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Introduction

For some twenty years now, the MAA Notes Series has published secondary materials for undergraduate mathematics

courses, such as projects that can be used in teaching calculus. These publications reflect the interests of instructors,

providing a means of sharing innovative ideas for teaching calculus, linear algebra, differential equations, statistics,

geometry, and abstract algebra. With this book, discrete mathematics joins the list. This collection includes nineteen

classroom-tested projects, eleven additional projects based on historical sources, three expository articles consider-

ing discrete mathematics topics in more depth, and two articles focused on pedagogy especially related to discrete

mathematics.

Why is discrete mathematics only now the subject of such a collection? One possible reason is that, unlike concepts

taught in the course itself, discrete mathematics is not well-defined. While there are controversies on how to teach

calculus, there is relative unanimity on what topics a calculus course should address. On the other hand, a survey of

discrete mathematics courses around the country shows a variety of different topics being covered, goals being sought,

and students being served. Does the course cover circuit design and the tools for algorithm analysis? How much logic

is covered? Graph theory? Combinatorics? Is this the course where students first learn to write proofs? Are the students

mathematics majors, computer science majors, or is the course offered for a general education requirement?

This book does not address those questions. The projects and articles here reflect the wide breadth of topics taught

in the diverse discrete mathematics courses offered in universities, colleges, and (increasingly) high schools. I hope

that every instructor of discrete mathematics will find projects and articles relevant to the topics of his or her course,

and also learn more about other topics, with the realization that those are covered in someone else’s course.

The timing of this collection also follows from a number of related activities in the professional organizations. There

have recently been workshops and many sessions devoted to discrete mathematics in conferences of the Mathematical

Association of America, the Association for Computing Machinery, and the Institute of Electrical and Electronics

Engineers. I participated in several of these workshops and sessions, initially with the idea of writing a textbook.

But as I discovered the innovative and thoughtful work of so many colleagues, I decided to redirect my creative

impulse into putting together this collection. The call went out for classroom-tested projects and articles addressing

advanced discrete mathematics topics and teaching issues related to the course. I received submissions from faculty

in mathematics departments and computer science departments, from a high school teacher, from new instructors to

experts in the field. I am grateful that a wide variety of instructors were willing to provide their work for this volume.

Most of the responses were classroom-tested projects, which vary widely in difficulty and are sometimes distin-

guished from the advanced articles only by the inclusion of exercises (and solutions!). Some are means of introducing

a topic, such as graph theory, strong induction, and motivation for clearly written proofs. Some extend common topics,

such as the Towers of Hanoi, the Josephus problem, and Euler’s formula. Some discuss applications, such as chem-

istry, bioinformatics, information storage, and typesetting. Some use technology, including graphing calculators and

programming. Some use manipulatives, including integer rods, strings on a pegboard, and pipes from the hardware

store. In addition to exercises and solutions in all of these projects, some include open-ended questions and some

extension questions suitable for student research. The format for each is a summary, notes to the instructor, refer-

ences, student worksheets (often mixed with explanatory handouts), and solutions. The classroom projects are ordered

topically, following the order of Susanna Epp’s Discrete Mathematics with Applications.

I am pleased to be able to include eleven of the historical modules developed through New Mexico State University,

a continuation of their long-standing program of teaching mathematics from original sources. These too vary from

introductory to advanced topics, including combinatorics, set theory, logic, and graph theory. The projects are arranged
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viii Introduction

chronologically by their primary source, allowing readers to follow the historical development of certain discrete

mathematics topics. The initial two related projects, though, do not fit into that structure, going from Leibniz to von

Neumann in the first, and from Shannon to the abacus in the second. A combined introduction explores how these

projects can be used in the classroom, and each article includes exercises in conjunction with the source material,

references, and additional notes to the instructor.

The five expository articles examine discrete mathematics content beyond the level of a first course or discuss

teaching issues specific to the course. But like many of the projects, some of the articles also defy easy categorization.

For example, Shai Simonson’s “A Rabbi, Three Sums, and Three Problems” uses fourteenth century mathematics as a

springboard for counting problems as an example of the discovery method. To assist the reader in navigating such rich

material, the table of contents is annotated with a summary of each project or article and, for the classroom projects,

how many 50-minute periods an instructor might dedicate to the activity.

There are many people I want to thank. Bill Marion organized two summer Professional Enhancement Programs on

discrete mathematics, where I met Peter Henderson and Susanna Epp; all three have been very helpful and encouraging

over the long course of this book’s creation. Jerry Lodder, another PREP participant, coordinated work on the historical

projects. Michael Jones and Larry Thomas helped with sundry typesetting and graphics issues. Barbara Reynolds,

Stephen Maurer, the entire MAA Notes editorial board, and the MAA publications staff have helped immensely in

bringing this project to completion. My greatest appreciation goes to the authors of the projects and articles for their

patience, creativity, and willingness to share their good work.



In memory of Kenneth P. Bogart, 1943–2005
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The Game of ‘‘Take Away’’

Mark MacLean

Seattle University

Summary

In this project, students play the game “Take Away” and conceive a winning strategy for the game. They then must

give a careful written explanation of why their strategies work. I typically use this project in my discrete math class as

an introduction to writing proofs. Students often struggle initially with the clarity of their mathematical exposition and

with aiming their proofs at an appropriate audience. After completing this activity, we have a class discussion where

we critique the students’ written explanations.

In most discrete math classes, students’ first proofs involve properties of even and odd integers. Since these prop-

erties are already familiar to them, students often have trouble discerning what they can and cannot assume that the

intended audience knows. Since the game “Take Away” is unfamiliar to most students, I find this project is a more

natural starting point from which they begin thinking about the clarity of their own writing.

Alternately (or concurrently), this project could be used as an application of the division algorithm.

Notes for the instructor

Begin class by dividing the students into groups of three or four, and then pass out the worksheet. Allow one 50-minute

class period to complete the worksheet, and have the students finish it at home if necessary.

Be sure to walk around the room and observe the groups as they are playing the game. If a group becomes overly

frustrated, I might suggest that they try starting with 6 tokens instead of 9, or I suggest that they challenge another

group to a game. I usually try to ensure every team knows the winning strategy within 25 minutes. At the end of class I

instruct them to continue working at home and to bring a polished written explanation to problem #2 to the next class,

as we will critique them. I encourage the students to actually show their explanations to their roommates to see if their

writing is clear enough for the roommate to follow the logic.

The next class period, I ask three or four volunteers to write their explanations to question 2 on the board. Over the

next 20 minutes, I ask the class to critique these explanations and point out instances where the exposition is unclear,

while making some comments myself.

“Take Away” is a variant of the combinatorial game Nim. More information is available in [1].

Bibliography

[1] Berlekamp, Elwyn R., John H. Conway, and Richard K. Guy. Winning Ways for Your Mathematical Plays, volume

1, A K Peters, Ltd., 2001.
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Worksheet for The Game of ‘‘Take Away’’

Rules of the game: To play the game, your group will need a pile of nine “tokens.” These tokens can be coins, paper

clips, small pieces of paper, or any small objects of your choosing. Divide your group into two teams. The two teams

will take turns removing tokens from the pile. On each turn, a team must choose to remove either one or two tokens

from the pile. The team that removes the last token (or tokens) from the pile wins the game.

Play several rounds of the game, keeping in mind the first problem below.

1. Find a strategy that guarantees your team will win the game. (Note: the existence of such a strategy will depend

on whether your team goes first or second. Could there be a guaranteed winning strategy for both the first and

second team?)

2. In a full paragraph, describe your winning strategy and carefully explain why it works. Pretend that you are

explaining the strategy to your roommate, who we’ll say knows the rules of the game but has only played a

couple of times. Your paragraph must clearly spell out the strategy and convince the roommate that it works.

3. Can you devise a winning strategy if the game starts with 10 tokens? 11? 12? How about n tokens, where n is

any positive integer? Describe these winning strategies.

4. In the television series “Survivor: Thailand,” the two tribes participated in a competition entitled “Thai 21.” In

this contest, 21 flags were placed in a circle, and the two tribes took turns removing either 1, 2, or 3 flags from

the circle. The team who removed the last flag (or flags) won the game. Is there a winning strategy for Thai 21?

Explain.
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Solutions

1. There is a winning strategy for the team that goes second. Hence there is no winning strategy for the team that

goes first.

2. On each turn, the second team should remove the “opposite” of what the first team removed. That is, if the first

team removes 1 token from the pile, the second team should then remove 2 tokens. If the first team removes 2

tokens from the pile, the second team should remove 1. Thus, after each pair of turns, a total of 3 tokens has

been removed from the pile, leaving the first team to always choose when the number of tokens in the pile is

a multiple of 3. Initially the first team chooses when 9 tokens are in the pile, then they choose when there are

6 tokens, and finally they choose when there are 3 tokens left. In their final turn, the second team takes the

remaining tokens and wins the game.

3. If n is congruent to 0 modulo 3: choose to go second, and on each turn always take the opposite of what your

opponents just took. If n is congruent to 1 modulo 3: choose to go first, take 1 token, and on each successive

turn, always take the opposite of what your opponents just took. If n is congruent to 2 modulo 3: go first, take 2

tokens, then always take the opposite of your opponents. In each strategy you are always leaving your opponent

to choose from a multiple of 3. (If students are not familiar with the “mod” terminology, you may simply say

that n is equal to 1 plus some multiple of 3, etc.)

4. Here, you want to force your opponent to choose from a multiple of 4. The team that goes first can guarantee

themselves a win if they remove 1 flag from the circle. Then, on each successive turn, if their opponents removed

m flags, the first team should remove 4 �m flags.





Pile Splitting Problem:

Introducing Strong Induction

Bill Marion

Valparaiso University

Summary

In many textbooks in discrete mathematics there are numerous examples for teaching the Weak Form of the Principle

of Mathematical Induction, but relatively few elementary problems for applying the Strong Form. What follows is a

nice example to draw on when introducing the strong form. It can be presented as a classic puzzle, it has a number of

variants and it is inherently recursive.

By introducing the problem (Pile Splitting) as a puzzle, the instructor can engage the students in the process of

finding a general solution. She can, then, raise the question as to how they can demonstrate that their conjecture is

correct, and, thereby, motivate the need for strong induction. After an induction argument has been presented (the

Worksheet includes one such proof), variants of the puzzle can be assigned for the students to work on in class or as a

homework assignment.

Notes for the instructor

To give students practice in making conjectures about the solution to the puzzle, they should be asked to solve it them-

selves. One hands-on approach that works well is to provide each student with a sufficient number of beads or pennies

for her to actively play the game enough times with different values of n so as to see a pattern emerge. Those students

who correctly conjecture the general solution can assist the others. One way of reaching the conjecture is explained

on the Solutions page. During the induction phase a template or “script” for a correct induction argument should be

presented to the students (and they should be required to follow the script) so that they become more confident in

using the technique and more convinced logically that induction does what we claim it does. The Worksheet includes

a complete proof for one puzzle variant in order to give students another example.

In addition to the four variants of the puzzle described in this paper, there are a number of others which can be found

in [2]. It should be noted that the author of that article presents a different approach which does not explicitly make

use of mathematical induction to prove the general solutions correct.

The recursive nature of the pile splitting problem can lead to a discussion of recursive definitions, recurrence re-

lations, techniques for solving recurrence relations and constructing recursive algorithms to compute the solutions.

In the latter case, strong induction comes into play again. It addresses the question: “Does such and such a recursive

algorithm, which is designed to compute something, actually do so?”

Bibliography

[1] Rosen, Kenneth. Discrete Mathematics and Its Applications 5th ed., McGraw Hill, 2003.

[2] Tanton, James. “A Dozen Questions About: Pile Splitting,” Math Horizons 12 (2004) 28–31.
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Worksheet on the Pile Splitting Problem

Here is a statement of a common version of the pile splitting problem.

Given n objects in a pile, split the objects into two smaller piles. Continue to split each pile into two

smaller piles until there are n piles of size one. At each splitting, compute the product of the size of the

two smaller piles. Once there are n piles, sum all the products computed. The result will always be the

same no matter how each of the piles is split into two smaller piles. The sum of products is a function of

n. Conjecture what the sum is and prove the conjecture correct. [1]

The solution to this pile splitting problem is .n2 � n/=2. Playing with a few examples can provide the necessary

insight to come up with the general solution. Applying the strong form of the principle of mathematical induction can

demonstrate the correctness of the conjecture, and, equally as important, that the computation will always produce the

same result no matter how the piles are split.

For the following variant on the standard pile splitting problem, a complete proof of the general solution is provided

below.

We begin with a pile of n objects and proceed to reduce the pile to n piles of size one in the manner

described above. Suppose at each splitting the sizes of the two smaller piles are labeled r and s. Now,

instead of just computing the product .r �s/ of the size of each pair of split piles, we compute the following

product: .r �s/�.rCs/. And at the end of the process we add all these products. Again, the sum of products

turns out to be a function of n: .n3 � n/=3.

Here is the induction argument.

Let P.n/ be: for a pile consisting of n stones and split according to the rules above, the sum of all products of the sum

and product of each pair of split piles is .n3 � n/=3.

Show (8n � 1/ P.n/.

Basis Step Show P.n/ is true when n D 1.

When n D 1, there are no splits; hence the product of sums and products is 0. For the formula, when n D 1,

n3 � n
3

D 13 � 1
3

D 0:

Inductive Step Suppose for any k > 1 that P.1/; P.2/; : : : ; P.k � 1/ are true. Show this implies that P.k/ is true;

that is, suppose any pile of j stones where 1 � j � k� 1, the sum of all products of the sum and product of each pair

of split piles is .j 3 � j /=3. Show that this implies the sum of the products of the sums and products is .k3 � k/=3.

