine’s “Euler’s Method in Euler’s Words.”

Some teachers are interested in having students read original sources in the history of mathematics, and Montelle’s

“Amo, Amas, Amat! What’s the Sum of That?” and Jardine’s “Euler’s Method in Euler’s Words” provide opportunities

to do just that with brief excerpts in the words of the originators.

Where possible, we grouped the capsules within the sections according to mathematical subject area. As an example,

there are three capsules that address Pythagorean triples, but each of those capsules approaches the topic in a very

different way and from the perspective of a different era of the history of mathematics. That latter notion is significant,

as it is important for students to see the evolution of a mathematical idea and how it is viewed through a different

lens depending on how mathematics was done at various times in history. One of the goals of Mathematical Time

Capsules is to provide a vehicle for teachers to help their students learn the historical context for a mathematical

development while they are learning the specific mathematical concept. Learning the history of an idea promotes

deeper understanding of the idea.

Additional purposes—assessment and teacher certification

Beyond a teacher’s personal interest in using the history of mathematics in teaching, accrediting agencies and state

certifying agencies now require pre-service teachers to be well-versed in the history of mathematics in specific content

areas. The requirement that school teachers demonstrate understanding of the connection between a mathematics topic

and the history of that specific topic is explicitly documented in state and national standards. It is becoming an imper-

ative that many college teachers introduce the history of mathematic in their teaching of mathematics in order to pass

muster for state and national certification of teacher education programs. The National Council for Accreditation of

Teacher Education (NCATE) and the National Council of Teachers of Mathematics (NCTM) have published standards

which list within the content areas a requirement that candidates for teacher certification demonstrate their knowledge

of the historical development of that content area. For example, the current content Standard 10 is on the subject

of algebra. For certification, in addition to demonstrating expertise in the usual algebra concepts, candidates must

“Demonstrate knowledge of the historical development of algebra including contributions from diverse cultures” [2].

In this era of outcomes-based assessment, to satisfy state and national evaluators it is not sufficient to show that

history was included in the syllabus or to claim that history was included in a lecture. Actual student work (interestingly

for us interested in history, the student work is called an artifact in current assessment jargon) must be presented

to the accrediting agency or state department of education evaluators. The material presented herein will provide

teachers with actual activities that students can do. The products of these activities become the artifacts necessary

to validate that students are engaged in learning the historical development of the mathematical topic. Mathematical

Time Capsules provides materials enhancing student understanding and interest in mathematics, always keeping the

learning of mathematics clearly at the center of each capsule’s focus.
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1
The Sources of Algebra

Roger Cooke
University of Vermont

1.1 Introduction

Nowadays we recognize written algebra by the presence of letters (called variables) standing for unspecified numbers,

and especially by the presence of equations involving those letters. These two features—letters and equations—reveal

the techniques of algebra, but algebra itself is not these techniques. Rather, algebra consists of problems in which the

goal is to find a number knowing certain indirect information about it. If you were told to multiply 7 by 3, then add

26 to the product, you would be doing arithmetic, that is, you would be given not only the data, but also told which

operations you must perform (multiplication followed by addition). But if you were asked for a number having the

property that if it is multiplied by 3 and 26 is added to the product, the result is 57, you would be facing an algebra

problem. In an algebra problem, the operations and some of the data are given to you, but these operations are not for

you to perform. Rather, you assume someone else has performed them, and you need to find the number(s) on which

they were performed. Using this definition, we can recognize algebra problems in very ancient texts that contain no

equations at all.

But how do such problems arise? Why were people interested in solving them? Those are questions that any student

who looks beyond the horizon of tomorrow’s homework assignment is bound to ask. In the following paragraphs,

we shall look at some examples and see if we can answer such questions. In this article, we are going to state a

number of problems taken from “classic” textbooks, paraphrased and reformulated in plain English and in a style

reflective of contemporary textbooks. Students who have had at least one year of algebra can study these problems in

the language of xs and ys and solve them using modern methods. At the same time, students are encouraged to use

their imaginations in order to think of the motivation that led each author to believe it was worthwhile to write about

problems of this sort.

1.2 Egyptian problems

Several problems from the Rhind Mathematical Papyrus, which was written some 3500 years ago, make use of the

notion of pesu, which measures the amount to which grain is “stretched” or diluted in making bread or beer. If you get

three (standard-size) loaves of bread per hekat of grain, the pesu of that bread is 3. Obviously a high pesu means very

thin or light bread (or a very small loaf) or very weak beer. Here is Problem 73 from the Rhind Papyrus: One hundred

loaves of pesu 10 are to be traded for loaves of pesu 15. How many of the latter will there be?

1
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Implicit in this problem is a “conservation of grain” principle. The hundred loaves of pesu-10 bread represent ten

hekats of grain (at ten loaves per hekat). So, if we “expand” the grain by stretching it so as to get 15 loaves per hekat,

we will obviously get 150 loaves of the weaker bread. The scribe who wrote the papyrus had no difficulty figuring this

out.

The concept of pesu is analogous to our modern concepts of specific gravity or density. Problems involving these

concepts nearly always lead to equations of first degree (linear equations). They are often so simple that it is not even

necessary to write down the equation in order to solve them. Others, however, are more complicated. For example,

Problem 40 asks how to distribute 100 loaves to five people so that each one (except the last) receives a fixed amount

more than the next and so that the first three together receive seven times as much as the last two together. Although

this is a “linear” problem, it contains two unknowns, as we would analyze it, namely the amount received by the

first person (x) and the amount received by the second person (y). (The amounts received by the last three are then

determined as 2y�x, 3y�2x, and 4y�3x.) The equations to be satisfied are 10y�5x D 100 and 3y D 7.7y�5x/.

1.2.1 Quadratic equations

The Egyptians seem to have considered algebra problems that lead to equations more complicated than linear ones.

The Berlin Papyrus (from about 3800 years ago) contains a problem that (with some modern conjectural restorations

of lost parts) asks for the sides of two squares in the ratio of 3 to 4 with the total area of the two squares to be 100.

That is, to solve the simultaneous equations 3x D 4y and x2C y2 D 100. As an algebra problem, this is not the most

general type of quadratic equation, but the geometry of the problem suggests that the Egyptians may have known that

a triangle with sides of lengths 3, 4 and 5 is a right triangle.

1.3 Mesopotamian problems

While the surviving Egyptian papyri contain mostly linear algebra problems and a very few quadratic ones, the more

durable clay tablets from Mesopotamia, dating to the same period, about 3500 years ago, contain many problems

leading to quadratic equations and even a few that seem to call for cubic equations.

One Mesopotamian problem that creates a quadratic equation is the following: The area of a square less its side is

870. What is the side of this square?

We would write this problem as the equation x2 � x D 870. Since the Mesopotamian number system was based

on 60 and was written in a place-value notation analogous to our decimal system, the number 870 was regarded as

14 � 60 C 30 and the right-hand side of this equation was expressed as 14; 30. Needless to say, no equation with

the letter x or its Mesopotamian equivalent was written. Instead, the instructions for finding the unknown were given

as a recipe: Take half of 1, which is 30 [sixtieths]. Multiply it by itself to get 15 [sixtieths]. Add this to 14; 30 to get

14; 30I 15 [870:25]. Take the square root to get 29I 30 [29:5]. Now add 30 [sixtieths] to this number to get 30 [units],

which is the side of the square.

The recipe by itself is nearly incomprehensible, even if you know the quadratic formula for solving this equation.

To see how the author was guided, look at the corresponding geometric figure (Fig. 1.1).

The author imagines a strip half a unit wide being peeled off from the right-hand side and then another from the

bottom. The total amount removed would be numerically equal to the side of the square, except that the small square of

side 1
2

at the bottom right was already missing after the strip on the right was removed, and hence didn’t get removed

when the strip was taken off the bottom. Hence what is left is the given amount (870) plus 1
4

. The rest is a matter of

taking the square root of 870:25 to get 29:5 as the side of the smaller square, then adding 0:5 to that side to get the side

of the original square.

1.4 “Algebra” in Euclid’s geometry

Using our definition of an algebra problem as one that requires finding an unknown quantity from certain information

about it, we can find examples in Euclid’s Elements, especially Book 6, that might count as algebra. Most historians of

mathematics are convinced that these problems were actually not intended by Euclid to be algebra problems disguised

as geometry. In that sense the re-interpretation of those problems in algebraic language that we are about to perform is
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1/2

Figure 1.1. An ancient Mesopotamian algebra/geometry problem

not historical. Euclid never gave numerical data. Instead, he posed the problem of finding the point at which a certain

line segment is to be divided so as to get a certain figure. It looks as if Euclid deliberately suppressed the notion

of length of a line segment, which fairly leaps off the page at the modern reader. He had a good reason for doing

so. He knew as well as we do that some line segments, such as the diagonal of a square whose side has length 1,

have lengths that we would call irrational numbers (in this example,
p
2), which are numbers that Euclid would not

recognize as numbers at all, since he had no arithmetic procedure for adding, subtracting, multiplying, or dividing

them exactly. These operations could be represented geometrically, but any numerical translation of them would be

only approximate. Thus our inclusion of a problem from Euclid is really a backward projection of algebra onto a

problem that was originally solved using geometry alone.

The problem we choose is a simplified version of Proposition 28 of Book 6. This problem presents a line segment

OL and an area A as data and asks for the point P onOL such that a rectangle built on OP with height PL will have

area A. Since the maximum area that can be attained in this way is OL
2

4
, A must not be larger than this quantity. If l is

the length of OL and x the length of OP , this problem presents us with the equation

x.l � x/ D A :

which is a quadratic equation that can be rewritten as x2 C A D lx. There is obviously some symmetry here: If x

satisfies this equation, so does l � x. The equation shows that the full rectangle on OL consists of a rectangle on OP

equal to A, plus the square on PL. That square is called the defect in the construction, and this problem is known as

application with defect. An illustration is given in Fig. 1.2 with an area A equal to 35 and a line segment OL of length

12.

x

L
P

12

35 x2

O

Figure 1.2. A Greek “geometric algebra” problem: x2 C 35 D 12x
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1.5 Chinese problems

Chinese mathematicians solved linear and quadratic problems at an early stage, then developed numerical procedures

for solving equations of any degree approximately. An early linear problem dating to the Han Dynasty, about 1900

years ago, is found in Chapter 7 of the Nine Chapters on the Mathematical Art: An unknown number of people are

buying hens to be held in common. If each gives 9 units of money, they will receive 11 units of money in change. If each

gives 6 units, they will be short of the amount they need by 16 units. The problem is to determine how many people P

are making this joint purchase and how much moneyM they need. Without writing down the equations 9P �M D 11
and 6P �M D �16, you can do the subtraction in your head. A difference of 3 units per person makes a difference

of 27 (that is, 11 � .�16/) units of available money. Hence there must be 9 people involved, and therefore M D 70.

The Chinese recipe was more formal: First, the sum 9 � 16C 6 � 11 D 210 was taken; then it was divided by 9 � 6, to

get 70 as the purchase priceM .

1.5.1 Quadratic equations

Quadratic equations arise in the last chapter of the Nine Chapters in the form of right-triangle problems. For example,

a square town with a gate in each of its walls (which are aligned along the four cardinal compass points) is such that

a tree 20 paces north of the north gate becomes visible to a person who walks 14 paces south from the south gate and

then 1775 paces west. The problem is to find the size of the town, that is, the length of each of its four walls. As the

similar trianglesOAD and EAB in Fig. 1.3 show, we have the proportion

20

x=2
D AB

EB
D AD

OD
D 34C x

1775
;

leading to the equation

x2 C 34x D 71000 ;
whose only positive solution is x D 250.

A

B

C

D

x

O
1775

A = tree

B = north gate

C = south gate

AB = 20 CD = 14 BC x=

Figure 1.3. A Chinese algebra/geometry problem

1.6 An Arabic problem

The word algebra itself, and the central idea of studying equations as an object of interest and developing general

methods of solving them comes to us from the medieval Muslim world. The first Arabic text on the subject, written by

Muhammed ibn-Musa al-Khwarizmi (ca. 790–ca. 840) about 1200 years ago, contains a number of problems involving

the division of an estate, problems that lead to linear equations. It also contains some geometric problems that lead

to quadratic equations. In a commentary on this work written about 1100 years ago by Abu Kamil (ca. 850–930), we

find the following problem: We divide 50 by a certain number and get a quotient. If the divisor is increased by 3, the

quotient decreases by 3 3
4

. What is the divisor? These conditions lead to the relation

50

x C 3 D
50

x
� 15
4
;

which is equivalent to

x2 C 3x D 40 :
From this, you can conclude that x D 5. (The solution x D �8 would not have been recognized by Abu Kamil, since

negative numbers were not used.)
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1.7 A Japanese problem

Japanese mathematicians began to work independently in the seventeenth century, after mastering the work of Chinese

algebraists, which included the numerical solution of higher-degree equations. For some 250 years, from 1600 to about

1850, they posed challenge problems to one another. One such challenge problem, from the 1627 Treatise on Large

and Small Numbers of Yoshida Koyu (1598–1672), asks where to make cross cuts so as to divide a log into three equal

volumes. The log is described as a frustum of a cone, 18 feet long with a circumference of 2.5 feet at the smaller end

and 5 feet at the larger end, as in Fig. 1.4.

Figure 1.4. Cutting a log into three equal pieces requires solving two cubic equations.

The volume of this log from its smaller end to a plane parallel to that end at a distance of x feet is

V.x/ D 25

15552�
.x3 C 54x2C 972x/ :

The total volume is V.18/ D 525
8�

. For if the frustum is capped so as to make a full cone, its apex will be another 18

feet beyond the smaller end, since the circumference decreases by half over the 18-foot length of the cone. The radius

is directly proportional to the height, and at a height of 18 feet from the apex it is 2:5=2� feet, so that r D 2:5
36�

h.

When h D xC 18, this gives r D 2:5
36�

.xC 18/. As a result, the volume between the plane at a distance of 18C x feet

from the apex and the smaller end is

V.x/ D �

3

� 2:5

36�
.x C 18/

�2

.x C 18/ � �
3

� 2:5

36�
182

�

.18/ D 25

15552�

�

.x C 18/3 � 183
�

:

Hence, this problem leads to the two equations

x3 C 54x2C 972x D 13608 ;
x3 C 54x2C 972x D 27216

for the two distances from the smaller end at which the cuts should be made. Their solutions are x D 6.�3C 3
p
90/ �

8:88843 and x D 6.�3C 3
p
153/ � 14:0909.

1.8 Teaching note

This material is self-explanatory. Probably it would be best to pose each problem except the Japanese problem, which

involves a cubic equation, as a challenge at the end of a class, with no background at all provided. Ask the students

to set the problem up as an equation or equations, choosing the unknown suitably. At the next class meeting, students

can present their algebraic formulation of the problem, and then methods of solving the equations can be discussed

and later on compared with the solutions given above. After all the problems have been used in this way, the material

in the following two sections can be added to consolidate learning.

1.9 Problems and Questions

Problem 1. Verify that the equations 10y � 5x D 100 and 3y D 7.7y � 5x/ satisfy the conditions of Problem 40 in

the Rhind Mathematical Papyrus, and find the number of loaves each person receives.

Problem 2. Show how to solve the quadratic equation x2 � x D 870 using the quadratic formula

x D b

2
C
r

�b

2

�2 C c

for solving x2 � bx D c. How is each term in the quadratic formula represented in Fig. 1.1?
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Problem 3. In the first of the Chinese problems explain why “cross-multiplication” of each per-person amount with

the surplus or shortage from the other per-person amount yields the total price times the difference of two per-person

amounts. (Hint: If you have solved linear systems of equations using determinants, you will be able to see this easily

from the two equations 9P �M D 11 and 6P �M D �16.)

Question 1. Of what practical use might the pesu problems in the Rhind Mathematical Papyrus be? Could there be

any practical use for the loaf-distribution problem?

Question 2. What purpose could anyone have for solving an “application with defect” problem?

Question 3. How does each of these six examples fit the definition of algebra as finding unknown numbers given the

result of performing operations on them? In each case, what are the operations performed, and what is the result?
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2
How to Measure the Earth

Lawrence D’Antonio
Ramapo College of New Jersey

2.1 Introduction

Who first determined the size of the Earth? How did they do it? These fundamental questions arise in studying early

Greek, Indian and Islamic mathematical astronomy. In this article we look at the attempts of Eratosthenes, Posidonius,

and al-Bı̄rūnı̄ to determine the circumference of the Earth and ways to use this topic in the classroom. These calcula-

tions use only basic knowledge of geometry and trigonometry, so that instructors in many different courses can include

this topic in their syllabus. It would be appropriate to discuss the problem in a high school or college geometry class,

in a precalculus class, a history of mathematics class, or in a freshman mathematics survey class.

There are three primary methods for determining the circumference of the Earth: using the lengths of shadows, the

elevation of stars, or the altitude of a mountain. Explaining these methods can be done in roughly two hours of class

time. If an instructor wants to assign students a project to carry out one of these calculations then one or two more

hours may be needed to complete the topic (assuming that the students do measurements during class time).

There are certain geographical and astronomical terms that are frequently used in this topic and should be defined

for students. The position of a point on the Earth’s surface is given by two coordinates, its latitude and longitude. The

latitude of a point is measured by how far it is north or south of the equator, so that points of equal latitude form a circle

parallel to the equator. Latitude is measured in degrees from the equator (0ı) to the poles (90ı). Longitude measures

how far east or west the point lies. Points on a semicircle passing between the poles form what is called a meridian.

Today we measure longitude relative to the meridian passing through Greenwich, England called the prime meridian.

Longitude is measured in degrees from 0ı at the prime meridian to 180ı east or west.

The apparent path of the Sun through the sky is called the ecliptic. The plane in which the Earth orbits around the

Sun is called the ecliptic plane, although the early astronomers that we will discuss generally believed that the Sun

orbited the Earth. The Earth’s axis of rotation is tilted with respect to the ecliptic, see Figure 2.1. In that figure, the

angle ˛ represents the angle between the Earth’s equator and the plane of the ecliptic. This tilt is called the obliquity

of the ecliptic and measures approximately 23ı260. Because of the Earth’s tilt, the place in the northern hemisphere

where the Sun is directly overhead at noon on the summer solstice, is not on the equator but at a latitude called the

Tropic of Cancer (the winter solstice and the Tropic of Capricorn play an equivalent role for the southern hemisphere).

This implies that the obliquity of the ecliptic is equal to the latitude of the Tropic of Cancer.

Eratosthenes determined that the arc between the Tropic of Cancer and the equator was 11=83 of a meridian. This

translates into a tilt of 23ı5102000, a very accurate result. Further discussion of the obliquity calculation can be found

in [10, 11]. A general reference for the history of ancient astronomy is the treatise of Evans [6].
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Earth Sun Earth

Ecliptic

Tropic of
Capricorn

Tropic of Cancer

Equator

a

a

Figure 2.1. The obliquity of the ecliptic

2.2 Historical Introduction

In this section we consider the problem of how we know that the Earth is a sphere and then present the methods of Er-

atosthenes, Posidonius, and al-Bı̄rūnı̄ to measure the circumference of the Earth. Note that the methods of Eratosthenes

and Posidonius compute the polar circumference (i.e., along a longitude) while the method of al-Bı̄rūnı̄ measures the

circumference of some great circle (although this method can usually be arranged to compute a polar circumference).

2.2.1 Why is the Earth a sphere?

Before one can determine the circumference of the Earth there must be a prior assumption that the Earth is a sphere.

Asking students to give reasons why the Earth is spherical makes for an interesting class discussion (the instructor

should be ready for surprising responses).

Greek, Indian and Islamic astronomy accepted the hypothesis of a spherical Earth, while Chinese astronomy as-

cribed to a flat-world theory. How did this idea of a spherical Earth arise? Perhaps from the Pythagoreans who be-

lieved that the sphere was the most perfect shape, hence all celestial bodies were spheres. Aristotle gave three empirical

arguments why the Earth is round.

� Matter is drawn to the center of the Earth.

� As you move north to south, new constellations are seen in the sky.

� During a lunar eclipse, the Earth’s shadow on the Moon is round.

Aristotle stated in De Caelo Book II, “Also, those mathematicians who try to calculate the size of the Earth’s

circumference arrive at the figure 400,000 stades 1 This indicates not only that the Earth’s mass is spherical in shape,

but also that as compared with the stars it is not of great size.” This clearly indicates that the Greeks had a basic

understanding of geographical and astronomical distances. They had a rough idea of the size and shape of the Earth,

of the distances between Earth, Moon, and Sun, and the fact that the stars are far away. Another interesting topic for

classroom discussion is the problem of how we know the stars are very far away (compared to distances within the

Solar System).

Of course the Earth is not a perfect sphere, but instead is an oblate spheroid, being slightly flattened at the poles

and bulging at the equator. The circumference of the equator (24,902.4 miles) is greater than the polar circumference

(24,860.2 miles). This fact was reported by Pierre de Maupertuis in 1737 [13].

As we will discuss in the next section, the circumference of 400,000 stades reported by Aristotle is far too large. A

more accurate computation was done in the century after Aristotle by Eratosthenes.

2.2.2 How to measure the Earth using shadows

The earliest method for computing the circumference of the Earth for which we have a detailed account is that of

Eratosthenes (276 BCE–194 BCE). Born in the northern African city of Cyrene, Eratosthenes was known for his ac-

complishments in a wide variety of disciplines. He was a noted astronomer, mathematician, geographer, librarian,

poet, and philosopher. Eratosthenes followed his teacher Callimachus in becoming the librarian at the famed library of

Alexandria.

1The stade is the standard Greek unit of distance, representing the length of a foot race. As discussed below, the actual length of a stade is highly

disputed.
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Figure 2.2. The method of Eratosthenes

The calculation of the Earth’s circumference appeared in the now lost work, On the measurement of the Earth.

Later descriptions of this work appear in commentaries by Cleomedes, Strabo and Pliny. The method of Eratosthenes

consists of the following steps.

1. Choose two locations a known distance apart, with the same longitude, but different latitudes. Eratosthenes used

the Egyptian cities of Alexandria and Syene (the present-day Aswan).

2. Next, simultaneously measure the angle of inclination of the Sun at both locations. Here it is assumed that the

Sun is so distant that all rays of light hitting the Earth are parallel. This implies that the difference in the angle

of the Sun at these two locations will equal the difference in their latitude. Eratosthenes believed that Syene was

on the Tropic of Cancer, so that at noon on the summer solstice the Sun is directly overhead at Syene. Hence the

angle of the Sun measured at noon in Alexandria on the summer solstice will equal the difference in latitude of

the two cities, see Figure 2.2.

3. Then use the following formula to determine the circumference of the Earth,

circumference

distance between locations
D angular measure of a circle

angular difference of latitudes
: (2.1)

Thus, in order to compute the circumference of the Earth, Eratosthenes only needed to know two data values: the

angle of the Sun in Alexandria at noon on the summer solstice and the distance between Alexandria and Syene.

How did Eratosthenes measure the angle of the Sun? Presumably Eratosthenes used a gnomon (a vertical rod) to

measure the shadow’s length. In Figure 2.3, h is the height of the gnomon, s the length of the shadow. The angle of

the shadow ˛ can be computed by the formula

˛ D arctan
s

h
:

Of all the current methods to measure the inclination of the Sun, the gnomon is the simplest to use in the classroom.

Students can easily construct a gnomon, measure the length of the shadow at noon and compute the above arctangent.

But how did Eratosthenes compute the inverse tangent? The ancient Greeks did not have trigonometry as we know

it today. Hipparchus in the next century developed a table of chords, but not a triangle based theory. It seems more

s

h

a

sun

Figure 2.3. Angle of Sun using a gnomon
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likely that Eratosthenes used a type of graduated sundial known as a skaphe. This is a hemisphere with a gnomon in

its center and markings on the inside of the bowl which could be used to determine the angle of the Sun.

Eratosthenes found that the noon-day shadow at Alexandria traversed 1=50 of a circle, which translates to an angle

of 7ı120. There are several sources of error in this calculation. In reality Syene is 210 north of the Tropic of Cancer.

Also, Syene is 3ı east of Alexandria. The correct difference in latitudes is 7ı70. Despite these errors, the value given

by Eratosthenes, 7ı120, is only slightly more than 1% in excess of the true value.

The other piece of data that Eratosthenes needed for the circumference calculation is the distance between Syene

and Alexandria. He used a value of 5000 stades for this distance. It’s not clear how this distance was determined.

Perhaps it was an accepted figure based on existing data of traders sailing on the Nile between the cities. Another

possibility is that the distance was calculated by bematists, specialists trained to measure distance by counting their

paces as they walked.

Assuming the figure of 5000 stades and the ratio of 1=50 for the arc of the Earth’s surface between Alexandria and

Syene, Eratosthenes would have computed the Earth’s circumference to be 5000 � 50 D 250; 000 stades. Cleomedes

gives this result [14, vol. 2, pp. 267–273], while Strabo and Pliny give 252,000 stades as the figure computed by

Eratosthenes. It has been speculated that the figure of 252,000 was used because it is divisible by 360, thus giving a

figure of 700 stades per degree of meridian.

How long is a stade? The stade is a unit of distance related to the length of a sprint in ancient Greek athletic

competitions. In different locations, different distances were used for the race. One scholar determines that the stade

used by Eratosthenes is 166.7 m [8], while another, citing the testimony of Pliny that 40 stades equaled 5 Roman miles,

gives a stade as 184.98 m [5].

If we use the larger figure of 184.98 m. then Eratosthenes’ 250,000 stades translates to 46,245 km (28,735.31 miles),

which is nearly 16% in excess compared to the true polar circumference of 40,008.6 km (24,860.2 miles). Whereas, if

we use the figure of 166.7 m for a stade then 250,000 stades equals 41,675 km (25,895.64 miles), which is only 4% in

excess of the correct value. We may never know the precise value of Eratosthenes’ stade, but in any case it is clear that

the accuracy of his calculation of the Earth’s circumference is extremely impressive.

2.2.3 How to measure the Earth using stars

The Stoic philosopher and mathematician, Posidonius of Rhodes (135 BCE–51 BCE), used a method that is slightly

different from that of Eratosthenes [4]. Consider the cities of Rhodes and Alexandria, which are on the same meridian

(more or less). In Rhodes, the star Canopus just appears on the horizon (actually it reaches a height of 1ı above the

horizon). In Figure 2.4 this is shown by Canopus being on the tangent to Rhodes. As one sails south from Rhodes,

Canopus appears higher and higher in the sky. At Alexandria, the star appears at a maximum altitude of 7ı300 above

the horizon.

Posidonius takes the angle of elevation of Canopus at Alexandria to be ˛ in Figure 2.4. This angle also corresponds

to the difference in latitudes of the cities. This may seem puzzling, for it would appear by looking at the figure that the

angle of elevation of Canopus at Alexandria is in fact larger than ˛. But Posidonius is assuming that the distance from

the Earth to Canopus is far greater than the distance between Rhodes and Alexandria, which is of course true. In this

case, the angle of elevation at Alexandria will be practically equal to ˛.

Canopus

Rhodes

Alexandria

aa

Figure 2.4. The method of Posidonius
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Posidonius used 5000 stades as the distance between Rhodes and Alexandria (leading to the hypothesis that all

Greek cities at the time were 5000 stades apart). This gives a computed circumference of

5000 � 360
7:5
D 240; 000 stades:

Strabo instead stated that Posidonius found the circumference to be 180,000 stades, making it the smallest such

measure from antiquity. Some scholars believe that this shorter distance was used by Columbus as an argument to

sponsor his journeys, i.e, India is not really all that far away.

The discrepancy seems to result from an error in Posidonius’ calculation. The distance of 5000 stades between

Rhodes and Alexandria is too large. Strabo says that Eratosthenes determined the distance to actually be 3750 stades.

Using this distance instead of 5000 stades leads to the circumference of 3750 � 360=7:5D 180; 000 stades, as given by

Strabo.

If we accept the value of 240,000 stades, this converts to 40,008 km (24,859.82 miles), which is only 0.001%

smaller than the current value of 40,076.5 km. Given the errors in Posidonius’ calculations, this is a rather amazing

coincidence! The article of Fischer [7] has a good discussion of the methods of Eratosthenes and Posidonius.

2.2.4 How to measure the Earth using mountains

The Islamic mathematician Abu Arrayhan Muhammad ibn Ahmad al-Bı̄rūnı̄ (973 - 1048) developed a method for

calculating the circumference of the Earth by sighting the horizon from the top of a mountain of known height. He

was a noted Islamic scholar, mathematician, astronomer, physician and astrologer. Al-Bı̄rūnı̄ was born in the region of

Khwarazm, in present day Uzbekistan. He studied and later collaborated with the mathematician and astronomer Abu

Nasr Mansur. He and Mansur carried on scientific studies under the patronage of the brothers Abu’l Abbas and Ali

ibn Ma’mun. The Ma’muns were later overthrown by Sultan Mahmud who then became al-Bı̄rūnı̄’s patron, or perhaps

captor; the relationship isn’t clear.

Mahmud led a military campaign to India and took al-Bı̄rūnı̄ with him. While in India, al-Bı̄rūnı̄ studied the lan-

guage, literature, customs, religion and scientific achievements of that country. As a result of his studies he wrote the

treatise India - Containing an Explanation of the Doctrines of the Indians [3].

Our discussion of al-Bı̄rūnı̄’s calculation of the circumference of the Earth is drawn from his treatise The Determina-

tion of the Coordinates of Positions for the Correction of Distances between Cities (“Kitāb Tah. dı̄d Nihāyāt al-Amākin

Litas.h. ı̄h. Masāfāt al-Masākin”) [2]. Another source for this material is Berggren [1, pp. 141–143].

Al-Bı̄rūnı̄ presents three methods for determining the circumference of the Earth, [2, pp. 183–189]. We will study

the second method, which uses a mountain of given height. Before introducing his method, al-Bı̄rūnı̄ states, seemingly

as a comment on the method of Eratosthenes,

Here is another method for the determination of the circumference of the Earth. It does not require walking

in deserts.

[2, p. 183]

Assume the existence of a mountain of known height, represented by the segment EL in Figure 2.5. As you stand

at the top of the mountain, at point E , you sight the horizon along line ET using an instrument, such as a theodolite,

that can measure angles. In its simplest form a theodolite can be made by attaching a protractor to a sighting tube.

In the figure, circle ABZ may be thought of as representing the protractor, held vertically. The actual radius of the

protractor, admittedly rather large in the figure, is irrelevant to the calculation. The angle ˛ D †BET , called the dip

angle, will be found by this observation. Draw lineMZ perpendicular to EL. We wish to find KT , the radius of the

Earth.

Note that ˛ D †EZM D †EKT and triangles EZM;EKT are similar. Hence

EZ

ZM
D EK

KT
: (2.2)

The ratio on the left side is known, since
ZM

EZ
D cos˛:
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Figure 2.5. The method of al-Bı̄rūnı̄

It then follows, since KT D KL, that

EZ

EZ �ZM D
EK

EK �KT D
EK

EK �KL D
EK

EL
: (2.3)

But the ratio on the left is known since

EZ

EZ �ZM D
1

1 � ZM
EZ

D 1

1 � cos˛
: (2.4)

Since EL, which is the mountain’s height, is known, this implies that Equation (2.3) can be solved for EK, namely,

EK D EL � EZ

EZ �ZM D EL �
1

1 � cos˛
: (2.5)

Then the Earth’s radius KT can be computed from Equation (2.2). To summarize, the radius of the Earth, KT , is

given by

KT D EK � ZM
EZ

D EL � cos˛

1 � cos˛
: (2.6)

The presence of trigonometric functions in this formula did not cause al-Bı̄rūnı̄ any problem at all. He made highly

accurate tables of the sine, cosine, and tangent functions.

This method has an advantage over that of Eratosthenes in that it doesn’t require measurements at two different

locations. But on the other hand, in practice †EZM will be extremely small unless the mountain is very high. For

example, for a mountain of height 1000 ft, †EZM D 0ı340. Even for a mountain of 10,000 ft the dip angle is still

quite small, †EZM D 1ı460. And if al-Bı̄rūnı̄ were an expert mountain climber and measured the angle from some

Himalayan peak 20,000 ft high, the angle would only be 2ı300.

The above calculation requires that we know the height of a mountain. How did al-Bı̄rūnı̄ calculate this height?

He gives more than one method for computing the height of mountains. We consider a method which involves a very

simple calculation but requires two sightings of the mountain, see [12]. For another procedure that only requires one

sighting, but a somewhat more difficult calculation, see [2, pp. 187–188] or [1, pp. 141–142]. In Figure 2.6 the height

of the mountain which we wish to determine is h D AB . Make one sighting of the mountain top from pointC , so that

the angle ˛ D †ACB is determined. Make another sighting from point D, computing the angle ˇ D †ADB . It is
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ba

Figure 2.6. Computing the height of a mountain

necessary to assume that the two locations C;D are themselves at the same height. Al-Bı̄rūnı̄ computes h by

h D a

cotˇ � cot˛
: (2.7)

This follows since

cotˇ � cot ˛ D x C a
h
� x
h
D a

h
:

While this formula is very simple, if the points C and D are not far apart then the angles ˛; ˇ will be practically

indistinguishable and the calculation of h may involve considerable round-off error.

Al-Bı̄rūnı̄ actually used his method to compute the Earth’s circumference. On one of his journeys to India with

Sultan Mahmud, al-Bı̄rūnı̄ stayed at Nandana Fort, which is in the Punjab region of present-day Pakistan. According to

some accounts al-Bı̄rūnı̄ was being held in detention. He found a nearby peak that was convenient for his calculations.

It had an open view on the plains to the south. The peak is 1795 ft above sea level, but al-Bı̄rūnı̄ measured the height

from the surrounding plains. He found the height above the plains to be 1055.18 ft. The unit of measurement that

al-Bı̄rūnı̄ used was the cubit. The height is equal to 652.055 cubits (using the conversion of 1 cubit = 1.61825 ft found

in [12]). Al-Bı̄rūnı̄ measured the dip angle to be 0ı340. Using Equation (2.4), al-Bı̄rūnı̄ finds a radius of 12803337;2,9

cubits, al-Bı̄rūnı̄ uses sexagesimal notation for the fractional part. The radius translates into 3924.05 miles, which is

only 0.6% smaller than the true value. This leads to a circumference of 25,044.99 miles, which is 0.7% larger than the

true value of 24,860.2 miles. This calculation seems suspiciously accurate, perhaps due to the conversion from cubit

to feet.

2.3 In the Classroom

There are several projects that may be assigned on this topic. Each project requires students to not only understand the

underlying mathematics but also deal with the problems of applying mathematics in the real world.

2.3.1 Sample Projects

� Measure the circumference of the Earth using Eratosthenes’ method. In order to use the method of Eratosthenes

in the classroom there are several practical issues to consider.

It is recommended that the students use a gnomon to measure the length of shadows. Gnomons are simple enough

for almost any student to construct. A potential problem in using a gnomon is to ensure that it is vertical. This

can be accomplished by using a level while constructing and using the gnomon.

Since my school isn’t in session on the summer solstice (or winter solstice for those in the Southern Hemisphere),

when do I take measurements? There are a couple of solutions to this problem.

– Using one measurement of the Sun: The easy way to do this is to first look up the distance between your

location and the Tropic of Cancer. This then requires only one measurement of the Sun’s inclination. Instead

of using noon at the summer solstice one can use noon on the vernal or autumnal equinoxes. On either of

these dates, the Sun is directly overhead at noon on the Equator. So if the students measure the Sun’s incli-

nation at noon on an equinox (conveniently each semester has an equinox) and if the distance between your

present location and the Equator is known then Equation (2.1) can be used to compute the circumference.

Of course having to look up the distance to the Equator may seem like cheating. So the next method is more

in the spirit of Eratosthenes.
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– Using two measurements of the Sun: This method is a lot more flexible in terms of scheduling the project

(this method can be used at any time of year during daylight), but one needs to measure the Sun’s inclination

from two locations. The locations have to be on the same longitude, have to be a known distance apart, and

must be far enough apart for the difference in angle of inclination to be detectable. All that needs to be done

is to schedule two observations of the Sun at the same time on the same day in different locations on the

same meridian. In order for this method to be practical one either needs to be conveniently located near a

road that runs due north or south, or one must find a companion school on the same latitude to collaborate

with.

If measurements are supposed to be taken when the Sun is the highest in the sky (namely, solar noon) then when

exactly should the observations be done? The simplest way to compute solar noon is to take the midpoint of the

local times for sunrise and sunset (which can be found in any newspaper).

� Measure the circumference using the method of Posidonius. How would one use this method in the classroom?

Here are some of the issues that need to be addressed.

– One obvious problem is that it involves night observations. There is no way to get around this problem.

– How should one measure the elevation of stars in the night sky? The simplest way to measure this angle is

to use a sextant. These are reasonably easy to construct; for further discussion see the Web site:

http://www.tecepe.com.br/nav/XTantProject.htm.

– A major issue is that the instructor is probably not as fortunate as Posidonius. In order to do the calculation

making only one measurement, one needs to find a star that rises only up to the horizon in some city that is

on the same longitude and a known distance from one’s current location.

– The previous point means that the calculation will likely require two simultaneous measurements from two

locations on the same meridian and a known distance apart. How far apart should the measurements be? A

distance of 300 miles corresponds to a difference in the angle measured of approximately 3ı460. Using a

distance much smaller than this requires highly accurate measurements.

� Measure the circumference using a variation of Posidonius’ method. The earliest known attempt to measure the

Earth was by Archytas, who was a contemporary of Plato. The method used by Archytas was to find two cities

on the same meridian, each city having a star directly over their locations at the same time of night. The angular

distance between the two cities is then equal to the angle between the stars along a celestial meridian.

� Measure height of an object using the method of al-Bı̄rūnı̄ discussed above. For example, measure the height of a

hill, mountain, tall building, tethered balloon or other tall object. A word of caution is necessary. It is preferable

to use an object that has a well-defined peak (a hill can have a too rounded top to be useful). The two points from

which to make your sightings have to be fairly far apart (the farther the better). If possible, take the first sighting

close to the base of the object. In my history of mathematics class, I used the four story classroom building in

which the class is taught.

� Measure the circumference of the Earth using the method of al-Bı̄rūnı̄. This presents some difficulties when used

in the classroom.

– The main difficulty may be the need for a height that not only can be measured but that can also be climbed

in order to measure the dip angle. If the instructor is hindered by the lack of a convenient mountain nearby

the classroom, a sufficiently tall building may be substituted for the mountain.

– Even accounting for the availability of a nearby height, another obstacle is how to accurately measure the

very small dip angle. One strategy to alleviate this problem is to make several sightings and compute the

average dip angle.

– In any case, one needs an accurate instrument for measuring angles. Either a sextant or theodolite may be

constructed for this purpose. It is to be expected that a homemade instrument will be rather inaccurate and

impact the final value for the circumference.
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� Determine how to compute height using only one sighting. This is described in detail in Berggren [1, pp. 141–

142].

� Make your own surveying instrument (such as sextant, theodolite, astrolabe, or sundial) and then use this instru-

ment in making real world measurements. There is a variety of interesting mathematics involved in constructing

these instruments. Here are some Web resources for making such instruments.

Making your own sextant:

http://www.tecepe.com.br/nav/XTantProject.htm

Making your own theodolite:

http://www.dar.csiro.au/airwatch/awballoon.html

http://www.apogeerockets.com/education/downloads/newsletter93.pdf

Making your own astrolabe:

http://www.astrolabes.org/

http://celebrating200years.noaa.gov/edufun/book/MakeyourownAstrolabe.pdf

Making your own sundial:

http://www.lmsal.com/YPOP/Classroom/Lessons/Sundials/sundials.html

Making your own vertical sundial:

http://www.mysundial.ca/sdu/graphical vertical sundial.html

� Determine the latitude or longitude of your location. One way to compute latitudes in the northern hemisphere

is to use the elevation of the North Star. This star is more or less directly overhead at the North Pole, so that at

any location in the northern hemisphere the angle of the North Star’s elevation will equal that point’s latitude.

Computing longitude is more difficult. The relative longitude of two locations can be determined by comparing

the time at which a lunar eclipse occurs at both locations. The ratio of the difference in longitude to 360ı equals

the ratio of the difference in time of the eclipse to the length of a sidereal day, which is the time it takes for stars

to return to their highest point (a little less than 24 hours).

� For high school students an interesting organized activity is the online Eratosthenes Experiment,

http://www.youth.net/eratosthenes/.

This is a world-wide project in which students from around the world measure the angle of the noon-day Sun.

Using this information together with the school’s latitude and longitude allows the students to calculate the Earth’s

circumference. The experiment takes place twice a year, on the spring and autumn equinoxes.

2.4 Taking it Further

In this article we have examined various methods for measuring terrestial distances. This discussion may be extended

to the measurement of distances between the Earth and other heavenly bodies. This uses the concept of parallax, which

is the apparent angular displacement of an object, due to the motion of the observer. There are three common uses of

parallax: to measure the distance between the Earth and the Moon, between the Earth and the Sun, and between the

Earth and nearby stars. The use of parallax in measuring astronomical distances can be found in the work of Greek

mathematicians such as Aristarchus, Hipparchus and Ptolemy. A good history of the use of parallax in astronomy can

be found in the survey of Hirshfeld [9].

Both the solar and stellar parallax are too small to measure without refined instruments, but it is feasible to measure

the lunar parallax as a class project and hence to determine the distance to the Moon. Lunar parallax involves the

different position of the Moon relative to the background of fixed stars when the Moon is viewed simultaneously from

two different locations on Earth. In fact, the method of comparing sightings of the Moon from two different locations

on Earth is very reminiscent of the procedure of Eratosthenes.
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2.5 Conclusion

Let us conclude with an object lesson. Given the lack of technology available to these early astronomers, it is re-

markable how truly accurate their calculations were. But such accomplishments also come with a classical admonition

against hubris. Archytas, famed for his achievements in mathematics, astronomy and philosophy was the subject of a

renowned ode of Horace (Odes I.28). The beginning of the poem states the theme that all of the triumphs of Archytas

are made trivial by the great leveler, death.

Archytas, you who measured the Earth and the sea and the numberless sands,

are now confined in a small mound of dirt near the Matine shore,

what does it avail you that you once

explored the mansions of the skies and that you traversed

the round celestial vault — you with a soul born to die?

Bibliography

[1] J. L. Berggren, Episodes in the Mathematics of Medieval Islam, Springer Verlag, New York, 1986.
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3
Numerical solution of equations

Roger Cooke
University of Vermont

3.1 Introduction

Methods of solving polynomial equations lie at the heart of classical algebra. There are two interpretations of the

problem of solving an equation, leading to two different approaches to its solution. In most courses, the emphasis is

on the structure of the equation and finding a way to express the roots as a formula in terms of the coefficients. The

simplest example of such a formula is the quadratic formula, which gives the solution of the equation ax2CbxCc D 0
as

x D �b ˙
p
b2 � 4ac
2a

:

This approach is elegant and leads to some exceedingly profound mathematics. However, for one who actually needs

to know a number that satisfies the equation, this approach leaves something to be desired. It works with maximum

efficiency in the case of the quadratic equation, but even in that case, if the quantity under the radical is not the

square of a rational number, one is forced to resort to approximations in order to get a usable number. For cubic and

quartic equations, there are formulas, but they work even less well, since they often involve taking the cube root of a

complex number, which is a problem just as complicated as the original equation was, if not more so. Once again, one

is forced to resort to numerical approximations. Beyond the fourth degree, the only formulas involve non-algebraic

expressions, and are of little practical use. Higher-degree equations are the realm of numerical methods. To understand

how numerical methods work, it is useful to begin with the simplest cases and the simplest methods. That is what we

are about to do.

For the past few decades we have had access to calculators that can solve equations lightning fast. Some of these

calculators can use the formulas that are taught in algebra to solve low-degree equations. In addition, nearly all cal-

culators nowadays can proceed directly to find numerical approximations to the roots of an equation, without using

an “exact” formula for those roots. In this article, we assume that the student knows how to use such a calculator.

What we are going to do is try to imagine what is going on inside the calculator. We shall do that by examining an

early method of doing these computations on a counting board. The insight thereby gained into the behavior of the

polynomials that make up the equation is worth acquiring, even though the student may never be stranded without a

calculator and forced to find the roots by hand.

If we look for numerical approximations from the beginning, we don’t have to search for abstract relations between

the coefficients and the roots. We can proceed directly from the equation to the roots. A procedure for doing so was

17
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developed in China over a thousand years ago. It was rediscovered in Britain in the nineteenth century and taught to

students under the name Horner’s method. This method works very well on a counting board, where it is possible

to keep rows and columns of numbers in good order. In China, the numbers might have been represented by sticks

placed on the squares of a large board, and the arithmetical operations involved in using the method would have been

carried out by moving the sticks around. Needless to say, in China, as elsewhere in the world, the modern method of

solving equations is to use a calculator. The method we are about to discuss is therefore mostly of historical interest,

but also of interest to a person who wishes to construct a new algorithm for solving equations, since certain properties

of polynomials, which will become apparent in the course of the discussion, are essential in all such algorithms.

3.2 The ancient Chinese method of solving a polynomial equation

We are now going to see how these counting-board techniques can be used to solve an equation. For simplicity, we

start with a quadratic equation, say x2 � 229x � 462 D 0. In order to get started, we need to guess some interval

in which the solution lies. Direct inspection shows us that p.200/ < 0 and p.300/ > 0, so we know there is a root

between 200 and 300. Putting that fact in language that fits the Chinese method better, the root has at least three digits

left of the decimal point, and first digit of the root is 2.

To get the second digit, we take 200 as a “base value” and let x D 200C y, where now we know that 0 < y < 100.

We need to rewrite the equation in terms of y. The Chinese found a very simple way to do this on a counting board,

by filling in the blanks in the following array

1 1 1 1

�229 0

�462 0 0

:

Before giving the rule for completing this array, we note two things. First, each entry in the top row is equal to the

leading coefficient of the equation, while the left-hand column is simply the full set of coefficients. Second, the zeros

here would be merely empty squares on the counting board. We inserted them as “stop signs” for the procedure about

to be described, but they have an additional advantage that will appear shortly, in that they can be included in the data

for the next step so that we are always looking for a digit between 1 and 9.

The rule for filling in the array is simple. Work from left to right and top to bottom. To find what goes in an empty

space, multiply the entry immediately above the space by the current “base value” (200) and add the adjacent number

on the left. The result is

1 1 1 1

�229 �29 171 0

�462 �6262 0 0

:

The coefficients of the equation that y has to satisfy can now be read diagonally downward from right to left, that

is, p1.y/ D y2 C 171y � 6262 D 0. We will not take the time to explain in full why this procedure always works,

although it is not difficult to analyze. You can verify that it has given the correct result in this case, since 0 D p.x/ D
.y C 200/2 � 229.y C 200/� 462 D y2 C 400y C 40000� 229y � 45800� 462 D y2 C 171y � 6262.

Now we know that p1.y/ has a zero between 0 and 100. Calculation shows that p1.30/ D �232 < 0 and p1.40/ D
2178 > 0. Hence the zero is between 30 and 40, and so the second digit of the root is 3.

To get the third digit, we repeat the process, writing y D 30C z (using 30 as the current “base value”) and filling in

the array to get

1 1 1 1

171 201 231 0

�6262 �232 0 0

:

Thus z satisfies p2.z/ D z2 C 231z � 232 D 0, and we know that z is between 0 and 10. We then find very quickly

that z D 1 gives an exact root, so that x D 231 is the root of the original polynomial.

Although the equation is now solved, we might continue to experiment with this method. What would happen if we
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continued, letting, say z D 1C w? What would the equation for w look like? The method would yield

1 1 1 1

231 232 233 0

�232 0 0 0

:

In other words,w would satisfy p3.w/ D w2C 233w D 0, so thatw.wC 233/ D 0. What this tells us is thatw might

be either 0 or �233, so that z might have been either 1 or �232, y might have been either 31 or �202, and x might

have been either 231 (as we found) or �2.

Explanation of the method

Why does this method work? In order to understand that, we need to look at these equations using the algebraic

notation that occurs in modern textbooks. Suppose we are trying to solve the equation

ax2 C bx C c D 0 :

According to our instructions, we start with the array

a a a a

b 0

c 0 0

:

Suppose we have guessed a first approximation to the root. Let it be denoted u. Our exact solution is then x D uCy,

where we have chosen u, and we need to find y. The assertion is that we can find an equation for y by filling in the

array according to the rule “multiply u by the number above the space, and add the number to the left.” That rule leads

us to the array

a a a a

b auC b 2auC b 0

c au2 C buC c 0 0

:

Our rule says that y will then satisfy the equation

ay2 C .2auC b/y C .au2 C buC c/ D 0 :

Why is this true? Well, the equation transforms as follows, given that x D y C u:

0 D ax2 C bxC c
D a.y C u/2 C b.y C u/C c
D a.y2 C 2uy C u2/C by C buC c
D ay2 C .2auC b/y C .au2 C buC c/ :

Here we see the usefulness of the technique of representing unknown or unspecified numbers by symbols. It takes

some imagination to think of a square on a counting board as the representative of a number having a certain relation

to another number. The symbols are definitely easier. That is one reason they are used everywhere nowadays. But once

the counting-board technique has been mastered, it can be applied very rapidly.

3.3 Non-integer solutions

Before considering cubic equations, we need to work one more example of this procedure to introduce a small

complication that arises when the solutions are not integers. We illustrate it by finding the zeros of the polynomial

p.x/ D 8x2 � 18x � 11. We start as usual by noting that p.2/ D �15 and p.3/ D 7, so that there is a root between 2

and 3. As before, we let x D 2C y and get the equation for y from the array

8 8 8 8

�18 �2 14 0

�11 �15 0 0

:
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Thus, y satisfies p1.y/ D 8y2C 14y�15 D 0, and y is between 0 and 1. Since we want the next digit of the solution,

we should try the numbers .1, .2, .3, and so on, as values of y until we find the point where p1.y/ changes sign. It is a

tiny bit simpler, however, to do a decimal shift and consider 10y instead of y. That is, we let z D 10y, so y D z=10.

It is quite simple to see that z satisfies q1.z/ D 8z2 C 140z � 1500 D 0, and this is easy to remember, since all we

have to do is adjoin the zeros already in the array to the coefficients. By trial, we find that q1.7/ D �128 < 0 and

q1.8/ D 132 > 0, so the next digit will be 7. We then write z D 7C u and continue.

Again, since u is between 0 and 1, it is simpler to multiply it by 10 and write v D 10u, u D v=10. The array

8 8 8 8

140 196 252 0

�1500 �128 0 0

tells us that v satisfies q2.v/ D 8v2 C 2520v � 12800 D 0, and v is between 0 and 10. This time, we find that v D 5
gives an exact solution. Therefore the solution of the equation is x D 2:75.

If we wanted to know the other solution, we could continue the procedure one more step, as we did above. The array

would be
8 8 8 8

2520 2560 2600 0

�12800 0 0 0

:

In other words, if v D 5Cw, thenw satisfies 8w2C2600w D 0, so w D 0 (as already found) orw D �2600
8
D �325.

Then x D 2C y D 2C z=10 D 2:7C v=100D 2:75C w=100D 2:75 � 3:25 D �0:5.

3.4 The cubic equation

To show that this procedure is perfectly general, we shall solve a cubic equation by the same method. To do this, we

need one extra row and one extra column. The polynomial for which we shall find a zero is p.z/ D x3�2x2Cx�3D
0. Since p.2/ D �1 and p.3/ D 9, there is a root between 2 and 3. We then write the solution as x D 2 C y and

rewrite the equation in terms of y. The array that gives the equation for y is

1 1 1 1 1

�2 0 2 4 0

1 1 5 0 0

�3 �1 0 0 0

:

We find that y must satisfy the equation p1.y/ D y3 C 4y2 C 5y � 1 D 0. Since we are moving into fractions at this

point, however, let us once again multiply by 10 and write the equation for z D 10y, namely q1.z/ D z3 C 40z2 C
500z � 1000 D 0. Since z is between 0 and 10, we find it by locating the integer where q1.z/ changes sign. Since

q1.1/ D �459 and q1.2/ D 168, we take z D 1C u D 1C v=10 and continue the procedure. At this point we know

that x D 2:1 : : : .
In this way (working with sufficient patience and accuracy), it is possible to find any number of decimal digits

of a root of any equation with real coefficients, no matter its degree. The Japanese mathematician Seki Kowa (Seki

Takakazu, 1642–1708) is said to have solved an equation of degree 1458, over a period of several days, on the floor of

a large room ruled into squares.

In 1819, a technique essentially the same as this ancient Chinese method, except that it applied to infinite series

as well as polynomials, was developed by the British scholar William George Horner (1787–1837). It was taught

for about a century in American high-school algebra books under the name Horner’s method, with the computations

simplified using “synthetic division.”

3.5 Problems and questions

Problem 1. Using the examples given above as a model, solve the equation x2 � 5 D 0 to two decimal places. When

you finish, you should have the first two digits of
p
5, truncated rather than rounded off. In other words, you should
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know that the root lies between 2:23 and 2:24. The computations should be easy, at least at the first stage, because of

the zero coefficients.

Problem 2. Find an approximation to
3
p
2 by solving the equation x3 � 2 D 0. Get at least four decimal places.

Problem 3. We have been vague about the way to find the initial approximation to a root. Verify that the largest a root

can be in absolute value is the sum of the absolute values of the non-leading coefficients divided by the absolute value

of the leading coefficient, thus providing an upper bound on the size of a root.

Question 1. What search algorithm would you use to minimize the number of trials that need to be made when

looking for the next digit of a root? Show that you could get by with at most four trials before finding the place where

the polynomial changes value.
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Completing the Square through the Millennia

Dick Jardine
Keene State College

4.1 Introduction

Solving quadratic equations is a topic relevant to modern mathematics instruction, as it has been for thousands of

years. As we start the 21st century, more often than not students will use calculators and computer algebra systems

to solve quadratics. Today, we associate solving quadratics with curves (parabolas) rather than rectangles and squares

(even though the word quadratic is from the Latin quadratum, a four-sided figure). A centuries old method which

hopefully will survive in classrooms in this millennium is the method of completing the square. Understanding the

process of completing the square is important for our students, for a wide range of reasons including that it provides

arguably the best approach to deriving the quadratic formula. In the examples below, we outline the use of completing

the square as it was done in four previous millennia.

Over the years, the method has had various representations. Understanding the historical, geometric representation

may help students internalize the method when algorithmic or algebraic representations alone may not. Multiple ways

of learning and knowing are offered by including the historical perspective. The examples given in this capsule are

actual problems solved in the past, and your students are invited to solve them today using the methods of antiquity as

well as current techniques. In my courses, I present the information as an interactive lecture that extensively involves

students, as described below.

4.2 Historical preliminaries

About 4000 years ago, Mesopotamian scribes pressed the method of completing the square into clay tablets, the tech-

nology used to record information in that time. Just over a millennium later, during the centuries when Hellenistic

Greek culture flourished, Euclid included a proof for completing the square in his most famous work, the Elements

(ca. 300 BCE). Over the next thousand years, Arabic mathematicians not only continued but extended the work of

the Greeks, completing the square to solve quadratics in their own way, as will be seen in reviewing the work of

al-Khwarizmi (ca. 780–850). In translating and extending Arab works, Renaissance Europeans, among them Giro-

lamo Cardano (1501–1576), included the method of completing the square to solve quadratic equations. These four

examples of the method, passed down in history from the Mesopotamian scribes through Euclid, al-Khwarizmi, and

Cardano, will be used to demonstrate the historical transition from a geometric representation to what we now think

of as an algebraic process.

23
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Babylonian mathematicians, like their Greek and Arab successors, associated number with length. The multiplica-

tion of one length by another was done for applications, such as computing the area of land to be planted with barley

or calculating the area of an enemy army’s encampment for the purpose of estimating the size of the opposing force.

There were sufficiently many of these applications that the scribes developed and recorded on clay tablets specific

procedures for solving the resulting mathematical problems.

One such tablet is BM13901, written between 2000 and 1800 BCE. The solution technique on BM13901 was de-

scribed in geometric terms, and the method used was a literal completing of a square, preserved in solidified clay

to this day after almost four thousand years. The method described below was for a specific problem, as was all the

mathematics written by the Mesopotamian scribes.

Finding the unknown area of a square was well known in ancient Mesopotamia. The inverse problem of finding the

lengths of the sides given the area of a square was also a known process, although slightly more involved. Finding the

lengths of the sides of a rectangle of a given area proved to be even more involved. On BM13901, the scribe converted

a problem involving a rectangle to the easier problem involving a square.

In one problem the scribe had a rectangle with total area 3
4

, paraphrasing Neugebauer’s and Hoyrup’s translations

described by Robson [6] and converting from sexagesimal numbers. He wrote: I totalled the area and the side of my

square which is 3
4

. Using our convenient notation, we would write x2 C x D 3
4

. Although there were no drawings

on the surviving tablet, the scribe presented a geometrical approach to find the length of the unknown side. In Figure

4.1 is the first construction described by the scribe, the splitting of the unknown rectangle into a known rectangular

x

x

1

Figure 4.1. Rectangle and square with total area 3
4

projection of length one and a square with side of unknown length:

x

x

1

Figure 4.2. Halving the projection

He then broke the projection in half, and attached one of the pieces below the unknown square, then added to the

x

x

1/2

1/2

Figure 4.3. Splitting the halved rectangle

resulting figure (a gnomon) with area 3
4

a square with area 1
2
� 1

2
D 1

4
, which “completed the square” of area 3

4
C 1

4
D 1.

x

x

1/2

1/2

Figure 4.4. Completing the new square

All that remained for the scribe to do was to subtract 1
2

, the known side of a square with area 1
4

, from 1 to obtain the
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length of the unknown side as 1
2

. Building on knowledge of solving for the sides of squares, the scribe solved the

problem involving the rectangle by geometrically constructing a square and then solving the resulting square.

The ancient Greeks were familiar with this technique developed by the Mesopotamian scribes. Greek mathemati-

cians, however, went beyond the Babylonian “recipe” approach to solving specific problems. They developed general

theorems, and provided proofs of those results. Euclid’s Elements, mostly known for geometric content but which

also contains significant algebra and number theory, was compiled around 2300 years ago. The Elements contains the

method of completing the square in Book II, Proposition 6:

If a straight line be bisected and produced to any point, the rectangle contained by the whole line thus

produced and the part of it produced, together with the square on half the line bisected, is equal to the square

on the straight line which is made up of the half and the part produced.[3]

Figure 4.5 is a depiction of an outline of Euclid’s proof. Note that the figure and description by Euclid is similar

to that of the Mesopotamian scribe. Euclid started by bisecting a line of length a, so that each half has length a
2

. He

extended the line an arbitrary amount x. A rectangle was created with width x and length x C a. That rectangle was

divided into two rectangles with length a
2

and width x and a square with sides of length x. A rectangle was constructed

below the square with sides of length x, a construction equivalent to moving the left-most of the original rectangles

with side a
2

to that position. That construction formed a square with sides of length a
2

, and also completed a larger

square having sides of length x C a
2

. That square was completed by summing the square with sides of length x, the

two rectangles with area x by a
2

, and the square with sides of length a
2

. In this proposition, Euclid documented a proof

of the general process of completing the square.

The wording from Euclid’s Elements may seem awkward to us, but remember that mathematics was done differently

2300 years ago. A geometric approach to problem solving prevailed then. The key idea in the evolution of completing

the square demonstrated by Euclid is that he was not solving a specific problem as the Mesopotamian scribes did,

but was instead proving a general mathematical result. A parallel approach to solving quadratics can be found in the

mathematical writings of Arabs, who learned from and continued the mathematical traditions of the ancient Greeks.

x

x

a/2

1/2

x

x

a/2

a/2

a

xa/2 a/2

x

x

a/2 a/2

Figure 4.5. Completing the square in Euclid’s Elements
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Figure 4.6. A representation of al-Khwarizmi’s completing the square

Al-Khwarizmi was a 9th century Islamic mathematician who was encouraged by his Arab sponsor to compile a text

on the applications of mathematics. Al-Khwarizmi produced Kitab al-jabr waal-muquabala1, in which he described

well-defined procedures for solving equations. We often use the word algorithm to describe procedural methods for

solving problems, and al-Khwarizmi’s name is the source of the word algorithm.

One application described in Kitab al-jabr waal-muquabala demonstrated the method of completing the square.

The method was used to solve a financial problem involving the relationship, a square and 10 roots equal 39 dirhems.

A dirhem was a unit of money, and in our notation, al-Khwarizmi found the roots of the quadratic x2 C 10x D 39.

Al-Khwarizmi did not have the benefit of our concise notation, and resorted to long verbal explanations to express

the relationship between quantities. Figure 4.6 depicts an interpretation of the process al-Khwarizmi used to prove the

process of completing the square [7].

The square in the middle corresponds to the x2-term of the quadratic. The rectangle (representing 10x) to the right

of the square is divided into four parts. Those rectangles are then positioned one to each of the sides of the square. The

square is completed by adding the four corner squares, which have a total area of 4 times .10=4/2, or 25. So 25 must

be added to both sides of the original equation. The completed square has area 39C 25 D 64 and sides with length 8.

The length of x, then, is x D 8 � 5 D 3.

Leonardo of Pisa (1170–1250), also known as Fibonacci, translated and included Arab mathematics in his text

Liber Abaci (1202). Girolamo Cardano’s Ars Magna (1545) was influenced by Fibonacci’s compilation. Cardano was

a true Renaissance man, having written on such diverse subjects as medicine, astronomy, philosophy, gambling, and

mathematics, among other topics. In chapter 5 of the Ars Magna, problem 2 is:

There were two leaders each of whom divided 48 aurei among his soldiers. One of these had two more

soldiers than the other. The one who had two soldiers fewer had 4 aurei more [than the other] for each soldier.

1It is from the second word in the title that the word algebra is derived. To al-Khwarizmi, al-jabr meant taking the subtracted quantity of a

mathematical expression and adding it to the other side.
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What is to be found is how many soldiers each had [1].

Using proportional reasoning, Cardano converted the word problem to the equation 48
x
D 48

xC2
C 4 in our notation,

where x is the smaller number of soldiers. Simplifying, the equation is written x2 C 2x D 24. Cardano solved the

quadratic using completing the square, but relied on geometric methods (and citation of Euclid’s Elements) to prove

the general process.

This brief historical presentation of completing the square ends with Cardano. Descartes (1596-1650) was among the

first to label line segments by letters representing the length of the segments, and then to multiply the two line segments

to obtain a third line segment with length corresponding to their product. This new approach enabled Descartes to use

algebraic equations to describe a wide variety of curves. This helps explain why we associate quadratics with parabolas,

not with the squares and rectangles used by those who first conceived and later used the method of completing the

squares for the first 3500 years of its application.

4.3 Student activities

In the Appendix are activities for students to practice completing the square on quadratic equations from the past. I

present a lecture on the use of completing the square as part of my History of Mathematics and Applied Algebra and

Trigonometry classes that I teach at our college. I have also used parts of the presentation when the topic of completing

the square comes up in calculus class. To keep the students engaged in the lecture and actually doing mathematics,

not just watching me do mathematics, I have the students do exercises in small groups at the appropriate points of

the lecture. For example, after I introduce BM13901 and the resulting quadratic, I stop the lecture and have students

do the exercise practicing completing the square to solve another quadratic from that era. Additionally, students take

part in making 5-minute presentations on the named mathematicians as part of the classroom activities, as described

in Capsule 15. My classroom lecture provides the introductory material, fills gaps that may exist after the student

presentations, and makes the transitions necessary as we move from millennium to millennium. The extent to which

students participate varies depending on the time I make available in class meetings for this topic in each course.

I use the papers students write for both course grades and as artifacts for program assessment, as the student work

demonstrates that they are learning the historical development of mathematics.

4.4 Summary and conclusion

The historical evolution of the method of completing the square outlined here can be readily incorporated in high

school and college algebra classes. Additionally, concrete representations of the process of completing the square

can add to the experience through the use of algebra tiles, mimicking the different geometric techniques used in the

past to solve quadratics. This would be particularly useful in mathematics classes for pre-service teachers. Some of

the problems presented here are taken from translations of original sources identified in the References below, and

there are more to be found there if you wish to expose students to working with original sources in the history of

mathematics. In solving the exercises done in the past using various representations and a historical approach, students

can gain deeper insight into the methods, breadth and evolution of mathematics.
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Appendix

Student activities

I have created worksheets using the exercises below, enabling students to solve quadratics and practice completing the

square using the actual quadratic problems solved by the students’ mathematical predecessors. I have used combina-

tions of the exercises in a college-level algebra course, in a calculus course, and in a history of mathematics course.

As our students are not accustomed to the proportional reasoning of Cardano, they will need some help constructing

the quadratic from the quote given.

Historical completing the square exercises

1. A cuneiform tablet at the British Museum is BM13901, written between 2000 BCE and 1800 BCE by a Mesopotamian

scribe. On this tablet the scribe wrote mathematical problems, presumably derived from an applications. One of

the problems: the length of a side of a square was to be found given that the area of the square added to 4=3 of a

side of the square was 11=12.

a. Write the quadratic equation that follows from the problem described on table BM13901.

b. Solve the problem by completing the square graphically as a Babylonian scribe would.

c. Solve the problem using the completing the square algorithm that we use today.

d. Check your solution by substituting your answer into the original equation.

2. The Arab mathematician al-Khwarizmi wrote about financial problems that led to relationships such as, “two

squares and ten roots are equal to forty-eight dirhems” in the 9th Century. A dirhem was a unit of money, and in

al-Khwarizmi sought the roots of the quadratic that arose from that problem statement.

a. Write the quadratic equation that follows from the problem described by al-Khwarizmi.

b. Solve the problem by completing the square graphically as al-Khwarizmi would.

c. Solve the problem using the completing the square algorithm that we use today.

d. Check your solution by substituting your answer into the original equation.

3. Girolamo Cardano included the following problem in his 1545 book, Ars Magna:

There were two leaders each of whom divided 48 aurei among his soldiers. One of these had two more soldiers

than the other. The one who had two soldiers fewer had 4 aurei more [than the other] for each soldier. What is to

be found is how many soldiers each had.

a. Write the quadratic equation that follows from the problem described by Cardano.

b. Solve the problem by completing the square.

c. Check your solution by substituting your answer into the original equation.

4. Use completing the square to derive the quadratic formula, beginning with the standard form of a quadratic,

ax2 C bx C c D 0. Use the quadratic formula to solve each of the quadratics above.

www.maa.org/reviews/lsahoyrup.html
http://www.maa.org/reviews/lsahoyrup.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Al-Khwarizmi.html
http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Al-Khwarizmi.html


5
Adapting the Medieval “Rule of Double False

Position” to the Modern Classroom

Randy K. Schwartz
Schoolcraft College

5.1 Introduction

The rule of double false position is an arithmetical procedure for evaluating linearly-related quantities. The method

does not rely on variables or equations, but is based instead on interpolating between, or extrapolating from, two

guesses, or suppositions. Although the technique is seldom mentioned today in North American curricula, it was

routinely used in much of Europe, Asia, and North Africa from medieval times to the 19th Century, and is still taught

in many classrooms there today. Historically, the approach was especially convenient for practical tradesmen whose

knowledge did not normally extend to a mastery of algebra; they could pull the algorithm from their mathematical

toolkits whenever needed and deploy it as a rote arithmetical procedure.

I have adapted for instructional use a North African version of the rule of double false position. The topic is well

suited to college or high school courses in College Algebra, Precalculus, Calculus, Applied Calculus, and Linear

Algebra. In my experience, only 30–50 minutes of class time needs to be devoted to teaching the method in order

for students to grasp the mechanics, justification, and various applications. Instruction can take any of various forms,

ranging from a traditional lecture to a self-guided instructional module for individual or group work. I describe such a

module below, in the section “In the Classroom”.

Covering a technique that students will find handy in solving certain problems helps round out their technical

skills. In addition, it helps introduce them to the contributions of a variety of cultures, and provides some historical

perspective on mathematics. Learning about double false position highlights the fact that practical algorithms were

being used many centuries before the modern era and without recourse to algebra.

5.2 Historical Background

In 1202, Leonardo Fibonacci of Pisa, Italy, devoted Chapter 13 of his famous treatise Liber Abaci to this technique. His

nearly boundless enthusiasm for the method comes through from the moment he introduces the chapter, writing that

“the Arabic elchataym by which the solutions to nearly all problems are found is translated as the method of double

false position.” [8, p. 447].

To illustrate the technique, consider this sample problem from Fibonacci:

29
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A certain worker received 7 bezants per month if he worked, and if he did not work he had to pay 4 bezants

per month to the foreman; [one month,] for whatever he worked or did not work he received at the end of

the month 1 bezant from the foreman; it is sought how many days of the month he worked. [8, p. 453].

Suppose that the worker had labored, say, 20 of the 30 days of the month, and been idle the remaining one-third of

the month. Then he would have received

2

3
.7/ � 1

3
.4/ D 10

3
bezants (gain);

which is too high by 7=3 bezant, since we are told that he actually earned 1 bezant. Thus, the supposition of 20 days

of work is too high. Suppose, instead, that he had labored only 10 days and been idle the remaining two-thirds of the

month. Then he would have paid the foreman

2

3
.4/ � 1

3
.7/ D 1

3
bezant (loss);

which, again compared to the actual gain of 1 bezant, is too low by 4=3 bezant. Thus, the supposition of only 10

days of work is too low. The correct number of days that the worker labored during the month must, therefore, be

somewhere between 10 and 20. It can now be found as a weighted average of these “input” values, weighting them

with the resulting “errors” (the excess of 7=3 and the deficit of 4=3). We must give the second input (10 days) the

heavier weight, since it came closer to the actual gain of 1 bezant:

20

�

4=3

4=3C 7=3

�

C 10
�

7=3

4=3C 7=3

�

D 20.4=3/C 10.7=3/
4=3C 7=3 :

With routine arithmetic we can now complete the calculation, arriving at the answer of 13 7
11

days worked during the

month.

Notice that the two inputs and the resulting errors ended up being “cross-multiplied”, i.e., each input is multiplied

by the error associated with the other input. In modern symbolism, the resulting algorithm can be represented as a

formula,

x D x1e2 C x2e1

e2 C e1

;

where e1 and e2 denote the errors (one excess and one deficit) resulting from the suppositions x1 and x2, respectively.

In a case in which both of the errors are deficits, we could adapt the above formula by treating one of the deficits as

a negative excess, i.e., replace e1 with �e1 or else e2 with �e2. Likewise, if both of the errors are excesses, then we

could treat one of the excesses as a negative deficit, again replacing e1 with �e1 or else e2 with �e2. We find that all

of these cases reduce to

x D x1e2 � x2e1

e2 � e1

:

In medieval times, signed numbers were generally not used, so a discrepancy, whether excess or deficit, was always

signified with an unsigned number. The above formulaic process thus had to be rendered in different forms correspond-

ing to the different cases. In my course activities (see below), I simplify the situation by allowing signed numbers; as

a result, a single common procedure can be used in all cases.

So long as the relationship underlying a given problem is affine linear, any two inputs x1 and x2, even wild guesses,

will yield the same final result x, since any two points determine a line.1 Historically, the input values were thought of

as suppositions, or erroneous guesses, and the algorithm was conceived as a process of discerning the truth from two

falsehoods. In Arabic the algorithm is known as hisab al-khata’ayn, which can be translated as “reckoning from two

falsehoods.” Fibonacci translated this into Latin as regulis elchatayn [2, p. 318] or elchataym [8, p. 447]. Eventually

in Latin Europe, regula falsi positionis (“the rule of false position”) and regula duorum falsorum (“the rule of two

falsehoods”) became the most common terms for the technique.

The tradition of double false position was especially strong in the Maghreb (Northwest Africa). It was often used

there, for example, by legal specialists in the complex Qur’anic rules for division of legacies. North African scholars

1If the relationship is nonlinear, then the result will be only an approximation, and will vary with the choice of input values.
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developed mnemonics, notably poems and diagrams, to aid such nonscientists in recalling the steps of the algorithm.

A diagrammatic “method of scales” was widely used in the Maghreb by the 12th Century and persisted for centuries.

Fibonacci, who had studied mathematics in this region as a boy, used a simplified version of the scales diagram in his

Liber Abaci.

To illustrate the method of scales, consider again Fibonacci’s problem of the worker and the foreman. This time, I

will use Fibonacci’s own suppositions of 20 and 15 days (instead of 20 and 10). We substitute these guesses directly

into the statement of the problem:

For 20 days of work:
2

3
.7/ � 1

3
.4/ D 10

3
or 3

1

3
bezants

For 15 days of work:
1

2
.7/ � 1

2
.4/ D 3

2
or 1

1

2
bezant:

Comparing these results with the target value of 1 bezant, we find that they represent excesses of 2 1=3 bezants and

1=2 bezant, respectively. These data can be placed in a scales (balance) diagram, drawn here in the style associated

with ibn al-Banna’ of Marrakech (1256–1321) [3, pp. 101–103]:

1/2

15

2 1/3 

20

   1 

The target value, 1, is placed on the “dome” of the balance, and the two guesses are placed in the “pans”, with the

corresponding excesses above them. The lines in the diagram are a guide in carrying out the cross-multiplication and

other steps of the algorithm:
15 � 2 1

3
� 1

2
� 20

2 1
3
� 1

2

D 25

1 5
6

D 13 7
11

days:

For more details, including for the cases of two deficits or one excess and one deficit, see [3, p. 102].

5.3 In the Classroom

I have had great success incorporating an adaptation of the rule of double false position into self-paced modules that

I developed for courses in Linear Algebra and in Calculus for Business and Social Sciences. These take the form of

written activities, each about 10 pages in length, and rich with graphics. The modules themselves are available online

in my article, “Combining Strands of Many Colors: Episodes from Medieval Islam for the Mathematics Classroom,”

mathdl.maa.org/mathDL/46/?pa=content&sa=viewDocument&nodeId=3546&bodyId=3913.

Parts of the written modules are expository, describing the mechanics of the technique or its cultural and historical

context. The exercises, on the other hand, guide the student in discovering why the technique works, in exploring its

relation to other methods, or in applying it to solve various types of story problems. The students begin the activity in

class, working for about 30 minutes either individually or in groups of two or three, as they prefer. Each student takes

the module home to complete it, and later submits it to me for grading and comments.

The version of double false position that I teach my students allows them to more easily grasp, recall, and carry out

the technique. I created this version of the method of scales by making the following modifications:

1. The dome and levers are replaced by a circuit of arrows.

2. The diagram is turned 90 degrees to match how pairs of coordinates are usually tabulated in our courses.

3. Signed numbers are used (with deficits being represented by negative numbers), so that all cases can be treated in

a unified way.

To teach students the mechanics of the technique, the instructor can include an example such as Fibonacci’s problem

of the worker and the foreman. I also include a brief exposition of the historical context for this method, by summa-

rizing the forms and uses of mathematics that arose in the Middle East and how these were transmitted to Europe by

Fibonacci and others. (More information on this can be found below, in the section “Taking It Further”.)

mathdl.maa.org/mathDL/46/?pa=content&sa=viewDocument&nodeId=3546&bodyId=3913
http://mathdl.maa.org/mathDL/46/?pa=content&sa=viewDocument&nodeId=3546&bodyId=3913
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Here is how Fibonacci’s problem of the worker and the foreman, described earlier, would be solved in this style.

The student might want to first tabulate the inputs and outputs:

days worked excess pay

20 2 1/3

15 1/2

? 0

If these are thought of as coordinates, then the problem amounts to finding the missing coordinate on the left. The

steps are as follows:

(1) Write the four values in a square arrangement:

20 2 1/3

15 1/2

(2) Draw the two diagonals of the square.

(3) Draw one of the two vertical sides of the square; the “missing” vertical side needs to align with the “missing”

coordinate in the table:

20 2 1/3 

15 1/2

(Note how the drawn vertical side corresponds to the “dome” in the scales diagram.)

(4) Place arrowheads on the three line segments so that they connect head-to-tail, either clockwise (as below) or

counterclockwise:

20 2 1/3 

15 1/2

(5) Imagine walking along the path in the direction of the arrows, successively from tail to head to tail, etc. To recall

the order of operations, multiply along the diagonals and subtract along the vertical. Write the complete path in

the numerator, and the vertical portion alone in the denominator:

15 � 2 1
3
� 1

2
� 20

2 1
3
� 1

2

D 25

1 5
6

D 13 7
11

days:

Note that reversing the direction of the arrows results in negating both numerator and denominator, so that the final

answer is the same. Students will be familiar with this same invariance property in the rise-over-run formula for slope.

To help the students discover that the technique is based on the concept of ratio and proportion, the instructor can

make use of coordinate axes and symbolic algebra. Note, first, that the triangles in the figure below are geometrically

similar.

Students can be asked to set up a corresponding proportion, such as:

b

x � a D
d

x � c :

They can then be asked to solve the relation algebraically for x, giving a “formula” for double false position:

x D ad � bc
d � b :
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c x x

y

b

d

a

By being challenged with many types of practice problems, students will become quite adept at using the method

of scales. I like to include some interesting historical examples from different cultures, such as these drawn from Italy

and China:

Example 5.1. Two birds fly from the tops of two towers whose bases are 50 yards apart, one 40 yards high, the other

30, starting at the same time and flying at the same rate, and reaching the center of a fountain between the two towers

at the same moment. How far is the fountain from the base of each tower? [paraphrased from [8, pp. 462–463]]

(a) Make two wild guesses as to the distance from the fountain to the base of the tall tower. For each guess, use the

Pythagorean Theorem and the fact that the towers are 50 yards apart to calculate the discrepancy between the

squares of the distances flown by the two birds. An example is given in the chart below; record your own results

in the next two rows.

distance from foun-

tain to base of tall

tower (yards)

distance from foun-

tain to base of short

tower (yards)

squared distance from

fountain to top of tall

tower (square yards)

squared distance from

fountain to top of short

tower (square yards)

discrepancy

(column 4 minus col-

umn 3)

example: 15 50 � 15 D 35 15
2 C 40

2 D 1825 35
2 C 30

2 D 2125 2125 � 1825 D 300

x

(b) Use your two input and two output values (in columns 1 and 5 of the chart) along with the rule of double false

position to solve the problem. Record your answer in the fourth row of the chart, and verify that it solves the

problem.

(c) Using algebra, complete the last row of the chart to verify that— despite the squaring that is involved— there is

a linear relationship between the input variable in column 1 and the output variable in column 5. Set the resulting

discrepancy in column 5 to zero, and show that this leads to the same answer that you got in part (b).