First, divide the pile of k stones into two piles of j and k � j stones. Then, the sum of all the products of sums and

products equals the sum of the product of j C .k � j / and j � .k � j / along with all the remaining sums. However,

since both j and k � j are between 1 and k� 1, the induction hypothesis applies and the sum of the products of sums

and products is

D .j C .k � j //j.k � j /C j 3 � j
3

C .k � j /3 � .k � j /
3

D 3.jk2 � j 2k/C j 3 � j C .k � j /3 � .k � j /

3

D 3jk2 � 3j 2k C j 3 � j C k3 � 3jk2 C 3j 2k � j 3 � k C j

3

D k3 � k
3

:

Thus, since both the Basis Step and the Inductive Step have been shown to be true, (8n � 1/P.n/.
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Additional Questions

Consider the following two variations on splitting a pile of n objects. In each case try a few examples, conjecture

what the solution should be (again, it turns out to be a function of n) and then use the strong form of the principle

of mathematical induction to prove your conjecture. As in the problem statement above, suppose at each splitting the

sizes of the two smaller piles are r and s.

1. Split the pile of n objects according to the rules above. At each splitting compute the sum of the reciprocals of

the two smaller piles: .1
r

C 1
s
/. Once there are n piles, multiply all of the sums computed. Again, the result will

always be the same no matter how each of the piles is split into two smaller piles.

2. Split the pile of n objects according to the rules above. At each splitting compute the following combinatorial

number:
�
rCs

r

�

. Once there are n piles, multiply all the combinatorial numbers computed.
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Solutions

� For the problem in the worksheet, where at each stage the product .r �s/ �.rCs/ is computed, it turns out that, for

piles of size 1; 2; : : : ; 8, the sum of all the products is 0, 2, 8, 20, 40, 70, 112 and 168, respectively. Computing

the difference of consecutive pairs of integers in the sequence leads to the seven integers 2, 6, 12, 20, 30, 42 and

56 and to the recurrence relation an D an�1 C n.n � 1/ for n � 2 with initial condition a1 D 0, the solution to

which is .n3 � n/=3.

At this point it could be said that a solution to the pile splitting problem has been identified and proved correct

without using the strong form of induction. That is true. However, it turns out that in most discrete mathematics

courses induction is introduced before techniques for solving such linear recurrence relations. If this is the case,

after the students have worked on the problem for a while, the instructor might provide some hints or even make

a claim as to the general solution and, then, ask the students to use strong induction to prove that claim. (It would

be instructive to see if some students can come up with the correct conjecture without reference to recurrence

relations and explain their reasoning to the class.)

� For the two puzzles in the Additional Questions Section the solutions are n and nŠ, respectively.



Generalizing Pascal: The Euler Triangles

Sandy Norman and Betty Travis
University of Texas at San Antonio

Summary

This project investigates generalizing Pascal’s Triangle to generate the coefficients appearing in the expansion of

powers of multinomials of the form 1 C x C x2 C � � � C xk . Students will initially use a counting paths method and

then relate the procedure to a generalized triangle, known as an Euler Triangle.

Notes for the instructor

This activity is appropriate for mature Algebra and Precalculus students and can be accomplished in two or three

one-hour class periods, depending on the backgrounds of the students. It fits nicely after a unit on binomial expansion.

A peg board, with some type of peg or stud, can be used to string paths that can then be counted to generate the

coefficients.

Bibliography
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1 Generalizing Pascal: The Euler Triangles

Most high school students are familiar with Pascal’s Triangle (Fig. 1) as a way to find the coefficients of the binomial

.1C x/n. By adding pairs of coefficients in a given row of the triangle, one can generate the binomial coefficients that

appear in the row immediately following.

Recall:

.1C x/0 1

.1C x/1 1 1

.1C x/2 1 2 1

.1C x/3 1 3 3 1

.1C x/4 1 4 6 4 1

.1C x/5 1 5 10 10 5 1

Figure 1. Pascal’s Triangle showing the binomial coefficients up to the 5th power.

The coefficients can then be used to write out the expansion. For example, using the triangle above:

.1C x/4 D 1 C 4x C 6x2 C 4x3 C 1x4:

The coefficients can also be determined by counting the numbers of paths from the apex of the triangle to the entry

in question. For example, in the above expansion of .1C x/4 the coefficient of x3 is 4. This enumerates the following

four paths, each of which must descend at each step to one of the two entries nearest to and below (see Figure 2):

1 1

1 1 1 1

1 2 1 1 2 1

1 3 3 1 1 3 3 1

1 4 6 4 1 1 4 6 4 1

1 1

1 1 1 1

1 2 1 1 2 1

1 3 3 1 1 3 3 1

1 4 6 4 1 1 4 6 4 1

Figure 2. The four paths are indicated by boldface entries.

Is there a similar way to generate the coefficients for .1C xC x2/n? For example, if n D 3, can we use this method

to generate the coefficients for .1 C x C x2/3?

Students can count the number of paths to a particular entry by drawing out the individual paths on a template1 of

the Euler triangle to be used for trinomials (Figure 3), or by creating the paths with strings (or rubber bands) on a

pegboard version of the triangle. (See Photos 1 and 2). In this case, paths must descend at each step to one of the three

spaces nearest to and below. For example, there are six paths that can be taken to reach the desired location indicated

in Figure 3.

1

1 1 1

1 2 3 2 1

1 3 6 7 6 3 1

Figure 3. Template for trinomial Euler triangle and completed version.

1To create the template for the trinomial triangle, we recognize that the number of terms in the expansion of .1CxCx2/n is precisely 2nC1.

The template, then, will have rows of 1; 3; 5; : : : entries.
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Photo 1. Stringing paths on an Euler Triangle. Photo 2. The 1-2-3-2-1 pattern for paths representing the

coefficients of .1C x C x2/2.

Exercise 1.

Complete the table for .1 C x C x2/n for n D 1, 2, and 3 by stringing and counting paths.

1

2 A recursive method for calculating coefficients

A different — and more convenient — method of obtaining the coefficients for the expansion can be obtained as

follows: for each entry other than the initial 1, sum those values that are both adjacent to and above that entry. For this

trinomial (Figure 4), you add the three entries above (if possible), just as in the expansion of a binomial, you add the

two entries above in Pascal’s Triangle. In the case of Pascal’s triangle, these entries are just the binomial coefficients,
�

n
k

�

, which represent the coefficients of xk in the expansion of .1 C x/n. We recall that these binomial coefficients,

sometimes read n choose k, can be computed using the formula
�

n
k

�

D nŠ
kŠ.n�k/Š

. That one can obtain an entry by adding

the two previous entries above is a consequence of the recursive identity
�

n
k

�

D
�

n�1
k�1

�

C
�
n�1

k

�

.

Euler introduced the notation
�

n
k

�

3
to represent the trinomial coefficients. For example, back in Figure 3, we found

the entry represented by
�

3
2

�

3
, the coefficient of the x2 term in .1CxCx2/3. More generally, the values

�
n
k

�

m
represent

them-nomial coefficients. These can, like the binomial coefficients, be defined recursively, as follows:

�
n
k

�

3
D

8

ˆ̂
ˆ̂
ˆ̂

<̂

ˆ̂
ˆ̂
ˆ̂
ˆ
:

0; n < 0 or k < 0 or k > 2n;

1; n D k D 0;

�
n�1
k�2

�

3
C
�

n�1
k�1

�

3
C
�

n�1
k

�

3
; n and k not both = 0:

Can you tease out the reason for this rather complicated looking definition? If we examine, the
�

4
3

�

3
D 16 entry

from the Euler trinomial triangle in Figure 4, we see that it is equal to
�

3
1

�

3
C
�

3
2

�

3
C
�
3
3

�

3
D 3C 6C 7. However, if we
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look at, say,
�

3
5

�

3
D 3, we see that this equals

�
2
3

�

3
C
�
2
4

�

3
C
�
2
5

�

3
D 1C 1C 0. Even though the triangle itself doesn’t

have an entry for
�

2
5

�

3
, our recursive definition tells us this must be 0, since k > 2n in this instance.

1

1 1 1

1 2 3 2 1

& # .
1 3 6 7 6 3 1

& # .
1 4 10 16 19 16 10 4 1

Figure 4. Method for calculating values for entries in the trinomial Euler Triangle.

Exercise 2

� Find the next two rows for the triangle in Figure 4.

� Using your triangle, expand the following:

.1C x C x2/3 D

.1C x C x2/6 D

There are a number of interesting observations about the trinomial Euler triangle. Some of these are:

1. The triangle is symmetric, each row being palindromic. Row n follows the pattern 1 n � � �n 1. (For example,

row 3 in Figure 4 above is: 1 3 6 7 6 3 1.)

2. Each new row has two more entries than the previous one.

3. In Pascal’s Triangle (for binomial expansions) the row sum is 2n. For the trinomial Euler Triangle, what do you

note about the sum of the entries in row n?

4. One also notes that the triangular numbers appear along the third diagonal of this Euler triangle. (See Figure 5.)

Figure 5. Sum of the coefficients in the nth row equals 3n.
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3 Generalizations

Will the processes that we have discussed so far generalize to higher degree polynomial powers? The following exer-

cises will help us discover an answer to this.

Exercise 3. Complete the first three rows of the Euler Triangle for the quadrinominal .1CxCx2 Cx3/n by counting

paths. Then check your answer by adding the four entries above each entry. Verify this algebraically by expanding

.1C x C x2 C x3/4.

(Use DERIVE or some other Computer Algebra System, if possible.)

Exercise 4. a) What is the sum of the entries in rows 0, 1, 2, 3, and 4 of this triangle? In row n?

b) Using the triangle, write the complete expansion of .1C x C x2 C x3/4.

Of course, we can continue to look at powers of higher and higher degree polynomials — quintinomials, 6-nomials,

7-nomials, etc. Figure 6 gives the first few rows of the quintinomial Euler triangle. An observation we can make that

can help determine the shape of the Euler triangle is based on the number of entries in each successive row. For the

binomial case (Pascal), each new row had one additional entry. For the trinomial Euler triangle, each new row had two

additional entries and for the quadrinomial case, three. We would expect for the quintinomial that the number of entries

in each row would increase by four and be determined by adding the nearest five entries from the row above (allowing

for blank entries if necessary). For instance, in the center of the triangle in Figure 6, we have 19 D 3C 4C 5C 4C 3.

1

1 1 1 1 1

1 2 3 4 5 4 3 2 1

1 3 6 10 15 18 19 18 15 10 6 3 1

1 4 10 20 35 52 68 80 85 80 68 52 35 20 10 4 1

Figure 6. The first few rows of the Euler Triangle for the quintinomial .1 C x C x2 C x3 C x4/n.

Exercise 5.

1. Find the next row for the triangle in Figure 6.

2. What is the sum of the coefficients in each row of the quintinomial Euler triangle (Figure 6)?

3. Create the first few rows of the 6-nomial Euler triangle.

4. What is the sum of the coefficients in each row of the 6-nomial Euler triangle?

5. Generalize how to find the coefficients of any multinomial power .1 C x C � � � C xm�1/n.

6. Show that for an m-nomial Euler triangle, the sum of the entries in row n is just mn.
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4 Research Questions

1. For the binomial case, we know that
�

n
k

�

D nŠ
kŠ.n�k/Š

. Find a closed form for the trinomial coefficients
�

n
k

�

3
.

2. Do the same for the general m-nomial coefficient
�

n
k

�

m
.

3. Explain why the
�

n
3

�

m
entry is the nth triangular number (n � 1).
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Solutions

Exercise 1.
1

1 1 1

1 2 3 2 1

1 3 6 7 6 3 1

Exercise 2.

1 5 15 30 45 51 45 30 15 5 1

1 6 21 50 90 126 141 126 90 50 21 6 1

1C 3x C 6x2 C 7x3 C 6x4 C 3x5 C x6

1C 6x C 21x2 C 50x3 C 90x4 C 126x5 C 141x6 C 126x7 C 90x8 C 50x9 C 21x10 C 6x11 C x12

Exercise 3.

1

1 1 1 1

1 2 3 4 3 2 1

Exercise 4.

a) The sum of the entries for rows 0, 1, 2, 3, 4, and n is respectively 1, 4, 16, 64, 256, and 4n.

b) .1CxCx2Cx3/4 D 1C4xC10x2C20x3C31x4C40x5C44x6C40x7C31x8 C20x9C10x10C4x11C1x12:

Exercise 5.

1) 1 5 15 35 70 121 185 255 320 365 381 365 320 255 185 121 70 35 15 5 1

2) The sum of the coefficients on row n is 5n.

3)

1

1 1 1 1 1 1

1 2 3 4 5 6 5 4 3 2 1

1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1

4) The sum of the coefficients in row n is 6n.

5) For the Euler Triangle associated with powers of them-nomial 1C x C � � � C xm�1, one only needs to add them

entries nearest to and above the entry to be filled. We have more generally

 

n

k

!

m

D
 

n � 1
k �mC 1

!

m

C � � � C
 

n� 1

k � 1

!

m

C
 

n� 1

k

!

m

D
m�1
X

j D0

 

n � 1
k � j

!

m

:

6) The sum of the coefficients in the expansion of .1 C x C � � � C xm�1/n can be obtained by setting x D 1 in the

expanded form. But this is the same as replacing x by 1 in the unexpanded expression, which gives

.1 C 1C � � � C 1
„ ƒ‚ …

m times

/n D mn:





Coloring and Counting Rectangles on the Board

Michael A. Jones and Mika Munakata

Mathematical Reviews Montclair State University

Summary

We describe the Rectangles on the Board project, an adaptation of an activity for elementary and middle school

students that appears in [1]. Students are challenged to determine the coloring of the instructor’s 10 � 10 board, given

the restrictions that (1) all 100 squares are colored in one of four colors and (2) the colors form four rectangular

regions, one in each color. Our extensions of this project involve counting, symmetry, geometry, and logical reasoning.

For example, given the color of some squares, students infer the color of other squares based on geometry. In turn,

they use logic and their understanding of this geometry to count the minimal number of squares needed to be revealed

so that they can determine all of the squares’ colors. Similar reasoning leads them to a best next “guess,” when playing

the game. Students use combinatorics and symmetry to count the number of ways to color the board.

Notes for the instructor

This project is suitable for mathematics courses at all levels. We have implemented versions of the activity in elemen-

tary, middle, and high school classes, as well as in undergraduate mathematics and graduate mathematics education

courses. The game-like aspect of the project is engaging and appealing to students. The project can be used to spur

all-class discussions, or can be used to promote cooperative learning. Depending on how deeply your class desires

to delve into the activity and its extensions, it can take from one to three 50-minute class periods to complete. The

worksheet does well to foster communication; hence, we recommend that you have students work in groups and end

the project with a whole-class discussion of the solutions. Because many acceptable answers exist for some of the

problems, grading many worksheets (e.g., if a large class turns in individual worksheets) can be tedious.

The project extends an activity that appears in Math for Girls and Other Problem Solvers [1]. The book is intended

for use in elementary and middle school classrooms to encourage equity and participation. We describe the original ac-

tivity, called the Multi-Color game, and problems that extend from the activity. The problems related to combinatorics,

decision making, proofs, and logic can be used in collegiate discrete mathematics courses. Students are asked not only

to provide solutions, but also to explain their reasoning, thereby promoting mathematical communication. We have

used versions of this project in courses for pre- and in-service teachers to encourage mathematical reasoning, commu-

nication, and cooperative learning. In those classes, we lead discussions about whether or not this activity constitutes

mathematics, given many secondary school students’ rigid belief that mathematics is about computing solutions and

manipulating equations. Middle and elementary school teachers often see possibilities for using the activity to discuss

geometry, percents, and fractions.

Before class, the instructor colors a 10�10 board on a piece of paper using four colors, each of which forms exactly

one rectangle of integer dimensions (see problem 9 on the worksheet for sample boards). We follow [1] which uses

a 10 � 10 board though any size rectangular board will suffice. Using the matrix coordinates, students “guess” by

asking the instructor to reveal the color of one square at a time. The instructor colors the corresponding square on an

overhead transparency of a blank 10 � 10 board. After each square is revealed, students are asked whether the color
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of that square determines the colors of other squares — called “freebies.” After a few guesses, students see that if

they use logic and what they know about rectangles, they can conserve guesses by asking for squares that reveal more

information about the structure of the board. The object of the game is for the class to determine the coloring of the

board in as few guesses as possible. After playing the game with the entire class, have students work on the worksheet

in small groups.

For the worksheet, we represent four colors by suits of a deck of cards, ~, }, |, and �. The board is viewed as

a matrix in which individual squares are given in (row, column) position with X denoting 10. The first two questions

relate to freebies and other strategy-related considerations that students may have encountered during the game. Ques-

tions 3–6 concern the different ways in which the board can be partitioned into four rectangles. We lead students to

discover that there are six configuration classes if rotation, reflection, and size of rectangles on the board are disre-

garded. Students are exposed to this idea in two ways — first by identifying equivalent boards based on geometry

and second by noticing that the decisions one makes in partitioning the board force the configuration class. In the last

four questions of the worksheet, students are asked to use what they know about strategies and configuration classes

to count the total number of ways in which the board can be colored, and to determine the minimal number of guesses

necessary to complete a given board.

Bibliography

[1] D. Downie, T. Slesnick, and J. K. Stenmark, Math for Girls and Other Problem Solvers. EQUALS, Lawrence

Hall of Science, Berkeley, CA, 1981.
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Worksheet for Coloring and Counting Rectangles on the Board

1. Some partially filled boards are shown in Figure 1. For each board, answer the following questions:

i/ Based on what has already been revealed, how many “freebies” are there, if any? Identify them and justify

your answers.

i i/ What is a good next guess? Why?
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Figure 1

...................................................................................................................................................................................................................................................................................................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

1 2 3 4 5 6 7 8 9 X

X
9
8
7
6
5
4
3
2
1

♥ ♠

♦♣

c)

2. The boards below in Figure 2 are partially filled in. Assuming that freebies are correctly determined by the

guess, answer the following questions:

i/ Best case scenario: What is the minimum number of additional guesses needed to complete the board?

Give examples of which squares you would guess, and what suits those squares would have to be in order

for you to complete the board in this best case scenario.

i i/ Worst case scenario: What is the maximum number of additional guesses needed to complete the board?

Give a sequence of guesses, along with the suits of the revealed squares, that would result in this worst

case scenario.

...................................................................................................................................................................................................................................................................................................
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Figure 2

...................................................................................................................................................................................................................................................................................................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
....................................................................................................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

..................................................................................................................................................................................................................................................................................................

1 2 3 4 5 6 7 8 9 X

X
9
8
7
6
5
4
3
2
1

♣
♣
♣
♣
♣
♣
♣

♣
♣
♣
♣
♣
♣
♣

♥
♥
♥
♥
♥
♥ ♠ ♠ ♠ ♠ ♠

♠ ♠ ♠ ♠ ♠
♠ ♠ ♠ ♠ ♠
♠ ♠ ♠ ♠ ♠
♠ ♠ ♠ ♠ ♠
♠ ♠ ♠ ♠ ♠

♦ ♦ ♦ ♦ ♦ ♦ ♦
♦ ♦ ♦ ♦ ♦ ♦ ♦
♦ ♦ ♦ ♦ ♦ ♦ ♦

c)



22 Part I Classroom-tested Projects

3. For each row of four boards in Figure 3, indicate which board is not like the others. Why?
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b)

Figure 3
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d)

The partitions that belong in the same group for each question in Problem 3 are defined to be in the same

configuration class. We say that two boards are in the same configuration class if they are equivalent under

rotation and reflection, without regard to the size, location, and suit of each rectangle. For example, you should

have found that c/ in Figure 3i/ is not equivalent to the others. You cannot rotate, reflect, or “slide” any of the

line segments from a/, b/, or d/ to produce c/. We will explore another way to consider configuration classes in

the next two problems.

4. Notice that each of the partitions in Problem 3 has at least one vertical or horizontal line segment that forms a

border between suits and extends from one edge of the board to the opposite edge. Prove that such a segment

always exists for a partition of a square into four rectangles.

5. Partitioning the square into four rectangles can be viewed as an iterative process of three steps such that at each

step exactly one rectangle is divided into two. The first step is to divide the 10 � 10 square into two rectangles

with a vertical or horizontal line segment. For example, a horizontal segment has been used to divide a square
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into rectangles A and B in Figure 4a/. The next step is to divide rectangle A or B into two rectangles using

either a horizontal or vertical line. For example, B is divided into two rectangles B and C using a vertical line

in Figure 4b/. To finish the process of dividing the board into four rectangles, one of the rectangles A, B , or C

must be divided into two rectangles. In Figure 4c/, we divide rectangle B into rectangles B and D. Note that if

A is divided (instead of B), the result is different.

Make a decision tree to indicate all possible ways that a board can be divided into four rectangles. Realize that

certain decisions are equivalent. A horizontal first line and a vertical first line are indistinguishable because

the resulting boards are equivalent under rotation. Partitions are distinguished from one another by the relative

positions of the rectangles to one another, but not by the size of the rectangles.
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b)

Figure 4
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D C

c)

6. The terminal nodes of the decision tree from problem 5 (here, the nodes resulting from three decisions) also

represent configuration classes. How many different configuration classes were produced from your decision

tree?

7. For each of the configuration classes you found in problem 6, find the minimal number of guesses required to

complete the board. Keep in mind that within a single configuration class, different numbers of minimal guesses

may be required depending on the positions of the borders. You can view this as moving the boundaries while

staying within the class, but changing the minimal number of guesses. For example, Figure 5 shows boards from

the same configuration class that require different minimal numbers of guesses.
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a) 4 guesses

Figure 5
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b) 6 guesses

♠ ♠♥
♣ ♣♦

For each of the other configuration classes find all possible numbers of minimal guesses by drawing representa-

tive boards.

8. How many different colorings of the board are possible? Hint: Use the configuration classes to guide your work.

Realize that two boards in the same configuration class that are equivalent under rotation produce different

colorings. Further, positions of the borders and the distribution of the suits produce different colorings too.

9. For the completed boards in Figure 6, what is the minimum number of squares that can remain unknown so that

more than one board is possible? Give examples of which squares would have to remain unknown in order to

achieve this minimal number.
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Figure 6
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1 2 3 4 5 6 7 8 9 X
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9
8
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6
5
4
3
2
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♥
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♠
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9
8
7
6
5
4
3
2
1 ♣♣♣♣
♣♣♣♣
♣♣♣♣
♣♣♣♣
♣♣♣♣
♣♣♣♣
♣♣♣♣

♥♥♥
♥♥♥
♥♥♥
♥♥♥
♥♥♥
♥♥♥
♥♥♥

♠♠♠
♠♠♠
♠♠♠
♠♠♠
♠♠♠
♠♠♠
♠♠♠

♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦

d)

10. Determine the values of n such that knowing a specific n squares still does not complete the board, but knowing

an .nC 1/st square allows you to complete the board. Use sample boards to explain.
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Solutions

1. i/ Solutions for Figures 1a/, 1b/, and 1c/ appear below.

1a/ There are 10 freebies. They are in the rectangle with vertices at (6,3), (6,6), (4,6), and (4,3).

1b/ No freebies.

1c/ There are 28 freebies. There are 8 | in the rectangle defined by vertices (3,1), (3,3), (1,3), and (1,1).

There are 15 � freebies in the rectangle defined by vertices (X,7), (X,X), (7,X), and (7,7). There are

3 ~ freebies at (8,4), (9,4), and (X,4) and 2 } freebies at (1,6) and (2,6).

i i/ Answers vary. A good guess has the potential to reveal many freebies. For example, in Figure 1b/, a guess

in the rectangle with vertices (X,5), (X,X), (4,X), and (4,5) could reveal a � and lead to many freebies, as

the board would have the same structure as Figure 1c/. Also, students might look for borders between suits

or guess squares that have more possibilities for their suits. For the latter, consider the board in Figure 1b/:

squares in the rectangle given by vertices (6,4), (6,8), (1,8), and (1,4) can be any of the four suits.

2. i/ Answers vary. Examples of acceptable solutions are given for each figure.

2a/ 1 guess: If (6,6) is ~, then we’re done.

2b/ 1 guess: If (4,8) is |, then we’re done.

2c/ 2 guesses: If (8,3) is |, and (7,5) is �, then we’re done.

i i/ Answers vary. Examples of acceptable solutions are given for each figure.

2a/ 5 guesses; 1 guess to reveal the vertical border between ~ and | and a maximum of 2 each to deter-

mine the horizontal borders between | and } and between ~ and �. For example, if (1,6) is |; (6,1)

is }; (5,1) is |; (6,X) is �; and (5,X) is ~, then the board is completed.

2b/ 2 guesses; 1 guess to reveal the vertical border between } and the other suits and 1 guess to reveal

the horizontal border between | and ~. For example, if (X,8) is }, and (4,1) is |, then the board is

completed.

2c/ 4 guesses; 1 guess to reveal the horizontal border between } and the 2 suits ~ and � above it, 1 guess

to reveal the vertical border between ~ and �, 1 guess to reveal the vertical border between | and ~,

and 1 guess to reveal the border between | and }. For example, if (7,X) is �; (1,5) is �; (1,3) is ~;

(X,1) is }, then the board is completed.

3. 3i/ c; 3i i/ b; 3i i i/ d ; 3iv/ c.

4. Consider the four corners of the board. If any adjacent pair is the same color, then one of the four rectangles

would extend from one edge of the board to the opposite edge. This rectangle creates either a vertical or hori-

zontal border that traverses the board.

We find it useful to solve this problem by viewing the board as a unit square, partitioned into four rectangles. If

the four corners of the board are colored distinctly, then each colored rectangular region has a single vertex in

the interior of the square; the other vertices that define the rectangle are on the boundary of the square. Denote

the four rectangular regions as A, B , C , and D such that these contain the vertices of the unit square .0; 1/,

.1; 1/, .1; 0/, and .0; 0/, respectively, and their interior vertices are denoted a, b, c, and d , respectively. Let

a D .xa; ya/, b D .xb; yb/, c D .xc; yc/, and d D .xd ; yd /.

Rectangles A and B must share a vertical border which implies that xa D xb. Similarly, C and D share a

vertical border and xc D xd . Because A and D share a horizontal border, then ya D yd . Likewise, B and C

share a horizontal border such that yb D yc : There are nine ways in which the x and y values of the vertices
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can be ordered:

1/ ya < yb

a/ xa < xc b/ xa D xc c/ xa > xc

2/ ya D yb

a/ xa < xc b/ xa D xc c/ xa > xc

3/ ya > yb

a/ xa < xc b/ xa D xc c/ xa > xc

Cases 1b/, 2b/ and 3b/ all have xa D xc . Thus, these colorings have a vertical border that traverses the board.

Similarly, cases 2a/, 2b/ and 2c/ all have ya D yb; these colorings have a horizontal border that traverses the

board.

In case 1a/, ya < yb and xa < xc as pictured in Figure 7a/. The vertices a, b, c and d form a rectangle that is

not colored. Hence, this case cannot occur. Due to symmetry, case 3c/ cannot occur for the same reason.