Example 5.2. A tub of full capacity 10 dou contains a certain quantity of husked rice. Unhusked rice is added to fill

up the tub. When the rice is all husked, it is found that the tub contains 7 dou of husked rice altogether. Assume each

dou of unhusked rice produces 3=5 dou of husked rice. Find the original amount of husked rice in the tub. [paraphrased

from [7, p. 365]]

Husked rice

(dou)

Unhusked rice

(dou)

Total amount of

rice when all is

husked (dou)

Actual amount of

rice when all is

husked (dou)

Discrepancy

(column 4 minus

column 3)

example: 2 10� 2 D 8 2C 3
5
.8/ D 6 4

5
7 7 � 6 4

5
D 1

5

7

7
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Example 5.3. Now an item is purchased jointly; everyone contributes 8 [coins], the excess is 3; everyone contributes

7, the deficit is 4. Tell: the number of people, the item price, what is each? [7, p. 358].

Instructors can also formulate their own interesting story problems, based, for example, on the linear relationship

between temperatures in the Celsius and Fahrenheit scales, or between years in the Christian and Muslim calendars.

I inform my business students that those who conduct affairs both in predominantly Christian and predominantly

Muslim countries will need to understand the two calendars and be able to translate dates back and forth between them.

The dates differ for two main reasons. First, the accounting is pegged to two different events: the traditional year of

Christ’s birth in one case, and the year of the Hijra, or emigration of Muhammed from Mecca to Medina, in the other

case. Second, the Christian calendar is based on a solar year, while the Islamic calendar is based on a lunar year. In

the Middle East, the use of lunar and solar calendars (especially by nomadic and sedentary peoples, respectively) both

flourished. Of course, because these calendars are so rooted in culture their use persists today, even in regions where

few people are nomads or farmers.

Example 5.4. This exercise explores the relationship between the “Christian” year used in the West, and the “Islamic”

year used among Muslims. For example, the Christian year 1492 roughly corresponded to the Muslim year 897, while

the Christian year 1990 roughly corresponded to the Muslim year 1410. The relation between Muslim and Christian

years is very close to being linear, y D mx C b.

(a) Use the sample years given above and the definition of slope to estimate m with a high degree of precision.

(b) Use al-khata’ayn (double false position) to estimate b with a high degree of precision.

(c) Use your model y D mx C b to complete this table; round your answers to the nearest year.

Muslim year, x Christian year, y

1

1000

2020

Based on the top row, in which Christian year do you estimate that the Hijra took place?

(d) Use your model y D mx C b to estimate when the Muslim and Christian years will be the same (round your

answer to the nearest year).

For business students, I also devised problems such as the following.

Example 5.5. A management consultant charges a base fee for each consultation, plus an hourly rate. Her records for

two different consultations show a charge of $281.50 for 3 hrs 20 mins of work, and a charge of $249.30 for 2 hrs 45

mins.

(a) Use double false position to determine her base fee, in dollars (round to the nearest cent).

(b) Use the rise-over-run procedure to determine her hourly rate, in dollars per hour (round to the nearest cent).

Example 5.6. To stimulate sales during a recession, General Motors Corp. decided to temporarily lower its financing

rate for new vehicle purchases. When the rate was lowered to 8 3=4 %, sales jumped by 12% compared to those that

were being recorded under the standard financing terms. When the rate was lowered all the way to 3 1=2%, sales rose

19% higher than those under standard financing. Assume that the trend is linear.

(a) What sales increase can be expected under zero-percent financing?

(b) What standard interest rate is offered by GM to its customers?

Most textbooks for Business Calculus include a whole series of optimization exercises in which a linear constraint

must first be determined. Students can be encouraged to use the method of double false position to determine the

intercept, and the rise-over-run procedure to determine the slope. An example follows.
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Example 5.7. A certain toll road averages 36,000 cars per day when charging $1 per car. A survey concludes that

increasing the toll will result in 300 fewer cars for each cent of increase. What toll should be charged in order to

maximize the revenue? [4, p. 191].

(a) Use double false position to determine the intercept that is missing in the table below.

toll (dollars) average daily traffic

(number of vehicles)

1.00 36,000

1.01 35,700

0

(b) Use the rise-over-run procedure to determine the slope.

(c) Use your answers to parts (a) and (b) to write the linear relation between toll and traffic.

(d) Use the optimization technique to determine how to maximize revenue.

For Linear Algebra, I devised the following surveying problem.

Example 5.8. A buoy B was positioned in a water channel many years ago. Now, it’s desired to know how far it sits

from the sides of the channel. When rangefinders are placed at opposite points A and C , it’s found that the channel

width there is 97.61 meters. When one of the rangefinders is moved 30 meters due north of A, it’s found that the other

rangefinder must be moved 42.66 meters due south of C to remain aligned with the buoy.

30

A
x

yB

C

42.66

(a) Use the similarity of the two triangles to show the relation 42:66x � 30y D 0.

(b) Make two wild guesses for x. For each guess, use the fact that AC D 97:61 to calculate 42:66x � 30y, which

should be zero.

(c) Use double false position and your data from part (b) to solve the problem.

5.4 Taking It Further

When I teach an historical method in the classroom, I am always interested in having students see its relation to

techniques used in other cultures and other historical periods.

Students who have studied matrix methods will recognize that in the “formula” for double false position, the numer-

ator resembles a determinant. Those in Linear Algebra, in particular, will be interested to see relationships between

this method and Cramer’s Rule of Determinants, which came much later in history. Students can, for instance, be
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guided to derive the formula for double false position from Cramer’s Rule as follows. Consider a relation of the form

ax C b D c, which we might solve algebraically as

x D c � b
a

:

As an alternative to that method, suppose there are two suppositions x1 and x2, and corresponding excesses e1 and e2:

ax1 C b D c C e1

ax2 C b D c C e2:

x1a C 1.b � c/ D e1

x2a C 1.b � c/ D e2:

Applying Cramer’s Rule to this system gives

a D

ˇ

ˇ

ˇ

ˇ

e1 1

e2 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1 1

x2 1

ˇ

ˇ

ˇ

ˇ

D e1 � e2

x1 � x2

b � c D

ˇ

ˇ

ˇ

ˇ

x1 e1

x2 e2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1 1

x2 1

ˇ

ˇ

ˇ

ˇ

D x1e2 � e1x2

x1 � x2

;

and thus the familiar false-position formula,

x D c � b
a
D b � c
�a D

x1e2 � e1x2

e2 � e1

:

Fibonacci’s naming of this method with a term elchatayn derived from Arabic is not surprising. His travels in,

and borrowings from, the Muslim-influenced lands surrounding the Mediterranean are well known. During medieval

times, scholars living under Muslim rule became preeminent in mathematics and many other sciences, and their work

disseminated across various networks of trade and scholarship. They recovered and synthesized much of the classical

mathematics of Greece, Byzantium, and India, including the “Hindu reckoning” made possible by decimal place-value

numeration. Then they greatly extended these, making major breakthroughs in plane and solid geometry, plane and

spherical trigonometry, root extraction and other arithmetical algorithms, algebra, the analysis of polynomials, number

theory, and combinatorics. In fact, the very word algorithm ultimately derives from the name of al-Khuwarizmi, a

leading mathematician working in Baghdad in the 9th Century. Details about many of these contributions are available

in [1] and [5] as well as more general works on the history of mathematics.

Although the movement of hisab al-khata’ayn from the Middle East to Europe is evident, the actual origins of the

method are unclear. Somewhat similar techniques were used in ancient China bearing names such as ying bu tsu shu

(“the rule of too much and not enough”), possibly before 100 BCE [7, pp. 349–385]. However, I have shown [6] that

it is very unlikely that Arabs borrowed their technique from Chinese literature, based on differences in the respective

algorithms, their justifications, terminologies, and applications. In the same article, I argued that hisab al-khata’ayn

might well have first found its way into Arabic treatises from a prior tradition of practical usage by merchants, jurists,

surveyors, builders, and the like.

The earliest discussions of this technique exemplify how medieval scientists built on the ancient mathematics that

came before them. Greek geometers themselves do not seem to have known of double false position, but mathemati-

cians in the early Islamic world justified the technique by devising formal geometric proofs in the Greek style. This can

be seen in the oldest surviving Arabic writing on hisab al-khata’ayn, that of Qusta ibn Luqa (late 9th C.), a Christian
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Arab mathematician from Baalbek on the coast of Lebanon. He represented the linearity of the problem as a right

triangle whose height and hypotenuse increase proportionally with its base. His meticulous three-part proof relies on

Euclid I:43. A translation of the first part of the proof (the case of two deficits) is provided in [3, pp. 98–101], while

[9] includes a German translation of the entire treatise.

5.5 Conclusion

Teaching the medieval rule of double false position “fills in a gap” in people’s understanding of linear relationships.

We certainly drill into our students how to calculate a slope (rate of change) purely from four pieces of data: two inputs

and two outputs. Shouldn’t we be able to quickly compute the intercepts from the same four numbers? As we have

seen, a wide range of practical problems can be reduced to finding such intercepts. Double false position is an efficient,

purely arithmetical procedure for solving such problems.

Instruction in this topic also “fills in a gap” in another sense. In the West, there is a startling lack of knowledge of

the historical contributions to mathematics and science made by non-European peoples. Especially in industrialized

nations, many also have the mistaken impression that mathematics is purely a product of abstract thought, not realiz-

ing the extent to which practical problems have been a major force in its development. Learning about double false

position and the various ways in which it was conceived, used, and justified broadens our students’ perspective on how

mathematics and science develop. It provides a case study in how science has been driven by the curiosity, hard work,

and creativity of people in many different cultures.
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Complex Numbers, Cubic Equations, and

Sixteenth-Century Italy

Daniel J. Curtin
Northern Kentucky University

6.1 Introduction

The complex numbers are important in modern mathematics and science, yet they receive almost no attention in the

modern curriculum, which is heavily weighted towards preparation for the Calculus. Most pre-calculus treatments of

the complex numbers give no insight into where they came from. They are mainly seen as supplying a full set of roots

for polynomials that do not have all real roots. In fact, they first arose because they were needed to find real roots for

cubic equations, precisely in the case where all three roots are real. The material in this article can be used anywhere

complex numbers are introduced. It mixes geometric and algebraic ideas, in a way that should be particularly useful

in a functional approach to pre-calculus. Technology can be used or not, as seems appropriate to the instructor.

6.2 Historical Background

The idea of complex numbers, at least in the sense of calculations involving square roots of negative numbers, first

arose in Italy around 1540, as mathematicians solved cubic and quartic equations. In modern courses, complex numbers

often first arise to discuss solutions of quadratic equations where ax2 C bx C c D 0 has solutions

x D �b ˙
p
b2 � 4ac
2a

;

and the question of what happens when b2 � 4ac is a negative number arises. Solutions to quadratic problems, analo-

gous to the quadratic formula, have been known since at least 2000 BC, yet no one appears to have shown any interest

in the possibility of negatives under the square root. Most likely this is because they only occur when both roots are

complex, so from the point of view of real numbers the equation has no solutions.

For the cubic and higher equations, mathematicians had sought in vain for formulas similar to the quadratic formula.

Success came at last in Italy just after 1500. The intrigue and feuding surrounding this discovery might be worthy of

operatic treatment. We haven’t time to pursue it, but the interested reader should seek out [3; 4, pp. 7–25; 5, pp. 358–

367]. We will see below that precisely in the case where the cubic equation has three real roots the relevant formula

must involve square roots of negative numbers. It was to resolve this difficulty that mathematicians began to calculate
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with such quantities. In fairly short order, Rafael Bombelli produced his book, L’Algebra [1], which includes a careful

treatment of such calculations and thus provided a remarkably complete treatment of the arithmetic of what we now

call complex numbers.

6.3 In the Classroom

6.3.1 Quadratic Equations

If the students have not investigated the discriminant for quadratics, it may be worthwhile to first have them look at

examples. To tie in with what we do later consider the graph of f .x/ D x2 C 2x, either drawing it by hand or using

technology. Then examine the intersection of this graph with y D d for various specific values of d and study how

the number of intersections corresponds with the values of b2 � 4ac. See Figure 6.1.

4

3

2

1

–1

–2

–3

–1 1 2 3 4

Figure 6.1. Various values of the discriminant. For y D 1, b2 � 4ac D 8, y D �1, b2 � 4ac D 0, and y D �2,

b2 � 4ac D �4.

6.3.2 Cubic Equations

The general cubic equation would have the form ax3C bx2C cxC d D 0, with a ¤ 0. It is convenient to assume the

equation has been divided by a, so the form is x3 C bx2 C cx C d D 0. Substituting x D y � .b=3/ and expanding

eliminates the square term, so we may take the general form as x3 C px C q D 0.

The first complete solution to the cubic equation (and the fourth-degree, or quartic, equation) is given in the Ars

Magna (Great Art) of Girolamo Cardano, published in 1545 [2]. The elimination of the square term is his idea. It should

be noted that although negative numbers were used in calculations they were not really accepted as coefficients. Even

as solutions they were regarded as somewhat fictitious. Cardano explained the negative (he called it “false”) solution

x D �3 of the equation x3 C 21 D 2x as really being the positive solution x D 3 of x3 D 2xC 21.

In fact, since negative coefficients were not allowed, Cardano would view the equations in the last sentence as being

of different forms x3 C q D px and x3 D px C q, respectively. The remaining cubic without a square term would

be x3 C px D q. Our standard version x3 C px C q D 0 would seem absurd to Cardano since with x, p, and q all

positive it is obvious no solution is possible!

This division of cases is somewhat reasonable if we consider the number of possible real solutions. For the case

x3 C px D q, consider a typical example: x3 C 6x D 20. The graph of f .x/ D x3 C 6x is increasing (and it is for

f .x/ D x3 C px whenever p > 0). Thus a line y D d hits the graph exactly once, and in fact this type of equation

has one real root. For x3 C 6x D 20, it is x D 2.

We will concentrate on the case x3 D px C q; the case x3 C q D px is similar. To visualize we will rewrite it

as x3 � px D q, though Cardano might not approve. Look at the graph of f .x/ D x3 � px. See Figure 6.2. The

functions in this family are very similar for any particular positive value of p. Since x3�px D x
�

x2 � p
�

, the graph

crosses the x-axis at three points: x D �pp; 0;pp, with a local maximum between x D �pp and x D 0 and a local

minimum between x D 0 andx D pp. For a large enough value of q there is clearly one intersection with y D q
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–

Figure 6.2. The graph of the cubic f .x/ D x3 � px.

and in fact exactly one real root. For small (positive) values there will be three intersections, thus three real roots.

For one positive value there are exactly two intersections. If q is allowed to be negative we are effectively in the case

x3 C q D px.

For the equation x3 D px C q, Cardano gives the solution

x D
3

s

q

2
C
r

q2

4
� p

3

27
C

3

s

q

2
�
r

q2

4
� p

3

27
:

See [5, pp. 362–363] for details. This gives only one root, but the others can be found by reducing to a quadratic.

Try this on x3 D 6x C 40. You get
3
p

20C
p
392C 3

p

20 �
p
392, a positive number (note

p
392 < 20.) Look at

the graphs of y D x3 � 6x and y D 40. It appears there is exactly one solution. In fact, try x D 4. That’s the solution.

Now consider x3 D 15x C 4. The Cardano formula gives
3
p

2C
p
�121C 3

p

2 �
p
�121. Hmmm! A look at the

graphs shows there is one positive solution, but this time there are two negative solutions. If you try x D 4 it works

again.

A calculator will tell us that
3
p

20C
p
392C 3

p

20 �
p
392 D 4, so that’s probably OK. If it can handle complex

numbers it will tell us
3
p

2C
p
�121C 3

p

2 �
p
�121 D 4 also.

This raises two questions. What does the second solution mean? In both cases how do we simplify?

6.3.3 Complex Numbers

A small amount of complex arithmetic is needed. Most algebraic rules remain the same. The main new ingredient is

that we include square roots of negative numbers. That is we include numbers such as
p
�121. Now

p
2 is defined

to be the (positive real) number whose square is 2. So we assert that
p
�121 is some sort of number whose square is

�121. Now assuming the rules of algebra work,
p
�121 D

p

121.�1/ D
p
121
p
�1. In fact,

p
�b D

p
b
p
�1 in

general, so we really only need to come up with
p
�1 (often called i ) to make this work.

A complex number is simply one of the form aC b
p
�1, where a and b are ordinary real numbers. The operations

of addition and multiplication are

�

a C b
p
�1
�

C
�

c C d
p
�1
�

D .aC c/C .b C d/
p
�1;

�

a C b
p
�1
�

�
�

c C d
p
�1
�

D ac C ad
p
�1C bc

p
�1C bd.

p

�1/2 D .ac � bd/C .ad C bc/
p
�1:

6.4 Rafael Bombelli

Cardano’s work was brilliant but difficult to read. Rafael Bombelli, a civil engineer by trade, decided to put together a

book that would lay out the background needed to understand the Ars Magna and give detailed proofs of its conclusion.

The result was l’Algebra, from which later mathematicians including Newton and Leibniz drew inspiration. It was
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finally eclipsed when modern algebraic notation, beginning with Descartes, made Bombelli’s own notation — though

not his ideas — obsolete.

Bombelli attacks
3
p

2C
p
�121C 3

p

2 �
p
�121 as follows.

It seems reasonable to guess that something of the form
3
p

aC
p
�b can be written x C p�y. We would say

a cube root of a complex number should be a complex number. Of course then it is equally reasonable to assume
3
p

a �
p
�b is x �py.

If so, then

aC
p
�b D

�

x Cp�y
�3 D x3 C 3x2p�y � 3xy2 � yp�y;

since
�p�y

�2 D �y. Putting like with like,

a C
p
�b D .x3 � 3xy2/C .3x2 � y/p�y;

so x3 � 3xy2 D a.

Now if
3
p

a �
p
�b D x �py, then a �

p
�b D

�

x �p�y
�3

. We multiply a �
p
�b by aC

p
�b to get

a2 C b2 D
�

x �p�y
�3 �

x Cp�y
�3 D

�

x2 C y
�3
:

So we have

x2 C y D 3
p

a2 C b2 and x3 � 3xy2 D a:

We want to find x and y. If we just plow ahead this leads us back to another cubic equation, which is no help. Instead

Bombelli proceeds by what he calls “trovare al tentone,” that is, “to find by groping along.” Of course, he doesn’t

grope blindly.

For
3
p

2C
p
�121 he is solving

x2 C y D 3
p
125 D 5 (6.1)

and

x3 � 3xy2 D 2; with x and y positive. (6.2)

From (6.1) he knows x2 < 5, from (6.2) x3 > 2, so he tries x D 2, in which case y D 1, so that

3

q

2 �
p
�121D 2 �

p
�1 and

3

q

2C
p
�121 D 2C

p
�1:

This can be checked by multiplying out
�

2C
p
�1
�3

.

Then the solution to x3 D 15xC 4 is

x D 3

q

2C
p
�121C 3

q

2 �
p
�121 D

�

2C
p
�1
�

C
�

2 �
p
�1
�

D 4;

as claimed. Notice how the square roots of the negatives, so essential to the solution, slip demurely off-stage at the

very last moment.

In fact, in his text Bombelli devotes many pages to the discussion of how to perform such calculations, as well as

other important matters such as extraction of fifth roots. It really is a complete book of algebra for its time!

Try your hand at Bombelli’s second example of simplifying complex cube roots [1, p. 141]:
3
p

52C
p
�2209. It

turns out to be 4C
p
�1.

Are you bold enough for his third example? See [1, p. 142]:
3

r

8C
q

�232 8
27

. Bombelli shows that it is
�p

2C 1
�

C
r

�
�

3 2
3
�
p
8
�

. Note how his tentoni stretches to guesses like x D
p
2C 1.

Bombelli’s method does not lead to a method for reducing all such radicals, though it pointed the way for later work.

What about x3 D 6x C 40, whose solution x D 3
p

20C
p
394 C 3

p

20 �
p
394 is also 4? Similar ideas can be

applied, assuming
3
p

a ˙
p
b D x˙py and equating the terms that involve roots and also the terms that don’t. For a

modern look at this question, see [6].
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6.5 Conclusion

It is perhaps unfortunate that the solution to the cubic equation is no longer taught in algebra classes. In complete

generality it is probably too complicated for most purposes. Still a treatment of one case — I’d recommend x3 D
ax C b — could be very useful for students to meet the complex numbers and sharpen their algebraic skills. Today’s

graphical devices allow them to do this while firmly anchoring their calculations to a lovely picture.
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7.1 Introduction

The Pythagorean Theorem is one of those intriguing geometric concepts that provide a never-ending source of ideas

at all levels. Proofs of this theorem abound in print1, and one wonders whether humans will ever stop looking for yet

another. Indeed, it would be unusual for a student who has taken algebra or geometry not to have been exposed to at

least one proof of the theorem, but how many have had occasion to explore the proof appearing in Euclid’s Elements?

In this proof, Euclid introduces a clever and elegant application of the concept of shearing. It is a proof that provides

a golden opportunity not only to bring some history into the classroom, but that also provides us a natural venue to

highlight connections between algebraic and geometric concepts. Moreover, the proof presented by Euclid has the

useful property that it provides for generalizations of the theorem in a number of different directions. For example,

by using shearing one may prove Pappus’ theorem, which is a Pythagorean-like theorem for arbitrary triangles. The

concept of shearing itself can then be generalized in the form of Cavalieri’s principle to determine the volume of more

general solids.2

In Book XII, Euclid again applies a technique that is connected to the concept of shearing, this time in three

dimensions. The problem is seemingly unrelated: determining the relationship between the volumes of pyramids and

prisms that share the same base and height. This application provides contemporary teachers an opportunity to motivate

and illuminate the ostensibly nonintuitive formula for the volume of a pyramid. We will offer some techniques for

providing our students with a hands-on activity that will allow them to explore Euclid’s proof while developing three-

dimensional visualization skills.

Throughout, we use Heath’s English translation of Euclid’s Elements [7]. In addition, we will refer to each propo-

sition by the book in which it is found followed by its number. For example, “Proposition XII-5” would denote

Proposition 5 of Book XII.

The activities in this chapter are appropriate for teaching the Pythagorean Theorem and the volume of pyramids in

foundational algebra, geometry, and trigonometry classes. They are designed to be completed in a one-hour lesson.

Additional activities may be added as desired.

1Elisha Loomis has collected well over 300 proofs in The Pythagorean Proposition [10].
2See [6] for some history and applications of Cavalieri’s principle.
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7.2 Historical Background

In his 1925 preface to the second edition of his English translation of Euclid’s Elements from the text of Heiberg, Sir

Thomas L. Heath claimed,

So long as mathematics is studied, mathematicians will find it necessary and worth while to come back

again and again, for one purpose or another, to the twenty-two-centuries-old book which, notwithstanding

its imperfections, remains the greatest elementary textbook in mathematics that the world is privileged to

possess. [7, p. ix]

To be sure, mathematicians, philosophers, statesmen, and scientists of all disicplines are among the multitudes who

have studied the Elements, admired the logic therein, and waxed poetic about the beauty of the mathematics found

there, despite the fact that we have no original copies of Euclid’s work, nor do we know much about Euclid himself.

Much of what we know about Euclid comes from Proclus [11], who lived about seven centuries later. Nevertheless,

Euclid’s work has been translated from Greek into any number of languages, has gone through hundreds of editions,

and has been annotated and commented on ad infinitum – fortunately so for many students of geometry. It is only in the

last century or so that the dominance of Euclid’s rendition has waned in geometry classrooms, having been supplanted

by contemporary texts on Euclidean geometry which sometimes fail to capture the allure of the original.

The Elements consists of thirteen books. Within the first four lies the development of plane geometry, including

most of the ideas introduced in a secondary-level geometry course. Books five through ten deal with ratios, proportions

and elementary number theory. Finally, the fundamentals of spatial geometry are developed in books eleven through

thirteen. Euclid’s Elements is undeniably one of the greatest textbooks ever written, and we hope that this glimpse of

the wisdom and beauty contained within its pages will capture the imagination of some of our own students just as it

has inspired so many others throughout the ages.3

7.2.1 What is a Shear Transformation?

We will connect the proofs of two very different propositions from Euclid via a concept referred to as shearing. A

shear transformation is a type of affine transformation that preserves area or volume. A two-dimensional shear is

defined in [12] as,

A transformation of a figure in which all points along a given line L remain fixed while other points are

shifted parallel to L by a distance proportional to their perpendicular distance from L.

The generalization to three dimensions would be that all points along a given plane P remain fixed while other points

are shifted in a given direction on a plane parallel to P by a distance proportional to their orthogonal distance from P .

To demonstrate a shear transformation in two dimensions, we might imagine a rectangle with its base fixed in place

and its top placed on a rail. Now slide the top along the rail, allowing the sides to grow as needed. The result, as

illustrated in Figure 7.1, is a non-rectangular parallelogram with the same base and height as the original rectangle.

A nice activity for beginning students is to dissect the resulting parallelogram in such a way as to recreate the

original rectangle, and thus illustrate that the area is preserved.

Figure 7.1. Shearing a rectangle

3 Those interested in a little more historical background on Euclid and the Elements that can easily be brought to the classroom might consider

starting with [5], [3], or [9].
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Figure 7.2. Shearing a prism

How can we demonstrate a shear transformation in three dimensions with simple tools? One option is to stack one

or more decks of cards to create a right rectangular prism; take a flat surface and use it to push a face or an edge of the

stack to create a slanted prism with the bottom card still in place (See Figure 7.2). This new prism, also known as a

parallelepiped, still has the same base and height as the original rectangular prism. Moreover, since the two prisms both

share the same number of cards, this demonstration helps clarify why the two prisms should have the same volume.

Shearing is more often seen in its algebraic form as a linear transformation expressed by matrix multiplication. This

form of shearing is given in the appendix.

7.2.2 Euclid’s Proof of the Pythagorean Theorem

The Pythagorean relationship between the side lengths of a right triangle is quite amazing and intriguing. In the words

of Charles Dodgson, whom some of us may better recognize under the pen name Lewis Carroll,

But neither thirty years, nor thirty centuries, affect the clearness, or the charm, of Geometrical truths. Such a

theorem as “the square of the hypotenuse of a right-angled triangle is equal to the sum of the squares of the

sides” is as dazzlingly beautiful now as it was in the day when Pythagoras first discovered it. [4, p. xvi]

The Pythagorean Theorem appears as the penultimate proposition in Book I of Euclid’s Elements. The theorem,

along with its converse, Propostion I-48, present a climactic scene in the first book of Euclid’s ingenious geometric

triskaidecalogy. The Elements states the Pythagorean Theorem as follows.

Proposition I-47. In right-angled triangles the square on the side subtending the right angle is equal to the squares

on the sides containing the right angle.

Note that the implied inference in this context is that “equal” refers to equal area or content.

We begin our discussion with Proposition I-35 in which Euclid introduced a relationship between parallelograms of

the same base and height, and Proposition I-37 which gives the analogous result for triangles.

Proposition I-35. Parallelograms which are on the same base and in the same parallels are equal to one another.

Proposition I-37. Triangles which are on the same base and in the same parallels are equal to one another.

Although Euclid’s view of the relationships stated in these propositionswas probably static, his wording “in the same

parallels” evokes a dynamic view of the relationship that connects naturally to the shearing concept. In modern terms,

Proposition I-35 states that parallelograms with the same base and equal heights have the same area. In particular, a

parallelogram will have the same area as a rectangle with the same base and height, i.e., the product of the base length

and the height. Thus, as illustrated in Figure 7.1, transforming a rectangle, or a parallelogram, via shearing does not

change its area. Proposition I-37 follows in a straightforward way from Proposition I-35 when we view a triangle as

half a parallelogram with the same base and height.

A

B C

A

B C
I

Figure 7.3. A right triangle

Now let’s examine the role played by the shear-

ing concept in Euclid’s proof of Pythagoras’ The-

orem. We start with a right trangle 4ABC set on

its hypotenuse BC and construct the altitude AI

by dropping a perpendicular from vertex A to the

hypotenuseBC (see figure 7.3.)
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A A

B BC C

D DE E

I I

L L

Figure 7.4. Euclid’s observation

We now build a square on each side of the triangle. Let �BCED be the square on the hypotenuse and extend

segment AI to DE . Denote the intersection of the two by L. Euclid’s brilliant observation at this point was that

rectangle BILD has the same area as the square on side AB (See Figure 7.4-left). Similarly, rectangle ICEL has the

same area as the square on side AC (See Figure 7.4-right). Since �BCED is obtained by putting rectangles BILD

and ICEL together, the desired result follows.

A A

B BC C

D DE E

I

L

F

G

F

G

Figure 7.5. Euclid’s “sheared” triangles

How did Euclid prove that rectangle BILD does indeed have the same area as the square on side AB? Let’s denote

this square by �ABFG and play the shearing game (See Figure 7.5). First, notice that the triangle with base BD and

vertex I has half the area of rectangle BILD4. Since BD is parallel to AL we can shear this triangle along AL and

the area will not change (See Figure 7.5-left). Hence4ABD will have the same area as4IBD, namely half the area

of rectangle BILD.

Similarly, the triangle with base FB and vertex A has half the area of �ABFG. SinceGA is parallel to FB and the

pointsG, A, and C are collinear, we have GC parallel to FB . Thus we can shear 4FBA along GC (See Figure 7.5-

right). It follows that 4FBC has the same area as 4FBA, namely half the area of �ABFG. Euclid then invoked a

standard side-angle-side argument (Proposition I-4) to establish the congruence of 4ABD and 4FBC , from which

it follows that rectangle BILD and �ABFG have the same area. The same argument will apply to rectangle CELI

and the square off the side AC , thereby completing the proof.

7.2.3 The Volume of a Pyramid á la Euclid

We now consider shearing in the third dimension by investigating the volume of a pyramid with a polygonal base.

Prior to its derivation in integral calculus, the formula for the volume of a pyramid is often introduced with little or

no motivation. Nevertheless, it is a formula often used in foundational algebra and geometry courses. Certainly it is

not difficult to use a tool such as unit cubes to motivate the fact that the volume of a right rectangular prism should be

the product of its base area with its height, but it is not obvious why the volume of a pyramid with the same base and

height should be one-third of this.

4Euclid proves this result in Proposition I-41.
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A useful introduction to the relationship between a square-based pyramid and a cube with the same base and height

is a demonstration with one of those nice geometry sets that include hollow versions of each. We fill the pyramid with

a substance such as rice or water and show that if we pour the contents into the cube, and then repeat another two

times, the cube appears to be filled. Although this demonstration may help to reinforce the formula for the volume of a

prism, it does little to quench our curiosity about why such a relationship should hold, nor does it answer the question

of whether the relationship will hold in more general cases.

How fortunate we are to have Euclid to provide enlightenment! By applying the concept of shearing – this time

in three dimensions – to Euclid’s derivation of the relationship between a prism and a pyramid, we gain insight and

intuition using purely geometric concepts. We start by discussing triangle-based pyramids. For ease of notation, we

will denote, for example, the pyramid with base4ABC and vertex D by D-ABC .5

In Proposition 5 of Book XII, Euclid tells us:

Proposition XII-5. Pyramids which are of the same height and have triangular bases are to one another as the bases.6

One sees a glimmer of the shearing concept in this statement, for if two pyramids happen to have congruent bases

we obtain a three-dimensional analog of Proposition I-37, which is: If two pyramids of equal height have congruent

triangular bases then their volumes will be the same. In dynamic terms, this is equivalent to the statement that shearing

a pyramid leaves its volume unchanged.

How does Proposition XII-5 help us determine the volume of a triangular prism? Euclid answers this question in his

proof of Proposition XII-7 by showing us how to dissect a triangular prism into three equal-volumed pyramids.

Proposition XII-7. Any prism which has a triangular base is divided into three pyramids equal to one another which

have triangular bases.

A ABB

C C

E DDE
F F

Figure 7.6. Dissecting a triangular prism into three pyramids

Let’s look at Euclid’s argument. Consider the prism ABCDEF with triangular bases4ABC and4DEF . We can

dissect this prism into three tetrahedra, ABCD, BCDE , and CDEF as illustrated in Figure 7.6. Euclid now shows

us in two steps how to view these three tetrahedra as pyramids with equal volume.

1. Consider the pyramids C -ABD and C -EDB . Their respective bases 4ABD and 4EDB are opposite halves

of the parallelogram ADEB . Therefore these bases are congruent and lie in the same plane. Since the pyramids

share vertex C and have bases in the same plane, they must have the same altitude. It follows from Proposition

XII-5 that these pyramids have the same volume.

2. Consider the pyramids D-EBC and D-CFE . Their respective bases 4EBC and 4CFE are opposite halves

of the parallelogram BCFE . Therefore these bases are congruent and lie in the same plane. Since the pyramids

share vertex D and have bases in the same plane, they must have the same altitude. It follows from Proposition

XII-5 that these pyramids have the same volume.

In other words, the first step tells us that the tetrahedraABCD and BCED have the same volume, while the second

step tells us that the tetrahedra BCED and CDEF have the same volume. Since these three equal-volumed tetrahedra

5This notation is used in Heath’s commentary on Proposition XII-7 [7, p. 395].
6Euclid proves this proposition by contradiction, considering what would happen if the volumes of two prisms of the same height were not in

the same ratio as the areas of their respective bases.



50 7. Shearing with Euclid, Davida Fischman and Shawnee McMurran

together form the prism, each must have one-third the volume of the prism and the conclusion of Proposition XII-7

follows.

From here it is a straightforward matter to derive the formula for the volume of a triangle-based pyramid. If we

start with the pyramid D-ABC , we can construct a triangular prism ABCDEF with the same base and altitude. By

Proposition XII-7, the volume of pyramid D-ABC is one-third the volume of the prism, and the standard volume

formula for the pyramid follows by Proposition XII-5.

Moreover, any pyramid with an n-sided polygonal base can be dissected into n � 2 pyramids with triangular bases.

In fact, this is the idea behind the proof of Euclid’s more general sixth proposition of Book XII.

Proposition XII-6. Pyramids which are of the same height and have polygonal bases are to one another as the bases.

For example, the pyramid with quadrilateral base E-ABCD can be dissected into the two pyramids E-ABC and

E-ADC as shown in Figure 7.7. For a more general polygonal base, triangulate the base and construct pyramids

with these triangular bases and a common vertex. Since each triangle-based pyramid has volume equal to one-third

that of its corresponding prism, so does the pyramid with polygonal base. From this dissection we conclude that if

we can determine the volume of a triangle-based pyramid, then we can extend this idea to determine the volume of

any pyramid with a polygonal base. Further, by considering the circle as a limit of regular polygons, we see why the

volume of a cone is one-third of the volume of the cylinder with the same base and height.

B A

C
D

E

Figure 7.7. Dissecting a pyramid into tetrahedra

7.3 In the Classroom

The core activities described in this section can be carried out in an hour of classroom time. However, shearing is a

new concept, and may need some digesting before being applied to three-dimensional shapes.

7.3.1 Shearing in Two Dimensions

There are a number of ways to enhance a lesson on Euclid’s proof of the Pythagorean Theorem with classroom

demonstrations. For example, here are two options for demonstration and activities on these topics:

1. Video demonstrations. The classic educational video The Theorem of Pythagoras produced by Tom Apostol for

Project MATHEMATICS! includes a lovely dynamic illustration of Euclid’s proof [1].

2. Dynamic Geometry Software. Packages such as Geometer’s Sketchpad (GSP) or GeoGebra may be used to

create teacher demonstrations as well as hands-on opportunities for students to shear triangles, rectangles, and

other polygons.7 The appendix includes instructions for creating such a demonstration for the area of a triangle.

7.3.2 Shearing in Three Dimensions

Examining Euclid’s proof of Proposition XII-7, we see that with a proper dissection of the pyramid, the proposition

follows directly from Proposition XII-5. This proof utilizes an inherently static view of geometry. However, our expe-

rience in teaching these concepts has been that adding a dynamic viewpoint often helps the “lights go on” for many

7A word of warning regarding geometry software: students might confuse the roles of demonstration and proof in geometry. When using

geometry software in the classroom, it is a good idea to emphasize that a demonstration doth not a proof make.
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of our students. Even better, a dynamic view appeals to our students as a possible answer to the perennial, and always

intriguing, question: “Where did he get that idea?” – in this case, in regard to the dissection of the prism. Thus we sug-

gest the following shearing activities to enhance students’ understanding and intuition about the material, and possibly

about the mathematical process.

Students who have been introduced to and gained an understanding of shearing in two dimensions, often find the

concept quite plausible in three dimensions as well. In particular, students who have acquired sufficient practice with

two-dimensional shearing and have experienced the shearing of a prism, are often ready to accept the notion that

three-dimensional shearing preserves volume in general.

Having arrived at the point where students accept that pyramids with congruent bases and equal heights have equal

volumes, we are ready to use these concepts for a hands-on dissection of a prism á la Euclid. Please see Figure 7.11 in

the Appendix for nets that can be used to construct a three-dimensional version of Euclid’s dissection for a triangular

prism, and for suggested questions to facilitate discussion and discovery. Cut and constructed accurately, they will

allow students to assemble three pyramids that will combine to create a triangular prism. Each pair of these pyramids

has a pair of congruent bases and equal heights, although the congruent bases may not be shared by different pairs.

Using the nets in Figure 7.11, we translate Euclid’s dissection to the language of shearing as follows: Euclid’s first

step was to show that the tetrahedra ABCD and CDEB have the same volume. To view this through the lens of

shearing, observe that DE lies on a plane parallel to the plane defined by 4ABC , so the pyramid E-ABC may be

obtained from D-ABC by a shear along DE . On the other hand, AD lies parallel to the plane defined by 4BCE ,

so the pyramid A-BCE may be obtained from D-BCE by a shear along AD. However, as illustrated in Figure 7.8,

the pyramids E-ABC and A-BCE are the same tetrahedron. Thus, since shearing preserves volume, the pyramids

D-ABC and D-BCE have the same volume.

Now is a good time to challenge students to derive a similar comparison for tetrahedra CDEF and CDEB . One

such comparison is illustrated in Figure 7.9. Of course, other comparisons are possible.

AB

C

DE

AB

C

DE

AB

C

DE

F F F

Figure 7.8. Shearing D-ABC and D-BCE to obtain ABCE

AB

C

DE

AB

C

DE

AB

C

DE

F F F

Figure 7.9. Shearing C -DEF and C -BDE to obtain BDEF

7.4 Conclusion

Many students have very little formal or informal experience in either a dynamic view of geometry or in three-

dimensional geometry. The hands-on shearing demonstrations and dissections described here provide an opportunity

to enhance learning in a geometry or algebra classroom. Using them we may broaden students’ mathematical under-
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standing to include the dynamic viewpoint as well as some three-dimensional concepts, while helping to add intuition

to formulae that may not seem intuitive.

Through shearing we are able to link traditional and time-honored ideas to more contemporary approaches to the

subject. We see how to extend two-dimensional ideas into three-dimensions. And we make a connection between two

seemingly unrelated and ubiquitous geometry topics: the Pythagorean Theorem and the volume formula for a pyramid.

For more inspiration one may look to the many wonderful resources for reading Euclid’s Elements. A good place

to start might be David Joyce’s comprehensive and user-friendly website [8], which includes the Elements along with

commentary and dynamic diagrams to demonstrate each of the propositions. Another wonderful pedagogical tool is

Byrne’s beautiful edition of the first six of Euclid’s books [2].

Appendix

Algebraic Notation for Shearing

The concept of shearing can be translated to algebraic notation for a two-dimensional shear transformation as follows:

Suppose we orient a rectangle in the xy-plane so that its vertices are at .0; 0/, .xo; 0/, .0; yo/, and .xo; yo/. Now

transform this rectangle into a parallelogram with the same base vertices, .0; 0/ and .xo; 0/, and new top vertices,

.a; yo/ and .xo C a; yo/, by using the following transformation:

xnew D xo C ayo

ynew D yo

or

�

xnew

ynew

�

D
�

1 a

0 1

� �

xo

yo

�

:

Similarly, a three-dimensional shear with a fixed base on the xy-plane would be described by

xnew D xo C azo

ynew D yo C bzo

znew D zo

or

2

4

xnew

ynew

znew

3

5 D

2

4

1 0 a

0 1 b

0 0 1

3

5

2

4

xo

yo

zo

3

5 :

Note that neither the base nor the height changes under either transformation. Visualizing these transformations dy-

namically as one shape morphing into the other provides insight for many students as to why area and volume are

preserved under shear transformations.

GSP Demonstration of Proposition I-37

1. Create a line segment AB in GSP. This will be the (fixed) base of the triangle.

2. Construct a point P not on AB .

3. Construct a line parallel to AB through P . Label this linem. Hide point P . This creates a parallel to the base of

the triangle.

4. Construct a pointC on m. Construct segments AC and BC . This creates the triangle�ABC .

5. We now wish to measure the area of the triangle�ABC :

(a) Highlight the vertices A;B; C .

(b) Construct the interior of the triangle (and leave it highlighted).

(c) Measure the interior of the triangle.

The demonstration is now set up. Just slide the point C along the line m, noting that the area of the triangle does

not change. An example of this demonstration is shown in Figure 7.10.

Figure 7.10. Shearing a triangle with geometry software
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Nets for Dissecting a Pyramid

The nets in Figure 7.11 can be used to construct a three-dimensional version of Euclid’s dissection for a triangular

prism. The nets can be enlarged and printed out on different colored cardstock, then cut, folded and taped into the

pyramidsD-ABC , C -DEF , and D-BCE .

A

B

C

D

D¢

D²

D¢

D²

D

B

C

E

C¢

C²

C

F

D

E

Figure 7.11. Nets for constructing prism ABCDEF

If constructed carefully, the three pyramids can be assembled into a right triangular prism. (Pyramid faces with the

same mark will align on the interior of the prism.) Once students are convinced that the three pyramids can indeed

be used to create a prism, we can explore their volumes. Choose two of the pyramids and identify congruent bases.

Set each on its base and compare heights. Have students use the pyramids to follow along with Euclid’s proof of

Proposition XII-7.

The pyramids can also be used motivate some geometry review. Here is a sample of some of the types of problems

that may be presented to students.

1. Using a ruler for measurements, determine the volume of the prism and each pyramid.

2. Given the lengths of the sides of4ABC and the length of AD, determine the length of each pyramid edge.

3. Are any of the pyramids in the dissection congruent? If not, under what conditions (if any) could we have two

congruent pyramids? Three?

4. Which pyramid has the greatest surface area? The least?

5. Construct nets for pyramids that can be assembled to create a prism with an equilateral triangle for its base.

6. Use the prism constructed in problem 5 above to help determine the volume of a regular tetrahedron.
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8
The Mathematics of Measuring Time:
Astronomical Timekeeping and the
Sinking-Bowl Water-Clock in India

Kim Plofker
Union College

8.1 Introduction

In today’s world of electronic clocks and universal calendars, it’s easy to forget how important mathematics used to

be just for the fundamental task of figuring out what time it was. The standard rigorous approach to the problem

involved applying trigonometry to observed positions of the sun or the stars, as described below (“In the Classroom”).

But several simpler methods were also developed for use when observations were unavailable or calculation was

unappealing. One such practical device was the sinking-bowl water-clock, used for many centuries in India. Students

(and teachers) will be impressed by how easy such a clock is to construct and adjust, and how much mathematical

labor it can save.

This activity and discussion can be used as part of a module on trigonometry. A more advanced class in calculus

may be interested in the theoretical modeling of water-clock construction, and especially in comparing the real mathe-

matics of water-clock design with the artificial assumptions made in typical “related rates” problems about filling and

draining water tanks. The construction and testing of the sinking-bowl model can take as little as ten or fifteen min-

utes (depending on the length of its period): exploring the trigonometry of time-telling may involve fifteen or twenty

minutes more.

8.2 Historical Background

Any water-clock (or “clepsydra”, Greek for “stealing water”) works on more or less the same principle as an hourglass:

it measures a fixed period or interval of time by means of a substance flowing through a hole in a container, and at the

end of that interval it must be reset manually to measure another period of the same length. But instead of containing

sand flowing through a tube between two glass bulbs, the sinking-bowl water-clock is an open metal bowl with a small

puncture at the bottom, which is set afloat in a larger vessel full of water. The water seeps into the bowl through the

hole, and after a certain interval the bowl becomes filled with water and sinks to the bottom of the larger container.

The clatter of the bowl on the bottom of the container acts like a timer alarm to announce that the interval is up. At that

55
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point, whoever has the job of “clock-watcher” has to fish the bowl out of the water, empty it, and set it on the surface

again to measure another interval.1

Indian use of water-clocks of the sinking-bowl variety is first definitely attested in texts from the early first millen-

nium of this era.2 The Indian clepsydras conventionally measured an interval equal to the time-unit called a ghat.ikā

(from ghat.a, “water-jar”), namely one-sixtieth of a day or 24 minutes. Since the bowl wasn’t graduated with mark-

ings to measure smaller sub-intervals, the technical requirements for its construction were pretty simple: make an

appropriately-sized hole in the bottom of an appropriately-sized bowl so that it takes just 24 minutes to fill with water

and sink.

The construction of the sinking bowl would probably always have involved some trial and error to get the size of the

hole right. But some Indian treatises attempted to provide more exact specifications about the bowl’s size and weight

and the size of its hole. Usually, the desired diameter of the hole was stated as equal to the thickness of a pure gold

wire of a given length made from a given weight of gold, as in the following description from an eighth-century text:

The bowl, which resembles half a pot: : :, which is made of ten palas of copper, which is half a cubit: : :

in diameter at the mouth and half: : : as high, which is evenly circular, and which is bored by a uniformly

circular needle, made of three and one-third mās. as of gold and of four [finger-breadths] in length, sinks into

clear water in one ghat.ikā. [15, p. 305]

To the best of my knowledge, such descriptions may represent some of the earliest surviving attempts in mathematical

treatises to provide technical specifications for timekeeping mechanisms. Unfortunately, the extant examples vary so

widely in the measurements they state that it is hard to believe that they served any real practical purpose. The most

famous of medieval Indian mathematicians, the renowned twelfth-century scientist Bhāskara, didn’t bother with quan-

titative specifications at all, remarking merely, “The duration of a day and night divided by the number of immersions

[of this bowl] gives the measure of the water clock” [15, pp. 303–307].

The Indian sinking-bowl water-clock is best known in the realm of general history of mathematics not for its design

or its historical development, but for a legend that associates it with a famous Indian mathematical textbook.3 This

textbook, composed in Sanskrit by the above-mentioned mathematician-astronomer Bhāskara and named by him the

Lı̄lāvatı̄ (a feminine adjective meaning “beautiful” or “playful”), is widely thought to have been named for a girl or

woman whom Bhāskara addresses at some points in the text. In 1587, a courtier of the Emperor Akbar translated the

Lı̄lāvatı̄ into Persian, adding a Persian preface that included the following story (which does not appear anywhere in

the original text or known commentaries of the Lı̄lāvatı̄):

Lilawati was the name of the author’s (Bhascara’s) daughter, concerning whom it appeared, from the qual-

ities of the Ascendant at her birth, that she was destined to pass her life unmarried, and to remain without

children. The father ascertained a lucky hour for contracting her in marriage, that she might be firmly con-

nected, and have children. It is said that when that hour approached, he brought his daughter and his intended

son near him. He left the hour cup on the vessel of water, and kept in attendance a time-knowing astrologer,

in order that when the cup should subside in the water, those two precious jewels should be united. But, as

the intended arrangement was not according to destiny, it happened that the girl, from a curiosity natural to

children, looked into the cup, to observe the water coming in at the hole; when by chance a pearl separated

from her bridal dress, fell into the cup, and, rolling down to the hole, stopped the influx of the water. So the

astrologer waited in expectation of the promised hour. When the operation of the cup had thus been delayed

beyond all moderate time, the father was in consternation, and examining, he found that a small pearl had

1The sinking-bowl design is a variant of the so-called “inflow” type of water-clock, as distinct from the “outflow” variety which consists of a

large graduated container with a hole at the bottom from which water flows out. In an outflow clepsydra, the passage of time is measured by the

amount of water remaining in the container.
2The outflow water-clock, on the other hand, had been known in India much earlier, at least from the middle of the first millennium BCE. It

may have been adopted there from Babylonian examples via transmission within the Achaemenid Empire [12]; outflow water-clocks had become

common in both Mesopotamia and Egypt by the early second millennium BCE [13, p. 148], [10, pp. 38–39]. It is not clear exactly when and where

the sinking-bowl inflow clock originated; there are some inconclusive indications that it was used in Mesopotamia in the Neo-Assyrian period (late

tenth to late seventh centuries BCE) [3, pp. 119–120], or it may have been an Indian invention. In any case, it became the standard timekeeping

device of medieval and early modern India [14, pp. 241–243], [15, p. 302].
3I am indebted for much of the material in the remainder of this section to a paper written in 2002 by E. Allyn Smith, then an undergraduate

student in a course I taught at Brown University, who co-authored with me the presentation “The Mathematics Textbook and the Disappointed

Daughter: History of a Mathematical Urban Legend”, given at the AMS/MAA Joint Mathematics Meetings on 17 January 2003 in Baltimore.
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stopped the course of the water, and that the long-expected hour was passed. In short, the father, thus disap-

pointed, said to his unfortunate daughter, I will write a book of your name, which shall remain to the latest

times: : : [8, vol. 2, pp. 177–178]

The eagerness with which later historians adopted and modified this story, on the basis of this one dubious account

occurring in a translation some four centuries later than the original, should be a warning to all mathematics teachers

looking for historical tidbits to brighten up a lesson plan! The following quotes contain versions found in a few general

histories of math published in the twentieth century:

[T]he name in the title is that of Bhaskara’s daughter who, according to legend, lost the opportunity to marry

because of her father’s confidence in his astrological predictions. Bhaskara had calculated that his daughter

might propitiously marry only at one particular hour on a given day. On what was to have been her wedding

day the eager girl was bending over the water clock, as the hour for the marriage approached, when a pearl

from her headdress fell, quite unnoticed, and stopped the outflow of water. Before the mishap was noted, the

propitious hour had passed. [2, p. 244]

According to the tale, the stars foretold dire misfortune if Bhaskara’s only daughter Lilavati should marry

other than at a certain hour on a certain propitious day. On that day, as the anxious bride was watching the

sinking water level of the hour cup, a pearl fell unknowingly from her headdress and, stopping the hole in

the cup, arrested the outflow of water, and so the lucky moment passed unnoticed. [5, p. 185]

Bhaskara was celebrated as an astrologer no less than as a mathematician. He learnt by this art that the event

of his daughter Lilavati marrying would be fatal to himself. [1, p. 158]

Note how the nature of the prophecy changes in the different retellings, and also how the clearly described sinking-

bowl water-clock of the original Indo-Persian narrative has been transformed into the more familiar outflow clock in

the modern versions. (Some forms of the story recently appearing on the Internet carry the transformation even further

by making the clock into a sand-filled hourglass!)

In fact, it is quite plausible that this sad tale of a malfunctioning water-clock and a doomed marriage was simply

a current urban legend of the time that became attached to the name of the famous Bhāskara. A variant version

appearing in an Indian story composed in 1600, nearly contemporary with the Persian translation of the Lı̄lāvatı̄, tells

of a Hindu priest setting up a water-clock for a marriage ceremony at which he was to officiate, with his forehead

ritually ornamented with a decoration of uncooked rice grains and saffron paste. In this version, it was not one of the

bride’s pearls but one of the rice grains on the priest’s forehead that fell unnoticed and blocked up the hole in the

sinking bowl [15, pp. 314–315]. It would be interesting to see how far back this motif extends in medieval or early

modern Indian literature, but at present the evidence for accepting it as a reliably reported event in the life of Bhāskara

seems flimsy.

8.3 In the Classroom

In India as elsewhere, before the modern period, the gold standard of time measurement was astronomical observation

and calculation. The periodic apparent motions of the sun, despite their slight irregularities, were far more constant

and reliable than even the most carefully crafted hourglass or water-clock. Ultimately, the ability to test and calibrate

any non-astronomical timekeeping device depended on understanding the relationship between the passage of time

and the position of the sun, which required some rather elaborate mathematics.

The everyday concept of telling time imagines the sun going around the earth. When the sun appears to be rising in

the east, we say it’s early morning, and when we see the sun sinking low in the west, we know the end of the day is

near. A complete day is considered to be the time interval between two successive occurrences of the same position

of the sun with respect to the observer: e.g., the interval from one noon to the next (when the sun is visible on the

meridian arc extending between the north and south points of the horizon), or as we now demarcate days, from one

midnight to the next (when the sun is on the meridian circle but below the horizon).4

4This explanation ignores the difference between so-called “true solar” time measured by observed positions of the sun, in which some days are

slightly longer than others due to small periodic variations in the earth’s motion, and “mean solar” time in which the day has a constant length equal

to the average value of the true solar day. All our modern standard time units are based on mean solar time.
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The constantly cycling solar positions that we see, of course, are produced by the daily rotation of the earth. As

our planet spins, what we see as the sphere of the heavens all around us appears to spin about an axis passing through

the north and south celestial poles. Both the sphere and the axis are obliquely bisected by the circular plane of our

horizon, shown in Figure 8.1 as circle NESW passing through the four cardinal direction points, and centered on the

observer’s location O . If we imagine a great circle on this sphere ninety degrees away from the poles—the so-called

“celestial equator”—we can think of it as marked with a scale of 360 degrees, called “time-degrees”, whose continual

rising and setting measures the flow of time. (The visible half of the celestial equator is shown as semicircle
‚ ƒ

EMW in

the figure; the north celestial pole is the point P on the celestial sphere and the zenith directly overhead is point Z.)

Thus if a 360ı rotation of the celestial equator constitutes one day, the rising or setting of one degree along the equator

takes 1=360 of a day, or four minutes.5

S

M

Z
P

N

W

E

O

Figure 8.1. The celestial hemisphere above the observer’s horizon for a location north of the equator.

The simplest form of the problem of telling time occurs on the day of an equinox, when the apparent daily path of the

sun coincides (more or less) with the celestial equator. On that day, the sun will appear on the horizon at the east point

E , and approximately follow the half-circle of the equator
‚ ƒ

EMW till it sets in the west atW . In this case, knowing the

length of the time interval between two given moments during the day requires finding the extent of the equatorial arc

that the sun has traversed in the sky in the meantime. The size of the arc tells us directly how many time-degrees (each

equivalent to four minutes of time) have passed in that interval. But figuring out even this straightforward task requires

the timekeeper (who was usually a practicing astronomer) to be competent in basic geometry and trigonometry, as the

following demonstration shows.
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Figure 8.2. Similar triangles relating solar altitude to time.

Consider the example pictured in Figure 8.2, where the altitude of the sun above the horizon is observed from O

sometime in the morning at point T and later at noon at point M . What was the time of the initial observation at T ?

In other words, how much time had elapsed between sunrise and the moment of the first observation? To find out, we

have to determine the size of the time-arc
‚ ƒ

ET between the sun’s first appearance on the horizon at E and its arrival at

T .

We find the answer by first computing the sines of the observed altitudes of the sun at the positions T and M . We

can then imagine dropping perpendicular lines T U and ML from the equator to the plane of the horizon at those

5We are making another simplification here by ignoring the difference between solar time—measured by the apparent motion of the sun—and

sidereal time, which is measured by the apparent motion of the stars which seem to be fixed on the celestial sphere. Actually, the sun appears not

only to spin westwards every day along with the heavenly sphere but also to shift its position slightly eastwards against the background of fixed stars

(at the rate of about one degree per day). So during a full revolution of the sun through 360ı , the stars have revolved only about 359ı , meaning

that a solar day is about four minutes shorter than a sidereal day. For the purposes of this discussion, though, we will consider the sun to be fixed

with respect to the stars, so that one revolution of the sun and one revolution of the celestial equator mean the same thing.



8.3. In the Classroom 59

positions. Those perpendicular lines will be proportional to the sines of the corresponding altitudes:

sin.altitude at T /

T U
D sin.altitude at M/

ML
or

sin.altitude at T /

sin.altitude at M/
D T U

ML
(8.1)

Now let us picture T U andML as the vertical legs of two similar right triangles T V U and MOL, whose bases in the

plane of the horizon are perpendicular to the east-west line EVOW . (The right triangles are similar because the acute

angle in each of them is the same: namely, the angle between the plane of the horizon and the plane of the celestial

equator.)

The triangle hypotenuses TV andMO lie in the plane of the equator. They are proportional, respectively, to the sine

of the desired time-arc
‚ ƒ

ET and the sine of the quarter-circle
‚ ƒ

EM or 90ı, allowing us to express
‚ ƒ

ET solely in terms of

T V and MO , as follows:

sin.
‚ ƒ

ET /

T V
D sin.

‚ ƒ

EM/

MO
D sin.90ı/

MO
D 1

MO
; so sin.

‚ ƒ

ET / D T V

MO
(8.2)

We don’t know the lengths of the hypotenuses TV and MO . But we can use the similarity of the two right triangles

to express the ratio T V=MO in terms of the ratio of the corresponding vertical legs T U and ML, which we found

previously:

sin.
‚ ƒ

ET / D T V

MO
D T U

ML
D sin.altitude at T /

sin.altitude at M/
(8.3)

In other words, the timekeeper wishing to know the time when the sun was at T just needs to find the ratio of the

sines of the arcs from the two altitude observations, take the arcsine (in degrees) of the result, and convert it to minutes

of time by multiplying by 4, and the job is done.

A closer look at Figure 8.1 will reveal that in fact, the equinoctial noon altitude
‚ ƒ

MS is just the complement of

the observer’s terrestrial latitude
‚ ƒ

PN (because
‚ ƒ

PM D 90ı and
‚ ƒ

ZS D 90ı, so
‚ ƒ

PZ , the complement of the latitude,

equals
‚ ƒ

PM �
‚ ƒ

ZM D
‚ ƒ

ZS �
‚ ƒ

ZM D
‚ ƒ

MS ). So a timekeeper who knows the value of the local latitude could just plug

in the latitude complement in place of the solar altitude at M in equation 8.3, without bothering to wait for a noon

observation. For example, imagine that the terrestrial latitude is 40ı (approximately correct for, say, Philadelphia), and

the sun is observed on an equinox morning at 30ı altitude above the horizon. Then the time of the observation is easily

found as
‚ ƒ

ET D arcsin

�

sin.30ı/

sin.50ı/

�

� 40:75ı � 163 minutes; (8.4)

or 2 hours and 43 minutes after sunrise.

On a non-equinoctial day, though, the task is harder: the sun’s apparent westward path in the sky is not the celestial

equator itself but some small circle parallel to the equator, so some more laborious spherical geometry and trigonom-

etry are needed. And at night, of course, the sun is not available for observational purposes at all, so the astronomer

would have to use measurements of a star with known celestial coordinates instead. (See a text on the history of

mathematical astronomy such as [4] for detailed explanations of how time is computed in these more complicated

situations.)

Ancient astronomers simplified their timekeeping calculations by designing instruments based on geometric pro-

jections of the celestial sphere, which allowed time measurements to be read directly off a graduated scale. These

instruments are what we now call sundials, which have a shadow-casting gnomon attached to a calibrated plate. (Time-

keeping instruments constructed for nighttime use, which also depend on the mathematics of spherical astronomy, are

known as nocturnals or moondials; the ancient instrument called the astrolabe is a more elaborate general-purpose

mechanism, usable during both night and day, that works on the same trigonometric principles.) But what is the poor

astronomer supposed to do when it’s cloudy or raining? Because the celestial bodies aren’t always visible, it’s neces-

sary to have some kind of timekeeping device that doesn’t depend on astronomical observation. Hence, the persistent

importance of the water-clock.

As noted in the previous section, the sinking-bowl water-clock measuring one fixed-length time interval is a fairly

simple device, and can be constructed and calibrated quite easily by trial and error. Take a cylindrical metal can which
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Figure 8.3. A can with a hole punched in the bottom makes an adequate sinking-bowl water-clock.

will float on its bottom without tipping over (such as a tuna-fish or cat-food can, or a sawed-off juice or soup can), and

punch a hole in the bottom of it as illustrated in Figure 8.3. Set it on a vessel of water and compare the time it takes to

sink with the desired time interval you want your clepsydra to measure. If the can fills up too slowly, enlarge the hole

in the bottom; if it fills too quickly, partially cover the hole with waterproof adhesive tape.

Alert students may wonder how the instrument could have been calibrated if there were no accurate clocks to

measure its sinking rate against. This is where the astronomer comes in again, using a sundial gnomon to mark the

passage of the desired time interval. As a seventh-century Indian text explains,

The more accurate method is to measure the ghat.ikā by marking the shadow of one ghat.ikā, cast by a

gnomon of specified shape that has been set up on level ground. The perforation in [the bowl of] the water-

clock should be made skilfully according to the period measured by the shadow. [15, p. 309]

So ultimately, the mechanism of the water-clock still depends on the astronomical determination of time-units, al-

though once the clock is properly calibrated it can operate independently of the celestial cycles.

Students might be asked to compare the work involved in the time calculation shown in equation 8.4 with the effort

required to measure the same interval with their sinking-bowl water-clock. How many times would they have to re-set

the bowl between sunrise and the desired time 2 hours and 21 minutes later? Considering the delay caused by fishing

the bowl out of the water to re-set it each time, would the water-clock be likely to give an accurate measurement for

the total interval? (Note that a sinking bowl with a longer period would be more accurate and less fussy to use, but

would take more time to calibrate to a desired time-interval.)

8.4 Taking It Further

Filling or emptying a reservoir of water is a common “real-world” application of calculus methods. Many related-rates

problems in differential calculus blithely assume that water is flowing into or out of a tank at some constant rate. A few

chapters on, problems in integral calculus demand the computation of the amount of work required to pump a given

volume of water out of a container with a given shape. But the operation of a water-clock depends on the mathematics

of how water really behaves when flowing through a container.

An ideal water-clock would be what is called a “linear clepsydra”, measuring time at a constant rate via gradations

showing linear differences in the height of the water within it. Unfortunately, getting water to drain from a reservoir

at a constant rate is by no means so simple as the related-rates problems pretend. Real-world water flows through an

opening at a rate determined partly by the depth of the water above the opening, so an outflow water-clock drains more

slowly as its water level decreases.

Ancient timekeepers didn’t try to model this phenomenon theoretically, focusing instead on empirical calibration of

individual instruments. But as new mathematical methods developed in the early modern period, scientists began to

apply them to a variety of physical problems, including some in the area we now call hydrodynamics, or the behavior

of moving liquids. Following Galileo’s pioneering work on the speeds of falling bodies under gravity, Evangelista

Torricelli in the mid-seventeenth century came up with a relation between the velocity v of water flowing through a

pierced container and the height h of the water level above the hole that became the modern “Torricelli’s theorem”

[10, pp. 42–43]:

v2 D 2gh (8.5)

where g is, as usual, the acceleration due to gravity.
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This formula neglects issues of turbulence, viscosity, compression, temperature, and so on which make a complete

analytical solution very problematic. But for the purposes of this discussion we can take it to be more or less the case

that the water’s velocity v is proportional to the square root of h. So for any two given water-levels h1 and h2, the

relationship between the corresponding velocities v1 and v2 will be given by

v1

v2

D
p
h1p
h2

D c1; (8.6)

where c1 is some constant. Then if we want the velocity and consequently the rate of flow—i.e., the change in volume

with respect to time,
dV

dt
—to be linear, the above relation gives

p
h D c1v D c1c2

dV

dt
D c1c2

dV

dh
� dh
dt
; (8.7)

where c2 is some other constant relating the linear velocity and flow rate. But if the clepsydra is linear, as we specified

for our ideal clock, then the change
dh

dt
of the water level with respect to time is also a constant. And if its shape is

some solid of revolution, then its rate of change of volume
dV

dh
is a circular slice of area �r2 where r is the radius of

the container at the height h. Consequently, the square root of the height is linearly proportional to the square of the

corresponding value of the container radius, and the height itself likewise is proportional to the fourth power of the

radius:
p
h D c1c2

dh

dt
� r2 or h D

�

c1c2

dh

dt
�

�2

r4: (8.8)

So a linear outflow tank should really have the shape of a “higher-order paraboloid”, specifically a quartic curve [10,

pp. 39–47], rather than the cones and cylinders that show up in calculus textbooks.

An alternative is to keep the rate of outflow constant by keeping the water level in the pierced container constant

(e.g., if it is constantly refilled by a stream or fountain) and using this constant flow as the linear inflow of a second

container, with no hole. Then the water level in the second container will rise linearly with time. A cylindrical sinking

bowl in a larger vessel with a constant water level, like the pierced can described in the previous section, will also fill

with water at a constant rate [10, p. 40].

8.5 Conclusion

Measuring time astronomically takes a lot of complicated trigonometric calculation. Measuring time mechanically

takes a lot of careful calibration and testing. In either case, the importance of mathematics in timekeeping—and the

extent to which the basic mathematics required is accessible to students of calculus and precalculus—may surprise and

intrigue today’s students, for whom telling time usually means nothing more than reading numbers off a clock face.

Constructing a simple sinking-bowl water-clock and comparing it with trigonometrically accurate methods of mea-

suring time will bring home to them how vital a knowledge of mathematics is in truly understanding this formerly

routine experience. More advanced students dipping a cautious toe into the calculus of fluid dynamics will gain re-

spect for the complexity of the mathematics operating at a slightly deeper level in the functioning of water-clocks.

And the often mysterious narrative of the history of this simple instrument will teach students (and their instructors)

respect for the passage of time in a different sense, as they realize how much we still don’t know about the history of

mathematics, where many of the “facts” in our standard textbooks are merely oft-repeated ignorance.
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9
Clear Sailing with Trigonometry: Navigating the

Seas in 14th-Century Venice

Glen Van Brummelen
Quest University

9.1 Introduction

Does anyone care about trigonometry? Certainly many of our students don’t, aside from the exigency of getting

through their exams. As mathematics teachers, we have passion for our subject for its own sake — but we often justify

ourselves to our students in terms of what the mathematics can accomplish elsewhere. For trigonometry as for many

other topics, this takes the form of the widespread “word problems”: how high is that pine tree across the street? How

far did that motorboat travel when it went across the lake? And here we reach a crucial pedagogical problem: few of

us really care precisely how tall the tree is, or how far the boat went. We find ourselves forced into producing “baby”

problems like these with little real relevance, assuring our students (with fingers crossed behind our backs) that the

genuine applications — too complex for their immature minds — hopefully work kind of like these ones do.

Meaningful contexts are surprisingly hard to find. Some pedagogical efforts are searching for realistic classroom-

friendly projects, and are having some success. However, one source that might easily be overlooked is the history of

the subject. Two thousand or more years of human experience is a powerful resource on which to draw. Mathematical

subjects arise for good reasons, and bringing these reasons to light can motivate more honestly what otherwise might

appear dull, even deceptive in its fake “applications”. Trigonometry, for instance, came into being over 2100 years ago

not to determine the heights of trees or distances across lakes, but rather to quantify the motions of the Sun, planets,

and other heavenly bodies. This was immediately useful for a number of reasons, among them the need for farmers to

have reliable calendars to schedule their crops, and the crucial business of predicting the future through astrology so

that rulers knew when to go to war.

In fact, trigonometry was a branch of astronomy for over 1,000 years. It found some use in mathematical geography

especially in the medieval period, but it was not until the Renaissance and later that there arose good new reasons to

fill our children’s education with triangles. As the Age of Exploration took hold, the need to find one’s way across

a featureless ocean became critical — not just for discovery, but also for reasons of trade. The importing/exporting

community was growing dramatically, and safe passage meant safe profits. But oddly enough, the first known use

of trigonometry in navigation (or, indeed, anywhere outside of astronomy and geography) happened well before the

Age of Exploration, in an isolated circumstance centuries earlier. This episode provides a meaningful context for

trigonometry that could both deepen and enliven the experience of students in trigonometry or precalculus courses, at

the high school or early undergraduate level.

63
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Figure 9.1. The windrose, depicted in Peter Apian’s Cosmographia (1574). (Image reproduced with permission of

Leen Helmink Antique Maps & Atlases, www.helmink.com)

www.helmink.com
http://www.helmink.com
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9.2 Historical Background

The Republic of Venice, at the northern end of the Adriatic Sea in northeast Italy, was a potent political force through

most of the medieval period. Much of its power derived from its position at the center of a large network of seafaring

mercantile trade. With over 3,300 ships at its peak, the Venetian enterprise plied shipping routes that extended across

not just the Mediterranean, but the Black Sea as well. Clearly any technological edge in nautical affairs would be

of great commercial value. These included the marine chart, which was revolutionary in its accurate portrayal of

coastlines; and the portolan, a written description of distances, directions, and local landmarks [10, pp. 5–11]. Venetian

navigators kept track of their knowledge of the technical side of seafaring in personal notebooks, several of which

survive today. In some of these notebooks we find an even more remarkable navigational method, called the marteloio,1

which turns out to be essentially a primer of basic trigonometry and an accompanying set of trigonometric tables. This

gives teachers a unique pedagogical opportunity: the marteloio provides a fascinating historical motivation to study

trigonometry, one that is completely genuine, and yet is accessible to beginning students.

Where the marteloio came from is anybody’s guess.2 Seafarers had the run of the coasts of the civilized world, which

admits several possibilities. Scholars in Spain, the Middle East, and even in Italy itself were studying trigonometry

for astronomical purposes. It has been speculated that the marteloio was a product of Leonardo of Pisa’s (Fibonacci’s)

school ([7, LI–LII]), although there is no evidence to support this claim. It doesn’t seem likely that scholars and seamen

had much to say to each other generally. But someone must have put significant work into designing the marteloio,

since as we shall see its form does not match any known trigonometry. The notebooks themselves don’t help much;

they were copied from each other without concern for academic credit, so their provenance is hard to determine.

9.3 Navigating with Trigonometry

The marteloio’s difference from other trigonometric practices starts with the measurement of direction; there is no hint

of the use of degrees. Points of the compass were measured using the windrose (often called a “compass rose”), which

divides every right angle into eight parts, called “quarters” (Figure 9.1), corresponding to 11 1
4

ı
each. Early windroses

from Roman times had an apparently more natural division of the right angle into three parts of 30ı, but it is actually

easier to work out trigonometric values by dividing 90ı into a power of 2. So, in medieval times the windrose had

either 4 or 8 divisions per right angle.

The directions and the distances that boats traveled along them needed to be recorded carefully. A boat could not

sail directly into the wind, but rather had to start its approach to a windward destination by traveling in a direction

almost 90ı removed from its desired direction (the alargar; see Figure 9.2), usually advancing only slightly toward its

destination (the avanzar). The ship would then need to change its direction, again and again, eventually crawling in a

zig-zag fashion almost crab-like toward its goal.

avanzar

a
la

rg
a
r

rito
rno

avanzo de ritorno

original
heading

return
heading

Point of
departure

Destination

Turning point

Figure 9.2. Setup for the marteloio

1The origin of the word “marteloio” is uncertain. It might mean “hammering”, an idiom referring to the change of watch on a ship ([3, 40,

48–50]).
2It has been suggested that the marteloio originated in the 13th century, based on a passage in the Spanish writer Ramó Lull’s Arbre de Sciencia

(see [8, 271]; for more information on the passage see [9, 117–119], [2, vol. 1, 206–207], and [1, vol. 1, 441–442]). But Kelley disagrees, arguing

that Venice was the “center of use” of the marteloio ([3, 144–146]).
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Quarter Alargar Avanzar Ritorno Avanzar de ritorno

(distance off course) (advance) (return) (advance on return)

1 20 98 51 50

2 38 92 26 24

3 55 83 18 15

4 71 71 14 10

5 83 55 12 6 1
2

6 92 38 11 4

7 98 20 10 1
5

2 1
5

8 100 0 10 0

For every 100 miles For every 10 miles alargar

Figure 9.3 A typical toleta de marteloio.

brunelleschi.imss.fi.it/michaelofrhodes/navigate_toolkit_basics.html

To keep track of the ship’s position and direction, a small set of tables known as the “toleta de marteloio” was used.3

These tables, which varied little from one to the other (see Figure 9.3),4 gave four quantities to help the navigator know

where he was and where he should go. For instance, suppose a ship travels 100 miles from its point of departure in

a heading 6 points south of east (Figure 9.2). The alargar entry tells us that the ship is 92 miles off course, and the

avanzar shows that we have progressed 38 miles toward our goal. In modern terms, the alargar and avanzar are simply

100 times the sine and cosine of the heading.

Suppose now that the ship is able to turn and head directly for its destination, either because the wind’s direction has

become favorable or because some obstacle has been cleared. Given the direction of the destination, the ritorno tells

us how far the ship must travel to reach its destination for every 10 miles of alargar. Similarly, the avanzo de ritorno

gives the advance corresponding to the ritorno leg, along the originally intended path. So, the ritorno and avanzo de

ritorno are just 10 times the cosecant and cotangent functions.

Now, while the avanzar and alargar are eminently practical for a navigator to know, at first glance the ritorno and

avanzo de ritorno seem less useful. Wouldn’t it be more important to find the return heading than how far you need to

travel? After all, if you know which direction to face, if you head that way you are bound to get there eventually. And

in fact, the techniques of the marteloio are more sophisticated; they contain various combinations of uses of the toleta

to solve real problems. We shall work through an example from the notebook of Michael of Rhodes, one of the best

known of the surviving Venetian manuscripts.5

Suppose that we wish to travel fromA toB , a distance of 100 miles eastward (Figure 9.4), but we are forced initially

to travel in a direction ˛ D 2 quarters south of east. We decide that we will turn the ship when the direction to the

destination is ˇ D 7 quarters north of east. How far should we permit ourselves to travel along the original course

(AC ) before turning?

To answer the question, Michael instructs us to apply the following pattern of calculation:

AC D alargar.ˇ/

10
� ritorno.˛ C ˇ/: (9.1)

He does not tell us precisely what the terms in (9.1) mean, but it is clear that the alargar and ritorno are being used

more abstractly than Figure 9.2 might have indicated. For instance, our alargar is defined here with respect to ˇ rather

than the original heading ˛, so it is AD. In our case the calculation comes out to

AC D alargar.7/

10
� ritorno.2C 7/ D 98

100
� 101

5
D 9948

50
miles. (9.2)

3The actual table used by Michael of Rhodes may be viewed in the original manuscript; it is on page 48b at the site

brunelleschi.imss.fi.it/michaelofrhodes/manuscript.html.
4See [6, p. 403], which reproduces five marteloio tables differing in only a few entries.
5Michael of Rhodes’s notebook has been published recently in [5]. See also the associated web site,

brunelleschi.imss.fi.it/michaelofrhodes/.

brunelleschi.imss.fi.it/michaelofrhodes/navigate_toolkit_basics.html
From http://brunelleschi.imss.fi.it/michaelofrhodes/navigate_toolkit_basics.html
brunelleschi.imss.fi.it/michaelofrhodes/manuscript.html
http://brunelleschi.imss.fi.it/michaelofrhodes/manuscript.html
brunelleschi.imss.fi.it/michaelofrhodes/
http://brunelleschi.imss.fi.it/michaelofrhodes/
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A B

C

D

a = 2

100 miles

b = 7

a + b

alargar

Figure 9.4. A typical marteloio problem

If we convert the alargar and the ritorno back to their modern equivalents, Michael’s formula becomes

AC D 100 sinˇ � csc.˛ C ˇ/ D 100 sinˇ

sin.˛ C ˇ/: (9.3)

Now, in 4ABC , the sine of the external angle at C (labeled ˛ C ˇ in Figure 9.4) is the same as the sine of the

internal angle. So, Michael’s formula for finding AC is simply an application of the Law of Sines to angles B and C

in4ABC .

Or is it? We reach here a delicate point in interpreting historical mathematical texts. Just because a text gives a

calculation mathematically equivalent to a particular result doesn’t mean that the author is aware of it. In cases similar

to our example, the marteloio texts take two steps to arrive at their result. Here, Michael has us find alargar.ˇ/ first,

before applying the rest of (9.1). Why would he do this? The reason may be as follows: drop a perpendicular AD onto

BC . Then, since the hypotenuse AD of 4ABD is equal to 100 miles, AB is equal to the alargar of ˇ. Next, look at

4ACD. If we assume that AD is 10 miles, then AC D ritorno.˛ C ˇ/. But of course AD is not 10 miles, so we

need to do a bit of rescaling:
alargar

AC
D 10

ritorno
: (9.4)

This unit conversion, known as the Rule of Three,6 was popular both in mathematics and in trade. If we solve (9.4) for

AC , we arrive immediately at (9.1).

The unknown inventor of the marteloio, faced with a situation where the Law of Sines might be used, always goes

through the process of breaking the triangle into two pieces and solving them separately. If he had codified the result

and applied it in one fell swoop, we might have reason to credit him with the Law of Sines. All we can say here is that

he knew what to do in these circumstances using elementary trigonometry, but not explicitly the Law of Sines.7

The question remains whether seamen of Michael’s time were up to the mathematics required to implement the

marteloio. The principles of decimal arithmetic had been introduced to Europe in the early 13th century by Leonardo

of Pisa (Fibonacci) in the Liber abaci [4], so the calculations might have been accessible. A related manuscript by

Pietro de Versi (now known to be written by Michael of Rhodes) says: “This is the raxion called del marteloio for

navigating mentally . . . This is done by an artful method for the man who may have the intellect to learn and who might

take pleasure in learning the theory.” This might imply that the marteloio was more for mathematical pleasure than

for use at sea ([3, 150]). But the existence of a number of marteloio tables in the manuscripts seems to give reason to

award the Venetian navigators a little more credit than that.

9.4 In the Classroom

Instructors in elementary trigonometry might find in the marteloio a fascinating narrative to follow when developing

both the sine/cosine and the more advanced functions — with the crucial advantage that this technique probably was

6The Rule of Three is essentially the statement that if a=b D c=x (where only x is unknown), then x D bc=a.
7I am grateful for conversations with Joel Silverberg that led me to this view. Kelley ([3, 43–45]) assumes that the Law of Sines is present, and

that the use of the product of alargar by ritorno (rather than the division of one alargar by another) is implemented in order to avoid division.

Obviously, we disagree.
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really used by navigators. In addition, this episode provides a surprisingly simple lead-in to the Law of Sines and its

proof, with the added interest of a meaningful question of historical interpretation. Some possible specific uses:

� The left side of Figure 9.2 provides an immediate motivation, perhaps even a method of definition, for the sine

and cosine functions as the alargar and avanzar. The sine and cosine are expressed as lengths rather than the

more common ratios, but lengths are in any case more intuitive at first exposure. The instructor may choose to set

the ship’s initial journey to one mile in length rather than 100 so that the alargar and avanzar coincide with the

modern functions; alternately students might be asked to work out the conversion. This leads directly to the Rule

of Three, which in any case is important even for modern students to learn.

� It is easy to come up with new marteloio problems to help students practice their skills. With a bit of creativity,

the marteloio tables can deal with almost every possible situation where solving a triangle is required.

� The more advanced problems involving the ritorno and avanzo de ritorno are obviously important to navigation,

and show immediately why the usually obscure cosecant and cotangent are worth thinking about.

� Michael of Rhodes’s solution of the problem given above may be seen as an implicit demonstration of the Law of

Sines. Students might fruitfully debate (either in class or in groups) the point we raised earlier: whether or not the

marteloio practitioners may be credited as being among the first people to have proved and used this important

theorem.

Included in an appendix at the end of this article is a guided classroom activity that takes students through Michael’s

solution of the marteloio problem of Figure 9.4. It assumes that the teacher has introduced the basic definitions of

Figure 9.2 and the table of Figure 9.3. The second page leads students to compare with the Law of Sines solution of

the same problem, and asks them to reach their own conclusions. Instructors may take or leave this last step of the

exercise as they choose. Here are typical responses from my test run with a class of math-phobes:

� “Although he pretty much did the same thing in terms of procedure, as the sine law would have him do, the very

fact that he approached the question with a certain mind set and would not have been able to even comprehend

the Sine law shows that he was using his own theorem.”

� “A theorem is a mathematical truth that under the given conditions will always be true. To know a theorem does

not mean that you need to quote its name; it simply means that you need to imply the ideas that it incorporates

in order to solve a problem. Using this logic, we can determine that Michael of Rhodes did in fact use the Law

of Sines. Michael may not have had the knowledge of the Law of Sines, but still implied its ideas and a similar

process. His method for solving the triangle came to the same conclusions that the Law of Sines did.”

� “Our answer to this question is predicated upon the definition of the term theorem. One viewpoint holds that

as long as two theorems always agree, with 100% accuracy, on the solution to the same problem, than the two

theories are held to be the same and the intervening steps are largely irrelevant. The other argument takes the

opposite stance, emphasizing the importance of the qualitative nature of the intervening steps and the preceding

knowledge upon which the operation is based. Following the first line of reasoning, Michael of Rhodes would be

credited as the discoverer of the Law of Sines, while according to the second argument his method would not be

considered a full explication of the Law of Sines.”

Instructors who use the marteloio in the classroom may choose to measure angles in degrees, or with the windrose.

The windrose has the advantage of authenticity, but it introduces the complication of another angular measure.

9.5 Conclusion

Our students will not be navigating ocean trade routes any time soon using the marteloio. But they can at least repro-

duce a technique that was actually used to traverse the seas in the 14th century. This unit allows instructors to replace

the simplified, obviously artificial settings in which trigonometry is usually cast with an application demonstrating im-

mediate practicality, albeit 600 years out of date. It illustrates that certain historical episodes can bring mathematical

topics to the classroom in a lively way, maintaining an authentic feel while remaining accessible to our students.
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Appendix

Michael of Rhodes: Did He Know the Law of Sines?

REQUIRED:

� Figure 9.2, the definitions of the marteloio

� Figure 9.3, the marteloio table

� Figure 9.4, Michael of Rhodes’s new problem

� For the last two questions, knowledge of the Law of Sines

Solving Michael’s Navigation Problem

Michael now needs to sail 100 miles from A to B , but he can only sail into B’s harbor at heading ˇ D 7

quarters North of East. He decides to sail first from A to C at heading ˛ D 2 quarters South of East. How

far does Michael need to sail before turning; i.e., how long is AC ?

Unfortunately our new problem doesn’t fit the diagram of the marteloio right away . . . but, if you turn your head

sideways so that BC is at the top, you can make it look just like the original! The ship may no longer be traveling

along the same side of the triangle as before, but that’s OK — the marteloio table still works.

Q1: Use the marteloio table to figure out the length of line segment AD, in miles.

Now, if you used the alargar table, you were right. The length we’re really after, AC , looks like it corresponds to

the ritorno on the original diagram. But before we use the ritorno table, we’re going to need to know what heading to

look up.

Q2: Can you work out all the angles in the diagram — in particular, †DCA?

(Hints: The angles of a triangle add up to 16 quarters. A right angle is equal to 8 quarters.)

Now compare your new, tilted diagram with the original marteloio definition diagram. It should be clear that the

return heading you need the same as †DCA.

Q3: According to the marteloio table for our heading, for every 10 miles of alargar, what’s the ritorno?

But we don’t have 10 miles of alargar; we have 98. So . . .

Q4: How long is our ritorno? This is the answer we seek — AC , the distance we must sail before changing the

boat’s heading.

Now let’s bring the whole process together by doing a similar problem with different numbers:

Q5: Now suppose that the final heading is ˇ D 5 quarters North of East, and the original heading is ˛ D 4 quarters

South of East. Now how far does Michael have to sail before changing course?

Comparing with a Modern Solution

How might we solve the problem today? You have already learned the Law of Sines . . . and this problem seems to fit

it perfectly.
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Q6: Apply the Law of Sines to Michael’s navigation problem. Do you get the same result for AC ?

OK; if you did the calculations correctly, you got the same answer. But is it the same method? Here’s an argument

that’s been made that claims that it is:

The alargar is a sort of a sine, since in Figure 9.2 it forms a kind of ratio of the opposite side of a triangle

to its hypotenuse. The ritorno is sort of a reciprocal of the sine, since it is kind of a ratio of hypotenuse to

opposite side. Therefore, Michael is effectively multiplying and dividing the sines in the same way that we

did in Question 6.

Is this a fair conclusion?

Q7: Compare your alargar/ritorno calculations of AC with your Law of Sines calculations. In what way are the

calculations the same? In what way are they different?

Given your answers so far, do you think that it’s fair to say that Michael of Rhodes knew the Law of Sines? Why or

why not?





10
Copernican Trigonometry
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10.1 Introduction

In most trigonometry courses, the instructor begins by defining the sine, cosine, and tangent of an angle as ratios of

certain sides in an appropriate right triangle. She then proceeds to calculate, using elementary geometry, the sine,

cosine and tangent of angles of 30ı, 45ı, and 60ı. But once students need to calculate the sine of 27ı, they are told

to punch some buttons on their calculators. What do students think happens when they do that? Do they imagine that

somewhere inside the calculator, someone draws a miniature right triangle with one base angle 27ı, then measures the

sides and divides? Where do these numbers come from that so miraculously appear on the calculator screen in half a

second?

Fifty years ago, no one had calculators. Then, the trigonometry texts simply told the students to consult the table

at the back of the book to find the sine of 27ı. That took a bit longer, but still, there was little in the text to show

students where those numbers came from. They just “were”. Whether one uses tables or uses calculators, it still seems

that there is a mystery in these numbers that should not exist. Most teachers certainly want their students to be fluent

in calculator use – and these are generally easier to use than tables. But still, we do not want students thinking that

calculators are magic. Someone at sometime figured out how to calculate these values and, later, someone else figured

out how to get the calculator to spit out the numbers when appropriate buttons are pushed.

Thus, I firmly believe that an introduction to trigonometry should show students where these values, in fact, come

from. Such an introduction has the additional benefit of giving some real motivation for learning some basic trigono-

metric identities as well as some of the basic properties of the sine function. The following pages provide details of

a few class lessons for the beginning of a trigonometry course that will enable students to understand how the values

of trigonometric functions were calculated initially. (These lessons do not, unfortunately, show how the calculator

calculates the numbers; that must be the goal of another set of lessons after students understand some calculus.)

10.2 Historical Background

The earliest extant source of detailed calculations of a trigonometric function is the most famous ancient text on as-

tronomy, the Almagest of Claudius Ptolemy, written in the middle of the second century C.E. in Alexandria, in Egypt.

Ptolemy was able to calculate values to approximately five-decimal-place accuracy by using geometry and an approx-

imation technique. As knowledge of trigonometry spread to India and later to the lands of Islam, other mathematicians

73
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modified and extended Ptolemy’s calculations. In particular, Indian mathematicians used various sophisticated inter-

polation methods and later methods based on power series that could calculate values of the sine and cosine functions

to as high a degree of accuracy as desired. In Islam, Abū al-Wafā (940–997) improved Ptolemy’s method to calcu-

late sine values accurate to approximately eight decimal places, while Ghiyāth al-Dīn al-Kāshī (d. 1429) developed

an approximation technique that could give accuracy to more than fifteen decimal places. Rather than study any of

these works, however, it will be easier to look at the trigonometric calculations of Nicolaus Copernicus (1473–1543)

that appeared in his 1543 work,On the Revolutions of the Heavenly Spheres[1], the work that introduced heliocentric

astronomy to Europe. Copernicus was probably not aware of any of the trigonometric work accomplished in India or

Islam, so he modeled his work very closely on that of Ptolemy. Thus, in what follows, we will study in detail section 12

of the opening chapter of De Revolutionibus to see how Copernicus developed his table of sines by a method not very

different from Ptolemy’s own method of fourteen hundred years earlier. Whenever necessary, we will translate Coper-

nicus’s sixteenth century language into more modern language. And we provide activities and exercises for students

to attempt in the process of working through this material.

10.3 In the Classroom

Copernicus began by setting out his initial goal, “by means of the arc to determine the straight line, or chord, which

subtends the angle.”[1, p. 532] In other words, in a circle of given radius, he wanted to be able to determine the length

of the chord subtending any given arc. It will, however, be somewhat easier to modify the goal to be able to calculate

sines associated to any arc, rather than chords. To see the relationship between Copernicus’s chords and modern sines,

recall that the sine of an acute angle � in a right triangle is defined to be the ratio of the leg opposite the angle to the

hypotenuse of the triangle. In Figure 10.1, this means that sin � D a
c

. We know that this ratio is the same no matter

what size the triangle, for any two right triangles with the same acute angle will have the same ratio of the opposite

side to the hypotenuse. On the other hand, the chord of � , where � is a central angle in a circle, is the line in the

circle subtending the angle � . To connect the chord with the sine we draw a circle of radius 1, with � a central angle,

and draw the right triangle AOB as in Figure 10.2. In triangle AOB , we have sin � D AB
OA
D AB

1
D AB: Then the

chord AE subtending the angle 2� is twice the length of the line equal to the sine of � . This fact provides the basic

relationship between modern trigonometry and the work of Copernicus:

sin � D 1

2
crd 2� or crd � D 2 sin

�

2
:

Furthermore, it will prove convenient to define two other functions of angle � , the cosine and the tangent. The

cosine of � , written cos � , is the ratio of the leg adjoining the angle to the hypotenuse. Also, we define the tangent

of � , written tan � , to be the ratio of the leg opposite the angle to the leg adjoining the angle. In Figure 10.1, we have

a

b

c

q

Figure 10.1.

A

B D

E

O
q

tan q

sin q

cos q
chord 2q

C

Figure 10.2.
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cos � D b
c

and tan � D a
b

. Both of these functions may also be represented in a circle of radius 1. Namely, in Figure

10.2, since cos � D OB
OA
D OB

1
D OB , the length OB is equal to the cosine of the angle � . Also, in right triangle

OCD, we have tan � D CD
OD
D CD

1
D CD, and so the tangent of � is given by the length of the line CD. Thus, each

of the three basic functions of the angle � are represented as lines connected to a circle of radius 1.

There are a few basic relationships among the sine, cosine, and tangent that we can see from the definition. First,

we know from the Pythagorean Theorem that, in Figure 10.1, a2 C b2 D c2. If we divide this equation by c2, we get

.a
c
/2 C .b

c
/2 D . c

c
/2, an equation which can be rewritten in the form

sin2 � C cos2 � D 1: .1/

Second, we can rewrite the definition of the tangent as follows: tan � D a
b
D a=c

b=c
, or

tan � D sin �

cos �
: .2/

Third, if � is an acute angle in a right triangle, then the other acute angle is 90 � � . Again using figure 1, we see that

sin.90 � �/ equals the ratio of the leg opposite 90 � � to the hypotenuse. This means that sin.90 � �/ D b
c

. But this

ratio is equal to the cosine of � . Therefore

sin.90 � �/ D cos �: .3/

This equation explains the name “cosine”, for the cosine of an angle is equal to the sine of the complement of that

angle. Interchanging sine and cosine in this result gives us one further result:

cos.90 � �/ D sin �: .4/

Finally, since the tangent of 90 � � equals the ratio of the leg opposite that angle to the leg adjoining that angle, we

have tan.90 � �/ D b
a

. But b
a

is the reciprocal of a
b

, the tangent of � . It follows that

tan.90 � �/ D 1

tan �
: .5/

It is now time to calculate the sine, cosine, and tangent of various angles, essentially following Copernicus’s meth-

ods. We will do so by the use of geometry, the four basic arithmetic operations, and the square root. But to perform

the basic arithmetic operations and the square root, we will use a calculator, because we know it is possible, if we had

the time, to do these calculations by hand.

We quote Copernicus’s first theorem:

The diameter of a circle being given, the sides of the triangle, square, hexagon, pentagon, and decagon, which the

same circle circumscribes, are also given.[1, p. 533]

What Copernicus meant here is that if we know the diameter of a circle, we can calculate the sides of these five regular

polygons inscribed in the circle. For our purposes, we will assume that the diameter of the circle is 2, so the radius is 1.

A side of a regular polygon of n sides is a chord subtending an angle of 360
n

degrees at the center of the circle or, alterna-

tively, twice the sine of half of that angle, or 360
2n

degrees. In particular, the sides referred to subtend angles of 120ı, 90ı,

E

60°

Figure 10.3.

60ı, 72ı, and 36ı respectively. It follows that we can calculate the sines of angles

equal to half of these angles, namely, 60ı, 45ı, 30ı, 36ı, and 18ı. We will therefore,

following Copernicus, determine the relevant sides and thus calculate these sines. Of

course, we can then use formulas 1 and 2 to calculate cosines and tangents as well.

We begin with the hexagon. (See Figure 10.3.) Since a hexagon has six sides,

each side subtends an angle of 60ı at the center of the circle. Furthermore, since a

triangle formed by any side of the hexagon and the two radii to the ends of that side

is equilateral, we know that the side of the hexagon is equal to the radius, namely 1.

It follows that the sine of 30ı is equal to half of the side of the hexagon, namely, 0.5.

We write this as

sin 30ı D 0:5:
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We can now calculate the cosine of 30ı using formula 1. We have sin2 30ı C cos2 30ı D 1: Therefore, .0:5/2 C
cos2 30ı D 1 and cos2 30ı D 1 � .0:5/2 D 1 � 0:25 D 0:75. It follows that

cos 30ı D
p
0:75 D 0:866025404:

This value comes from my calculator by using the square root button. Your calculator may give you a value with fewer

or with more decimal places. In any case, for now it will be worthwhile to keep all of the decimal places.

To calculate the tangent of 30ı, we use formula 2. We just divide sin 30ı by cos 30ı. We get

tan 30ı D 0:5=0:866025404D 0:577350269:

For future reference, you should keep a table of sines, cosines, and tangents of various angles, all carried out to the

maximum number of decimal places available on your calculator.

We move to the equilateral triangle. A side of the equilateral triangle can be formed by connecting the ends of two

adjacent sides of the regular hexagon. (See Figure 10.3.) The side subtends an angle of 120ı, so half of that line is

equal to the sine of 60ı. Since that side bisects the radius from the center to the point where the two adjacent hexagon

sides meet, we can calculate its length from the Pythagorean Theorem. We have sin2 60ı C .0:5/2 D 12: Therefore,

sin2 60ı D 1 � .0:5/2 D 1 � 0:25 D 0:75: It follows that sin 60ı is the square root of 0:75, namely 0:866025404.

This value is the same as the cosine of 30ı, calculated just before. But this is not surprising, given formula 3. That

equation tells us that

sin 60ı D sin.90ı � 30ı/ D cos 30ı D 0:866025404:

Then formula 4 tells us that

cos 60ı D sin 30ı D 0:5:

Finally, formula 5 says that the tangent of 60ı is the reciprocal of the tangent of 30ı. Therefore,

tan 60ı D 1

tan 30ı
D 1

0:577350269
D 1:732050808:

Record the values of the three functions at 60ı in your table.

Exercises

1. We now determine the side of a square inscribed in a circle of radius 1. (See Figure 10.4.) What angle do the two

radii from one side of the square make at the center of the circle?

Figure 10.4.

2. Using the result of 1 and the Pythagorean Theorem, calculate to as many decimal places as possible the length of

the side of the square inscribed in the circle.

3. Draw a perpendicular from the center of the circle to the midpoint of one of the sides of the square. What angle

does this perpendicular make with a radius drawn to the endpoint of that side?

4. Given that the sine of the angle calculated in 3 is half the length of the side of the square calculated in 2, determine

the sine of that angle.

5. Determine the cosine and tangent of the angle whose sine you calculated in 4.
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The results of the exercises should be that

sin 45ı D cos 45ı D 0:707106781

and that

tan 45ı D 1:
Record these values in your table.

We now consider the decagon, which is a bit harder than the previous three polygons. Note that the side of a regular

decagon inscribed in a circle subtends an angle of 360
10
D 36ı. So draw an isosceles triangle OBA with vertex at the

center O of the circle of radius 1, with vertex angle equal to 36ı. (See Figure 10.5.) Because the two base angles of

this triangle are equal, they are both equal to 72ı, and this triangle is a 36-72-72 triangle. We will let x be the length

of the base BA of this triangle, or the length of the side of the regular decagon. To calculate x, we draw the line BD

bisecting one of the base angles of this triangle. (See Figure 10.6.) Note that this line divides our original triangle into

two isosceles triangle. The triangle at the bottom of the figure, triangle BAD, is a 36-72-72 triangle, while the other

triangle, triangleBDO , is a 108-36-36 triangle. Since triangleBAD is isosceles, we know that BD D BA D x. Since

triangleBDO is also isosceles, we know that DO D BD D x. Finally, sinceOA D 1, we can writeDA D 1 � x.

We now use the basic principle of similarity to determine x. Since triangles BAD and OBA are both 36-72-72

triangles, they are similar. So the ratio of a leg of the first triangle to the leg of the second is equal to the ratio of base

of the first triangle to the base of the second. In other words,BA W BO D DA W BA, or x W 1 D .1�x/ W x. We rewrite

this ratio as an equation:

x2 D 1 � x or x2 C x � 1 D 0
We can now solve this quadratic equation for the positive solution:

x D �1C
p
12 C 4
2

D �1C
p
5

2
D 1:236067978

2
D 0:618033989:

We now know the length of the base of the isosceles triangleOBA. Since this base is equal to the side of a decagon and

therefore subtends an angle of 36ı, we know from our previous discussion that it is twice the sine of 18ı. Therefore,

sin 18ı D 0:618033989

2
D 0:309016994:

We can now calculate that

cos 18ı D 0:951056516 and tan 18ı D 0:324919696:

Record these values in your table, then calculate the sine, cosine, and tangent of 72ı and record these as well:

sin 72ı D 0:951056516 cos 72ı D 0:309016994 tan 72ı D 3:077683537:
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The last of Copernicus’ polygons to determine is the pentagon. The simplest way to do this is to consider two

adjacent 36-72-72 triangles OAB and OBC as in Figure 10.5. The line AC connecting the vertices A and C then

subtends an angle of 72ı at the center of the circle, so is the side of a regular pentagon inscribed in the circle. To

calculate y D AC , we note that it is bisected by radius OB . We consider right triangle AFB , where †FBA D 72ı.

The hypotenuse of this triangle isAB D x, which we have calculated above. The side opposite angle FBA has length
y
2

. By the definition of the sine, we know that the sine of angle FBA is equal to the length of AF divided by the length

of BA, That is,

sin 72ı D y=2

x
:

But we know the sine of 72ı and we also know x. Therefore,

y

2
D x sin 72ı D 0:618033989 � 0:951056516D 0:587785252:

Thus, not only do we know that the length of the side of a regular pentagon inscribed in this circle is y D 1:175570505,

but also we know that the sine of 36ı is equal to y=2. That is,

sin 36ı D 0:587785252:

Exercises

1. Using formulas 1 and 2, calculate cos 36ı and tan 36ı.

2. Use the appropriate equations to calculate sin 54ı, cos 54ı, and tan 54ı.

3. It is handy to have values for the sine, cosine and tangent of 0ı and 90ı. We cannot, however, use the original

definitions, because there is no right triangle with an acute angle of 0ı. But if in Figure 10.1 we let angle � get

closer and closer to zero, we see that side a also gets closer and closer to zero. In addition, side b approaches

side c in length. Therefore, make a reasonable definition for sin 0ı and cos 0ı. Check that your definitions satisfy

formula 1.

4. Using your values for sin 0ı and cos 0ı and formula 2, determine tan 0ı.

5. Use formulas 3 and 4 as well as the result of 5 above to determine values for sin 90ı and cos 90ı. What can you

now say about tan 90ı?

6. Make sure you now have a table of values, calculated to 8 or 9 decimal places, for sine, cosine, and tangent. There

should be values for 0ı, 18ı, 30ı, 36ı, 45ı, 54ı, 60ı, 72ı, and 90ı.

Having now developed a table for sine, cosine, and tangent of nine different angles, we want to complete the table

so that it gives values for the sine, cosine, and tangent of every angle of an integral number of degrees from 0 to 90.

We will not actually work out every angle, but we will develop the tools that would enable you to complete the table if

you wanted to. Once this is done, we will be more comfortable with allowing you to use your calculators to determine

the values of sine, cosine, and tangent when you need these to solve other problems.

We begin with Copernicus’ second theorem:

If a quadrilateral is inscribed in a circle, the rectangle comprehended by the diagonals is equal to the two

rectangles which are comprehended by the two pairs of opposite sides.[1, p. 534]

This theorem is actually due to Ptolemy, and Copernicus’s proof follows that of the ancient astronomer. But first, we

need to be sure of what the theorem says. In Figure 10.7, we have a quadrilateral ABCD inscribed in a circle, with

the two diagonals AC and BD drawn. The theorem then says that the “rectangle comprehended by the diagonals,”

that is, the rectangle whose length and width are AC and BD, respectively, is equal to “the two rectangles which are

comprehended by the two pairs of opposite sides,” that is, the sum of the rectangle whose length and width are AB and

CD and the rectangle whose length and width are AD and BC . In other words, Copernicus claimed that the product

BD � AC is equal to the sum of the two productsAB � CD and AD � BC .

The proof begins by drawing segment BE in such a way that †ABE D †CBD. If we add †EBD to both sides of

this equation, we get that †ABD D †EBC . But also we know that †ACB D †BDA, because both angles cut off
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A

B

C

D

E

Figure 10.7.

the same arc AB on the circumference of the circle. Because in trianglesBCE and BDA, two pairs of corresponding

angles are equal, it follows that all three pairs of corresponding angles are equal and the triangles are similar. Therefore

BC W BD D EC W AD, and so AD � BC D BD � EC . That is, the product of one pair of opposite sides of the

quadrilateral is equal to one diagonal times a piece of the second diagonal.

To finish the proof, we need to show that the product of the other pair of opposite sides is equal to the product of that

same diagonal with the other piece of the second diagonal. We can do that by using the similarity of triangles ABE

and CBD. That these triangles are similar follows from the equality of angle ABE with angle CBD, which is true by

construction, and of angle BAC with angle BDC , both of which cut off the same arc BC on the circumference. We

then have AB W BD D AE W CD, so AB � CD D BD � AE .

If we add the two equations we derived from the similarity conditions, we have AD � BC C AB � CD D BD �
EC C BD � AE: But since BD is a factor of each term on the right, we can rewrite the right side of this equation as

BD.EC C AE/ D BD � AC . We have, therefore, AD � BC C AB � CD D BD � AC , as desired.

We could now prove Copernicus’ third theorem:

Hence if straight lines subtending unequal arcs in a semicircle are given, the chord subtending the arc

whereby the greater arc exceeds the smaller is also given.[1, p. 534]

However, this theorem as it is written deals with calculating the chord subtending an arc which is the difference of two

given arcs. Since we are dealing with sines and cosines rather than chords, and with angles rather than arcs, it will be

better to prove the analogous result enabling us to calculate the sine of the difference of two angles if we know the

sine and the cosine of the two angles themselves. Once we know this result, we can, for example, calculate the sine of

12ı, because we know the sine and the cosine of both 30ı and 18ı.

To derive the so-called difference formula, we will use a circle of diameter 1 as in Figure 10.8. Let AD be the

diameter of the circle, †BAD D ˛, and †CAD D ˇ. Then †BAC D ˛ � ˇ. If we now connect BD, we have a

quadrilateral inscribed in a circle, along with its two diagonals. We can therefore apply Ptolemy’s theorem (Coperni-

cus’s second theorem) to this situation. Before we do so, however, we need to determine what each of the line segments

in this diagram represents in terms of sines and cosines.

First, since triangle ABD is a triangle inscribed in a semicircle, it is a right triangle. Therefore sin ˛ D BD
AD

.

But AD D 1. So BD D sin˛. Analogously, AB D cos˛. Second, triangle ACD is also a triangle inscribed in a

a-b

b
A

B C

D

C¢

a

Figure 10.8.
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semicircle, so is a right triangle. Therefore CD D sinˇ and AC D cos ˇ. We now have identified five of the six

line segments in our figure. The only one missing is the side BC of the quadrilateral. This side is opposite †BAC ,

which is equal to ˛ � ˇ. But since triangle ABC is not a right triangle, we can not use the same argument as above

to identify BC with sin.˛ � ˇ/. We need a construction to make BC the leg of a right triangle. We thus draw the

diameter CC 0 and connect BC 0. Since now triangleBC 0C is a triangle inscribed in a semicircle, it is a right triangle.

So, as before, BC D sin†BC 0C . But angles BAC.D ˛ � ˇ/ and BC 0C cut off the same arc on the circumference

of the circle, namely, arc BC . Therefore, those two angles are equal. So finally, we have BC D sin.˛ � ˇ/, and all

six line segments in Ptolemy’s theorem have been identified.

We now just substitute the values for the six line segments in Ptolemy’s theorem. Since AD � BC C AB � CD D
BD � AC , we get 1 � sin.˛ � ˇ/C cos˛ sinˇ D sin˛ cosˇ or

sin.˛ � ˇ/ D sin˛ cos ˇ � cos˛ sinˇ; .6/

the difference formula for the sine.

Let us now use this formula to determine, as promised, the sine of 12ı:

sin 12ı D sin.30ı � 18ı/ D sin 30ı cos 18ı � cos 30ı sin 18ı:

But we know the sine and cosine of both 30ı and 18ı. We therefore calculate

sin 12ı D sin 30ı cos 18ı � cos 30ı sin 18ı

D 0:5 � 0:951056516� 0:866025404 � 0:309016994
D 0:475528258� 0:267616567
D 0:207911691:

We can now calculate the cosine and tangent of 12ı: cos 12ı D 0:978147601 and tan 12ı D 0:212556562.

Of course, now that we know the sine, cosine, and tangent of 12ı, we also know the sine, cosine, and tangent of

90ı � 12ı D 78ı, by use of formulas 3, 4, and 5. We get

sin 78ı D cos 12ı D 0:978147601
cos 78ı D sin 12ı D 0:207911691

tan 78ı D 1

tan 12ı
D 1

0:212556562
D 4:70463011:

Exercises

1. Given that you know the sine and cosine of 36ı and of 45ı, calculate, using formula 6, the sine, cosine, and

tangent of 9ı.

2. Using formulas 3, 4, and 5 and the results of 1, calculate the sine, cosine, and tangent of 81ı.

3. Calculate the sine, cosine, and tangent of 6ı and 84ı, using values already calculated.

4. Given the angles for which you have already calculated the sine, cosine, and tangent, for what other angles can

you calculate these same functions using formulas 1 through 6? Determine all the possibilities, including any that

become possible once you calculate other new ones. (It is not necessary actually to calculate the sine, cosine, and

tangent; just list the angles for which it is possible using the formulas.)

To fill in the table further, Copernicus stated and proved his fourth theorem:

Given a chord subtending any arc, the chord subtending half of the arc is also given. [1, p. 535]

This result enabled Copernicus to calculate the chord of half of an arc, assuming he knew the chord of a given arc. As

before, we will adapt Copernicus’s procedure for sines. In other words, we will develop a formula that will enable us

to calculate the sine of half of an angle, assuming we know the sine and the cosine of the angle. Thus, because we can

calculate the sine and cosine of 15ı, we will be able to calculate the sine of 7 1
2

ı
. Or, because we can calculate the sine

of 3ı, we can also calculate the sine of 1 1
2

ı
.
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A

B

C

D

E

F

G

a

a
2

Figure 10.9.

You may wonder why we are calculating sines and cosines of non-integer angles, given that we wanted to calculate

the sines and cosines of all angles of an integral number of degrees. Your answer to question 4 of the exercises should

have told you that the calculations we have already done enable us to find the sines and cosines of every angle that is

an integral multiple of 3ı. By taking halves of such angles, we can only reach either other angles that are multiples

of 3ı or else non-integral angles. (Why?) So to find the sine and cosine of 1ı, for example, we will need a different

technique. That technique will, however, require the knowledge of the sine and cosine of angles such as 1 1
2

ı
.

To prove what is now known as the half-angle formula, we begin with a circle of diameter AC D 1with an inscribed

angle ˛ D †BAC . (See Figure 10.9.) Connect BC . As before, we know that BC D sin ˛ and AB D cos ˛. Choose

D to be the midpoint of arc BC cutting off the angle ˛, and draw the diameter DG and the line GB . Since the arc

BD is half the arc BC , the angleDGB is half the angle BAC . That is, †DGB D 1
2
˛. Therefore, by the definition of

sine, we know that BD=DG D sin 1
2
˛, or, since DG D 1, that BD D sin 1

2
˛.

To develop a formula for sin 1
2
˛, we want to find a relationship among the line segments BD, BC , and BA. Let

F be the point of intersection of DG with BC . Since GD bisects arc BC and therefore line BC , we know from

properties of circles that GF is perpendicular to BC . That is, triangle EFC is a right triangle with right angle at F .

But then triangleABC is similar to triangleEFC , because these two right triangles share a common angle. Therefore,

since CF D 1
2
CB , it follows that EF D 1

2
AB D 1

2
cos˛, and, since ED D 1

2
, that DF D 1

2
� 1

2
cos˛. We know

also that BF is the altitude from the right angle of triangleGBD to the hypotenuse. Therefore triangleBDF is similar

to triangle BDG, so GD W BD D BD W DF , or BD2 D GD �DF . If we substitute for each of these line segments

the values we have determined, we get

sin2 1

2
˛ D 1 �

�

1

2
� 1
2

cos˛

�

:

We rewrite this in the form

sin
1

2
˛ D

r

1 � cos ˛

2
: .7/

Formula 7 is referred to as the half-angle formula for the sine function. We can calculate a similar half-angle formula

for the cosine by applying formula 1:

cos2 1

2
˛ D 1 � sin2 1

2
˛ D 1 �

�

1

2
� 1
2

cos˛

�

D 1

2
C 1

2
cos˛:

This result can be rewritten in the form

cos
1

2
˛ D

r

1C cos˛

2
: .8/
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Examples

1. We calculate the sine and cosine of 9ı via the half-angle formulas, even though you have already calculated these

values via the difference formula. We first apply formula 7:

sin 9ı D sin
1

2
� 18ı D

r

1 � cos 18ı

2

D
r

1 � 0:951056516
2

D
p
0:024471742

D 0:156434465:

We now use formula 8 to calculate the cosine of 9ı:

cos 9ı D
r

1C cos 18ı

2

D
r

1C 0:951056516
2

D
p
0:975528258

D 0:987688341:

2. Let us now calculate the sine and cosine of 3ı, given that we have already calculated (in exercise 3 in the previous

set) the sine and cosine of 6ı. Those values are sin 6ı D 0:104528463 and cos 6ı D 0:994521895: Then

sin 3ı D
r

1 � cos 6ı

2

D
r

1 � 0:994521895
2

D
p
0:002739052

D 0:052335956:

Similarly,

cos 3ı D
r

1C cos 6ı

2

D
r

1C 0:994521895
2

D
p
0:997260948

D 0:998629535:

3. We now go one step further and calculate the sine and cosine of 1 1
2

ı
. We get

sin 1
1

2

ı

D
r

1 � cos 3ı

2

D
r

1 � 0:998629535
2

D
p
0:000685233

D 0:026176948:
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Also,

cos 1
1

2

ı

D
r

1C cos 3ı

2

D
r

1C 0:998629535
2

D
p
0:999314768

D 0:999657325:

Exercises

1. Calculate the tangents of 3ı and 1 1
2

ı
.

2. Use the half angle formulas and formula 2 to calculate the sine, cosine, and tangent of 7 1
2

ı
.

3. Use the half angle formulas and formula 2 to calculate the sine, cosine, and tangent of 3
4

ı
.

4. Determine the sine, cosine, and tangent of 87ı and 88 1
2

ı
.

5. Give an argument as to why you cannot determine the sine of 1ı or of 2ı by use of any of the formulas we have

developed so far. For what values close to 1ı or 2ı can you calculate values for the sine? Calculate the value of

the sine of an angle not already calculated that is less than 1
2

ı
from 1ı, using the half angle formulas and values

you have already calculated. Calculate the value of the sine of an angle within 1
2

ı
of 2ı, one you have not already

calculated.

Before we attempt to figure out the sine of 1ı, we will continue with Copernicus and determine how to calculate

the sine of the sum of two angles, supposing we know the sine and the cosine of each of the angles. This result would

enable us to fill in our table in steps of 1 1
2

ı
, or even in steps of 3

4

ı
, for we know the sines and cosines of both of those

angles.

When chords are given subtending two arcs, the chord subtending the whole arc made up of them is also

given.[1, p. 535]

As before, what Copernicus claimed is that you can calculate the chord of the sum of two arcs if you know the chords of

each of them. We will adapt his procedure for sines. So in Figure 10.10, we will again assume that the diameter AC is

equal to 1. We let †CAD D ˛ and†CAB D ˇ. Then †BAD D ˛Cˇ. We connect BC , CD, and BD and now have

a quadrilateralABCD to which we can apply Ptolemy’s Theorem. To use Ptolemy’s Theorem, we first need to identify

all the line segments in quadrilateral ABCD. As before, we know that BC D sinˇ, AB D cosˇ, CD D sin˛, and

AD D cos ˛. Also, of course, AC D 1, To determine BD, we draw a diameter through B , meeting the circle again

A

B

C

D

B¢

a

b
a b+

Figure 10.10.
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at B 0 and connect B 0D. Then †BB 0D D †BAD D ˛ C ˇ, because both of those angles cut off the same arc BD on

the circumference. It follows that BD D sin.˛ C ˇ/. By Ptolemy’s Theorem, AC �BD D AB �CD CAD � BC . By

substituting values for each of the line segments, we get 1 � sin.˛ C ˇ/ D cos ˇ sin ˛C cos˛ sinˇ or

sin.˛ C ˇ/ D sin˛ cosˇ C cos˛ sinˇ: .9/

Formula 9 is generally called the sum formula for the sine, because it enables us to calculate the sine of the sum of

two angles, given the sine and the cosine of the two angles themselves.

Before using this formula in any calculations, it is handy to determine analogous formulas for the cosine, namely

the formulas for cosine of the sum and difference of two angles. We could do this by derivations similar to those of

formulas 6 and 9, but it is simpler to do this using formulas 3 and 4. We have

cos.˛ C ˇ/ D sin.90 � .˛ C ˇ//
D sin..90 � ˛/� ˇ/
D sin.90 � ˛/ cosˇ � cos.90 � ˛/ sinˇ

D cos˛ cos ˇ � sin˛ sinˇ:

We write the sum formula for the cosine, then, as

cos.˛ C ˇ/ D cos˛ cosˇ � sin˛ sinˇ: .10/

Similarly, we calculate

cos.˛ � ˇ/ D sin.90 � .˛ � ˇ//
D sin..90 � ˛/C ˇ/
D sin.90 � ˛/ cosˇ C cos.90 � ˛/ sinˇ

D cos˛ cosˇ C sin˛ sinˇ:

Thus, we have the difference formula for the cosine:

cos.˛ � ˇ/ D cos˛ cosˇ C sin˛ sinˇ: .11/

Examples

1. We use the sum formula for the sine to calculate sin 10 1
2

ı
, given that we know the sine and cosine of both 9ı and

1 1
2

ı
. We get

sin 10
1

2

ı

D sin

�

9ı C 11
2

ı�

D sin 9ı cos 1
1

2

ı

C cos 9ı sin 1
1

2

ı

D 0:156434465 � 0:999780683C 0:987688341 � 0:026176948
D 0:182235525:

2. We use the sum formula for the cosine to calculate cos 10 1
2

ı
, even though we could also use formula 1 along with

the result just calculated. We get

cos 10
1

2

ı

D cos

�

9ı C 11
2

ı�

D cos 9ı cos 1
1

2

ı

� sin 9ı sin 1
1

2

ı

D 0:987688341 � 0:999780683� 0:156434465 � 0:026176948
D 0:983254908:
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3. We can use the sum formula for the sine to develop the double angle formula for the sine. Namely, if we want to

calculate the sine of 2˛, we can think of this angle as being the sum of ˛ and ˛. Therefore, we get

sin 2˛ D sin.˛ C ˛/ D sin˛ cos ˛C cos˛ sin˛:

We rewrite this in the form

sin 2˛ D 2 sin˛ cos˛: .12/:

Exercises

1. Use the sum formula for the sine to calculate sin 13 1
2

ı
.

2. Use the sum formula for the cosine to calculate cos 13 1
2

ı
.

3. Use the sum formula for the cosine, with ˇ D ˛ to derive the double angle formula for the cosine:

cos 2˛ D cos2˛ � sin2 ˛: .13/

4. Use formulas 13 and 1 to derive two alternative formulas for the cosine of twice an angle:

cos 2˛ D 1 � 2 sin2 ˛ .14/

cos2 ˛ D 2 cos2 ˛ � 1 .15/

5. Use the formulas for sine and cosine of the sum of two angles to derive the formula for the tangent of the sum of

two angles:

tan.˛ C ˇ/ D tan ˛C tanˇ

1 � tan˛ tanˇ
: .16/

6. Derive an analogous formula for tan.˛ � ˇ/.

7. Derive a double angle formula for the tangent, that is a formula for tan 2˛.

We return now to the problem of calculating the sine of 1ı. Note that once we calculate this and the cosine of 1ı,

we can use the double angle formula, for example, to calculate the sine and cosine of 2ı. We could then proceed to

calculate the sine and cosine of all angles of an integral number of degrees. We could even do angles in steps of 1
2

ı
or

1
4

ı
.

We have already seen that it is not possible to calculate the sine of 1ı by use of the formulas we have developed. So

we need another method. Copernicus, following Ptolemy, used an approximation procedure based on a theorem about

the ratios of arcs and chords. It will be easier, however, to look at this problem in a slightly different, though equivalent

way, by studying the ratios of arcs and sines.

Let us look at a piece of the table we have already constructed for the sines of various angles. In particular, we will

look at the sines of some very small angles. You may not have calculated all of these values, but you should understand

how they all could be calculated from the procedures we have worked out.

Angle Sine

6ı 0.104528463

4 1
2

ı
0.078459096

3ı 0.052335956

2 1
4

ı
0.039259816

1 1
2

ı
0.026176948

1 1
8

ı
0.019633692

3
4

ı
0.013089596



86 10. Copernican Trigonometry, Victor J. Katz

Exercises

1. The ratio of 6ı to 3ı is 6 W 3 D 2. Calculate the ratio of sin 6ı to sin 3ı. What is the relationship between these

two ratios?

2. Calculate the ratio of 4 1
2

ı
to 2 1

4

ı
. Calculate the ratio of sin 4 1

2

ı
to sin 2 1

4

ı
. What is the relationship between these

two ratios? How does the ratio of sines in this case compare to the ratio of sines in the previous case?

3. Calculate the ratio of 3ı to 1 1
2

ı
and also the ratio of sin 3ı to sin 1 1

2

ı
. What is the relationship between these

ratios? How does the ratio of sines in this case compare to the ratio of sines in the previous two cases?

4. Calculate the ratio of 2 1
4

ı
to 1 1

2

ı
and also the ratio of sin 2 1

4

ı
to sin 1 1

2

ı
. How do the ratios compare in this case?

5. Pick any other pair of angles in the table that we have not used so far and compare the ratio of the angle measures

to the ratio of the sines of those angles. How do the ratios compare?

6. We have worked here with small angles. Let us try some large angles. The ratio of 30ı to 15ı is 30 W 15 D 2.

What is the ratio of sin 30ı to sin 15ı? What is the relationship of these two ratios? How does this relationship

compare to the relationships already worked out?

7. Pick any other pair of angles, each larger than 30ı. Compare the ratio of the measures of the angles to the ratio

of the sines of the angles. What is the relationship here? How does this relationship compare to the relationships

already discovered?

8. Conjecture a statement about the relationship of the ratio of the angle measures of two (small) angles to the ratio

of the sines of those two angles. The statement should fill in the final blank of: “if the ratio of angle ˛ to angle ˇ

is r , then the ratio of sin˛ to sinˇ is approximately .”

The results of the previous exercises should lead you to conclude that the ratio of sin˛ to sinˇ is very nearly equal

to the ratio of ˛ to ˇ, when ˛ and ˇ are “small.” For our purposes, “small” means angles less than 6ı. But the important

point is that the ratios become more and more nearly equal, the smaller the angles are.

We can write this fact in another way. If the ratio of ˛ to ˇ is r , then ˛ D rˇ. Assuming both ˛ and ˇ are small,

we then know that the ratio of sin˛ to sinˇ is very close to r , or that sin˛ � r sinˇ. Since ˛ D rˇ, we can write this

in the form sin rˇ � r sinˇ, for small values of r and ˇ, with this approximation becoming closer and closer to an

equality the smaller both ˇ and r are. In technical language, we say that the sine function is approximately a linear

function for small angles.

We can now use this linearity of the sine function to approximate the sine of 1ı. We will do this in several different

ways to check on how accurate our approximation is. First, we know that 1ı is 2
3
� 1 1

2

ı
. Therefore,

sin 1ı D sin

�

2

3
� 11
2

ı�

� 2

3
sin 1

1

2

ı

D 2

3
� 0:026176948

D 0:017451299:

Second, we know that 1ı D 4
3
� 3

4

ı
. Therefore,

sin 1ı D sin

�

4

3
� 3
4

ı�

� 4

3
sin

3

4

ı

D 4

3
� 0:013089596

D 0:017452795:
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Third, we know that 1ı D 8
9
� 1 1

8

ı
. Therefore,

sin 1ı D sin

�

8

9
� 11
8

ı�

� 8

9
sin 1

1

8

ı

D 8

9
� 0:019633692

D 0:17452171:

We now have three different approximations to the sine of 1ı. These are 0:017451299,0:017452795, and 0:017452171.

All three approximations agree on the first five decimal places, and two of the three agree on the sixth place as well.

In addition, since those two approximations make use of smaller angles than the first approximation, we have slightly

more confidence in the values we get. Thus, we can conclude that to six decimal places, sin 1ı D 0:017452. Copernicus

himself was satisfied with a five decimal place answer: 0:01745.

Now that we have calculated the sine of 1ı, even by an approximation, we can use that value, along with our other

values, to calculate the sine, cosine and tangent of every angle of an integral number of degrees by use of our various

formulas. We can even use the half angle formula to calculate angles one-half degree apart.

For example, given the sine of 1ı, we calculate the cosine of 1ı:

cos 1ı D
p

1 � sin2 1ı

D
p
1 � 0:0174522

D
p
0:999695

D 0:999848:

Note that we have only calculated this to six places, because that is all the accuracy we have on the sine value. We also

calculate the sine of 2ı using the double angle formula 12:

sin 2ı D 2 sin 1ı cos 1ı

D 2 � 0:017452 � 0:999848
D 0:034899:

Finally, we calculate the sine of 1
2

ı
by use of the half angle formula 7:

sin
1

2

ı

D
r

1 � cos 1ı

2

D
r

1 � 0:999848
2

D
p
0:000076

D 0:0087:

In this case, since we were taking the square root of a number with only two significant figures, we can only be

confident of two significant figures in our answer.

Although in theory, we could now complete our table in this manner, there is no necessity to do so. After all, we

do have a calculator available. Everywhere we need to determine sines, cosines, and tangents later, we will use the

calculator. But now, at least, we have some idea as to how people were able to calculate the values before such a device

was available.
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10.4 Conclusion

There is much to be learned about trigonometry by considering how Copernicus or other astronomers presented the

subject. By using what we presented here, students will learn how trigonometric values were calculated and why

the sum, difference, and half-angle formulas are important. But one can (and should) go further. Trigonometry was

developed to enable astronomers to “solve” triangles, both plane triangles (as is usually done in a trigonometry course)

and spherical triangles, triangles on a sphere whose sides are arcs of great circles. In particular, knowing how to solve

spherical triangles enabled astronomers to predict various heavenly phenomena, such as when and where the sun would

set, or when an eclipse of the moon would occur. Solving spherical triangles is also useful in determining distances

between points on the surface of the earth or in determining the direction to travel to get from one point to another by

the most direct route. Today, it is uncommon to find techniques for solving spherical triangles in a trigonometry course.

In my opinion, it would be worthwhile to experiment with reintroducing this material, whether or not one wants to

prove all the basic spherical trigonometric identities. Not only does doing this show why people were interested in

trigonometry in the first place (and it was not to find the distance across a lake or the height of a tree), but also it

presents students with the opportunity to solve lots of interesting problems, while at the same time learning some

astronomy. For more suggestions on how to use history in the teaching of trigonometry, consult [2].
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Cusps: Horns and Beaks

Robert E. Bradley
Adelphi University

11.1 Introduction

This is the mathematical tale of a cusp in the shape of a bird’s beak. Although precalculus and calculus courses must

stress the idea of function over that of equation, they nevertheless include a number of important topics concerning

polynomial equations in two variables, including implicit differentiation and the study of conic sections. Whereas

polynomial functions of one variable have very simple graphs, the graphs of polynomial equations in x and y — even

those of relatively low degree — can exhibit wonderfully exotic features.

The story of the bird’s beak can be used to enrich a course in analytic geometry, precalculus or calculus. For

students who know some calculus, it also provides insight into continuous nondifferentiable functions. There is also

a connection to power series representations, although this will not be discussed in this chapter (Euler treats them in

�5–9 of [1, 2]).

For further reading on these topics, see [3, 4].

11.2 Historical Background

In the 18th century, calculus and the related branches of mathematics gradually changed their perspective from the

geometric to the algebraic. When René Descartes (1596-1650) and Pierre de Fermat (1601–1665) invented analytic

geometry, for example, mathematicians were already familiar with a large assortment of curves, given by a variety

of geometric constructions. Analytic geometry gave them a means of associating equations with these curves. With

passing time, the study of equations took primacy, so that the graph came to be seen as an attribute of the equation.

Boyer chronicles this shift in his History of Analytic Geometry [5, esp. chapter VII]. Perhaps nowhere is this change

of perspective better illustrated than in the case of the cusp of the second kind, a kind of point where a curve doubles

back on itself, as in Figure 11.5.

The Marquis de l’Hôpital (1661–1704) gave a geometric construction for such a point, but did not give an equation

for it. He was a French aristocrat who learned calculus from Johann Bernoulli (1667–1748) in 1691 and 1692. He

wrote the first differential calculus textbook Analyse des infiniment petits pour l’intelligence des lignes courbes [6] in

1696. The title means “Analysis of the infinitely small for the understanding of curved lines.” This is where the rule we

call L’Hôpital’s Rule first appeared in print, although it was Bernoulli who actually discovered the rule. In the Analyse

des infiniment petits, l’Hôpital gave the first definition and example of a cusp of the second kind.

89
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Jean Paul de Gua de Malves (ca. 1712–1786) made the next major contribution to the study of cusps. He was the

son of Jean de Gua, the baron of Malves, and was born in the south of France, in or around 1712. He became a member

of the Paris Academy of Sciences in 1741, a year after the publication of his book Usages de l’analyse de Descartes

: : : [7]. His long-winded title means “Uses of Descartes’ analysis to discover, without the aid of differential calculus,

the principal properties of geometric lines of every degree.”

Although Gua de Malves did not use differential calculus per se in his book, like many authors of his era he freely

considered the cases in which variables take infinitely small or infinitely large values. This sort of free-wheeling

reasoning sometimes led 18th and 19th century authors to false conclusions and Gua de Malves was no exception. In

his book, he believed he had proven that “it is impossible to encounter in curves, such a type of point as Mr. le Marquis

de l’Hôpital, who first spoke of them, has called a cusp of the second kind.”[7, pp. 69–70] He argued that if a curve

seemed to exhibit such a cusp, it was in fact an illusion [7, pp. 81–83]. He held “that every time one finds oneself with

such a cuspidal point in a curved line, one is nonetheless mistaken, and if one completes the description following the

equation that expresses its nature” then the illusion would be resolved [2, �4]. This quotation illustrates the supremacy

of algebra by the mid-18th century: where there appears to be a conflict between a geometric construction and an

algebraic description, it is the equation that expresses the true nature of the curve.

Although Gua de Malves’ book was influential, it was a few years before other mathematicians realized that he was

wrong on this point: an algebraic curve can have a cusp of the second kind. Leonhard Euler (1707–1783) was the first

person to discover such a curve, although it was Jean le Rond d’Alembert (1717–1783) who first got an example of

such an equation into print.

In 1744, Euler discovered an algebraic equation whose graph exhibits a cusp of the second kind. He wrote about it

in a letter to Gabriel Cramer (1704–1752) on October 20 [8], but the equation didn’t appear in print until the summer

of 1748, when his book Introductio in analysin infinitorum [9] was published. Even in the Introductio it was only

mentioned in passing.1 It wasn’t until Euler wrote a research paper on the problem [1], which appeared in 1751, that

he gave a full account of the theory of cusps and an explanation of why Gua de Malves’ proof was incorrect.

In 1746, d’Alembert sent the manuscript of his paper “Research on the Integral Calculus” [11] to the Berlin

Academy, where Euler was the Director of the mathematics section. The paper was included in the volume of Academy’s

journal for 1746, which was actually published in 1748. In this paper, he included an even simpler-looking algebraic

equation whose graph exhibits a cusp of the second kind.

Jean d’Alembert was competitive and quarrelsome; see [4]. He was feuding with Euler when the latter’s article [1]

appeared in print. When he read Euler’s article, which contained mention of both his own example and Euler’s, he

believed that Euler was remiss in not giving him credit for being the first to discover an equation exhibiting a cusp

of the second kind. Not knowing that Euler had actually made his own discovery in 1744, he sent an angry letter to

the Berlin Academy [12, pp. 337–346], demanding that Euler acknowledge his priority in the discovery. Rather than

engage in an ugly public debate with d’Alembert, Euler simply ceded priority to him in a brief notice in the next

volume of the Berlin Academy’s journal [13]. For more on this dispute, see [3]. Not only did Euler truly deserve

priority for this result, but his example is superior to d’Alembert’s in the sense that it is an example of lowest possible

degree, as we will see at the end of this chapter.

11.3 In the Classroom

11.3.1 Cusps

Those who know some calculus may know a cusp as a special kind of point on the graph of a function, where the

function is continuous but not differentiable. But even if you don’t know calculus, you probably know the word. It

appears in the names of two of types of human teeth: the cuspids, which have one sharp point, and the bicuspids, which

have two. The word has its origins in the Latin word cuspis, or point. Sometimes it means a pointed projection, like the

ones on your teeth. Other times it means a point of transition. Both of these meanings are reflected in the mathematical

sense of the word.

1When Euler wrote the Introductio in 1743–44, he repeated Gua de Malves’ argument that there are no cusps of the second kind. He only

discovered his counterexample after he had sent the manuscript of the book to his publisher. As a consequence, his book is self-contradictory,

stating in one place that there are no equations with such a cusp and then giving his example of an equation that has one; see [9, 10, �333–334]. For

more on this mix-up, see [3].
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Figure 11.1. The Absolute Value Function

The most familiar example of a graph that is continuous but not differentiable is the graph of y D jxj, which

has a corner point at the origin; see Figure 11.1. Since there is no well-defined tangent line there, the absolute value

function f .x/ D jxj has no derivative at the origin. But since there are no breaks or holes in the graph, the function

is continuous everywhere. The graph has two branches. The left branch in follows the line y D �x, while the right

branch follows the line y D x. The two branches meet at the origin, making a right angle.

The corner point in Figure 11.1 doesn’t quite count as a cusp, at least not according to the usual definition. Probably

the simplest example of a cusp is the origin on the graph of y D x2=3; see Figure 11.2. The situation here is quite

similar to Figure 11.1: there are two branches meeting in a sharp point at the origin. The crucial difference is that the

angle between these two branches is, in the words of Euler, “infinitely small.” [1, �2]

Rather than following Euler with an appeal to our informal notion of the infinitesimal, let’s just adopt the standard

modern definition: a cusp is a point where two branches of a graph meet, at which the tangents to the branches

coincide. It turns out that if the curve in question is the graph of some function f , then that common tangent line has

to be vertical, as in the case of Figure 11.2. That’s why some calculus books define a cusp to be a point .c; f .c// at
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Figure 11.2. The graph of y D x2=3.
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which the function f is continuous, but for which

lim
x!c�

f 0.x/ D C1 and lim
x!cC

f 0.x/ D �1;
or

lim
x!c�

f 0.x/ D �1 and lim
x!cC

f 0.x/ D C1:

A curve certainly can have a cusp at which the tangent line is horizontal (see Figure 11.4, for example) or oblique, but

in that case, the curve always fails the familiar “vertical line test.” So such a curve is never the graph of a function.

11.3.2 Activities

� Carefully graph the equation y D jxj. By also graphing y D j2xj or y D j3xj or y D j.1=4/xj, observe that

we can make the angle between the two branches take any value between 0 and � radians. The limiting case

y D 0 gives an angle of � radians, but we observe that the angle between the two straight line branches of such

a function can never actually be equal to 0.

� Graph the familiar curve y D x3. Reflect this curve in the line y D x to get the graph of the curve y D x1=3.

Now reflect the portion of this graph in the third quadrant in the x-axis to get the graph of y D 3
p

jxj D jxj1=3,

which looks quite similar to Figure 11.2.

11.3.3 Functions and Equations

The function concept is one of the two critical ideas behind the modern understanding of calculus, the other being

the limit. Any function f that can be expressed as a formula in one variable is naturally associated with an equation

y D f .x/. Although we often speak about the graph of a function, what we really mean is the graph of this associated

equation y D f .x/.
Conversely, an equation in x and y may represent a function, if the equation can be solved uniquely for y. The

vertical line test expresses this condition in a graphical way: if every vertical line intersects the graph of the equation

in at most one point, then the equation implicitly gives y as a function of x. The equation x2Cy2 D 1 of the unit circle

is a good example of a particularly simple equation that does not represent a function. Since the vertical line x D b,

where b 2 .�1; 1/, intersects the circle at two points, the graph fails the vertical line test. But since no vertical line

intersects the circle in more than two points, the circle can be expressed as the union of the graphs of two functions:

y D
p
1 � x2; and

y D �
p
1 � x2:

Of course, we usually abbreviate this representation as y D ˙
p
1 � x2.

Simlarly, ellipses always fail the vertical line test, as do some hyperbolas and parabolas. But in no case does a

vertical line — or any other straight line for that matter – intersect any of these graphs in more than than two points.

This is because all of these curves — called the conic sections — are of degree 2. Our next step is the investigation of

the connection between the degrees of equations and the intersections of their graphs.

11.3.4 Activities

� Give an example of a parabola that passes the vertical line test and an example of a parabola that fails the vertical

line test. Do the same for hyperbolas.

� Draw any hyperbola, parabola, ellipse or circle. Draw a straight line that intersects the curve in two places. Find

another straight line that intersects the curve in one place. Find another straight line that doesn’t intersect the

curve at all. Convince yourself that no straight line can intersect the curve in three places.
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11.3.5 Degrees of Equations and Bézout’s Theorem

An algebraic equation in x and y has a degree, defined analogously to the degree of a polynomial. Let’s consider an

equation whose right side is 0 and whose left side consists of a sum of terms, all of which have the form axjyk . Here

a ¤ 0 is a real coefficient, while j and k are non-negative integers. The degree of the term is defined to be j C k and

the degree of the equation is the maximum of the degrees of all all the terms. For example, the equation

x5 � x4 C 2x2y � y2 D 0;

which we will encounter later in this chapter, has four terms. Their degrees are 5, 4, 3 and 2, reading from left to right,

so the degree of this equation is 5.

An arbitrary algebraic equation, which may involve quotients and fractional powers, can always be written in stan-

dard form: as a sum of terms of the form axjyk on the left side and the single term 0 on the right side. Thus, every

algebraic equation has a degree. For example, the equation

y D 1

x

of the hyperbola can be put into the standard form xy � 1 D 0, showing that it has a degree of 2.

Mathematicians in the 18th century were aware that the graphs of two algebraic equations of degrees m and n can

intersect in at most mn points. The result is called Bézout’s Theorem, in honor of Étienne Bézout (1730–1783), who

gave the first acceptable proof of this result. (There is a stronger statement of the theorem: the number of points of

intersection is exactlymn, when one counts real and complex roots, as well as roots at infinity, in all their multiplicities.

This immediately implies that there are � mn real points of intersection.)

In particular, when m D 1, Bézout’s Theorem says that a line can intersect an algebraic curve of degree n in at most

n points. Conversely, if a line intersects the graph of an algebraic equation in n points, then the degree of the equation

is at least n.

Let’s apply this result to the graph of y D x2=3. By trial and error, we can find a line, such as y D x C 0:1, which

intersects this graph in three distinct points; see Figure 11.3. This tells us that the degree of the equation must be at

least 3. Of course, this comes as no surprise, since we can put the equation y D x2=3 into standard form by first cubing

both sides. The standard form of the equation is y3 � x2 D 0, so the degree is precisely 3.

11.3.6 Activities

� Graph the familiar equation y D x3, which of course has degree 3. Draw a straight line that intersects it in three

places. Convince yourself that no straight line can intersect it in four or more places.
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Figure 11.3. The graphs of y D x2=3 and y D x C 0:1.
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� Draw a parabola, then draw an ellipse that intersects it in 4 places. This happens because both have equations of

degree 2, so m D n D 2 in Bézout’s Theorem.

� Do the same thing with a hyperbola and an ellipse. Can you arrange to have all 4 points of intersection fall on the

same branch of the hyperbola? Two on each branch? Three on one branch and one on the other?

11.3.7 Involutes and Inflections

In his Analyse des infiniment petits, l’Hôpital defined two kinds of cusps. A cusp of the first kind, like the one in

Figure 11.2, is one where the two branches have opposite concavity with respect to the common tangent line. In

Figure 11.2, the common tangent is the y-axis, so we might say that the left branch is concave to the left and the right

branch is concave to the right, although this is not standard terminology. Alternately, if we interchange the variables x

and y in the equation y D x2=3, we get the equation y2 D x3 or y D ˙x3=2; see Figure 11.4. The shape is exactly the

same as Figure 11.2, but the branches are now concave up and concave down, in the sense that these terms are usually

used in a calculus course.
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Figure 11.4. The graph of y2 D x3.
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Figure 11.5. A cusp of the second kind, or ramphoid cusp.

L’Hôpital also conceived of a cusp of the second kind, in which the two branches are concave in the same direction,

as in Figure 11.5, where the common tangent is once again the y-axis. The two kinds of cusps have flowery, if obscure,

alternate names in English. A cusp of the first kind is sometimes called a keratoid cusp, meaning horn-like. A cusp

of the second kind is a ramphoid cusp, meaning beak-like. Euler described it in his 1751 paper as “a certain kind of

cuspidal point, resembling the beak of a bird, and formed from two branches of a curve, whose concavities turn in the

same direction.” [2, �1]

It might seem strange to us that l’Hôpital didn’t give an equation for a curve with a cusp of the second kind.

Instead he gave something that was just as convincing to his late-17th century audience, if not more so: a geometric

construction. His construction was based on the process of involution, a standard technique at that time for defining

a new curve based on an old one. A modern definition of the involute usually begins by defining the evolute of a

given curve as the locus of its centers of curvature. Involution is then defined as the inverse operation: that is, C is the

involute of D if and only ifD is the evolute of C .

L’Hôpital’s definition of the involute was based on a mechanical model. He imagined the given curve as being solid

and rigid, with a fine string or thread stretched along its length. He supposed that the thread was peeled off gradually,

being held taut from its endpoint as it was pulled away. A new curve is thereby defined by tracing the path of the
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Figure 11.6. The involute of the unit circle.

endpoint. Figure 11.6 is an illustration of this process when the given curve is the unit circle. The thread was initially

wrapped clockwise around the circle, just as real thread might be wound around a spool. The endpoint of the thread

was initially at the point .1; 0/, where the involute (the spiral curve) meets the cirle. As the thread is peeled away in

the counterclockwise direction, it defines straight line segments of ever increasing length, tangent to the circle, from

the point of contact on the circle to the endpoint of the thread, which is a point on the involute. The length of this line

segment is the the arc length of the circle from the point of contact to the initial endpoint .1; 0/. The straight line in

Figure 11.6 illustrates this line segment at the instant when the point of contact is .�1=
p
2;�1=

p
2/, which is 5�=4

radians (225ı) counterclockwise from .1; 0/. Therefore, its length is 5�=4.

To construct a cusp of the second kind, l’Hôpital starts with any curve that has an inflection point. When constructing

the involute of such a curve, the endpoint of the thread will double back on itself the instant that the point of contact

coincides with the inflection point. This is illustrated in Figure 11.7, which comes from Euler’s article [1]. In this

figure, ABM is the given curve, with an inflection point at B . The straight linesBD and MN represent line segments

described by the thread at the instants when the points of contact are B and M , respectively.

Here is Euler’s description of l’Hôpital’s construction:

Let ABM be an arbitrary curve which has a point of inflection at B . Suppose also that we wrap a thread

around this curve, which we then unwrap by pulling it successively from the point A, until it just becomes

Figure 11.7. Euler’s Illustration of L’Hôpital’s Construction
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detached at the inflection pointB , and the extremityA will describe, by this evolution, the arc AD, to which

the detached thread BD will be perpendicular so will be its radius of curvature, as we know from the theory

of evolutes. But if we continue this evolution beyond the pointB , the thread BD will turn back and, coming

to the positionMN , its extremity will describe the arc DN , which is, as a consequence, the continuation of

the arc AD. Now these two arcs AD,DN , which at the pointD form an infinitely small angle, are concave

in the same direction. [1, �2]

11.3.8 Activity

For this activity, you will need a plastic cup or similar round object, a piece of string longer than the largest circum-

ference of the cup, paper, pencil and tape. Tie a small loop in one end of the string and tape the other end to the lip of

the cup. Place the cup upside down in the middle of the piece of paper. Wind the string tightly around the cup in the

clockwise direction and put the tip of the pencil in the loop of the string. With the pencil point always in contact with

the paper, unwind the string from around the mouth of the cup. As the string unwinds, the pencil point will trace out

the involute of the circle, as illustrated in Figure 11.6.

11.3.9 Euler’s Example

Euler’s equation exhibiting a ramphoid cusp is most easily understood in the form y D px˙x3=4. The graph is given

in Figure 11.8. The dotted line represents the graph of the square root y D px. The solid lines lying above and below

it are the two branches of Euler’s curve, the result of adding and subtracting the term x3=4.

To determine the degree of Euler’s example, we’ll have to do some algebra to get rid of the square and fourth roots.

This process is usually called “rationalizing” the equation. We start by rewriting the equation as

y �
p
x D ˙x3=4:

Squaring both sides, we have

y2 � 2
p
xy C x D x3=2:

Rearranging the terms, this gives

y2 C x D x1=2.x C 2y/:
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Figure 11.8. Euler’s Example
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Squaring a second time, we get

y4 C 2xy2 C x2 D x3 C 4x2y C 4xy2:

So the standard form is

y4 � 4x2y � 2xy2 � x3 C x2 D 0;

making this an equation of degree 4, sometimes called a quartic equation.

11.3.10 Activities

� Euler also showed that the equation y D
p
x ˙ x5=4 has a ramphoid cusp at the origin. Produce a graph of this

equation similar to the one in Figure 11.8. Note that the two branches are squeezed closer together than the ones

in Figure 11.8.

� Follow the same steps used in this section to rationalize the equation y D
p
x ˙ x5=4. The standard form of this

equation should turn out to be �x5 C y4 � 4x3y � 2xy2 C x2 D 0, an equation of degree 5.

11.3.11 D’Alembert’s Example

In his 1748 paper “Research on the Integral Calculus” [11], d’Alembert made passing reference to the problem of

cusps. He included an algebraic equation that looks simpler than Euler’s example, whose graph has a ramphoid cusp.

The equation is most easily understood in the form y D x2 ˙ x5=2. The graph is given in Figure 11.9, where the

dotted line represents the parabola y D x2. The solid lines are the two branches of d’Alembert’s curve, the result of

adding and subtracting the term x5=2.

D’Alembert’s example is an equation of degree 5. To see this, we rewrite the equation as

y � x2 D ˙x5=2:

Squaring both sides, we have

y2 � 2x2y C x4 D x5;
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Figure 11.9. D’Alembert’s Example
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So the standard form for this equation is

x5 � x4 C 2x2y � y2 D 0:

11.3.12 Activities

� Euler showed that the equation y D x2˙x7=2 also has a ramphoid cusp at the origin. Follow the same steps used

in this section to rationalize this equation. Put the equation into standard form to show that it has degree 7.

� The equation y D x2˙ x3=2 also has a cusp at the origin. Graph this equation to show that this cusp is a keratoid

cusp. Rationalize this equation to show that it has degree 4.

11.4 Conclusion

Not only was Euler the first person to find an algebraic example of a ramphoid cusp, his example is the best possible,

in the following sense. Euler observed that given any ramphoid cusp, one can always draw a straight line that intersects

it in four places. Figure 11.10 is an example illustrating this. It’s worth sketching a few other examples of ramphoid

cusps and convincing oneself that this can always be done. Consequently, by Bézout’s Theorem, any equation with

such a cusp must have a degree of at least 4. Since Euler’s equation is of degree 4, his example has the lowest possible

degree. On the other hand, d’Alembert’s example of degree 5 is suboptimal.

Many more examples of cusps can be found in [2], which is surprisingly accessible to modern readers. For example,

y D 3
p
x˙px is a curve of degree 6 with a bird’s beak at the origin. Euler even gives a family of examples in which

the tangent line of the cusp is oblique to the axes, the simplest one being y D x C x2 ˙ x5=2. As with many of his

mathematical papers, one get the sense that Euler is enjoying himself immensely as he investigates this delightful topic

on the boundary between algebra and geometry.

11.5 Notes on Classroom Use

There is plenty of material in this chapter and to cover all of it would take 1-2 hours of class time. However, most

instructors will probably wish to pick and choose topics, depending on the level of the course being taught and the
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Figure 11.10. Euler’s curve and the line y D 10xC 0:01
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type of activity that would be suitable for their students. The Classroom section of the chapter is divided into six sub-

sections. In many courses, the students will be familiar enough with “Functions vs. Equations” to skip that subsection,

although the connection between the well-known vertical line test and the less well-known theorem of Bézout makes

this a valuable segue to the next part. The subsection on “Involutes & Inflections” can be omitted without loss of

continuity, but the hands-on activity in this portion, which could be done either as a student activity or an instructor’s

demonstration, provides a wonderful example of an unfamiliar curve that can be constructed without reference to an

equation.

The activities included in each subsection are intended to provide insight into the concepts involved in this mathe-

matical narrative. Some of the activities stress curve sketching as an active learning tool in the study of intersections of

lines, conics and cubic curves. Others, especially the ones in the core sections of “Euler’s Example” and “D’Alembert’s

Example” provide exercises in algebraic techniques of rationalizing equations, which are necessary to the understand-

ing of the cusp points.
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12
The Latitude of Forms, Area, and Velocity

Daniel J. Curtin
Northern Kentucky University

12.1 Introduction

Long before the calculus arrived a medieval philosopher, Nicole Oresme, developed what he called the latitude of

forms, a graphical representation that sheds light on the fundamental connection between area and what we now call

the integral. In a calculus course, the latitude of forms can be used to introduce the idea of the integral as area, while

simultaneously introducing the idea that the distance traveled is the integral of velocity. Of course the two ideas can be

addressed separately, if you prefer. In that case, the latitude of forms might be used to connect the two. In any event,

you will be reviewing some simple geometry that students have often forgotten.

At the risk of being untrue to the original, I have modernized my presentation. The Commentary section will attempt

to partially correct this distortion.

12.2 Historical Background

Scholastic philosophers, following Aristotle, were greatly interested in explaining the workings of the natural world.

In this sense they appear to our eyes as scientists. They also were interested in precise definitions, careful distinctions

between cases, and rigorous logical deduction. To us they appear to be mathematicians and analytic philosophers. Yet

when we read their works, we can see they were also trying to explain why things work, and seeing how well their

explanations fit their theology. Thus to us they appear to be trying to tackle everything at once.

This article focuses on Nicole Oresme (c. 1323–1382), who was born in Normandy and studied at the University of

Paris. Immediately upon receiving his doctorate he became grand master of the University of Navarre. He served as

secretary to the King of France and quite likely as his chaplain and counselor, too, positions of great influence. Oresme

had numerous other clerical appointments at various times and taught at the University of Paris. The last five years of

his life were spent as bishop of Lisieux. Despite his heavy duties, he was a prolific writer, producing treatises ranging

from mathematics to music, physics, philosophy, and more.

The latitude of forms appears in his Treatise on the configuration of qualities and motions (Tractatus de configura-

tionibus qualitatum et motuum) [1], which a later writer condensed and called the Treatise on the Latitude of Forms.

Oresme took ideas from earlier scholastics, such as those at Merton College, Oxford, but put in the mix a new geomet-

ric idea of configuration — what we might call the graph of a function. This is the connection we want our students to

see.
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12.3 In the Classroom

I offer two ways to present the latitude of forms. The first is entirely modernized, using current terminology such as

“constant acceleration,” and can be used to get the ideas across quickly. The second uses Oresme’s own definitions.

Many students find this look at historical ideas interesting, and it really doesn’t take much more time. It does, however,

require the instructor to do a little more preparation.

12.3.1 Area and the Latitude of Forms

In an era in which analytic geometry is one of the fundamental ideas of mathematics, it may be hard to appreciate

how many centuries of work went into its development. One crucial piece of the puzzle is the idea of expressing one

quantity in one direction and the other in a different direction, that is, the modern xy plane. Of course sailors and

astronomers had been using a very special case of this, latitude and longitude, for a long time.

This was what Nicole Oresme had in mind when he defined his latitude of forms. In studying motion he viewed

time as the latitude (our x-axis) and velocity as longitude (our y-axis).

If a body is moving with a constant velocity v over a time period t , Oresme’s configuration is given by representing

the moments of time on a horizontal base segment, while the velocity at each moment is represented by a vertical line

segment at that point. The result is a rectangle (Figure 12.1).

As Oresme describes, “Every velocity endures in time. And so time or duration will be the longitude of the velocity

and the intensity of the same velocity will be its latitude.” [1, p. 289] His terminology is consistent with his picture,

since at this time it was common for East to be upward on a map, rather than our modern convention of North. (Hence

the term orientation.) We see that the area of the rectangle is v multiplied by t and that is also the distance traveled.

t

v

Figure 12.1. Constant velocity.

Here’s the crucial idea, in its simplest form: The area of the configuration, a geometric concept, is the distance

traveled, a physical concept. Note that for Oresme no numbers are actually used for v and t , so the picture gives the

general rule directly. We would say that for a constant velocity v, the distance s traveled in time t is given by s D vt .
Next Oresme looked at a motion where the velocities start at 0 and increase in such a way that the tops lie on a line

segment. We recognize this as motion with a constant acceleration and initial velocity 0. Figure 12.2 represents his

diagram. As before he takes the area to represent the distance traveled.

We might use a numerical area formula for the triangle, but Oresme proceeded geometrically; see Figure 12.3.

Consider the rectangle ABCD with height half of the segment BE . Since triangles ADF and ECF are congruent,

A Bt

v

E

Figure 12.2. Constant acceleration from rest.

A Bt

v

E

F
D C

Figure 12.3. Constant acceleration from rest compared

with constant velocity at half the final velocity.
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the area of the triangle ABE is the same as that of rectangle ABCD. Thus the distance traveled under the original

motion is the same as a distance traveled at a constant velocity that is half the final velocity (BE). In fact, this result

had been discovered already by scholars at Merton College, Oxford, but their derivation was entirely in words!

In our notation, what Oresme has shown is that if a body at rest at time t D 0 moves at a constant acceleration to a

final velocity v at time t , the distance traveled is vt=2.

Although Oresme did not do this, we can draw the configuration for the constant acceleration a over the same time

period. In other words, we can make the vertical segment be the acceleration at each time. The area will be at ; see

Figure 12.4. The area must be the final velocity v, so we get the distance traveled as at2=2. Thus in a sense Oresme

has worked out the general formulas for motion under constant acceleration.

Diagrams much like Figure 12.3 appear two hundred years later in Galileo’s notes as he works out his theory of

falling objects near the surface of the earth, which he correctly inferred involved motion under constant acceleration.

Did some of Galileo’s ideas come directly from Oresme? We don’t know.

t

a

Figure 12.4. Constant acceleration.

v0

Figure 12.5. Constant acceleration with non-zero initial velocity.

What if the initial velocity is not 0? Then the picture is as in Figure 12.5. Work out the result Oresme-style and in

modern terms. In particular, notice how the picture makes it clear that the total motion may be considered as the sum

of two motions, one with constant velocity, one with constant acceleration.

Of course this idea can be applied to any figure whose area can be worked out. For the three cases shown in Figures

6–8, each of which is based on a diagram by Oresme, derive the distance traveled from the area. Also take a shot

at describing what the motion would be like for the given velocity configuration. Note that the numerical values are

purely arbitrary and the diagrams suggest general results. Oresme would have seen no need for specific values.

More complicated examples are available for the particularly interested student, who could be directed to flip

through Clagett’s translation [1] and interpret some of the diagrams found there.

0 4

Figure 12.6. A semicircle.

4 2

Figure 12.7. A motion that combines

different motions sequentially.

6 6

Figure 12.8. More combined motions.

(Not quite a figure 8.)
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12.4 Taking It Further

Oresme did not actually make the distinctions we do based on our understanding of velocity and acceleration. Our

concepts come from much later work by Galileo, Newton, and others. For Oresme the questions were much more

philosophical. His latitude of forms was to apply to anything in which one could speak of greater and lesser — not

just velocity, but heat and cold, intensity of color, even human goodness. Since he mostly worked with ratios, he was

not really interested in specific values but rather the nature or quality of the form.

When I teach this I talk only about motion, and I use Oresme’s own definitions, along with the modern interpretation.

Historically-minded students find this fascinating — and the rest seem to tolerate it good-naturedly.

12.4.1 Uniform and Difform Motion

Let’s start with what we would call motion with constant velocity. Following early writers, Oresme called this uniform

motion, since there was one (uni) form of motion; that is, all the vertical segments were the same.

If the motion isn’t uniform, then the segments are different, so it was called difform motion. Scholastics are some-

times accused of splitting hairs, but their careful attention to definition and small distinctions often paid great dividends

and pointed the way to our modern precision with concepts and definitions. Oresme distinguishes between uniformly

difform motion, in which the segments change, but in a uniform way, and difformly difform motion, in which the

segments change in any other way.

What is happening in uniformly difform motion? The segments increase uniformly — that is, in proportion to their

time — so that twice the time, for example, leads to twice the increase in velocity. Oresme points out that this means

the tops of the segments all lie in a line. We can recognize this as motion with a constant acceleration.

Then Oresme’s work shows that the distance traveled under a uniformly difform motion is the same as the distance

traveled under a uniform motion over the same time with a velocity equal to half the final velocity of the first motion.

Finally, difformly difform motion covers all the rest, including the semicircle (Figure 12.6) and even something like

Figure 12.9.

Figure 12.9. The Wandering Minstrel?

12.5 Conclusion

In principle, the latitude of forms can be applied to any configuration, and Oresme draws many examples beyond the

few here.

But how do we find the area in order to know the distance traveled? That’s where the calculus comes in. The integral

calculus is designed to attack exactly this problem and to solve it in a wide variety of cases. Oresme would have vastly

enjoyed it.

12.6 Comments

Oresme did not have any algebraic notation at his disposal, so while the shapes are his, all the formulas above are

anachronisms. He never assigned a specific numerical value to any velocity or time. In fact, for the example on

constant acceleration (Figure 12.2) he proved that any right triangle can be used to represent it. He went on to say,

“if some quality is designated by one triangle, another quality of similar but double intensity must be designated by a

triangle that is twice as high, and similarly for proportionally greater [intensities]. . . .” [1, p. 187]
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Oresme noted that the semicircle example is different, for if you double all the heights you get half an ellipse, which

is not a geometrically similar shape. In effect he stated a formal problem about difformly difform motion, which he

left for us to consider.

In his work, Oresme also used the ideas of latitude of forms to sum infinite series and to consider how the quality

of curvature differs in kind from that of velocity. The interested reader will enjoy pursuing it further in [1]. For other

aspects of Oresme’s mathematical works, a good place to start is [2].
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13
Descartes’ Approach to Tangents

Daniel J. Curtin
Northern Kentucky University

13.1 Introduction

While the modern version of tangents is central to the ideas of the differential calculus, I find students can profit

from seeing an earlier and different approach. This minor detour also has the amusing aspect of using quite modern

technology to help with an old problem. I use this material at the beginning of Calculus 2, when the students are fairly

comfortable with the modern definition of derivative. One class period is used to present Descartes’ approach, then

students receive a take-home assignment.

13.2 Historical Background

In La Géometrie (1637) [2] René Descartes presents his general method of drawing a straight line to make right angles

with a curve at an arbitrarily chosen point upon it. He praises his own approach as solving “not only the most useful

and most general problem in geometry that I know, but even that I have ever desired to know” [2, p. 95]. In our terms,

he sought the normal line to a curve at a given point, from which the tangent line can easily be found as well.

Descartes’ approach is quite different from the modern one, which raises the question: If his method was as impor-

tant as he thought, why did it not prevail? I will describe his method and suggest some exercises that can help a student

to understand what Descartes was doing and to see why other approaches won out. Using calculators or computer

algebra systems allows us to remove much of the drudgery of this historical reenactment.

13.3 In the Classroom

13.3.1 Descartes’ Approach to Tangents

Figure 13.1 is based very loosely on Descartes’ own diagram [2, pp. 94 and 98]. The most important anachronism is the

vertical axis. Descartes does draw the axis AC . He then labels AM as y and PM as x, thus establishing coordinates,

but not coordinate axes. You see Descartes’ convention for x and y is the reverse of ours. I tell my students the

discrepancy is due to Descartes’ well-known habit of working on mathematics while reclining in bed, but they never

seem to believe me. We will use the modern convention.

107



108 13. Descartes’ Approach to Tangents, Daniel J. Curtin

P

A

y

x
M C

Q

y f x= ( )

Figure 13.1. For us:AM D x, PM D y, AC D v, CP D s.

Descartes observes that a circle with center C and radius CP usually will meet the curve in another pointQ besides

P . For just the right choice of C , however, the circle will meet the curve only at P , so that CP becomes normal to the

curve (and the tangent to the circle at P becomes the tangent to the curve).