In case 1c/, ya < yb and xa > xc as pictured in Figure 7b/. The vertices c, b, a and d form a rectangle that

is colored twice (as part of rectangles A and C ). So, this case cannot occur. Due to symmetry, case 3a/ cannot

occur for the same reason.
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Figure 7
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a

b)

5. The decision tree appears in Figure 8. Because an initial horizontal or vertical division of the square into two

rectangles is rotationally equivalent, we identify the first action by the notation h � v. From solution 4, there

exists at least one line segment that extends from one edge of the board to the opposite edge. There can be 3,

2, or 1 such parallel line segments. For 3 parallel line segments, there is only one configuration, a/. For 2 such

segments, the two possibilities are given by b/ and c/. For 1, all configurations are accounted for by d/, e/, and

f /.

Notice that the same sequential division of the tree into rectangles does not yield all ways that a square can be

divided into five rectangles. As an example, the division of the 10 � 10 square into rectangles in Figure 7a/

cannot be generated by extending the decision tree approach. This follows because no border traverses the entire

length of the 10 � 10 board while the first line drawn in the decision tree approach traverses the entire board.

6. There are 6 configuration classes. The 2 boards denoted by c/ in Figure 8 are equivalent. The other 5 terminal

nodes in the decision tree in Figure 8 belong to unique configuration classes.

7. Figure 9 consists of boards for each configuration class that yield all of the possible minimal numbers of guesses.

We consider the boards from the terminal nodes of the decision tree in left-to-right order. Terminal node e/ is

described as part of the problem statement and is shown in Figure 5.

8. Using the terminal nodes of the tree in Figure 8, we count how many ways there are to determine the suits of

each configuration class. For node a/, of the 9 possible horizontal borders in the 10 � 10 board, 3 such borders
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a) b) d) e) f)︸ ︷︷ ︸

c)

Figure 8
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define the 4 regions. There are
�

9
3

�

ways to choose these horizontal borders. Suits in each of these boards can

be allocated in 4Š ways. And, because horizontal and vertical borders are in the same configuration class under

rotation, the total number of boards in this configuration class is 2 � 4Š �
�
9
3

�

:

For node b/, there are
�
9
2

�

ways to select the horizontal borders. For each of these pairs of horizontal borders,

there are 9 ways to choose the vertical border making the cross-bar of the H . Suits for the 4 regions can be

allocated in 4Š ways. Once again, the initial borders could have been vertical, instead of horizontal. Hence,

there are 2 � 4Š � 9 �
�

9
2

�

. For nodes c/, the only difference is that the vertical border is in the top or bottom

region. Therefore, there are twice as many boards for configuration class c as for node b/, or 2 �
h

2 � 4Š � 9 �
�

9
2

�i

completed boards.

For node d/, there are
�

9
2

�

ways to select the horizontal borders. The vertical border determines how far across

from the right side the lower horizontal border goes. There are 9 ways to select the vertical border that extends

from the upper horizontal border to the bottom of the board. Because the lower horizontal border could extend

from either the left or the right edge to the vertical border, choosing left or right doubles the number of boards.

Also, there are 2 choices for which horizontal border traverses the board, either the upper or the lower, doubling

again the number of boards. Because the initial borders could have been vertical and considering the 4Š ways to

allocate suits to the 4 regions, there are 2 � 2 �
h

2 � 4Š � 9 �
�

9
2

�i

completed boards.

For node e/, it is possible for both the horizontal and vertical borders to traverse the board, making a ‘C,’ as in

Figure 5a/. To prevent double counting, we first consider those that do not make a ‘C’ sign. There are 9 choices

for the horizontal border that traverses the board. The top region’s vertical border can be selected in 9 ways,

while the bottom region’s vertical border can be selected in 8 ways, to prevent the ‘C’. Suits can be allocated to

the four regions in 4Š ways. With the cases in which the vertical border is the only one that traverses the board,

there are 2 � Œ4Š � 9 � 9 � 8� ways to complete the board in this configuration class without ‘C’ cases. The ‘C’ cases

can be completed in 4Š � 9 � 9 ways because the horizontal border can be chosen in 9 ways, the vertical border

can be chosen in 9 ways, and the four suits can be allocated to the four regions in 4Š ways. Hence, there are

2 � Œ4Š � 9 � 9 � 8�C 4Š � 9 � 9 distinct boards in this configuration class.

For node f /, there are 9 ways to choose the horizontal border,
�

9
2

�

ways to choose the two vertical borders, and

the vertical borders could be above or below the horizontal border. The four suits can be allocated to the four
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Figure 9

regions in 4Š ways. Because the initial horizontal border could have been vertical, we multiply our result by 2.

Hence, there are 2 � 4Š � 2 �
�

9
2

�

� 9 completed boards in this configuration class.

Adding the total number of boards for each configuration class there are

4Š

"

17 � 92 C 2 � 92 �
 

9

2

!

C 2 �
 

9

3

!#

or 177048 possible boards.

9. Answers vary. Examples of acceptable solutions are given.

a/ 3 squares: (7,6), (6,6), and (5,6).

b/ 2 squares: (8,9) and (8,X).

c/ 1 square: (8,X).

d/ 7 squares: (1,5), (2,5), (3,5), (4,5), (5,5), (6,5), and (7,5).
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10. All values of n from 3 to 99. For n D 3, the board in Figure 5a/ is an example where knowing three squares (�,

~, and }) isn’t enough to complete the board, but knowing a specific 4th square (|) does complete the board.

For n D 99, knowing the suits of all squares except for (8,X) in Figure 6c/ is not enough to complete the board

because (8,X) could be ~ or �. Other values can be constructed by generalizing the boards in Figure 6.





Fun and Games with Squares and Planes

Maureen T. Carroll and Steven T. Dougherty
University of Scranton

Summary

This project is intended to introduce students to the concepts of mutually orthogonal Latin squares and their relation-

ship to finite affine planes. These topics are introduced in the first section. After describing how tic-tac-toe is played

on an affine plane, the second section explores player strategies. Playing the game will help students understand the

combinatorial and geometric notions described, and build geometric intuition for these objects.

Notes for the instructor

Students must play the game in order to understand the strategy arguments. You can have them play against each other

in class or turn in their game sheets as an exercise. While the last exercise may be an exercise in frustration, it is

important for students to repeatedly play the game.

For a class project, have the members of your class play a “Tic-tac-toe on the affine plane of order 4” tournament.

Our Mathematics Club holds an annual tic-tac-toe tournament at the University of Scranton with prizes for the top

finishers. We have best-of-three matches to decide the winner of each random pairing, with a toss of a coin deciding

who makes the first move. While perfect play will result in a win for the first player, you can rely on your students to

make mistakes!

As an additional project, ask your students to create a new game to play on an affine plane. For example, how about

a game where the player who claims the last unclaimed point on a line loses? As another example, what happens on

�n if a player needs only n � 1 of their marks on any line to win? Some of these games may be easy to analyze

strategically while others could be extremely difficult.

There are other examples of generalizations of tic-tac-toe. Several examples of these are given in the reading list

below. For those who wish to learn about the weight function techniques we used to prove our game theoretic results,

see our paper listed below.
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1 Worksheet on Latin squares

In 1782, the great Leonhard Euler posed the following question. Can 36 officers, with six different ranks from six

different regiments, be arranged in a 6 by 6 square such that each row and column has each rank and regiment exactly

once? With this deceptively easy question Euler started one of the most widely studied and productive branches of

discrete mathematics.

As often happens in mathematics, the ease with which a question is posed can be adversely proportional to the

difficulty in finding a solution. A solution to Euler’s question remained unpublished until 1901 when a French colonel

named Tarry computed (by hand) all possible arrangements. It took Tarry one year to do what would now take a com-

puter under an hour, eventually finding that there was no such arrangement. This is exactly what Euler had predicted,

but could not prove.

Euler approached the problem in the following way. He used Latin letters (A,B,C,D, ... ) to represent the ranks and

Greek letters .˛; ˇ; ; : : : ; :::/ to represent the regiments. So each officer now had a unique representation consisting

of one Latin letter and one Greek letter, an ordered pair. Euler then split the problem into arranging the regiments and

arranging the ranks. To arrange either you simply had to make a square in which each letter appeared exactly once in

each row and each column. This object has come to be known as a Latin square regardless of the alphabet employed.

For example here are two 4 by 4 Latin squares.

0

B
B
@

A B C D

B A D C

C D A B

D C B A

1

C
C
A

0

B
B
@

˛ ˇ  ı

ı  ˇ ˛

ˇ ˛ ı 

 ı ˛ ˇ

1

C
C
A

(1)

If Euler had posed a 16 officer problem, a solution could be constructed by overlapping the two Latin squares

above so that each ordered pair of Latin and Greek letters appears exactly once. We say that the two Latin squares are

orthogonal if this occurs. Overlapping the two squares above produces the Graeco-Latin square:

0

B
B
@

A˛ Bˇ C Dı

Bı A Dˇ C˛

Cˇ D˛ Aı B

D Cı B˛ Aˇ

1

C
C
A

(2)

Exercise 1.1. Verify that each letter appears exactly once in each row and column of both squares of (1), and that each

ordered pair appears exactly once in (2).

This Graeco-Latin square proves that it is possible to arrange 16 officers in a 4 by 4 square such that each of the ranks

and regiments appears exactly once in each row and column. The ease of this construction makes the impossibility

of the 36 officer problem even stranger. To further add to the mysterious nature of this problem, it is known that n2

officers can be arranged in such an n by n square for all n except n D 2 and n D 6.

Interestingly, we can expand the structure in (2) by using the the natural numbers, 0; 1; 2; 3; : : : ; as our alphabet.

This is the alphabet that is typically used for all Latin squares since it allows for the use of the algebra of the natural

numbers in constructions. Consider the following Latin square:

0

B
B
@

0 1 2 3

2 3 0 1

3 2 1 0

1 0 3 2

1

C
C
A

(3)

We can overlap this 4 by 4 square with each of the others in (1) as shown below.

0

B
B
@

0A 1B 2C 3D

2B 3A 0D 1C

3C 2D 1A 0B

1D 0C 3B 2A

1

C
C
A

0

B
B
@

0˛ 1ˇ 2 3ı

2ı 3 0ˇ 1˛

3ˇ 2˛ 1ı 0

1 0ı 3˛ 2ˇ

1

C
C
A

(4)
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Exercise 1.2. Verify that each ordered pair appears exactly once in both squares of (4).

In (2) and (4) we have shown that the Latin squares given in (1) and (3) are Mutually Orthogonal Latin Squares

(MOLS) of order 4. This means that there are three 4 by 4 squares, each pairing of which is orthogonal. Here is a way

to represent these three MOLS using only the first four natural numbers as our alphabet.

0

B
B
@

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

1

C
C
A

0

B
B
@

0 1 2 3

2 3 0 1

3 2 1 0

1 0 3 2

1

C
C
A

0

B
B
@

0 1 2 3

3 2 1 0

1 0 3 2

2 3 0 1

1

C
C
A

(5)

Exercise 1.3. Construct another Latin square of order 4, different from those in (5) but using the same alphabet.

For the following exercise, consider the following Latin squares of order 4.

P D

0

B
B
@

0 1 2 3

3 0 1 2

2 3 0 1

1 2 3 0

1

C
C
A

Q D

0

B
B
@

0 1 2 3

2 3 0 1

1 2 3 0

3 0 1 2

1

C
C
A

(6)

Exercise 1.4.

(a) Are P and Q orthogonal to each other?

(b) Is P orthogonal to the Latin squares in (5)? IsQ?

(c) Using the same alphabet, can you find another Latin square, R, for which P , Q and R are MOLS?

At this point you may have conjectured that there are at most three MOLS of order 4. We shall now show that the

largest number of MOLS of order n is n � 1. Suppose we have a set of MOLS of order n. We can assume that the

first row of each is arranged in ascending order, 0; 1; 2; 3; 4; : : : ; n � 1, since if it were not we could simply rename

the elements so that it fits this arrangement. Consider the elements in the first column of the second row in these

squares. These elements must be distinct and different from 0. Why? They must be distinct since the ordered pairs

.0; 0/; .1; 1/; : : : ; .n � 1; n � 1/ are produced in the first row when overlapping any two of these squares. They must

be different from 0 since there can only be one 0 in the first column. Therefore we only have n � 1 possibilities, and

we can have at most n� 1 MOLS of order n.

If we have a set of n � 1 MOLS of order n then we say that it is a complete set of MOLS of order n. Here is the

principal question which has generated over 200 years of research and remains largely unsolved.

Fundamental Question: For which n are there complete sets of MOLS?

This is another example of a question which is easily stated, can be explained to almost anyone, and has withstood

the attempts of a great number of mathematicians for hundreds of years. It is precisely because of this that Gary

Mullen, a well-known mathematician in this field, recently suggested it as the next Fermat problem. As we will see,

this question is equivalent to one of the most important questions of finite geometry, namely when do projective and

affine planes exist.

There are some simple constructions for a complete set of MOLS of prime order which we shall now describe. First

we recall some basic definitions of modular arithmetic. We say that a � b .mod n/ if a � b is a multiple of n. We

can take as the representatives of all natural numbers modulo n the set f0; 1; 2; : : : ; n � 1g, and use this set as our

alphabet. When we add or multiply a and b we take the representative from this set that is equivalent to the sum or

product modulo n. For example, 3C 5 � 1 .mod 7/ and 3.4/ � 5 .mod 7/. Using these operations, we can construct

tables not unlike elementary school multiplication tables, but utilizing modular arithmetic. As an example, addition

and multiplication tables for modulo 3 arithmetic are shown below. Notice that each cell in the grid is the result of its

row heading and column heading under the specified operation modulo 3.

C 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

� 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1
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Exercise 1.5. Construct the addition and multiplication tables for modulo 5 arithmetic.

We shall now attempt to construct n � 1 MOLS, L1; L2; : : : ; Ln�1, of order n using the set f0; 1; 2; : : : ; n � 1g as

our alphabet. We let Lk
ij denote the entry in the i -th row and j -th column of the Latin square, or matrix, Lk .

Orthogonal Construction: Define Lk
ij D ki C j .mod n/, where i , j and k are members of our alphabet set.

For example, when n D 3 we have

L1 D

0

@

0 1 2

1 2 0

2 0 1

1

A and L2 D

0

@

0 1 2

2 0 1

1 2 0

1

A : (7)

Exercise 1.6. Verify that L1 and L2 are orthogonal.

Notice that this construction technique has produced the largest possible set of MOLS of order 3 since we know

there can be at most two. Will this construction technique work for all possible values of n?

Exercise 1.7. Construct the Lk ’s when n D 4; 5 and 6:

(a) Use the Orthogonal Construction technique to form L1; L2; and L3 when n D 4.

(b) Use the construction to form L1; L2; L3 and L4 when n D 5.

(c) Use the construction to form L1; L2; L3; L4 and L5 when n D 6.

(d) Did the construction yield n� 1MOLS of order n in these three cases? If not, do you have a conjecture as to when

this construction will yield n � 1 MOLS?

If you conjectured that this construction technique only works for prime n then you are correct. (You will be asked

to supply a proof for this in the last project.) A similar construction technique is used to generate the three MOLS of

order 4 but the addition and multiplication operations are defined in a different way. Specifically, it is not modulo 4

arithmetic but the arithmetic of the finite field of order 4.

The relationship between MOLS and finite geometry was hinted at in reference to the Fundamental Question. Let’s

look at an example to explore the nature of this connection. Arrange nine points in a square and connect each set of

three horizontal points and each set of three vertical points, using a different colored marking device to connect each

set. For the next part, think of your grid of points as corresponding to L1 in (7), and connect each set of three points

that have a common symbol, using a different color for each set. Do the same with L2. The result should be similar to

the following diagram, but much more colorful.

Each connection of three points is called a line. How many lines are there? Your answer should be the same as

the number of colors used, namely twelve. Notice that any two lines either meet once or are parallel (no points in

common). This object is known as an affine plane of order 3. In the following four exercises you will construct MOLS

for higher order affine planes. These constructions are needed to proceed to the games in the second part of the project.

Exercise 1.8. Construct the affine plane of order 4: Put 16 points in a square and draw a line for each set of four

vertical and horizontal points. Next, using the three MOLS of order 4 given in (5), connect each set of four points with

the corresponding common symbols. Use a different color for each line to make the connections more visible.

Exercise 1.9. Use the 4 MOLS of order 5 from Exercise 1.7 to draw the corresponding affine plane of order 5 using

the method outlined in Exercise 1.8.
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Exercise 1.10. Use the Orthogonal Construction technique to construct 6 MOLS of order 7 and then use them to draw

the corresponding affine plane of order 7 as in Exercise 1.8.

Exercise 1.11. Prove the following result. The Orthogonal Construction technique produces p � 1 MOLS of order

p if and only if p is a prime. Here is an outline of one way to proceed: First show that Lk is a Latin square, that is,

show that each element appears once in each row and column. Then prove that if p is a prime then Lk and Lj are

orthogonal by showing that each ordered pair is represented exactly once. The following fact will be useful. If p is

prime and ax � b .mod p/ then there is a unique x in f0; 1; : : : ; p�1g satisfying the equation. Next, show it will not

work when p is not a prime. An easy way to do this is to show that the construction will not produce Latin squares in

all cases.

Epilogue

Now that you have developed an understanding for the Fundamental Question, you may be wondering whether there

has been any progress towards a solution. Well, it is known that a complete set of MOLS exists for all orders pk where

p is prime and k is a positive integer. It is not known if there exists a complete set of MOLS for any other value.

The problem has proven to be unbelievably difficult. For example, it has been shown that there is no complete set of

MOLS of order 10. It took numerous theoretical papers and one year of computation on a supercomputer to settle this

particular case. It did not determine the largest number of MOLS of order 10, only that there are not 9 of them. The

difficulty encountered with the n D 10 case is what is known as combinatorial explosion. While it is easy to settle the

6 by 6 case with the aid of a computer, it is impossible for a computer to completely settle the 10 by 10 case since the

number of Latin squares increases too quickly.
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2 Worksheet on Games

The great power of describing mathematics in geometric terms is that it allows us to apply the intuition we have de-

veloped since we were children to very complicated problems. For example, understanding the possible simultaneous

solutions to equations of the form .x � h/2 C .y� k/2 D r2 and axC byC c D 0 is greatly simplified upon realizing

that these equations may be described geometrically as a circle and a line, respectively. Likewise, while it is possible

to study complete sets of MOLS simply by their definition, our understanding will be greatly enhanced by viewing

them as a geometry. Specifically, they can be seen as an affine plane which satisfies axioms similar to those we know

well from the Cartesian plane. Even though we will tinker slightly with the definitions of point, line and plane in this

new context, we can still apply a good deal of the intuition that we have developed for the Cartesian plane. In this

section, we shall describe a very effective way to understand the geometry described in the previous section by using

an unlikely learning tool, tic-tac-toe. By playing this game, we will develop geometric intuition which will aid in the

understanding of MOLS and affine planes.

Tic-tac-toe and variations on its theme are abundant, appearing in children’s books, journals, game theory textbooks

and on the Internet. The rules for tic-tac-toe are simple enough for a young child to learn. A player must mark all of

the positions on a line in order to win the game. While the standard version of tic-tac-toe is played on a 3 by 3 grid, it

can easily be expanded to any n by n grid, with the usual horizontal, vertical and diagonal lines as the winning lines.

We could take this generalization a bit further by playing on an n � n � n cube or a hypercube, that is, a cube in n

dimensions. You can challenge the computer to a game of tic-tac-toe played on a torus or a Klein bottle on the Internet

at www.geometrygames.org. We will use a different game board, namely the affine plane that was introduced in

the previous section. That is, we shall describe the game played on a complete set of MOLS.

The diagrams created in the previous section will be used to develop intuition for affine planes. As a start, let’s look

at the representation of the affine plane of order 3 constructed in the previous section. It may be helpful to use your

colored diagram as a reference. Labels have been inserted so that we may refer to individual points.

g h i

f

cba

d
e

This plane has 9 points and 12 lines, each of these lines consists of three points and, in your representation, each has a

different color. As you may have speculated, this is called the affine plane of order 3 since each line has exactly three

points, and it is denoted as �3. Referring to each line as a set of three points, the lines are:

fa; b; cg;fd; e; f g; fg; h; ig;
fa; d; gg; fb; e; hg; fc; f; ig;
fa; e; ig; fc; e; gg; fa; h; f g;

fg; b; f g; fi; b; d g; fc; h; d g:

These lines appear to be quite different from those found in the Cartesian plane but we shall see that they satisfy

similar axioms. Lines in the Cartesian plane are continuous, contain infinitely many points, and their representation is

described as straight. Lines on this affine plane are discrete, contain a finite number of points, and their representation

cannot necessarily be drawn with a straightedge. It is an example of a finite plane. Though we have “connected the

dots” in our representation, there are no points in between which belong to the plane. When we connect the dots we

are merely representing the simple fact that the connected points form a line. Therefore, our representation of any line

in a finite affine plane does not need to be straight.
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The concept of parallel lines remains unchanged in this context. They are simply lines having no points in common,

for example fg; b; f g and fc; h; d g. Additionally, we say that a line is parallel to itself in the same way we do on the

Cartesian plane. The lines fg; b; f g and fi; b; d g are not parallel since they meet at the point b, in other words b is

a point on both lines. Notice that an intersection of lines in the representative diagram does not necessarily indicate

a point common to both lines. For example, the lines fi; b; d g and fc; h; d g appear to meet in the diagram, but upon

further inspection you will notice that they do not have a point in common.

Exercise 2.1. Questions about the affine plane of order 3, �3:

(i) List the lines which are parallel to fa; b; cg.

(ii) List the lines which are parallel to fa; d; gg.

(iii) List the lines which are parallel to fg; b; f g.

(iv) List the lines which are parallel to fc; e; gg.

The answers to parts (i), (ii), (iii) and (iv) are called parallel classes. The affine plane of order 3 has 4 parallel classes

of 3 lines each since it has 12 lines in total.

Exercise 2.2. Questions about the affine plane of order 4, �4, constructed in Exercise 1.8 in the previous section:

First, label the 16 points in the same manner as in �3, starting with the letter a in the lower left corner and proceeding

accordingly.

(i) List the lines which are parallel to fa; b; c; d g.

(ii) List the lines which are parallel to fa; e; i; mg.

(iii) List the lines which are parallel to fd; g; j; mg.

(iv) List the lines which are parallel to fa; g; l; ng.

(v) List the lines which are parallel to fa; h; j; og.

Exercise 2.3. One of the primary techniques of mathematics is generalizing to all cases from a few known cases. In

this exercise, use your answers from the previous two exercises to finish filling in the first two columns. Using similar

techniques, consult your solutions to Exercises 1.9 and 1.10 to fill in the third and fourth columns. Try to recognize

the patterns emerging in order to formulate some conjectures about the general case, �n.

Number of + in ) �3 �4 �5 �7 �n

points 9 16

lines 12

points on each line 3 4

lines through any point

points where two non-parallel lines meet

lines parallel to any given line 3

[Note: Every line is parallel to itself.]

parallel classes 4

An example of the method for constructing these finite affine planes from their MOLS, specifically for �3, was

given after Exercise 1.7, but the reason for this method was not. It is clear from these exercises that the underlying



Carroll and Dougherty: Fun and Games with Squares and Planes 39

structure has a great deal of symmetry. We cannot take any finite set of points, connect them as we wish, and call it

an affine plane. As is always the case in mathematics, there are rules to be followed. Specifically, an affine plane is a

nonempty set of points, P , and a nonempty collection of subsets of points (called lines) which satisfy the following

three axioms:

(1) through any two distinct points there exists a unique line;

(2) if p is a point, ` is a line, and p is not on line `, then there exists a unique line, m, that passes through p and is

parallel to `;

(3) there are at least two points on each line, and there are at least two lines.

Let’s verify one instance of the second axiom on the affine plane of order 4. The point f is not on the line fa; g; l; ng.

There are five lines through f , namely fe; f; g; hg, fb; f; j; ng, fa; f; k; pg, fd; f; i; og and fc; f; l; ng, of which only

fd; f; i; og is parallel to fa; g; l; ng.

Exercise 2.4. Verify that your representation of �3 satisfies these axioms.

When these rules are followed we can create a finite or an infinite affine plane. The Cartesian plane, with points and

lines defined as usual, is the example we typically envision when reading this definition. It is an example of an infinite

affine plane. Since we intend to play tic-tac-toe on finite planes, we will focus on these. Every line on a finite affine

plane has the same number of points, and as you have surely noticed, this number is called the order of the plane. In

an affine plane of order n there are n2 points. If you are thinking ahead towards playing the game, you may notice that

n2 is the perfect number of points needed for an n � n grid.

Since we may not always have a representative diagram as a reference, how can we easily identify the lines through

any given point without the use of one? Well, the horizontal and vertical lines should be clearly visible. As for the

others, you may recall that in the previous section we constructed the representative diagrams by using the MOLS.

So, even if we did not have a diagram we could still easily find the other lines by consulting the MOLS. In each Latin

square, the points corresponding to identical symbols form a line. So, we can find one line per Latin square through

any given point. On the affine plane of order 4, for example, through any given point we have one horizontal line, one

vertical line, and one line from each of the three MOLS of order 4, for a total of five lines. For example, consulting

both the MOLS in (5) and your labeled representation of �4 from Exercise 2.2 we can easily see the five lines through

the point labeled “a” on �4:

fa; b; c; d g horizontal line

fa; e; i; mg vertical line

fa; f; k; pg line determined by the symbol 3 in first Latin square

fa; g; l; ng line determined by the symbol 1 in second Latin square

fa; h; j; og line determined by the symbol 2 in third Latin square

Exercise 2.5.

(a) Using the labeled representation of �3, identify the two lines determined by the symbol 1 in the associated MOLS

L1 and L2 which were given in (7) in the previous section.

(b) Using your labeled representation of �4 from Exercise 2.2, identify the three lines determined by the symbol 2 in

the associated MOLS given in (5).

(c) Label the points of your representation of �5 from Exercise 1.9 by starting with the letter a in the lower left corner

and proceeding as we have on the other planes. Identify the four lines determined by the symbol 3 in the associated

MOLS found in Exercise 1.7(b).

Now that you have an understanding for our new game board, let’s play tic-tac-toe on these planes. When we play

on what looks to be a standard 3 � 3 board, we will actually be playing the game on the affine plane of order 3. If

we were playing standard 3 � 3 tic-tac-toe, there would be 8 ways to win, namely the 3 horizontal, 3 vertical, and 2

diagonal lines. Since we are playing on the affine plane of order 3 there are 12 ways to win, namely the 12 lines of the

plane. The old ways to win are still there, but we’ve added four new winning lines which are given below.

X

X

X

X

X

X

X

X

X

X

X

X
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We will assume that X always makes the first move and we will use subscripts to denote the order of play. So, in

the example given below, X2 is the second move of player X , and O1 is the first move of player O . Here is a sample

game where player X has won. Can you identify the winning line?

X1 X3 O3

O1 X2

X4 O2

Exercise 2.6. Play several games of tic-tac-toe on the affine plane of order 3. Be sure to play some games as X and

others as O if you have an actual opponent.

Did you notice one of the ways this game differs from standard 3 � 3 tic-tac-toe is the placement of the first move?