Thus the problem of normals is reduced to solving simultaneously the equations of the curve and of the circle, then

finding the values of the parameters that yield a solution with a double root. Descartes describes the process thus:

s2 D y2 C .v � x/2 D y2 C v2 � 2vy C x2; so y D
p

s2 � v2 C 2vx � x2

(generally he considered only positive values). He instructs the reader to substitute this expression for y in the equation

of the curve. Now think of the result as an equation in the unknown x, with the other letters as parameters. Find the

value of v that causes the equation to have a double root.

It is a bit easier for us to follow if we adjust the notation using modern conventions. The notion of defining a curve

as y D f .x/, with f a function, drawing the y-axis, and writing points as ordered pairs came much later. Let the

specific x value of point M be a, so M D .a; 0/ and P D
�

a; f .a/
�

.

The circle with center C D .v; 0/ and radius s has equation .x � v/2 C y2 D s2. From the Pythagorean Theorem,

s2 D .v � a/2 C
�

f .a/
�2

, so .x � v/2 C y2 D .v � at/2 C
�

f .a/
�2

. The points P and Q are on the circle and also

on y D f .x/. For them, therefore,

.x � v/2 C
�

f .x/
�2 D .v � a/2 C

�

f .a/
�2
: (13.1)

We seek the value of v for which this has a double root (and P and Q coincide). That is, for an appropriate function

g.x/, we want to solve

.x � v/2 C
�

f .x/
�2 � .v � a/2 �

�

f .a/
�2 D .x � a/2g.x/: (13.2)

For example, let f .x/ D x2 and a D 2. Then (13.2) becomes

.x � v/2 C x4 � .v � 2/2 � 16 D .x � 2/2g.x/: (13.3)

Since .x � v/2 C x4 � .v � 2/2 � 16 is a monic fourth-degree polynomial, g.x/ must be a monic quadratic, so set

g.x/ D x2 C px C q. Note: The following calculations can be done by hand, but they are tedious and not very

illuminating. This is a good place to call on technology.

We solve (13.3) by expanding and equating coefficients to get the system

4q D 4v � 20; 4p � 4q D �2v;
4 � 4p C q D 1; �4C p D 0:

The solution is v D 18, p D 4, and q D 13. From this the tangent line or normal line can readily be obtained.

This approach entails a bit more algebraic work than our modern methods require, and it gets rapidly worse as the

function gets more complicated. Note, however, that the idea of limit or of infinitesimals is not used in the calculation.
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It is purely algebraic. Descartes felt this conceptual clarity made his method far superior to Fermat’s, which is the

origin of our modern approach by difference quotients. Later mathematicians preferred the simplicity of Fermat’s

approach, and when challenged they were able to overcome the philosophical difficulties involved in the ideas of limit

and infinitesimals. This story is told in many books on the history of mathematics, e.g., [1, chapter 12].

13.3.2 For the Student

We can use a graphing tool and computer algebra capabilities to explore Descartes’ ideas. The following problems can

be modified to fit various systems with the appropriate level of detail left to the student. With the exception of solving

the system of equations in exercise 3b, almost any graphing calculator can be used for these problems. Programs such

as Mathematica or The Geometer’s Sketchpad can be used to create animations. In the spirit of Descartes’ times we

will confine our attention to the first quadrant.

Above we saw that the circle with center .v; 0/ and radius s is given by .x � v/2 C y2 D .v � a/2 C
�

f .a/
�2

, so

the function

circle.v; x/ D
p

f .a/2 C .v � a/2 � .x � v/2

gives the part of this circle that is in the first quadrant.

The function f .x/ and a are usually fixed in each exercise, so defining circle as a function of v and x is convenient.

On most systems the function circle can be defined, perhaps under a shorter name, and stored in the general form

above. Be sure to define f .x/ and a explicitly before trying to use circle. Also, a specific numerical value for v must

be entered to graph circle on most systems. Defining v as a variable makes it easy to draw graphs on the same screen

with different values for v.

Exercises

1. Starting from the modern idea that f 0.x/ is the slope of the tangent line at P show that the value we seek is

v D a C f 0.a/f .a/; or if you prefer,

f 0.a/ D v � a
f .a/

:

2. (a) Let f .x/ D
p
x and a D 1. Graph the function and circle.v; x/ together for v D 3, 2, 1:7, 1:5, and 1:1.

Note that v D 1:5 gives the double root, and v D 1:1 shows the second root on the other side of P from the

rest. Besides the graph, a “solve” utility can be used to find the roots.

(b) Now proceed algebraically as for f .x/ D x2 above. Identify g.x/ and solve for v.

3. (a) Let f .x/ D x5=2, and a D 4. Graph the function and circle.v; x/ together for v D 800. It may take some

tinkering to get a window in which it is clear that the circle meets the curve twice. Then view them for

v D 644, which gives the double root.

(b) Identify g.x/ as a monic polynomial of degree 3, say g.x/ D x3 C px2 C qx C r . Expand (13.2), identify

corresponding coefficients, and list the equations that need to be solved. If you decide to use your CAS to

solve these, be aware there may be many complex solutions (in fact pages of them!) that are not relevant to

the problem. This gives some insight into the increasing difficulty of Descartes’ approach.

4. Let f .x/ D sin x, and a D �=4. Try values of v, starting with v D 1:6, and use graphs to approximate the value

that gives the double root. (From above we know it is �=4C 1
2
� 1:285.)

5. If your students ask for more, count yourself lucky to have such students! They could try analyzing Descartes’

first example: the ellipse y2 D rx � .r=q/x2. I have reversed his x and y to suit modern conventions. Note he

puts the left end of the ellipse, not the center, at the origin.

After this it might be appropriate to have them look at La Géometrie itself [2, pp. 94–115].

6. For those with a bent for programming, a nice project might be to animate the process for various curves with a

slider to adjust v and display its value, perhaps as a Java Applet.
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13.4 Conclusion

After this excursion, a student may conclude that mathematics was right to take the road it did — and yet still be

grateful for a brief tour of another path, never fully traveled.
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14
Integration à la Fermat

Amy Shell-Gellasch
Beloit College

14.1 Introduction

Move over Riemann and make room for Fermat! Most textbooks on the integral calculus focus heavily on the Riemann

integral when introducing integration. This method is very effective in transitioning students from the finite (or macro)

world of finding area geometrically to the infinite (or micro) world of finding area by integration. Once the notation

and abstract idea of an area made up of an infinite number of infinitely thin slices is mastered, most textbooks move

directly on to integration techniques. Finding areas using rectangles is usually not mentioned again except in review,

to help students visualize a more difficult example, or when transitioning to finding volumes using double integrals.

Riemann used rectangles of uniform width. This is very handy when letting the width, dx, tend to zero. It also

corresponds nicely to the definition of the derivative presented in most textbooks, in which the width h D xiC1 � xi

in the denominator approaches 0. I still advocate introducing integration in this manner. However, there is no reason

to stop there and move directly on to integration techniques.

Prior to Riemann, even prior to Newton and Leibniz, Fermat and others were finding areas using the sum of thin

rectangles. However, Fermat’s rectangles were not of uniform width. The width of Fermat’s rectangles decreased

based on a geometric series. Looking at Fermat’s method directly after introducing the Riemann integral broadens the

student’s perspective on the integral calculus. Also, his techniques can be presented in an analysis course to provide

depth to the material. In either course it can be used as a point of departure for discussions of convergence as well as

discussions of finite areas under infinite curves. Fermat’s method also nicely incorporates other topics such as sums of

series, factoring, limits and, of course, history.

14.2 Historical Background

The first modern formulation of the integral was given by Augustin-Louis Cauchy (1789–1875), in his 1823 Resume

des leçons donnes a l’École Royale Polytechnique sur le calcul infinitesimal. In this work Cauchy defined the integral

as
Z X

x0

f .x/ dx D lim
ı!0

n
X

iD1

f .xi�1/.xi � xi�1/

where f .x/ is a continuous function on the interval Œx0; X� and ı is the maximum of the rectangle widths ıi . Thus his

rectangles varied in width and he used left-hand end points for his rectangles. [3]

111
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In this important work, Cauchy gave a definition of the definite integral using the mean value of the function within

each subinterval. This work is also where he gave us our modern notion of continuity and uniform continuity, as well

as explicitly stating the Fundamental Theorem of the Calculus.

In his 1854 “Habilitationschrift”, Georg Riemann (1826–1866) expanded on Cauchy’s work to make rigorous the

integral calculus. Riemann generalized Cauchy’s integral by defining the integral as

Z b

a

f .x/ dx D lim
ı!0

n
X

iD1

f .x/.xi � xi�1/

where xi D xi�1 C "iıi is an arbitrary point in the subinterval Œxi�1; xi � [3]. As with Cauchy, ı is the maximum of

the rectangle widths ıi .

The definition of the integral that most current textbooks use to introduce integration and some attribute to Rie-

mann is actually less general than either his or Cauchy’s definition.1 However, this approach has the benefit of being

conceptually easier and allows for a convenient discussion of error.

Before Cauchy and Riemann brought us modern definitions and rigor, and even before Newton and Leibnitz gave

us the calculus, many mathematicians were working to find a satisfactory method of quadrature; finding the area of a

given region. Notable among the investigators of the mid-1600s were John Wallis, Isaac Barrow, Evangelista Torricelli

and Fermat [3]. Their work resulted in methods for finding areas under curves that, apart from the use of limits, are

equivalent to the latter methods of Cauchy and Riemann.

Though Pierre de Fermat (1601–1665) is most widely known for his work in number theory, he also contributed

to early probability, describing spirals, and physical questions such as falling bodies and refraction. However, many

feel that his work on maxima and minima and tangents, as well as quadratures, was pivotal to the development of the

calculus. The problem of quadratures was one of the hot topics of the day, and helped spur Newton and Leibnitz to

invent the calculus. Carl Boyer went so far as to state that, “no mathematician, with the possible exception of Barrow,

so nearly anticipated the invention of the calculus as did Fermat.” [2, p. 164]

Fermat published little, letting his discoveries be known through his extensive correspondence. For this reason,

dating when he made his discoveries is difficult. Most of Fermat’s results on quadrature are found in one of his few

published works, his Treatise on Quadrature, published in 1658 or 16592 [5].

14.2.1 Fermat on Quadrature

From his correspondence, we know that Fermat was familiar with the works on quadrature of Wallis and Torricelli,

and by about 1636 Fermat likely had solved for the area under curves of the form y D 1=xn on the interval Œ1;1�.
By about 1644, Fermat had a method of finding the area under y D xn for rational exponents (excluding �1) [1, 4].

His method, apart from notation and language, is strikingly similar to our current approach in all but one respect; his

rectangles are not of constant width. We will first consider the case of integral powers, n � 1. The case of negative

and rational exponents will then be briefly outlined.

As we do now, Fermat started his investigation of curves of the form y D 1=xn by dividing the area into rectangles

of uniform width, see Figure 14.1.

As with most mathematicians of his time, Fermat was working in the tradition of Archimedes. Thus when finding

circumferences and areas, he planned to inscribe and circumscribe his curve with a finite number of rectangles. [5]

For an object with finite dimensions, this method works well. However, the curve in Figure 14.1 has infinite length,

yet finite area! Fermat realized he would need to have an infinite number of rectangles to cover an infinite length. But

how to sum the areas of this infinite series of areas? One easy solution is to convert it in to a series with known closed

form sum. Fermat’s insightful solution was to use a geometric progression to determine the width of his rectangles. In

Figure 14.2 the widths of the rectangles increase in geometric progression.

1For more detail on the evolution of the integral as a summation of rectangles, see the author’s “The Integration Techniques of Fermat in the

Proceedings of the Canadian Society for the History and Philosophy of Mathematics, 2008.
2The full translated title of this undated work is (take a deep breath), On the transformation and alteration of local equations for the purpose

of variously comparing curvilinear figures among themselves or to rectilinear figures, to which is attached the use of geometric proportions in

squaring an infinite number of parabolas and hyperbolas.
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y0

x0

Figure 14.1. Quadrature of y D 1=xn with finite division.
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Figure 14.2. Quadrature of y D 1=xn of infinite division

using geometric progression.

Fermat then went on to make the following observation [1]. By reflecting this graph about a line x D a (GE in

Figure 14.2) and mapping the interval Œa;1� onto the interval Œ0; a�, he had, in the limit, the graph of the parabola

y D xn on Œ0; a� for positive integral n. In this case, the widths decrease from right to left. He then extended his

argument to all positive rational powers, n D p=q larger than 1. See Figure 14.3.

In time he was able to generalize this method to all rational powers, as in Figure 14.4, again with decreasing widths.

y

x

y x= p/q

… xn +1 xn
… x1 a x= 0

Figure 14.3. Quadrature of y D xp=q with p=q > 1. Figure 14.4. Quadrature of y D xp=q with 0 < p=q < 1.

14.3 In the Classroom

The easiest way to introduce Fermat’s method in the calculus class is directly after Riemannian integrals are introduced.

Once students are comfortable with that method, simply ask if the rectangles need to be of uniform width. After a few

minutes of discussion, Fermat’s work can be presented in a Socratic style.

For ease of presentation, I will present two options. First I will present the concrete case of n D 2 (the parabola),

then I will detail the general case for any positive integer, n; both on the generalized interval Œ0; a�. I have found

that working a concrete example in class goes smoothly while still allowing for generalizations to be discovered and

discussed. Fermat’s general case of n can then be done by the students in groups if time and interest permits.3

Keep in mind that what follows is the modern presentation of what Fermat did, and not how it appeared in his work.

Since he was working in an era before the use of limits, his arguments relied heavily on the use of proportions, in

keeping with the best Greek tradition. However, this approach is foreign to our students and would take an inordinate

amount of time to present. The following modern adaptation is sufficient to show students Fermat’s work.

3I started using this in the classroom after reading it in Fred Rickey’s as yet unpublished Historical Notes for the Calculus Classroom, [6]
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14.3.1 Area under y D xn on Œ0; a�

Let E be any positive value less than 1. Then a; aE; aE2; aE3; : : : is a decreasing geometric sequence approaching

0. Partition the interval Œ0; a� at these points as shown in Figure 14.3. By creating circumscribing rectangles to the left

of the curve, the area can be found in the following manner. Each rectangle has width aE i � aE iC1, starting at the

right with i D 0. The height of each rectangle is found by evaluating the function on the right.

Case n D 2 In the case of exponent 2, the height of each rectangle will be .aE i /2. Thus the total area is:

A D
1
X

iD0

.aE i /2.aE i � aE iC1/

D a3

1
X

iD0

E2iE i.1 �E/

D a3.1 �E/
1
X

iD0

.E3/i

D a3.1 �E/ 1

1 � E3

D a3

1C E C E2

By lettingE approach 1, aE i � aE iC1 will approach 0, and we get infinitely many infinitely narrow rectangles. Thus

the area approaches a3=3, which is the integral of y D x2 evaluated at x D a.

General case n In the general case of n any positive integer, the height of the rectangles is given by .aE i /n. Similarly

to the previous case, the total area is:

A D
1
X

iD0

.aE i /n.aE i � aE iC1/

D anC1

1
X

iD0

E inE i .1 � E/

D anC1.1 �E/
1
X

iD0

.EnC1/i

D anC1.1 �E/ 1

1 �EnC1

D anC1

1C E C E2 C E3 C � � � C En

Again letting E approach 1, the denominator in the last expression above approaches nC 1. So Fermat found the

area under the curve y D xn on Œ0; a� to be anC1=.nC 1/, which agrees with modern integration techniques.

Fermat’s investigation of the area under the hyperbola can be incorporated in integral calculus directly after the

introduction of the Riemann definition of the integral. A straightforward presentation of Fermat’s method would take

approximately fifteen minutes of class time. If a more Socratic method is used or if students are asked to evaluate an

integral using this method on their own, more time would be needed.

14.4 Taking it Further

All four of Fermat’s quadrature problems as depicted in Figures 14.1–14.4 can be developed in class. However, the

case of the parabola with positive integer exponent is the easiest and quickest. If time and interest allow, the other three

can be done in class or assigned as a project.



14.4. Taking it Further 115

For the case of negative integer exponents other than �1, E is chosen larger than one. As the graph of the function

approaches the x-axis as x tends to infinity, the rectangles get progressively shorter yet longer as in Figure 14.2. By

using the same algebraic manipulations as before, as E approaches 1, the area approaches a1�m=.1 �m/ .

In the case of rational powers p=q (other than �1), Fermat used a substitution of the form E D Kq to compensate

for the denominator q in the exponent [1, 2]. The calculation is carried out as follows, please refer to Figure 14.4. The

area under the curve y D xp=q will be found over the generalized interval Œ0; a� with E 2 .0; 1/. Again, starting on

the right at a, partition the area by a; aE; aE2; aE3; : : : : The area will be:

A D
1
X

iD0

a.E i � E iC1/.aE i /p=q

D a.p=q/C1

1
X

iD0

.E i � E iC1/E i.p=q/

D a.pCq/=q.1 �E/
1
X

iD0

E i..pCq/=q/

D a.pCq/=q.1 �E/ 1

1 � E.pCq/=q

Now, to follow the same method as in the previous two cases, we need to compensate for the denominator q in the

exponent. So we let E D Kq and we have

a.pCq/=q

�

1 �Kq

1 �KpCq

�

D a.pCq/=q .1 �K/.1CK CK2 C � � � CKq�1/

.1 �K/.1CK CK2 C � � � CKpCq�1/
:

As E , and thusKq , approaches 1, the area under y D xp=q on the interval Œ0; a� will be

a.pCq/=q

�

q

pC q

�

:

14.4.1 Open Questions for the Classroom

Why is �1 excluded as an exponent?

For y D 1=x, how will the function values change? (They will decrease geometrically.) How will the areas of the

rectangles change? (The areas of the rectangles will all be the same.)

Since the rectangles all have the same area, how will the total area, or integral, change as you sum the rectangles?

(The area increases arithmetically.)

What function has this property of changing multiplication into addition? (Logarithms, so the integral of 1=x is the

natural log.) [4]

Fermat did not investigate irrational powers. Can this method be adapted to integrate y D xn for irrational n? Can

you get a closed form for the integral or only an approximation?

There are a number of other ways in which Fermat’s use of non-uniform rectangles can be presented. The following

list gives the most general ones. Each idea can be adapted to the textbook and topics covered in class.

1. Present the problem of finding the area under a curve such as y D
p
x on the interval Œ0; 1� using Riemannian

rectangles. Start with only a small number of rectangles such as 3 or 4, both circumscribed and inscribed. Discuss

the error presented by the large over- or under-estimate of the area near zero. Comparing this to a graph that is less

steep near zero will provide a helpful visual. Ask students how to reduce this error. The various techniques such

as left endpoint, right endpoint, midpoint and trapezoidal can be reviewed and compared. Then ask the students

what other ideas could be used besides altering the top of the rectangles. Where is the approximation more or less

accurate? (Less accurate as we approach zero.) If needed, lead the discussion to the idea of altering the rectangles

near the area of concern, then move on to the idea of adjusting the widths.
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2. Throughout the calculus sequence, short history modules can be incorporated focusing on each of the prominent

mathematicians contributing to the development of calculus. Fermat can be presented earlier in the differential

calculus4, and then revisited in the integral calculus. (See chapter “Sharing the Fun” by the editors in this volume.)

3. For a more advanced class, present the underlying idea of rectangles of decreasing width and have students work

in groups to rediscover Fermat’s techniques. The level of the class will dictate the amount of information provided

up front. In an advanced class a hint to the effect that using a geometric progression is all that might be needed.

The students can be given a concrete example to tackle, such as y D x2 or y D px on Œ0; 1�, followed by the

general question of y D xn on the interval Œ0; a�.

14.5 Conclusion

By presenting a little of the history of the standard topics taught in the undergraduate mathematics curriculum, we

provide our students with insight into the methods and uses of earlier mathematics. The Riemann integral is the

traditional starting place for the teaching of integration. But all too often it is used strictly as a means to present the

theory that integration is used to find the area under a curve. As soon as this is mastered, we move on to the various

integration rules and techniques without any more attention paid to the physical connection between area, limits and

integration.

Presenting the method of Fermat gives students the chance to witness and explore mathematics as a tool for answer-

ing challenging problems, not simply as a set of rules used to answer textbook exercises. It is an excellent example of

thinking outside the box, or rectangle, as the case may be. Fermat’s method of decreasing rectangles shows the flexi-

bility of mathematics, while the method of finding areas by infinitesimal rectangles shows the beauty of mathematics.

Letting students experience a variety of historical approaches to mathematics allows for greater comprehension, reten-

tion and interest in the topic.
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15
Sharing the Fun: Student Presentations

Amy Shell-Gellasch and Dick Jardine

Beloit College Keene State College

15.1 Introduction

Advocates of incorporating the history of mathematics in teaching mathematics do so believing that providing a human

element may spark student interest in mathematics. Incorporating biographical sketches or historical anecdotes into

instruction has the potential to enhance student interest, with the hope that interested students will learn more readily

and retain the content longer. The learning value of the historical activities can be enhanced when explored and

presented by the student rather than presented to the student by the instructor or textbook. An effective way to have

your students deepen their knowledge of mathematics through its history is to have them do the historical research

and presentations. A student-centered approach to introducing history in a wide variety of undergraduate mathematics

courses is an effective teaching tool, in large part because most students like doing the presentations [1].

Invite your students to share in the joy of discovering the “who” and the “why” of the mathematics they are learning,

and to take an active role in making the connections between the mathematics they are learning and its historical

origins. Student-researched historical presentations can be done in any course, at any level, and require relatively

minimal preparation by the instructor. How much time you allow for student presentations in class is up to you. You

may limit students to 5 minutes, or require longer presentations. We provide ideas for different approaches to the

historical presentations your students can do based on what has worked for us. One approach is general and easy to

implement; the other requires more planning on the part of the instructor. Assigned student presentations can be on

the historical development of specific topics, such as the origin of e, or on biographies related to the course in general,

presented throughout the semester. Another approach, requiring a bit more planning, links each student presentation

to a specific lesson in advance. Each student’s historical presentation is done during the class period in which the

connected mathematical topic is learned.

15.2 Getting Started

Probably the most important factor in deciding how you will include student historical presentations is the amount of

class time you choose to make available for their talks. Having included student talks in many different courses, we

have found that the benefits outweigh the time taken from instruction. Relatively short presentations help build student

confidence in talking about mathematics without a large investment in preparation time.

As an example, have students do individual five-minute presentations starting the second week of classes. In the

Appendix are an example schedule and assignment instructions used in a recent Calculus II course. Each student does

117
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one presentation as scheduled. The student delivers the talk at an appropriate time in the class period, usually just

before or after the mathematical topic to which the mathematician is connected. Improvising the segue for the student

presentation is part of the fun for the instructor. Rubrics for grading the essays and presentations are available from

the authors.

Longer student presentations can be done if appropriate for each topic. Depending on class size, every student

can do one or two presentations at your discretion. Another alternative is to have a team of two or three students

do a presentation once a week. Or one or two days of class meetings near the end of the term can be devoted to

presentations. You could also incorporate history presentations as part of student-led reviews, either at the end of the

semester or prior to an exam, connecting an exam topic with its history, for example the Bernoulli differential equation

with Jacob Bernoulli.

Once you decide how many presentations will be conducted and the length of each presentation, compile a list of

topics or names of mathematicians, scientists and others who had an impact on the development of the course topic. It

is relevant to include topics or names from science, philosophy or other disciplines that had an influence on the course

concept to allow students to see the interconnectedness of fields of study. For example, a presentation on William

Libby, a Nobel Laureate in chemistry for his work in carbon dating, is relevant when discussing exponential decay.

This allows students to see that many mathematicians were also scientists, church figures, politicians, lawyers, etc.—

true polymaths. You can make the list of topics a little longer than the number of presentations you expect to allow

some choice on the part of the students. Such a list for calculus is provided in the Appendix. Present the list on the first

or second day of class and inform students when and how they will choose their topic.

Topic selection can be done as a first-come-first-serve sign-up either in class or by email. Often a student will

have already heard a name or topic which is of interest to them. For example, female students are often interested

in female mathematicians. When student talks are done in a statistics course, Florence Nightingale always seems to

be selected quickly by a female student. We have done the selection in class using the random number generator of

Excel or a calculator, and included coin flipping or rock-paper-scissors when more than one student wants the same

subject. Of course, you can simply assign the topics to students. As mentioned before for both biographical and topical

presentations, it makes sense to have the date of each presentation coincide with the lesson or lessons that are relevant.

Once students choose or are assigned topics, the presentations are scheduled so that each student knows the date their

presentation is due.

To ensure that student work is up to your standards, it is useful to provide students with guidelines for what to include

in their presentation: what, if anything, needs to be handed in; information on grading; and a list of resources (web and

hardcopy) to get them started. For example, the MacTutor website [2] is a good starting place, as is the Dictionary of

Scientific Biography [3]. It is worthwhile to have a short discussion with your class about the characteristics of good

web sources and how to be a discriminating web researcher. To not have students rely too heavily on web sources,

you may chose to require a specified number of print sources, including journal articles. This is also an opportunity to

introduce your students to reference librarians and all that they can access, including the digital archive JSTOR, one of

our favorites, if your institution subscribes.

There are measures you can take to reduce the potential for getting presentations of unacceptable quality. We suggest

you do the first presentation yourself! That allows you to model what you expect from students, and demonstrates to

students that you are willing to do what you expect the rest of the class to do. We have not found that necessary, but it

certainly is an option should you want to ensure the quality of what is presented in your classroom. With the arrival of

inexpensive and simple to use digital video recorders, student presentations can be recorded and used as examples of

good presentations.

15.3 Presentations

PowerPoint, or some other presentation software, is the easiest method of presentation if the technology is available to

you. If not, a transparency projector, document reader, or other visual aid can be used for the presentations. You may

find it acceptable for the students to just stand up and present without visual aids. Consider offering students assistance

in preparing transparencies or handouts they would like to use to support their presentation. Allow time for questions

and discussion following the presentations. We have found that students seem to listen much more carefully to their

classmates’ presentations than to instructor’s lectures, so there is potential that wonderful discussions may result.
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To ensure student attentiveness to their peers presentations, using the information from the presentations in sub-

sequent quizzes or tests, even as bonus questions, reinforces the importance of the historical information and really

makes the students feel that their contribution is significant. If the students know that presentation material is fair

game, they will be more involved in the whole process. In order for this to be effective, you have to make sure that any

misinformation presented is discussed.

15.4 Assessment

As with many assignments, grading presentations is a subjective classroom assessment activity. Amy requires students

to submit a printed copy of their bibliography. She then writes comments about the presentation on that paper as

feedback for the student. She grades on the content, how well the students understand what they are presenting, and

the style of the presentation itself. Dick employs an oral presentation checklist and an associated analytic rubric. The

rubric and checklist are given to the students in advance so they are aware of the grading process. You can also provide

students with grading sheets and have them evaluate their peers. Peer grading is a valuable exercise, but be advised

that students often grade harder than you might. Presentations can also be used as alternative graded events or as extra

credit assignments.

Consider using student submissions of their presentation for program assessment, retaining either electronic or paper

copies of their work. These files can become the artifacts necessary to document that students are engaged in activities

supporting departmental program goals or state requirements. Many mathematics departments have communicating

mathematics as a program goal, and these presentations count toward that objective in addition to any objective your

department may have that involves the history of our discipline. In that way, one activity, the student history presenta-

tions, is a source of evidence of student work toward two program goals. Additionally, you or your students may want

a collection of their presentations in a course, so if you have the electronic files you can easily copy them onto a CD

at the end of the term for students who are interested.

15.5 Conclusion

Student presentations provide an alternative learning experience that allows students to practice their talents in the

written and spoken word, as well as their interests in history, mathematics, science, the humanities, and other disci-

plines. Presentations also provide departments with several opportunities for student generated artifacts in support of

program goals. The authors have found that end of term student evaluations consistently identify the presentations as

a high point in the course. Students comment on how much they learned from doing their own research and presen-

tation, as well as from listening to the other presentations. Students gain a deeper understanding of the subject. More

importantly, they learn from the biographical presentations the value of hard work and self-study in enabling almost

anyone to achieve success in mathematics or in any other discipline. The topical presentations show that mathematics

is a process that evolves over time, with connections to other ideas and fields. Finally, by giving your students the

opportunity to do their own research and present their findings, you are sharing the fun, and can sit back and enjoy

someone else teaching for a while.
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Appendix

MATH152 — Calculus II

Mathematical History Essay and Presentation

A graded requirement for MATH152 will be the submission and presentation of a brief essay about a concept or

person prominent in the history of mathematics in general and the calculus in particular. The biographical sketch

should contain information about the time period in which the person lived and worked, the major contributions of the

person, the connection of the person’s work to the calculus, and, if possible, any interesting (humorous?) anecdotal

information. The essay on the concept should trace the origins of the mathematical idea, identifying key persons

responsible for the concept. The written essay (or sketch) should be at least a couple of paragraphs and not more than

one page in length, certainly not more than a couple of pages. The oral presentation should take a few minutes of

class time, certainly not more than 5 minutes, and should relate the historical figure to the day’s lesson or our course.

Important: both the written essay and the classroom presentation must relate the mathematician to the lesson of the

day. Remember that your instructor is available for assistance in this endeavor, and full documentation of resources

used (at least one print and one web source) is required. The essay and presentation will be worth 30 course points. A

maximum grade is possible only if mathematics (e.g., an equation, a definition, a graph, etc.) appears in the reports.

Below is a list of potential subjects for the essays and related lessons:

Lesson Subject

3 Leibniz, Newton

4 Napier, Seki Kowa, Emilie Du Chatelet

5 Kepler, Hooke

8 Johann Bernoulli, Jacob Bernoulli

10 Archimedes

11 Riemann

12 Thomas Simpson

15 Malthus; Verhulst

16 Galileo, Kovalevskaya

19 Lotka; Volterra

22 Louis Fry Richardson

25 Brooke Taylor, Fermat

27 Laplace

28 Euler

30 Zeno of Elea

31 Colin Maclaurin

32 Lagrange

33 Cauchy

35 L’Hospital

36 Torricelli

37 Cardano, Tartaglia, Bombelli

38 Argand, Wessel, Gauss, Demoivre

39 Agnesi
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History Presentation Assignments

Lesson Mathematician Student

3 Leibniz Min

Newton Ben

4 Napier Nicole

Seki Kowa Robert

Emilie Du Chatelet Stephanie

5 Kepler Ashley

Hooke Amanda

8 Johann Bernoulli Andy

Jacob Bernoulli Joel

10 Archimedes Matt

11 Riemann Billy

12 Thomas Simpson Alyssa

15 Malthus Michelle

Verhulst Mike

16 Galileo Susan

Kovalevskaya Jenna

19 Lotka

Volterra Steve

22 Louis Fry Richardson Dan

25 Brooke Taylor Heather

Fermat Joe

27 Laplace Jessica

28 Euler Ginger

30 Zeno of Elea Eric

31 Colin Maclaurin Rob D

32 Lagrange Mallory

33 Cauchy

35 L’Hospital Sean

36 Torricelli Jeremy

37 Cardano Silas

Tartaglia Duncan

Bombelli

38 Argand Amy

Wessel Josh

Gauss Justin

DeMoivre

39 Agnesi Nathan





16
Digging up History on the Internet:

Discovery Worksheets

Betty Mayfield
Hood College

16.1 Introduction

So you want to include some history of mathematics in your upper-level courses, but you just can’t imagine how you

can possibly fit anything else in this semester. How will you get to all the topics you want to cover, and still have time

for some history?

Instead of giving a lecture on a history topic, or on the name behind a famous theorem, why not let students find the

information themselves? Using a discovery worksheet is fun, saves class time, and encourages students to learn things

on their own. Some of the answers may be in their own textbooks, or in library books on the history of mathematics,

but the activities in this article are designed so that students are encouraged to search the Internet for information. In

the process, students will probably be surprised to learn how much material is ‘out there’ about mathematics and its

history and will begin to learn how to separate the online wheat from the chaff. The examples that follow are intended

for students in linear algebra and differential equations courses, as indicated, but you can obviously use this idea in any

class. This assignment is very flexible: you may assign the worksheets for homework or use them as a class activity;

you may have students work independently or in groups.

Students enrolled in a linear algebra class may never have stopped to think that Gaussian elimination was named

for someone named Gauss, or that there was a Cramer behind Cramer’s Rule. They may be surprised to learn that

people have been solving systems of linear equations for thousands of years. They may be equally surprised to learn

that the person for whom a theorem or computational method is named is not necessarily the person who first used

it. Helping students discover the stories behind the topics they study gives more depth to their understanding and

appreciation of mathematics and mathematicians. Many textbooks today include short biographies of ancient and

modern mathematicians important in the field. You can use those short articles as a starting point for leading students

to learn more about history.

Similarly, students may have little awareness that new mathematics is being discovered every day, that there are

famous mathematicians living and working right now. Two of the attached worksheets, designed to be used in a

differential equations class, lead students to learn about contemporary mathematicians and their work.
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16.2 In the Classroom

In developing a discovery worksheet for your students, you may print the questions on a sheet of paper, with blank

space for the students’ answers, and hand them out in class; or you may post the questions on the class Web site (using

an electronic platform like Blackboard, for instance) and have the students create a document, typing their answers

directly into it; or you may do something completely different. If you want your students to work together during

a class period, you can give one sheet to each group of students. If you are pressed for time, you may assign the

project for homework and have each student submit an individual response. Several worksheets I have used are in

the Appendices; in each case, I have just listed the worksheet questions. I generally have students write the answers

to these specific questions in complete sentences — but you could also use those questions as a springboard for a

more complete written report. In any case, students using discovery worksheets gain experience in reading, writing,

searching, and learning about the history of mathematics in a ‘real’ math course.

16.3 Learning about History — and about the Web

One of the aims of this project is to introduce students to (reputable) online resources in the history of mathematics,

and to help them assess the sites they find on their own. You may wish to specify which sources they use, or you can

use this experience as an opportunity to help students find and evaluate appropriate resources. If you have not indicated

where you want students to look for information, their immediate reaction will undoubtedly be to consult Wikipedia.

Our goal is to lead them to more serious, more academic, more trustworthy sources. If you want students to learn

about interesting and useful Web sites devoted to the history of mathematics, you will need to offer some guidance on

evaluating those sites. Librarians in this country have taken the lead in developing resources to help students figure out

whether or not a Web site is biased, or unreliable, or out of date. One example of a helpful tutorial and accompanying

checklist for a Web site — the one recommended by our college library — is available from the web site of the

Teaching Library at Berkeley [4]. The tutorial includes questions to ask when examining a Web site and techniques for

evaluating it, encouraging students to be skeptical and to think critically about sources. You could ask your students to

compare two different Web sites on the same topic,using the accompanying checklist [11], for instance. There are, of

course, many similar tools from other libraries.

The worksheet activity should always be followed up by a class discussion, however brief. What information did

students find? What surprised them? What did they find interesting? Where did they get their facts? Did they find

conflicting or contradictory accounts? What could account for that situation? How can we decide who is correct?

What further research could we do? If possible, we print out a poster or fact sheet and post it in the classroom, to

remind us — and the other classes meeting in that room — of the names behind the math we study.

16.4 Conclusion

Developing discovery worksheets is a fairly easy way to introduce students to the history of mathematics. It encourages

independent learning and exploration, reinforces researching and writing skills, and need not take up much class time.

You can structure such an experience to emphasize group work, or library research, or evaluating web sites. In any

case, the history of a problem can remind us that mathematics is created by people — often very interesting ones.
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Appendix 1: Who Was Gauss?

This worksheet was designed for a linear algebra class. Students are encouraged to read the biographical sketch in

their textbook [6] first and then search the Internet to find the rest of the answers. There is a link to the MacTutor web

site [9] on the Blackboard site for the course, and one to the Mathematics Geneology Project [8], both of which should

be helpful. This is the first history assignment in this course, so students are introduced to basic all-purpose sites.

Using your textbook and the web sites listed under External Links on the course Blackboard site, find the answers

to these questions. Be sure to list your resources.

For whom is Gaussian elimination named?

When did he live? Where?

What did he do when he was 7 years old that astounded his teacher?

What is a gymnasium?

Where did Gauss go to college? Did he have lots of friends? Did he even graduate??

One of Gauss’s most famous discoveries is how to construct a particular polygon using only a ruler and compass.

How many sides did that polygon have?

What is the name of Gauss’s most famous work?

What was the subject of his dissertation? What does that mean?

What method did he use to predict the orbit of Ceres? Have you ever used that method in another class? [Our

students have done so in a calculus lab.]

What personal tragedies did Gauss experience? Did they affect his work?

What kind of geometry held a special fascination for Gauss?

Who were three famous students of Gauss?

What is the Prime Number Theorem?

Did Gauss ever use the method of Gaussian Elimination himself? In what context? Was he the first person ever to

use it?

Appendix 2: History of Matrices and Determinants

This is the second linear algebra worksheet. As with the first assignment, most of the answers can be found at [9], but

on another part of the web site: students begin by reading an essay on a particular topic rather than a biography of

a particular mathematician. Then they follow links and search around a little to answer further questions. By the end

of this assignment, they know their way around this particular web site pretty well. If one Googles ‘Cayley-Hamilton

Theorem,’ all sorts of web sites pop up — some more reputable than others. Students will have an opportunity to

choose one that seems appropriate.
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In what context did the study of matrices arise?

What is the earliest known occurrence of a system of linear equations?

What is the first known example of the use of a matrix to solve a linear system?

When and where did determinants first appear?

Who first used the term “determinant?” Who first used it in our modern sense of the word?

Who first used the notation of two vertical lines to indicate the determinant of a matrix?

Who first used the term “matrix?”

Who first proved Cramer’s Rule for 2 � 2 and 3 � 3 systems?

Who proved the rule for the general n � n case?

What is the Cayley-Hamilton Theorem? Who was Cayley? Who was Hamilton?

Be sure to list all of your sources, and fill out the Web Site Evaluation Check List for any Internet site you used.

Appendix 3: Stephen Smale, a contemporary mathematician

For use in a Differential Equations class. There is a biography of Prof. Smale on [9], and a brief description of his

work in [3]; students have to look around a little to answer all of the questions — for instance, on the Fields Medal

site [5] and the MAA [7]and AMS [1] sites.

Where did Prof. Smale go to college? Where did he get his graduate degrees? Where is he now?

What is a Fields Medal? How old was Prof. Smale when he received one? What is the maximum age one can be

and receive a Fields Medal? Is there a Nobel Prize in mathematics?

Prof. Smale published many papers, and received many honors, for his work in pure mathematics, including his

work on the Poincaré conjecture. But then, in the late 1960s, the focus of his work changed. Describe that change.

Every year until 2000, when the American Mathematical Society stopped holding regular summer meetings, the

AMS held a series of three Colloquium Lectures on an important topic. When did Stephen Smale give these lectures?

What was the topic? Who gave the lectures in 1996? Do you think the room was crowded??

What is the Chauvenet Prize? Who gives it? When did Stephen Smale win it, and what for?

Are there any books in our college library by or about Stephen Smale?

Appendix 4: Nancy Kopell, a female mathematician

Another Differential Equations assignment. Just when students have been lulled into thinking that everything they

need to know is just one click away, on the MacTutor web site, they encounter a well-known mathematician who does

not appear there. We can have an interesting discussion afterwards about possible reasons why. In this assignment,

students are introduced to the Agnes Scott Biographies of Women Mathematicians site [10] and that of the AWM [2].

Students are also reminded that their textbook has biographical sketches of contemporary mathematicians, and they

begin to learn about the holdings of our college library in the history of mathematics.

Is this famous mathematician listed on the MacTutor History of Math site?

Try the Biographies of Women Mathematicians site, hosted by Agnes Scott College. Do you find her there?

Where did Prof. Kopell go to college? to graduate school? Who was her dissertation advisor?

At which institutions has she taught? Where is she now? What kinds of mathematical problems does she work on?

What is the CBD? Where is it?

What honors has Prof. Kopell won?

Every year, at the Joint Mathematics Meetings, the Association for Women in Mathematics sponsors a lecture by a

famous woman mathematician, called the Emmy Noether Lectures. Who was Emmy Noether? When did Prof. Kopell

give the Noether Lecture? In what city? What was its title?

Does our college library have any books about Prof. Kopell? Say more.



17
Newton vs. Leibniz in One Hour!

Betty Mayfield
Hood College

17.1 Introduction

In our college, we teach a quick, one-credit Calculus Workshop course for students who have received credit for

taking first-semester calculus elsewhere (in high school or at another college) but who need a brief introduction to

some specific topics they may not have seen before. And so we spend one class on using a computer algebra system,

one class on Euler’s Method, one class on writing about mathematics . . . a whirlwind tour of a variety of topics our

regular Calculus I students see in more depth. The class meets for one hour and fifteen minutes twice a week during

the first half of the semester.

Even in such a condensed course, we want our students to learn something about the history of calculus, and

especially about the most famous names associated with its beginnings. They have encountered Isaac Newton’s name

in solving a murder mystery (Newton’s Law of Cooling) and in studying air resistance for a falling body (Newton’s

Laws of Motion), but few of them know much about his role in the discovery of calculus — and most of them have

never even heard of Gottfried Leibniz. Students in our regular calculus sequence read, discuss and write about several

articles on the development of the calculus from [2] and [4], but we do not have that luxury in the workshop course.

And so on the last day of class, we take a quick dive into the history of the subject. The activity described in this article

introduces students to the lives and work of Newton and Leibniz in a way that includes active student participation,

collaboration, and the use of technology — in one class period.

127



128 17. Newton vs. Leibniz in One Hour!, Betty Mayfield

17.2 Historical Background

In different parts of Europe, virtually simultaneously, Isaac Newton (1642–1727) and Gottfried Leibniz (1646–1716)

discovered the subject we know as calculus. They used different notation, and different words, but they each discovered

both differential and integral calculus and the remarkable theorem that links them [8]. The story of Newton and Leibniz

and the feud they began is inspiring, instructive, fascinating, and exasperating. It was, indeed, an all-out war between

the most brilliant natural philosophers of their time, and it split the mathematical world into Newtonian and Leibnizian

camps [5]. This lesson gives students a brief glimpse into the lives and work of these two exceptional mathematicians

and their relationship to each other.

17.3 In the Classroom

17.3.1 The Activity

First, divide the class into rival Newton and Leibniz groups. I do that by copying pictures of Newton and Leibniz, with

their names attached, onto small pieces of paper, and having students each draw a piece out of a hat. If it is a small

class, you may have only two groups; a larger class could be divided into groups of a more manageable size, and the

assignment suitably modified by giving different instructions, or lists of resources, to each group. Tell the students that

each group will find out as much about their assigned mathematician, especially in relation to calculus, as they can in

the time allotted and then will give a report to the rest of the class that very day.

Hand out a list of resources, and give the class about forty-five minutes in which to research their topics and prepare

a presentation. That will probably force the groups to divide up the work and combine their findings later to produce a

finished product. Then, in the last ten minutes or so of the class period, have the groups present their work to the rest

of the class. (See the instructions in the Appendix.)

17.3.2 Resources

An ideal setting for this project is a computer lab, where students have access to several computers and space to work

in groups. Or if your classroom is close to a lab, students can move back and forth between the two spaces as needed.

If you do not have easy access to computers, this project can still be fun and successful; your students will just rely on

print resources and traditional oral reports.

There are many print resources that are ideal for this project; your students may already have access to some of

them. Either refer students to books in the classroom, or make handouts available of:

� The “Knighted Newton” (pages 129–142) and “Lost Leibniz” (pages 143–158) chapters of William Dunham’s

The Mathematical Universe [4];

� Eric Temple Bell’s “On the Seashore” (pages 36–48), Morris Kline’s “The Creation of the Calculus” (pages

49–55), and the excerpt from Principia Mathematica (pages 56–59) in Readings for Calculus [2];

� The biographies of Newton (pages 131–140) and Leibniz (pages 141–157) from George F. Simmons’s Calculus

Gems [8].

In addition, of course, there are many online resources available; if your students are not already aware of their

existence, this is a good time to introduce them to reliable web sites such as:

� The MacTutor History of Mathematics archive [7]: see the biographies of Newton and Leibniz, and the essay on

The History of Calculus;

� David Joyce’s web site at Clark University [6]: see the article on The Rise of Calculus;

� David Wilkins’s site at Trinity College, Dublin [9], for papers by and about Newton.

17.3.3 Student Presentations

If your class meets in a room with an instructor’s computer and projector, this is a great project for using software

like PowerPoint. Students can gather around one computer and collect all their information together into a short

presentation, including text, graphs, and pictures of the great men themselves. Lacking that equipment, you could
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hand out blank transparencies and colored pens (and perhaps the department code for the photocopy machine), and

students can be just as creative. In my experience, people walking past the classroom have stopped and peered in the

windows and doors, trying to see what the lively presentations and cheers of “Newton!” and “No, Leibniz!” are all

about.

17.3.4 Making it Run Smoothly

The biggest constraint, of course, is time: students can barely scratch the surface of the story of Newton and Leibniz in

an hour. On the other hand, as an instructor you must convince yourself that, while rushing to ‘cover’ all the important

topics on the syllabus, it is worthwhile to spend an hour of valuable class time on the history of calculus. Assuming you

have answered that question to your own satisfaction, you will have to manage the activity carefully. Make sure that

you have all of the materials prepared and in the classroom, and that the students are ready to work, at the beginning

of the class period. During the class, keep track of the time, and walk around and see how the groups are doing,

reminding them how much time they have left, perhaps answering questions or giving advice, and finally stopping

them in time for them to give their oral reports. The presentations are necessarily short (you will have to set limits and

stick to them), and necessarily superficial, but students have spent an hour of their lives reading, writing, and listening

to information about Newton, Leibniz, and the discovery of calculus — and that can’t be bad!

17.4 Taking it Further

If you decide to include this activity in a standard course, you may of course devote more time to it. You could assign

the readings for homework and then use class time for discussion and developing the presentations. For students who

are intrigued by their introduction to this topic and want to learn more, you might assign an individual project for extra

credit. Some possibilities for topics:

� Read A. Rupert Hall’s Philosophers at War [5], about the Newton-Leibniz feud. Take sides and state the case for

either Newton or Leibniz.

� Write a play about the feud and perform it in class.

� Find out who Newton’s great antagonist George Berkeley was, and why he was so suspicious of Newton’s calcu-

lus. (Bishop Berkeley published, in 1734, a treatise called The Analyst, in which he famously referred to infinites-

imals as ‘the ghosts of departed quantities’ [9]. ) Mathematical historian David Wilkins’s website, cited above,

contains the original text of The Analyst as well as contemporaries’ reactions to it.

One could, of course, use this approach to introduce students to other controversies in mathematics. Another priority

dispute that students find entertaining is the one between Niccolo Fontana (1499–1557), known as Tartaglia, ‘the

Stammerer,’ and his rival Gerolamo Cardano (1501–1576), over which one devised a method to solve a general cubic

equation first — a tale that involves public challenges and counter-challenges, gambling, and poisoning by arsenic [1],

[3]. Or students could form Fermat and Descartes teams, to debate who really discovered analytic geometry. Many

students can correctly identify the mathematician for whom the Cartesian plane is named, and they may have heard of

Fermat’s Last Theorem, but they do not know much, if anything, about those two men and their work that transformed

the ancient Greeks’ definition of a circle (‘the locus of all points equidistant from a fixed point’) into the familiar

equation x2 C y2 D r2 [8].

17.5 Conclusion

So what do you gain from this project? As a start, your calculus students:

� Begin to see that calculus has a long, rich, interesting history; it didn’t just appear in a 600-page textbook in the

21st century;

� Learn something about the lives and work of Isaac Newton and Gottfried Leibniz — from their own work and

from their classmates;

� Become aware of the beginnings of calculus, and about the controversy associated with it;
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� Collaborate and work in possibly diverse groups;

� Use technology to find and present information about mathematics and its history;

� Give an oral presentation.

And all in one hour!

I have used this activity in our calculus workshop for several years, and it is one of the most successful and fun things

we do all semester. I am constantly amazed at how much students can in fact learn in an hour, and how excited they

get about the project. The two groups really do compete to see who can do a better job, and their final presentations

are instructive and entertaining.
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Appendix 1: Instructions to the class

Today you will learn about two men who were important in the development of calculus: Isaac Newton and Gottfried

Leibniz. You will be assigned at random to a group; your group will focus on one of these two mathematical giants.

I have posted some resources under Course Documents on the class Blackboard site which you may download and

print. Also see the External Links page for some helpful web sites. You are welcome, of course, to search for more

information.

Your group will have 45 minutes in which to learn as much as you can about your assigned mathematician and

prepare a presentation for the rest of the class. Some questions you should answer:

� Where and when did he live?

� Where did he study? What did he study? How did he earn a living?

� What is your mathematician famous for? In what branches of mathematics — or other disciplines — did he do

important work?

� Most important, how did your mathematician contribute to the early development of the calculus? What were

some of his ideas? When and where did he publish his work?

� What did your mathematician think of the other mathematician?
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� How is your mathematician remembered today?

� Had you heard of your mathematician before? What did you know about him before today? What have you

learned that surprised you?

� Do you think your mathematician should be given credit for the invention (or discovery) of calculus? Why?

Your group will probably want to split up the reading and report back to each other. When you have developed an

outline of your findings, prepare a brief oral report and PowerPoint presentation which you will give to the rest of

the class. Make your presentation attractive and colorful; include pictures of your mathematician and examples of his

mathematics. But do not overwhelm us with animations or objects flying in from above. A simple design is best.

Have fun!





18
Connections between Newton, Leibniz, and

Calculus I

Andrew B. Perry
Springfield College

18.1 Introduction

Calculus, like most other well-established branches of mathematics, did not originally appear in the same form as it

occurs in modern textbooks. Many mathematicians contributed to the development of calculus over many centuries,

using widely varying notation and languages. A proper history of the subject can easily consume a book [1].

Although a thorough study of the history of calculus is completely unnecessary for an introductory calculus student,

it is nevertheless of some interest for such students to see an overview of this subject’s fascinating and colorful history.

Today’s calculus students will no doubt consider original papers somewhat cryptic at the very least, and maddeningly

cumbersome and obscure in places. Still, there are passages from these writings which will appear comforting in their

familiarity. This paper seeks to point out some of these passages and their connections with the modern elementary

calculus curriculum. We concentrate on the two mathematicians generally considered to be the fathers of calculus, Sir

Isaac Newton (1642–1727) and the German Gottfried Leibniz (1646–1716).

18.2 Historical Background

It would be impossible to say authoritatively when the first ideas of calculus appeared. Arguably, many early math-

ematicians used a form of integral calculus in approximating the area or volume of irregular objects using finitely

many or infinitely many recognizable shapes such as rectangles. In particular, the Greek mathematician Archimedes is

famous for estimating the area of circle using the so-called method of exhaustion, and effectively computing the value

of � .

One can say with confidence, however, that the English mathematician Sir Isaac Newton (1642–1727) and the Ger-

man Gottfried Leibniz (1646–1716) are most famous for their discoveries of calculus. The two scholars independently

discovered the main ideas of the subject. Because they lived in a time before Cartesian coordinates had become widely

used, and because the subject was still in its infancy the two authors’ writing looks clumsy and awkward to the modern

reader. While neither had put the subject on a firm and rigorous footing, each had effectively “discovered the calculus”

according to modern standards.

Much of the drama and the charm of the history of calculus stems from the bitter argument between Newton and
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Leibniz as to how the credit for the discovery of calculus should be properly divided. This priority dispute was a

major controversy during the mathematicians’ lifetimes and for years after their deaths. Newton apparently discovered

“fluxions” (derivatives) in 1665 but chose not to publish his work. Leibniz apparently discovered differential calculus

independently using vastly different notation and did publish some of his work in 1684 [2]. Newton published a major

calculus manuscript in 1704 [3]. At about that time some of Newton’s friends, spurred on by Newton himself, accused

Leibniz of plagiarism. A major dispute ensued, with British mathematicians rallying around Newton and Continental

scholars supporting Leibniz, with each group preferring the notation of their own champion. The British continued

to use Newton’s notation for at least a century before switching to the more convenient notation of Leibniz which

everyone uses today.

18.3 Newton’s Work

In part because we currently use Leibniz’ notation, Newton’s work is difficult to understand for the modern reader,

even in translation from the original Latin. However, his computation of the derivative (“fluxion”) of the function

f .x/ D xn can definitely be understood. I quote below from Evelyn Walker’s translation of Quadratura Curvarum,

published in 1704 , and reprinted in David Eugene Smith’s A Source Book in Mathematics [3, 4].

Newton:

Let the quantity x flow uniformly, and let it be proposed to find the fluxion of xn. In the time that the

quantity x, by flowing, become xCo, the quantity xn will become x C o jn, that is, by the method of infinite

series,

xn C noxn�1 C n2 � n2ooxn�2 C etc:
And the augments o and noxn�1 C n2�n

2
ooxn�2 C etc: are to one another as 1 and

nxn�1 C n2 � n
2

oxn�2 C etc:

Now let these augments vanish, and their ultimate ratio will be as 1 to

nxn�1:

As the reader may have guessed, the notation x C o jn, means .x C o/n. Newton’s construction has the same effect

as defining the derivative to be limo!0
f .xCo/�f .x/

o
. Today we would use either h or �x in place of the awkward o.

He also writes oo instead of the modern o2, although we can see that he uses exponent notation to write higher powers.

Newton’s construction is equivalent to following these three steps:

1. Compute f .x C o/, that is, .x C o/n.

2. Divide by o.

3. Let o! 0, and take limit.

Instead of “taking a limit”, Newton “lets the augments vanish”, which has the same effect. He correctly concludes

that f 0.x/ D nxn�1.

What we would call the indefinite integral, Newton calls fluents. In his 1704 paper, he uses a nice compact notation,

where the nth derivative of a function is denoted by n dots directly above the function, and the nth antiderivative is

denoted with n slash marks directly above the function. (Actually, Newton had improved his notation from earlier

works in response to criticism from Leibniz.) Below we see Newton’s description of his notation system for fluents

and fluxions, which is not much like our own.

Newton:

From the fluxions to find the fluents is a much more difficult problem . . .

And after the same manner that«z, «y, «x,«v are the fluxions of the quantities Rz, Ry, Rx, Rv and these the fluxions

of the quantities Pz, Py, Px, Pv and these last the fluxions of the quantities z, y, x, v; so the quantities z, y, x,

v may be considered the fluxions of others which I denote thus: z0, y0 , x0, v0 and these as fluxions of others

z00, y00, x00, v00 and these as fluxions of still others z000, y000, x000, v000.
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18.3.1 Newton’s Fluents and Fluxions: Exercises

1. Using the finite expansion .x C o/3 D x3 C 3x2oC 3xo2 C o3, use Newton’s method to find the fluxion of x3.

Change the o to h if you feel more comfortable using the modern notation.

2. Expand .x C o/2 and use Newton’s method to find the fluxion of x2.

3. According to Newton, the fluxion of xn is nxn�1. Knowing that, what is the fluent of nxn�1?

18.4 Leibniz’s Work

Leibniz’s pedagogical style is rather more compatible with the modern calculus curriculum than Newton’s. Though

Leibniz’s derivations of the rules of calculus are derived from complex geometric arguments, his rules for calculation

of derivatives are very similar to those of a modern Calculus I course.

Leibniz’s differential notation may be disconcerting for students used to derivative notation. Rather than writing

d.ax/

dx
D a;

for example, Leibniz writes

d.ax/ D adx:
Like Newton, Leibniz uses a bar in place of parentheses.

The passages below are quoted from Evelyn Walker’s English translation of the Latin paper titled “Nova methodus

pro maxima & minimis, itemque tangentibus, qua hec irrationals quantitates moratur, & singulare pro illis calculi

genus”, originally published in 1684 in the journal Acta Eruditorum. This was reprinted in David Eugene Smith’s A

Source Book in Mathematics [4].

In the first passage below, Leibniz describes the product and quotient rules for differentiation and computes the

derivatives of various power functions of the form f .x/ D xn.

Leibniz:

Multiplication:

dvx D xdvC vdx
or by placing y D xv,

dy D xdv C vdx
. . . Next, division:

: : :

d
v

y
D ˙vdy � ydvyy

yy

(or z being placed equal to v
y

)

dz D ˙vdy � ydvyy
yy

. . . Powers . . .

dxa D axa�1dx;

for example,

dx3 D 3x2dxI

d
1

xa
D �adx
xaC1

;

for example, if

w D 1

x3
;

dw D �3dx
x4

:

: : :
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The above computations should look reasonably familiar to the modern calculus student. Below, we see that Leibniz

explains the inverse nature of the integration and differentiation operations.

Leibniz:

Let the ordinate be x, and the abscissa y, let the interval between the perpendicular and the ordinate...be

p; it is manifest at once by my method that

pdx D xdy

: : :

Which differential equation being turned into a summation becomes
Z

p dy D
Z

x dx

But from what I have already set forth in the method of tangents, it is manifest that

d
1

2
xx D xdxI

therefore, conversely,
1

2
xx D

Z

x dx

(for as powers and roots in common calculation, so with us sums and differences or
R

and d are reciprocals.

) Therefore we have
Z

p dy D 1

2
xx:

18.4.1 Leibniz Notation: Exercises

1. How would Leibniz evaluate
R

�3
x4
dx from his reasoning above?

2. Compute dx4 as Leibniz would.

18.5 Berkeley’s Critique

Leibniz and Newton’s works were brilliant and groundbreaking, but also controversial, and not only in the sense of

the famous priority dispute. The new science of calculus was sufficiently murky and poorly understood that scholars

weren’t sure what to make of it. George Berkeley’s classic 1734 essay “The Analyst: Or, A Discourse Addressed

to an Infidel Mathematician” mocks Isaac Newton’s papers on the new subject. (Currently the essay is posted at

www.maths.tcd.ie/pub/HistMath/People/Berkeley/Analyst/Analyst.html.)

Berkeley:

Though I am a Stranger to your Person, yet I am not, Sir, a Stranger to the Reputation you have acquired,

in that branch of Learning which hath been your peculiar Study; nor to the Authority that you therefore

assume in things foreign to your Profession, nor to the Abuse that you, and too many more of the like

Character, are known to make of such undue Authority, to the misleading of unwary Persons in matters of

the highest Concernment, and whereof your mathematical Knowledge can by no means qualify you to be a

competent Judge...

It must, indeed, be acknowledged, that he [Newton] used Fluxions, like the Scaffold of a building, as

things to be laid aside or got rid of, as soon as finite Lines were found proportional to them. But then

these finite Exponents are found by the help of Fluxions. Whatever therefore is got by such Exponents and

Proportions is to be ascribed to Fluxions: which must therefore be previously understood. And what are

these Fluxions? The Velocities of evanescent Increments? And what are these same evanescent Increments?

They are neither finite Quantities nor Quantities infinitely small, nor yet nothing. May we not call them the

Ghosts of departed Quantities?

www.maths.tcd.ie/pub/HistMath/People/Berkeley/Analyst/Analyst.html
http://www.maths.tcd.ie/pub/HistMath/People/Berkeley/Analyst/Analyst.html
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18.5.1 Questions:

1. Generally, what do you think Berkeley is criticizing in Newton’s paper? Try to summarize or paraphrase Berke-

ley’s concerns.

2. Discussion Question: In modern notation, we define the derivative to be f 0.x/ D limh!0
f .xCh/�f .x/

h
. It would

appear that Berkeley at some level is uncomfortable with the very idea of a quantity approaching zero: is it zero

or not? What is the truth? Does h equal 0?

3. How would you explain to Berkeley why it might be useful to consider a “limit” as some variable approaches

zero?

18.6 Later Developments

Many mathematicians such as the English physician James Jurin and the Irish professor John Walton engaged in public

disputes with Berkeley. They each published a vindication of Newton, to which Berkeley replied, and each published

a second reply, to which Berkeley replied once more. For an excellent history of some of these disputes, the reader

may consult Florian Cajori’s 1919 book A History of the Conceptions of Limits and Fluxions in Great Britain, which

at the time of this writing was available in its entirety on Google Books.

Much subsequent mathematical work strived to put calculus on a firm and rigorous footing. Colin Maclaurin (1698–

1746) published an important work “Treatise on Fluxions” in 1742 as a reply to Berkeley’s attack. Augustin Louis

Cauchy (1789–1857) wrote several rigorous treatises on calculus including “Course d’Analyse” in 1821. Cauchy

introduced the notion of limits which made the fundamentals of calculus much easier to understand, and which made

the subject seem logically more sound. Mathematicians continue to research the finer points of analysis (the wider

branch of mathematics of which calculus is a part) to this day, with no end in sight.

18.7 In The Classroom

An introduction to the stormy historical background of calculus helps to make the subject come alive for introductory

calculus students. Teachers wishing to give their students a significant introduction to the origins of calculus may want

to assign excerpts from this paper and selected exercises as a homework assignment, with possible class discussion as

needed after the students have had a chance to read over this text.

Alternately, in just ten minutes or so of class time, teachers can show students some of the historical passages in

class and summarize the controversy. The author of this chapter has most commonly used this “ten minute overview”

approach in his Calculus I classes.

18.8 Conclusion

After numerous mathematicians had laid the groundwork over the centuries, Newton and Leibniz discovered the cal-

culus in the late seventeenth century. Newton discovered the subject using clumsy notation in 1665 but neglected to

publish his work, leaving the door open for Leibniz to publish his own discovery of calculus in 1684. Mathematicians

struggled for decades thereafter to decide who deserved priority, and whether the subject was legitimate. Eventually

mathematicians like Cauchy put the subject on a firm footing, and Leibniz’ notation became universal.

We feel that a brief overview of this story, and the opportunity to read and discuss samples of Newton and Leibniz’

work will enhance any introductory calculus class.
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A Different Sort of Calculus Debate

Vicky Williams Klima
Appalachian State University

19.1 Introduction

As in most subjects, the historical significance credited to certain events in the development of calculus depends

significantly on the historian giving the account. While thinking about how I should interpret selected historical events

when presenting them to my first semester calculus classes, I realized that such a decision was unnecessary; my

students could determine the appropriate interpretation for themselves through in-class debates. The debate project

focuses on two topics: Fermat’s method of maxima and minima and Barrow’s theorem.

Debates allow students to actively participate in the learning process. David Royse [9] proposes that student learning

is at its best when the students have an opportunity to actively engage in an assignment that builds on prior knowledge.

The debate assignment was designed to do just that — build upon and shore up the students’ understanding of the key

concepts of first semester calculus. Bonwell and Eison [1] explain that students are actively learning when they are

asked not just to listen, but also to analyze, to synthesize, and to evaluate through active engagement. The debate project

requires students to create and analyze arguments, and to actively present these arguments during an in-class debate.

As the debate assignment progresses, students begin to take ownership of their arguments and are concerned that

they present these arguments well, spending a surprising amount of time in preparation for the debates. During their

preparation for and participation in the debates, the students gain a better understanding of some of the fundamental

aspects of their beginning calculus course and thus are more likely to remember these fundamental ideas.

19.2 Historical Background

The following gives a brief introduction to both Fermat’s method and Barrow’s theorem. Worksheets designed to allow

small groups, composed of three to four students each, to explore the ideas discussed in these sections can be found in

Appendix A (Fermat’s method) and Appendix B (Barrow’s theorem).

19.2.1 Fermat’s method of maxima and minima

Fermat’s method of maxima and minima is based on the observation, credited to Kepler, that near a maximum or

minimum of a curve, a small change in the independent variable results in an even smaller change in the dependent

variable. Fermat used an algebraic interpretation of Kepler’s observation to develop an algorithm for finding maxima

139
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and minima and used his method to correctly identify maxima and minima of polynomials. Descartes (1596–1650)

and Fermat (1601–1665) were among the first to use algebraic techniques to solve geometric problems.

Fermat communicated his algorithm in a letter written around 1638. The following summary of Fermat’s method

is based on Struik’s [11] translation of Fermat’s letter. Suppose f .x/ has a maximum or minimum value at a. Fermat

uses the observation concerning the behavior of functions near their maxima and minima to assert that if a C e is

near a then f .a C e/ is near f .a/. Fermat instructs us to adequate f .a/ and f .a C e/. The term adequate comes

from a process used in ancient Greek mathematics, where it meant “to approximate a certain number as closely as

possible” [11, page 220]. Thus, we are to assume that f .aC e/ approximates f .a/ as closely as possible and form the

“pseudo-equality” f .aC e/ � f .a/, where�means approximately equal. Most historians use this “pseudo-equality”

to describe Fermat’s method, although some disagree with the use of this idea (see [7, p. 233]). Then, we are to cancel

out terms which appear on both sides of the pseudo-equality. Every remaining term in the pseudo-equality has an e

in it. Fermat instructs us to divide all terms by e. Fermat’s actual instructions were “to divide all terms by e or by a

higher power of e so that we completely remove e from at least one of the terms.” [11, p. 223]; however in all of his

examples and in his further explanations, he divided by e to the first power. Next, we should suppress e, which means

we are to set e D 0, and after doing so change our pseudo-equality into an actual equality. Fermat finally explains that

solving the resulting equation for a and then substituting the value that you find back into the original equation will

yield the maximum or minimum value for f .x/.

To clarify Fermat’s method we will use the method to identify the minimum value of the functionf .a/ D a2C3aC1
. First we adequate f .aC e/ and f .a/ to obtain the pseudo-equality

a2 C 2aeC e2 C 3aC 3eC 1 � a2 C 3aC 1:

Next we cancel out terms that appear on both times of the pseudo-equality, yielding 2ae C e2 C 3e � 0: All of the

remaining terms in our pseudo-equality have an e in them and we divide all terms by e to obtain 2a C e C 3 � 0.

Finally, we solve 2a C 3 D 0 for a to obtain the value a D �3
2

. Substituting a D �3
2

into f .a/ yields our minimum

value f
�

�3
2

�

D �5
4

.

One may quickly observe that Fermat’s method is actually identifying stationary points of the polynomial f .a/, and

thus only gives necessary but not sufficient conditions to identify maxima and minima. In our modern day calculus

classes we teach our students that maxima and minima may occur only when the derivative of a function is equal to

zero. Does Fermat’s method express this fact for polynomial equations? In his article “History of Calculus”, Arthur

Rosenthal explains Fermat’s method using a relatively simple mathematical formula. Rosenthal [8, p. 79] explains that

Fermat’s method means that we should “determine a” from the following equation

�

F.a C e/� F.a/
e

�

eD0

D 0:

This equation should look similar to that created by expressing f 0.a/ using the limit definition of the derivative and

setting this expression equal to zero. However, a very important part of the definition of the derivative is missing.

Fermat does not take the limit as e approaches zero. Fermat would not even know what we mean by taking the limit

as e approaches zero, for this concept was not developed during his time. Does Fermat’s description of his method

imply that he is letting e tend towards zero, or is he simply treating e sometimes as a nonzero number and sometimes

as zero?

19.2.2 Barrow’s theorem

Isaac Barrow (1630–1677) was a well known theologian and mathematician. He was a professor of mathematics at

Cambridge University, where his most famous pupil was Isaac Newton. Barrow’s theorem, which can be found in his

Lectiones Geometricae (London, 1670) is re-phrased below. For simplicity we will assume that the curve y.x/, given

in the theorem, passes through the origin, and that all of the points mentioned in the theorem lie either on the x-axis

or in the first quadrant. The figure given below may be useful when reading the theorem.
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P

Q

0

T X

y x( )

A x( )

Barrow’s Theorem [5]: Suppose that at any pointX D .x; 0/ on the x-axis,A.x/ gives the area of the region enclosed

by the curve y.x/, the x-axis, and the vertical line containing the point X ; Q is the point on the curve y.x/ directly

above X ; and P is the point on the curve A.x/ directly above X . If T is chosen on the x-axis so that the length of TX

times the length of XQ equals the length ofXP , then the line
 !
TP is tangent to the curve A.x/ at point P .

If the hypothesis of Barrow’s theorem is met, then T is the point on the x-axis such that

jTX j � jXQj D jXP j:

Simply rearranging the previous equality yields

jXQj D jXP j
jTXj

;

and thus

y.x/ D jXQj D jXP j
jTX j

D the slope of the line
 !
TP :

Barrow concludes
 !
TP is tangent to A.x/, the area curve, at the point P . If we are willing to impose our modern

notion of the derivative onto Barrow’s statement of his theorem, we see Barrow is claiming that

A0.x/ D the slope of the line
 !
TP D y.x/,

where A.x/ is the area function for y.x/. Therefore, if we view Barrow’s theorem in light of our modern day notions

of the derivative, we might conclude that this theorem is a geometric statement of the fundamental theorem of calculus.

19.3 In the Classroom

By introducing my Calculus I class to Fermat’s method and Barrow’s theorem, I aim to make them think about what

makes the limit definition of the derivative and the fundamental theorem of calculus important. Are these theorems

just powerful computational tools or do they have a deeper meaning? In order to encourage my students to tackle

this question wholeheartedly, I structure a debate in which the small groups of students work together to debate the

significance of the method and theorem. Initially, I break the class into small groups of three to four students each. Half

the groups receive a worksheet exploring Fermat’s method (see appendix A) and the other half receive a worksheet

exploring Barrow’s theorem (see appendix B). Each group is responsible for submitting one completed worksheet.

When I return the graded worksheets, I announce that the groups will now become debate teams. Each team will be

assigned to debate another team that received the same type of worksheet that they did. Those teams who received the

Fermat’s method worksheet will be debating Resolution 1, given below, and those teams who received the Barrow’s

theorem worksheet will be debating Resolution 2, also given below.

Resolution 1. Pierre de Fermat’s creation of his method of maxima and minima demonstrates that he understood the

concept of the derivative, and thus Fermat should be given credit for the development of this key idea in calculus.
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Resolution 2. Isaac Barrow’s famous theorem (stated at the end of his Geometrical Lectures) is a geometric statement

of the fundamental theorem of calculus, and thus Barrow should be given credit for the development of this key idea

in calculus.

Of the groups receiving Resolution 1, half will be arguing for the resolution and half against. However, team mem-

bers learn which side, affirmative (i.e., taking the position that the resolution is true) or negative (i.e., taking the position

that the resolution is false), their team must argue only moments before the debate begins. Thus, they must prepare to

argue both sides of their resolution. The debate concerning Resolution 2 is set up in exactly the same manner.

19.3.1 Structuring the debates

The form of debate that I use in my classroom is based on the parliamentary format of debate [4]. However, the

classroom debates have considerably shorter time limits than usual debates using the parliamentary format. In addition,

unlike debates in the parliamentary format, the classroom debates do not allow for interruptions during the speeches,

instead they include a cross-examination period after the constructive speeches.

During the debates, each team member has a specific assigned task. The teams consist of a leader, member, cross-

examiner, and rebuttal speaker. The leader and the member give constructive speeches that lay out their team’s argu-

ment, also taking opportunities to point out weaknesses in their opponents’ case. The cross-examiner listens to the

other team’s argument and asks them a question that challenges this argument. The rebuttal speaker gives counter-

arguments for the points made by the constructive speeches given by her opponent, concluding with a summary of her

team’s case. If a group contains only three students, the group as a whole performs the cross-examination function.

Appendix C contains a detailed explanation of the structure of the debates and some hints to help students in preparing

for the debate.

19.3.2 Conducting the debates

When I use the debates in my classroom, the students conduct the debates during our regularly scheduled class time.

In each of my classes, I have been able to break the class into eight debate teams. Thus, I can schedule the debates

over two days. Each day we see two teams debate the historical significance of Fermat’s method and two teams debate

the historical significance of Barrow’s theorem. Those students who are not members of the four teams scheduled for

debate on a certain day work on an in-class assignment in a separate room. I have considered holding a debate tourna-

ment in the evening and inviting faculty to watch all or part of the tournament. However, I have not yet implemented

this idea.

Before each debate the students toss a coin to determine which team argues which side. One team chooses whether

they want the coin toss to apply to them or the other team, and the remaining team chooses whether heads represents

the affirmative or negative argument. After the coin toss, before a debate officially begins, the debating teams take a

few moments to collect their thoughts. During this time, I briefly explain the resolution to the audience, those students

who are scheduled to debate the other resolution on the same day, so that they understand the statement of the topic

for debate. Then the experts begin their debate and the audience listens and critiques. While listening to the debate,

the audience answers a few simple questions about the debate they are watching. “What do you think are the strongest

and weakest parts of the affirmative argument? What do you think are the strongest and weakest parts of the negative

argument? Which team do you think won? Why?”

After all of the debates have concluded, the class discusses the general themes of the debates. We decide that often

at the beginning of a calculus class, the class seems to take the same attitude that the affirmative side took in the debate;

they just want to learn a method that works. However, by the end of the semester the class should see the importance

of the negative sides’ arguments as well; they should understand that calculus is a dynamic subject with infinitesimally

small changes at its core.

19.4 Conclusions

Usually, students initially take the side that Fermat’s method clearly develops the idea of the derivative and Barrow’s

theorem is exactly the same as the fundamental theorem of calculus. When they first hear of the debates, students often
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say that they can only hope that they will be assigned the affirmative side of the argument. Then the students begin

their research. This is when they really begin to think about what the definition of the derivative and the fundamental

theorem of calculus truly mean. When asked immediately before the debates which side they would prefer to argue,

most teams choose the negative side. Their thoughts concerning the ideas that make differentiation and the fundamental

theorem of calculus important have moved from a mechanical to a conceptual level.

The debate project requires students to study the derivative and fundamental theorem of calculus in much more

detail than when these ideas were first introduced in their calculus course. Thus the students leave their beginning

calculus course with a deeper conceptual understanding of these topics. In some sense the students develop this deeper

understanding without really intending to do so. Their natural desire to win the debate drives them to prepare and a

meaningful understanding of fundamental calculus ideas results. In addition, students begin to develop an appreciation

for the foundation that Newton and Leibniz had to build upon when they began their work.
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Appendix A: Fermat’s Method Worksheet

An Observation

Fermat’s method of maxima and minima is based on the observation, credited to Kepler, that near a maximum or

minimum of a curve, a small change in the independent variable results in an even smaller change in the dependent

variable.

1. Suppose f .x/ D �x2 C 6x � 7.

(a) Draw a graph of f .x/, and use this graph to explain the observation of Kepler as it applies to f .x/.

(b) Fill in the missing values in the table below, and use this table to explain the observation numerically as it

applies to f .x/.

e 0.9 0.7 0.3 0.1

3C e
f .3C e/

2 � f .3C e/
Note .3; 2/ is the maximum point of f .x/

The Method

Fermat used an algebraic interpretation of Kepler’s observation to develop an algorithm for finding

maxima and minima. Descartes (1596–1650) and Fermat (1601–1665) were among the first to use al-

gebraic techniques to solve geometric problems. Fermat communicated his algorithm in a letter written

around 1638. A summary of Fermat’s method follows (see [3]).

� Suppose f .x/ has a maximum or minimum value at a.

� Fermat uses the observation concerning the behavior of functions near their maxima and minima (introduced

in problem one) to assert that if aCe is near a then f .aCe/ is near f .a/. Fermat only explains this reasoning

in a later communication regarding Descartes’ challenge of Fermat’s method.

� Next, Fermat instructs us to adequate f .a/ and f .a C e/. The term adequate comes from a process used

in ancient Greek mathematics, where it meant “to approximate a certain number as closely as possible”

[3, p. 220]. Thus, we are to assume that f .a C e/ approximates f .a/ as closely as possible (which makes

sense in light of the previous observation) and form the “pseudo-equality”f .aCe/ � f .a/, where�means

approximately equal. Most historians use this “pseudo-equality” to describe Fermat’s method, although some

disagree with the use of this idea [1, p. 164].

� Then we are to cancel out terms which appear on both sides of the pseudo-equality.

� Every remaining term in the pseudo-equality has an e in it. Fermat instructs us to divide all terms by e.

Fermat’s actual instructions were “to divide all terms by e or by a higher power of e so that we completely

remove e from at least one of the terms” [3, p. 223]; however in all of his examples and in his further

explanations, he divided by e to the first power.

� We are then to suppress e, which means we are to set e D 0, and after doing so change our pseudo-equality

into an actual equality.

� Fermat finally explains that solving the resulting equation for a and then substituting the value that you find

back into the original equation will yield the maximum or minimum value for f .x/.

2. Use Fermat’s method to find the minimum of the equation f .x/ D x2C5x�3 and the maximum of the equation

f .x/ D �2x2 C 5x � 1.

3. In the first account of his method, Fermat used his method to solve the following problem, “To divide the segment

AC [of length b] at E so that AE [of length a] � EC may be a maximum” [2, p. 233]. Use Fermat’s method to

solve this problem.
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4. In his American Mathematical Monthly article “History of Calculus”, Arthur Rosenthal explains Fermat’s method

using a relatively simple mathematical formula. Rosenthal [2, p. 79] explains that Fermat’s method means that

we should “determine a” from the following formula

�

F.a C e/ � F.a/
e

�

eD0

D 0:

Show that Rosenthal’s explanation of Fermat’s method coincides with the method as described above. You may

need to re-order the steps in our description of Fermat’s method to make it coincide with Rosenthal’s formula.

5. Give a critique of Fermat’s method. Do you think it correctly identifies maxima and minima? Can you find any

faults with the method? If so, what are they and why do you consider them faults?
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Appendix B: Barrow’s Theorem Worksheet

Understanding the Theorem

Isaac Barrow (1630–1677) was a well known theologian and mathematician. He was a professor of mathematics at

Cambridge University, where his most famous pupil was Isaac Newton. Barrow’s theorem, which can be found in his

Lectiones Geometricae (London, 1670) is re-phrased below. For simplicity we will assume that the curve y.x/, given

in the theorem, passes through the origin, and that all of the points mentioned in the theorem lie either on the x-axis

or in the first quadrant. The figure given below may be useful when reading the theorem.

P

Q

0

T X

y x( )

A x( )

Barrow’s Theorem [1]: Suppose that at any pointX D .x; 0/ on the x-axis,A.x/ gives the area of the region enclosed

by the curve y.x/, the x-axis, and the vertical line containing the point X ; Q is the point on the curve y.x/ directly

above X ; and P is the point on the curve A.x/ directly above X . If T is chosen on the x-axis so that the length of TX

times the length of XQ equals the length ofXP , then the line
 !
TP is tangent to the curve A.x/ at point P .

1. The function A.x/ can be thought of as
R x

0
y.t/ dt ; explain why this is true.

2. In this question we will look at an example and check that Barrow’s theorem holds true for our example. We

will use the curve y.x/ D 2x and after finding the algebraic equation for A.x/ we will investigate the point

X D .3; 0/ on the x-axis in detail. Please begin this question by drawing a careful graph of the curve y.x/ D 2x
and include the point X D .3; 0/ on your graph.

(a) First, we will determine what the hypothesis of Barrow’s theorem (the part before the then) would look like

for our example. Please fill in the blanks and as you do so add each function/point that you determine to the

graph that you began earlier. For our specific example the hypothesis would become . . .