In standard 3 � 3 tic-tac-toe the center point sits on 4 lines, the corner points sit on 3 lines, and all other points sit on

2 lines. This difference places greater importance on the first move of the game. On any affine plane, the first player’s

move could just as well be made with his eyes closed since every point sits on the same number of lines. In other

words, there is no advantage to be gained by claiming a particular first point on the plane.

In the standard 3 � 3 version of tic-tac-toe, we usually learn as young children that the second player can always

force a draw as long as they make the correct choices. Determining the outcome of play assuming that players make

the best possible choices is a basic question in game theory. Let’s start small and see what conclusions we can make

about playing on the smallest affine plane, that of order 2. The diagram for this plane of 4 points and 6 lines is given

below. (There is only one Latin square associated with this plane. What is it?)

r s

p q

Notice that once X1 andO1 are chosen, playerX will win on his second move since there exists a line between any

two points on an affine plane. In this situation we say that X has a winning strategy. This was too easy. Let’s consider

the affine plane of order 3.

Try to play tic-tac-toe on �3 until you can determine the outcome of play on this plane. You will find that player X

always wins. By the reasoning given above, X1 and O1 may be assumed to be chosen arbitrarily. Choose X2 as any

point not on the line containing X1 and O1. Since there exists a line between any two points on an affine plane, O2

must be placed on the line containingX1 and X2 (otherwise X wins on the next move). Likewise, X3 must block the

line containingO1 and O2. Player O must now block either the line containingX1 and X3 or the line containing X2

andX3, (it is a simple matter to see thatO does not already have these lines blocked). Now, X4 completes the line that

O3 did not block, and X wins the game. We have shown that X has a winning strategy by providing the method by

which X can win any game on the affine plane of order 3. Now that we’ve provided a winning strategy on this plane,

let’s move on to the plane of order 4.

Exercise 2.7. Play tic-tac-toe on �4 (use either the diagram created in Exercise 1.8 or the MOLS given in (5)), and try

to determine the outcome of play on this plane.

As soon as we venture beyond the first two affine planes we find that the complexity of the game increases dra-

matically. This jump in difficulty when moving from one case to the next is not uncommon in mathematics. Indeed,

we saw this very phenomenon in the attempt to find a complete set of MOLS of order 10 in the previous section. As

for tic-tac-toe on the affine plane of order 4, the additional points and lines generate a far greater number of possible

moves for each player. If you found that you cannot provide an easy move-by-move analysis as we did for the previous

two planes then you are not alone. Perhaps we do not possess the computational fortitude that Tarry showed when he

solved the 36 officer problem by hand, or perhaps we are merely availing ourselves of our computational technology,

but in either case we relied on a computer to tell us that player X has a winning strategy by exhausting all possible
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outcomes. We do not, however, know what this winning strategy is in general. This means that we cannot describe

an easily applied winning algorithm (for a person to follow) which prescribes each move. We can, however, teach

a computer to play so that it never loses, but a vast number of tree searches are required at each move, placing this

algorithm far beyond the capabilities of a human player.

Epilogue

What about the affine planes of order 5 and order 7 that you constructed in the previous section? We determined that

player O can always force a draw on these planes just as the second player can in the standard 3 � 3 tic-tac-toe you

played as a child. In fact, player O can force a draw on all affine planes of order greater than 4. If you presume that

since a move-by-move analysis is not possible for the affine plane of order 4 then it surely must not be possible for

higher ordered planes, then you are correct. We did not, however, have to rely on a computer to determine the outcome

of play on these higher ordered planes. We were able to prove this result by using a technique that goes beyond the

scope of this project, namely weight functions.
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Solutions

Solution 3 Numerous examples can be given, for example:

0

B
B
@

0 1 2 3

3 0 1 2

2 3 0 1

1 2 3 0

1

C
C
A

Solution 4 (a) No, for example the pair .0; 3/ appears twice but .0; 1/ does not appear. (b) Neither P nor Q are

orthogonal. (c) No.

Solution 5
0

B
B
B
B
B
B
B
@

C 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

1

C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
@

� 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

1

C
C
C
C
C
C
C
A

Solution 1.7
(a)

L1 D

0

B
B
@

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2

1

C
C
A
L2 D

0

B
B
@

0 1 2 3

2 3 0 1

0 1 2 3

2 3 0 1

1

C
C
A
L3 D

0

B
B
@

0 1 2 3

3 0 1 2

2 3 0 1

1 2 3 0

1

C
C
A

(b)

L1 D

0

B
B
B
B
@

0 1 2 3 4

1 2 3 4 0

2 3 4 0 1

3 4 0 1 2

4 0 1 2 3

1

C
C
C
C
A

L2 D

0

B
B
B
B
@

0 1 2 3 4

2 3 4 0 1

4 0 1 2 3

1 2 3 4 0

3 4 0 1 2

1

C
C
C
C
A

L3 D

0

B
B
B
B
@

0 1 2 3 4

3 4 0 1 2

1 2 3 4 0

4 0 1 2 3

2 3 4 0 1

1

C
C
C
C
A

L4 D

0

B
B
B
B
@

0 1 2 3 4

4 0 1 2 3

3 4 0 1 2

2 3 4 0 1

1 2 3 4 0

1

C
C
C
C
A

(c)

L1 D

0

B
B
B
B
B
B
@

0 1 2 3 4 5

1 2 3 4 5 0

2 3 4 5 0 1

3 4 5 0 1 2

4 5 0 1 2 3

5 0 1 2 3 4

1

C
C
C
C
C
C
A

L2 D

0

B
B
B
B
B
B
@

0 1 2 3 4 5

2 3 4 5 0 1

4 5 0 1 2 3

0 1 2 3 4 5

2 3 4 5 0 1

4 5 0 1 2 3

1

C
C
C
C
C
C
A

L3 D

0

B
B
B
B
B
B
@

0 1 2 3 4 5

3 4 5 0 1 2

0 1 2 3 4 5

3 4 5 0 1 2

0 1 2 3 4 5

3 4 5 0 1 2

1

C
C
C
C
C
C
A

L4 D

0

B
B
B
B
B
B
@

0 1 2 3 4 5

4 5 0 1 2 3

2 3 4 5 0 1

0 1 2 3 4 5

4 5 0 1 2 3

2 3 4 5 0 1

1

C
C
C
C
C
C
A

L5 D

0

B
B
B
B
B
B
@

0 1 2 3 4 5

5 0 1 2 3 4

4 5 0 1 2 3

3 4 5 0 1 2

2 3 4 5 0 1

1 2 3 4 5 0

1

C
C
C
C
C
C
A

(d) For n D 4 and n D 6 the construction did not even produce Latin squares for Li when i was not relatively prime

to n. For n D 5 the construction did work. The correct conjecture is that it will work if and only if n is prime.

Solution 1.8 Simply connect the points corresponding to each number in the given Latin squares.

Solution 1.9 Simply connect the points corresponding to each number in the given Latin squares.

Solution 1.10

L1 D

0

B
B
B
B
B
B
B
B
@

0 1 2 3 4 5 6

1 2 3 4 5 6 0

2 3 4 5 6 0 1

3 4 5 6 0 1 2

4 5 6 0 1 2 3

5 6 0 1 2 3 4

6 0 1 2 3 4 5

1

C
C
C
C
C
C
C
C
A

L2 D

0

B
B
B
B
B
B
B
B
@

0 1 2 3 4 5 6

2 3 4 5 6 0 1

4 5 6 0 1 2 3

6 0 1 2 3 4 5

1 2 3 4 5 6 0

3 4 5 6 0 1 2

5 6 0 1 2 3 4

1

C
C
C
C
C
C
C
C
A

L3 D

0

B
B
B
B
B
B
B
B
@

0 1 2 3 4 5 6

3 4 5 6 0 1 2

6 0 1 2 3 4 5

2 3 4 5 6 0 1

5 6 0 1 2 3 4

1 2 3 4 5 6 0

4 5 6 0 1 2 3

1

C
C
C
C
C
C
C
C
A
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L4 D

0

B
B
B
B
B
B
B
B
@

0 1 2 3 4 5 6

4 5 6 0 1 2 3

1 2 3 4 5 6 0

5 6 0 1 2 3 4

2 3 4 5 6 0 1

6 0 1 2 3 4 5

3 4 5 6 0 1 2

1

C
C
C
C
C
C
C
C
A

L5 D

0

B
B
B
B
B
B
B
B
@

0 1 2 3 4 5 6

5 6 0 1 2 3 4

3 4 5 6 0 1 2

1 2 3 4 5 6 0

6 0 1 2 3 4 5

4 5 6 0 1 2 3

2 3 4 5 6 0 1

1

C
C
C
C
C
C
C
C
A

L6 D

0

B
B
B
B
B
B
B
B
@

0 1 2 3 4 5 6

6 0 1 2 3 4 5

5 6 0 1 2 3 4

4 5 6 0 1 2 3

3 4 5 6 0 1 2

2 3 4 5 6 0 1

1 2 3 4 5 6 0

1

C
C
C
C
C
C
C
C
A

Solution 1.11 The Orthogonal Construction technique produces p � 1 MOLS of order p if and only if p is a prime.

Proof. Assume p is a prime. If Lk
i;j D Lk

i;j 0 then ki C j D ki C j 0 which implies j D j 0. Thus no element appears

more than once in a row. If Lk
i;j D Lk

i 0;j
then ki C j D ki 0 C j implies ki D ki 0 and then k.i � i 0/ D 0: There is a

unique solution to kx D 0 .mod p/, namely 0 and so i D i 0 and no element appears more than once in a column and

Lk is a Latin square.

Next we shall show that Lk and Lk0

are orthogonal. Assume .Lk
i;j ; L

k0

i;j / D .Lk
i 0 ;j 0 ; L

k0

i 0;j 0/ then ki C j D ki 0 C j 0

and k0i C j D k0i 0 C j 0: This gives that k.i � i 0/ D j 0 � j and k0.i � i 0/ D j 0 � j . However, there is a unique

solution to .i � i 0/x D .j 0 � j / and so k D k0. Hence if k ¤ k0 the same ordered pair cannot appear more than once.

If p is not a prime then p D ab for 1 < a; b < p. Consider La: in the row corresponding to b we have La
b;j

D
ab C j D j and in the 0th row we have La

a0Cj D j so that La is not a Latin square.

Solution 2.1

(i) fa; b; cg; fd; e; f g; fg; h; ig
(ii) fa; d; gg; fg; e; hg; fc; f; ig
(iii) fg; b; f g; fh; d; cg; fi; e; ag
(iv) fc; e; gg; fa; f; hg; fb; d; ig

Solution 2.2

(i) fa; b; c; d g; fe; f; g; hg; fi; j; k; lg; fm; n; o; pg
(ii) fa; e; i; mg; fb; f; j; ng; fc; g; k; og; fd; h; l; pg
(iii) fd; g; j; mg; fc; h; i; ng; fb; e; l; og; fa; f; k; pg
(iv) fa; g; l; ng; fb; h; k; mg; fd; f; i; og; fc; e; j; pg
(v) fa; h; j; og; fc; f; l; mg; fd; e; k; ng; fb; g; i; pg

Solution 2.3

Number of + in ) �3 �4 �5 �7 �n

points 9 16 25 49 n
2

lines 12 20 30 58 n
2 C n

points on each line 3 4 5 7 n

lines through any point 4 5 6 8 n C 1

points where two non-parallel lines meet 1 1 1 1 1

lines parallel to any given line 3 4 5 7 n

[Note: Every line is parallel to itself.]

parallel classes 4 5 6 8 n C 1



44 Part I Classroom-tested Projects

Solution 2.5

(a) fa; f; hg; fh; d; cg
(b) fo; l; e; bg; fo; i; f; d g; f0; j; h; ag
(c) fx; r; l; f; eg; fx; q; o; h; ag; fx; p;m; j; bg; fx; t; k; g; cg

Solution 2.6 You should find that X has a winning strategy.

Solution 2.7 Player X has a winning strategy but, as the next paragraph in the worksheet notes, this strategy is not

easy to find. After playing the game extensively by hand, you may appreciate the online version at

http://academic.scranton.edu/faculty/carrollm1/tictactoe/tictactoea4.html



Exploring Recursion with the Josephus Problem
(Or how to play ‘‘One Potato, Two Potato’’ for keeps)

Douglas E. Ensley and James E. Hamblin

Shippensburg University

Summary

The Josephus problem is addressed in many discrete mathematics textbooks as an exercise in recursive modeling, with

some books (e.g., [1] and [3]) even using it within the first few pages as an introductory problem to intrigue students.

Since most students are familiar with the use of simple rhymes (like Eeny-meeny-miney-moe) for decision-making on

the playground, they are comfortable with the physical process involved in this problem. For students who may wish

to pursue this topic independently, [4] and [5] provide nice surveys and bibliographies, and the website [2] provides

web-based tools for exploring the problem directly. The activities presented here are intended to be completed by

students in a single class period early in the semester. We find that an opening student-centered problem can get the

class involved and set a good tone for the semester. Moreover, we find that many issues arising from this particular

problem can be built upon throughout the course. The next section provides some suggestions for connections to other

parts of the course.

Notes for the instructor

The Josephus problem can be explored through role playing or through carefully constructed pencil and paper activ-

ities, depending on the amount of time one wishes to devote to it. We list below some of the things we discuss just

before the activity as well as some of the contexts in which we have students revisit the problem later on.

� A good preliminary discussion on recursion can be initiated with the following problems.

a. Pose the question, “What is 1 C 2 C 3 C � � � C 19 C 20?” This provides a good opportunity to share the

creative idea of regrouping in order to sum 10 copies of 21 for a total of 210.

b. Followup with the question, “What is 1C 2C 3C � � � C 20C 21?” Some students will try the regrouping

trick, but at least one should point out that you can simply add 21 to the previous answer.

c. This idea of using a “similar but simpler” problem that has been solved previously is the very essence of

recursive thinking.