Suppose that at any point X D .x; 0/ on the x-axis, A.x/ gives the area of the region enclosed by the

curve y.x/ D 2x, the x-axis, and the vertical line containing the point X . Then an algebraic equation for

A.x/ is given by A.x/ D . As a specific example consider the point X D .3; 0/

on the x-axis. Suppose Q is the point on the curve y.x/ D 2x directly above X D .3; 0/, and P is the

point on the curve A.x/ D directly above X D .3; 0/. ThenQ D . ; / and

P D . ; / . If the point T is chosen on the x-axis so that the length of TX times the length of XQ

equals the length of XP , then the length of TX is units and T D . ; /.
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(b) Barrow’s theorem’s concludes that if the hypothesis is met then

“the line
 !
TP is tangent to the curve A.x/ at the point P . ”

We will check that this is in fact the case for our example. Recall that in part (a) you found the points T and

P and the algebraic equation of the curve A.x/ for our specific example.

i. Find the equation of the line
 !
TP and draw this line on your graph.

ii. Find the equation of the line tangent to the curve A.x/ at the point P . (You will want to use calculus

for this question.)

iii. Note that your answers to part (i) and (ii) should describe the same line.

3. Repeat question two with the function y.x/ D x2 and X D .4; 0/.

Why the fundamental theorem of calculus?

4. Some mathematicians (see for example, [1]) have offered the following modern day interpretation of Barrow’s

theorem

If f .x/ is a continuous function (like the function y.x/ in Barrow’s theorem)

and A.x/ D
R x

0
f .t/dt then A0.x/ D f .x/.

Explain how one could translate Barrow’s theorem into this modern statement. Hint: You may wish to begin by

writing the statement “If the point T is chosen on the x-axis so that the length of TX times the length of XQ

equals the length of XP .” as an equation and then solve this equation for the length of XQ.

5. State the fundamental theorem of calculus as you learned it in class and explain why the modern day interpretation

of Barrow’s theorem given in question four of this section is actually equivalent to the fundamental theorem of

calculus as you learned it in class.

6. Give a critique of the interpretation of Barrow’s theorem as an early version of the fundamental theorem of

calculus. Do you think this geometric theorem is actually equivalent to the modern day fundamental theorem of

calculus? Can you find any faults with the idea that Barrow’s theorem conveys the essence of the fundamental

theorem of calculus? If so, what are the faults, and why do you consider them to be faults?

19.4.1 Bibliography
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Appendix C: The Debates: Roles, Structure, Hints

The Roles

� Leader: gives a constructive speach that lays out his or her teams argument, and takes opportunities to point out

weaknesses in the opponent’s case. (speaks first)

� Member: gives a constructive speech that lays out his or her teams argument, and takes opportunities to point out

weaknesses in the opponent’s case. (speaks second)

� Cross-examiner: listens to the other team’s argument and asks them a question that challenges this argument.

� Rebuttal Speaker: gives counter-arguments for the points made by the constructive speeches given by her oppo-

nent, concluding with a summary of her team’s case.

If your group contains only three students, the group as a whole will perform the cross-examination function.

The Structure

� The debate begins with the leaders’ constructive speeches, each a maximum of three minutes in length. The

affirmative leader argues first, using his time to define terms and criteria, give an outline of the team’s entire case,

and begin to develop the main case for the team. The affirmative leader concludes with a brief summary. The

leader of the negative speaks next. Her task is much the same, but because she has already heard the affirmative

speech, she should point out where her argument differs from the affirmative, refuting the affirmative points and

explaining why the negative argument is the better one.

� The members of the affirmative and the negative give the next set of constructive speeches in the debate, with

the affirmative side speaking first. These speeches are also each a maximum of three minutes in length. The

affirmative speaker repeats the affirmative case, responding to the challenges that the leader of the negative made

during her speech and identifying points that the previous negative speaker failed to refute. Then, the speaker

extends the affirmative case, concluding with a brief summary. The member of the negative fulfills mainly the

same role, except that he is refuting the points make by the member of the affirmative.

� Two periods of cross-examination follow the constructive speeches. The cross-examination periods consist of

posing a question to the opposing team, and then having the opposing team confer and offer their response. The

time limits for these actions are thirty seconds, and two minutes, respectively. During this time the cross-examiner

must ask a question that builds his team’s credibility. Typically these questions focus on exposing some sort of

weakness in his opponent’s case. During the first cross-examination period the negative side asks the question

and the affirmative side responds, with the roles being reversed for the second cross-examination period.

� The debate concludes with two rebuttal periods, each a maximum of two minutes in length. The negative rebuttal

speaker speaks first, identifying the key arguments of the opponent’s case and refuting those arguments, ending

her speech with a summary of her team’s case. The affirmative rebuttal speaker follows, using the same plan.

Some Hints

The following tips are based on the advice found in [1].

� Begin by brainstorming for the affirmative and then separately for the negative; write any argument you can think

of; don’t worry if the argument is a good one. After you are finished look through your arguments and mark out

the ones you do not like, put arguments that are interconnected together, and rank your arguments from strongest

to weakest.

� Make a T -chart, labeling one side as affirmative and the other as negative. One by one put the arguments from

your brainstorming session into the chart. Once you have entered an argument for the affirmative, try to find a

related argument for the negative to put across from your affirmative argument in the chart. If you have already

listed this negative argument in your brainstorm then cross it off.
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� Carefully define terms, and decide upon the correct interpretation of terms that may have ambiguous meaning.

Remember, sometimes opposing sides decide to define terms differently and your success in the debate may hinge

on whether your definition is seen as the most reasonable one.

� Determine an outline for your argument. What are your main points? Develop support for your main points with

evidence (e.g., historical facts, examples, and expert commentary). Research is key at this step.

� You can work to prepare for your cross-examination and rebuttals before the debate begins. Look carefully at

your affirmative argument. Think of it as your opponent’s argument and try to determine weakness and write

cross-examination questions and rebuttal points that expose these weaknesses. Do the same with your negative

argument. You will also want to collect evidence and develop arguments that refute the weaknesses that you

found; you can use these arguments during your response to the opposing team.
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A ‘Symbolic’ History of the Derivative
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20.1 Introduction

How often do you have to tell your students to brush up on their notation? When they have dropped limit notation,

forgotten critical modulus signs, mixed up their integrals, muddled up their derivatives, how do you convey to them

the importance of recording it right?

What of your exasperation as they fail to appreciate the precision that mathematical notation affords them—notation

which has been developed and refined over centuries, and notation that will continue to be improved for centuries more.

Indeed, mathematics is the one subject in which they can really express exactly what they mean. How can we help

them appreciate the symbolism they use?

This paper provides a light-hearted look at various notational conventions concerning the derivative. It will briefly

cover the various proposals for its symbolic representation over history and the reasons behind the prevalence of the

various manifestations over others. The examination of the history of the development of calculus notations is not only

fascinating, but suggests a paradigm for the development of future notations. An examination of the reasons behind the

failures and successes of past notation can equip one with a certain foresight regarding the future of newly introduced

symbols, as particular areas of mathematics expand.

This capsule is intended for undergraduate calculus classes and should ideally be offered directly before or after

covering the derivative and its various applications, or indeed right in the middle when the students need a bit of a

break from theory and practice! It may also be suitable for higher level secondary school mathematics.

This capsule is intended to take 30 minutes and contains visual material which may be presented to the students as

well as directed questions to encourage them to think critically about notation.

20.2 The Derivative

How many ways to represent the derivative have you come across in mathematics? Are they really equivalent? Who

developed them and what can history reveal about the success of some notations over others? Among the many dis-

agreements Newton and Leibniz are remembered for, they had a big one over notation. They both independently

developed distinctive notation for the derivative when they published their results in calculus. In turn, allegiance in

both British and European mathematical communities to strictly one or the other persisted for almost half a century

until Leibniz’s notation finally prevailed. We will look at this scuffle and its consequences.

151
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20.3 Isaac Newton (1643–1727):

To understand Newton’s use of symbolism, we need to be familiar with the basics of his conception of calculus. In

Newton’s mind, the fundamental notion of calculus was concerned with motion. Each variable in an equation could

be ultimately interpreted as a distance reckoned with respect to time. Therefore, central to his account and thus his

symbolic devising, was the notion of time.
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Throughout his mathematical researches, Newton developed several distinct ways to represent the derivative. The

first of these was contained in De Analysi 1669 (but not published until 1711), in which among many other things, he

developed a systematic method for differentiation. Notation-wise, Newton set a ‘little zero’, literally o, as a very small

interval of time and op and oq as the corresponding small increments over which x and y change in this interval.

The second notational system appeared in about 1671, where p and q were reoriented symbolically as well as

mathematically. Newton developed what he called Fluxional Calculus, in which he consciously avoided the use of

infinitesimals as he considered these mathematically imprecise. He imagined that a curve was the result of the motion

of a particle with respect to time. This curve, which was the path traced by the particle, could be then analyzed via

changes in x and in y. In order to consider the various properties of the curve, he defined fluents, or flowing quantities,

as the variables x and y themselves and fluxions the velocity in the x and y direction respectively with respect to time.

Thus, Newton’s fluxions were equivalent to our first derivative.

Newton represented fluxions notationally as:

Px Rx PRx

which are equivalent to the modern dx
dt

, d2x
dt2

and d3x
dt3

respectively. These are occasionally referred to as ‘pricked let-

ters’(for obvious reasons!), but more commonly today the system is called ‘dot-notation’. As you can see, by repeating

the dots and introducing dashes Newton could present fluxions of fluxions, or fluents of fluents! The natural succession

therefore was:

x
k

x
j

x Px Rx PRx

each term being the fluxion of the term preceding.

Historians often connect particular features of Newton’s personality (in particular being private and guarded) and his

continually evolving account of calculus, as responsible for the poor reception of his notation and indeed its ultimate

demise. That he seemed to write for himself, they assume, had the consequence that he tended to adopt the notation he

thought of at the time and put little thought into its practicality for wider audiences and broader mathematical function.

English mathematicians of the eighteenth century remained loyal to Newton’s notation, but ultimately the tradition

lost favor. It is perhaps because of the inability of the notational system to allow for a richer development in the field

of calculus, and to incorporate and represent for the equivalents in multi-variate calculus and calculus of variations.

Newton’s system was also somewhat cumbersome, because of its orientation around the notion of time. Any expression

containing a derivative not taken with respect to time was quite involved. For example, in order to express the derivative
dz
dx

, Newton had to write:

Pz : Px
which literally meant dz

dt
W dx

dt
.

Newton’s dot-notation, however, didn’t disappear completely from the mathematical scene. It is used occasion-

ally when expressing differential equations, particularly in engineering contexts, and can still be seen today in some

textbooks.

20.4 Gottfried Wilhelm von Leibniz (1646–1716):

Leibniz, Newton’s European contemporary, in contrast took the greatest pains to develop his notation, believing that

good notation was of primary importance, not only for representation of mathematical concepts, but for human un-

derstanding. In fact, he credited all his mathematical insights to his notation. The symbolic representation of a math-

ematical concept was, in his opinion, to be designed with the greatest attention—capturing a mathematical idea with

carefully selected notation would help mathematicians make progress. The importance of notation seems to have been

fostered in his early days as a student, as historians record episodes which reveal Leibniz’s teachers instilling in him a

reverence for simplicity and clarity in discourse.1

Leibniz’s account of the calculus2 was centered, in contrast to Newton, on the differential, a variable dx which

was an arbitrarily small finite increment upon the variable x. In a letter dated November 11th 1675, he introduced the

1See Bardi [1] pp. 86–87.
2For more details see for example Boyer [2] pp. 403–405 or Katz [4] pp. 527ff.
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symbol dx and dy as the differentials of x and y and something like dx
dy

for what we have come to call the derivative,

but not in that exact form—rather expressed as:3

dx ad dy

or

dx W dy

He wrote in this letter:

. . . idem est dx et x
d

, id est differentia inter duas x proximas

. . .dx and x
d

are the same, that is, the difference between two proximate x’s

Higher derivatives were to be denoted as

ddx

being, in turn, an infinitesimally small increment upon the variable dx, and so on.

Almost immediately after this, he discovered the product and quotient rules. It was as if the symbolism suggested

these concepts and manipulations.4

. . . videndum an dx dy idem sit quod dxy, et an dx
dy

idem quod d x
y

. . . let us now examine whether dx dy is the same thing as dxy and whether dx
dy

is the same things as d.x
y
/

These rules were followed shortly by his articulation of the power rule and the rule for roots with respect to the

derivative. Other rules fundamental to differentiation, such as the chain rule, seem trivial using his notation. His

notation also allowed him in 1684 to solve a problem that he described as “one of the most difficult and most beautiful

problems of applied mathematics, which without our differential calculus . . . no one could attack with any such ease.”

This is the problem of finding a curve whose subtangent is a given constant a.5

Leibniz’s notation offered a simple, yet clear representation of the infinitesimal demands of the calculus, which

no doubt facilitated its spread. His use of the ‘d ’ which acted upon something emphasized the operator quality of

the process. This proved important in later developments. His notation was immediately embraced by the continental

mathematical community to their great advantage.

There are many reasons as to why it ultimately prevailed. One of the most important was the fact that it could

incorporate further details and features as mathematical developments and insights in calculus deepened. Furthermore,

it recorded the right amount of information without obscuring anything, but neither was it too cumbersome.

One of the main distinctions in the approach to notation by Newton and by Leibniz is one of motivation. Newton

searched for a means of expression for concepts he already conceived of. Leibniz, on the other hand, developed a

platform in order to research new mathematics, with the result that, in many cases, the resulting symbolism proved to

be suggestive of new mathematical insights and relations—just as he had intended.6

20.5 Joseph-Louis Lagrange (1736–1813)

At the end of the eighteenth century, Lagrange gave a definitive new approach to the calculus, being dissatisfied with

earlier accounts. In his mathematical description, he purposefully avoided all references to fluxions and fluents, and to

infinitesimals, (and indeed limits for that matter), because he believed they were unable to be defined precisely enough

in a mathematical context.

3The first expression uses the Latin preposition ad which literally means ‘to’, or in keeping with the mathematical context ‘by’.
4Cajori [3] p. 204.
5For details see Katz [4] pp. 528–9.
6In fact Leibniz’s ‘symbolic’ ambitions went beyond mathematics. He went so far as to develop a characteristica universalis or “universal

characteristic”, founded on an alphabetic-like indexing of human thought. Through it, each element essential to human thought could be then

represented and then a method of combining these symbols to indicate more complex notions. “It is obvious that if we could find characters or

signs suited for expressing all our thoughts as clearly and as exactly as arithmetic expresses numbers or geometry expresses lines, we could do in

all matters...For all investigations which depend on reasoning would be carried out by transposing these characters and by a species of calculus.”

(Preface to the General Science, 1677. Revision of Rutherford’s translation in Jolley [5] p.234.)
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Lagrange emphasized the centrality of the concept of the function and established a new basis for calculus with

recourse to algebraic processes. Any function, Lagrange argued, can be represented as a power series.7 Given then

some function f .x/, its related function f .x C i/ (with i indeterminate) can be expanded:

f .x C i/ D f .x/C p.x/i C q.x/i2 C r.x/i3 C � � �

where p.x/; q.x/; : : : etc., are independent of i . The first coefficient p.x/ of i can be identified with the ratio dy
dx

, and

likewise for higher order ratios.8 He named p.x/ the “fonction dérivée” (from which we get ‘derivative’), because of

the fact that it is ‘derived’ from the initial function f .x/. He denoted all higher order derivatives in turn:

f 0; f 00; f 000 etc : : :

to emphasize the fact that the functions p, q, r are all likewise “derived” from the initial function f .x/.

The notation of Lagrange is used extensively today, as an important and useful adjunct of other notations current in

modern calculus.

Figure 20.1. Excerpt from Théorie des fonctions analytiques of Lagrange (1797) in which there is the first appearance

of the prime notation for the derivative

20.6 Louis François Antoine Arbogast (1759-1803)

Indeed, many other notational systems were proposed for representing various concepts in calculus with varying

reception from the mathematical community. We can’t give an exhaustive survey here, but will consider one final

proposal which is significant because it conceives of the processes in the calculus as operations; the symbols become

7This was to prove not always the case, see Boyer [2] pp. 489–10.
8See Katz [4] pp. 586–8 for more details.
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Figure 20.2. Excerpt from the Calcul des Dérivations of Arbogast (1800) p. xxi.

operators, which act on one function, to produce another. This notation is less common, but still has currency today in

some mathematical contexts, particularly linear differential equations.

The first to champion this orientation was Arbogast in 1800,9 although such symbolism was used by Johann

Bernoulli (1667–1748) earlier. Arbogast’s approach to calculus was similar to Lagrange. He used as his main symbol

D, to indicate the process of differentiation. Similar to Lagrange, Arbogast supposes that F.aCx/ can be represented

as the series:

aC bx C c

1 � 2x
2 C � � �

in which a D F a. The symbolD then is the operation on F a such that:

DF a D b

and all higher derivatives:

DDF a D c

and so on. Arbogast also developed additional features which were not adopted much beyond their inception, but are

historically interesting (see Figure 20.2).10

He states his motivations ([3] p. 209):

To form the algorithm of derivations it became necessary to introduce new signs; I have given this subject

particular attention, begin persuaded that the secret of the power of analysis consists in the happy choice

and use of signs, simple and characteristic of the things which they are to represent. In this regard I have set

myself the following rules:

(1) To make notations as much as possible analogous the the received notations;

(2) Not to introduce notations which are not needed and which I can replace without confusion by those

already in use;

(3) To select very simple ones, yet such that will exhibit all the varieties which the different operations

require. . .

9For further detail see Cajori [3] pp. 208–211.
10As cited from Cajori [3] p. 210 Fig. 123, originally a facsimile from Arbogast’s Calcul des Dérivations (1800), p. xxi.
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As well as emphasizing the operator like quality of the process, Arbogast’s notation found favor as it avoided

reference to infinitesimals, which was appealing to many mathematicians, as succinctly expressed by a mathematical

analyst from the early nineteenth century, Christian Kramp (1760–1826) ([3] pp. 210–211.):

Later researches have convinced me of the absolute inutility of this constant factor or divisor dx, as well

as the notion of the infinitely small . . . [the adoption of the notation D] banishes all idea of the infinite and

causes all this part of analysis to re-enter the domain of ordinary algebra.

20.7 Conclusion

What makes a good notation? Is it how it responds to changes and developments? Its applicability to other fields?

Its ability to be incorporated into new technology and discoveries? Should notation somehow reflect its function?

Should we be conservative about our mathematical notation, or encourage innovation? Should we be revolutionary or

retaining? Notation is pivotal for a mathematician and is often given very little consideration and taken for granted,

not just by students, but by the very practitioners themselves!

As we have seen, Newton and Leibniz feuded not only over the authorship of the calculus but also how notation-

ally to express it. Correspondence reveals heavy criticism of the other’s approach: “Newton”, Newton himself once

anonymously wrote, “does not confine himself to symbols”!11 Similar sentiments were returned from Leibniz and his

supporters. Newton pursued research into the calculus through ideas of velocity and acceleration; Leibniz, through

sums and differences. In turn, the English mathematical community subscribed to Newton’s methods and notation, the

continent to those of Leibniz. As a result of these incompatible approaches, English and continental mathematicians

effectively terminated all mathematical collaboration and exchange. In terms of notation, as the calculus was devel-

oped, Leibniz’s proposals turned out to be easier to work with and as a result, mathematical analysis on the continent

progressed rapidly. To their loss, English mathematicians missed out on a century of stimulating and advancing math-

ematical activity, until they too adopted Leibniz’s notation by the eighteenth century. Indeed, the struggle to establish

the expression for the derivative shows us the ways in which notational considerations can make a huge difference in

mathematics.

20.8 Reflective Questions

1. Brainstorm some features you deem important to keep in mind when developing or evaluating a particular nota-

tional system. Here are some possible criteria to get you going:

comprehensibility—simplicity—avoidance of ambiguity—uniqueness (i.e., make up symbols or bor-

row from other languages)—aesthetics—symbols which suggest their meaning—rhetorical potential—

ability to represent multiple/additional features—minimisation of the strokes of a pen etc . . .

Rank them from the most to the least important.

2. In what ways were the various proposals for the derivative a product of the concept their instigators were trying

to emphasize?

3. Mathematical symbols not only represent a specific idea, they are a guide to operation by their careful placement.

Select a notation that you use on a regular basis. What are its benefits? What are its limitations? What would you

like to change about it?

4. We have looked at an episode from the History of Mathematics in which notation played an important role in

facilitating mathematical insights. This is but one of many episodes which raises some very important questions

for mathematicians regarding notation:

To what extent is our ability to conceptualize and develop mathematics based upon the symbolism we

employ?

Consider this with respect to some specific examples, such as the integral sign, matrices, fractions, function

notation, powers and indices.

11Bardi [1] p. 215



158 20. A ‘Symbolic’ History of the Derivative, Clemency Montelle

Bibliography

[1] Jason Socrates Bardi, The Calculus Wars: Newton, Leibniz, and the Greatest Mathematical Clash of All Time,

Thunder’s Mouth Press, New York NY, 2006, 86–88, 214–215.

[2] Carl B. Boyer, A History of Mathematics, 2nd Ed., John Wiley and Sons, 1991, 391–414.

[3] Florian Cajori, A History of Mathematical Notations, 2 Vols., Dover, 1993, reprinted from the work first published

as two volumes by the Open Court Publishing Company, La Salle Illinois, in 1928 and 1929, 196–242.

[4] Victor Katz, A History of Mathematics An Introduction, 2nd ed., Addison Wesley Longman, 1998, 468–543.

[5] Nicholas Jolley, The Cambridge Companion to Leibniz, Cambridge University Press, 1995.



21
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21.1 Introduction

To many students, differential calculus seems like a set of rules to be applied for solving problems such as optimization

problems, tangent problems, etc. This really should not be surprising as differential calculus literally is a set of rules

for calculating differences. These rules first appeared in Leibniz’s 1684 paper Nova methodus pro maximus et minimus,

itemque tangentibus, quae nec fractus nec irrationals, quantitates moratur, et singulare pro illi calculi genus (A New

Method for Maxima and Minima as Well as Tangents, Which is Impeded Neither by Fractional Nor by Irrational

Quantities, and a Remarkable Type of Calculus for This). A translation of this appears in [5, p. 272–80]. As the

title suggests, our students’ perceptions are not far off. Indeed, Leibniz’s differential calculus is very recognizable to

modern students and illustrates the fact that this is really a collection of rules and techniques to compute and utilize

(infinitesimal) differences. The fact that Leibniz’s notation is so modern in appearance, or rather our notation is that of

Leibniz, allows these rules to be presented in a typical calculus class. The author has typically done this while covering

the differentials section of the course, as the rules are rules for differentials, not derivatives. Doing this reinforces the

rules for computing derivatives and introduces the student to the manipulation of differentials that will be necessary in

integration.

A bolder approach, which the author has employed, is to replace the typical “limit of difference quotient” derivations

with these heuristic arguments and adopt the point of view that dy
dx

is a ratio of infinitesimals. In this case, the derivation

of the typical derivative rules can be accomplished without reliance on limits of difference quotients. The fact that

these can be obtained in a more algebraic manner might be more in the comfort zone of the typical beginning calculus

student.

Even in the less bold classroom, students can be made to appreciate that the modern “limit of difference quotient”

definition is not how the subject was originally conceived. The fact that these difference rules allowed a systematic

approach to problems in tangents and optimization led to a golden period in mathematics during the eighteenth century.

Indeed, Leibniz himself applied his differential rules to study classical problems such as Snell’s Law of Refraction and

his quite modern approach is worth presenting. Furthermore, the exploitation of these calculus rules and the power

of differentials can be seen in Johann Bernoulli’s 1696 solution of the brachistochrone problem. This masterpiece of

mathematical work certainly deserves a place in any calculus class and can easily be included at the end of an AP

calculus course.

This article includes these applications along with exercises which will enhance students’ heuristic understanding

of Leibniz’s calculus rules and fluency with differentials. More applications of differentials can be found in [3, p.

159
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9–20]. Just as it is important in any discipline for students to experience some of the development of the subject, here

it is important for students to be introduced to the beginning ideas of the calculus. Students can develop a heuristic

understanding of the calculus rules and can follow in the steps of eighteenth century mathematicians in exploiting the

power of these rules.

21.2 Differential Calculus (Rules of Differences)

Throughout this chapter, I will use modern functional notation though it should be noted that Leibniz’s own notation is

quite modern in appearance. In the beginning of his paper, Leibniz used the tangent of a curve to define the differential

of a quantity y D y.x/. Essentially, given an arbitrary change in x .dx/, the change in y .dy/ must satisfy

dy

dx
D the slope of the tangent line at .x; y/:

There is no mention of limits, as these differentials (differences) represent the momentary (instantaneous) changes in

x and y, respectively. In other words, the differential dx represents an infinitesimal change in the quantity x. This

coincides with our telling students that dy
dx

represents the instantaneous rate of change of y with respect to x. Leibniz

next provided the rules for dealing with these infinitesimal differences.

If a is constant, then da D 0 and d.ay/ D a dy
d.y C z � w/ D dy C dz � dw

d.yz/ D y dz C z dy

d
�y

z

�

D z dy � y dz
z2

Knowing thus the algorithm (as I may say) of this calculus, which I call differential calculus, all other

differential equations can be solved by a common method. We can find maxima and minima as well as

tangents without the necessity of removing fractions, irrationals, and other restrictions, as had to be done

according to the methods that have been published hitherto. The demonstration of all this will be easy to one

who is experienced in these matters . . . [5, p. 276].

Leibniz did not include these demonstrations, but they provide an opportunity for students in calculus to justify

these rules without the burden of using limits. It should be pointed out that these arguments are somewhat heuristic

and ignore aspects such as knowing that the derivative of a function exists. In fairness to Leibniz, he was not computing

derivatives. The term fonction dérivé was coined by Joseph Louis Lagrange (1736–1813) in his Théorie des fonctions

analytiques of 1797, where it represented the linear term in the power series expansion of a function. Leibniz was

relying on the existence of a tangent line to provide a geometric basis for his differential calculus. It can be pointed

out to students that these very real concerns over existence contributed to later rigorous formulations using limits. For

now, we will allow ourselves to conform to seventeenth century rigor and not encumber ourselves with these issues.

With this in mind, the rest of this chapter incorporates exercises to provide an opportunity for students to understand

and apply Leibniz’s rules heuristically. The solutions to these are included in the appendix. The first exercise is meant

to emphasize the fact that a differential is really just a difference, a fact that is often lost in the world of derivatives.

Exercise 1. Let 4y D y2 � y1, 4z D z2 � z1, and 4w D w2 � w1. Show that if x1 D y1 C z1 � w1 and

x2 D y2 C z2 � w2 then the difference4x D x2 � x1 satisfies

4x D 4y C4z �4w:

How is this related to Leibniz’s differential rule d.y C z �w/ D dy C dz � dw?

Whereas the previous exercise is fairly straightforward when one recognizes that differentials are considered as

momentary differences, the product rule is not as transparent and requires some guidance. Consider the following

geometric argument for Leibniz’s product rule d.yz/ D y dz C z dy. The product a D yz can be thought of as the
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a yz=y

z

Figure 21.1. Geometric interpretation of the product yz

y

dy

z dz

Figure 21.2. d.yz/ D y dz C z dy C dy dz

area of the following rectangle [Figure 21.1]. With this in mind, da D d.yz/ can be thought of as the change in the

area when y is changed by dy and z is changed by dz. This can be seen as the L-shaped region in Figure 21.2.

By dividing the L shaped region into 3 rectangles, we obtain d.yz/ D y dz C z dy C dy dz. Since dy and dz are

infinitely small, then the product dy dz is infinitely small compared to the other terms and can thus be ignored, leaving

d.yz/ D y dz C z dy
The idea of ignoring products of infinitesimals, though questionable, was utilized by other mathematicians of the

day. In particular, in his method of fluxions, Newton introduced an “infinitely short” time interval o to compute in-

stantaneous changes in his fluents (quantities which change over time). Newton allowed terms containing o to a higher

power than one to vanish as they are “infinitely less” than those in which o appears to the first power [2, p. 193–4].

This notion of “ignoring higher powers” may seem strange on the surface but, in fact, is embedded in our modern limit

based derivations and in the more recent theory of asymptotics.

Exercise 2. Compare the above derivation of Leibniz’ product rule with the following “modern” derivation of d.x2/
dx

.

In particular, how does this compare with the seventeenth century notion of “ignoring” higher powers of infinitely

small quantities?

d.x2/

dx
D lim

�x!0

.x C�x/2 � x2

�x

D lim
�x!0

x2 C 2x ��x C .�x/2 � x2

�x

D lim
�x!0

2x ��x C .�x/2
�x

D lim
�x!0

.2x C�x/

D 2x:

Exercise 3. Use Leibniz’ product rule to show d.x2/ D 2x dx. More generally, use induction to show that if n is a

positive integer, then d.xn/ D nxn�1 dx.

Exercise 4. Use Leibniz’ product rule to derive the quotient rule

d
�y

z

�

D z dy � y dz
z2

:

(Hint: Let v D y
z

so that v � z D y.)

Exercise 5. Use the quotient rule to show that if n is a positive integer, then

d.x�n/ D �nx�n�1 dx:

Exercise 6. Let p and q be integers with q ¤ 0. Show

d
�

xp=q
�

D p

q
x.p=q/�1 dx:
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Thus, it was as Leibniz said in his title, “. . . Which is Impeded Neither by Fractional Nor by Irrational Quantities, and

a Remarkable Type of Calculus for This”.

Applications

As was stated earlier, Leibniz did not provide derivations of the rules, but he provided applications of his calculus to

prove its worth. As an example in the paper, Leibniz derives Snell’s Law of Refraction using his calculus.

Given light which travels through medium 1 with a speed of v1 and through medium 2 with a speed of v2,

the problem is to find the fastest path from pointA in medium 1 to pointB in medium 2 [Figure 21.3].

A

B

medium 1

medium 2

Figure 21.3. Light traveling through two media

A

B

a

c

b
x

c x–

Figure 21.4.

According to Fermat’s Principle of Least Time, this fastest path is one that light will travel. Using the fact that

time D distance/velocity and the labeling in Figure 21.4, we can obtain a formula for the time T it takes for light to

travel from A to B , namely

T D
p
x2 C a2

v1

C
p

.c � x/2 C b2

v2

:

Using the rules of Leibniz’ calculus, we obtain

dT D
�

1

v1

� 1
2
.x2 C a2/�.1=2/.2x/C 1

v2

� 1
2

�

.c � x/2 C b2
��.1=2/�

2.c � x/.�1/
�

�

dx

D
 

1

v1

xp
x2 C a2

� 1

v2

c � x
p

.c � x/2 C b2

!

dx

Notice that in this calculation, we used the chain rule. The fact is that to a mathematician in Leibniz’s day, the notion

that dz
dx
D dz

dy
dy
dx

would have been as obvious as cancellation is to our students now, and, in fact, is built into the rules.

Specifically, if y D x2 C a2 then

d.y1=2/ D 1

2
y�.1=2/ dy D 1

2
y�.1=2/ � 2x dx:

We seem to make a big deal about this rule. Be assured that there are issues about division by zero, but are these

appropriate for the beginning calculus class?

Using the fact that at the minimum value for T , dT D 0, we have that the fastest path from A to B must satisfy

1

v1

xp
x2 C a2

D 1

v2

c � x
p

.c � x/2 C b2
:

Inserting angles �1 and �2 [Figure 21.5], we get that the path that light travels must satisfy

sin �1

v1

D sin �2

v2

which is Snell’s Law. In the words of Leibniz, “Other very learned men have sought in many devious ways what

someone versed in this calculus can accomplish in these lines as by magic.” [5, p. 279]
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A

a

b

x

c x–

q2

q1

Figure 21.5.

Exercise 7. Why would Leibniz say that at the minimum value for T , dT D 0? You may want to explain this

graphically.

As another application of the calculus, consider the solution of the brachistochrone problem by Johann Bernoulli

(1667–1748) [4, p. 315–17]. In 1696, Bernoulli posed the brachistochrone problem; that is, to find the shape of a

frictionless wire joining pointsA and B so that the time it takes for a bead to slide down under the force of gravity is as

A

B

Figure 21.6. Brachistachrone problem

small as possible [Figure 21.6]. Bernoulli posed this “path of fastest descent” problem to challenge the mathematicians

of Europe and used his solution to demonstrate the power of Leibniz’ calculus as well as his own ingenuity.

I, Johann Bernoulli, address the most brilliant mathematicians in the world. Nothing is more attractive to

intelligent people than an honest, challenging problem, whose possible solution will bestow fame and remain

as a lasting monument. Following the example set by Pascal, Fermat, etc., I hope to gain the gratitude of

the whole scientific community by placing before the finest mathematicians of our time a problem which

will test their methods and the strength of their intellect. If someone communicates to me the solution of the

proposed problem, I shall publicly declare him worthy of praise [7].

Five solutions were obtained. Newton, Jacob Bernoulli, Leibniz, and de l’Hôpital solved the problem in addition to

Johann Bernoulli [5]. We will present Johann Bernoulli’s ingenious solution [4, p. 315–17 or 5, p. 392–6].

Bernoulli’s solution began, strangely enough, with Snell’s Law of Refraction. If we extend Snell’s law to an object

whose speed (v) is constantly changing, then along the fastest path, the ratio of the sine of the angle that the curve’s

tangent makes with the vertical and the speed must remain constant [Figure 21.7]. If we include axes and let P denote

the position of the bead at a particular time then we have the following picture [Figure 21.8].

q

Figure 21.7. sin �
v
D k, where k is a constant

dx

dy ds

a
g

y

s

P

x

Figure 21.8. Forces in the brachistochrone problem
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In Figure 21.8, s denotes the length that the bead has traveled down to point P (that is, the arc length of the curve

down to that point) and a denotes the tangential component of the acceleration due to gravity g. Since the bead travels

only under the influence of gravity then dv
dt
D a. By similar triangles we have a

g
D dy

ds
.

Exercise 8. Use the above equations and the fact that v D ds
dt

to show that g dy D v dv and conclude v D
p
2g y.

If we insert � , then we can readily see that sin � D dx
ds

[Figure 21.9].

q

ds

dx

Figure 21.9.

Exercise 9. Substitute the above expressions for sin � and v into Snell’s Law to show that the brachistochrone must

satisfy the differential equation
dx

q

2gy
�

.dx/2 C .dy/2
�

D k:

Exercise 10. Show that the equations

x D t � sin t

4gk2
; y D 1 � cos t

4gk2

satisfy the differential equation of the brachistochrone

dx
q

2gy
�

.dx/2 C .dy/2
�

D k:

Even without presenting Bernoulli’s complete solution, students can explore the claim that the curve given by the

parametric equations in exercise 10 actually is the brachistochrone. Specifically, consider the following.

Exercise 11. We know that under the influence of gravity, the speed of the bead sliding down the curve y D y.x/

is given by ds
dt
D v D

p
2g y. Assuming that the positive y axis points down as in Figure 21.8, show that the time it

takes for the bead to slide along the curve from the origin to point B with coordinates .x1; y1/ is given by

T D
Z .x1;y1/

.0;0/

dsp
2gy

and use this to compare the time it takes for the bead to slide along the curve given by

x D t � sin t y D 1 � cos t

with the time it takes to slide along the straight line path from .0; 0/ to .�; 2/.

Bernoulli recognized the above solution to be an inverted cycloid, the curve traced by a fixed point on a circle

as the circle rolls along a horizontal surface. Interestingly, Christian Huygens (1629–1695) showed in 1659 that the

cycloid was also a tautochrone; that is, a curve with the property that the time taken by a particle sliding down the

curve under uniform gravity to its lowest point is independent of its starting point. Huygens applied this property
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to the design of a pendulum clock. By designing a clock whose pendulum swung along the path of a cycloid, the

period of the oscillation would be independent of the amount of swing. In theory, this would make the clock more

accurate than one whose pendulum swung in a circular arc. See [1, p. 377] for a diagram of such a clock design. At

the time, designing an accurate timepiece to be used for determining longitude at sea was of paramount importance

and cash prizes were offered for successful designs [8]. While Huygens’ cycloidal pendulum design was perfectly

accurate in theory, it proved no more accurate than a regular pendulum design in practice. Nonetheless, Huygens work

on the cycloid was recognized by contemporary and subsequent mathematicians. Bernoulli ended his solution of the

brachistochrone problem with these words:

Before I end I must voice once more the admiration I feel for the unexpected identity of Huygens’ tau-

tochrone and my brachistochrone. I consider it especially remarkable that this coincidence can take place

only under the hypothesis of Galileo, so that we even obtain from this a proof of its correctness. Nature

always tends to act in the simplest way, and so it here lets one curve serve two different functions, while

under any other hypothesis we should need two curves . . . [7].

Exercise 12. Referring to Figure 21.8, suppose that the initial position of the bead is the point P0.x0; y0/. Show that

the speed at the point .x; y/ is given by v D ds
dt
D
p

2g.y � y0/ and so the time it takes for the bead to slide from P0

to the bottom of the curve B is given by

T D
Z B

P0

ds
p

2g.y � y0/
:

Given the cycloid defined by the equations x D t � sin t and y D 1 � cos t , let .x0; y0/ D
�

x.t0/; y.t0/
�

. Show that

the time required for the bead to slide to the bottom of the cycloid is given by

T D 1
p
g

Z �

tDt0

sin.t=2/dt
p

cos2.t0=2/� cos2.t=2/
D �
p
g

which is independent of the starting point [6, p. 695–6]. Hence the cycloid is, in fact, a tautochrone.

21.3 Conclusion

As can be seen by the above examples, the calculus was a powerful tool. In the late eighteenth and nineteenth centuries,

mathematicians developed a formal definition of limit to address the foundational issues which Newton and Leibniz

could not, but there was no doubting the power of the calculus. Leibniz’s rules are very modern in appearance and in

how they are utilized. While it is true that students should learn the concept of limits to justify calculus techniques in

a rigorous fashion, this rigor sometimes masks the basic concept. Perhaps it would be wise to follow a more historical

approach in the classroom and allow students to heuristically understand and utilize these techniques before they

address the foundational underpinnings with limits.

Appendix

The following are outlines of solutions to the exercises in the chapter.

Exercise 1. 4x D .y2 C z2 � w2/ � .y1 C z2 � w1/ D .y2 � y1/C .z2 � z1/ � .w2 �w1/ D 4y C4z �4w.

Since Leibniz applied the same rules to infinitesimal differences, then this reasoning would apply to (infinitesimal)

differentials as well.

Exercise 2. In the difference quotient, the numerator represents the area of the L-shaped region consisting of the

square of side x C 4x minus the square of side x. When we divide by 4x and take the limit, we are essentially

discarding the higher powers of4x that were in the numerator.

Exercise 3. d.x2/ D d.xx/ D x dxC x dx D 2xdx. In the inductive step of the general case, we have d.xnC1/ D
d.xnx/ D xn dx C x.nxn�1 dx/ D .nC 1/xn dx.
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Exercise 4. If v D y
z

, then dy D d.vz/ D v dz C z dv. From this we get

dv D dy � v dz
z

D
dy � y

z
dz

z
D z dy � y dz

z2
:

Exercise 5. d.x�n/ D d
�

1

xn

�

D xn � 0 � 1 � nxn�1 dx

x2n
D �nx�n�1 dx:

Exercise 6. Let y D xp=q , so yq D xp and qyq�1 dy D pxp�1 dx. From this we get

dy D pxp�1 dx

q.xp=q/q�1
D p

q
x.p�1�pC.p=q// dx D p

q
x.p=q/�1 dx:

Exercise 7. If you graph a function such as T D T .x/, then you can see that as you approach a minimum (or

maximum) point on the graph, then the change in T is approaching zero. If you use the fact that the slope of the

tangent line is used to relate dT to dx, then the above assertion is equivalent to saying that the slope of the tangent

line is zero at a local extremum.

Exercise 8. We have g dy D a ds D dv
dt
ds D dv ds

dt
D v dv. Antidifferentiating, we get gy D 1

2
v2 C c, for some

constant c. Since v D 0 when y D 0, then c D 0. Solving for v, we get v D
p
2gy.

Exercise 9. k D sin �

v
D dx

ds
p
2gy
D dx
p

.dx/2 C .dy/2
p
2gy

:

Exercise 10. dx D 1 � cos t

4gk2
dt D y dt and dy D sin t

4gk2
dt . This yields

dx
q

2gy
�

.dx/2 C .dy/2
�

D y dt
q

2gy .1�cos t/2Csin2 t

.4gk2/2
.dt/2

D 4gk2y
p

2gy.2 � 2 cos t/

D 4gk2y
p

4gy.1 � cos t/
D 4gk2y
p

4gy � 4gk2y

D 4gk2y

4gky

D k:

Exercise 11. T D
Z .x1;y1/

.0;0/

dt D
Z .x1;y1/

.0;0/

dsp
2gy

: For the curve defined by x D t � sin t and y D 1 � cos t , we

have

T D
Z .x1;y1/

.0;0/

dsp
2gy
D
Z .x1;y1/

.0;0/

p

.dx/2 C .dy/2p
2gy

D 1
p
g

Z �

tD0

q

.1 � cos t/2 C sin2 t dt
p
2y

D 1
p
g

Z �

tD0

p

2.1 � cos t/ dtp
2y

D 1
p
g

Z �

tD0

dt

D �
p
g
� 3:1416
p
g
:
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For the line joining .0; 0/ to .�; 2/, we have y D 2
�
x and so

T D
Z .x1;y1/

.0;0/

p

.dx/2 C .dy/2p
2gy

D 1
p
g

Z �

xD0

q

1C
�

2
�

�2
dx

p
2y

D 1
p
g

Z �

xD0

v

u

u

t

1C 4
�2

4x
�

dx

D 1
p
g

r

�2C 4
4�

Z �

xD0

x�.1=2/ dx

D 1
p
g

p

�2C 4 � 3:7242
p
g
:

Exercise 12. As in exercise 8, we have gy D 1
2
v2 C c. We have v D 0 when y D y0, which yields c D gy0 and so

v D
p

2g.y � y0/. Using x D t � sin t and y D 1 � cos t , we get

T D
Z �

tDt0

ds
p

2g.y � y0/

D 1
p
g

Z �

tDt0

q

.1 � cos t/2 C sin2 t
q

2
�

.1 � cos t/ � .1 � cos t0/
�

dt

D 1
p
g

Z �

tDt0

q

.1 � cos t/2 C sin2 t
q

2
�

.1C cos t0/ � .1C cos t/
�

dt

D 1
p
g

Z �

tDt0

p

2.1 � cos t/
q

2
�

.1C cos t0/ � .1C cos t/
�

dt

D 1
p
g

Z �

tDt0

q

4 sin2
�

t
2

�

q

2
�

2 cos2
�

t0
2

�

� 2 cos2
�

t
2

��

dt

D 1
p
g

Z �

tDt0

sin
�

t
2

�

q

cos2
�

t0
2

�

� cos2
�

t
2

�

dt

D �
p
g
:
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22
An “Impossible” Problem,

Courtesy of Leonhard Euler

Homer S. White1

Georgetown College

22.1 Introduction

The second semester of calculus may well be the busiest course in the standard undergraduate mathematics curriculum.

Between applications of integration, integration techniques, polar coordinates, parametric representations of curves,

sequences and infinite series, one usually has no time to give conic sections their due. For quite some time, therefore,

I have been looking for interesting things to say about conics that tie in well with students’ recently acquired calculus

tools.

Recently I got lucky. I happened upon an article2 published in 1755 by the great Swiss mathematician Leonhard

Euler, which considers a problem that fits the bill perfectly. Euler’s treatment of the problem synthesizes a number

of ideas from elementary calculus: trigonometric identities, techniques of integration including partial fractions, rep-

resentation of curves by polar equations, and separable differential equations, with a particular conic section—the

parabola–leading off the action.

22.2 Historical Setting

Suppose that you are given a parabola, and that you draw an arbitrary line through its focus F , meeting the parabola at

pointsM and N . The tangent lines to these points will always meet at a right angle! One possible approach to a proof

is to work from the reflection property of parabolas, as follows:

In Figure 22.1, the points P and Q are chosen so that PN and QM are parallel to the central axis of the parabola.

By the reflection property, a ray of light traveling from P to N will bounce off the parabola and head toward F , with

PN and NF making equal angles, of measure ˛ let us say, to the tangent line YZ at pointN . SimilarlyQM and MF

1The author would like to acknowledge the assistance in the French language of his student Katy Thompson, who read [2], on which this paper

is based, as part of an Honors project in a second-semester calculus class in the Fall semester of 2006.
2The English title of the article is “Reflections on a problem which has been treated by certain geometers but which is, nonetheless, impossible.”

The original article appeared in French in the Memoirs of the Berlin Academy of Sciences, (see [2]) or it may be viewed in the online Euler Archives

(http://www.math.dartmouth.edu/˜euler/) as E. 220. Unfortunately it seems that the editors of the Memoirs did not include the diagrams to which

Euler refers in the text.

169
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P Q X

Y

N

F M

Z

Figure 22.1. The tangent-intersection property of a parabola.

make equal angles ˇ to the tangent XZ at M . Hence

180 D m.†PNF /Cm.†QMF/
D 180� 2˛C 180� 2ˇ:

We get ˛C ˇ D 90, so the angle at the intersectionZ of the tangent lines must be a right angle.3

The following question occurs naturally: are there any other curves that share with the parabola the foregoing

tangent-intersection property, and how may we go about finding them? In his 1755 article, Euler took up the matter:

Problem 4. Given a fixed point F and a fixed angle ˛ with 0 � ˛ � �
2

, can we find smooth curves so that for any

straight line through F , meeting the curve at exactly two pointsM and N on opposite sides of F , the tangent lines at

M and N meet at angle ˛? (The case ˛ D 0 asks that the tangents lines be parallel.)

In the eighteenth century European mathematicians were quite fond of this type of “reciprocal” problem, which

involves taking a familiar property of a familiar curve—one that often can be demonstrated by classical geometric

methods—and trying to find other curves that share this property.4 The search for new solution curves allowed math-

ematicians to test the power of newly-discovered techniques of what they called “Analysis”—essentially calculus and

differential equations—along with newly-developed coordinate systems for representing locations on the plane or in

space.5

Now, we have observed already that any parabola with focus F is a solution, when ˛ D �
2

. Also, any circle with

center F would solve the problem when ˛ D 0. Eventually we will see that for ˛ D 0 there are many other solutions.

Euler also demonstrated that there are no solutions at all for any ˛ between 0 and �
2

.

The proof given here is essentially Euler’s, although it has been streamlined a bit and the notation has been modern-

ized.

Let’s suppose that ˛ is not �
2

. Euler set up the situation using polar coordinates, with the given point F located at

the origin. The solution curve, if it exists, may be represented as the graph of some equation r D f .�/, where f is

a continuous function of � . Also, in order to guarantee that there are just two points along the line through F , one on

each side of F , he required that f .�/ be periodic with period 2� : In other words, when � has increased 360 degrees,

we must return to the same point on the curve as when we started. (Hence, for example, spirals like r D � are not

permitted.) Euler was able, therefore, to restrict his attention to functions of the form f .cos �; sin �/, since

f .cos .� C 2�/ ; sin .� C 2�// D f .cos �; sin �/ :

Now in the diagram below, let M have polar coordinates .f .�/ ; �//, where � is the angle made by FM with the

positive x-axis, so that N has coordinates .f .� C �/ ; � C �//. The two tangents at M and N meet at I , where

3It is also not difficult to show that the point Z of intersection lies on the directrix of the parabola.
4Here is another example of such a “reciprocal” problem: a ray of light beginning from one focus of an elliptical mirror will bouce twice off the

ellipse and arrive back at its starting point. If for a given curve there exists a point having this double-relflection property with respect to the curve,

then that curve is called a catoptrix.What other catoptrices, besides ellipses, can we find? Can we find gemoetric ways to construct them? For a

discussion of Euler’s treatment fo the problem of the catoptrix and other reciprocal problems, see [3].
5In some respects Euler was a pioneer in the representation of points by coordinates. Although he did not invent the polar coordinate system,

he was a leader in the systematic exploitation of its three-dimensional relatives, the cylindrical and spherical coordinates. For a history of polar

coordinates, see [1].
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Y

X

M

F

N

W

Z

I

x-axis

y-axis

Figure 22.2. Setting up the impossibility proof.

†MIN has constant measure ˛. Let the tangent of angle  D †XMY be denoted by t , and let the tangent of angle

 0 D †INW be denoted by t 0. (Note: The 0 notation is Euler’s, and it has nothing to do with derivatives.) Clearly t

and t 0 are functions of � , and in fact

t 0 .�/ D t .� C �/

for all � for which M and N both exist. Of course,

t 00 .�/ D t 0 .� C �/ D t .�/

by the periodicity of our curve.

Considering external angles and employing the identity for the tangent of the difference of angles, we arrive at

tan ˛ D t 0 .�/ � t .�/
1C t .�/ t 0 .�/ :

Note that the assumption ˛ ¤ �
2

guarantees that the denominator is nonzero.

When the equation in the previous exercise holds for � , it also holds for � C � , so

tan ˛ D t 0 .� C �/� t .� C �/
1C t .� C �/ t 0 .� C �/

D t 00 .�/ � t 0 .�/
1C t 0 .�/ t 00 .�/ D

t .�/� t 0 .�/
1C t 0 .�/ t .�/ D � tan ˛:

We conclude that tan ˛ D 0, so ˛ D 0: That ˛ is between 0 and �
2

is not a possibility.6

22.3 In the Classroom

How might Euler’s problem be introduced in the classroom? One very appropriate occasion is in the standard second-

semester calculus class. As soon as polar coordinates and conic sections have been introduced, one should bring up

the tangent-intersection property for parabolas, with which this article began. Students could be assigned the theorem

as a homework problem. Although most are unlikely to think of the geometric proof given at the outset, an analytic

proof using polar coordinate methods is well within their reach, with perhaps a hint or two on set-up. For instance,

if we begin with the equation of a parabola in polar coordinate form, say f .�/ D a
1Ccos �

, the graph will resemble

Figure 22.2 above: the focus of the parabola is at the origin, the vertex is on the positive x-axis, and the directrix is

6Euler does not say which “geometers” had treated the problem in the past. Perhaps they had given incorrect solutions, and Euler wanted to

spare them unnecessary embarrassment.
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y D a. Letting M be an arbitrary point
�

�; a
1Ccos �

�

on the parabola, we obtain the diametrically opposed point N as
�

� C �; a
1Ccos.�C�/

�

. Next, using the well-known identities

dy

d�
D dr

d�
sin � C r cos �;

dx

d�
D dr

d�
cos � � r sin �;

one arrives at an expression for the slope of the tangent line at M :

sin2 �

.1Ccos �/
2
C cos�

1Ccos �

sin � cos �

.1Ccos �/2
� sin �

1Ccos �

;

and for the slope of the tangent at N :
sin2 �

.1�cos �/2
� cos �

1�cos �

sin � cos�

.1�cos �/
2
C sin �

1�cos �

;

where in the latter expression use has been made of the fact that

sin .� C �/ D � sin �;

cos .� C �/ D � cos �:

The student now has to employ algebra and familiar trigonometric identities to verify that the two slopes are indeed

negative reciprocals of one another.7

Alternately one could give the synthetic-style proof in class, and then raise Euler’s “reciprocal” question.

Next, Euler’s argument that there are no solutions for 0 < ˛ < �
2

should be given in class, just as above.

The next step is to cue the students to Euler’s advice on finding other solution curves, beginning with the case ˛ D 0.

Euler states, but does not prove, that

tan D r

dr=d�
; (22.1)

a result that today is often given as an exercise in calculus textbooks. If the instructor does not assign this particular

exercise, then the in-class proof could be given as follows: in the previous diagram, let � denote the angle made by the

tangent at M with the positive x-axis. Of course

tan� D dy

dx
:

We also see that tan D tan .� � �/. Employing a trigonometric identity we find

tan .� � �/ D
dy
dx
� tan �

1C dy
dx

tan �
D

dy=d�
dx=d�

� tan �

1C dy=d�
dx=d�

tan �

D
dy
d�
� dx

d�
tan �

dx
d�
C dy

d�
tan �

:

The result then follows from the aforementioned identities

dy

d�
D dr

d�
sin � C r cos �;

dx

d�
D dr

d�
cos � � r sin �:

7Having gone this far, one might as well also set up the equations for the two tangent lines, and discover that their intersection point I always

lies along the directrix y D a!
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Now imagine that r D f .�/ solves our problem for the case ˛ D 0. In that case, the tangents at M and N are

parallel, so the alternate exterior angles  and  0 are congruent, so

tan D tan 0:

which by .1/ gives
f .�/

df=d�
D f .� C �/

df
d�
.� C �/

;

hence
df=d�

f .�/
D

df
d�
.� C �/

f .� C �/ ;

or

d lnf .�/

d�
D d lnf .� C �/

d�
:

Euler says that when we integrate, we get

f .�/ D f .� C �/ ;

so our problem is solved by any curve r D f .�/ where f .�/ has period � . The circle, various multi-leaved roses,

and other familiar polar curves turn out to be solutions.

The case ˛ D �
2

is more challenging, and the instructor should provide at least a start in the classroom. Here, we

need the function t D tan to satisfy the condition

t t 0 C 1 D 0:

Recall also that t can be considered as a function of sin � and cos � , so that the 0 operation—the operation of increasing

� by � radians—is equivalent to substituting� cos � for cos � and � sin � for sin � . Therefore, Euler casts about for

expressions t D t .cos �; sin �/ so that substituting � cos � for cos � and � sin � for sin � and multiplying the result

by the original t yields the product �1. We will call this the perpendicularity condition for t . Once a t satisfying the

perpendicularity condition is found, since t D tan , by (1) we have only to solve the separable differential equation

t .cos �; sin �/ D r

dr=d�

for r as a function of � , obtaining a polar-coordinate form of a solution curve.

Euler suggests, as one of two initial examples,

g .cos �; sin �/ D � sin �

1C cos �
;

which meets the perpendicularity condition, since

� sin �

1C cos �

�� sin �

1 � cos �
D � sin2 �

sin2 �
D �1

and which leads to the differential equation

dr

r
D 1C cos �

� sin �
d�:

which is solved by integrating both sides:

ln r D
Z

1C cos �

� sin �
d� C ln a D �

Z

1C cos �

sin �

1 � cos �

1 � cos �
d� C lna

D �
Z

sin �

1 � cos �
d� D ln

�

1

1 � cos �

�

C lna:



174 22. An “Impossible” Problem, Homer S. White

Note that we have written the usual constant of integration as lna, where a is an arbitrary positive constant. This

permits us to write:

ln r D ln

�

1

1 � cos �

�

C ln a;

ln r D ln
� a

1 � cos �

�

;

r D a

1 � cos �
;

which graphs as a parabola with focus at the origin and directrix x D �a. It is suggested that the preceding be provided

by the instructor.

A selection of other solution curves in Euler’s article may be obtained by the students in a series of assigned

exercises, which give practice in separable partial fractions expansion, separable differential equations, trigonometric

identities, and the even use of symbolic computation packages.

Exercise 22.1. Show that Euler’s other initial example,

g .cos �; sin �/ D sin �

1C cos �
;

results in the family of cardioids r D a .1 � cos �/ with cusp at the origin.

Exercise 22.2. Verify Euler’s next claim: For any odd integer �, either of

g .cos �; sin �/ D ˙ sin��

1C cos ��

satisfy the perpendicularity condition.

Exercise 22.3. Solve for r , and graphically investigate the solution curve, for several odd values of � in the cases

dr

r
D 1C cos ��

sin��
d�

and
dr

r
D �1C cos��

sin��
d�:

Formulate conjectures about the shape of the curves for general odd �.

Exercise 22.4. Show that the perpendicularity condition is satisfied by

g .cos �; sin �/ D ˙
�

sin��

1C cos��

�m
n

;

where m and n are odd integers.

Exercise 22.5. A function h of cos � and sin � is said to be even if

h .� cos �;� sin �/ D h .cos �; sin �/ I

if

h .� cos �;� sin �/ D �h .cos �; sin �/

then h is said to be odd. Verify Euler’s claim that, if P is an even function and Q is odd, then the perpendicularity

condition is satisfied by

g .cos �; sin �/ D ˙
�

sin��

1C cos��

�m
n P CQ
P �Q

and, in general,

g .cos �; sin �/ D ˙
�

sin��

1C cos ��

�m
n
�

P CQ
P �Q

�ı

where ı > 0 is any real number (although Euler only dealt with rational powers).



22.3. In the Classroom 175

There is really no end to this.

Exercise 22.6. If Pi ; 1 � i � K are even and Qi ; 1 � i � K are odd, then the condition is satisfied by

g .cos �; sin �/ D ˙
�

sin��

1C cos��

�m
n

K
Y

iD1

Pi CQi

Pi �Qi

:

Let us briefly consider some more solution curves. For the situation of Exercise 6, Euler takes � D 1 and begins

with P D 1 and Q D m cos � , which leads to

dr

r
D ˙ sin �

1C cos �

P �Q
P CQ d�

or
dr

r
D ˙ sin �

1C cos �

1 �m cos �

1Cm cos �
d�:

In order to integrate, one must employ a partial fractions technique. That is, one seeks values of A and B so that

sin �

1C cos �

1 �m cos �

1Cm cos �
D A sin �

1C cos �
C B sin �

1Cm cos �
:

Exercise 22.7. Show that the correct values for A and B in the previous equation are:

A D mC 1
1 �m ;

B D �2m
1�m:

Exercise 22.8. With the assistance, perhaps, of a symbolic computation package, find and graph solutions for

dr

r
D ˙ sin �

1C cos �

1 � 2 cos �

1C 2 cos �
d�:

(One obtains curves with multiple branches.)

Exercise 22.9. Similarly, investigate solutions for

dr

r
D ˙ sin �

1C cos �

1 � 1
2

cos �

1C 1
2

cos �
d�:

(Euler notes that the positive case yields a curve “similar to a parabola”, whereas the negative case yields a curve

“similar to a cardioid.”)

Inversion. For the ˛ D �
2

problem, Euler’s first two classes of solutions—the two “simplest”, it would seem—are

parabolas and cardioids. It worth observing that these two types of curves are related in another way, through inversion.

Given a point P and a circle with center O and radius r , draw the ray
��!
OP and let Q be the point on the ray so that

OQ D r2

OP
:

Figure 22.3. A parabola and its inversion

image: a cardioid. The inversion circle is

centered at the focus of the parabola.

Then Q is called the inverse of P . For a fixed circle, inversion can be

thought of as a mapping of the plane to itself. Points inside the circle map

to points outside, and vice versa, while each point on the circle maps to

itself. The inversion mapping is also its own inverse. One interesting fact

about inversions is that lines and circles map to lines and circles.

What is of interest to us is that, given any circle with center F , the

image, under inversion through that circle, of any parabola with focus F

turns out to be a cardioid. See Figure 22.3.

This is no accident. In fact:

Exercise 22.10. Show that for any ˛ D �
2

solution curve with center O,

the inversion of the curve under any circle centered at O is also a solution to the ˛ D �
2

problem. Furthermore, for

any ˛ D 0 solution curve with center O, the inversion of the curve under any circle centered at O is also a solution to

the ˛ D 0 problem.
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22.4 Conclusion

Considering the multitude of solutions for the particular angles 0 and �
2

along with the complete lack of solutions

for other angles, Euler remarks in conclusion: “this problem merits the closest attention, and there is no doubt that

consideration of it leads to a quantity of other pleasing research.” [3. p. 363] Indeed, in this capsule we have only

considered a few of the solution curves that Euler found; many other related questions, from Euler’s article and beyond,

remain to be explored.

Appendix: Remarks on Selected Exercises

Solutions to some of the Exercises, along with discussion of their use in a calculus class where polar coordinates have

been introduced, are given below.

Exercise 22.2. The solution is exactly like the derivation, given in the body of this article, of the family of parabolas

as solutions to the ˛ D �
2

problem. If you assign only one exercise, let this be the one.

Exercise 22.3.

�

sin��

1C cos ��

�0

D sin .� .� C �//
1C cos .� .� C �//

D sin .�� C ��/
1C cos .�� C ��/

D � sin .��/

1 � cos .��/

since � is odd. It follows that

sin��

1C cos��

�

sin��

1C cos ��

�0

D sin��

1C cos��

� sin .��/

1 � cos .��/

D sin2 .��/

1 � cos2 .��/
D �1;

verifying the perpendicularity condition.

Exercise 22.4. Solving the differential equations is as easy as in Exercise 22.2.

Exercise 22.4 is as far as I go in a standard calculus class. A typical schedule for this material, requiring about 1.3

class periods, would be as follows:

1. Introduce the tangent property of parabolas (five minutes at the end of class.). Assign the analytic proof of this

property as homework.

2. The next class day (fifty minutes) is devoted to:

(a) demonstration that there are no solutions for 0 < ˛ < �
2

;

(b) derivation of solutions to the ˛ D 0 problem

(c) derivation of parabolas as one family of solutions to the ˛ D �
2

problem. Exercise 22.2 is assigned as HW.

3. At the next class meeting, go over the results of Exercise 22.2, graphing the cardioids with appropriate software.

Discuss Exercise 22.3 for the case � D 3, and assign Exercises 22.3 and 22.4 as HW. (Fifteen minutes)

4. At the next class meeting, have students report their conjectures from Exercise 22.4. (Five minutes)
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Exercises 22.5 and beyond are not necessarily difficult. In particular, 22.5, 22.6, 22.7 and 22.8 come quickly once

the students understand 4, and the problem on inversions is almost immediate when one think about polar coordinates.

However, I find that there is no time for them in a regular class, since a culminating theme of these problems is the

graphical exploration of complicated solution curves. I have tried a preliminary version of these exercises with one

student as part of an Honors project, with enough success that I look forward to using the full set of Exercises with

other Honors students in the future.

There is special value to Exercise 22.8, since the student has to realize that sin � and cos � play the role of, say, x

and x2 in the sort of partial fractions problems they have encountered previously in calculus.
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23
Multiple Representations of Functions in the

History of Mathematics

Robert Rogers
State University of New York at Fredonia

23.1 Introduction (A Funny Thing Happened on the Way to Calculus)

During the fall semester of 2005, I was slated to teach University Calculus I to a class of mostly incoming freshmen.

It had been a while since I taught both the class and freshmen, so on the first day I decided to do some review and

pick my students’ brains. I wrote y D f .x/ D x2 on the board and asked if that was a function. The unanimous

answer was yes. Without exploring that too much, I drew Figure 23.1 on the board and asked if that was a function.

y

x

y f x= ( )

Figure 23.1. A function represented graphically

The response was overwhelmingly yes and when I asked why, the response was that it passed the vertical line test. I

then wrote the following on the board.

c.x/ D the cost (in cents) to send a first class letter

weighing x ounces through the US Postal service.

When asked if that was a function, about half of the class said it was and about half said it wasn’t. From the looks

on people’s faces, the majority of students in the class were not sure of their answers either. After having students

discuss their thoughts with their neighbors, we had a class discussion about whether it was, in fact, a function or not.

The gist of people who said no was that it wasn’t a function because there was no formula or graph with which to

determine specific values. The people who said yes said that it was still a rule that assigned a unique value to each x.

179
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1 2 3 x

39

63

87

Figure 23.2. Graphic representation of 2005 postal rates.

There was still no definite consensus when I drew Figure 23.2 on the board. When asked if this was a function, the

class overwhelmingly said that it was and an astute student pointed out that it was, in fact, the previous cost function,

c.x/. By no means can this be construed as any sort of careful experiment, but I went away with the feeling that our

students are comfortable with functions as formulas and graphs (possibly tables as well, though I didn’t explore that),

but are not as comfortable with other representations.

The NCTM standards call for the understanding of patterns, relations, and functions throughout the grade levels as

part of its algebra strand. In this strand, it is expected that students represent and analyze patterns and functions using

words, tables, and graphs along with the typical algebraic formulae [14]. If my episode in calculus is any indication,

there seems to be a tendency to shift toward an analytic or graphical representation of functions while suppressing a

verbal or tabular form. The ability to recognize a function given in verbal or tabular form is paramount in applications

where a problem is given in words or data is given in a table. In the quest to make students fluent with algebraic

symbolism, we should not forget that these other representations draw upon students’ experiences with patterns and

functions at the elementary level. Older students must be reminded that these alternate representations are examples

of functions as well, so that they are comfortable working with functions in all forms: analytic, graphical, verbal, and

tabular.

The evolution of the function concept contains examples of all of these representations. Many of these episodes

can be utilized to provide meaningful applications illustrating the various representations of the function concept. In a

number of instances, the topics involved in these episodes are already part of the curriculum. In these cases, teachers

can enhance their students’ understanding of both the topic and the underlying concept of function. As such, this paper

will provide some of these historical perspectives on functions along with suggestions for classroom activities that will

promote these various views of what is meant by a function.

23.2 Area of a Circle

23.2.1 Historical Background

An argument can be made that the early notion of a function was, in fact, verbal. Consider Problem 50 from the Rhind

Papyrus [9, p. 20]:

Example of a round field of diameter 9. What is the area? Take away 1=9 of [the diameter] 9; the remainder

is 8. Multiply 8 times 8; it makes 64. Therefore, the area is 64.

The same area-of-circle recipe is used in the following problems from the Rhind Papyrus [5, p. 17–18]

Problem 41. Find the volume of a cylindrical granary of diameter 9 and height 10.

Problem 42. Find the volume of a cylindrical granary of diameter 10 and height 10.

Although the Egyptians used numbers instead of arbitrary variables, it appears that the recipe is meant to transcend

a particular example. This recipe is meant to be a practical solution to the computation of circular area. Furthermore,

this recipe does not make reference to the ratio of the circumference to the diameter (what we now know as � ) as

our modern definition does. This was because finding the area of a circle represented a different problem than that of

finding its circumference.

The connection between the circumference of a circle and its area is made explicit in Archimedes’ determination of

the area of a circle in his treatise Measurement of a Circle [5, p. 148].
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Proposition 1. The area of any circle is equal to a right-angled triangle in which one of the sides about the

right angle is equal to the radius, and the other to the circumference of the circle.

This description is typical of Greek quadrature problems; that is, to construct (classically, with tools allowed by

the axioms in Euclid’s Elements: a straight edge and compass) a square whose area is equal to that of a given figure

[3, p.12-17]. Since the quadrature of a triangle was known, then one could presumably “square the circle” if one

could produce the circumference of the circle. This cannot be done with Euclidean tools, though in the same treatise

Archimedes provides that the ratio of the circumference to the diameter of a circle is between 3 10
71

and 3 1
7

. [3, p. 97].

23.2.2 In the Classroom

The fact that these relations were presented with their respective descriptions was of necessity, as formal equations

did not exist at the time. Teachers at the elementary level are faced with a similar situation, as their students do not

possess the algebraic sophistication to produce formal equations. Teachers at the middle school level are expected to

bridge the gap between intuition and formalism and by doing so, set the stage for later functional understanding. The

area of a circle provides an opportunity for the introduction of this functional understanding.

The Egyptian recipe can be utilized in the classroom as a way of deriving a formula for the area, A, of a circle in

terms of its diameter, d . Specifically, students can be asked to compute the areas of circles of various diameters using

the above recipe. From this, the general function

A D A.d/ D
�

d � d
9

�2

D
�

8

9
d

�2

can be derived to demonstrate the functional relation between the input d and the outputA. Letting r denote the radius,

this yields the formula

A D A.r/ D
�

16

9

�2

r2 � 3:16r2:

Again, the functional notation can be introduced to emphasize this input-output relationship and students need not be

encumbered by the extra issue of the number � .

The determination of circular area by Archimedes also provides the opportunity to translate words into formulas. In

particular, if r and C represent the radius and circumference of a circle, respectively, then its area, A, can be given by

the function A D A.r; C / D 1
2
r � C . Using Archimedes approximation, C � 22

7
.2r/ � 3:14 .2r/, yields the familiar

A D A.r/ � 3:14r2 which can be compared to the Egyptian formula. These can also be compared to the modern

formula for the area, emphasizing the fact that there is a functional dependency between A and r . A nice reversal

would be to start with our modern formula, A.r/ D �r2, and have students state this in the recipe manner of the

Egyptians [square the radius and multiply by � ].

23.3 Ptolemy’s Table

23.3.1 Historical Background

chord A

A

Figure 23.3. The chord of an arc.

A number of mathematical tables exist from ancient civilizations, including

tables of reciprocals, squares, and square roots. This input-output view of a

function is recaptured in the tabling button of modern hand held calculators.

Of particular note is Claudius Ptolemy’s chord table from approximately 100

A.D. This table provides the lengths of the chords of arcs ranging from 1
2

ı
to

180ı in increments of 1
2

ı
. In general, the chord of an arc of a circle is the line

segment joining the endpoints of the arc as seen in the Figure 23.3.

One could make an argument that finding the length of a chord is a more

natural geometric problem than finding the sine of a central angle, though as will be seen these are essentially equiva-

lent. More specifically, in a unit circle, the sine of a central angle is half of the length of the chord of twice the angle.

This relationship might help students make sense of the various trigonometric functions. With this in mind, a brief

etymological history of sine might prove useful in the classroom [11, p. 200].
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In dealing with spherical trigonometry used to study astronomy, Hindu mathematicians determined that it was conve-

nient to deal with half-chords. The Hindu mathematician Aryabhata (476–550 A.D.) frequently used the abbreviation

jya for the word ardha-jya (half chord). This was phonetically translated into jiba by subsequent Arabic mathemati-

cians. Since Arabic is written without vowels, then this was written as jb. When the Arabic works were translated

into Latin, jb posed a problem as there is no such word as jiba in Arabic (recall it was translated phonetically). The

closest “real” Arabic word was jaib which means “cove” or “bay”. The Latin word for this is sinus, which becomes

our modern sine. Once it is realized that sine represents a half-chord, it is straightforward to see that cosine represents

the complement’s sine [Figure 23.4].

sin
(half-chord)

A

cos
(complement’s

half-chord)

A

A

Figure 23.4. Sine and cosine of an angle

Given this relationship, it is clear that Ptolemy’s chord table is a precursor to our more modern sine table. Figure

23.5 provides part of Ptolemy’s chord table with a translation into English [13].

The measurements are written in base 60 and are measured in units that are 1=60 of the radius of the circle. Hence

the radius of the circle is 60 parts and the chord of 60ı would also be 60 parts since it is equal to the radius. Notice in

the table that the chord of 180ı is 120 parts which is the diameter.

23.3.2 In the Classroom

As an alternative to plotting sine and cosine curves, Ptolemy’s chord table affords the opportunity to examine these

trigonometric functions in a tabular form. Students can be asked to use the tabling button to produce their own ver-

sion of Ptolemy’s chord table. To do this, students must first understand the translation from chords to half chords.

Associating an arc with its central angle, we obtain this relationship [Figure 23.6].

Letting r D 60, we can create any entry from Ptolemy’s table (in base 10 instead of base 60). For example,

chord 7ı D 120 sin 3:5ı � 7:325824744:

Comparing this to the value in Ptolemy’s table above, we have

.7I 19; 33/60 D 7C
19

60
C 33

602
� 7:325833333:

Using the tabling feature in a calculator, students can reproduce Ptolemy’s chord table while reinforcing the notion

that a function can be represented in table form.

Though this is a bit aside from the topic of functional representation, the etymology of sine and cosine provides an

alternative way to memorize that sine is the opposite divided by the hypotenuse and cosine is the adjacent divided by

the hypotenuse without a pneumonic. This also clears up the mystery of why the secant of an angle is defined to be the

reciprocal of cosine and not of sine. Specifically, consider the Latin origins of tangent (tangere to touch) and secant

(secare to cut). Geometrically, the relationship among these sides of a right triangle can be seen in the unit circle in

Figure 23.7.

Recognizing that cotangent and cosecant are the complement’s tangent and secant, respectively, completes the

etymology of all of the trigonometric functions.
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Figure 23.5. Ptolemy’s chord table.

arc A
r

A
2

sin
A

2
D

1
2

chord A

r

chord A D 2r sin
A

2

Figure 23.6. Conversion from sines to chords.

sec A

A

tan A

cos A

sin A

1

tanA

1
D sinA

cosA

secA

1
D 1

cosA

Figure 23.7. Defining tangent and secant.
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23.4 From Geometry to Analysis to Set Theory

23.4.1 Historical Background

The fact that our current students are comfortable with the graphical representation of a function demonstrates the

power of analytic geometry. The blending of algebra and geometry was very much evident in the mathematics of

Medieval Islam [9, p. 238–87]. In point of fact, the word algebra evolves from the Arabic word al-jabr (the reunion of

broken parts) [11, p. 21] and represents the restoration of a quantity subtracted on one side of an equation to the other

side. This being said, equations were described verbally and the solutions are also given in recipe form. The blending

comes from the fact that the verification of these recipes comes in the form of a geometric proof. The fact that algebraic

techniques were seen as a powerful tool for solving mathematical problems and the access of Italian merchants to

Arabic mathematics helped the rise in prominence of solving equations (and the use of the Hindu Arabic number

system) in the Renaissance. However, the use of symbolic notation was still in the beginning of its development during

the transfer of these techniques from the Arabic world to Europe. People such as Raphael Bombelli (1526–1572) and

François Viète (1540–1603) made great strides in introducing and utilizing an increasing amount of symbolic notation

to further refine and exploit these algebraic ideas.

Of particular importance is the development of analytic geometry by Pierre de Fermat (1601–1665) and René

Descartes (1596–1650) [9, p. 432–42]. Both were applying algebraic techniques to re-examine the geometry of the

Greeks and both were able to exploit a more modern symbolic notation to assign equations to curves. The ability to

represent a curve with an equation was a driving force in the development of the Calculus by Isaac Newton (1642–

1727) and Gottfried Wilhelm Leibniz (1646–1716) [1, Chapter V], and is still a powerful influence on our students’

perceptions of what constitutes a function. In fact, Newton and Leibniz’s calculus was a calculus of curves rather than

functions. However, foundational issues caused a re-examination of the techniques of calculus and with this came a

shift away from a geometrical curve toward the notion of a function as an algebraic expression.

An influential text of the eighteenth century and an example of this viewpoint is Book I of Euler’s 1748 work

Introductio in Analysin Infinitorum (Introduction to the Analysis of the Infinite, Vol. I and II) [4]. Book I contains

no diagrams and though it does rely on intuitive appeals to infinitely large and small quantities to produce series

representations, it has functions as its primary focus. In fact, Euler provides the following definition.

A function of a variable quantity is an analytic expression composed in any way whatsoever of the variable

quantity and numbers or constant quantities.

This viewpoint, which dominated the later half of the 18th century and the early part of the 19th century, is remarkably

similar to the viewpoint that my students held in my calculus class. The fact that they gravitate to that formulation is

not so surprising given the algebraic manner in which they have been asked to use functions. Furthermore, according

to Euler, it was a perfectly reasonable way to prepare for understanding the Calculus. Euler was forced to refine

this notion of a function in his response to Jean le Rond d’Alembert’s solution to the problem of a vibrating string

published in 1747 [7, p. 2–13]. This problem was one of the outstanding problems of its day and was a basis for future

studies in many physical considerations such as heat flow and potential theory. The problem is to find the displacement

y D y.x; t/ at position x and time t of an elastic string stretched between two points on the x-axis (one of which is

the origin), given an initial displacement y.x; 0/ D f .x/ and an initial velocity @y
@t
.x; 0/ D g.x/. D’Alembert showed

that this displacement must satisfy the wave equation

@2y

@x2
D 1

c2

@2y

@t2
;

and showed that if y.0; t/ D 0, then the general solution of this equation can be written as

y.x; t/ D F.ct C x/� F.ct � x/;

where F is an arbitrary (differentiable) function determined by the initial conditions. A disagreement that ensued

between Euler and d’Alembert was in the nature of the functions f and g describing the initial conditions. D’Alembert

insisted that these conditions be defined by the same formula throughout the interval between the endpoints of the

string [6, p. 90]. Euler countered that this was too restrictive and contended that the initial shape of the string could

be composed of a number of different curves which may or may not fit together smoothly. For example, the initial
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displacement of a plucked string could be that of an inverted V which would require two different lines coming

together to a point. This function could not be described by a single (differentiable) expression. In hindsight, the use

of a piecewise defined function to describe these more general displacements may seem very natural, but it required a

shift in viewpoint of what, in fact, constituted a function. In the second volume of Introductio, Euler made a distinction

between functions defined by a single expression and “mixed” functions [7, p. 6]. Since these new functions did not

have to be differentiable at various points, then it seemed, to d’Alembert at least, that they should not be allowed to be

part of a solution to a differential equation.

Daniel Bernoulli (1700–1782) entered this discussion by proposing that the general solution to the vibrating string

problem could be written as an infinite sum of trigonometric functions such as

y.x; t/ D ˛ sin
�x

l
cos

�ct

l
C ˇ sin

2�x

l
cos

2�ct

l
C � � � ;

where l is the length of the string.

Bernoulli did not provide a mathematical proof of this and the idea met criticism from others (including Euler) that

this representation would not be able to capture the most general functions possible [7, p. 9–10]. Indeed, how could

a single expression be used to represent a function defined in a piecewise fashion? The answer came in 1807, with

the submission of the manuscript, Sur la Propagation de la chaleur (On the Propagation of Heat), by Jean Baptiste

Joseph Fourier (1768–1830) [2, Chapter 1]. In analyzing the flow of heat in a two-dimensional plate, Fourier was able

to make Bernoulli’s idea precise by determining how to represent a function as a trigonometric series. For example,

Fourier determined that on the interval .�1; 1/, the constant function f .x/ D 1 could be written as

1 D 4

�

�

cos
�x

2
� 1
3

cos
3�x

2
C 1

5
cos

5�x

2
� � � �

�

:

Given the fact that

cos

�

.2n � 1/�.x C 2/
2

�

D cos

�

.2n� 1/�x
2

C .2n � 1/�
�

D � cos

�

.2n � 1/�x
2

�

;

this says that the graph of

f .x/ D 4

�

�

cos
�x

2
� 1
3

cos
3�x

2
C 1

5
cos

5�x

2
� � � �

�

would be given by Figure 23.8.

1–1

1

–1

Figure 23.8. Graph of
4

�

�

cos
�x

2
� 1
3

cos
3�x

2
C 1

5
cos

5�x

2
� � � �

�

:

It was very disconcerting to have a piecewise defined (even discontinuous) function represented by a single sum

of continuous functions. Fourier’s original manuscript was rejected, but his revisions were subsequently published

by Académie des Sciences in 1822 [12]. These ideas caused mathematicians in the nineteenth century to re-examine

the tried and true techniques employed in the eighteenth century and, in particular, the nature of what constituted

a function. In doing so, the notion of a function became more abstract. For example, Johann Peter Gustav Lejeune

Dirichlet (1805–1859) provided the following definition in 1837:
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If now to any x there corresponds a unique, finite y, . . . then y is called a function of x for this interval. . . .