� The activities presented here have been written to be completed with paper and pencil, but with the investment

of more time one can have students act out the roles. This is a good ice-breaking activity early in the semester,

but it does take more time. Through role playing, students will discover for themselves issues like “We need to

remember who was first,” and “We need a system for describing who is the last one left.”

� There will be several opportunities later in a discrete mathematics course when one can reprise the Josephus

game as a source for exercises and motivational examples. Computer science courses often use this problem as

45
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an exercise in recursive programming or in maintaining circular linked lists. Hence, with some cooperation from

a friendly computer science instructor, this problem can prove useful in more than one context.

a. (Mathematical induction) In the Josephus problem with skip number 2, prove that for all integers n � 0,

if the game starts with 2n players, then the person in position 1 will be the last person left. (This uses

induction with the induction step involving the one pass all the way around the circle for the first time in

which the even numbered people are eliminated.)

b. (Follow up) In the Josephus problem with skip number 2, if 0 � k < 2n and the game starts with 2n C k

players, then the person in position 2k C 1 will be the last person left. This is a non-inductive argument

consisting of removing the first k (even numbered) people and then applying (a) to the remaining circle of

size 2n.

c. (Binary representation of numbers) Define the cyclic left shift of a binary numeral b as the number obtained

from shifting the leading (i.e., leftmost) 1 bit to the rightmost end of the numeral. For example, the cyclic

left shift of the binary numeral 1001101 is the numeral 0011011, which is the same as 11011. Show that if

0 � k < 2n, then the cyclic left shift of the binary representation of 2n C k is the binary representation of

2kC 1. Hence, the cyclic left shift of a numberm gives the last person left in them person Josephus game

with skip number 2. This gives an “application flavor” to the study of binary numbers that may make them

more intriguing.

d. (Modular arithmetic) When introducing modular arithmetic, an analogy can be made to the Josephus prob-

lem in which the original circle of people are numbered 0 through n � 1. In particular, the patterns within

the tables of “last person left” all have the relationship “add k” but with the provision that the addition

“wraps around the circle” to refer to the actual people.
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Worksheet on Exploring Recursion with the Josephus Problem

(Or how to play ‘‘One Potato, Two Potato’’ for keeps)

Introduction

Ancient mathematics problems that still hold their own are always fun to play with. A particularly good one, which

happens to be named for a first century historian, has its origins in the Jewish - Roman war. The historian Flavius

Josephus was apparently trapped by the Romans in a cave with 40 fellow Jewish rebels. As good soldiers they decided

on suicide rather than capture, so they formed a circle and agreed that every third person would be killed until no one

was left.

Josephus and a friend were more keen on being captured than their colleagues, so they quickly found the spots to

stand to ensure they were the two remaining at the end of the grisly proceedings. Hence, the mathematically inept

suffered an untimely demise while Josephus and his friend lived to tell the tale.

This morbid story doesn’t seem like much of a game or puzzle, but it has the same basic structure (with terminal

consequences) as the age old way of choosing someone from a group: the “one potato, two potato” algorithm. We will

spend some time in class today playing this type of game and analyzing our results.

Analyzing the Josephus Problem

In general, when we play the “Josephus game,” there will be a certain number of people standing in a circle, and

a “skip number” that tells us how many people to count before removing someone from the circle. In the classical

example described above, the number of people is 41 and the skip number is 3.

Let’s look at a simpler example. This time, there will be only six people in the circle, but we will keep the skip

number at 3. We’ll continue to play until there is only one person remaining. Let’s say the people, named Ann, Beth,

Chris, Dave, Emma, and Fred, are arranged as shown in Figure 1.

Figure 1. Six people in a circle.

In this case, we decide to start counting with Ann. We count Ann and Beth, and when we get to the third person,

Chris, he is removed from the circle. With Chris gone, we continue counting with Dave. We count Dave and Emma,

and when we get to Fred, he is eliminated from the circle. Now there are four people left in the circle: Ann, Beth,

Dave, and Emma, and the counting continues with Ann. We count Ann and Beth, and then Dave is eliminated. The

current situation is displayed in Figure 2.

Figure 2. Three people remain.

We next count Emma and Ann, and remove Beth, and the counting once again continues with Emma. We count

Emma, Ann, and then Emma is removed, so Ann is the person who is left standing at the end.

An important thing to notice about this process is that we need to know which person to start the counting with at

each step, including the first step. If we remove a couple of people and then go on a coffee break, we might come back

and forget who to resume the counting with.
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For discussion: Can you think of a way that we could remember which person we need to start the

counting with at each step?

One solution is for us to put a funny hat on the person we need to start the counting with at each step. In

our diagrams, we will put a thick circle around the “starting person.”

Let’s try the game again, this time with seven people (named A, B, C, D, E, F, and G) and removing every fifth

person. Recall that we say that the “skip number” is equal to 5. Figure 3 shows diagrams illustrating how such a game

progresses. Note that the players are removed in the order E, C, B, D, G, A, and person F is the last one standing.

Start with A to be counted first.

E was removed and F is to be

counted first.

C was removed and D is to be

counted first.

B was removed and D is to be

counted first.

D was removed and F is to be

counted first.

G was removed and A is to be

counted first.

Figure 3. The game with seven people.

Exercise 1. On your own, play the Josephus game with n players and a skip number of k for each of the following

values. Determine who is the last person standing.

a. n D 6; k D 2 b. n D 10; k D 3 c. n D 11; k D 3

Changing the Starting Player

What happens if we decide to keep the values of n and k the same, but change the person we start the game with?

How does this affect the outcome? Let’s go back to the example with seven people and a skip number of 5. Let’s say

the people are named Terry, Ursula, Vivian, Walter, Xander, Yolanda, and Zack, and we want to start the game with

Walter as Figure 4 shows.

Figure 4. What’s in a name?
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For discussion: In the game shown on the left in Figure 4, F is the last person standing. Who will be the

last person standing in the game shown on the right? Can you figure it out without playing the entire game

again?

If you said that Ursula would be the last person standing, you are correct! When we have seven people

and a skip number of 5, the last person standing is the sixth one around the circle from the starting player.

(Here we count the starting person as the first player around the circle.) In mathematical notation, we will

write this as J.7; 5/ D 6.

The J.n; k/ notation is very handy for describing the last person left in the Josephus game that starts with n people

in the circle and eliminates every kth one. For example, the result of our first example can be described by simply

writing J.6; 3/ D 1.

Exercise 2. Go back to the three games you played in Exercise 1. Using the mathematical notation we have defined,

find the value of J.n; k/ in each of the following cases.

a. J.6; 2/ b. J.10; 3/ c. J.11; 3/

Recursion: Using What Came Before

This idea of changing the starting player can be very helpful for finding patterns in the Josephus problem. Consider the

game with eight people and a skip number of 5, as shown in Figure 5. After the first step of this game, E is eliminated

Figure 5. Beginning the game with eight people.

from the circle, and we have the situation in Figure 6.

Figure 6. After person E is eliminated.

Now what? Well, we continue to play the game as before, or we might notice that we have seen this situation before.

This is a game with seven players and a skip number of 5. We already determined that the last person standing in this

game is the sixth person around the circle from the starting player. In this case, that means that C is the last person

standing.

For discussion: Finish playing the game to verify that C is the last one standing.

Here is another example of this idea. In Exercise 2(c), you determined that J.11; 3/ D 7. That is, in a game with

eleven people and a skip number of 3, the seventh person around the circle from the starting person will be the last

one standing. How does this help us determine the value of J.12; 3/? Consider the first step of the game with twelve

people and a skip number of 3. The first person eliminated is person 3, and person 4 becomes the new starting player.
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Now there are eleven people remaining, and we know that the last one standing will be the seventh person around the

circle starting with person 4. This is person 10. You can verify on your own that J.12; 3/ D 10.

Finding the Pattern

There is a pattern to how the position of the last survivor changes as we change the number of people initially standing

in the circle. To see this pattern, we need to experiment and compute the answer for many different examples. In the

table in Exercise 3, the top row shows the number of people in the circle, and the bottom row shows the position of the

last person standing when the skip number is 3. The values we have already determined are filled in for you.

Exercise 3. Fill in the rest of the table, either by playing each game or by appealing to the “using-what-came-before”

strategy.

n 3 4 5 6 7 8 9 10 11 12 13 14

J.n; 3/ 1 7 10

a. What pattern do you notice in the table?

b. Can you explain in terms of the “using-what-came-before” strategy why this pattern holds?

c. On your own, make a similar table but change the skip number to 4. Can you predict what pattern you will see?

An easier variation

A game that’s a little better suited for detailed analysis is the variation where every second person is eliminated — that

is, the skip number is 2. The game will officially be played with people named 1; 2; : : : ; n in a circle (with the numbers

going clockwise). We go around the circle clockwise getting rid of every second person (Person 2 is the first to go)

until no one is left. For example, if we start with four people, then the people are eliminated in the order 2; 4; 3; 1, so

person 1 is the last survivor.

We will let J.n/ denote the last survivor in the game which starts with n people and has a skip number of 2. (That

is, we use J.n/ instead of J.n; 2/.)

Exercise 4. Fill in the rest of the table, either by playing each game or by appealing to the “using-what-came-before”

strategy.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J.n/ 1

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30

J.n/

a. How is the value of J.n/ related to the value of J.n � 1/?

b. What will be the next value of n for which J.n/ D 1?

c. How would you describe a formula for J.n/ that would allow someone to quickly figure out the last place in

line given any n?

Josephus and his buddy

In the original story, Josephus actually escapes with a friend, so in reality he had to know the positions of the last two

survivors of this macabre game. To keep it simple, let’s still use the game with skip number 2, but now we will use

F.n/ to denote the required position of the friend in the Josephus game starting with n people.

Exercise 5. Play the Josephus game (with every second person eliminated, as above) for various n and record the

numbers J.n/ and F.n/ of the last person alive and of the next-to-the-last person alive, respectively. Find more values

than in the table below if you think it is helpful to do so. Remember to try to use things you already know as you tackle

larger and larger values of n.
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n 12 13 14 15 16 17 18 19 20 21 22 23 24

J.n/

F.n/

a. How is the value of F.n/ related to the value of F.n � 1/?

b. What will be the next value of n for which F.n/ D 1?

c. Is there a direct relationship between J.n/ and F.n/?

Further questions for exploration

The following problems, as well as the ones above, can be explored with the applet found under Section 1.1 on the

website

http://webspace.ship.edu/�deensley/DiscreteMath/flash/

Exercise 6. Fill in the following table using the “One potato, two potato” game on n people, starting the first “one

potato” on person 1. For those not familiar with this method of choosing a person on the playground, this is simply

the Josephus problem with every eighth person eliminated. That is, in the table below we use P.n/ to mean the same

thing as J.n; 8/ from the previous discussion.

n 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P.n/

a. If the students in this class stand in a circle in alphabetical order and do “one potato, two potato”, who

will be the last person left?

b. Suppose in the game with 6 people, Josephus is person 1 but before the game starts, the Roman leader says,

“Hey Joey, you pick the skip number.” What should he say so that he is the last person left?

c. Is it possible for Josephus to always come up with a response to the previous question no matter how many

people are originally in the circle?
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Solutions

Exercise 1. We will use the conventions of labeling the people A, B, C, etc. clockwise around the circle and starting

our count with person A.

a. For n D 6 and k D 2, the last person left is E.

b. For n D 10 and k D 3, the last person left is D.

c. For n D 11 and k D 3, the last person left is G.

Exercise 2.

a. J.6; 2/ D 5.

b. J.10; 3/ D 4.

c. J.11; 3/ D 7.

Exercise 3. Here is the completed table:

n 3 4 5 6 7 8 9 10 11 12 13 14

J.n; 3/ 2 1 4 1 4 7 1 4 7 10 13 2

a. For all n � 2, person J.n; 3/ is three more around (clockwise) the original circle from person J.n � 1; 3/.

b. If the kth person around the circle of n � 1 people is the last one remaining, then in the game that starts with n

people, after one person is eliminated the first person in the remaining circle of n�1 is person 4. The kth person

in this circle, is the .k C 3/th person in the original circle.

c. For all n � 2, person J.n; 4/ is four more around (clockwise) the original circle from person J.n � 1; 4/.

Exercise 4. Here is the completed table:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

J.n/ 1 1 3 1 3 5 7 1 3 5 7 9 11 13 15 1

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30

J.n/ 3 5 7 9 11 13 15 17 19 21 23 25 27 29

a. For all n � 2, person J.n/ is two more around (clockwise) the original circle from person J.n � 1/.

b. The next value of n for which J.n/ D 1 will be n D 32. It appears that J.n/ D 1 if and only if n is a power of

2.

c. Given n people originally, letm be the smallest power of 2 less than or equal to n. Eliminate people 2; 4; : : : ; 2.n�
m/. This leaves the game withm people, the first of whom is person 2.n�m/C 1. According to the observation

in part (b) of this exercise, this person will be the last person left at the end of the entire process.

Exercise 5. Here is the completed table:

n 12 13 14 15 16 17 18 19 20 21 22 23 24

J.n/ 9 11 13 15 1 3 5 7 9 11 13 15 17

F.n/ 1 3 5 7 9 11 13 15 17 19 21 23 1

a. For all n � 2, person F.n/ is two more around (clockwise) the original circle from person F.n � 1/.

b. The next value of n for which F.n/ D 1 will be n D 48. It appears that F.n/ D 1 if and only if n D 3 � 2k for

some value of k � 0.

c. J.n/�F.n/ D 2k when the integer k can be chosen so that 3 � 2k�1 � n < 2kC1, and F.n/�J.n/ D 2k when

the integer k can be chosen so that 2kC1 � n < 3 � 2k .
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Exercise 6. Here is the completed table:

n 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P.n/ 1 9 5 13 7 15 7 15 5 13 1 9 17 2 10

a. This answer will depend on the number of people in your class. Suppose there are 32 people in your class. Using

the pattern of “adding 8” relative to the number in the circle, we find that J.32; 8/ D 17.

b. Using a skip number of 60 will work for sure (see the next answer), but the smallest number that will work is

k D 3.

c. For the game with n people, using k that is the least common multiple of the numbers in f1; 2; 3; : : : ; ng is

guaranteed to work, but there are typically much smaller values.