This definition does not require a common rule for the different parts of the curve; one can imagine the curve

as being composed of the most heterogeneous components or as being drawn without following any law [8,

p. 201].

As an example, consider the following function due to Dirichlet

f .x/ D
(

0 if x is irrational

1 if x is rational
:

This function defies drawing. An even more remarkable example came in 1872 from Karl Weierstrass (1815–1897).

Weierstrass showed that the function given by the Fourier series

f .x/ D
1
X

nD0

bn cos.an�x/

is continuous at every value x provided 0 < b < 1, but is not differentiable at any value x when a is an odd integer

with ab > 1 C 3�
2

[2, p.260]. If one were to think of the tangent line to a path as pointing in the direction that one

is traveling at a given instant, then the above would be a continuous path from one point to another which has the

property that at any point, a person traversing this path is not going in any particular direction. Clearly, such a function

cannot be drawn and, in fact, is fractal in nature.

The German mathematician Georg Cantor (1845–1918) utilized this more abstract notion of a function as a corre-

spondence between sets in his study of the infinite. One particular example was how to distinguish between the set

of rational numbers and the set of irrational numbers. Both sets are infinite. Furthermore, between any two rational

numbers is an infinite number of irrational numbers and between any two irrational numbers is an infinite number

of rational numbers. Surprisingly, Cantor showed that these sets represented two different sizes of infinity. Cantor

demonstrated that there is a one to one correspondence (function) between the set of positive integers and the set of

all rational numbers, but there is none between the set of positive integers and the set of irrational numbers. The set of

irrational numbers represents a larger infinity than the set of rational numbers. As much as any other topic, Cantor’s

work ushered in the mathematics of the twentieth century and the rise of the study of set theory.

This set theoretical approach is evident in the “modern definition” of a function which is essentially the one given

by Bourbaki in 1939 [10, p. 298].

Let A and B be sets. A function f fromA toB is a subset of the cartesian productA�B such that if x 2 A,

then there exists a unique element y 2 B such that .x; y/ 2 f . In this case we denote y by f .x/.

23.4.2 In the Classroom

Even though d’Alembert’s wave equation involves partial derivatives, it is not beyond the reach of a calculus class to

show that d’Alembert’s solution,

y.x; t/ D F.ct C x/� F.ct � x/;
satisfies it, as we have

@2y

@x2
D F 00.ct C x/� F 00.ct � x/ and

@2y

@t2
D c2

�

F 00.ct C x/ � F 00.ct � x/
�

:

Further analyzing this solution, it can be seen that if F is an odd function, then d’Alembert’s solution becomes

y.x; t/ D F.x C ct/C F.x � ct/

which is the sum of two horizontal translates of F.x/. This can be animated using a computer algebra system, or at

least graphed for various values of t to see the wave nature of the solution. For example, consider F.x/ D sinx on

Œ0; 2��. Figure 23.9 represents d’Alembert’s solution, y.x; t/ D sin.x C t/C sin.x � t/, with c D 1.

Even though it is a more abstract concept than that of the wave equation, the notion of a function as a correspondence

between sets can be utilized at a more elementary level. This is particularly true when looking at patterns in the
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t = 0 t = 1

t = 2 t = 3

Figure 23.9. d’Alembert’s solution y.x; t/ D sin.x C t/C sin.x � t/ at times t D 0; 1; 2; 3.

elementary grades. For example, asking what the 24th even number is demonstrates the functionf .n/ D 2n. While a

teacher at that level would certainly not use such a formula, this sets the stage for later grades. In those later grades,

teachers should draw upon these connections so that their students have a more in-depth understanding of the notion

of a function than just a graph or a formula.

23.5 Conclusion

A saying in biology is “Ontogeny recapitulates Phylogeny.” This debunked theory says that the development of an

individual embryo mimics that of the evolution of the entire species. While this may not be true in biology, it may have

its merits in mathematics education. With an NCTM strand such as patterns, relations, and functions transcending the

grades, it is paramount that teachers of mathematics at all levels be cognizant that the function concept evolved over a

long period of time to meet the demands made upon it in solving various problems. Perhaps our students’ understanding

needs to follow this course. Teachers at the elementary level need to see where the subject is heading so that they may

set the table. Teachers at the middle and high school level need to be aware of their incoming students’ understanding

and make connections between their students’ informal concepts of function and the notions that they will be teaching.

In many cases, teachers can accomplish this merely by adjusting their presentation of standard topics so as to embrace

this previous knowledge. By allowing students to make connections between these various representations, teachers

will empower their students to recognize and use all aspects of the concept of a function.
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24
The Unity of all Science: Karl Pearson, the

Mean and the Standard Deviation

Joe Albree
Auburn University Montgomery

24.1 Introduction

In statistics, Karl Pearson’s (1857–1936) method of moments unified the arithmetic mean, the standard deviation, and

a number of further statistical calculations. It may be surprising to learn that the underlying concepts of the method of

moments come from physics. For Karl Pearson, though, this development was a natural one.

After introducing the story of Karl Pearson’s journey to the study of statistics, we present a set of practical data

values which can be analyzed directly or grouped into classes and then analyzed. As we obtain the mean and standard

deviation of this data set, we will see how the physics of the first and second moments aid in our computations, and of

even more importance, give us insights into the results of the calculations.

24.2 Karl Pearson: Historical preliminaries

Figure 24.1. Karl Pearson (1857–

1936)[22]

Even though Karl Pearson has been heralded as “the founder of the twentieth-

century science of statistics” [2, p. 447], his story had a much different beginning.

Carl Pearson (as he was christened) grew up in an upper middle class Victorian

London home. In 1875, Carl earned a scholarship at King’s College, Cambridge,

where he studied the works of Charles Darwin (1809–1882) and of Benedict

Spinoza (1632–1677), and German history. He graduated with honors in mathe-

matics (1879). After graduation, Pearson traveled and studied in Germany, where

he became so enamored with the works of Karl Marx that he changed the legal

spelling of his name from Carl to Karl; to his friends and colleagues, he was also

known as K.P. When he returned to London, he was admitted to the bar (1881),

and as his father wished, he practiced law for a short time.

In his first academic position, beginning in 1884 at University College, Lon-

don, Karl Pearson taught mathematics and mechanics to engineering students,

and he did research in elasticity and the philosophy of science. Pearson believed

that all knowledge was based on sense perception and that the task of science was

189
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to summarize the routines of experience by means of laws expressed in mathematical form [11]. In the 1880s, Karl

Pearson was well on his way to a respectable, if a bit eccentric, career as a traditional applied mathematician and

philosopher [3, 7, 18].

The year 1889 marked an epiphany for Karl Pearson, and the catalyst was the book Natural Inheritance by Francis

Galton (1822–1911), a half-cousin of Charles Darwin. Galton was the father of eugenics, a social movement holding

that human mental and physical characteristics are heritable and that steps should be taken to ensure the race is

constantly genetically improved. Karl Pearson described his transformation as follows:

It was Galton who first freed me from the prejudice that sound mathematics could only be applied to natural

phenomena under the category of causation. Here for the first time was a possibility, I will say a certainty, of

reaching knowledge — as valid as physical knowledge was then thought to be — in the field of living forms

and above all in the field of human conduct [7, pp. 18–19].

When W. F. R. Weldon (1860–1906) became Jodrell professor of zoology at University College, London, in 1890,

Karl Pearson met his professional soul mate. Frank Weldon (as he was known) provided a great deal of the statistical

data that inspired Pearson to develop many of his statistical techniques and theorems [12].

Pearson’s first technical work in statistics was a sequence of 18 research papers, all with basically the same title:

“Contributions to the Mathematical Theory of Evolution” 1894 [9]

“Contributions to the Mathematical Theory of Evolution II” 1895 [10]

“Mathematical Contributions to the Theory of Evolution III” 1896
:::

“Mathematical Contributions to the Theory of Evolution XIX” 1916

Number XVII was never published. Pearson’s method of moments appears in several of these works.

24.3 A data set

Karl Pearson included practical sets of data in almost all of his contributions to statistics (over 400 papers and books

from 1890 to 1936). In this spirit, we will work our way through a set of public health data (Figure 24.2).

With n D 12 data values (the county infant mortality rates), we have a sample size for which the graphical represen-

tations and the computations can be performed using the data values themselves (see Figure 24.3 and the first column

of Table 24.1), or, by grouping the data values into five convenient classes (see Figure 24.4 and the first column of

Table 24.2):

Figure 24.2. Infant Mortality Rates for 12 Alabama

Counties, reprinted with permission [6].

x x � Nx .x � Nx/2

4.1 -5.3 28.09

6.4 -3.0 9.00

6.5 -2.9 8.41

8.2 -1.2 1.44

9.1 -.3 .09

9.3 -.1 .01

9.5 .1 .01

9.8 .4 .16

9.8 .4 .16

12.9 3.5 12.25

13.6 4.2 17.64

13.7 4.3 18.49

112.9 :1 � 0 95.75

Table 24.1. Infant Mortality Rates — Data Values
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4.0 - 5.9; 6.0 - 7.9; 8.0 - 9.9; 10.0 - 11.9; and 12.0 - 13.9.

Figure 24.3. Infant Mortality Rates — Dotplot

Figure 24.4. Infant Mortality Rates — Histogram

classes Ox f Oxf Ox � Nx . Ox � Nx/f . Ox � Nx/2 . Ox � Nx/2f
4.0-5.9 5 1 5 �4:3 �4:3 18.49 18.49

6.0-7.9 7 2 14 �2:3 �4:6 5.29 10.58

8.0-9.9 9 6 54 �:3 �1:8 .09 .54

10.0-11.9 11 0 0 1:7 0 2.89 0

12.0-13.9 13 3 39 3:7 11.1 13.69 41.07

– – 12 112 – :4 � 0 – 70.68

Table 24.2. Infant Mortality Rates — Data in Classes

24.4 The Mean and the First Moment

Certainly, anyone can calculate the “average” of a set of data values which is not too large (see Table 24.1).

Example 1A. Infant Mortality Rates, data values. The mean is:

Nx D
P

x

n
D 4:1C 6:4C � � � C 13:7

12
D 112:9

12
D 9:408333 : : :� 9:4:

(This analysis will be continued in Examples 1B, 1C, and 1D.)

Example 2A. Infant Mortality Rates, data in classes. First, we count the number of data values in each of the five

classes specified above; these are called the frequencies, f . Second, the “middle” of each class, denoted Ox and termed

the class mark or the class representative, is determined. For our classes, the marks are 5, 7, 9, 11, and 13. Note that
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these values may, or may not, be data values themselves, but we assume that all the data values in a given class are

equal to this representative (see Figure 24.4). Thus, we could also call the Ox values “pseudo data values.” With this

understanding, when we perform computations with statistical data grouped into classes, we calculate the mean:

Nx D
P

. Ox � f /
P

f
D .5 � 1/C .7 � 2/C .9 � 6/C .11 � 0/C .13 � 3/

1C 2C 6C 0C 3 D 112

12
D 9:333 : : : � 9:3:

(This analysis will be continued in Examples 2B and 2C.)

In his famous works [9, 10], Karl Pearson used the physics term centroid for what we call the mean. Engineers today

often use the term centroid of a physical body (“center-like”) in place of the center of mass of that body (physicists

make a technical distinction between the center of mass and the center of gravity, but this will be of no concern to us).

We think of the set of all the dots in Figure 24.3, and other sets of data values, as physical particles whose totality

makes a whole physical body. Similarly, consider all of the bars in a histogram, like Figure 24.4, as being welded

together into one polygonally shaped sheet, say of cardboard, or thin plastic, or plywood, whose particles are the

atoms of the material. Each of these objects is a two-dimensional physical body. In physics, when a physical body is in

any kind of motion, each particle of that body is subject to one or more forces. The centroid of that body is the point at

which all of the body’s particles could, in theory, be concentrated. For example, the centroid of a wooden baseball bat

is about 60 to 65 percent of the way from the knob end of the bat. It is easy to find the centroid of a wooden baseball

bat: measuring 60 to 65 percent of the bat’s length from the knob end should yield the point where the bat balances

horizontally and that will be its centroid.

In statistics, the centroid is the point where the totality of all the data values balance. In determining the mean in his

statistical work, Karl Pearson borrowed the well-known (in physics) formula for the first moment (see below). In theory

one may calculate the first moment about any point (see Question 4), but our main interest is in the first moment about

the mean, which we shall call the first centroidal moment. Then, to say that a physical body, like a wooden baseball

bat, balances at its centroid means that the first centroidal moment is zero [5, 10, p. 346, 15, 21, pp. 306–311].

Principle 1. For any set of statistical data values, x1; x2; : : : xn, the mean is the balance point, i.e., the first moment

about the mean, or the first centroidal moment, is 0.

We denote the first moment about the mean by M1. The Law of the Lever of Archimedes (ca. 287–212 BCE) is the

main idea behind the explanation of this principle and also provides the key to the statistical calculation of M1. As

every child who has ever played on a see-saw knows, the play is only fun when the see-saw is balanced, for then leg

power makes the see-saw go up and down. Suppose two children of different weights balance on opposite sides of

a see-saw: the heavier child (of weight H ) sits close (distance h) to the place where the see-saw pivots, called the

fulcrum; and, the smaller child (of weight S ) sits farther away (distance s) from the see-saw’s fulcrum. The distance

between any weight (for instance a child) on the see-saw and the fulcrum is termed that weight’s lever arm. Thus,

comparing the two lever arms for our children, we have s > h. For each child on the see-saw, the first moment about

the fulcrum will be

(the child’s lever arm) times (the child’s weight),

where, by convention, the lever arm of the child to the left of the fulcrum is negative and the lever arm of the child to

the right of the fulcrum is positive. Now, for the physical body of the whole set of the two children on the see-saw to

balance, Archimedes’ law of the lever specifies that the first moment about the fulcrum is zero,

M1 D hH C sS D 0:

In statistics, each data value, or dot on a dotplot, can be considered a child of weight 1 (ignoring units of weight)

and each lever arm will be the distance between that data value and the mean.

Example 1B. For the given infant mortality rate data values in Figures 24.2 and 24.3 and Table 24.1 (think 12

children on a see-saw), the first centroidal moment is just the sum of the lever arms,

M1 D
X

.x � Nx/ D .4:1 � 9:4/C .6:4 � 9:4/C � � � C .13:7 � 9:4/ D 0:1 � 0:

We believe these calculations are most easily carried out in a table; see the first two columns of Table 24.1. [Activities

1 and 3]
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Example 2B. When the data set is divided into classes, as in Example 2A, then each lever arm equals the distance

between the mean and the class mark, and the frequencies correspond to the weights of the children on the see-saw.

M1 D
X

.x � Nx/f D .5 � 9:3/1C .7 � 9:3/2C .9 � 9:3/6C .11 � 9:3/0C .13 � 9:3/3 D 0:4 � 0:

These calculations can also be efficiently accomplished in a table; see the first six columns of Table 24.2. [Activities 2

and 4]

What are the rewards in statistics for calculating M1? First, since the mean is, arguably, the most important of all

the statistics one may compute and if all the lever arms and calculations to obtain the first moment are exactly correct

but M1 ¤ 0, then there is an error in our value of the mean. Before we attempt any further statistical analysis, we had

better either explain or fix this error! Second, M1 is just the first of the two centroidal moments that we will study. In

some of the theory supporting his further statistical developments, Karl Pearson used all of the centroidal moments up

to and including the sixth, and he even introduced some ratios of some of these higher moments (these computations

are beyond our scope). We also note that K.P. employed calculus and differential equations [9, pp. 72–74]. Then he

immediately applied his results to the analysis of measurements of the foreheads of certain species of crabs. Pearson

and his colleague Frank Weldon intended that these researches would be steps in the grand campaign to formulate a

mathematical description of Darwin’s theory of evolution [2, 3, 10]. In Weldon’s own words, “It cannot be too strongly

urged that the problem of animal evolution is essentially a statistical problem” [12, p. 106].

24.5 The Second Moment and the Standard Deviation

What physics calls lever arms, statistics usually terms deviations. Thus, in Example 1B, the first centroidal moment is

simply the sum of the deviations about the mean.

Example 1C. The second centroidal moment of the infant mortality rate data values is the sum of the squares of the

deviations:

M2 D
X

.x � Nx/2 D .4:1 � 9:4/2 C .6:4 � 9:4/2 C � � � C .13:7 � 9:4/2 D 95:75:
The third column of Table 24.1 shows an efficient way to accomplish these calculations.

In physics, the second moment is referred to as the moment of inertia. Inertia is a numerical measure of a physical

body’s tendency to either remain at rest or remain moving in a straight line; one can recall Isaac Newton’s (1642–

1727) First Law of Motion [5, 15]. For the infant mortality rate data values (considered as one physical body which is

balanced at Nx � 9:4 in Figure 24.3), the second moment is a measure of the force (we are not concerned with the units)

required to rotate this body around Nx as an axis which is perpendicular to the plane of the data values body [Activities

7 and 8].

In statistics, in order that the standard deviation be independent of the size of the data set (i.e., the sample size, or n),

it would be natural to divide M2 by n, and this is what Karl Pearson did [9, p. 78]. Unfortunately, Pearson overlooked

a subtle consideration called the degrees of freedom, which we do not have space here to explain. For our work, a data

set consisting of n real numbers has n � 1 degrees of freedom. The result is important in its own right:

s2 D M2

n� 1 D
P

.x � Nx/2
n� 1 :

Thanks to Sir Ronald Fisher (1890–1962), another pioneer of statistics during the first half of the 20th century, this

result is called the variance of a set of data values [4]. Numerically, the difference in dividing the second moment by

n or by n � 1 is not very significant, but the distinction is important in statistical theory.

The third and final step in Karl Pearson’s calculation of the standard deviation was simply to take the square root of

the variance,

s D
r

M2

n � 1 D
r
P

.x � Nx/2
n� 1 :

Pearson chose this terminology to replace several older names for the same, or close to the same calculations (see

Question 6). He used the Greek lower case letter � for the standard deviation [7, pp. 154, 156, 9, p. 75, 20]. In current

practice, s denotes the standard deviation of a sample data set and � is used for the standard deviation of the whole

population of data values [17].
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Principle 2. For any sample set of data values, x1; x2; : : : ; xn, the standard deviation is determined in the following

steps:

� first, calculate the second centroidal moment, the moment of inertia, M2;

� second, divide M2 by n� 1 to obtain the variance s2; and

� finally, the square root of the variance will be the standard deviation, s, of the given set of sample data values.

Example 1D. For the infant mortality rates, the standard deviation is calculated in the following three steps:

M2 D 95:75I

s2 D 95:75

12 � 1
:D 8:7045455I

s D
p
8:7045455

:D 2:9503467� 3:0:

Physics again gives us insight into the information the standard deviation provides about not only infant mortality

rates but sets of data values in general. The idea comes from trying to keep one’s balance on a very narrow ledge;

imagine a child walking on top of a fence, or a tightrope walker. When such a person stretches his/her arms out

horizontally, which is the natural action, the effect is to spread the person’s weight out from his/her centroid. Spreading

the person’s weight increases the lever arms (and also the squares of the lever arms) so that the person’s moment of

inertia about the narrow edge is increased and this makes it harder for his/her body to rotate around the centroid, i.e.,

making it harder for this person to fall off of the fence or tightrope.

Conclusion: the standard deviation of a set of data values is a measure of how spread out these data values are.

When the data is in classes, we use the same three steps as summarized above to calculate the standard deviation of

the data set. However, note, referring to Example 2B, that we are actually going to compute the second moment of the

class marks. Also see the last two columns of Table 24.2.

Example 2C. For the infant mortality rates grouped into the five classes specified above, we have:

M2 D
X

. Ox � Nx/2f
D .5 � 9:3/21C .7 � 9:3/22C .9 � 9:3/26C .11 � 9:3/20C .13 � 9:3/23
D 70:68I

s2 D M2

n� 1 D
70:68

12 � 1
:D 6:4254546I

s D
p
6:4254546

:D 2:534848� 2:5:

Reviewing Figures 24.3 and 24.4 in the light of our numerical results, the x-axis is our data axis, and here its units

are infant mortalities per 1,000 live births. The mean in each case is marked with the symbol N (suggestive of a

see-saw’s fulcrum) to signify the centroid. Then, in Figure 24.3,

1 standard deviation below the mean is Nx � s D 9:4 � 3:0 D 6:4
1 standard deviation above the mean is Nx C s D 9:4C 3:0 D 12:4;

and, in Figure 24.4,

1 standard deviation below the mean is Nx � s D 9:3 � 2:5 D 6:8
1 standard deviation above the mean is Nx C s D 9:3C 2:5 D 11:8.

By this means, whatever the units of the data values are, we have established the scale on the z-axis, the “standard”

axis for statistics whose units are always standard deviations.
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24.6 In the Classroom

For an introductory statistics course, at the college or secondary level, the underlying idea is to imitate the unity that

Karl Pearson brought to this material by merging, as closely as possible, the mean and standard deviation (see also

Question 4). To work through all of the cases and details of the mean and “balance” ideas and the calculation of the

second moment may require most of a regular 50 minute class period. In the next class meeting, I reinforce the physics

of the first moment and then devote most of the class time to having the students experience the inertia described

by the second moment and to working through the various cases to obtain the standard deviation. I end the second

class meeting by explaining the 2/3 Rule and/or Chebyshev’s Inequality by coloring in appropriate areas of previously

prepared histograms. On tests, I give the students all of the formulas for the mean and standard deviation, but only

applied problems appear on my tests because I strongly discourage simple plugging into formulas by emphasizing the

ideas, processes, and applications of these computations.

24.7 Conclusions

Karl Pearson made extensive use of moments in his pioneering contributions to statistics. For a set of data values,

x1; x2; : : : ; xn, the next step would be the third centroidal moment, M3 D
P

.x � Nx/3. The third moment about

the mean is a key step in measuring the asymmetry of the distribution of the data values about the mean, called the

skewness of the data. There is a brief intuitive introduction to skewness in [17, pp. 67–68]. Drawing upon physics to

accomplish statistical analysis and then generalizing the mathematics illustrates one aspect of Karl Pearson’s scientific

philosophy, “The unity of science consists alone in its method, not its materials” [2, p. 449, 11]. Karl Pearson’s legacies

are immense, in some instances they are controversial, and they are certainly many faceted. “Although Karl Pearson

made contributions to statistical technique which now appear to be of enduring importance, those techniques are not

the principal reason we should remember him . . . What he did in moving the scientific world from a state of sheer

disinterest in statistical studies over to a situation in which a large number of well trained persons were eagerly at

work developing new theory, gathering and analyzing statistical data from every content field, computing new tables,

and reexamining the foundations of statistical philosophy, is an achievement of fantastic proportions” [19, p. 22].

24.8 Activities and Questions

Question 1. Explain why we obtained two different results for Nx in Examples 1A and 2A.

Figure 24.5. A Portion of a Statistical Beam.

Question 2. Referring to Table 24.2, what is the value, if

any, of calculating either
P

Ox
5

or
P

Ox
12

?

Activity 1. Make what we shall call a statistical beam.

Suggested materials: one 3=4 inch by 1 and 1=2 inch piece

of clean (no knots) wood stock; 50 inches of masking or

athletic tape; 50 to 100 one inch cuphooks; and 12 to 15

heavy straight steel brackets. Suggested construction: apply

the tape the full length of one side of the wood stock and

mark the scale on the tape: 4:1; 4:2; 4:3; : : : ; 13:9. On the

underside of the wood stock, carefully screw in cuphooks

at the data values. Finally, hang one of the heavy straight

metal brackets on each cuphook. See Figure 24.5.

Activity 2. Make a two-dimensional histogram polygon in the exact shape of the histogram in Figure 24.4. Sug-

gestions: Photocopy the histogram, enlarging it as much as possible so that it will fit onto the available cardboard or

plywood. Cut the photocopy along the perimeter of the bars and just below the x-axis so that you have a narrow strip

of paper from 10:0 to 12:0 connecting the last bar on the right to the rest of the histogram. Attach your paper histogram
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polygon to the cardboard or plywood (glue stick works well) and then carefully cut the cardboard or plywood around

the perimeter.

Question 3. Explain why M1 in Example 1B is not exactly zero.

Question 4. When we are presented with a set of data values, our first inclination is to find the “average,” i.e., we

calculate the mean. On the other hand, if he had been given the same set of data vales in 1894 or 1895, Karl Pearson

probably would have begun by calculating the first six moments about an axis, call it xa, of his choosing. From these

moments, Pearson then calculated the mean, the standard deviation, and other statistics descriptive of the given data

set [9, 10]. This seems unnecessarily complicated as a method for obtaining the mean, but note that our calculation

of the standard deviation starts with the second moment. Complicated, even backward, as a way to get the mean, this

procedure does always work! To demonstrate this fact in as easy a way as we can and to capture the main idea, suppose

we are given just n D 4 data values: x1; x2; x3; x4. Then the first moment about the arbitrary axis, xa is,

M1a D
X

.x � xa/ D .x1 � xa/C .x2 � xa/C .x3 � xa/C .x4 � xa/:

Show, algebraically, that if the first moment about xa is zero, then xa is the mean of the given set of data values.

Activity 3. Consider the statistical beam constructed in Activity 1. With the weights attached to this beam at the

infant mortality rate data values, carefully balance the beam at approximately 9.4. Explain why this balance may not

be exactly at 9.4.

Activity 4. Carefully balance the histogram polygon of Activity 2 at approximately 9.3. Explain why this balance

point may not be exactly 9.3.

Question 5 Assume that you start this semester with a 3.0 GPA, on a 4.0 system, and you are now taking three

courses: Sociology (3 hours credit); Chemistry (4 hours credit); and Statistics (3 hours credit). You have a rock-solid B

in your Chemistry course, but you are most likely going to make a C in Sociology. Explain using the word “balance”

what you are going to have to achieve in Statistics to retain your 3.0 GPA. Every student should be able to calculate

his/her GPA!

Activity 5. Consider the following set of made-up data values: 8.3; 8.4; 8.5; 9.0; 9.1; 9.3; 9.5; 9.7; 9.7; 9.9; 10.4; and

11.1. Make a dotplot, then calculate the mean and first moment. Attach weights to the statistical beam at these data

values and note where the beam balances now. (To be continued in Activity 8.)

Activity 6. One can find many exercises in introductory statistics textbooks to practice calculating the mean and first

moment, and balancing the statistical beam and the histogram polygon. For instance, in [17], problems 2, 3, 5, 12, 18,

19, and 20 on pages 69–71 are all appropriate. One should replace the tape on the statistical beam to record the scale

of data values in each of these problems. In general, to reuse the statistical beam, one should choose a data set whose

range is slightly less than a power of 5 or a power of 10. (To be continued in Activity 9.)

Activity 7. In an open space, grasp the statistical beam containing the weights attached at the infant mortality rates

of Activity 1 at its balance point, approximately 9.4, with your arm straight and holding the beam away from your

body. It is intended that the beam be able to swing CW and CCW about 90 degrees in a plane parallel to the floor. Hold

the beam perfectly still, pointing it straight forward, for at least five seconds. Then, rotate the beam CW and CCW, as

indicated, four or five times and carefully note how much force you have to exert to accomplish these rotations. This

force is directly related to the second centroidal moment of the statistical beam.

Question 6. One of the older names for what Karl Pearson called the standard deviation was the “root-mean-square.”

Explain how this older terminology describes our calculations of s.
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Activity 8. Continued from Activity 5. For the data values given in Activity 5, calculate the second moment and

the standard deviation. With the weights attached to the statistical beam at these data values, repeat Activity 7. Be

sensitive to the force that is now required to rotate the beam in a horizontal plane, and in particular compare this force

to that required in Activity 7. Explain the difference in these two forces.

Activity 9. Continued from Activity 6. For additional practice with the standard deviation, problems 2, 3, 5, 12, 18,

19, and 20 in [17, pp. 87–90] are convenient because they employ the same data sets as the corresponding exercises

notes in Activity 6. As in Activities 7 and 8, students should be sensitive to the physical forces, the moments of inertia,

of horizontal rotation of the statistical beams.

Activity 10. It is always valuable to be able to perform these computations and Activities using data values obtained

by students from their biology labs, their political science surveys and textbooks, their nursing trials, etc.
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25
Finding the Greatest Common Divisor

J.J. Tattersall
Providence College

25.1 Introduction

One of the more important mathematical concepts students encounter is that of the greatest common divisor (gcd),

the greatest positive integer that divides two integers. It can be used to solve indeterminate equations, compare ratios,

construct continued fraction expansions, and in Sturm’s method to determine the number of real roots of a polynomial.

For a development of these applications, see [1]. Most of the significant applications of the gcd require that it be

expressed as a linear combination of the two given integers. The gcd and its associated linear equation provide an

efficient way to find inverses of elements in cyclic groups, to compute continued fractions, to solve linear Diophantine

equations, and to decrypt and encrypt exponential ciphers. In order to calculate the gcd and determine the required

linear combination, most textbooks present the ancient but effective Euclidean approach putting an algebraic strain

on many students. A more innovative technique, Saunderson’s algorithm, offers a much more efficient approach. The

algorithm can be introduced in number theory, modern algebra, computer science, cryptology, and other courses that

require a method to find the greatest common divisor of two integers and its associated linear combination.

25.2 Historical Background

Euclid’s Elements, written around 300 B.C., consists of a deductive chain of 465 propositions in thirteen “books” or

what we would refer to as chapters. The Elements serves as a synthesis of Greek mathematical knowledge and has

made Euclid the most successful textbook author of all time. It is one of the most important texts in intellectual

history. He was a great synthesizer for it is believed that relatively few of the geometric theorems in the book were

his invention. Books VII, VIII, and IX are an exception for they deal with number theory where positive integers are

represented as lengths of line segments and appear to be original mathematical contributions. The division algorithm,

introduced in Book VII, states that given two line segments the segment with the smaller magnitude can be marked

off on the segment of the larger magnitude until the length that remains has length less than or equal to the smaller

magnitude. Rewriting the statement in algebraic notation, for two positive integers a and b with a > b there exist

unique integers q and r with the property that a D bq C r where 0 � r < b. The Euclidean algorithm, the method

commonly taught to determine the gcd of two integers, follows from repeated applications of the division algorithm

with the gcd appearing as the last nonzero remainder in the process. For example, to determine the gcd of 12378 and

199
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3054, we apply the Euclidean method to obtain

12378D 3054 � 4C 162
3054 D 162 � 18C 138
162 D 138 � 1C 24
138 D 24 � 5C 18
24 D 18 � 1C 6
18 D 6 � 3C 0

Hence 6, the last non-zero remainder, is the gcd of 12378 and 3054. Using substitution and working backwards from

the penultimate step through each previous step, we obtain the gcd as a linear combination of the two numbers:

6 D 24� 1 � 18 D 24 � 1 � .138 � 24 � 5/
D 6 � 24� 138D 6 � .162 � 138 � 1/ � 138
D 6 � 162� 7 � 138 D 6 � 162 � 7 � .3054 � 162 � 18/
D 132 � 162 � 7 � 3054D 132 � .12378 � 3054 � 4/ � 7 � 3054
D 132 � 12378� 535 � 3054

Thus, 6, the gcd of 12378 and 3054, is expressed as a linear combination of 12378 and 3054. It is straightforward to see

that using the Euclidean approach in determining the gcd, in particular with two integers that require a large number

of iterations of the division algorithm, will lead to a lengthy algebraic process in order to represent the gcd as a linear

combination of the two given numbers. Saunderson’s algorithm provides a more economical way to determine the gcd

of two integers and in the process the gcd is represented as a linear combination of the two numbers. In order to see

how it works, let us begin again with a D 12378 and b D 3054. Construct the following two fundamental equations:

1 � a � 0 � b D 12378
0 � a � 1 � b D �3054

Since 3054 goes into 12378 four times leaving a remainder of 162, we multiply the second equation by 4 and add it

to the first equation to obtain the third equation below. Since 162 goes into 3054 eighteen times leaving a remainder

of 138, we multiply the third equation by 18 and add the result to the second equation to obtain the fourth equation.

Continuing this process until we reach zero, we find that 6, the last nonzero remainder, is the gcd of 12378 and 3054

and 6 D 132 � 12378� 535 � 3054.

1 � a � 0 � b D 12378
0 � a � 1 � b D �3054 Œ4�

a � 4b D 162 Œ18�

18a� 73b D �138 Œ1�

19a� 77b D 24 Œ5�

113a� 458b D �18 Œ1�

132a� 535b D 6 Œ3�

509a� 2063b D 0

Note that the multipliers listed in the penultimate column are the same as the quotients that appeared in the Eu-

clidean approach. In addition and more importantly, there is no necessity to use substitution to get the desired linear

combination. To see what makes Sanderson’s algorithm work apply the division algorithm to 12378 and 3054 to get

12378 D 4 � 3054 C 162. Rearranging the terms gives us step (3) above. The division algorithm applied to 3054

and 162 yields 3054 D 162 � 18 C 138. Multiplying the first equation by 18 and substituting yields 18 � 12378 D
72 � 3054C .18 � 162/ D 72 � 3054C .3054� 138/ D 73 � 3054� 138 or equivalently 18 � 12378� 73 � 3054D �138
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which is the equation in step (4). Continuing in this manner will eventually establish step (8) and justify the process.

A formal inductive proof of Saunderson’s algorithm can be found in [4, p. 73]. In some instances it may be necessary

to multiply the penultimate equation by -1 in order to obtain a positive gcd. For example, if a D 51329 and b D 2437,

we have:

1 � a � 0 � b D 51392
0 � a � 1 � b D �2437 Œ21�

a � 21b D 152 Œ16�

16a� 337b D �5 Œ30�

481a� 10131b D 2 Œ2�

978a� 20599b D �1 Œ2�

2437a� 51329b D 0

Hence, the gcd of 2437 and 51329 is unity and .�978/51329C .20599/2437 D 1

25.3 More Historical Background

Nicholas Saunderson (1682–1739) overcame a great handicap to become an extremely diligent mathematician and

professor at Cambridge University. He was blinded by smallpox when he was just a year old. The virus damaged his

cornea and a secondary staphylococcus infection completely destroyed his eyes. As a youth, he taught himself to read

by tracing out letters on gravestones with his fingers. He was taught the rudiments of arithmetic by his father, a tax

collector for the Penistone district in Yorkshire, England. At age twenty five, with the encouragement of his friends

and teachers, he decided to go to Cambridge University not as a student but as a teacher of mathematics. He felt that

Cambridge offered him the best opportunity to pursue his favorite studies.

At Cambridge, with the approval and encouragement of the Lucasian Professor of Mathematics, William Whiston,

he was permitted to give lectures and tutor mathematics. When Whiston was dismissed from the Lucasian Chair in

1711 for his Arian beliefs, Saunderson was chosen as his successor. As Lucasian Professor, he found it difficult to

divide the day amongst all who applied for his instructions. He set high standards for himself and instilled a high

regard for truth in his students. Prime Minister Horace Walpole recalled that when his son was at Cambridge he was

tutored briefly in mathematics by Saunderson. After a few sessions, Saunderson told the lad that it would be cheating

to take his money, for he could never learn what he was trying to teach him. The British statesman Lord Chesterfield

considered Saunderson to be an excellent lecturer and a professor who did not have the use of his eyes, but taught

others to use theirs.

In 1733, Saunderson, at the urging of his students, friends, and several of the senior fellows at Cambridge, decided

to spare time from his lectures and tutoring to write up his algebra notes. The project occupied the greater part of the

last six years of his life. Through the efforts of his wife, his son, and his Lucasian successor John Colson the Elements

of Algebra containing his algorithm was published posthumously in 1740.[3] To read more about Saunderson’s life

and works see [4].

25.4 In The classroom

A natural way to introduce Saunderson’s method would be with an example related to solving an applied problem akin

to one of those mentioned in the introduction. Using a historical approach and sufficient classroom time, one could

introduce the concept of a greatest common divisor by means of the Euclidean technique. At that time or later in the

course, Saunderson’s algorithm could be introduced. One well-constructed example will be enough to convince most

students of the efficiency of Saunderson’s algorithm over the Euclidean method. In upper-level courses that require

applications of the gcd as the linear combination of the two given numbers it would be more expedient to introduce

only Saunderson’s algorithm.
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25.4.1 Taking it further

As an extension of the concept of a greatest common divisor, one might introduce methods a few of the methods that

have been devised to calculate an upper bound for the number of steps required to calculate the gcd of two integers

using either Saunderson’s or the Euclidean algorithm. In 1845, Gabriel Lamé, a civil engineer and graduate of the École

Polytechnique in Paris, used properties of the Fibonacci sequence, 1; 1; 2; 3; 5; 8; 13; : : : ; to show that the number of

iterations required to determine the gcd of the two integers is less than five times the number of digits in the smaller

of the two integers. In 1970, John Dixon, a mathematician at Carleton University in Ottawa, improved the bound by

showing that the number of iterations is less than or equal to .2:078/Œlog.a/ C 1�, where a is the larger of the two

positive integers. For our earlier Euclidean example using 12378 and 3054, Lamé’s result implies that it will take less

than twenty steps to determine the gcd. Dixon’s result implies that it will take fewer than or equal to ten steps, which is

a much more accurate measure, for in our example it took six steps. For more details on Lamé’s and Dixon’s results see

[5, p. 72]. The life and works of other blind mathematicians or mathematician who have gone blind such as Lawrence

Baggett, William Gee Bickley, Evgenii P. Dolzhenko, Leonhard Euler, Bernard Morin, Joseph Antoine Ferdinand

Plateau, Lev Pontryargin, Anatoli Georgievich Vitushkin, Vladimir Ivanovich Zubov and other mathematicians with

sever handicaps might also be introduced as a topic of discussion.[1]

25.5 Conclusion

Even though the Euclidean technique has been around and taught for many years, Saunderson’s method provides a

much more effective way to calculate the gcd of two integers and to express it as a linear combination of the two

numbers. With a large number of steps the Euclidean method, found in most textbooks that deal with applications of

the gcd, is laborious and rife with arithmetic and algebraic pitfalls. Most students who master Saunderson’s algorithm

will undoubtedly be able calculate the gcd and its associated linear combination more efficently than those who use

the Euclidean algorithmic approach.
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Two-Way Numbers and an Alternate Technique

for Multiplying Two Numbers

J.J. Tattersall
Providence College

26.1 Introduction

In 1726, John Colson (1680–1759), a British mathematician and member of the Royal Society of London, devised

an ingenious way to represent positive integers using what he called negativo-affirmative figures.[2] With his scheme

positive and negative digits are intermingled and the basic arithmetic operations of addition, subtraction, and multi-

plication are as straightforward as in decimal arithmetic. The figures can be used to encrypt integers and have been

rediscovered on several occasions. One version makes unnecessary the use of the digits 6, 7, 8,and 9, another rotates the

digits 180ı. Colson referred to his method as a “promiscuous scheme” to simplify the basic operations of arithmetic.

In the process, he discovered a more compact and efficient way to multiply two numbers. This article is appropriate

for an advanced elementary or secondary school mathematics class and represents a block of mathematical-historical

material.

26.2 Historical Background

There are several ways to represent positive integers other than using the standard decimal system. For example, the

internal operations of computers are executed using the binary system which is translated into the hexadecimal system

making it easier for humans to understand it. Colson’s negativo-affirmative figures offer students an introduction to

ciphering and a different perspective on the basic arithmetic operations. For example, consider the negativo-affirmative

expression 3 N5 7 N8 4 which represents the positive integer 2 5 6 2 4. To understand why this is true, replace every digit

in 3 N5 7 N8 4 with a bar over it with a zero to obtain 3 0 7 0 4. Then replace every digit without a bar over it with a zero

to obtain 0 5 0 8 0. Subtracting the latter from the former we obtain the desired result 2 5 6 2 4.

3 0 7 0 4

� 0 5 0 8 0

2 5 6 2 4

Colson referred to digits without a bar as affirmative and those with a bar as negative. A negativo-affirmative figure

with a bar over the first digit represents a negative number. For example, N6 5 N3 2 corresponds to� 6 4 7 2 since 0 5 0 2 �
6 0 3 0 D � 6 4 7 2. Similarly, N23ı represents �17ı since N2 3 D 0 3 � 2 0 D � 1 7.
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The basic operations of addition, subtraction, and multiplication using negativo-affirmative figures are straightfor-

ward and in the case of multiplication more efficient. For example, to sum two or more negativo-affirmative figures

add column-wise carrying appropriately. The sum of 7 N8 2 N3 5 and 2 N3 N8 4 N7 is obtained as follows:

7 N8 2 N3 5

C 2 N3 N8 4 N7
8 N1 N6 1 N2

Note that 5 C N7 D 5 C .�7/ D �2 D N2. In addition, N8 C N3 D .�8/ C .�3/ D �11 D N1N1.

Subtracting two negative-affirmative figures is just as straightforward. First negate the subtrahend (put a bar over

each digit that does not have a bar over it and remove the bars from the digits that have them). Then add the two

numbers. For example, to subtract 2 N5 9N2 6 from 8 N4 2 N5 6, first convert the 2 N5 9 N2 6 to N2 5 N9 2 N6, then add it to 8 N4 2 N5 6.

8 N4 2 N5 6

C N2 5 N9 2 N6
6 1 N7 N3 0

Colson used an efficient moving multiplier technique to calculate the product of two negativo-affirmative figures.

The process is a variant of the “junction of doors” method which has Hindu origins. The algorithm is less wasteful of

space as the “zig-zag” method that is normally taught in elementary school. For example, to multiply 3 N7 6 by 1 4 N8,
write the digits of the multiplier in reverse order to obtain N8 4 1. Place it above 3 N7 6 with the N8 in N8 4 1 directly over

the 6 in 3 N7 6 as shown below.
N8 4 1

3 N7 6

Multiply the 6 and the N8 to obtain N4N8 and write it below 3 N7 6 in the following manner:

N8 4 1

3 N7 6

N8
N4

Treat the N8 4 1 as if it were a sliding door and shift it over one space to the left and evaluate the inner product of ŒN7; 6�
and ŒN8; 4� to obtain N7 � N8C 6 � 4 D 56C 24 D 80 which is inserted with the 8 below the 3 in 3 N7 6 and the 0 below the
N7 in the following manner:

N8 4 1

3 N7 6

0 N8
8 N4

Shift the N8 4 1 over one slot to the left and evaluate the inner product of Œ3; N7; 6� and ŒN8; 4; 1� to obtain 3 � N8 C N7 � 4 C
6 � 1 D N3 N2 C N2N8 C 6 D N4N6. Continue the shift and evaluation process until the 1 in N8 4 1 is over the 3 in 3 N7 6, then

add the third and fourth rows to determine that the product of 3 N7 6 and 1 4 N8 is 0 3 1 2 N4 N8.

N8 4 1

3 N7 6

3 5 N6 0 N8
0 0 N4 8 N4
0 3 1 2 N4 N8

Colson preferred reducing negativo-affirmative figures to what he called “small figures” where the digit 6 is replaced

by 1N4, 7 by 1N3, 8 by 1N2, and 9 by 1N1. The result of this transformation is that these “small figures” contain neither

6; 7; 8; 9 or N6; N7; N8; N9. For example, to encrypt 2 N7 3 N9 4 into “small figures” make the appropriate substitutions to obtain

2 .1N3/ 3 .1 N1/ 4. The leading 1 in 1 N3 is added to the digit that precedes the insertion, in this case 2 to yield 3 N3. We

perform the same operation with the 1 N1 to obtain .2 C 1/ N3 .3 C 1/ N1 4 or 3 N3 4 N1 4.
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26.3 In The Classroom

Negativo-affirmative arithmetic represents a different way to think and visualize the basic arithmetic operations. Stu-

dents who master addition, subtraction, and multiplication with negativo-affirmative figures will sharpen their basic

arithmetic skills. Constructing arithmetic problems for classroom exercises is straightforward. Cryptograms such as

the following encrypted message: “Meet me tonight at 1N3 o’clock at 2N43N7 Main Street.” can be devised for students.

Besides standard arithmetic exercises, students can determine the missing digits in problems such as:

N3 Y N2 W N4
C X 8 Z N1 U

3 5 1 0 5

The “junction of doors” method of multiplication can be taught as an alternative and more efficient way to multiply

decimal numbers. For example, to determine the product of 785 and 243, reverse the digits of 243 and place the 3 in

243 above the 5 in 785 and multiply the 5 and 3 to obtain 15,

3 4 2

7 8 5

5

1

Now shift the 342 over one space to the left and evaluate the inner product of Œ8; 5� and Œ3; 4� to obtain 8 �3 C 5 �4 D
44.

3 4 2

7 8 5

4 5

4 1

Continuing the process, we deduce that the product of 785 and 234 is 190 755

3 4 2

7 8 5

4 4 3 4 5

1 4 6 4 1

1 9 0 7 5 5

26.4 Taking It Further

Colson’s negativo-affirmative figures were rediscovered in 1840 by the French mathematician Augustin-Loius Cauchy

who used the associative and distributive laws to establish the equivalence of the “junction of doors” and “zig-zag”

methods by varying the way in which numbers are distributed and associated.[1] For example, in multiplying 243 and

785 using the “junction of doors” method we would associate and distribute as follows:

243 � 785D .200C 40C 3/.700C 80C 5/
D .200 � 700/C .200 � 80C 40 � 700/C .200 � 5C 40 � 80C 3 � 700/C .3 � 80C 40 � 5/C .3 � 5/
D 140 000C 44 000C 6 300C 440C 15
D 190 755

Whereas, the standard “zig-zag” method shown below

7 8 5

2 4 3

2 3 5 5

3 1 4 0

1 5 7 0

1 9 0 7 5 5
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can be justified by associating and distributing in the following manner:

243 � 785D .200C 40C 3/.700C 80C 5/
D .200 � 700C 200 � 80C 200 � 5/C .40 � 700C 40 � 80C 40 � 5/C .3 � 700C 3 � 80C 3 � 5/
D 157 000C 31 400C 2 355
D 190 755:

For over forty years, the Trinity College Cambridge Mathematical Club kept its account ledgers using only negativo-

affirmative figures. In the 1980s, in order to disseminate the advantages of using Colson’s figures, a group of Cambridge

University students formed the Colson Society. For several years they published the Colson News, a journal that

championed the use of Colson’s representation of the integers. The group refined his technique replacing N1; N2; N3; N4with

1

,

2

,

3

,

4

,

5

respectively, referring to them as ‘neg’, ‘doub’, ‘trip’, ‘quad’, and ‘quin’. Since each of the five digits was

doing double duty as a normal digit and as a digit rotated 180 degrees, they referred to these figures as ‘two-way’

numbers. Members of the Society mastered the use of ‘two-way’-tables for addition and multiplication. The secretary

of the Society kept records for twenty years using only ‘two-way’ numbers. One of the more unidentified literary

scholars in the group Society composed a poem in tribute to their hero:

There was a professor named Colson,

Who devised a method most wholesome.

He invented an easy new system,

That defied conventional wisdom.

He got rid of all digits from six to nines,

And replaced them by neg, doub, trip, quad, and quin signs.

So addition, subtraction become simpler at least,

And long division no longer was quite such a beast.[5]

Most of his life Colson was employed by booksellers. In 1736, the first complete English translation of Newton’s

Method of Fluxions helped build his reputation as a scholar. Colson was brought to Cambridge through the interests

of Robert Smith, Master of Trinity College, in order to lecture at the University succeeding Nicholas Saunderson the

blind Lucasian Professor of Mathematics. However, during Colson’s tenure in the Lucasian chair, there is no evidence

that he lectured, tutored, or did any original mathematical research.

Later in life, Colson became enchanted with Maria Gaetana Agnesi’s Instituzioni analitiche ad uso della gioventu

italiana, which had been published privately in 1748. Agnesi was the oldest of twenty one children. She wrote the

book for her own private amusement and as a study guide for her younger brothers. In the preface of his translation,

Colson stated that the chief rationale for his work was to give “British youth the benefit of the work as well as the

youth of Italy and to give the women of England an example of what the female mind can accomplish when applied in

the right direction” and to “implore the women of England to forget games of whist, quadrille, back-gammon, and all

other games of chance and to take up analytics.” In his zeal in translating the work with a newly acquired knowledge

of the Italian language, he mistranslated the word versiera as “witch”, in reference to the description of a curve,

designating it for posterity as the “Witch of Agnesi.” The word, however, was in reference to the versed sine curve.

Colson’s translation of Agnesi’s work was published posthumously in 1801.[6] For more information on Agnesi’s life

and work, see [4].

Negativo-affirmative arithmetic is especially apropos for students looking for a challenge. The “junction of doors”

method of multiplication can be introduced to show students that there are other ways that one way to multiply

two numbers and can led to the discussion of other ways. An interesting and beneficial classroom project would be

presenting a number of ways to multiply two numbers. For example, the Egyptian or Russian peasant method of

halfing and doubling, the Chinese stick method, or the gelosia or lattice method (with or without Napier’s bones) can

be introduced and their merits discussed.

26.5 Conclusion

Working with negativo-affirmative figures or “two-way” numbers and their associated operations will help students

realize that there is not just one way to represent numbers and a single way to perform the basic arithmetic operations.
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Even though Colson is better known for his translation errors than his translating ability, undoubtedly, he is best re-

membered for his efforts to promote important mathematical works and for his clever invention of negativo-affirmative

figures.
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27
The Origins of Integrating Factors

Dick Jardine
Keene State College

27.1 Introduction

In a differential equations course, students learn to use integrating factors to solve first order linear differential equa-

tions, and in the process reinforce learning of key concepts from their calculus courses. This capsule offers some

differential equations solved by the originators of the technique of using an integrating factor, though they did not use

that expression. Solving differential equations via integrating factors is difficult for some students, particularly those

who try to memorize a formula. We advocate that students learn to derive the method and solve differential equations

using the product rule and the fundamental theorem of calculus, as advocated in a number of modern texts [2, 3].

Memorizing the formula would not be in the spirit of the originators of the method, Johann Bernoulli (1667–1748)

and Leonhard Euler (1707–1783), nor does formula memorization lead to deep learning of fundamental mathematical

processes. Understanding why integrating factors work, as offered in this historical perspective, can deepen student

understanding of calculus topics such as the product rule, the fundamental theorem of calculus, and basic integration

techniques. This capsule provides some historical information about the work of Bernoulli and Euler, and we offer

student activities that will connect that history to enable more thorough learning of the method of integrating factors.

27.2 Historical preliminaries

Johann Bernoulli was a colleague of Gottfried Leibniz (1646–1716) and is acknowledged as one of the foundational

figures in the development of the calculus. In the early 1690’s he prepared lectures in the nascent calculus for Guil-

laume de l’Hôpital (1661–1704), who is credited with writing the first text on the calculus. As noted by V. Frederick

Rickey [7], Bernoulli published his work on the integral calculus in his Opera omnia in 1742. A German translation

was published by Gerhard Kowalewski in 1914 [1], and Figure 27.1 is a page from that work. There we see how

Bernoulli used an integrating factor to solve a differential equation. In the example, the integrating factor is x=y2.

Bernoulli used the technique to solve a variety of homogeneous first order equations.

In 1720 Leonhard Euler was admitted to the University at Basel, and shortly thereafter began to study under Johann

Bernoulli. Euler wrote the following about his teacher:

. . . I soon found the opportunity to become acquainted with the famous professor Johann Bernoulli,

who made it a special pleasure for himself to help me along in the mathematical sciences. Private lessons,

however, he categorically ruled out because of his busy schedule: However, he gave me a far more beneficial

209
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Figure 27.1. Bernoulli’s use of an integrating factor

advice, which consisted in myself taking a look at some of the more difficult mathematical books and work

through them with great diligence, and should I encounter some objections or difficulties, he offered me free

access to him every Saturday afternoon, and he was gracious enough to comment on the collected difficulties,

. . . which certainly is the best method of making auspicious progress in the mathematical sciences [5].

Euler credits his mentor with inspiring him to make progress in mathematics, and Euler’s advances led to his becoming

the most prolific mathematician of not only his time, but arguably of all time. His mathematical innovations signif-

icantly influence the way we do mathematics today, not only because of his brilliant discoveries but also due to his

useful notation and the clarity of his exposition. I believe it is important for us to help our students understand the

connection between successful mathematicians and their predecessors, and this connection between Euler and Johann

Bernoulli provides just such an opportunity.

Euler’s innovations built on the work of his predecessors, including Johann Bernoulli. In his Nova methodus in-

numerabiles aequationes differentialis secundi gradus reducendi ad aequationes differentialis primi gradus (A new

method of reducing innumerable differential equations of the second degree to equations of first degree) [8], Euler

solved what we would classify as a linear first order differential equation that was the result of the reduction of a

second order equation. In doing so, Euler extended the method of Johann Bernoulli to nonhomogeneous equations. In

the worksheet accompanying this capsule, students will solve Bernoulli’s homogeneous problems and Euler’s nonho-

mogeneous example as well.
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27.3 Mathematical preliminaries: Integrating factors

The method of employing an integrating factor for first order linear equations employs key ideas from the calculus,

providing an opportunity for students to revisit important calculus skills. For the sake of brevity, we choose not to

reproduce the derivation of the integrating factor here, referring the reader to a number of differential equations texts,

some that emphasize the use of the fundamental theorem of calculus and the product rule [2], and others that start with

the notion of an exact equation [3]. For a given equation, there are an infinite number of integrating factors, which

is explained in other texts [6]. We focus on the method commonly taught in an undergraduate differential equations

course, and which is seen in Euler’s work [8].

Given a linear differential equation in standard form

dy

dx
C p.x/ y D q.x/ (27.1)

the integrating factor �.x/ (our notation, not Euler’s) can be found by evaluating

�.x/ D e
R

p.x/dx :

Many of our students have little trouble differentiating the exponential function since d .eu/
dx
D eu d u

dx
. Once they get

over the notation issues, students can differentiate the right side of the expression for �.x/ as Euler would, applying

the fundamental theorem of calculus d
dx

�R

p.x/dx
�

D p.x/ to find that d �
dx
D p.x/�. Using that result and our

knowledge of the product rule, we observe that,

d.� y/

dx
D �d y

dx
C yd �

dx
D �d y

dx
C y p.x/�: (27.2)

Multiplying Equation 27.1 by the integrating factor � D �.x/ produces,

�
dy

dx
C �p.x/y D �q.x/: (27.3)

The reason for multiplying the left side of the original differential equation by the integrating factor, as Bernoulli and

Euler would, is to put that side of the differential equation into the form that we recognize from Equation 27.2, so that

we can write
d .� y/

dx
D �q.x/: (27.4)

Students initially are bewildered at how anyone “observed” or “noted” such relationships. My best explanation is that

Leibniz, Bernoulli, and Euler spent many hours determining those and many other useful results with the calculus.

Because of their effort, they developed useful mathematical intuition about such relationships. With similar effort, our

students can obtain similar intuition.

We would like students to recognize that the transition from Equation 27.3 to Equation 27.4 is nothing more than

”undoing” the product rule. To ensure they have found a correct integrating factor for a specific differential equation,

students should check by applying the product rule and observing that the result is the same as Equation 27.3. If it

isn’t, they have made an error that should be corrected before proceeding further.

The final steps in the process are to integrate both sides of Equation 27.4 and do a little algebra to obtain the general

solution,

y.x/ D c

�
C 1

�

Z

�q.x/dx:

The resulting equation is not to be memorized by students, but students should practice the process of arriving at

the solution. That process involves writing the differential equation in standard form, finding the integrating factor,

multiplying the equation by the integrating factor, “undoing” the product rule (and checking!), and then doing the final

integration and algebra. Students should work enough exercises to become very comfortable with the process, and the

activities proposed later in this capsule are designed toward that end.
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27.4 Bernoulli’s and Euler’s use of integrating factors

Both Johann Bernoulli and Euler used integrating factors to solve differential equations. In this section we review the

integrating factors they used before we move on to student activities.

In finding curves via integration, Bernoulli derived and solved first order homogeneous differential equations of

various forms. For example, the differential equation Bernoulli solved in Figure 27.1 is

2ydx � xdy D 0:

He multiplied the equation by the factor x
y2

so that he could subsequently manipulate the equation in essentially the

following way:

x

y2
.2ydx � xdy/ D 0

2x

y
dx � x

2

y2
dy D 0

d

dx

�

x2

y

�

D 0:

Integrating both sides of the last equation Bernoulli obtained the solutionx2 D by, which we would write as y D cx2.

By working through this example, which is one of the activities in the Appendix, students learn what mathematical

problems motivated Bernoulli to use integrating factors. In this case, he was interested in obtaining an unknown curve

which had specified characteristics that could be described using differentials. The curve turned out to be a parabola,

found by solving a differential equation using an integrating factor.

As noted by Sandifer [8], Euler reduced the order of a second order differential equation to obtain the following first

order equation:

dt C 2tz dt � t dz C t t dz D 0:

Euler [4] rewrote the equation in the form

dz C 2z dt

t � 1 C
dt

t t � 1 D 0;

which we would write in standard form as the linear first order equation

dz

dt
C 2

t � 1z D
1

t2 � 1:

As we mentioned earlier, Euler knew that the differential of c
R

2
t�1

dt D c2
R

dt
t�1 was 2 dt

t�1
c
R

2
t�1

dt , which he left in the

integral form1. He multiplied the entire differential equation by c2
R

dt
t�1 to obtain

c2
R

dt
t�1 dz C 2c2

R

dt
t�1 z dt

t � 1 C c2
R

dt
t�1 dt

t t � 1 D 0

Euler recognized the first two terms are the result of applying the product rule to z c2
R

dt
t�1 . He integrated the entire

equation with result

c2
R

dt
t�1 z C

Z

c2
R

dt
t�1 dt

t t � 1 D a:

He then completed the integrations, and using l to symbolize the natural logarithm, he wrote the solution of the reduced

equation as

.t � 1/2 z C t � l t D a:
1In [4], Euler used c rather than e as the base of the natural logarithm.
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27.5 Student activities

The more practice students get in using the method of integrating factors, the better. In the Appendix is a worksheet that

I have used in my Differential Equations and Applied Mathematics courses. Students complete the worksheet in class

with a partner. This is done after they have completed the reading from the course text and attempted assigned exercises

in preparation for class. Prior to the worksheet, they will have seen me derive the method and work through at least

one example problem. The activity in the Appendix is offered for consideration and modification at the instructor’s

discretion. From my experience, students have greater difficulty with the algebraic manipulations required in this

activity than they do with the calculus.

The purpose of the worksheet is to give students opportunities to practice solving differential equations using inte-

grating factors. The differential equations they solve are the actual equations solved by Bernoulli and Euler. Additional

questions are posed to give students practice solving the differential equations in alternative ways, and to encourage

students to reach the conclusion that integrating factors are not unique. Most modern differential equations texts iden-

tify only one method for finding an integrating factor. Asking additional questions helps expand student understanding,

to include coming to the realization that there are infinitely many integrating factors for a differential equation, not just

the one obtained in the manner presented by their textbook author.

In addition to the worksheet, brief (five minute) student presentations on Euler and Bernoulli are also part of that

day’s classroom activities. Those students presenting will also have completed one page historical essays on the math-

ematicians. The essays are submitted at the beginning of class.

27.6 Summary and conclusion

Filling in gaps that may exist after the students’ historical presentations, I elaborate as necessary to provide as complete

a historical perspective as possible. From my course evaluations, I have learned that many students are interested in

knowing where the mathematics they are studying came from, and relating how Euler extended the work of his teacher

Johann Bernoulli is important for students to understand. It helps them realize that mathematics is not just discovered

by geniuses but developed by real people working with one another, building on one another’s knowledge. Learning to

solve differential equations via the integrating factor is tough for students, but seeing the integrating factor through a

historical lens can facilitate student understanding. Additionally, the student essays, oral presentations, and completed

worksheets are useful artifacts for certification and for program assessment purposes, to validate that students are

learning the history of the mathematics while learning the mathematics.
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Appendix: Student activities

Listed below are some activities I have used in my courses acquainting students with the early use of the integrating

factor, and giving them practice in solving differential equations.

1. Leonhard Euler (1707–1783) is responsible for the way that we have come to know the calculus and the study

of differential equations. One example of his work is the publication of the concept of the integrating factor in

Nova methodus innumerabiles aequationes differentials secundi gradus reducendi ad aequationes differentials

primi gradus (A new method of reducing innumerable differential equations of the second degree to equations of

the first degree). In that 1728 paper he arrived at the equation dt C 2tz dt � t dz C t t dz D 0, written in terms

of the differentials dt and dz. He solved the differential equation using an integrating factor, though not exactly

in the way that you will in completing this activity. The notion of an integrating factor was known earlier by the

Bernoulli’s, Euler’s mentors and colleagues.

(a) Algebraically manipulate the differential equation from the form that Euler wrote it to the standard form for

a first order linear differential equation (DE).

(b) Find the integrating factor using the coefficient of the linear term of the DE.

(c) Multiply each term of the linear DE by the integrating factor, then combine the terms on the left side by

recognizing the product rule.

(d) Integrate both sides and then algebraically solve for z to obtain the solution.

2. Johann Bernoulli (1667–1748) used what we now call an integrating factor to solve the differential equation

2y dx � x dy D 0.

(a) Write the differential equation in the form of a first order linear DE.

(b) Solve the DE using the method of integrating factors.

(c) Bernoulli used the integrating factor x
y2

. Is that the same integrating factor you obtained? Does Bernoulli’s

integrating factor work as well as yours? Is there just one unique integrating factor for a given DE?

(d) Solve the DE using another method that you have learned in our course.

3. Another differential equation that Bernoulli solved by his method of multiplying by a factor was

3y dx D x dy C y dx:

Convert the equation to the standard form for a first order linear DE and solve. Be sure to check your solution.

historical.library.cornell.edu/math/
http://historical.library.cornell.edu/math/
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Euler’s Method in Euler’s Words

Dick Jardine
Keene State College

28.1 Introduction

Euler’s method is a technique for finding approximate solutions to differential equations addressed in a number of un-

dergraduate mathematics courses. Various current texts include Euler’s method for calculus [4], differential equations

[1], mathematical modeling [9], and numerical methods [2] students. Each of those courses are opportunities to give

students an opportunity to read Euler’s own brief description of the algorithm, and in the process come to understand

the technique and its limitations from Euler himself. This capsule includes historical information about Euler and

his development of the approximation method. Additionally, I describe Student Assignments (Appendix A) I use to

connect that history to the mathematics the students are learning. The activities are designed to deepen student under-

standing of Euler’s method specifically and reinforce learning of calculus skills in general. I also include a translation

of Euler’s writing on the topic (Appendix B).

28.2 Historical preliminaries

Leonhard Euler (1707–1783) was one of the most gifted of all mathematicians. Excellent biographies of Euler, some

identifying the voluminous quantity of his mathematical writing, are available [6], which interested readers are encour-

aged to explore. One of Euler’s many gifts was his ability to write mathematics clearly and understandably. The great

French mathematician Pierre-Simon Laplace (1749–1827) had this to say of Euler’s writing: ”Read Euler, read Euler.

He is the master of us all”[5]. From my experience our students find Euler readable, particularly Euler’s textbooks on

the calculus, with a little help from the instructor as described in the sections that follow.

While in the service of the Russian Empress Catherine the Great at St. Petersburg, Euler published a text on the

integral calculus, Institutionum calculi integralis [8], a portion of which appears on the next page. Euler wrote at

least some of this volume while he was at the Berlin Academy and employed by Frederick the Great of Prussia, prior

to his return to the St. Petersburg Academy in 1766. Previously, Euler had written precursors to this three volume

integral calculus text. In 1755, he published Institutiones Calculi Differentialis, his text on the differential calculus.

His ”precalculus” book, Introductio in Analysin Infinitorum, was published in 1748.

As the calculus had only been discovered within a hundred years of these publications by Euler, his texts were

among the first on this relatively new mathematics. Euler read the works of the inventors of the calculus, Sir Isaac

Newton (1643–1727) and Gottfried Leibniz (1646–1714), as well as those of their respective disciples, to include

215
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Figure 28.1. Leonhard Euler (1707-1783)

Brook Taylor (1685–1731) and Johann Bernoulli (1667–1748). Euler adopted the best of their notation, overlooked

the worst, and included many of his own innovations. Euler’s texts were widely read by his peers and successors, and

the notation and terminology we use today in our undergraduate calculus and differential equations texts are largely

due to Euler.

In the Institutiones Calculi Differentialis, Euler stated that “. . . the main concern of integral calculus is the solution

of differential equations. . . ” [7]. Largely because of his extensive coverage of solutions to differential equations, it

took three volumes for Euler to address the integral calculus, while the differential calculus was covered in just one.

Our attention is on just one topic in the first of those three volumes on the integral calculus. The first section of that

Figure 28.2. The start of Chapter 7 of Institutionum calculi integralis, courtesy of The Euler Archive.
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first volume is on integral formulas; the remaining two sections of the book are on the solution of differential equations.

Depicted above is the beginning of the seventh chapter of the second section, translated in Appendix B. After some

mathematical preliminaries, we describe these opening paragraphs of chapter 7, as they contain the algorithm that

we call Euler’s method. Euler obtained exact solutions for many differential equations in his calculus text, but he

acknowledged that there were many differential equations for which the best he could do was obtain an approximation

to the exact solution. Chapter 7 begins with Euler’s description of his algorithm to approximate solutions, and continues

with improvements, to include the use of power series to solve differential equations.

28.3 Euler’s description of the method

Euler’s method is a crude method for approximating solutions to differential equations. It is crude for reasons that

Euler explained in the corollaries contained in the first couple of pages of chapter 7 of Institutionum calculi integralis.

We discuss those later. In this section we only briefly review Euler’s method, since details can be found in your course

text, and others [1, 2, 9].

We start with a first order differential equation, dy
dt
D f .t; y/, with initial values y.t0/ D y0. The differential

equation is converted to a difference equation, ykC1 D yk C �tf .tk ; yk/, where tkC1 D tk C �t with step size

�t . Approximate solutions are computed recursively starting with the known initial value y0 D y.t0/. Euler provides

one method for deriving the recursive relationship; other methods can be found in the references [1, 2, 4]. Euler’s

derivation is different than we find in modern texts, and students who read and understand his approach reinforce their

understanding of key ideas of the integral calculus and differential equations.

In sections 650 to 653 of chapter 7 (see Appendix B), Euler described the algorithm for obtaining an approximation

to the solution of a first order differential equation. In section 650 he derived and discussed the implementation; in the

remaining three sections he provided a summary and offered warnings about the error associated with the method. In

my courses, I provide students with a copy of the translation, which fits on one sheet of paper printed front and back.

We review Euler’s derivation together interactively in class, as I describe in the Student Activities section.

The differential equation that Euler solved has the form dy
dx
D V.x; y/, with initial values x D a and y D b. His

goal was to incrementally find the value of y when x changed just a little, or when x D a C ! in his notation. In

our notation, we write xkC1 D xk C �x, with x0 D a, and ! D �x. Euler made the assumption that V.x; y/ was

constant in the small interval, or A D V.a; b/. He then integrated the resulting differential equation dy
dx
D A and

found the value of the integration constant so that the solution satisfied the initial data x D a and y D b. When he

evaluated the resulting solution y D b C A.x � a/ at x D a C !, Euler obtained

y D b C A!:

That last equation is equivalent to the recursion formula, in our modern notation, ykC1 D yk C �xf .xk; yk/. Euler

obtained the next x using x D aC!, or a0 D aC!. He found the next y using y D bCA!, or b0 D bCA!. The value

b0 was Euler’s approximate solution to the differential equation at x D a0. Euler computed the next approximation by

first evaluatingV.a0; b0/ to obtainA0, and then substituted the new values into y D bCA! to get b00 D b0CA0!, where

b00 is the numerical solution at x D a0 C ! D a00: Euler then repeated this process iteratively, obtaining approximate

values for the solution as far from the initial values as he desired.

In the corollaries, Euler explained to his readers the caveats of using this approximation method. I have found that

students readily understand Euler’s descriptions, and as a result come away from the reading with a solid understanding

of the limitations of this numerical method. Section 651 is the first corollary, in which Euler reiterated that successive

values of x and y are obtained by repeated calculations. In corollary two, Euler pointed out that the error can be reduced

by making the incremental steps small, but even with that, the error accumulates. In the third corollary Euler stated

that not only does the error depend on the step-size, but also on the variability of the function V.x; y/ in the interval.

He specified that if V.x; y/ varies greatly in the interval, the error of the approximation is large. In the corollaries,

then, Euler articulated key ideas concerning numerical methods, which an instructor today can use to focus student

learning on these important concepts.
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28.4 Student Activities

Instructors can engage students in a variety of learning activities using Euler’s description of the algorithm used to

approximate solutions to differential equations. Some of those activities are described here, which are offered for

consideration and modification at the instructor’s discretion.

Since the translation (see Appendix B) is brief, assigning the translation as a student reading assignment as part of

the preparation for class is a place to start. This assignment can supplement students’ reading of the corresponding

section of the course text, and the following questions can be provided to guide students’ reading of the translation.

The questions can also be used for student homework, in-class activities, or writing assignments. I have done all three,

which provided my department with documented evidence for program assessment purposes of student work in the

history of the mathematics that students are learning. The questions help students become “active readers” of Euler’s

text. As we all know, reading a mathematics text is different than reading a text in other disciplines, and the study

questions help our students learn to read mathematics.

� What words would we use to describe what Euler meant by the expression “a complete integral”?

� Euler uses the notation @y
@x
D V for the differential equation. What would we use? Why might the partial derivative

notation be appropriate?

� How does Euler justify transforming the differential equation @y
@x
D V to @y

@x
D A?

� If we know V.x; y/, how do we determine the value of the constant that Euler labels A?

� How does Euler arrive at y D bCA.x�a/? Show the steps necessary to arrive at the solution y D bCA.x�a/
to the differential equation @y

@x
D A and the given initial data.

� Euler uses the Greek letter ! to represent a small quantity. What is the corresponding parameter in the version of

Euler’s method described in our course text?

� Which equation in the translation is Euler’s version of the difference equation ykC1 D yk C�tf .tk ; yk/?

� What is the point Euler is trying to make in Corollary 1?

� In Corollary 2, what are the two significant points about the error made in implementing this algorithm?

� What does Corollary 3 state about the relationship of the function V and the error of the algorithm?

One way for students to process the translation is to have them read the translation in class as an entire-class activity.

Going around the room, I have each student read one sentence of Euler, and explain what she just read. Other members

of the class can comment as they’d like on the interpretation. Then the next student reads the next sentence of Euler,

and he explains what he just read, with others adding to the discussion as appropriate. The process is repeated until the

reading is completed. Historians of mathematics read original sources in this manner, as exemplified by the Arithmos

[11] reading group in the Northeast and Oresme [12] in the Midwest. Another approach I have used is to project the

translation on a screen at the front of the room and work through the derivation on an adjacent chalkboard interactively

with students.

In completing the reading and answering these questions, students will obtain a deeper understanding of Euler’s

method than they would by simply reading the course text or passively listening to a lecture on the topic. There are

more student activities in Appendix A, and some of those activities may be used as a classroom activity or as out-of-

class student projects, with students working individually or in groups as the instructor prefers.

28.5 Summary and conclusion

Reading Euler’s introduction to methods for approximating the solution of differential equations can be a meaningful

activity for students learning Euler’s method. By learning from the “master of us all,” students will gain an understand-

ing of the origins of the method and an understanding of why this mathematical method was invented. Additionally,

they will gain an appreciation for our modern notation and its origins. Most importantly, Euler clearly describes some

of the important practices and cautions to be observed in implementing the method, which should deepen student

understanding of the algorithm if they actively read Euler’s work.
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Appendix A: Student Assignments

Listed here are general descriptions of some additional activities for students, which instructors can consider adapting

for their courses. In every case, depending on how the instructor would like to implement these activities, an appro-

priate level of detail would have to be added. For example, in the first bulleted assignment, the instructor may specify

the step-size, the differential equations, and the technology students are to use in completing the assignment.

The goal of the assignments is that in completing these activities, students will have a deeper understanding of

Euler’s method and the associated mathematics. An additional assignment, more appropriate for a senior seminar or

an academic conference, would be for students to continue the translation of subsequent sections of Chapter 7. Such a

translation could be submitted for publication at The Euler Archive (www.eulerarchive.org).

1. Euler does not provide a specific example of the method in this chapter of his text. Choose an appropriate dif-

ferential equation, approximate the solution as Euler describes, and create a table similar to that found in the

translation but displaying actual numerical values.

2. The translator tried to retain the punctuation, capitalization and vocabulary used by Euler. Rewrite the translation

using the notation and language that you find in our course text.

3. Implement Euler’s method with differential equations for which you can determine the exact solution. Use your

examples to demonstrate each of the points that Euler makes about error in the last two corollaries.

4. Euler derived the relationship used for iteration, y D b C A!, by solving the general form for the differential

equation. Our course text derives the relationship using a graphical method. Explain each of the steps in the

following alternative methods for deriving Euler’s method:

(a) Using the definition of the derivative and given the differential equation dy
dt
D f .t; y/:

dy

dt
D lim

�t!0

y.t C�t/ � y.t/
�t

dy

dt
� y.t C�t/ � y.t/

�t

dy

dt
D f .t; y/ � y.t C�t/ � y.t/

�t

y.t C�t/ � y.t/ C�tf .t; y/

ykC1 D yk C�tf .tk ; yk/

(b) Using Taylor series and given the same differential equation:

y.t/ D y.t0/C y0.t0/.t � t0/C
y00.t0/.t � t0/2

2
C � � �

y.t0 C�t/ D y.t0/C y0.t0/.�t/ C
y00.t0/.�t/

2

2
C � � �

y.t0 C�t/ D y.t0/C
dy

dt
.t0/.�t/ C

y00.t0/.�t/
2

2
C � � �

y.t0 C�t/ D y.t0/C�tf .t0; y0/C
y00.t0/.�t/

2

2
C � � �

ykC1 D yk C�tf .tk ; yk/

(c) Explain how the derivation using Taylor series may be used to obtain an estimate for the error involved in

implementing Euler’s method.

www.eulerarchive.org
http://www.eulerarchive.org


28.5. Summary and conclusion 221

Appendix B: Original source translation

This is the author’s translation of the initial sections of Leonhard Euler’s, Institutionum calculi integralis, vol. I, St.

Petersburg, 1768, posted in The Euler Archive. The punctuation and notation of the original were retained in this

translation, which sometimes makes the translation seem awkward.

CHAPTER VII

ON

THE INTEGRATION OF DIFFERENTIAL EQUATIONS BY APPROXIMATION

Problem 85.

650.

Whenever presented a differential equation, find its complete integral very approximately.

Solution

The pair of variables x and y appear in a differential equation, and moreover this equation has the form @y
@x
D V ,

the function V itself a function of x and y. We desire the complete integral, which is interpreted that as long as x is

assigned a certain value x D a, the other variable y takes on a given value y D b. Therefore our primary goal is to

find the value of y so that when x takes on a value that differs little from a, or we assume x D a C !, then we can

find y. Since ! is a very small quantity, then the value of y itself differs minimally from b; so while x varies a little

from a to a C !, one may consider the quantity V as a constant. When we specify x D a and y D b then V D A;

and by virtue of the small change we have @y
@x
D A, for that reason when integrating y D b C A.x � a/, a constant

being added of course, so that when x D a we have y D b. Therefore given the initial values x D a and y D b, we

obtain the approximate next values x D a C ! and y D b C A!, so that proceeding further in a similar way over the

small interval, in the end arriving at values as distant as we would like from the earlier values. These operations can

be placed for ease of viewing, displayed successively in the following manner.

Variable successive values

x a, a0, a00, a000, aI V , . . . . 0x, x

y b, b0, b00, b000, bI V , . . . . 0y, y

V A, A0, A00, A000, AI V , . . . . 0V , V

Certainly from the given initial values x D a and y D b, we have V D A, then for the second we have b0 D
b C A.a0 � a/, the difference a0 � a as small as one pleases. From here in putting x D a0 and y D b0, we obtain

V D A0, and from this we will obtain the third b00 D b0 C A0.a00 � a0/, when we put x D a00 and y D b00, we obtain

V D A00. Now for the fourth, we have b000 D b00 C A00.a000 � a00/, from this, placing x D a000 and y D b000, we shall

obtain V D A000, thus we can progress to values as distant from the initial values as we wish. The first sequence of x

values can be produced successively as desired, provided it is ascending or descending over very small intervals.

Corollary 1.

651. Therefore one at a time over very small intervals calculations are made in the same way, so the values, on

which the next depend, are obtained. As values of x are done iteratively in this way one at a time, the corresponding

values of y are obtained.

Corollary 2.

652. Where smaller intervals are taken, through which the values of x progress iteratively, so much the more accurate

values are obtained one at a time. However the errors committed one at a time, even if they may be very small,

accumulate because of the multitude.

Corollary 3.

653. Moreover errors in the calculations arise, because in the individual intervals the quantities x and y are seen

to be constant, so we consider the function V as a constant. Therefore the more the value of V changes on the next

interval, so much the more we are to fear larger errors.
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Newton’s Differential Equation

Py
Px D 1 � 3x C y C xx C xy

Hüseyin Koçak
University of Miami

“But this will appear plainer by an Example or two.”

— Newton (1671)

After outlining his general method for

finding solutions of differential equations.

29.1 Introduction

In this note we redress Newton’s solution to his differential equation in the title above in a contemporary setting.

We resurrect Newton’s algorithmic series method for developing solutions of differential equations term-by-term. We

provide computer simulations of his solution and suggest further explorations.

The only requisite mathematical apparatus herein is the knowledge of integration of polynomials. Therefore, this

note can be used in a calculus course or a first course on differential equations. Indeed, the author used the content of

this paper while covering the method of series solutions in an elementary course in differential equations. Additional

specific examples studied by the luminaries in the early history of differential equations are available in [1]. This work

was supported by the National Science Foundation’s Course, Curriculum, and Laboratory Improvement Program under

grant DUE-0230612

29.2 Newton’s differential equation

Newton’s book [6], ANALYSIS Per Quantitatum, SERIES, FLUXIONES, AC DIFFERENTIAS: cum Enumeratione

Linearum TERTII ORDINIS consists of one dozen problems. The second problem

PROB. II An Equation is being proposed, including the Fluxions of Quantities, to find the Relations of those

Quantities to one another

is devoted to a general method of finding the solution of an initial-value problem for a scalar ordinary differential

equation in terms of series. The equation in the title of the present paper (see also Figure 29.1) is the first significant

example in the section on PROB. II.

223
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Figure 29.1. Original text of Newton’s differential equation.

Quantities x Correlate Quantity

y Relate Quantity

Px Fluxion of x

Py Fluxion of y

Equation
Py
Px D 1 � 3x C y C xx C xy

Table 29.1. Newton’s quantities in his differential

equation.

Newton thought of mathematical quantities as being generated by a continuous motion. He called such a flowing

quantity a fluent (variable), and referred to its rate of change as the fluxion of the quantity and denoted it by a dot over

the quantity. He denoted the change of Relate Quantity (dependent variable) with respect to the Correlate Quantity

(independent variable) with the ratio of their fluxions (see Table 29.1).

Let us interpret Newton in our current calculus jargon. If we consider the relate quantity y.t/ and the correlate

quantity x.t/ to be generated by continuous motions in time t then their fluxions Py and Px are

Py D dy

dt
; Px D dx

dt

and the ratio of their fluxions becomes
Py
Px D

dy

dx
:

Thus, Newton’s proposed equation, “including the Fluxions of Quantities,” can be written as

dy

dx
D 1 � 3x C y C x2 C xy

whose solution y.x/ will yield “the Relations of those Quantities to one another.”

29.3 Newton’s solution

Newton obtained the solution of a differential equation satisfying a given initial condition in terms of series. He

computed the terms of his series recursively starting with the constant term dictated by the initial condition. At each

stage of his series solution, he kept only the terms up to a fixed order and he inserted the series into his differential

equation. Then integrated the resulting polynomial to obtain the next order term in his series.

Now, we will paraphrase Newton’s steps (see also [3]) and obtain several terms of his series solution y.x/ of his

differential equation dy
dx
D 1� 3xC y C x2C xy satisfying the initial condition y.0/ D 0. You can read the original

calculation of this series in Newton’s words in the Suggested Explorations below.

To satisfy the initial condition y.0/ D 0, the constant term of the solution must be 0; so, start with the zeroth-order

term

y D 0C � � � :
Now, insert this for y in the differential equation to obtain

dy

dx
D 1C � � �

for the lowest order term for the derivative (ignoring the higher-order terms). Next, integrate this with respect to x to

obtain the first-order term in the series:

y D x C � � � :
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Inserting this form for y into the differential equation yields

dy

dx
D 1 � 2x C � � �

for the first-order terms, ignoring the higher-order terms. Integration of these terms gives

y D x � x2 C � � � :

The next iteration of this process gives

dy

dx
D 1 � 2xC x2 C � � � and y D x � x2 C 1

3
x3 C � � � :

Newton performed several more iterations and arrived at the solution

y D x � x2 C 1

3
x3 � 1

6
x4 C 1

30
x5 � 1

45
x6 C � � � :

It is prudent to verify that a proposed solution of a differential equation indeed satisfies the differential equation.

Here is how Newton demonstrates the validity of his solution:

DEMONSTRATION

56. And thus we have solved the Problem, but the demonstration is still behind. And in so great a variety of

matters, that we may not derive it synthetically, and with too great perplexity, from its genuine foundations,

it may be sufficient to point it out thus in short, by way of Analysis. That is, when any Equation is propos’d,

after you have finish’d the work, you may try whether from the derived Equation you can return back to the

Equation propos’d . . . And thus from Py D 1 � 3x C y C xx C xy is derived y D x � x2 C 1
3
x3 � 1

6
x4 C

1
30
x5 � 1

45
x6;&c. And thence by Prob. I. Py D 1� 2xC x2 � 2

3
x3C 1

6
x4 � 2

15
x5;&c:Which two values of

Py agree with each other, as appears by substituting x � xx C 1
3
x3 � 1

6
x4 C 1

30
x5;&c: instead of y in the

first Value.

29.4 Phaser simulations

A series solution of an initial-value problem, in principle, should yield better approximations to the solution as more

terms of the series are included. In Figure 29.2, third through sixth-order series approximations of the solution of

Newton’s differential equation satisfying the initial condition y.0/ D 0 are plotted.

A carefully computed actual solution of the differential equation satisfying the initial condition y.0/ D 0 is plotted

as the lower curve in Figure 29.3. It was indicated above that one can expect better approximations as more terms of

the series are included. However, this expectation holds only locally near the initial condition, but not globally. Indeed,

the fourth-order approximation appears to resemble the actual solution more than the fifth-order approximation.

Figure 29.2. Third through sixth-order (upper-left,

upper-right, lower-left, lower-right) polynomial

approximations of Newton’s series solution

y D x � x2C 1
3
x3� 1

6
x4C 1

30
x5� 1

45
x6C � � � are

plotted.
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Figure 29.3. A carefully computed solution of Newton’s

differential equation dy
dx
D 1 � 3x C y C x2 C xy sat-

isfying the initial condition y.0/ D 0 is plotted as the

lower curve. The additional solution as the upper curve

satisfies the initial condition y.0/ D 1.

Newton also computed a series solution of his differential equation satisfying the initial condition y.0/ D 1. A

carefully computed graph of this solution is plotted as the upper curve in Figure 29.3. More generally, Newton com-

puted an “infinite variety” of solutions of his differential equation satisfying the initial condition y.0/ D a for any real

number a. More information about these solutions are contained in the Suggested Explorations below.

At www.phaser.com/modules/history/newton/index.html an interactive version of this paper is

available. With simple mouse clicks on Figure 29.3 at this Phaser Web site [1], you can generate accurate solutions of

Newton’s differential equation satisfying any initial condition.

29.5 Remarks: Newton, Leibniz, and Euler

Newton’s differential equation is a scalar linear differential equation. The solution of a linear differential equation of

the form
dy

dx
D a.x/y C b.x/

satisfying the initial condition y.x0/ D y0 is given by the formula [4]:

y.x/ D e
R

x

x0
a.u/du

�

y0 C
Z x

x0

e
�
R

x

x0
a.u/du

b.s/ ds

�

:

Indeed, using this formula, with a.x/ D 1C x, b.x/ D 1 � 3x C x2, x0 D 0, and y0 D 0, one obtains the following

closed-form solution of Newton’s differential equation satisfying the initial condition y.0/ D 0:

y.x/ D 4 � x C e.xC1/2=2
�

3
p
2�
h

erf..x C 1/=
p
2/� erf.1=

p
2/
i

� 4e�1=2
�

:

Notice, however, that the solution above involves the error function

erf.x/ D 2p
�

Z x

0

e�t2=2dt

which is not an elementary function. Full details of the calculations leading to this solution is available at the Phaser

Web site [1].

Like Newton, Leibniz also devoted a great deal of his attention to solving differential equations. His approach,

however, was quite different from that of Newton’s. Leibniz sought mostly closed-form solutions in terms of known

functions. In fact, he is often credited with the discovery of the method of separation of variables. This method,

however, is of limited utility as told by Ince [5] in his brief history of early differential equations:

One of the earliest discoveries in the integral calculus was that the integral of a given function could only in

very special cases be finitely expressed in terms of known functions. So it is also in the theory of differential

equations. That any particular equation should be integrable in a finite form is to be regarded as a happy

accident; in the general case the investigator has to fall back, as in the example just quoted, upon solutions

expressed in infinite series whose coefficients are determined by recurrence formulae [5].

www.phaser.com/modules/history/newton/index.html
http://www.phaser.com/modules/history/newton/index.html
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Indeed, Newton could “solve” any differential equation (see the Suggested Explorations below) using his series

method, including the ones that Leibniz could not integrate. It is interesting to speculate whether Newton suspected

that his differential equation could not be integrated in terms of elementary functions.

Newton’s series method can generate approximate solutions of any desired accuracy; however, the series solution is

valid only near a given initial condition. Another method of generating approximate solutions of differential equations

is the method of Euler [2] which is commonly presented as the simplest algorithm in numerical analysis of differential

equations. It is likely that Euler might have been trying to rectify the shortcoming of the locality of the series method

by devising a new approximation method capable of generating solutions away from the initial condition. Indeed,

Euler writes [2]:

. . . thus we can progress to values as distant from the initial values as we wish.

Unlike Newton, Euler does not present a specific differential equation to demonstrate the effectiveness of his method.

However, he does point out a new kind of difficulty with his method in the following Corollary:

Corollary 2. 652. Where smaller intervals are taken, through which the values of x progress iteratively, so

much the more accurate values are obtained one at a time. However the errors committed one at a time, even

if they may be very small, accumulate because of the multitude.

29.6 Suggested Explorations

Newton [6] developed detailed computational rules, and tricks, for manipulating series. He then applied these devel-

opments to many interesting examples of differential equations. In this closing section we present several additional

examples studied by Newton and suggest further explorations with PHASER. If you need help with some of the

lengthy calculations for these examples, consult the master.

1. Newton’s original calculations for his series solution for his differential equation we have studied here are de-

picted in Figure 1. Here is the original text accompanying his table of calculations:

Let the equation Py
Px
D 1 � 3x C y C x2 C xy be proposed, whose terms 1 � 3x C x2(which are not

affected by the Relate Quantity y) you see disposed collaterally in the uppermost partition; and the

rest, y, and xy, in the left hand column. This done, first I multiply the initial term, 1, into the Correlate

Quantity, x, and it makes x; which being divided by the number of dimensions 1, I place in the quote

above written; then substituting these terms instead of y in the marginal terms y andCxy, I haveCx
and Cxx, which I write overagainst them to the right hand. After which from the rest I take the least

terms�3x andCx, whose aggregate�2x multiplied into x becomes �2xx, this divided by the number

of its dimensions 2, gives �xx for the second term of the value of y in the quote. In proceeding this

term being likewise assumed to complete the value of the marginalsCy andCxy, there will arise�xx
and �x3 to be added to the terms Cx andCxx, that were before inserted: which being done, I again

assume the next least terms, Cxx, �xx, and Cxx, which I collect into one sum Cxx, and thence I

derive (as before) the third termC 1
3
x3 to be put into the value of y. Again, taking this termC 1

3
x3 into

the place of marginals; from the next least terms, C 1
3
x3 and �x3 added together, I obtain C 1

6
x4 for

the fourth term of the value of y. And so on in infinitum.

Try to decipher Newton’s calculations and compare them with our rewording of them.

2. Newton solved his equation for the initial value y.0/ D 1 as well. His answer, in this case, is y D 1C 2xC x3C
1
4
x4 C 1

4
x5 C � � � .

Demonstrate the validity of Newton’s solution a la Newton. This solution is plotted as the upper curve in Fig-

ure 29.3 above.

3. It is very interesting to observe that Newton calculates up to sixth-order (even) terms for the lower solution while

he stops at the fifth-order (odd) terms for the upper solution. Series solutions should become more accurate with

additional terms; this may be true locally but not necessarily globally. Why do you think Newton stopped at the

fifth-order terms for the upper solution while continued to the sixth-order terms for the lower solution?
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4. Visit www.phaser.com/modules/history/newton/index.html

and load Figure 29.3 into your local copy of Phaser by simply clicking on the picture. Now, click the left mouse

button at several locations along the vertical axis to mark additional initial conditions. Press the Go button of

Phaser to see the additional solutions.

5. Newton also computed the solution of his differential equation for the initial condition y.0/ D a:

I said before, that these Solutions may be perform’d by an infinite variety of ways. This may be done if

you assume at pleasure not only the initial quantity of the upper Series, but any other given quantity for

the first Term of the Quote, and then you may proceed as before. ... Or if you make use of any Symbol,

say a, to represent the first Term indefinitely, by the same method of Operation, (which I shall here set

down,) you will find y D a C x C ax � xx C axx C 1
3
x3 C 2

3
ax3;&c: which being found, for a you

may substitute 1, 2, 0, 1
2

, or any other Number, and thereby obtain the Relation between x and y an

infinite variety of ways.

Verify his answer.

6. Find the solution satisfying the general initial condition y.x0/ D y0. Hint: Find the power series expansion in

powers of .x � x0/.

7. Newton also studied differential equations containing terms that are more complicated than polynomials in x and

y. In this case, he first expanded the differential equation itself into series and proceeded as before. Here is such

an example.

32. And after the same manner the Equation
Py
Px D 3y�2xC

x
y
� 2y

xx
being proposed; if, by reason of the

Terms x
y

and
2y
xx

, I write 1� y for y, 1� x for x, there will arise
Py
Px
D 1� 3yC 2xC 1�x

1�y
C 2y�2

1�2xCx2
.

But the Term 1�x
1�y

by infinite Division gives 1� xC y� xyC y2 � xy2C y3 � xy3;&c: and the Term
2y�2

1�2xCxx
by a like Division gives 2y�2C4xy�4xC6x2y�6x2C8x3y�8x3C10x4y�10x4;&c:

Therefore
Py
Px
D �3xC3xyCy2�xy2Cy3�xy3;&c:C6x2y�6x2C8x3y�8x3C10x4y�10x4;&c:

Perform the “infinite Divisions” and verify Newton’s calculations.
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30.1 Introduction

One of the classic examples to demonstrate the so-called Newton-Raphson method in undergraduate calculus is to

apply it to the second-degree polynomial equation x2 � 2 D 0 to find an approximation to the square-root of two.

After several iterations the solution converges quite quickly. Indeed,
p
2 has fascinated mathematicians since ancient

times, and one of its earliest expressions is found on a cuneiform tablet written, it is supposed, some time in the first

third of the second millennium B.C.E by a trainee scribe in southern Mesopotamia. While keeping this mathematical

artifact firmly in its original archaeological and mathematical context, we look at the similarities and differences it

shares with modern mathematical techniques, 3000 years distant.

Observing that mathematical knowledge is, to a certain extent, culturally dependent can be revelatory to students.

Modern mathematical pedagogy is generally based around a cumulative approach which allows little room for lateral

breadth, as it focuses on the acquisition of skills, often with scant regard for the actual manifestation or circumstances

of mathematical knowledge itself. Students may have never been exposed to other contexts in which mathematics

flourished, nor encountered different mathematical traditions thus far in their studies, much less non-western ones. Yet,

such exposure can give them a vital and nuanced perspective on their own mathematical circumstances. Though many

a mathematical problem posed may be universal, the ways in which various mathematically literate cultures attacked

them and solved them are diverse, depending on many other factors related to the broader intellectual environment.

This is an important observation to bequeath to future mathematically-literate generations. However, at the same time,

the universality of mathematics should not be forgotten. That humans contemplated problems of an ultimately similar

nature reminds us that there is a way in which mathematical problems and their solutions are, in a sense, transcendent.

This capsule is ideally suited for undergraduate Calculus courses as part of one’s coverage of the derivative and its

applications, particularly before or after the introduction of the Newton-Raphson Algorithm. It will introduce students

to some of the key differences and indeed similarities in solutions focused on the same problem at opposite ends of

mathematical history. It is intended to take 50 minutes (one lecture) and contains exercises for students at appropriate

places, which are designed to help them reflect and interact with the content.

229
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30.2 The Problem

Imagine you needed to compute the square-root of some number on a calculator, only you were not allowed to use the

square-root function. Extracting the square-root of this number c > 0 is equivalent to determining the positive solution

of the non-linear equation:

x2 � c D 0

30.2.1 What are our options? Taking a step back . . .

There exist a number of options to solve equations. We have learnt the formulae needed to solve polynomials of

specific degrees directly. Indeed, the solution to polynomials of the first degree:

ax C b D 0 is determined via x D �b
a

and second degree:

ax2 C bx C c D 0 via x D �b ˙
p
b2 � 4ac
2a

:

In fact, formulae also exist for retrieving the solutions of polynomials of the third and fourth degrees—but they are

fairly complicated so that they are of little practical use, and therefore not necessary to have at one’s mathematical

fingertips, so to speak!

However, that is where we run out. There exist no formulae, complicated or not, for the solutions of a general

polynomial of fifth degree or higher—they can not be solved by a regular analytical process. This remarkable fact was

proved by the Norwegian mathematician Niels Abel in 1824.

Thus, for these cases, and for non-polynomial equations, solutions are generally retrieved by means of some sort

of approximation technique. One efficient and relatively straight-forward technique would be to apply the so-called

Newton-Raphson algorithm. The Newton-Raphson method (sometimes called simply Newton’s method) is a method

for solving non-linear equations, particularly those that have no simple closed-form solution. This method was first

set out by Newton in 1669 in a work called De analysi per aequationes numero terminorum infinitas which was

not formally published until 1711, almost fifty years later. It did appear in the public domain earlier however as it was

published by John Wallis in 1685. Newton’s method as articulated by him only applied to polynomials however. Joseph

Raphson published an expanded version, still restricted to polynomials, but in terms of successive approximations

rather than the intricate sequence of polynomials which Newton gave. It was not until 1740, when mathematician

Thomas Simpson expanded this method further still to apply to general nonlinear equations.1

30.3 Solving
p

2 — Second Millennium C.E. Style

30.3.1 The Newton-Raphson Method

The Newton-Raphson method reduces the problem of root-finding to the much simpler problem of determining the

root of a linear equation, in this case a line which is tangent to the function at some point close to where we expect the

actual root to be. In particular, in order to find a root x� of the equation f .x/ D 0, one selects an initial rough guess,

xn, of the actual solution (x�), that is, somewhere near where the function intercepts the x�axis. The function can be

then approximated by the tangent line at the point .xn; f .xn//. It is fair to expect that the resulting x-intercept of this

tangent, say xnC1, will be a better approximation to x�.

Again, we can repeat this process with xnC1, constructing the tangent line and take the ‘zero’ of this new tangent

line to be the basis of a further approximation. Continuing in this manner, a succession of values can be generated

which will, under the right circumstances, approach x� rapidly, improving in accuracy as the number of iterations

increases.

The method then is based on the computation of tangents. For the tangent to a function passing through the point

.xn; f .xn// with slope f 0.xn/, an equation can be generated from the point-slope form of the line, i.e., y D mx C b:

y D f .xn/C f 0.xn/.x � xn/:

1See for example, Boyer [2] p. 411f.
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As long as the derivative evaluated at the point xn, that is f 0.xn/, is non-zero (i.e., the line can’t be parallel to the

x-axis), then we can find the ‘zeros’, i.e., find that x for which y D 0:

x � xn D �
f .xn/

f 0.xn/

or, if xn is the n’th approximation, the next term, xnC1, can be generated from:

xnC1 D xn �
f .xn/

f 0.xn/
n D 1; 2; 3; :::

30.3.2 Applying this to
p

2

There exist several adaptations of this method for calculating particular functions, such as reciprocals and square-roots.

In the latter case, such an adaption has been given a name. The so-called Mechanic’s Rule is used to approximate

square-roots and is derived from the Newton-Raphson procedure. Suppose that xn is a close approximation to the

square-root of some positive number
p
c, then xnC1 is an even closer approximation, with:

xnC1 D
1

2

�

xn C
c

xn

�

:

Exercise Can you derive this from applying the Newton-Raphson method to the appropriate equation?

Indeed, we can use this to find the square-root of 2. We set c D 2 and select a suitable starting point, a guess which

is moderately close to what we expect the answer to be; x1 D 1 would be a suitable selection. Then:

x2 D
1

2

�

1C 2

1

�

D 1:5

and successive approximations converge very rapidly:

x3 D 1:41666667 : : :
x4 D 1:41421568 : : :
x5 D 1:414213562 : : :
x6 D 1:414213562 : : :

so that beyond the fifth iteration, your standard pocket calculator can no longer register successive improvements. In

fact, p
2 D 1:4142135623731 : : :

Exercise What about other square-roots? By analogy, apply the mechanic’s rule to find
p
3.

The above algorithm is in fact quadratically convergent. This means the error is essentially squared at each iteration,

or in other words, the algorithm roughly doubles the number of correct digits after each iteration.

Exercise By inspection, confirm this rate of convergence in the above sequence of approximations to
p
2.

Another notable feature of the Newton-Raphson method is that, except for possibly the initial approximation, all

iterations overestimate the square-root.

Exercise Let the error at any iteration be given by:

xn �
p
c

Using the definition of quadratic convergence, that is, the square of the error at one iteration being proportional the

error in the subsequent iteration, show why all iterations overestimate the square-root.
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30.4 Time Warp: Solving
p
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30.4.1 Mathematics in Mesopotamia

We have seen how to compute the square-root of any number without the square-root button on the calculator, however,

we did need techniques such as those from calculus to help us. So what did mathematicians do before calculus, let

alone calculators? Historical texts reveal that even the earliest mathematically literate societies were concerned with

computing square-roots, and judging by the accuracy of some of their approximations, they had some pretty powerful

methods to do so.

As far back as the second millennium BCE, we see that scribes in the Ancient Near East (or more specifically

‘Mesopotamia’, as it is commonly referred to) were interested in square-roots. They were useful for the many practical

problems they needed to solve, and it may be that they were also interested in them for their own sake.2 Fascinatingly

enough, judging from the evidence that remains, these Mesopotamian scribes too used techniques comparable to

those used in the Newton-Raphson method, despite being 3000 years before the development of calculus. In order

to appreciate this incredible link, we must first become a little acquainted with the way in which mathematics was

practiced in the Ancient Near East.

Mathematical activity from Ancient Mesopotamia can be found on clay tablets that were fashioned in particular

shapes and inscribed upon with a stylus. This style of writing is commonly referred to as ‘cuneiform’ to reflect the

wedge-shape (from the Latin cuneus) configurations. In many cases, tablets that were deemed important to keep were

fired at high temperatures, so that they would become rock hard; a fortunate practice for the historian! Indeed, their

near-indestructible state has meant that these artifacts have survived many millennia, unlike other scholarly documents

written on paper and other organic surfaces which have been forever lost through natural decay.

In addition to the medium, Mesopotamian mathematics has many distinct features.3 Perhaps the most notable of

these is the way in which the number system was structured. Mathematics was carried out using sexagesimal-based

arithmetic, or base-60 (think hours and minutes), so that, unlike our base-10 system which uses numerals arranged

according to multiples of tens, a number written in sexagesimal notation operates in multiples of 60s.

However, embedded within their use of base-60 is a surprising orientation towards base-10. Perhaps because of the

overwhelming burden of devising and working with 59 (or even 60) different symbols for each element necessitated by

arithmetic in base-60, they instead adopted only two different symbols. One of these was a vertical wedge representing

the unit, and the other, ten. Any sexagesimal number would be represented as a combination of (multiples) of these:4

Figure 30.1. The Vertical Wedge (1) and the Winkelhaken (10)

To represent numbers sexagesimally, scholars have developed conventional notation, which is now near-universal

amongst assyriologists. Numbers expressed in cuneiform are transliterated as follows: a simple space is left between

successive sexagesimal places (although some scholars prefer a comma), units and/or tens that are absent are indicated

by a place-holding zero, and numbers are generally represented, faithful to their original articulation, without indication

of their absolute value (that it is the place a number is put that gives it its value). However, as has been adopted

here, a scholar may choose to indicate (their reckoning of) a number’s absolute value by the strategic placement of a

semi-colon, the sexagesimal equivalent of a decimal point; all numbers to the left of the semi-colon are multiples of

successive powers of 60, and all numbers to the right are multiples of successive reciprocal powers of 60. Thus the

number

2For evidence of their practical use see, for example, their inclusion in scribal coefficient lists in Robson [7].
3For an excellent and thorough overview see Robson’s account in Katz [7] pp. 138–196.
4For a fuller description of how the system works see Neugebauer and Sachs [8] p. 2 for example. Of much use and great fun is the online

sexagesimal calculator created by Benno Van Dalen.
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Figure 30.2. A number in cuneiform (from a close-up of Figure 30.3)

can be translated as:5

42 25 35

As you can immediately appreciate from the above example, the lack of additional mathematical notation entailed

that mathematicians operated without the concept of “place-value”. Place-value means that it is the place a number is

put that gives it its absolute value, and ‘unoccupied’ places are held by a place-holding zero. The sexagesimal system

had no such feature, that is, the absolute value of a number can only be determined (if at all) by context. Therefore,

when one sees a simple vertical wedge, one can not know for certain whether this means “1”, “60”, or even “1/60”, or,

for that matter, any multiple of powers of sixty thereof. Thus, when modern scholars add the semicolon and commas,

they are doing so after the fact—these are not present in the originals.

30.4.2 YBC 7289

The Old Babylonian mathematical corpus6 is as yet the best documented period of Mesopotamian mathematics in

scribal schools. One of the most famous mathematical documents from this period is the tablet known simply by its

museum accession number YBC7289,7 well-known because of its mathematical contents: it contains a remarkably

accurate approximation to
p
2.

Figure 30.3. YBC 7289 from Neugebauer and Sachs

5Start in the bottom left-hand corner where you see the four ‘winkelhakens’. This gives you 40. Then continue towards the right to encounter

two vertical wedges. This gives you 2. Taking these together gives the first sexagesimal place ‘42’. Continue towards the right for the rest. You will

notice that the five units that are part of the ‘25’ are slightly imperfect—this has been represented in the transliteration by tiny dots. This indicates

damage to the surface of the actual cuneiform tablet, but context allows us to reconstruct the five with certainty (compare, for example with the

shape and size of the five vertical wedges in the next sexagesimal place).
6Old Babylonian refers to the historical period 2000–1600 B.C.E.

7The tablet is part of the Yale Babylonian Corpus, hence its designation.
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Exercise You have already seen one of the numbers on this tablet-can you figure out the other two? Can you deter-

mine how they are related to one another?

The tablet contains three numbers which are carefully arranged on a diagram: a square with its two diagonals. The

numbers are:

Figure 30.4. Details from YBC 7289 from Neugebauer and Sachs

To the left on the diagram there is the number 30, and roughly centered on the intersection of the two diagonals are

the numbers 1 24 51 10 and 42 25 35. The relationship among these three numbers becomes clear when we examine

their mathematical connection, consistent with their placement on the diagram. If we multiply 1 24 51 10 and 30

together, there results 42 25 35. Furthermore, 1 24 51 10 could mean:

1C 24

60
C 51

602
C 10

603
:

This amount, rendered in base-10 (more recognizable to the modern eye), is 1.414212963, which is very good approx-

imation to
p
2. Now the numbers must be reconciled with their position on the diagram. Suppose it is the side of a

square that is 30 units, then its diagonal, namely 42;25,35, can be found by multiplying 30 with
p
2, or 1;24,51,10. So,

1;24,51,10 is the amount by which one can multiply any given side of a square to produce the length of its diagonal.

Further analysis will reveal that 1;24,51,10 is the best three-sexagesimal-place approximation to
p
2:

.1I 24; 51; 09/2 D 1I 59; 59; 56; 48; 19; 21 : : :

.1I 24; 51; 10/2 D 1I 59; 59; 59; 38; 01; 40 : : :

.1I 24; 51; 11/2 D 2I 00; 00; 02; 27; 44; 01 : : :

A further interesting relation between the numbers that one can uncover is:

p
2

2
D 0I 42; 25; 35D 1p

2

so that 42 25 35 and 1 24 51 10 are indeed reciprocal pairs (that is, their product is 1).8

30.4.3 Possible Mathematical Reconstructions

Let us consider now how would you compute the square-root of two, without a calculator at all (let alone one that has

a broken square-root button!) and without calculus. In order to investigate some plausible approaches as to how this

accurate number was found, not only must you devise an appropriate strategy, but you must bear in mind the additional

constraints of only performing operations that are part of the repertoire of an ancient Mesopotamian mathematician.

Now, the precision with which this number was recorded (the three sexagesimal places) provide our biggest clue as

to how it may have been generated. Combining this with what historians know about the circumstances and practices

of Mesopotamian mathematicians, they can offer some reasonable ways (but indeed these are only hypothetical!) as

to how this was computed. In fact, this task requires a great amount of background which is more than we can cover

here, but for our purposes the more important points to keep in mind are as follows:

1. Other instances: There does exist at least one other less precise approximation to
p
2, namely 1;25.

8See the comments in Fowler and Robson [3, p. 368] for further reflections on this.
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2. Geometry: We know most mathematical problems were predominantly geometrically orientated. Can we make

sense of our procedure geometrically?

3. Division: Algorithms for division in base 60 are pretty tricky. To avoid division, scholars would instead multiply

by the reciprocal of the original divisor. For ‘irregular’ numbers, that is those that have no exact reciprocal,

approximations or alternative, less detectable, techniques may have been used.

4. Tolerance: Scholars were comfortable computing to a high degree of precision, commonly keeping track of at

least several sexagesimal places.

Keeping all these factors in mind, let us consider the following geometrical reconstruction.9 Imagine that
p
2 is in

fact the side of a square, whose area will thus be 2. We are then looking to establish the length of the side of the square,

Area = C
Length of side

C

Figure 30.5. Geometrical interpretation of relationship between a number and its square-root

which will give us the square-root we were looking for. Suppose we make a guess at the length, the area of whose

square will either under-approximate or over-approximate the area. Then the resulting square, in the former case, will

be enclosed by the original square area 2, with an additional portion left over. We can imagine this backwards L-shaped

portion left over as two equal rectangles (with long side of length equal to our initial approximation, henceforth a) and

a small square (with length equal to the short side of the rectangle, henceforth b).

Area = a2

2

a

a b

Total Area = 2

Figure 30.6. (Under-) Approximating the Area

Our intention is to find a value of a which brings the area of its square as close as possible to the square area 2.

Therefore, we are looking to determine b, the short side of one of the rectangles, and add it onto a. To find b we can

consider R, the area of the shaded remainder.

Remainder
R

Figure 30.7. The Remainder

9This is based on the ingenious solution proposed in Fowler and Robson [3, p. 370–376].



236 30. Roots, Rocks, and Newton-Raphson Algorithms for Approximating
p

2, Clemency Montelle

Rather than find the area of one of the rectangles directly, we can simplify the problem and approximate its area.

The area of one of these rectangles can be approximated by dividing the area of the remainder (R) in half, i.e., 1
2
R.

We know the area of a rectangle is given by:

A D base � height

so that using A � 1
2
R, and given we know one of the sides, a, we can conclude:

1

2
R D base � a

so that the base or b can be determined as follows:

1

2

R

a
D b

Area

A
a

b

Figure 30.8. Area of the rectangle and length of the short side

The approximated base of the rectangle b can then be added (or subtracted) to our initial guess to give us a closer

value, i.e., a˙ b. We can represent this geometrical process arithmetically as follows:

p
2 D
p
a2 ˙R � a ˙ b

D a ˙ 1

2

R

a

Indeed, this is only approximate as the process disregards the area of the small square (of side length equal to the

small side of the rectangle).10 Thus we have geometrical precedence for a procedure to generate good approximations

to the square-root of two.

Exercise Try this procedure sketching the process geometrically as you go. Beginning with a guess of a D 1. What

is the length of b? What will be your next guess for a?

At this point it will be useful to examine this procedure arithmetically to see if it in fact matches the numbers that

are on YBC7289. Let our guess a be such that a <
p
2. Suppose we begin with a1 (our initial guess) as 1. Then:

p
2 D

p

12 C 1 � 1C 1

2
� 1
1

D 1I 30

which is indeed a better approximation to
p
2. A square with side 1;30 will over-estimate the original square with area

2. We can refine 1;30 by repeating the procedure again (paying attention to our signs!). Our new a will be 1;30 and

thus R D 0I 15 (extracting R from
p
2 D
p
a2 ˙R) R D 1I 302 � 2 D 0I 15):

p

.1I 30/2 � 0I 15� 1I 30� 1
2
� 0I 15
1I 30

D 1I 25
10As Robson notes, this method is attested more explicitly elsewhere in the extant literature. See Fowler and Robson [3, p. 371].
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You will recall that 1;25 is a value attested in the sources. We can further refine, by repeating the procedure yet

again. A square with side 1;25 will still over-approximate our original square, but by much less:

p

.1I 25/2 � 0I 0; 25� 1I 25� 1
2
� 0I 0; 25

1I 25
D 1I 24; 51; 10; 35; : : :

In just three steps we have reached our recognizable value (provided we use truncated rounding for which there is

plenty of precedence in other texts). Thus we have a geometrically based procedure for determining square-roots, with

techniques that are attested and entirely within the scope of the mesopotamian mathematical environment.

It will strike you and your students that this technique, when written up using modern notation as above (but some-

thing that is certainly not attested in ancient mesopotamia) is entirely equivalent to the modern day mechanic’s rule for

finding square-roots. Thus, if this reconstruction is right, we have a rule for determining square-roots, mathematically

equivalent, yet 3000 years apart!

Exercise Show that these two expressions are mathematically equivalent.

Exercise What might be some of the mathematical reasons the scribes stopped where they did?

30.5 Taking it Further: Final Reflections

Our reconstruction is only a guess at how the attested value might have been determined. It is arguably the best one

we have. It has to its advantage all techniques attested to in other mathematical contexts, it embodies an inherently

geometrically approach, and the numbers are all in conformity with what actually remains. However, it does have its

deficiencies. The main problem surrounds the issue of the divisions carried out in the algorithm—more precisely—the

existence of a reciprocal for one of the numbers in the process.

Our description passed over a vital computational detail, which seems entirely trivial to us, but was an issue for the

scribes. It is one that is easy to miss when one follows through the reasoning, but glaringly obvious when one undergoes

the actual computation. The first ‘iteration’ requires multiplication (by one half), addition, and the division (by one).

The second iteration requires multiplication and addition as above, but this time division by 1;30. This division would

have been carried out by the scribes by multiplying by the reciprocal of 1;30. 1;30 is a ‘regular’ number in base-

6011 and its reciprocal is 40. (See Table 30.1.) However, the third iteration requires us to divide by 1;25, a seemingly

innocuous number, but indeed as you can quickly verify, one that has no direct reciprocal.12

We are faced with a difficulty. It is hard to imagine how the Mesopotamian mathematicians carried out this division.

1;25 has no tabulated reciprocal and their algorithms for computing non-tabulated reciprocals also fail.13 We could

suppose that there existed some approximation for its reciprocal, although this is nowhere attested.

One possible solution to this problem could be the following. We observe that:

1 25 D 5 � 17:

5 is a regular number whose reciprocal was known and 17 an irregular number whose reciprocal was approximated.14

5 D 12 17 D 3 31 42 � 3 32:

11Finite reciprocals exist for numbers in base-60 if and only if its only prime divisors are 2, 3, and 5.
12For more on reciprocals see Melville [5] and Sachs [8].
13See Meville [5] tables 2 and 3.
14See Sachs [8, p. 152–153] and his discussion of M10 from the John F. Lewis Collection of Cuneiform Tablets in The Free Library of Philadel-

phia. The attested value is obviously in error. The tablet gives 35 17 which when multiplied by 17 gives 9 59 49, far from the required 1!. There are

several other such errors on this tablet which may simply be indicative of poor execution. However, that it was computed is the main point.
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x x x x

2 30 27 2,13,20

3 20 30 2

4 15 32 1,52,30

5 12 36 1,40

6 10 40 1,30

8 7,30 45 1,20

9 6,40 48 1,15

10 6 50 1,12

12 5 54 1,6,40

15 4 1 1

16 3,45 1,4 56,15

18 3,20 1,12 50

20 3 1,15 48

24 2,30 1,20 45

25 2,24 1,21 44,26,40

Table 30.1. Reciprocals of Regular Numbers15

Now, let us reconsider the last iteration again, making very clear the computations we need to make to determine

the result:

p

.1I 25/2 � 0I 0; 25� 1I 25� 1
2
� 0I 0; 25

1I 25

D 1I 25� 1
2

0I 0; 25
0I 05� 17

D 1I 25� 1
2
.0I 0; 25/.12/.0I 3; 32/

D 1I 25� 1
2
.0I 0; 17; 40/

D 1I 25� 0I 0; 8; 50

D 1I 24; 51; 10

1 24 51 10 is found exactly, without need to resort to truncated rounding. Such a conjecture is tempting and determines

the value with attention to the nitty-gritty of sexagesimal computation procedures. However, it is only a conjecture.

Others have compelling reasons to support alternative hypotheses.16

We wrap up our investigation into square-roots with a compelling artifactual detail, which gives us a flash of a

glimpse into the individuals responsible for these computations. YBC7289 is not only famous because of its ap-

proximation to one of our favorite irrationals, but also because contained on the actual cuneiform tablet remains the

fingerprint of its executor, impressed before the clay was dried, and preserved in the firing process!

30.6 Conclusion

Episodes from the history of mathematics remind us that how mathematically literate societies articulate, attack, and

solve mathematical problems is dependent on a variety of factors—mathematics isn’t culturally neutral. In this regard,

the examination of two approaches to approximating
p
2, 3000 years apart, can reveal some fascinating features about

mathematical practice. In order to penetrate these early cuneiform tablets we must also consider the ways in which

the mathematics was presented and recorded, the number system it used, a seeming ‘geometrical’ orientation, the

15See Melville [5, p. 2].
16See Høyrup [4, p. 263] and his reconstruction based on side-and-diagonal numbers. See also an early account by Neugebauer and Sachs [6, p.

43].
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Figure 30.9. Photo reprint of YBC7289 with fingerprint

handling of arithmetical operations, and the like. However, while observing these striking differences, we notice that

the resulting reconstructed procedures are similar in essence to those developed some 3000 years later.

Some preliminary ground work may be necessary before covering this capsule. It would be ideal to undertake it

after having established the necessary details of the Newton-Raphson method and the students are comfortable with

the iterative procedure. Having introduced one of its applications, namely of computing square roots (mechanic’s

method), use the method to compute the square-root of two. Now, present the cuneiform tablet to the class, noting the

various relevant details to your students as discussed above. Introduce them to the system of numeration, and the idea

of sexagesimal arithmetic and get them to “read” off the numbers themselves. Emphasize the idea that even though we

are missing any explanation from these ancient mathematicians as to how they obtained these numbers, the precision

of the numbers on the tablet can give us some clue as to how they were generated. Then follow through the geometrical

interpretation with them and show how it is equivalent to the Newton-Raphson method, while also emphasizing the

obvious differences.
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31
Plimpton 322: The Pythagorean Theorem, More

than a Thousand Years before Pythagoras

Daniel E. Otero
Xavier University

31.1 Introduction

An amazingly sophisticated example of some of the oldest written mathematics known to humanity is the clay tablet

Plimpton 322 (Figure 31.1), so called because it is item number 322 in a collection assembled by G. A. Plimpton in

the 1930s and now housed at Columbia University in New York City. The tablet dates to the 19th century BCE, and

can be traced to the Old Babylonian civilization that flourished in Mesopotamia, the fertile valley of the Tigris and

Euphrates rivers (present-day Iraq). This exotic artifact is an ideal touchstone that can be used to spark interest in the

study of representations of number and of arithmetical computational algorithms, say, by future computer scientists

or prospective school teachers. It can also serve to deepen an understanding of the solution of quadratic equations by

students of algebra at all levels.

31.2 Historical Background

Evidence of mathematical thinking is at least as old as the species homo sapiens. Older, in fact, provided we agree

to classify certain animal behaviors, like the ability to differentiate quantities, to count, or even to employ geometric

design in the building of shelters, as evidence of mathematical activity.

Once humans moved from hunting and foraging to farming and later to forming cities, new challenges of life

required new forms of thought, including those that looked much more like what we would today identify as math-

ematics. Certainly, the first literate civilizations known to us also provided written evidence of their mathematics as

well. (See [4] for a glimpse at various forms of mathematics across a wide array of ancient cultures.) The first urban

civilizations had sprung up in the Mesopotamian River Valley some 1000 years prior to the authorship of Plimpton

322 in the wake of improvements in agriculture, trading, organization of labor, and political structures, developments

in human societies that emerged over centuries.

The unknown author of the tablet, hereafter called the Scribe, lived within a century or so of two very famous

Babylonians. King Hammurapi (1792?-1750? BCE) wrote a code of law well-known for its “eye for an eye, tooth for

a tooth” directives in deciding personal injury disputes among his subjects [7, p. 27]. The Hebrew patriarch Abraham

of Ur, another rough contemporary of the Scribe, led his clan from the bank of the Euphrates west into Canaan where

241



242 31. Plimpton 322: The Pythagorean Theorem, More than a Thousand Years before Pythagoras, Daniel E. Otero

Figure 31.1. Plimpton 322. (Image used with permission from the Plimpton Collection, Rare Book and Manuscript

Library, Columbia University.)

generations later they formed the kingdom of Israel.

Perhaps the most important development to come out of the old civilizations of Mesopotamia was cuneiform script

(literally, “wedge-shaped,” from the Latin cuneus, for wedge), an improvement over earlier, more pictographic styles

of writing. This innovation led to more efficient means of recording ideas and information, and allowed thinkers to

communicate their thoughts more easily. Plimpton 322 is an example of the use of cuneiform writing. Let us examine

what the tablet tells us. (See [2] for a wonderfully engaging account of how one might approach this text. This paper

offers an attempt to reproduce some of the adventure of that account in school classrooms.)

31.3 Reading the Tablet

Cuneiform writing is clearly recognizable on this image (Figure 31.1) of Plimpton 322. Although the tablet is damaged

in spots (especially in the upper left corner where much of the writing is lost, and on the right side where a good-sized

chip has come off), we can still identify a table of five columns, organized in fifteen rows, with additional script along

the top edge in symbols of a different style than those in the body of the tablet.

A study of the main body of text, underneath the column headings, reveals that all the writing here is built up from

just two kinds of symbol, a thin vertical wedge ( ), and a wide horizontal wedge ( ).

The fourth of the columns contains a repeated pattern of symbols, but the rightmost fifth column can be seen to

contain the “words” , , , , in order from the top down. The next two rows are lost, but in row seven is the

combination , followed by the groupings and . Curiously, the tenth row contains a single horizontal wedge ,

under which we find the groupings , , , with the rest of the column lost.

Clearly, what we are seeing is Babylonian numeration: the symbols for the numbers 1, 2, 3, etc. That is, the fifth

column in this table is enumerating the rows of the table. Thin vertical wedges are used to represent units of one

(clustered vertically in groups), and fat horizontal wedges denote units of ten. So the numeration appears to be decimal

in form. Indeed, the entries in the fourth column are simply repetitions of the Akkadian word for number, so that

together, the fourth and fifth columns are giving line numbers for the table.
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Having noted this, we observe that the first three columns contain lists of numbers as well. For instance, consider

column 3: in the first row, we make out the sequence . This denotes the pair of numbers 2 and 49. The next entry

in this column contains three vertical wedges, then one horizontal wedge, two vertical wedges, a short gap, and one

vertical wedge; we interpret this as the group of numbers 3, 12, 1. The next entry represents the sequence 1, 50, 49.

In this way, we can now translate the entire tablet, save some strange text at the very top for which we must consult

Akkadian linguists to obtain a translation. What we obtain is presented in Table 31.1.

width diagonal name

, 15 1, 59 2, 49 1

, 58, 14, 50, 6, 15 56, 7 3, 12, 1 2

1, 15, 33, 45 1, 16, 41 1, 50, 49 3

, 29, 32, 52, 16 3, 31, 49 5, 9, 1 4

48, 54, 1, 40 1, 5 1, 37

47, 6, 41, 40 5, 19 8, 1

43, 11, 56, 28, 26, 40 38, 11 59, 1 7

41, 33, 59, 3, 45 13, 19 20, 49 8

38, 33, 36, 36 9, 1 12, 49 9

35, 10, 2, 28, 27, 24, 26, 40 1, 22, 41 2, 16, 1 10

33, 45 45 1, 15 11

29, 21, 54, 2, 15 27, 59 48, 49 12

27, 3, 45 7, 12, 1 4, 49 13

25, 48, 51, 35, 6, 40 29, 31 53, 49 14

23, 13, 46, 40 56 53

Table 31.1. Plimpton 322 transliterated

Notice the blanks where there is missing text from the damaged portions of the tablet. However, the missing entries

in the final column are no mystery; they can be easily reconstructed. What seems much harder to do is rebuild the

missing numbers at the top of the first column. Surprisingly, we will be able to accomplish even this task.

Still, some interesting observations can already be made even after only a cursory study of the tablet:

� the sequences of numbers in the first column are much longer on average than those in the other columns;

� the first column is ordered by the size of the first number in its sequence;

� there are curious gaps between numbers in the sequences in the first column (see rows 5, 6, 12 and 13, in which

numbers less than 10 are preceded by wide spaces);

� and we never see numbers higher than 59, that is, we never see groups of more than five horizontal wedges at a

time.

This last observation is critical to understanding how to interpret the tablet, for it indicates that Babylonian numer-

ation is not a decimal numeration at all, but rather a sexagesimal numeration, namely one based on units of 60.

31.4 Sexagesimal numeration

In our familiar decimal numeration, numbers are represented by means of just ten symbols, the digits 0, 1, 2, 3, 4, 5,

6, 7, 8, 9. It is their relative position in a numeral that determines its value. For instance, we distinguish between 247

and 724 because

247 D 2 � 102 C 4 � 101 C 7 � 100 D 200C 40C 7
724 D 7 � 102 C 2 � 101 C 4 � 100 D 700C 20C 4

This is why we call this numeration decimal positional notation: the position of the digits represent successive

powers of 10, with the 100, or ones, place at the rightmost position.
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We can also extend this to encompass non-integer numbers by placing the decimal point after the ones digit and

setting additional digits to the right of the point to represent negative powers of 10. So

2:47 D 2 � 100 C 4 � 10�1C 7 � 10�2 D 2C .4=10/C .7=100/

Sexagesimal numeration behaves similarly. Consider the sequences of numbers at the top of the second and third

columns on Plimpton 322. These sequences, 1, 59 and 2, 49, are really two-digit sexagesimal numbers. Hereafter, we

will adopt a notation that expresses sexagesimal digits with the standard numerals 0; 1; : : : ; 59 and separates consecu-

tive digits with the pipe symbol ‘j’:

1j59 D 1 � 601 C 59 � 600 D 60C 59 D 119
2j49 D 2 � 601 C 49 � 600 D 120C 49 D 169

These computations illustrate how to convert numbers from sexagesimal into decimal notation. As another example,

consider the numbers in row 10 of the second and third columns:

1j22j41D 1 � 602 C 22 � 601C 41 � 600 D 3600C 1320C 41 D 4961
2j16j1D 2 � 602 C 16 � 601C 1 � 600 D 7200C 960C 1 D 8161

By the way, conversion from decimal to sexagesimal is equally straightforward. We reverse the last computation

above to find the sexagesimal equivalent of 8161 by dividing 8161 by 60, marking the quotient and remainder: 8161�
60 D 136 rem 1. So the remainder is our ones (the rightmost) digit. The quotient, 136, allows us to determine the

remaining digits by repeating this process. Since 136� 60 D 2 rem 16, the sixties digit is 16, and the 602-digit is 2.

Therefore, 8161 D 2j16j1.

This still leaves the question of how we are to understand the numbers of the first column. For if we treat them in the

same way as the others, we are forced to deal with some stupendously large numbers. The number in row 10 of the first

column has 8 sexagesimal digits, so its decimal equivalent would be an integer on the order of 100,000,000,000,000!

Clearly, something else is afoot here.

Recall that the numbers in the first column seem to be ordered according to a pattern, namely, by the size of their

leftmost digit. This suggests that they are not sexagesimal integers, but instead fractions, and that a “sexagesimal

point”, or more properly what is called a radix point, should precede each sequence of digits. Consequently, all the

numbers in this first column of the table are less than 1, decreasing in size from the top down, in the same way that

the decimal numbers 0:836; 0:776; 0:603; 0:495 are seen to be ordered from highest to lowest by virtue of the decrease

of their first significant digits. Now, the Scribe had no special way to signify a radix point, as there was at this point

no symbol for zero. Surprisingly, the use of zero is a much more modern invention, dating to around 500 CE in Asia.

The Scribe’s numeration was a type of “floating point” representation scheme, in which the relative size values of

successive digits in a number was to be inferred from context. But we will use double pipes ‘jj’ to notate the radix

point, so that the entries of the first column in rows 5, 10, and 13 should be interpreted as the following numbers:

0jj48j54j1j40D 48 � 60�1 C 54 � 60�2 C 1 � 60�3 C 40 � 60�4

D 0:8150 : : :
0jj35j10j2j28j27j24j26j40D 35 � 60�1 C 10 � 60�2 C 2 � 60�3 C 28 � 60�4

C 27 � 60�5 C 24 � 60�6 C 26 � 60�7 C 40 � 60�8

D 0:5861 : : :
0jj27j0j3j13D 27 � 60�1 C 0 � 60�2 C 3 � 60�3 C 13 � 60�4

The decimal equivalents produced here are only 4-place approximations. However, we can give them exact values

as fractions (in lowest terms), as for instance,
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0jj48j54j1j40D 48 � 60�1 C 54 � 60�2 C 1 � 60�3 C 40 � 60�4

D 60�4.48 � 603 C 54 � 602C 1 � 601 C 40 � 600/

D 10562500

12960000
D 4225

5184

Notice that we have inserted a 0 as the second digit after the radix point in the number 0jj27j0j3j13 from row 13.

How did we know to do this, especially since no symbol for zero appears in the tablet at this location? The presence

of the 0 is inferred on account of the interpretation of what the numbers in the tablet must signify; this interpretation

is the subject of the next section below. Our Scribe, and other Babylonians, would know to read a 0 for that digit only

by context! We find some tablets from later centuries that will use a separator symbol for a zero, but only to represent

zeros that appear between other nonzero digits [1, p. 9].

31.5 So What Does It All Mean?

It was originally thought that Plimpton 322 was one of dozens of tablets that simply recorded inventories of foodstuffs

and other merchandise. But in 1946, historian of mathematics Otto Neugebauer and A. J. Sachs pointed out that the

Babylonian Scribe was producing some rather sophisticated mathematics in this tablet [5, p. 36ff]: the numbers in the

table were the results of purposeful computations and not simply inventory records. A clue to support this claim lies

in the text at the top of the tablet. These column headings include the words width, diagonal, and name, respectively.

That the fifth column is enumerating the rows of the table has already been ascertained, but the other labels indicate

that the numbers represent dimensions of a right triangle as in the figure below.

diagonal
height

width

Figure 31.2. Dimensions of a right triangle

They confirmed this conjecture by checking that the numbers in columns 2 and 3, when assigned as lengths of a leg

(width) and hypotenuse (diagonal) of a right triangle, gave rise, by means of the Pythagorean theorem, a2 C b2 D c2

(a = height, b = width, c = diagonal) to integer values for the length of the missing side a.1 This is significant, for if

one chooses two whole numbers at random, assigning the larger to be the hypotenuse and the smaller to be a leg of a

right triangle, the chances are extremely slim that the Pythagorean relationship will produce an integral value for the

third side. When a triple of whole numbers does happen to satisfy this relation, we call it a Pythagorean triple.

Once this Pythagorean pattern is revealed, it doesn’t take much extra work to deduce that the entries in the first

column correspond to values of the quantity b2

a2
. For instance, in row 12 of the table, the width of the triangle is

b D 27j59D 1679 and its diagonal is c D 48j49 D 2929, so by the Pythagorean theorem,

a D
p
c2 � b2 D 2400D 40j0;

whence

1There were some exceptions, namely in rows 2, 9, 13, and 15, but these can be explained away as simple computational errors made by the

Scribe. For instance, the number 9j1 in row 9 should instead be 8j1, an easy error to make when marking strokes on a tablet, and the number

7j12j1 in row 13 is actually the square of the number 2j41 that should have been entered there. Indeed, some speculate that this tablet was a scrap

copy, recognized as containing arithmetical errors and discarded in a garbage heap, only to be discovered centuries later in an archaeological dig!
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b2

a2
D 16792

24002
D 2819041

5760000
:

Long division in sexagesimal (a challenging computation for the student!) produces the quotient 0jj29j21j54j2j15,

exactly the value we see at the start of row 12. Armed with this knowledge, we can check the Scribe’s calculations

and, more significantly, we can restore the text from the damaged parts of the tablet. (Decimal equivalents for the

entries in columns 2 and 3 are provided in the table in boldface.)

width diagonal name

0jj59j00j15 119 = 01j59 169 = 02j49 1

0jj56j56j58j14j50j06j15 3367 = 56j07 4825 = 01j20j25 2

0jj55j07j41j15j33j45 4601 = 01j16j41 6649 = 01j50j49 3

0jj53j10j29j32j52j16 12701 = 03j31j49 18541 = 05j09j01 4

0jj48j54j01j40 65 = 01j05 97 = 01j37 5

0jj47j06j41j40 319 = 05j19 481 = 08j01 6

0jj43j11j56j28j26j40 2291 = 38j11 3541 = 59j01 7

0jj41j33j45j14j03j45 799 = 13j19 1249 = 20j49 8

0jj38j33j36j36 481 = 08j01 769 = 12j49 9

0jj35j10j02j28j27j24j26j40 4961 = 01j22j41 8161 = 02j16j01 10

0jj33j45 45 = 45 75 = 01j15 11

0jj29j21j54j02j15 1679 = 27j59 2929 = 48j49 12

0jj27j00j03j45 161 = 02j41 289 = 04j49 13

0jj25j48j51j35j06j40 1771 = 29j31 3229 = 53j49 14

0jj23j13j46j40 28 = 28 53 = 53 15

Table 31.2. Plimpton 322 corrected and translated

This confirms that the Scribe must have had some understanding that connected the values of the numbers in columns

2 and 3 of the tablet with measures of sides of a right triangle, and, as some moderately large values are included there,

there must have been some systematic procedure for obtaining them; it is hardly likely that they were arrived at by trial

and error. Generating such values is not a trivial sort of computational problem, indicating that the Scribe possessed a

good deal of sophistication in mathematical technique. Plimpton 322, therefore, provides convincing evidence that the

Scribe was part of a mathematical culture that understood the relationship we identify as the Pythagorean Theorem,

both as a geometric and an arithmetic relationship, more than 1000 years before Pythagoras was born!

The most thorough analysis of how the tablet entries were produced was suggested by Jöran Friberg [3] and pro-

moted by Eleanor Robson [6]. Robson argues that a natural setting in the context of Babylonian mathematics for

generating this table of numbers proceeds from the tradition of igi-igibi (number-reciprocal) problems in which the

Scribe operated. Such problems have the form: given that a number x and its reciprocal x0 have a specified sum

(x C x0 D s) or difference (x � x0 D d ), find x. The igi-igibi problem is an important special case of a more general

problem popular in Babylonian mathematics: given two numbers x and y with given product xy D p and given sum

x C y D s (or given difference x � y D d ), find x and y.

We readily find an algebraic solution to the latter problem once we have the very useful quadratic identity

xy C
�x � y

2

�2

D
�

x C y
2

�2

:

As two of the terms in this equation are given data in the problem, the identity provides a means for determining

the third. Thus, if x C y D s is given, we obtain d D x � y D
p

s2 � 4p, and if x � y D d is given, then

s D x C y D
p

4p C d 2. In either case, both the sum and difference of the two unknowns are obtained, whence x is

half the sum of these (x D sCd
2

) and y is half their difference (y D s�d
2

). But since symbolic algebra was unknown to

Babylonian culture, the solution just presented could not have been the one employed. How would a Babylonian have

solved this problem?
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y

x

s v/2 (= )

d u/2 (= )

Figure 31.3. Completing the square

Most likely, it was performed by “completing the square,” in much the same way as Greek mathematicians did

centuries later (as in Euclid’s Elements ii.5). The rectangle with sides x and y has area p. Mark off the smaller

distance y along the longer x, and halve the difference to obtain d=2. Cutting this amount off from x leaves half the

sum s=2 D x � d=2. If we are given d , we can now tear off from one end of the rectangle a portion that is d=2 wide

and move it underneath the rectangle after giving it a quarter turn (Figure 31.3). We create from this a gnomon whose

two arms are y long. The gnomon can be completed to a square by adding on the area of the missing corner, a square

with side d=2. The side of the resulting “completed” square is s=2 (that is, .s=2/2 D p C .d=2/2). From the now

known lengths d=2 and s=2, we easily find x D s
2
C d

2
and y D s

2
� d

2
. If, on the other hand, we are given s, then

marking off s=2 from x identifies the width of the arm of the gnomon; tearing off the piece of the rectangle of area

p that sticks out from the gnomon and moving it underneath replaces the rectangle p within the gnomon having the

same area, since x � s=2D yC d=2. The empty corner of the enclosing square is also a square with side d=2 (that is,

.d=2/2 D p � .s=2/2). As before, from the known lengths d=2 and s=2, we then find x and y.

From a computational perspective, the special case p D 1, in which x and y D x0 are reciprocals, is significant,

for Babylonian computers (human ones, of course) would have had access to extensive prepared tables of reciprocals

of numbers as standard arithmetical aids. From such tables of reciprocal pairs x; x0, then, our Scribe would be able to

determine, by means of this method of completing the square, the values of the halves of their difference u D x�x0

2

and their sum v D xCx0

2
, whence the relation 1 C u2 D v2. Indeed, we uncover the connection with the entries of

Plimpton 322 by consulting the following table of reciprocal pairs (as in Table 6 of [6, p. 186]):

x x0 D 1=x u D .x � x0/=2 v D .x C x0/=2 1C u2 D v2

2jj24 0jj25 0jj59j30 1jj24j30 1jj59j00j15

2jj22j13j20 0jj25j18j45 0jj58j27j17j30 1jj23j46j02j30 1jj56j56j14j50j06j15

2jj20j37j30 0jj25j36 0jj57j30j45 1jj23j06j45 1jj55j07j41j15j33j45

2jj18j53j20 0jj25j55j12 0jj56j29j04 1jj22j24j16 1jj53j10j29j32j52j16

2jj15 0jj26j40 0jj54j10 1jj20j50 1jj48j54j01j40

2jj13j20 0jj27 0jj53j10 1jj20j10 1jj47j06j41j40

2jj09j36 0jj27j46j40 0jj50j54j40 1jj18j41j20 1jj43j11j56j28j26j40

2jj08 0jj28j07j30 0jj49j56j15 1jj18j03j45 1jj41j33j45j14j03j45

2jj05 0jj28j48 0jj48j06 1jj16j54 1jj38j33j36j36

2jj01j30 0jj29j37j46j40 0jj45j56j06j40 1jj15j33j53j20 1jj35j10j02j28j27j24j26j40

2 0jj30 0jj45 1jj15 1jj33j45

1jj55j12 0jj31j15 0jj41j58j30 1jj13j13j20 1jj29j21j54j02j15

1jj52j30 0jj32 0jj40j15 1jj12j15 1jj27j00j03j45

1jj51j06j40 0jj32j24 0jj39j21j20 1jj11j45j20 1jj25j48j51j35j06j40

1jj48 0jj33j20 0jj33j20 1jj10j40 1jj23j13j46j40

Table 31.3. Reciprocal pairs for Plimpton 322
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It should be clear from comparing Table 31.3 with either Table 31.1 or Table 31.2 that the first column entries

of Plimpton 322 represent the values of u2 in the analysis presented above. However, Robson explains that the first

column of Plimpton 322 may not be the Scribe’s original first column.

The left-hand side of the tablet is missing, and has been at least since Plimpton acquired it. There is a clean

break here, along one of the vertical rulings which divide the surface of the tablet into columns. Traces of

glue remain in this break, and it has been implied that the other fraction of the tablet must therefore have

been lost in modern times, deliberately or otherwise [6, p. 172].

Another reason for how a break in the clay might have erupted here is possible: the entries may have represented

the values of v2 instead of u2: since each value of v2 begins with the digit 1 followed by the digits of u2, a column

of such numbers may have broken along the line of vertical wedges that produced these 1s. Ultimately, however, this

ambiguity is inconsequential, since both options lead to very similar interpretations of how the values were computed.

Once a list of reciprocal squares had led to the values 1C u2 D v2 in column 1, the Scribe would have obtained

solutions to the Pythagorean relation and thus, the dimensions of a right triangle with height = 1, width = u and

diagonal = v. Columns 2 and 3 of the tablet are then understood as dimensions of a right triangle similar to the one

just found, obtained by scaling up the dimensions 1, u and v to dimensions a, b D au and c D av, respectively. Here,

a is chosen so that all of a; b; c are integers and as small as possible. For instance, in row 1, we have u D 0jj59j30
and v D 1jj24j30, and since both end in the digit 30, multiplication by 2 reduces the number of fractional digits:

2u D 1jj59 and 2v D 2jj49. Scaling up further by 60 D 1j00 produces 120u D 1j59 and 120v D 2j49. So with

a D 120 D 2j00, we find b D 1j59 and c D 2j49. The other rows in the tablet are handled similarly.

31.6 Why Tabulate These Numbers?

Finally, a natural question arises: what would motivate the Scribe to compute Pythagorean triples? Robson [6] ar-

gues that the tablet was devised by the Scribe to generate a “test bank” of right triangle problems. Here is one form

such a problem may have taken: given the hypotenuse and one side of a right triangle, find the missing side. (For

instance, from row 7: given the right triangle with “width” 2291 and “diagonal” 3541, find the “height.” Answer:p
35412 � 22912 D 2700.)

The Scribe, either a teacher of mathematics or an apprentice teacher preparing materials to use with students in

the future, worked to obtain integer dimensions for these triangles so that the required computations would produce

integer results. In fact, it could be that the Scribe was a student assigned the sophisticated task of carrying out the

analysis we have just laid out, to find the most elementary integer-sided right triangle from each of the reciprocal pairs

in a given table of reciprocals. Unfortunately, it appears that the truth of this can never be known with certainty.

31.7 Plimpton 322 in the Classroom

The investigation into understanding what Plimpton 322 says and what purpose it may have served its author can be

carried out pretty much entirely by students, under guidance, of course, but with little background. In particular, these

activities should be accessible to many high school students.

These explorations can be used to highlight a number of topics:

� a study of the Pythagorean Theorem;

� algorithms for arithmetical computations, both by hand and with hand-held calculators;

� decimal positional notation and representation of numbers in other bases; and

� a deep understanding of what it means to solve a quadratic equation, by considering a nonstandard version of the

problem (the igi-igibi problem), namely, as a pair of (nonlinear) equations in two unknowns, and a study of its

geometric/algebraic solution through completing the square.
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31.7.1 First session (about 45 minutes)

� Share with your students an image of the tablet having sufficient contrast such that the characters can easily be

read. Ask them to guess at what it says. Point out the following important features: the kinds of characters that

appear in the body of the table are different – and less complicated than – the characters that appear at the tops of

the columns; all the writing in the body of the table is made from combinations of just two kinds of strokes ( and

). Focus their attention on the last column: this should convince them that they are looking at representations of

the numbers from 1 to 15. This is the key to reading the rest of the tablet. All the other entries are sequences of

numbers similarly represented.

� Ask them to identify the largest number that can be read; no number on the tablet larger than 59 can be found

(see row 8, column 1). What significance might this have? You might want to display a copy of some tabular

array of decimal numbers (exactly what the table of numbers represents is irrelevant) and ask what the largest

numerical symbol (not the largest number) is in that table. This could begin a discussion that compares decimal

and sexagesimal positional numeration as in the section “Reading the Tablet” above.

� Once the class is ready to accept that the tablet displays (sequences of) sexagesimal numbers, they are ready to

see what these numbers are. Share with them the transliterated version of the tablet in Table 31.1 above. Students

can practice what they have learned about sexagesimal numeration by converting entries of columns 2 and 3 of

the tablet into decimal form. (Electronic calculators with Degree-Minute-Second features for working with angle

measure can be used as aids for performing sexagesimal arithmetic.)

31.7.2 Second session (about 45 minutes)

� Once the entries of columns 2 and 3 have been identified, consider the numbers in column 1. What might these

numbers represent? If they are meant to be read as integers, they are VERY large integers indeed. Is this a

reasonable interpretation? Note that the numbers in column 1 seem to be ordered from highest to lowest by virtue

of the size of the leftmost digit of the number. This leads to a recognition that these numbers are not whole

numbers but fractional sexagesimal numbers. There is an “invisible” radix point symbol before the first digit of

each of these numbers.

� So what do the numbers in the tablet measure, if anything? At this point, the English translations of the Akkadian

words that form the column headings can be revealed to point to a geometric interpretation linked to sides of a

right triangle.

� If the numbers in columns 2 and 3 are sides of a right triangle, what are the values of the missing sides (the

heights of the corresponding triangles)? This brings in a consideration of the Pythagorean Theorem.

� Determine the missing height values. (The arithmetic required to find the heights could even be performed in

sexagesimal notation by those with more computational fortitude. The final form of the translated tablet is in

Table 31.2.) Note that most of the rows of the tablet produce integer heights. This drives home a realization that

the Scribe must have been well acquainted with the Pythagorean Theorem (1000 years before Pythagoras!). But

what methods did the Scribe use to determine such large examples of Pythagorean triples? And why would this

have been useful to the Scribe? This continues to support an interpretation that imputes some deeper underlying

arithmetical/geometrical organization. Many classroom discussions of the tablet can end at this stage. Others may

proceed to investigate further . . .

31.7.3 Further explorations

Correct the Scribe. It can be mentioned that there are computational errors in the tablet, in rows 2, 8, 9, 13, and 15

of Table 31.1. These errors were found because the rules that govern the computations performed by the Scribe are now

understood. Some of the errors are easier to explain than others, and more often than not, they give an indication about

how the Scribe performed the calculations necessary to produce the tablet. Working from the last column of Table

31.2, reconstruct the missing digits in column 1 of rows 1, 2 and 3 in Table 31.1, then correct the errors throughout the

tablet. Both [2] and [6] discuss possible explanations for each of these errors.
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The igi-igibi problem and the quadratic equation. Introduce a discussion of the igi-igibi problem (in modern

notation, xy D p, x C y D s), an ancient version of the modern problem of solving a quadratic equation. By

eliminating one of the variables, have students show that this is equivalent to a single variable quadratic equation.

(This discussion requires at least one dedicated hour-long lesson.) Students can then be assigned the following tasks:

� Given values of x from Table 31.3, have students compute their reciprocals x0 (whether in sexagesimal or deci-

mal).

� The special case p D 1 in the igi-igibi problem makes x and y D x0 reciprocals. Together with the geometric

connection indicated in Figure 31.3, this suggests that the change of variables u D x�x0

2
and v D xCx0

2
produces

the quadratic equation 1C u2 D v2.

� Determine from the reciprocal pairs in Table 31.3 the corresponding values (in decimal) of u and v. Now the

connection with Plimpton 322 is complete, as the final column in Table 31.3 matches the first column in Plimptom

322.

31.8 Conclusion

Making sense of Plimpton 322 illustrates the surprising sophistication of ancient mathematics. It can also bring stu-

dents into contact with a variety of fundamental mathematical ideas, from arithmetic (positional numeration, pencil-

and-paper algorithms for the four arithmetical operations) to geometrical algebra (the igi-igibi problem, completing

the square as an algebraic and geometric method, similar triangles, scale factors, and the Pythagorean Theorem). The

15 rows of the tablet provide opportunity for a variety of exercises useful for verifying the underlying relations; and

the handful of errors scattered across the tablet keep things interesting as well. The ability to decode an unfamiliar

numerical notation on an exotic artifact and can engage and intrigue students. In the process, central concepts of arith-

metic, algebra and geometry take the stage and bring mathematical order of a high level to what looks at first like

meaningless scratches in a shard of clay.
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32
Thomas Harriot’s Pythagorean Triples:

Could He List Them All?

Janet L. Beery
University of Redlands

32.1 Introduction

English mathematician and scientist Thomas Harriot (1560–1621) gave the usual formula for Pythagorean triples

using his new algebraic notation but he also started to list them in a systematic way. If he could have continued his list

indefinitely, would he have listed all of the Pythagorean triples? In exploring this question, students can recognize and

describe patterns, write and use algebraic formulas, and construct proofs, including proofs by mathematical induction.

Students also have the opportunity to study an historical approach in which a mathematician seemed to believe that

tabular presentation of a result was just as valuable, effective, and interesting as symbolic presentation of that result.

This material could be used in an undergraduate number theory course, in a “proofs” or “transition” course, or as

enrichment for bright algebra or general education students. At least part of it could be used in college algebra or other

general education courses. In lower level courses, the material should be presented in class, either during an interactive

lecture or as an in-class exploration. In more advanced courses, it could be presented in class, as homework, or as a

project for a small group (or small groups) of students.

32.2 Mathematical Background

Pythagorean triples are ordered triples .x; y; z/ of positive integers with the property that x2C y2 D z2. Such a triple

can be viewed geometrically as giving the lengths of the sides of a right triangle with hypotenuse of length z and

legs of lengths x and y. The Pythagorean triple .3; 4; 5/ has been known since antiquity, with the triple .5; 12; 13/

making its appearance fairly early on in history as well. We usually do not distinguish between the triples .5; 12; 13/

and .12; 5; 13/, although we generally prefer the former representation to the latter. A primitive Pythagorean triple

.x; y; z/ is a Pythagorean triple for which the entries x, y, and z are relatively prime, or, equivalently, for which the

greatest common divisor of x, y, and z is 1. Since any divisor of any two of x, y, and z in a Pythagorean triple must

divide all three of x, y, and z, then x, y, and z in a primitive Pythagorean triple are in fact pairwise relatively prime.

The Pythagorean triples given above are primitive, whereas the Pythagorean triple .15; 36; 39/ is not primitive since

each of its entries is divisible by 3. Since any Pythagorean triple can be reduced to a primitive Pythagorean triple by

dividing each entry by the greatest common divisor of the three entries, we may restrict our search for all Pythagorean

triples to a search for all primitive Pythagorean triples.

251
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32.3 Historical Background

The ancient Greek mathematician and philosopher Pythagoras (c. 572–497 BCE) is generally credited with recognizing

that triples of the form .2n C 1; 2n2 C 2n; 2n2 C 2n C 1/, where n is a positive integer, are Pythagorean triples

(though not in the modern algebraic form given here). Some attribute the form .2n; n2 � 1; n2 C 1/, where n is a

positive integer such that n � 2, to Pythagoras as well, while others, including Thomas Harriot, attribute it to the

Greek philosopher Plato (c. 429–347 BCE) [1, vol. 2, p. 165; 7, p. 50]. The Greek mathematician Euclid (c. 300 BCE)

described geometrically the much more general formula .2mn;m2�n2; m2Cn2/, wherem and n are positive integers

with m > n, in Book X of his famous Elements [6, vol. 3, pp. 63–64]. The Greek mathematician Diophantus (c. 250)

certainly knew this formula, too, as he described it via examples in Books II and III of his Arithmetic [5, pp. 144–145,

166–167].1 The Arithmetic contained many intriguing problems involving sums and differences of squares.

In sixteenth century Europe there was renewed interest in the mathematics of the ancient Greeks, including that of

Diophantus [17, pp. 10, 31–32].2 Rafael Bombelli (1526–1572) included problems from the Arithmetic of Diophantus

in his 1572 Algebra, printed in Bologna. W. Holzmann (1532–1576), writing under the pen name of Xylander, pub-

lished the first translation of the Arithmetic from Greek into Latin in 1575 in Basel. In 1593, the French mathematician

François Viète (1540–1603) based his Five Books of Zetetica on the Arithmetic of Diophantus.

In England, Thomas Harriot3 read carefully both the Arithmetic of Diophantus (probably in Xylander’s translation)

and Viète’s reworking of it in his Five Books of Zetetica. In particular, he rewrote in his own algebraic notation

Diophantus’ and Viète’s derivations of the formula, .2mn;m2 � n2; m2 C n2/, where m and n are positive integers

withm > n, for generating Pythagorean triples, correcting minor errors [4, folios 204–205]. However, Harriot’s list of

Pythagorean triples was written in response to the work of yet another mathematician, Michael Stifel of Germany.4

32.4 In the Classroom

32.4.1 Harriot’s List of Pythagorean Triples

In his 1544 Arithmetica Integra, Michael Stifel (1487–1567) discussed “diametrical numbers,” which correspond to

Pythagorean triples [11, pp. 14v–16]. By a “diametrical number” Stifel meant a productmn of positive integers such

that m2 C n2 is a square. He gave as an example that 12 is a diametrical number with sides 3 and 4 and diameter

5 [11, p. 14v]. He then gave the sequences of diametrical numbers, or Pythagorean triples, traditionally attributed to

Pythagoras and to Plato; namely [11, p. 15],

Order 1 (Pythagoras):

1
1

3
; 2
2

5
; 3
3

7
; 4
4

9
; 5

5

11
; � � �

Order 2 (Plato):

1
7

8
; 2
11

12
; 3
15

16
; 4
19

20
; 5
23

24
; � � �

Here, for example,

3
3

7
D 24

7

corresponds to the Pythagorean triple .7; 24; 25/. Have students compare the first few triples given by these lists with

the first few triples given by the formulas above attributed to Pythagoras and Plato. Replacing n by 2n in the Platonic

formula yields the formula .4n; 4n2 � 1; 4n2 C 1/, n � 2, for the entries of Order 2 above. The first several triples

for each of orders 1 (Pythagoras) and 2 (Plato) above are listed in Figure 32.1, also in orders 1 and 2. For instance, the

1Diophantus actually sought and found positive rational solutions of equations of the form x2 C y2 D z2 in his examples.
2Leonardo of Pisa, or Fibonacci, had included problems of Diophantus in his Liber Quadratorum in 1225, but this work was not to resurface in

Europe until 1856 [17, p. 11].
3For a short biography of Harriot, see the appendix, “Who Was Thomas Harriot?”
4Although the Harriot scholar Rosalind Cecilia Tanner (1900–1992) described Harriot’s work on Pythagorean triples in [13], it remains little

known.
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Order 1)

1 0 1 2)

2 4

3 4 5 4 3 5 3)

2 8 4 12

5 12 13 8 15 17 15 8 17 4)

2 12 4 20 6 12

7 24 25 12 35 37 21 20 29 20 21 29

2 16 4 28 6 16 8 24

9 40 41 16 63 65 27 36 45 28 45 53

2 20 4 36 6 20 8 32

11 60 61 20 99 101 33 56 65 36 77 85

2 24 4 44 6 24 8 40

13 84 85 24 143 145 39 80 89 44 117 125

2 28 52 6 28 8 48

15 112 113 197 45 108 117 52 165 173

2 32 60 6 32 56

17 144 145 257 51 140 149 229

2 36 36

19 180 181 185

2 40 40

21 220 221 225

5)

45 28 53 6)

10 20

55 48 73 48 55 73 7)

10 24 12 36

65 72 97 60 91 109 91 60 109

10 28 12 44 14 28

75 100 125 72 135 153 137

10 32 52 32

85 132 157 205 169

36 60 36

193 265 205

40

245

And in this way for the rest to infinity. Here are all the primes,
but not all here are prime.

Note.

First differences of the order

first. 2. 4. under double

second. 4. 12. triple

third. 6. 12. double

fourth. 8. 24. triple

fifth. 10. 20. double

sixth. 12. 36. triple

seventh. 14. 28. double

eighth. 16. 48. triple

and so on to infinity

Figure 32.1. Thomas Harriot’s orders 1 through 7 of Pythagorean triples
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triple .7; 24; 25/, corresponding to 3 3
7

, appears in the fourth row of Order 1 in Figure 32.1. The triple .9; 40; 41/ in the

fifth row of Order 1 corresponds to 4 4
9

in Order 1 above, and the triple .16; 63; 65/ in the fourth row of Order 2 to 3 15
16

in Order 2 above.

Stifel made the bold claim that his orders 1 and 2 included all primitive Pythagorean triples [11, p. 15]. However, as

we have seen, both Euclid and Diophantus knew there were more Pythagorean triples than just these, as did Harriot.

Harriot set out to correct Stifel’s error not by providing an algebraic formula generating all Pythagorean triples, but

rather by providing a complete list of Pythagorean triples. As can be seen in Figure 32.1,5 Harriot began with Stifel’s

orders 1 and 2 as his own first and second orders of Pythagorean triples. Each of Harriot’s orders contains infinitely

many triples and there are infinitely many orders.

To see how Harriot constructed these orders, let us call the triple above the line in each order the “starter” and the

first triple below the line the “first triple” (as in [13]). Note that Harriot interchanged the first two entries of the first

triple to obtain the starter for the next order. For example, the first triple .8; 15; 17/ of the second order becomes the

starter .15; 8; 17/ of the third order. Notice also that the tables are stepped so that these triples appear side by side.

Within each order, to obtain the next triple, Harriot used rules based on finite differences, described in his table at

the bottom of Figure 32.1. Although Harriot did not use the symbol n, or any other symbol, in this table, one can see

that the first entries of the triples of the nth order have a constant first difference of 2n; that is, to obtain the subsequent

first entry, add 2n. For instance, note that in the order 3 table, successive first entries are obtained by adding 6. Note

also that the constant difference 6 is recorded in the order 3 table in a column to the left of the column of first entries.

The first differences between second and third entries are not constant, but the second and third entries have a

constant second difference of 4 or 8, depending on whether n is odd or even, respectively. Harriot’s rule in the table

at the bottom of Figure 32.1 is for the first first difference in each order—that is, the first difference one adds to the

second and third entries of the starter to obtain the second and third entries of the first triple. This first difference is

“double” 2n or 2.2n/ D 4n for odd orders and “triple” 2n or 3.2n/ D 6n for even orders. So, for example, in the

order 4 table, one adds 3 .2 � 4/ D 24 to each of 21 and 29 to obtain 45 and 53. One then adds 24C 8 D 32 to these

entries to obtain 77 and 85, and so on. The first differences, 24, 32, 40, and so on, are recorded in the order 4 table in

a column to the right of the column of third entries.

In four additional folios, or manuscript sheets, Harriot continued the seven orders shown in Figure 32.1 through

order 22 with entries up to hypotenuse 1105 [3, ff. 86–89]. Ask students to fill in the missing entries and rows (triples)

for the orders shown in Figure 32.1 and to construct tables for orders 8 and 9 using the rules described in the preceding

paragraph. Point out that some of the Pythagorean triples in Harriot’s tables are primitive and some are not. For

instance, .33; 56; 65/ is a primitive Pythagorean triple, while the triple right above it in the order 3 table, .27; 36; 45/,

is not primitive, since each of its entries is divisible by 3 (and 9).

32.4.2 Does Harriot’s List Include All Primitive Pythagorean Triples?

In the lower right corner of Figure 32.1, Harriot claimed that his list contained all the primitive (“prime”) Pythagorean

triples but that not every triple in his list was primitive. Our question, then, is, would Harriot’s tables, if extended

indefinitely, include all primitive Pythagorean triples?

As we have seen, Harriot knew at least one general formula for Pythagorean triples and derived it elsewhere in

his manuscripts [4, ff. 204–205]. Harriot gave this formula as .rr � ss; 2rs; rr C ss/ or, as we would write it,

.r2 � s2; 2rs; r2 C s2/. He was careful to point out that r must be greater than s, but did not specify any other

conditions on r and s. We now know that selecting r and s to be relatively prime positive integers with r > s � 1 and

r � s odd always results in a primitive Pythagorean triple and that every primitive Pythagorean triple can be obtained

in this way. (Number theory students will know the last condition as r and s are incongruent modulo 2, while general

education students should note that one of r or s must be even and the other odd.)

Again, our question is, would Harriot’s lists, if continued indefinitely, contain every primitive Pythagorean triple?

Equivalently, is every triple of the form described in the preceding paragraph in at least one of Harriot’s lists? Since

this form is completely characterized by r and s, it would be helpful to identify the values of r and s for the entries in

Harriot’s lists shown in Figure 32.1. Ask students to compute values of r and s for orders 1 through 4 and to predict

those for orders 5 through 8 based on the patterns they see in orders 1 through 4. Figures 32.2 and 32.3 show some of

5Figure 32.1 is a transcription, and translation from Latin to English, of the manuscript sheet BL Add. MS 6782, folio 85, from [3].
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1)

r s

1 0 1 1 0

2 4

3 4 5 2 1

8

5 12 13 3 2

12

7 24 25 4 3

16

9 40 41 5 4

20

11 60 61 6 5

24

13 84 85 7 6

28

15 112 113 8 7

32

17 144 145 9 8

36

19 180 181 10 9

48

21 220 221 11 10

2)

r s

4 3 5 2 1

4 12

8 15 17 4 1

4 20

12 35 37 6 1

4 28

16 63 65 8 1

4 36

20 99 101 10 1

4 44

24 143 145 12 1

52

197 14 1

60

257 16 1

3)

r s

15 8 17 4 1

6 12

21 20 29 5 2

6 16

27 36 45 6 3

6 20

33 56 65 7 4

6 24

39 80 89 8 5

6 28

45 108 117 9 6

6 32

51 140 149 10 7

36

185 11 8

4)

r s

20 21 29 5 2

8 24

28 45 53 7 2

8 32

36 77 85 9 2

8 40

44 117 125 11 2

8 48

52 165 173 13 2

56

229 15 2

Figure 32.2. Thomas Harriot’s orders 1 through 4 of Pythagorean triples with values for r and s

these values for Harriot’s orders 1 through 7. For instance, in the order 3 table in Figure 32.2, r D 5 and s D 2 yield

the triple .52 � 22; 2 � 5 � 2; 52 C 22/ or .21; 20; 29/.

Students should note that r and s are integers with r > s � 1 and r�s odd, but that r and s are not always relatively

prime. They can now see that there are Pythagorean triples that would not appear in Harriot’s list. For instance the

triple .16; 30; 34/ is not in Harriot’s list because it is generated using values of r and s (r D 5 and s D 3) for which

r � s is even. It can be obtained by multiplying by 2 each entry of the primitive Pythagorean triple .8; 15; 17/ from

Order 2. The triple .15; 36; 39/ given above also is not in the list. It can be obtained by multiplying by 3 each entry of

the primitive Pythagorean triple .5; 12; 13/ from Order 1.

Of course, if we can show that every Pythagorean triple of the form .r2 � s2; 2rs; r2 C s2/, with r and s integers

such that r > s � 1 and r � s is odd, is in Harriot’s list, then we’ll have that every triple that also has r and s relatively

prime is in the list—that is, every primitive Pythagorean triple is in the list. Have students begin with specific examples

and look for patterns. For instance, ask them to determine in which order n, and in which row k of that order, triples

with s D 2 and r D 3; 5; 7; 9; 19, and 119 would occur. (They should see from their completed Figure 32.2 that for

5)

r s

45 28 53 7 2

10 20

55 48 73 8 3

10 24

65 72 97 9 4

10 28

75 100 125 10 5

10 32

85 132 157 11 6

36

193 12 7

6)

r s

48 55 73 8 3

12 36

60 91 109 10 3

12 44

72 135 153 12 3

52

205 14 3

60

265 16 3

7)

r s

91 60 109 10 3

14 28

137 11 4

32

169 12 5

36

205 13 6

40

245 14 7

8)

r s

Figure 32.3. Thomas Harriot’s orders 5 through 7 of Pythagorean triples with values for r and s
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s D 2, r D 3 is in row 2 of Order 1; r D 5 is in row 1 of Order 3; and r D 7; 9; 19, and 119 are in rows 1, 2, 7, and 57

of Order 4.) Do the same for s D 5 and r D 10; 12; 14; 16; 18, and 218. Repeat as needed, then have students apply

their newfound rule or formula to s D 17 and r D 46; 48; 50; 52; 54, and 104.

All students should note that, for a given value of s, the (even) order with that fixed value of s contains all pairs

.r; s/ with r > 3s (or r � s > 2s), and that the remaining pairs .r; s/ with s < r < 3s (or 0 < r � s < 2s) occur in

the preceding odd orders. Students capable of writing algebraic formulas can be more specific, noting that, for a given

pair .r; s/ with r > s � 1 and r � s odd, either r < 3s or r > 3s (being careful to explain how they know r ¤ 3s).

In the former case, .r; s/ is in the order n D r � s table in row k D 3s�rC1
2

(where the starter is in row 0 and the first

triple is in row 1). In the latter case, .r; s/ is in the order n D 2s table in row k D r�3sC1
2

.

Of the many patterns students may detect in Harriot’s tables of Pythagorean triples, one of the most interesting is

that, in tables of odd order n, z � y D n2, and, in tables of even order n, z � y D 1
2
n2. Students may confirm these

observations using the formulas we have given thus far or using those given in the next paragraph.

32.4.3 Proofs for More Advanced Students

Implicit in the penultimate paragraph of the preceding section are formulas for r and s, which students may have

written in order to describe patterns in Harriot’s tables and/or to complete the proof above. For odd order n, the entries

in row k may be written using r D 3n�1
2
C k and s D n�1

2
C k. Here, r � s D n. For even order n, the entries in

row k are given by r D 3n�2
2
C 2k and s D n

2
, and we have r � s D n � 1C 2k. Students may ask how we know

our formulas for r and s are correct for Harriot’s tables; that is, how we know they generate all entries of Harriot’s

tables. Students in more advanced courses could be asked to devise induction proofs to show that our formulas for r

and s do indeed agree with Harriot’s table construction rules. Since every pair .r; s/, with r and s integers such that

r > s � 1, generates a Pythagorean triple, such a proof also would establish that every triple in Harriot’s list is indeed

Pythagorean.

Harriot’s table construction rules tell us how to move from one order to the next and, within each order, how to

move from one entry to the next. More specifically, they tell us how to “start” each table from the preceding one and,

within each table, how to derive each row from the preceding one. Ask students to show separately for odd and even

orders n that, according to our formulas for r and s, the first triple (k D 1) in the order n table is the same as the

starter (k D 0) in the order nC 1 table. This can be done simply by checking that the formulas for r and s agree. To

prove by induction on n, n � 1, that our formulas give the same starter in each order n as do Harriot’s rules, students

actually must show that our formulas give the same starter (row k D 0) and first triple (row k D 1) as do Harriot’s

rules. After checking that our formulas give Harriot’s order n D 1 starter and first triple (basis step) and completing

the check described above to establish that the order nC 1 starter is the same as the order n first triple, what remains

for students to show (in order to complete the inductive step) is that the order nC 1 first triple is correct. This proof is

a special case of the argument described in the next paragraph.

The proof outlined in the preceding paragraph establishes the basis step for a proof by induction on k, k � 0, that,

within each order n, our formulas give the same entries in row k as do Harriot’s rules. To prove that our formulas

give successive triples within each order according to Harriot’s rules, we show that our formulas give Harriot’s first

differences for row k; namely, 2n and 4n C 4k for tables of odd order n, and 2n and 6n C 8k for tables of even

order n. For odd orders n, one can check that the differences between corresponding entries of the Pythagorean triples

generated by .r; s/ and .r C 1; sC 1/ are 2.r � s/, 2.r C sC 1/, and 2.r C s C 1/. Substituting the expressions for r

and s for n odd from the preceding paragraph results in differences of 2n, 4nC 4k, and 4nC 4k, matching Harriot’s

first differences. For even orders n, when we compute the differences between entries of the triples generated by .r; s/

and .r C 2; s/, and substitute the appropriate expressions for r and s from the preceding paragraph, we again obtain

Harriot’s first differences.

32.4.4 Harriot’s Derivation of the Formula .r2 � s2; 2rs; r2 C s2/

Our reasoning above relies on the theorem that the formula .r2 � s2; 2rs; r2 C s2/, with r and s relatively prime

integers such that r > s � 1 and r � s is odd, generates all primitive Pythagorean triples. This theorem is proved

in most elementary number theory texts. Harriot’s derivation of the formula .r2 � s2; 2rs; r2 C s2/, with r and s

integers such that r > s � 1, followed those of Diophantus (most likely as translated by G. Xylander, the pen name of
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W. Holzmann) and Viète with minor corrections to their reasoning. He noted both “Diophantus lib. 2.8” and “Zet. lib.

4.1” at the start of his own work [4, f. 204]. What is most notable about Harriot’s derivation is the modern algebraic

notation he used to convey clearly the details of the argument.

In setting out to solve the problem, “Divide bb into two square numbers” [4, ff. 204–205], Harriot assumed bb (or

b2) is the sum of the squares of a and b � sa
r

, where r and s were assumed implicitly to be positive integers and

explicitly to satisfy r > s, and set out to write expressions for a and b � sa
r

in terms of r and s. (Here, a and b were

assumed to be positive and almost certainly rational.) He then solved the equation

aaC bb � 2bsa
r
C ssaa

rr
D bb

to obtain

a D 2brs

rr C ss and b � sa
r
D brr � bss

rr C ss :

Multiplication of .b � sa
r
; a; b/ by rrCss

b
would then yield integers .rr � ss; 2rs; rr C ss/ forming a Pythagorean

triple, a formula Harriot put to use in nearby manuscript sheets to generate lengths of sides of right triangles [4, ff.

201–203].

None of the aforementioned mathematicians who had what we now know to be the general formula claimed his

formula generated all (primitive) Pythagorean triples, although some or all of these mathematicians may have believed

or at least suspected so. Diophantus, in Proposition (or Problem) 8 of Book II of the Arithmetic, set out “To divide

a given square number into two squares” [5, p. 144]. Viète, following Diophantus, wanted “To find numerically two

squares equal to a given square.” (This was Zetetic I (Zeteticum I) in the Fourth Book (Liber Quartus) of his Five

Books of Zetetica (Zeteticorum Libri Quinque) [16, p. 124].) Harriot, following both Diophantus and Viète, stated the

problem even more succinctly as, “Divide bb into two square numbers” (he actually wrote on one manuscript sheet,

“Dividere bb in duo �”) [4, ff. 204–205]. Note that Diophantus, Viète, and Harriot were interested here in finding at

least one way to represent a given rational square number as a sum of rational squares, and not necessarily all ways of

doing so. In fact, they went on to solve problems in which they found alternate ways of representing numbers as sums

of squares. Both Zetetic II and Zetetic III in Viète’s Fourth Book are “To find numerically two squares equal to two

other given squares” [16, pp. 125–6]. Euclid sought (in the first of two lemmas preceding Proposition 29 of Book X of

The Elements) “To find two square numbers such that their sum is also square” [6, vol. 3, p. 63]. This was a slightly

different approach from those of Diophantus, Viète, and Harriot, but Euclid did not seem to indicate that he would find

all such numbers.

32.4.5 Harriot’s Algebraic Notation

Harriot’s algebraic notation was very modern and certainly was a great improvement over that of his primary algebraic

influence, Viète. Where Harriot wrote the Pythagorean triple formula as .rr � ss; 2rs; rr C ss/, Viète wrote it as

.R quad�S quad; S in R 2; R quadCS quad/, where “in” can be translated as “times” and “quad” as “squared”.

Using these translations, Harriot scholar Jacqueline Stedall noted that where Viete wrote [10, pp. 8, 10–11],6

If to
A plane

B

there should be added
Z squared

G
;

the sum will be
G times A plane C B times Z squared

B times G
;

Harriot wrote
ac

b
C zz

g
D acg C bzz

bg
:

6Stedall translated Viète’s Latin and modernized Harriot’s “equals” sign. In particular, she translated Viète’s “in” as “times” and his “quad” as

“squared”.
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By “A plane” Viète meant a variable representing the area of a planar or rectangular region—that is, the product

of two variables—hence Harriot’s translation of “A plane” to “ac”. One can see that Harriot’s notation was much

more succinct and modern-looking than Viète’s. Harriot’s friend, Nathaniel Torporley, introduced superscript notation

for powers as he copied and explained Harriot’s work in his own manuscript notes. For instance, he rewrote Harriot’s

bbbbaaaa as bI V aI V using Roman numerals as exponents. He also wrote this expression as

b O4a O4;

making it unclear whether or not he intended O4 to be a superscript [15, p. 69].

32.5 Conclusion

In seventeenth century Europe, tabulations of square roots, logarithms, and trigonometric values were essential to

applications such as navigation and astronomy. At the same time, the algebraization of mathematics had begun, with

all sorts of mathematical ideas expressed in algebraic language and symbolic notation. Thomas Harriot developed and

used the most succinct and modern-looking algebraic notation of his day, yet he also was a master of table construction.

Harriot’s work with Pythagorean triples shows that he valued both symbolic formulas and numerical tables as means

of organizing and communicating mathematical ideas.

It is important and even exciting for our students to see early uses of mathematical ideas and tools that have become

commonplace today, and Thomas Harriot’s algebraic notation is one such tool. However, it also is important for

students to see ways of thinking about and communicating information and ideas that are not as common today, such

as Harriot’s organization of Pythagorean triples into an infinite sequence of tables, each table containing an infinite

sequence of Pythagorean triples. (Students also can use Harriot’s tables to show that the set of Pythagorean triples is

countably infinite, although there is an easier way to do this!) Of course, students should discuss the advantages and

disadvantages of both methods of presentation.

Harriot’s organization of the Pythagorean triples into tables also helps make this material accessible to students

at all levels, including students in liberal arts or general education mathematics courses who can, at the very least,

recognize mathematical patterns in the tables. More advanced students also can use this material to gain practice in

writing symbolic formulas and constructing logical arguments or proofs.

If Harriot could have continued his list of Pythagorean triples indefinitely, would he have listed all of the primitive

Pythagorean triples? The answer is “yes!” and my hope is that the exploration is as interesting as the answer.
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Appendix: Who Was Thomas Harriot?

Thomas Harriot (1560–1621) may be best known as the navigator and scientist for Sir Walter Ralegh’s7 1585–1586 ex-

pedition to the Virginia Colony, but he also was the leading English mathematician of his day. Harriot made important

discoveries in a wide range of mathematical sciences, including algebra, geometry, navigation, astronomy, and optics.

He published only one work during his lifetime, A Briefe and True Report of the New Found Land of Virginia (1588),

but, at his death, left thousands of manuscript pages of mathematics. Harriot’s mathematical work is remarkable both

for its content—he obtained many results generally credited to later mathematicians—and for its highly symbolic and

visual presentation.

Harriot’s 1577 Oxford University matriculation records show that he probably was born in 1560 in Oxford or

nearby.8 After he graduated from Oxford in 1580, Harriot moved to London, where Sir Walter Ralegh employed him

to research and teach navigation. Ralegh sent Harriot on a voyage to the New World during 1585–1586, and, upon his

return to England, Harriot published A Briefe and True Report of the Newfound Land of Virginia (1588), in which he

described the flora and fauna of Virginia—North Carolina, actually—and also the customs and language of the people

there.

By 1593, Harriot had found a second patron in Henry Percy, the Ninth Earl of Northumberland, known as the

“Wizard Earl” for his interest in science. During the 1590s, Harriot continued to work for both of his patrons, Ralegh

and Northumberland, on navigation, ballistics, optics, chemistry, and alchemy, and, by the turn of the century, geometry

and algebra. In optics, he discovered the sine law of refraction, now known as Snell’s Law, before Willebrord Snell

7Although spelling of names was not consistent during the sixteenth and seventeenth centuries, I have never seen in a document from his era Sir

Walter Ralegh’s name spelled “Raleigh”, as it is in many modern-day history books.
8See [8, p. 40] or [9, p. 88]. The biographical information provided here is from [8] and [9].
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(1591–1626). For his work in navigation, Harriot obtained the formula for the area of a spherical triangle. He made

advances in all of the fields in which he worked,9 except perhaps for alchemy.

In 1603, the year Queen Elizabeth I died and James I assumed the throne, things started to go very badly for Harriot’s

patrons. Ralegh was sent to the Tower of London, convicted of treason, and sentenced to death, although he wasn’t

executed for another 15 years. Then, in 1605, Northumberland and Harriot were sent to the Tower after the Gunpow-

der Plot (Northumberland’s cousin, Thomas Percy, had been involved). Harriot was released almost immediately, but

Northumberland was to serve another 16 years. Although both of Harriot’s patrons were in prison, they continued to

support Harriot, and he kept working on the mathematical and scientific topics listed above and also making astronom-

ical observations. He observed what later would become known as Halley’s comet in 1607, the satellites of Jupiter at

about the same time as Galileo in 1610, and sunspots from 1611 to 1613. By 1618, when Ralegh was executed, Harriot

himself was in very poor health. He was suffering from cancer of the nose, probably brought on by the smoking habit

he had picked up in Virginia.

Three days before he died in 1621, Harriot prepared a will,10 in which he put his friend, Nathaniel Torporley (1564–

1632), in charge of sorting through his mathematical papers and publishing the good stuff. Although Torporley’s

handwritten explanations of Harriot’s work on Pythagorean triples and on finite difference interpolation survive,11 he

ended up publishing none of Harriot’s work. Walter Warner (1557–1643), another Harriot associate, did publish some

of Harriot’s algebra in the Artis Analyticae Praxis (Practice of the Analytic Art) in 1631, ten years after Harriot died.

The history of the Harriot manuscripts is a story in itself.12 There currently are over 4000 manuscript sheets in the

British Library in London and almost 900 of them at Petworth House in West Sussex, which was Northumberland’s

country home [2]. The manuscripts were thought to be lost, then were discovered under the stable accounts at Petworth

House in 1784, then not studied again until the 1830s, then not again until the 1880s. In the meantime, in 1810,

most of the manuscript sheets were transferred to the British Museum, but the split was not made carefully: one

finds some papers on Pythagorean triples, for instance, at Petworth House and others at the British Library. The

manuscripts contain astronomical observations, including drawings of the sun and moon; navigational tables; results

of scientific experiments; mathematical scratchwork; studies of various mathematicians’ works, most notably François

Viète (1540–1603); and a few more polished pieces, including a short treatise on finite difference interpolation and

a lengthy treatise on algebra.13 Study of Harriot’s mathematical manuscripts was revived in the 1950s and 1960s by

scholars E.G.R. Taylor, R.C.H. Tanner, J.A. Lohne, J.V. Pepper, and others, and continues today with work of J.A.

Stedall, the present author, and others.

9The Newton scholar, D. T. Whiteside, wrote that Harriot had a “profound grasp and creative understanding of the whole field of the exact

sciences of his day. . . . Harriot in fact possessed a depth and variety of technical expertise which gives him good title to have been England’s—

Britain’s—greatest mathematical scientist before Newton.” (See [18], p. 61.)
10Harriot’s will is reproduced in [12, pp. 244–247].
11See [14, ff. 26–34v] and [15, pp. 1–98], respectively.
12The brief history of the manuscripts given here is from [8].
13Harriot’s treatise on finite difference interpolation is in [2] at BL Add. MS 6782, ff. 107–146v. For Harriot’s treatise on algebra, see [10].
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33.1 Introduction

Every course in undergraduate calculus contains some component of the examination of series and the various tests to

establish their convergence. One of the most important series is the Harmonic series, which is not only mathematically

interesting per se, but also appears frequently as an ideal ‘comparison’ series to determine the convergence or diver-

gence of other series. At some point, the formal proof of its divergence must be covered. This paper provides a quirky

alternative to the format and the content of the standard proof usually offered; a capsule based on an examination of

the actual primary source of the proof, as it originally appeared, in Latin.

This capsule should ideally be offered before covering the various convergence tests, and just after examining

geometric series. It could be particularly fitting to include it as part of your coverage of the divergence test as the

Harmonic series is often the example cited to demonstrate that the convergence of terms in a series that tend to zero is

not sufficient to guarantee the convergence of the actual series.

Given the richness of historical insight, the relevance of the mathematics, and indeed the novelty for the students,

the presentation of this primary source is ideal for the undergraduate mathematics classroom. Grabbing the attention of

the students by presenting something completely different, yet utterly relevant, may very well renew their enthusiasm

as well as stimulating curiosity and assisting their grasp of this topic.

Observing that multiple proofs exist for a given result can be used to great effect in the classroom. It emphasizes to

students the multifarious ways in which mathematical results can be proven and analyzed, reminding them that there

is no ‘right’ way to mathematize, rather there is much room for creativity and ingenuity. Presenting this proof may

also be an opportunity to touch upon some of the more philosophical issues in mathematics, such as quality and forms

of proof.

This example will also somewhat painlessly introduce them to the ‘reductio ad absurdum’ form of argumentation,

a technique commonly employed in higher mathematics.

This capsule is intended to take 50 minutes (one lecture). A follow-up mini-assignment may be completed at the

teacher’s discretion.
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33.2 The Harmonic Series

Mathematical intuition is a strange thing! Almost always we can count on it to give us a reliable impression of a given

mathematical scenario, but there exist instances in which it spectacularly lets us down. For instance, one of the more

important series in calculus is the so-called Harmonic series:

1
X

kD1

1

k
D 1C 1

2
C 1

3
C 1

4
C 1

5
C � � �

This series is not only distinctive because of its elementary formulation, but because it behaves quite contrary to our

initial expectations. This infinite series has terms that decrease but actually diverges, which seems counterintuitive!

33.2.1 The Harmonic Series Diverges

The proof of this that most often appears in the undergraduate classroom is due to the 14th century French mathemati-

cian Nicole Oresme (1323–1382) [3], which establishes the divergence by selective groupings and comparisons. The

proof, as it might appear nowadays, considers the partial sums. For simplicity’s sake, we can simply show that a subset

of partial sums (in this case S2n ) diverges, which is sufficient. Consider the following partial sums:

S1 D 1

S2 D 1C 1

2

S4 D 1C 1

2
C
�

1

3
C 1

4

�

> 1C 1

2
C
�

1

4
C 1

4

�

D 1C
�

2 � 1
2

�

S8 D 1C 1

2
C
�

1

3
C 1

4

�

C
�

1

5
C � � � C 1

8

�

> 1C 1

2
C
�

1

4
C 1

4

�

C
�

1

8
C � � � C 1

8

�

D 1C
�

3 � 1
2

�

:::
:::

:::
:::

S2n D � � � D 1C
�

n � 1
2

�

so that, by comparison, it follows that this subset of partial sums gets arbitrarily large as n tends to infinity and thus

the series diverges.1

33.3 Bernoulli and the Harmonic Series

33.3.1 Historical Background

The Harmonic series was still attracting the attention of mathematicians some 350 years after Oresme, when it caught

the curiosity of members from one of the most renowned mathematical clans, the Bernoullis. In a span of just three gen-

erations, the Bernoulli family produced no less than eight famous mathematicians. Arguably the two most prominent

were siblings, Jakob (b. 1654) and his younger brother Johann2 (b. 1667). These two brothers were highly successful

and prolific mathematicians; both had close associations with other notable mathematicians such as L’Hôpital and

Leibniz, and frequented the same mathematical circles. Jakob was, in fact, directly responsible for most of his younger

brother’s schooling in mathematics, after the latter became disenchanted with the medical profession, and the two were

close colleagues and collaborators, keeping up regular correspondence and applying themselves to similar problems.

However, far from being supportive, their fraternal proximity proved to be only a hindrance to their collegiality, as

many historians observe that their relationship was fraught with tension and rivalry [2, 5, 6]. Extant letters and com-

munications reveal frequent open antagonism and hostile jealousy.3 However, it may be that this very competitiveness

was responsible for their incredible productiveness and prolific successes in mathematics.

1For various other proofs of this see [7] and [9].
2These two individuals are also known by the anglicized forms of their names James and John, or their French equivalents Jacques and Jean. For

a nice overview of the family and a genealogical chart, see Boyer ([2]) p. 415–6.
3In a rather theatrical portrayal of the relationship, historian Hal Hellman attributes this “sibling rivalry of the highest order” to a “kid brother”

syndrome—that is, Jakob continuously struggled to accept the fact that his much younger brother had become his equal, if not his superior. See

Hellman in his delightfully dramatic chapter “Bernoulli versus Bernoulli” pp. 73–93.
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With respect to the Harmonic series, both Jakob and Johann devoted their attention to the various details and related

results. Jakob published a proof first in 1689 in his work Tractatus de Seriebus Infinitis, which is generally included

as an appendix to his larger work, the Ars Conjectandi, which was published poshumously in 1713. His account is

entirely different from Oresme’s proof and for that reason is to be examined here.

33.3.2 Examining Bernoulli’s Proof in Latin

If you thought mathematical proofs were bad enough to penetrate, the prospect of examining them in Latin might be

downright disagreeable! Indeed it is true that Latin is a language that is no longer used, and although it forms the

basis of modern day English, it is an inflected language with strict grammatical rules and intricacies. But the beauty of

reading ancient mathematical texts is quite precisely the reason that mathematics, unlike literature, is for the most part

universal; its logical structure and predictable results mean that as long as you have a good analytical mind, can read

numbers, and have a sense of adventure, in many cases you can unexpectedly go some way to gaining insight into the

content.

Bernoulli’sexposition on the Harmonic Series in Latin is one such case. You will find it surprisingly easy to decipher

and determine the details of this proof, given that the bulk of the demonstration is largely ‘numerical’. The description

in prose, where it appears, is also straightforward to grasp, as the Latin technical terminology used to describe the

mathematical features is almost identical to the English terms we use today.

You will notice terms, such as , ‘series’, ‘harmonic’, ‘infinite’, ‘fraction’, ‘numerator’, are literally the same words

(except for small modifications to their endings which give an indication of their grammatical function within the

sentence). Notice the unusual way of depicting a lower-case ‘s’ as ‘f’-like symbol, without the cross-bar. You and

your students will find that your mathematical background will be sufficient to allow you to piece together the initial

statement of the theorem (see Figure 33.1):

This tells us it is
Proposition 16

“The Sum”

“of an infinite
series”

“harmonically”

“of increasing
terms”

“etc.”

“is”

“infinite”

Figure 33.1. Title excerpt with explanation

33.3.3 Mathematical Treasure Hunt

Further exploration will reveal the contents of the mathematical proof. Have a glance over the image of Bernoulli’s

proof straight from the original manuscript (Figure 33.22) and see what you can recognize. Use the translation on the

facing page to help you. Consider it as a mathematical treasure hunt to seek out all the basics you need to make out

the proof! Consider:

� How many different series can you find (eight in total)? How are they related to one another?

� In what ways does Bernoulli’s depiction of series differ from our modern one?

� Bernoulli bases his proof on an earlier result he proved. Can you find his reference to an earlier proposition? Can

you derive what it might have covered?

� The proof is based on a reductio ad absurdum type argument, that is, assuming the opposite of a claim or theorem

to be proven, then, reasoning logically deriving a contradiction. From here, the claim is ‘disproved’ and thus its

opposite (your original claim) must be true, by the law of the excluded middle. Just looking at the letters and

ways in which the series are related, can you figure out how it is used in this case?
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Figure 33.2. Bernoulli’s proof from Tractatus

33.3.4 The Translation

XVI The sum of an infinite series of harmonically increasing terms 1
1
C 1

2
C 1

3
C 1

4
C 1

5
etc. is infinite.

[My] brother discovered this first. Indeed, with the sum of the series 1
2
C 1

6
C 1

12
C 1

20
C 1

30
; etc. having been found

previously, he wanted, in turn, to see what emerged from the following series 1
2
C 2

6
C 3

12
C 4

20
C 5

30
, etc. if it was

reduced by the method [set out] in Proposition XIV. He checked the truth of the proposition from a clear contradiction,

which follows if the sum of an harmonic series is supposed to be finite.

For, he observed that

Series A,
1

2
C 1

3
C 1

4
C 1

5
C 1

6
C 1

7
; etc. is equal (from the individual fractions, whose

numerators are 1, 2, 3, 4, etc. rewritten as others)

to series B;
1

2
C 2

6
C 3

12
C 4

20
C 5

30
C 6

42
; etc: equal to C CD C E C F; etc:

C :
1

2
C 1

6
C 1

12
C 1

20
C 1

30
C 1

42
; etc: equal to as prev:

1

1

D : : C1
6
C 1

12
C 1

20
C 1

30
C 1

42
; etc: equal to C � 1

2
equal to

1

2

E : : : C 1

12
C 1

20
C 1

30
C 1

42
; etc: equal to D � 1

6
equal to

1

3

F : : : : : C 1

20
C 1

30
C 1

42
; etc: equal to E � 1

12
equal to

1

4

etc: equal to etc:

equal toG; from which it follows that the series G is equal to A, the whole to the part, if the sum were finite.
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33.4 The Mathematical Explanation

After stating the result of the theorem, Bernoulli immediately credits his brother, Johann , ‘id primus deprehendit

Frater’ with the initial discovery of this result. There are two important mathematical points which should be raised

before we examine his proof. Firstly, the Bernoullian account does not invoke the notion of ‘convergence’ or ‘diver-

gence’, for these concepts were yet to be given mathematical expression. Rather, he articulates the problem in terms

of the sum being finite or infinite. Secondly, Bernoulli expresses himself mathematically a little differently from what

we are used to. For example, he never describes a series by means of a general term, nor uses the modern ‘sigma’

notation. Rather he represents an infinite series by giving the first few terms followed by “etc.”. In keeping with this,

the following mathematical commentary has been careful to avoid unnecessary modern references as well. It’s not

always easy!!

Bernoulli’s proof, ironically enough, is based on a convergent series and the structure of his argument is based on a

reductio ad absurdum style of proof. That is, he uses the relations between various series to derive a contradiction to

prove his result.

He begins with the series,
1

2
C 1

6
C 1

12
C 1

20
C 1

30
� � �

which he showed earlier in the work (Proposition XIV) to have a finite sum equal to 1.

He then describes another series, related to the above series, in that the denominators are the same, but the numera-

tors are now 1, 2, 3, 4, etc... He calls this series B:

B D 1

2
C 2

6
C 3

12
C 4

20
C 5

30
C 6

42
� � �

The individual fractions that make up this series are of course reducible, and indeed this series is in fact the Harmonic

series he stated in his introduction, missing its first term. He notes this equality, and calls this equivalent series, series

A.

A D 1

2
C 1

3
C 1

4
C 1

5
C 1

6
C 1

7
� � �

The advantage of expressing series B as a series of reducible fractions is that it allows Bernoulli to be able to split

up the terms and regroup them. Teasing apart the numbers, we can imagine series B rewritten as:

B D 1

2
C 1

6
C 1

6
C 1

12
C 1

12
C 1

12
C 1

20
C 1

20
C 1

20
C 1

20
� � �

which Bernoulli regroups into smaller series, calling them C;D;E; F; and so on. Series C is:

C D 1

2
C 1

6
C 1

12
C 1

20
C 1

30
� � �

the sum of which is 1; series D begins with the term 1
6

etc., series E with the term 1
12

etc. so that:

C D 1

2
C 1

6
C 1

12
C 1

20
C 1

30
C 1

42
C � � �

D D 1

6
C 1

12
C 1

20
C 1

30
C 1

42
C � � �

E D 1

12
C 1

20
C 1

30
C 1

42
C � � �

F D 1

20
C 1

30
C 1

42
C � � �

:::

Diagram 1
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Using the already established result that series C has a sum of 1,4 Bernoulli determines the sums of the subsequent

series:

Series Sum

C D 1

D D C � 1
2

D 1 � 1
2

D 1

2

E D D � 1
6

D 1

2
� 1
6

D 1

3

F D E � 1

12
D 1

3
� 1

12
D 1

4

:::

Diagram 2

He now considers this array columnwise, just as he did in Proposition XIV. Adding the sub-series as shown in

diagram 1, he gets

C CD C E C F C � � � D 1

2
C
�

1

6
C 1

6

�

C
�

1

12
C 1

12
C 1

12

�

C
�

1

20
C 1

20
C 1

20
C 1

20

�

: : :

which is equal to series B, which was the series of unreduced fractions equivalent to series A, the Harmonic series

missing its first term.

But, adding the terms which are contained in diagram 2, he gets:

C CD C E C F C � � � D 1C 1

2
C 1

3
C 1

4
C � � �

4In the previous proposition (XV) he considers the infinite series:

N D
a

c
C

a

2c
C

a

3c
C

a

4c
C

a

5c
etc:

and

P D
a

2c
C

a

3c
C

a

4c
C

a

5c
C

a

6c
etc: D N �

a

c
He subtracts the second from the first, term by term, to get the series:

N � P D
�a

c
�

a

2c

�

C
� a

2c
�

a

3c

�

C
� a

3c
�

a

4c

�

C
� a

4c
�

a

5c

�

C � � � D
a

c

so that:

Q D
a

c
D

a

2c
C

a

6c
C

a

12c
C

a

20c
C

a

30c
etc:

Setting a D c, he concludes that the sum of this infinite series is 1. There are some inherent problems in this derivation, which Bernoulli recognizes.

In calculus classes today, you might show that the series converges in a number of different ways. One can recognize that the series can be rewritten

as:
1

1 � 2
C

1

2 � 3
C

1

3 � 4
C

1

4 � 5
C � � �

Rewriting this in closed form, consider the related finite series:

n
X

kD1

1

k.k C 1/
D

n
X

kD1

�1

k
�

1

k C 1

�

using a partial fraction decomposition. Noticing that this is a telescoping sum, the expression for the nth partial sum Sn of this series is:

Sn D 1 �
1

n C 1

and

lim
n!1

Sn D 1

so that the series indeed converges and the sum of that series is 1.
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which he states is equal to G. Comparing these two series, there results:

A D C CD C E C F C � � � D G D 1C 1

2
C 1

3
C 1

4
C � � � D 1C A

or

A D 1C A

an obvious contradiction! Bernoulli phrases this as “the whole [is equal] to the part” (totum parti). In other words, the

Harmonic series, which is 1CAwould be equal to ‘its part’, that is,A (the Harmonic series missing its first term). This

would be a clear contradiction (absurditate manifesta) if we assume the sum is finite. Therefore, Bernoulli concludes

the only alternative, namely that the sum of the harmonic series must be infinite.5

33.5 Conclusion

This proof reveals a time at which the mathematical manipulation of series as well as analytically rigorous conceptions

of infinity were at their infancy. Indeed the proof relies on very simple techniques, it is a proof that appeared 150 years

before the mathematically rigorous treatment of series. On its own it can be an alternative or complementary form of

proving divergence without invoking the notion of partial sums.
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Teachers Note

The following worksheet may be useful as a follow-up to the above capsule. After introducing and covering the capsule

in class, and in particular, interactively working through the Latin text with and without its translation as suggested,

this mini-assignment forms a useful follow-up activity for students to carry out either individually or in small groups

in class, or as a ‘take-home’. The students then engage in mathematics by considering its history, as well as making

a historical investigation connected to the mathematics they are learning. The result is a product in which students

demonstrate historical awareness and connections as well as consolidating the relevant mathematical properties.

5For further details see also [4, 5, 8 and 10].
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MINI-ASSIGNMENT

In class, you considered Bernoulli’s Latin account with its translation that the sum of the Harmonic series is infinite.

1. From the steps Bernoulli takes, confirm the mathematical function of the /symbol. Given that the Latin word

for ‘equal’ is aequalis, speculate on the origin of this symbol.

2. Briefly summarize how Bernoulli proves that the sum of the Harmonic series is infinite, recasting his account into

modern notation.

3. (a) Using modern notation, state the general term of the series Bernoulli calls B:

1

2
C 1

6
C 1

12
C 1

20
C 1

30
C � � �

(b) Find exact values for the first four partial sums.

(c) Find a closed form for the nth partial sum (Hint: A partial fraction decomposition may be helpful).

(d) Using your result in (c) show that this series converges by calculating the limit of the nth partial sum and

confirm Bernoulli’s reckoning of its sum.

4. Often, examining an idea in another context can highlight some of the features of one’s own present circum-

stances. Write a reflective paragraph on the process and outcomes of examining a mathematical idea in its original

context. What does it clarify about your own mathematical ways of doing things and what features of modern

mathematics does it reveal? Did this historical activity help you to understand the harmonic series, and more

general series, better?



34
The Harmonic Series: A Primer

Adrian Rice
Randolph-Macon College

34.1 Introduction

Students in a first course of real analysis are often bewildered by many things, but perhaps the main difficulties they

encounter are centered around three fundamental concepts: the notion of infinity and infinite processes; the phenomena

of convergence and divergence; and the construction of rigorous proofs. It is in just such a course that historical

information can be used to good effect. After all, the fact that these are issues with which mathematicians have grappled

for centuries will doubtless be of some reassurance to the student struggling to master them.

What may be less comforting (but important, nevertheless, for a student to know) is that while mathematical results,

once proved, are permanent, the arguments on which they are based are sometimes less so. In other words, as math-

ematics has developed, so has the concept of mathematical rigor. The result is that, although a theorem first proved

250 years ago is still true, the proof originally given for it might not be regarded as fully satisfactory by today’s math-

ematicians. Given that the result still holds, however, it is not normally too difficult to formulate an alternative proof

that attains modern standards of mathematical rigor.

A good example is the subject of this chapter, the harmonic series, which provides both a simple and an important

introduction to issues surrounding the convergence and divergence of infinite series. Moreover, by virtue of its rich

history and the related mathematical topics that arise from its study, it is a particularly appropriate tool to use when

introducing students to the rudiments of classical analysis. There are many ways that the material contained in this

chapter can be conveyed to students, depending on how much time the instructor is willing to devote to the topic in

class. Thus, while they have been written to form the basis of a lecture on the harmonic series, with related activities to

be undertaken either in class or for homework, the following suggestions should be in no way regarded as definitive, but

should rather be used as a guide, illustrating one possible way in which students may be introduced to this fascinating

subject.

34.2 Historical preliminaries

One of the earliest mathematical proofs to involve the concept of infinity concerns one of the most fundamental

results in number theory, namely, the infinitude of the prime numbers. This was Proposition 20 in Book IX of Euclid’s

Elements (c. 300 B.C.), possibly the most influential and widely read mathematical text of all time. Although Euclid’s

proof was phrased in a way that differs from modern presentations, its logic and structure have definitely stood the test

269
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of time. The method used is reductio ad absurdum, or proof by contradiction, one of the most basic and crucial proof

techniques available to the mathematician. When introducing students to the concept of proofs that involve infinite

quantities, this is often a good place to start.

Theorem 1. There are infinitely many prime numbers.

Proof. Suppose that there are only finitely many primes, arranged in order of magnitude 2; 3; 5; : : : ; p.

Consider the quantity q D .2� 3� 5� � � ��p/C 1. This new number must either be prime itself or divisible

by a prime greater than p. In either case there must be a larger prime number than p, which contradicts our

initial assumption that p was the largest prime. Hence the number of primes is infinite.

To the non-mathematician, this result is somewhat surprising and the method used to prove it disarmingly brief. To

the pure mathematician, it is one of the most beautiful theorems in the whole subject. But to both, its power lies in

its amazing simplicity. Rather than tackle the (impossible) task of directly verifying the existence of infinitely many

positive integers whose only proper divisors are themselves and 1, the proof approaches the issue from the opposite

direction, considering only finite possibilities, before refuting the initial supposition. In such a way, it avoids a direct

confrontation with infinity, but obtains the desired result nonetheless. As G. H. Hardy once wrote in praise of this

method of proof [8, p. 34]: “a chess player may offer the sacrifice of a pawn or even a piece, but a mathematician

offers the game.”

When introducing students to Theorem 1, it is usually best to state and prove the result in class; then, as a home-

work exercise, ask them to find an alternative demonstration.1 Incidentally, when presenting Euclid’s proof, it is often

interesting to give J. E. Littlewood’s one-line version, “condensed for the professional” mathematician [1, p. 40], just

to show how short it really can be:

“If p1; p2; : : : ; pn; 1C p1p2 : : : pn is not divisible by any pm.”

After Euclid, matters concerning either infinite quantities or involving infinite processes continued to crop up in

mathematics from time to time: for example, in the method of exhaustion used by Archimedes around 250 B.C., and in

the work of some medieval Indian mathematicians. But during the 17th century, questions involving infinity moved to

the very forefront of mathematics, thanks to the creation of one of the most powerful and versatile of all mathematical

subjects: the calculus.

By the late 1600s, due to the groundbreaking work of the likes of Wallis, Mercator, Gregory, Newton and Leibniz,

the closely related study of infinite series was at the cutting edge of mathematical research. For mathematicians of

this time, the idea of a process that continued forever but could still have a finite result was both remarkable and

counter-intuitive. Nevertheless, certain basic facts would have been known. For example, the sum

1C 1

2
C 1

4
C 1

8
C � � � 1

2n�1
C � � � D 2 (34.1)

was a simple consequence of the fact that (for jr j < 1) the geometric series

aC ar C ar2 C ar3 C � � �arn�1 C � � � D a

1 � r :

Via the use of new calculus-related methods, knowledge of infinite series increased as further interesting results were

obtained, such as

1 � 1
2
C 1

3
� 1
4
C � � � C .�1/n�1

n
C � � � D log 2 (34.2)

and

1 � 1
3
C 1

5
� 1
7
C � � � C .�1/n�1

2n� 1 C � � � D
�

4
: (34.3)

Although by the time students take a first course in real analysis, they will probably have seen equations (34.1),

(34.2) and (34.3), it is still instructive for them to be reminded of these results, and perhaps asked to re-derive them.

At the same time, distinction should be made between these convergent infinite series and the different kinds of

non-convergent series, which either diverge to infinity, like 1 C 2 C 3 C 4 C 5 C � � � , or have no sum at all, like

1 � 2C 3 � 4C 5 � � � � . Students will then be ready to be introduced to the most famous divergent series of all.

1For example, in [9], Hardy and Wright give three different proofs of this theorem.
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34.3 Introducing the harmonic series

At first sight, it would appear that the sum of the reciprocals of the positive integers should not be too hard to find.

It does, after all, bear considerable resemblance to series (34.1), (34.2), and (34.3) above, all of which turn out to be

nicely convergent:
1
X

nD1

1

n
D 1C 1

2
C 1

3
C 1

4
C 1

5
C � � � C 1

n
C � � �

A common feature of all of these series is that, in every case, their terms all tend towards zero, a fact which often

leads the beginner into error. While it is true that for an infinite series to be convergent the limit of its terms must be

zero, the converse is not true; and the harmonic series is the most famous example of this. Although every successive

term in this series gets closer and closer to zero, its sum is still infinite. Not that one would necessarily know this from

numerical experimentation, however. The sum of its first 10 terms comes to just under 3, the first 100 to a little over

5, and the first 1000 terms to nearly 7 1
2

. Indeed, it is a worthwhile exercise to have the students find
P

1
n

for values

of n such as 20, 50, and 100 in their own time, and to form a conjecture regarding the convergence of the harmonic

series on this evidence. They could obviously be forgiven for thinking that the sum is gradually converging to a finite

upper bound, due to the extreme slowness of its divergence. Nevertheless, the upshot is that, while the harmonic series

initially looks as though it should converge to a single number, it will eventually exceed any finite value and diverge

to infinity.

The name of this fascinating series is derived from the close relationship that exists between the disciplines of

mathematics and music. Musical notes are usually produced by strings or columns of air, called harmonic oscillators,

due to the vibrations they emit. Each harmonic oscillator will have a lowest possible frequency, f , which determines

the note created when oscillations occur along the whole length l of the string or air column. This fundamental

frequency f almost always has accompanying faster sound waves called overtones which, ideally, have frequencies

f , 2f , 3f , 4f , 5f , etc. Consequently, the wavelengths of these harmonic overtones will be l , 1
2
l , 1

3
l , 1

4
l , 1

5
l , and so

on. It is from this sequence of “harmonic” wavelengths that the harmonic series gets its name.

Despite its lack of a finite value, the harmonic series is far from useless, having a variety of real-world applications

including the study of traffic flow, structural integrity, and even weather prediction. Suppose that all weather is random

and that the average global temperature in any year has no effect on subsequent temperatures. How many years in

the 21st century will have record-breaking temperatures? The first year of the century (2001) was a record breaker. In

2002, there was a probability of 1
2

that the average temperature would be higher than the previous year, so the expected

number of record-breaking years in the first two years of the century is 1C 1
2
: In the third year, we have a probability of

1
3

that the temperature will be higher than both 2001 and 2002, giving an expected value of 1C 1
2
C 1

3
record-breaking

years. Continuing on, we find that, in a period of n years, we should expect to have 1C 1
2
C 1

3
C 1

4
C 1

5
C� � �C 1

n
years

where global temperature records are broken. And since the sum of the first 100 terms of the harmonic series comes

to just over 5, that is how many record-breaking years we should expect this century.

Obviously, given an infinite number of years, we would expect an infinite number of records to be broken —

an intuitive, and highly non-rigorous, demonstration of the series’ divergence. For homework, the students could be

asked to look for a formal proof of its divergence that would be considered rigorous today and discuss why such a

proof satisfies modern standards of rigor. They will probably find either a demonstration involving an application of

the Integral Test or a proof, now standard in most calculus textbooks, that is a modern presentation of an argument first

given by the medieval mathematician, Nicole Oresme, around 1350 [10, p. 76]:

Add to a magnitude of 1 foot: 1
2

, 1
3

, 1
4

foot, etc.; the sum of which is infinite. In fact, it is possible to form an

infinite number of groups of terms with a sum greater than 1
2

. Thus: 1
3
C 1

4
is greater than 1

2
; 1

5
C 1

6
C 1

7
C 1

8

is greater than 1
2

; 1
9
C 1

10
C � � � C 1

16
is greater than 1

2
, etc.

The standard modern presentation of Oresme’s argument is as follows:

Theorem 2 (Modern proof). The harmonic series
P1

nD1
1
n

diverges.

Proof. Let s2k D 1C 1
2
C 1

3
C 1

4
C � � � C 1

2k
be the 2kth partial sum of the series. It can clearly be written
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as

s2k D 1C
�

1

2

�

C
�

1

3
C 1

4

�

C
�

1

5
C 1

6
C 1

7
C 1

8

�

C � � � C
�

1

2k�1 C 1
C � � � C 1

2k � 1
C 1

2k

�

> 1C
�

1

2

�

C
�

1

4
C 1

4

�

C
�

1

8
C 1

8
C 1

8
C 1

8

�

C � � � C
�

1

2k
C � � � C 1

2k
C 1

2k

�

D 1C 1

2
C 1

2
C 1

2
C � � � C 1

2

D 1C k
�

1

2

�

:

So s2k D
2k
P

nD1

1
n
> 1C k

�

1
2

�

:

Now,
1
P

nD1

1
n
D lim

k!1
s2k > lim

k!1
1C k

�

1
2

�

;

and since this final expression has no limit, the harmonic series diverges.

When presenting the standard modern version of the proof, it is always instructive to provide the students with

alternatives, particularly ones that are not entirely satisfactory today. And with the divergence of the harmonic series,

history provides us with several of these to choose from. There is a proof by Pietro Mengoli from 1647 [5, pp. 204-5],

one each by both Jakob and Johann Bernoulli from 1689 [4, p. 30; 5, pp. 196-8], as well as one by Leonhard Euler

from 1748 [4, p. 31]. We present a later proof, apparently given in 1828 by the 19th-century British mathematician

J. J. Sylvester at the age of 14 when he was a student of Augustus De Morgan [2, p. 246]. It takes for granted the fact

(see (34.2) above) that the alternating series 1 � 1
2
C 1

3
� 1

4
C � � � converges to log 2.

Theorem 2 (Sylvester’s proof). The harmonic series
P1

nD1
1
n

diverges.

Proof. Let S D 1C 1
2
C 1

3
C 1

4
C 1

5
C � � � : The series can then be written as

S D 1C 1

2
C 1

3
C 1

4
C 1

5
C 1

6
C � � �

D 1 � 1
2
C 1

3
� 1
4
C 1

5
� 1
6
C � � �

C1C 1

2
C 1

3
C � � �

D log 2C S:

Now, clearly log 2 is finite. But no finite quantity S could equal itself plus another non-zero finite quantity.

Hence S D 1C 1
2
C 1

3
C 1

4
C 1

5
C � � � is infinitely large and the series diverges.

To the beginner in analysis, this proof may seem convincing enough, and there is no doubt that it is ingenious.

However, modern mathematicians would disapprove of the algebraic manipulation of infinite series as if they were

finite quantities. Moreover, deducing that the sum S is infinite simply because S D log 2 C S differs considerably

from the modern mathematical approach. Nevertheless, it does not take too much effort to convert Sylvester’s proof

into a watertight demonstration of the theorem and, for the student, this would be a good exercise in mathematical

reasoning. Therefore, in class, either Mengoli’s, the Bernoullis’, Euler’s, or Sylvester’s proof of Theorem 2 should be

presented, followed by a discussion of its various merits and/or limitations. In such a way, students may be guided to

construct their own, more rigorous, proofs.
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34.4 A “prime” piece of mathematics

Some of the most brilliant results involving infinite series were obtained by the 18th-century genius, Leonhard Euler.

Euler worked in so many different areas of pure and applied mathematics, and wrote so voluminously on each, that

it is impossible to form an impression of which area was his forte. Nevertheless, there is no doubt that he had a

special fondness for infinite series, contributing numerous results throughout his career, earning himself the nickname

of “analysis incarnate” [4, p. 54]. One of the earliest, from 1735, is perhaps the most famous, concerning not the

harmonic series itself, but its convergent cousin, the sum of the reciprocals of the squares [7, pp. 73-86, 178-81]:

1
X

nD1

1

n2
D �2

6
:

This was followed by related results concerning reciprocals of higher powers, such as

1
X

nD1

1

n4
D �4

90
and

1
X

nD1

1

n6
D �6

945
;

as well as variations on the theme involving, for example, odd squares

1
X

nD1

1

.2n� 1/2 D
�2

8

and alternating series of odd cubic reciprocals

1
X

nD1

.�1/nC1

.2n � 1/3 D
�3

32
:

All of these results essentially concerned infinite series of the form
P1

nD1 1=n
s , where s � 1 is an integer. But in a

paper of 1737, Euler proved a startling connection between infinite sums involving reciprocals of integers and infinite

products involving powers of primes [7, p. 230].

Theorem 3 (Euler’s proof).

1
X

nD1

1

ns
D

Y

p prime

ps

ps � 1 .

Proof. Euler began by letting x D 1C 1
2s C 1

3s C 1
4s C � � � . Dividing this by 2s gave him

1

2s
� x D 1

2s
C 1

4s
C 1

6s
C 1

8s
C � � � :

Subtracting this from his expression for x resulted in

2s � 1
2s
� x D 1C 1

3s
C 1

5s
C 1

7s
C � � � : (34.4)

He continued by dividing this equation by 3s :

2s � 1
2s
� 1
3s
� x D 1

3s
C 1

9s
C 1

15s
C 1

21s
C � � � :

Subtracting this from (34.4) gave

2s � 1
2s
� 3

s � 1
3s
� x D 1C 1

5s
C 1

7s
C 1

11s
C � � � :

In like manner, he obtained

2s � 1
2s
� 3

s � 1
3s
� 5

s � 1
5s
� x D 1C 1

7s
C 1

11s
C 1

13s
C � � �
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and so on. Given that this process could be continued ad infinitum, Euler obtained the equation

�

2s � 1
2s

� 3
s � 1
3s

� 5
s � 1
5s

� 7
s � 1
7s
� � � � � �

�

x D 1;

and thereby concluded that

x D 1C 1

2s
C 1

3s
C 1

4s
C � � � D 2s

2s � 1 �
3s

3s � 1 �
5s

5s � 1 �
7s

7s � 1 � � � ;

or, in modern notation,
1
X

nD1

1

ns
D

Y

p prime

ps

ps � 1 :

As with Sylvester’s proof that the harmonic series diverges, Euler’s proof of this famous identity, while highly

ingenious, has some serious drawbacks. In particular, the wholesale manipulation of the infinite expression 1C 1
2s C

1
3s C 1

4s C � � � as if it were a single finite quantity, x, is highly dubious, and there is also no justification given for

the fact that
�

2s�1
2s � 3s�1

3s � 5s�1
5s � 7s�1

7s � � � � � �
�

x converges to 1. Once again, though, it is useful to show students this

proof in class, and have them locate and attempt to “fix” the logical gaps for homework, before giving them a fully

rigorous demonstration. This modern version, adapted from a proof given in [11, pp. 271–2] is particularly useful as it

is structurally identical to Euler’s, but with all of the logical gaps filled in.

Theorem 3 (Modern proof).

1
X

nD1

1

ns
D

Y

p prime

ps

ps � 1 .

Proof. Let s � 1C ı; where ı > 0: Then, just as in Euler’s proof, subtracting the series 2�s
1
P

nD1

1
ns from

1
P

nD1

1
ns gives us

.1 � 2�s/

1
X

nD1

1

ns
D 1C 1

3s
C 1

5s
C 1

7s
C � � � :

In like manner, subtracting from this the series 3�s
1
P

nD1

1
ns gives

.1 � 2�s/.1 � 3�s/

1
X

nD1

1

ns
D 1C 1

5s
C 1

7s
C 1

11s
C � � � ;

and so on, until eventually

.1 � 2�s/.1 � 3�s/ � � � .1 � p�s/

1
X

nD1

1

ns
D 1C

X0
n�s ;

where
P0

indicates that the summation is only over those integers n > p which are not divisible by the

primes 2; 3; : : : ; p: Now, since s � 1C ı,

j
X0

n�s j �
X0

n�1�ı �
1
X

nDpC1

n�1�ı ;

and, since limp!1

P1
nDpC1 n

�1�ı D 0, the product

.1 � 2�s/.1 � 3�s/ � � � .1 � p�s/

1
X

nD1

1

ns
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converges to 1 as p !1. Therefore,

1
X

nD1

1

ns
D 1

.1 � 2�s/.1 � 3�s/ � � � .1 � p�s/ � � � ;

or, more concisely,
1
X

nD1

1

ns
D

Y

p prime

1

1 � p�s
D

Y

p prime

ps

ps � 1 :

The function �.s/ D
P1

nD1 1=n
s is now known as the Riemann zeta function, after Bernard Riemann who, defining

it for complex values of s, discovered many of its crucial properties. Students often find it interesting to find out (per-

haps for a project or expository paper) about one of the most prized unsolved problems in the whole of mathematics,

the famous Riemann Hypothesis, concerning the non-trivial zeros of �.s/, and how it arises precisely from the rela-

tionship proved in Theorem 3.2 At a more basic level, this identity also provides some fascinating numerical results,

which it is useful to have the students derive for themselves, for example:

�.2/ D 1C 1

4
C 1

9
C 1

16
C � � � D 4

3
� 9
8
� 25
24
� 49
48
� � � � � � D �2

6

�.4/ D 1C 1

16
C 1

81
C 1

256
C � � � D 16

15
� 81
80
� 625
624
� 2401
2400

� � � � � � D �4

90

�.6/ D 1C 1

64
C 1

729
C 1

4096
C � � � D 64

63
� 729
728
� 15625
15624

� 117649
117648

� � � � � � D �6

945
:

But the definition of the Riemann zeta function and Theorem 3 hold only for s > 1. Thus, while the harmonic series

would appear to be the special case of �.s/ when s D 1, in practice it is undefined. However, it is true to say that

1
X

nD1

1

n
D lim

s!1C

Y

p prime

1

1 � p�s
;

an identity which helps the students solve one final homework problem; namely, to derive an alternative proof of

Theorem 1.

Corollary 4. There are infinitely many prime numbers.

Proof. By Theorem 2,
1
X

nD1

1

n
D1:

Therefore, by Theorem 3, the expression

lim
s!1C

Y

p prime

1

1 � p�s

must also equal infinity. But each component in this product is finite. The total product could only reach

infinity if there were an infinite number of components, and for that to happen, there must be an infinite

number of primes.

34.5 Conclusion

We have thus come full circle, ending with a completely different proof of Theorem 1 and illuminating not only a

connection between analysis and number theory, but also a link between the seemingly distinct mathematical worlds

of the discrete and the continuous. As we said at the beginning, the ideas contained in this chapter should be regarded

2A good popular account is given in [3]. For more advanced students, [6] is an excellent study.
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merely as suggestions and not as the last word on the subject. Individual teachers will be able to determine which

topics and activities are within the capabilities of their students, and may omit what they feel is unnecessary. Some,

for example, may believe that an introduction to the Riemann zeta function is too advanced for a first course in real

analysis, while others might regard having the students find
P

1
n

for certain values of n as too elementary. Indeed, no

matter how the instructor chooses to present the material contained in this chapter, the only major mistake he or she

can make is to fail to tailor that presentation to fit the abilities of the students.

Although this chapter contains ideas for a class in real analysis, it also provides tantalizing glimpses of topics

from other areas, such as number theory and complex analysis, thus hopefully whetting students’ appetites for further

mathematical subjects of higher sophistication and scope. Perhaps more significantly, this material shows a connection

between two different but related forms of infinity: the divergence of the harmonic series and the infinitude of the prime

numbers. Finally, and for the pure mathematician this is essential, it shows students that the same result can be proved

in a variety of contrasting ways, giving them practice at comparing the structure and validity of different proofs, and

providing them with an idea of what constitutes rigorous mathematics and what does not. And all of this is achieved

with the careful use of appropriate examples from the history of mathematics.
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35
Learning to Move with Dedekind

Fernando Q. Gouvêa
Colby College

Es steht schon bei Dedekind.

— Emmy Noether

The history of mathematics sometimes calls our attention to intellectual hurdles that our students must face, showing

that ideas and conceptual moves that have become second nature to us are in fact quite daring and difficult to learn. This

article focuses on a particular conceptual move, which we call “the Dedekind move” because it was so characteristic

of Richard Dedekind’s work. Briefly put, the idea is to define a mathematical object as a set of other mathematical

objects. We then treat the whole set as a single thing, and do our best to forget its original plural nature.

Students typically meet this idea for the first time in an “introduction to abstraction” class, when they learn about

equivalence classes. It really comes into its own, however, when the quotient construction is introduced in abstract

algebra. This is a notorious stumbling block for students. A little history can help us understand why, and suggests

some ideas for helping students over the hump.

35.1 Historical Background: What Dedekind Did

Suppose we are confronted with the need to come up with a definition of some mathematical entity. There are many

ways to go about this. Some mathematical definitions, for example, are entirely functional: we explain what it does,

and ignore completely the issue of what it is. But this is rarely completely satisfying. How do we even know that the

object in question exists? Some construction is usually wanted.

Richard Dedekind1 was faced with this situation more than once. His approach was fairly consistent. First, working

with objects already known, he found a set of objects (usually an infinite set) that completely determined the entity he

was trying to construct. Then he defined the new entity to be that set.

What is a real number?

Our first example is probably the best known: Dedekind’s construction of the real numbers. As Dedekind himself tells

the story in [5] (we cite from the translation in [3]), the problem presented itself to him when he was first teaching

calculus, in 1858. He explained to his students that bounded increasing sequences must converge, but found that he

1For a sketch of Dedekind’s life and work, see [1].
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could only justify this claim by drawing pictures and appealing to his students’ geometric intuition. It frustrated him

that he was not able to give a real proof.

Dedekind was a good enough teacher to realize that for his students the geometric approach was probably sufficient.

He was a good enough mathematician to see that this approach “can make no claim to being scientific.” The reason he

could make no progress, he saw, was that he had no clear notion of what a real number was. Since to prove that the

sequence converges requires one to find, construct, or prove the existence of a real number, there was no way to prove

the theorem without such a notion.

Of course, Dedekind was perfectly aware that one could take the convergence of bounded increasing sequences as

an axiom; in fact, he says that this is what one should do in a calculus class “if one does not wish to lose too much

time.” But this approach did not satisfy him.

The calculus class had started in early Fall, 1858. By November, he had a solution. First of all, he took the rational

numbers as known. Then he noted that to pin down a real number ˛, all one has to do is to specify two sets of rational

numbers: the set A of all rational numbers less than or equal to ˛ and the set B of all rational numbers larger than ˛.

He called the pair of sets .A; B/ a cut.

This, of course, is a routine observation. Noticing it was not the new thing about Dedekind’s work. The unexpected

move was to turn the logic around: rather than think that the real number ˛ determined the two sets .A; B/, he proposed

that the cut defined the real number ˛.

In order for this not to be circular, it is necessary to describe which pairs of sets we want without mentioning ˛ at

all. But that is fairly easy. We want three things: every element of A should be smaller than every element of B , B

should not have a smallest element, and A and B together should contain all rational numbers. Once we see that, it’s

easy: define a real number to be any such pair of sets, and show that we can obtain all of the usual structure (algebraic

operations, order, limiting processes) in terms of this definition.

This move is so much a part of the mental toolkit of mathematicians that we no longer see how strange it is. A real

number has just been defined as a pair of sets with certain properties. The set of all real numbers is then the set of all

such pairs of sets. Every one of the sets in the game is infinite, and every definition involves this infinity directly.

Consider, for example, the sum ˛1 C ˛2 of two real numbers ˛1 D .A1; B1/ and ˛2 D .A2; B2/. It must be some

cut .A; B/. To construct A we take every possible element x1 2 A1 and every possible element x2 2 A2, and define

A to be the set of all sums x1 C x2 (this is a sum of rational numbers, so we know what that means). Can we actually

find A? Doesn’t doing so require an infinite number of additions? Does this make sense? Many mathematicians found

this a little disturbing.

In fact, as Dedekind noted in his introduction to [8], several of his contemporaries missed the point. They thought

that all Dedekind was saying was that any real number determined and was determined by a pair of sets .A; B/. As

Dedekind pointed out, that observation goes back all the way to Eudoxus’ definition of equality of ratios in Euclid’s

Elements, Book V. The new idea was that one could create a real number from the rationals by taking such a pair of

sets, and that by taking all the cuts one would get (exactly) all the real numbers.

What is an ideal prime factor?

The Dedekind move appears again in his theory of algebraic numbers. The issue was to understand the arithmetic of

rings such as ZŒi �, ZŒ
p
2�, and ZŒ

p
�5�. These are integral domains in which we can define “primes” in the usual way,

as numbers that do not factor non-trivially, and then look for “prime factorizations.” Everyone’s first assumption is that

things would work as usual, and in some cases they do. As Ernst Eduard Kummer discovered, however, those turn out

to be the exceptional cases.

The simplest example of the problem (and one that Dedekind himself used) is in the ring ZŒ
p
�5�. It is easy to

check, first, that

.1C 2
p
�5/.1 � 2

p
�5/ D 21 D 3 � 7:

With a little bit more work, one can check that each of the four numbers 1C 2
p
�5, 1 � 2

p
�5, 3, and 7 are “prime”

in the sense that they cannot be factored. Thus, the number 21 factors in two completely different and unrelated ways

in ZŒ
p
�5�. So while “prime factorizations” exist, they are not unique. Since uniqueness plays a crucial role in much

of elementary number theory, this is a problem.
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Faced with this, one could just throw up one’s hands in despair, or perhaps focus on determining for which rings

it actually would work “correctly,” so that prime factorizations are unique. Kummer had another idea. He argued that

one could rescue uniqueness by postulating that invisible divisors are in play. Specifically, he suggested something

like this. We would see the weird factorization of 21 above if in fact there were hidden primes p, q, p0, q0 (the latter

two would be the complex conjugates of the first two) such that

1C 2
p
�5 D p � q

1 � 2
p
�5 D p0 � q0

3 D p � p0

7 D q � q0

and so

21 D p � q � p0 � q0

Kummer argued that the apparent non-uniqueness should be understood as demonstrating that such undetectable

prime factors were actually there. He called on chemistry for an analogy, pointing out that chemists postulated the

existence of atoms and molecules for similar reasons, without being able to actually observe them. He called these

invisible numbers “ideal prime factors.”

This would remain only a fiction if we couldn’t say more; Kummer’s amazing insight was to see that in fact, we

can. What, after all, does one want from a prime number p? Not to look at it! Instead, what one wants is to be able to

decide what numbers are divisible by p, and, for those that are, to decide what power of p appears in their factorization.

For ideal primes such as p and q above, Kummer did exactly that. In other words, he showed how to take numbers

a C b
p
�5 and determine whether they are divisible by p, and how many times. Then he showed that one could use

these ideal prime divisors (and ideal divisors in general) to construct a unique factorization theory for any ring of

algebraic numbers. The ideal primes remained just symbols; there is no element of ZŒ
p
�5� that is a common divisor

of 3 and 1C 2
p
�5, but we still name that common divisor p and work with it.

We might be satisfied with this. Kummer’s “ideal primes” are really functions from the non-zero elements of our

ring to the positive integers; the value of the function at an (algebraic) integer ˛ is the number of times ˛ is “divisible”

by p. There are some problems, of course. When we write 3 D pp0 it’s not really clear what the product signifies. And

it’s not clear what a product like pq2 might be, since it does not seem to be an element of ZŒ
p
�5�.

Dedekind found this situation not to his liking. He seems to have wanted to be able to point to something and say

“that’s what an ideal prime divisor is.” And he wanted to define the product of these things, preferably using a method

that actually had something to do with multiplying. That’s where the move comes in.

If we look back at the integers, we see that a prime number in Z is completely determined by the set of integers that

are divisible by it, which we might write down as pZ. The prime p is simply the smallest positive element in that set. It

turns out that we can completely describe such sets without specifying that they are sets of multiples. As every abstract

algebra teacher knows, they are non-empty sets of integers that are closed under addition and under multiplication by

an arbitrary integer. In other words, they are what we now call “ideals” in Z.

Now, the subset of ZŒ
p
�5� consisting of “multiples” of our mysterious “ideal prime divisor” p has the same

properties: it is an ideal in that ring of algebraic integers. In fact, it is a non-zero prime ideal, just as the ideal generated

by a prime number in Z is. It just doesn’t have a generator. So the Dedekind move is to define the ideal prime divisor

to be this set. In modern terms, we might describe it as replacing ideal primes with prime ideals.

Given that, it is possible to re-do Kummer’s theory, dispensing with the mysterious ideal primes and replacing them,

instead, with nice sets of algebraic numbers, the ideals. That is what Dedekind did. One can read a very clear account

of this, including a detailed analysis of the example of factoring 21 in ZŒ
p
�5�, in [7].

As before, not everyone liked (and some mathematicians2 still don’t like) this move. Leopold Kronecker didn’t think

working with an infinite set of numbers was any clearer than working with an algorithm for finding how many times a

number is divisible by p, and proposed a completely different foundation for the theory. It was only as mathematicians

2For example, see [9].
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got more and more used to working with sets and thinking of a whole set as in some sense one thing, in the early 20th

century, that Dedekind’s point of view came to dominate.

Other instances

Even earlier in his career, in [2, �7], first published in 1857, Dedekind had already used his move, though admittedly

in a minor way. He was studying congruence classes modulo p of polynomials with integer coefficients. In his time it

was still common to think of the elements of, say, Z=nZ via a canonical choice of representatives. Dedekind was one

of the first to note that it would be easier to “just use the entire congruence class,” i.e., to think of the elements of Z=nZ

as sets of integers, as we teach students to do today. (In his paper, of course, the rings in question were ZŒx�=pZŒx�

and its quotients.) It seems to have taken some time for this idea to really “take.”

Another situation in which Dedekind used his “move,” this time in quite an audacious manner, was to answer the

question “what is an integer?” His answer, explained in [8], was basically that the integers “are” any set3 that satisfies

a certain list of axioms (almost the same as the Peano axioms). He then showed that any infinite set contains many

such subsets, any of which will do as a representation of the integers. He gave a philosophical argument to “prove”

that infinite sets exist; given that, his approach gives a construction of the integers. The “any such subset” part of

this means that the integers are constructed up to a certain kind of equivalence (order-preserving bijections). In effect,

Dedekind defines the integers as an equivalence class of infinite sets.4

35.2 In the Classroom 1: Transition to Proofs

Sometimes the most important pedagogical contribution of the history of a idea is to alert us that an idea is neither

obvious nor “natural.” In fact, the Dedekind move is a choice, one that has become so dominant in modern treatments

that we no longer feel that any alternatives are available. The quotient group is the set of all cosets, and that’s it.

Thinking historically, we see that alternative routes are available. And, in the light of the difficulty even great

mathematicians had with the Dedekind move, we see that our students’ difficulties are quite natural.

A second observation is that the Dedekind move has more than one use. Dedekind used it to construct well known

objects, to clarify the nature of objects that were not yet well understood, and to eliminate the need to choose a

canonical representative for an equivalence class.

The history also highlights one of the things that makes the move feel unnatural: we are proposing to deal with a set

of things as itself a single thing. For most mathematicians, this is a completely familiar conceptual move, but for our

students it can be quite difficult. How can we make it easier for them?

The minimal thing to do, of course, is simply to notice it. Call your students’ attention to what a daring move it

is, discuss alternatives, and generally clue them in that something new and beautiful has just entered the scene. The

natural place to do this is in a “transition to proofs” or discrete mathematics course.

What is a fraction?

Sporting a scraggly gray beard, Prof. Niemand prepares to teach one more class in his Introduction to Abstract Math-

ematical Thought. Today he wants to introduce the notion of an equivalence relation and of equivalence classes. He

walks into class and asks his students, “What is 3
5

?”

The students are used to this kind of shenanigan. “It’s three fifths,” says a bored-looking young woman, Amy, in the

front row.

“Ah, but what does that mean?” asks Prof. Niemand, trying and failing to make his eyes sparkle. The students knew

this was coming, of course.

“It’s what you get when you divide three by five,” says Tim.

3This description of Dedekind’s concept is more than a little anachronistic, at least in the language used, and may well give historians heartburn;

still, it captures the main idea.
4The currently fashionable set-theoretical construction of the integers goes the other way and chooses a canonical representative for each

equivalence class, namely the (finite) von Neumann ordinals.
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“How do you know you would get anything?” shoots back the professor. That gets total silence, so it is time to rile

them up a bit more. “OK, consider this,” he says, writing on the board:

3

5
D 6

10
:

“I know you learned that in grade school, but those things do not look equal to me. Equal means the same, and they’re

not the same.”

“Well, they are both solutions to the equation 5x D 3,” says Emily, an algebraist at heart.

“So that equation has two solutions?” asks the professor.

“No,” says Emily, “that’s why they’re equal. They both solve the same equation, so they’re the same thing.”

“Really? But quadratic equations do have two solutions, don’t they? So you’re claiming there is a solution and that

there’s only one. How do you know?”

Emily frowns. “I guess I mean that we just create a number 3=5, and define it to be the solution to that equation.”

“But what allows you to ’just create’ a number?” asks the professor. “Don’t you have to show that this number

exists? I don’t even know what kind of thing it is!”

“Well, it’s a thing that has a numerator and a denominator. Fractions are just things like that, and you just decree

that some of them are equal to others,” says Ben the formalist.

“I thought I knew what ‘equal’ means,” says the professor, “but maybe not. I thought equal meant ’exactly the

same’, but you’re saying you’re allowed to say that two things that are clearly not the same are still equal.”

“But of course! Isn’t 0:5 D 1=2?” says Amy, and we’re back on the spiral again.

From fractions to equivalence relations

Most of our students have some sort of concept of what a fraction is. But fractions are inherently objects with multiple

representations. “Clearly” 3=5 and 6=10 are two different symbols for the same thing. What is that thing?

There are, of course, many answers to this, as the dialogue above tries to show. One other possibility, for example,

would be that a
b

is something that acts on numbers divisible by b in a certain specified way (we would then call that

action “multiplication,” of course). In that case, the equality would mean that 3
5

and 6
10

act in exactly the same way

on any number on which both can act, i.e., on any multiple of 10. Or one could follow Kummer and argue that both

fractions are names of some mysterious entity out there.

Students may well come up with various different concepts of a fraction. A particularly tempting one is to short-

circuit the problem by saying that a fraction is its representation in lowest terms (and with a positive denominator).

This is analogous to choosing unique representatives for integers modulo n.

This is tempting, but it forces us to say that 6
10

is not actually a fraction, but rather some sort of “pre-fraction.” It

also makes explaining how to add fractions a little bit harder, because the formula

a

b
C c

d
D ad C bc

bd

is not strictly true unless we add “and then you replace the pre-fraction at the end by its underlying fraction.” It might

be fun to ask students to prove that this operation is associative.

With luck, we might find that one of our students is a radical nominalist, willing to argue that a fraction is simply

the list of all of its names. That is the Dedekind move in this situation: a fraction is an equivalence class of ordered

pairs of numbers.

The “what is a fraction” discussion will probably fit in about 20 minutes of class time, leaving time for the teacher

to investigate what is necessary for the notion of “defined equality” to work properly. This leads to the definition of an

equivalence relation and the recognition that the set of all names for a fraction is precisely an equivalence class.

Is it a set or is it a thing?

So now we have a notion of a fraction as an equivalence class of pairs of numbers. Should we be satisfied? Probably

not! Who really believes that a real number is a pair of sets of rational numbers? After all, there are alternative

constructions, such as the one involving equivalence classes of Cauchy sequences. The partisans of one construction
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do not have arguments with the partisans of another about the true nature of the real numbers. They argue about which

construction is better, clearer, or pedagogically most effective.

It is the same for fractions: while it is useful to think of a fraction as an equivalence class of pairs of integers, it

seems a little weird to claim that “one half” really means an infinite set of pairs of integers. So once the basic move is

made, it is time to discuss with our students what it is that we have achieved. In other words, what is the point?

For rational and real numbers alike, the point seems to be this: we know what we want to construct, at least on an

intuitive level. The question becomes, then, whether this intuitive notion is sufficiently precise and free of contradic-

tions. This is what the Dedekind move achieves: it shows that if we believe in fractions and in sets of fractions, then

we can believe in real numbers as well.

We can then keep digging: do we believe in fractions? Well, if we believe in integers and sets of integers, then we

are allowed to believe in fractions. And so on, for as long as we like. The current fashion is to get down to set theory

itself, axiomatize that, and stop. And then, of course, to forget the construction! It does not help, when thinking about

the integer 2, to think of it as the set f;; f;gg.
The more philosophical discussion of the goal of such constructions can be postponed, but it should happen at some

point, since otherwise students will never quite get the point of formal constructions. For example, if a construction of

the real numbers is part of the syllabus, the philosophical discussion could well belong there.

35.3 In the Classroom 2: Abstract Algebra

In the abstract algebra classroom, the Dedekind move achieves its full power. The most natural place to highlight it is

when we teach the quotient construction. Here the main point is to obtain something that has certain properties. The

nature of the elements of that something (i.e., that they are equivalence classes, cosets, whatever) is not that important.

Being familiar and comfortable with the Dedekind move allows us to create the objects we want with minimal fuss.

Congruence classes

To teach the quotient construction in this spirit, one might start by trying a bare-hands approach first. For example, we

could define Z=nZ as a set consisting of n symbols:

f0; 1; 2; : : : ; n� 1g:

Then we define operations as follows: to add (or multiply) a and b, add (or multiply) a and b, and then check if the

answer is greater than or equal to n. If not, just put a bar on top of the answer; if it is, divide by n, take the remainder,

and put a bar on top.

Students will probably be happy with this. Now challenge them to prove that the resulting object is a ring. This is

doable, but annoying. Suppose we want to prove addition is associative. Look at

a C .b C c/ versus .a C b/C c:

If we could just remove the bars, this would follow at once from associativity in Z. But with the definition above, each

of the parentheses may require a division with remainder step, and things get complicated.

If your students already know modular arithmetic, this exercise can be done in 10 or 15 minutes of class time, and

the challenge of proving that the resulting object is indeed a ring can be assigned as homework. In that case, the next

class can open with a discussion of the students’ proofs.

Analyzing the proofs will show that everything becomes much easier if we decide to allow ourselves to write a

for any integer a. (To put it in fancy terms, we want to have not only the quotient Z=nZ but also the canonical

homomorphism Z �! Z=nZ.) As in the case of fractions, once we do this we have objects with multiple names:

0 D n D 2n D : : :

What are all those names actually naming? Again, the Dedekind move takes the easy way out of defining the object

in question to be the set of all of its names. Discussing this in detail, and highlighting the analogy with fractions, can

help students get a better grip on what is actually going on.
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Something a bit harder

The special thing about Z=nZ, of course, is that the numbers from 0 to n � 1 provide a natural set of representatives.

The next activity should push further, looking at a quotient where such a natural set is not so easily available. For

example, one might look at ZŒi � and consider the quotient by (the ideal generated by) 1C 2i . This is still fairly small

(five elements), so it can be done “by hand,” but there is no natural set of representatives. Describing it as “arithmetic

modulo 1C 2i” highlights the analogy to the case of the integers.

Doing this in detail will take a good deal of class time, probably a full class period. In particular, one needs to

establish a way to decide whether an element aC bi is divisible by 1C 2i . (We are suddenly back to Kummer!) Once

this example is worked out, however, it becomes easier to see that in the general case we do not want to try to locate a

set of representatives, and hence will be much better off by using the cosets themselves.

Quotients in general

Having done these exercises, we are ready to construct quotients in general. This is similar for rings or groups, of

course. Let’s stick with rings so that we can be specific.

Given a ring R and a subset I , we want to construct a new ring R=I and a function R �! R=I which we will

denote by r 7! r . We want r to be one of many names of an element of R=I , and the rule is that if r1 � r2 2 I , then

r1 and r2 are names for the same element.

Now we deploy the Dedekind move: since that’s what we want, we just define an element inR=I is the set of all its

names, and check that (as long as I is an ideal) this makes sense. We now have the standard definition of the quotient

ring, and, with any luck, our students have it too.

The philosophical discussion has a crucial role here as well. Yes, we will define an element ofR=I to be a particular

kind of subset of R, but the goal of doing that is just to get an easy construction. In the end, we want our students

to treat a coset as an object. They need to be told that explicitly. To further that goal, we should avoid notations that

highlight the set-theoretical construction. So while it is certainly “legal” to write n 2 0, we would do well to avoid

doing it, just as we don’t say 3 is an element of the left hand subset of � .

35.4 Moving with Dedekind

Finally, the question poses itself: should we bother to teach our students the Dedekind move? After all, most linear

algebra books have decided that mentioning the quotient space in that course is a bad idea. Is the move important

enough to spend time on it in other courses?

The answer is, of course, yes. Though in its initial conception the Dedekind move was mostly a way to give a

construction of known objects, it has become a standard tool in mathematics, used over and over to create ever more

complex objects, from Lp spaces to the algebraic closure of a general field.

The history of Dedekind’s move, however, does leave us with two pedagogical lessons, which we have tried to

highlight. The first is that the move needs to be learned; it does not “come naturally.” The second is that it is actually a

double move: we define an object to be a set of simpler objects, yes, but then we forget the “internal structure” of our

object, treating it once again as a single thing.
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[2] Richard Dedekind. Abriß einer Theorie der höheren Kongruenzen in bezug auf einem reelen Primzahl-Modulus,

1857. In [4], vol. 1, item V.

[3] Richard Dedekind. Essays in the Theory of Numbers, containing translations of [5] and [8]. Translated by Wooster

Woodruff Beman. Open Court, 1901. Reprinted by Dover Publications, 1963.

[4] Richard Dedekind. Gesammelte Mathematische Werke, ed. by R. Fricke, E. Noether, and O. Ore. Brunswick,

1930–1932. Reprinted by Chelsea Publishing, 1969.



284 35. Learning to Move with Dedekind, Fernando Q. Gouvêa
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