Using Trains to Model Recurrence Relations

Benjamin Sinwell

Northwood High School

Summary

This project gives students a hands-on approach to experiment with recurrence relations. By building trains using cars

of different lengths students are given a concrete model with which to represent and better understand the concept of

recursion.

Notes for the instructor

A brief introduction to building trains of different lengths using cars of different lengths is all that is necessary for

students to complete this assignment. For example, a train of length four can be made from two cars of length one and

one car of length two in three different ways.

Cuisenaire rods or colored paper (cut to match the different train sizes) could be used, but are not necessary, for stu-

dents to complete this project. Students can easily record the trains on graph paper. That said, the use of manipulatives

forces students to build the trains rather than simply represent the trains symbolically. This project could be given as

a homework assignment or be used as a group activity during class. The first six problems should take approximately

an hour for students to work through. The problems could be worked during class time or outside of class. Providing

a forum (i.e., class discussion or an online discussion) for students to share their thinking on how they went about

solving the problems would provide an additional and valuable learning opportunity.
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Worksheet on Using Trains to Model Recurrence Relations

Each of the following questions will involve building trains of different lengths using cars of different lengths. The

following shows how a train of length 4 can be made from two cars of length 1 and one car of length 2 in three different

ways.

When asked how many trains of a given length you can make, simply count the number of different trains you can

make.

1. Using only length 1 cars and length 2 cars, build and record all the trains that you can make for each of the

following lengths: 1, 2, 3, 4, 5, and 6. Predict how many length 10 trains you can make. Explain how you

determined your answer for length 10 trains. How do you know that you have counted all the trains?

2. Using only length 1 cars and now two different colors of length 2 cars, build and record all the trains that you

can make for each of the following lengths: 1, 2, 3, 4, and 5. Predict how many length 6 trains you can make.

Explain how you obtained your answer for the number of length 6 trains. The following are different trains.

3. Using only length 1 cars and two different colors of length 3 trains, build and record all the trains that you can

make for each of the following lengths: 1, 2, 3, 4, and 5. Predict how many length 6 trains you can build. Explain

your prediction using only the drawings of the different length 3 trains and length 5 trains.

4. For each of #1, #2, and #3, write a rule that would tell you how many ways there are to make a length n train if

you already knew the number of ways to make trains of length less than n.

5. Predict how many trains of length 1, 2, 3, 4, and 5 you can make using only length 2 cars and two different

colors of length 1 cars. Verify your predictions. How can you determine the number of length 6 trains?

6. What types of cars (give the length and/or number of colors) would you need to use in order to create a pattern

where the number of length n trains is equal to three times the number of length n� 1 trains plus two times the

number of length n � 2 trains?

Extensions:

7. Using only cars of lengths 1, 2, and 3, how many trains can you make of each of the following lengths: 1, 2, 3,

4, 5, and 6? Explain how many ways there are there to make a length 7 train using what you know about the

number of ways to make trains of length less than 7.

8. Using cars of any length except 1, how many trains can you make of each of the following lengths: 1, 2, 3, 4, 5,

and 6? How many ways are there to make a length 7 train? Have you seen these numbers before? Compare your

results to #1. What is happening?

9. Using cars of any length except 2, how many trains can you make of the following lengths: 1, 2, 3, 4, 5, and 6?

Explain how to find how many ways there are to make a length 7 train.

10. What types of cars would you need to produce the following table?

Train length 1 2 3 4 5 6 7

number of trains 0 2 0 4 0 8 0



Sinwell: Using Trains to Model Recurrence Relations 57

Solutions

1. Using cars of lengths 1 and 2, the number of ways to make each of the first six train lengths is 1, 2, 3, 5, 8, and

13, respectively. There are 89 trains of length 10. This is the sum of the number of all length 9 trains and the

number of all length 8 trains. To make a train of length n, add a length 1 car to the end of each length n� 1 train

and add a length 2 car to the end of each length n� 2 train. If the number of trains one can make of length 1 and

2 are correct, it follows that one has counted all of the trains.

Let tn be the number of length n trains. We have the following recurrence relation:

tn D tn�1 C tn�2 with initial conditions t1 D 1; t2 D 2:

This is the same recurrence relation as the Fibonacci numbers, but with different starting values.

The diagram below shows the trains 1, 2, 3, 4, and 5 that can be made from length 1 and 2 cars. Notice the order

of the trains in columns for n D 3; 4; 5: first are the trains whose rightmost car is length 1, added to the trains of

length n� 1, and below those are the trains whose rightmost car is length 2, added to the trains of length n� 2.

2. Using cars of length 1 and two types of cars of length 2, the number of ways to make each of the first five train

lengths is 1, 3, 5, 11, and 21, respectively. There are 43 trains of length 6. To build them, add a length 1 car to

each of the length 5 trains and add one of each color of length 2 cars to the length 4 trains.

These satisfy the following recurrence relation:

tn D tn�1 C 2tn�2 with initial conditions t1 D 1; t2 D 3:

The diagram below shows all the trains that can be made of length 1, 2, 3, and 4.
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The trains of length 4 are boxed in the last two columns. They can be built by adding a car of length 1 to each

train of length 3 (left hand column), a black car of length 2 to each train of length 2, and a white car of length 2

to each train of length 2 (right hand column).

3. Using cars of length 1 and two types of cars of length 2, the number of ways to make each of the first five train

lengths is 1, 1, 3, 5, and 7, respectively. There are 13 trains of length 6. To build them, add a length 1 car to each

of the length 5 trains and add one of each color of length 3 cars to the length 3 trains.

The diagram below illustrates how this can be done using the drawings of trains of length 5 and length 3.

These satisfy the following recurrence relation:

tn D tn�1 C 2tn�3 with initial conditions t1 D 1; t2 D 1; t3 D 3:

The diagram below shows all the trains that can be made of length 1, 2, 3, 4, and 5.

4. (Recurrence relations and initial conditions are given above.)

5. Using cars of length 2 and two types of cars of length 1, the number of ways to make each of the first five train

lengths is 2, 5, 12, 29, and 70, respectively. There are 13 trains of length 6. To build them, add a length 1 car to

each of the length 5 trains and add one of each color of length 3 cars to the length 3 trains.
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The number of ways to make each of the first five train lengths is: 2, 5, 12, 29, and 70. To make all length 6

trains, double the number of length 5 trains (because one can add two different cars of length 1 to each of them)

and add that to the number of length 4 trains (because one can add a car of length 2 to each of those, giving

2 � 70C 29 D 169 length 6 trains.

These satisfy the following recurrence relation:

tn D 2tn�1 C tn�2 with initial conditions t1 D 2; t2 D 5:

6. Using three different colors of length 1 cars and two different colors of length 2 cars will produce such a pattern.

7. Using cars of lengths 1, 2, and 3, the number of ways to make each of the first six train lengths is 1, 2, 4, 7, 13,

and 24, respectively. There are 44 length 7 trains: to make them all, add a length 1 car to all length 6 trains, a

length 2 car to all length 5 trains, and a length 3 car to all length 4 trains.

These satisfy the following recurrence relation:

tn D tn�1 C tn�2 C tn�3 with initial conditions t1 D 1; t2 D 2; t3 D 4:

8. Using cars of any length except 1, the number of ways to make each of the first six train lengths is 0, 1, 1, 2, 3,

and 5, respectively. There are 8 length 7 trains: to make them all, extend the last car in each length 6 train by

one unit and add a length 2 car to each length 5 train. These are the same numbers as problem #1, just shifted

over two terms. They follow the same recurrence relation as those in problem #1, tn D tn�1 C tn�2, but have

different initial values, t1 D 0 and t2 D 1.

9. Using cars of any length except 2, the number of ways to make each of the first six train lengths is 1, 1, 2, 4,

7, and 12, respectively. There are 21 length 7 trains: to make them all, add a length 1 car to each length 6 train,

extend the last car in each length 5 train by two units, and add a length 4 car to each length 3 train. (Since none

of the length 5 train can end in a length 2 car, none of their extended versions end in a length 4 car.)

These satisfy the following recurrence relation:

tn D tn�1 C tn�2 C tn�4 with initial conditions t1 D 1; t2 D 1; t3 D 2; t4 D 4:

10. Using just two different colors of length 2 cars produces the pattern. An explicit formula for the number of

length n trains in this setting is

1

2

h

.
p
2/n C .

p
�2/n

i

:

(Determining the number of certain types of length n trains could be used to motivate finding explicit formulas

from recurrence relations.)





Codon Classes1

Brian Hopkins

Saint Peter’s College

Summary

This project explores an application of equivalence relations to bioinformatics. RNA can be considered as a string over

a four-letter alphabet. Cells use triples of these bases to regulate the production of protein by signaling the sequence

of amino acids. But there are far fewer than 64 amino acids; is there a system behind the redundancy?

Students examine the equivalence classes arising from six difference equivalence relations on the set of codons,

from simple to somewhat intricate. Then they research the actual genetic code; it is “closest” to one of the simpler

relations, although it is far from an exact match.

Notes for the instructor

This project was motivated by student interest in bioinformatics and my difficulty finding engaging applications of

equivalence relations and classes. The set of 64 codons is small enough to be tractable, but large enough to encourage

labor-saving devices. While some of the relations have no biological motivation (e.g., number of A’s), they do encour-

age the use of standard counting techniques. Students are instructed to “describe the equivalence classes” for each

relation; this can prompt discussions of a good order for listing set elements and the proper use of ellipses.

I typically put the students in random groups of three (or two) for a project and give them a class period to get started,

with the expectation that they will need to work outside class to complete the project and write it up. The examples

usually suffice to clarify the verbal description of the relation; sometimes the distinction between #5 (the same three

bases, a fixed number of each) and #6 (the same bases in whatever nonzero quantity) requires further examples. A

more formal statement for #4 is “The two codons have the same number of bases from the set fC,Ug.” Students will

need a biology or genetics text, or the Internet to answer #7. Also, the notion of “close” in #7 is not defined — two

interpretations are mentioned in the Solutions; this could lead to a discussion of possible precise definitions of “close”

in the context of relations and equivalence classes.

It is interesting that the actual correspondence, the “standard genetic code,” is a rough approximation of one of the

simpler relations. One could probably construct a not-too-complicated relation that gave the 21 classes with the proper

number of codons in each, but it seems nature tends to parsimony and adjusts a very simple relation. This can lead to

a discussion of the interplay between mathematical elegance and modeling.

1Thanks to Frances Raleigh and Katherine Wydner of the Saint Peter’s College Department of Biology for assisting with the scientific content

of this project.
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Worksheet on Codon Classes

Ribonucleic acid (RNA) is used by cells to produce proteins, among other tasks. RNA can be thought of as a string of

nucleotide bases drawn from the set adenine, cytosine, guanine, and uracil. A codon is an ordered triple of bases that

signals for a certain amino acid to be included in the sequence; for example, the codon AUG signals for methionine.

There are 43 D 64 possible codons, and all occur in nature. However, there are not that many amino acids. In this

project, you will explore various equivalence classes on the set of all codons and then compare the correspondence

that occurs in nature.

For each of the following relations on codons, determine the number of equivalence classes, the size of each equiv-

alence class, and describe the equivalence classes (you don’t necessarily need to fully write out each equivalence

class).

1. The two codons have the same middle base (e.g., ACU � GCU).

2. The two codons have the same first two bases (e.g., ACC � ACU).

3. The two codons have the same number of A’s (e.g., AUA � GAA).

4. The two codons have the same number of C’s or U’s (e.g., ACU � GUU).

5. The two codons are made up of the same three bases (e.g., AUA � UAA).

6. The two codons use the same bases (e.g., AUA � UUA; this is different from #5).

In fact, the codons fall into 21 classes, indicating twenty basic amino acids and a signal to stop the genetic process

called translation. This is not quite an easily described pattern; it is “close to” one of the previous equivalence relations.

7. Find and record the 21 actual subsets of codons determined by the amino acid they signal (and “stop”). Which

relation above is this close to?
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Solutions

1. This relation partitions the 64 codons into 4 classes, each with 16 elements. Verifying the count, 4 � 16 D 64.

One such class is fAAA, AAC, AAG, AAU, CAA, CAC, CAG, CAU, GAA, GAC, GAG, GAU, UAA, UAC,

UAG, UAUg.

2. This relation partitions the codons into 16 classes, each with 4 elements. Verifying, 16 � 4 D 64. The classes are

fAAA, AAC, AAG, AAUg, fACA, ACC, ACG, ACUg, : : :, fUGA, UGC, UGG, UGUg, fUUA, UUC, UUG,

UUUg.

3. This relation partitions the codons into 4 classes, with 27, 27, 9, and 1 elements, respectively. Verifying, 27 C
27C 9C 1 D 64. (Semicolons in the following sets suggest counting arguments that could justify the set sizes

without writing them out.)

no A’s: fCCC, CCG, CCU; CGC, CGG, CGU; . . . ; UGC, UGG, UGU; UUC, UUG, UUUg
1 A: fACC, ACG, . . . , AUG, AUU; . . . ; CCA, CGA, . . . , UGA, UUAg

2 A’s: fAAC, AAG, AAU; ACA, AGA, AUA; CAA, GAA, UAAg
3 A’s: fAAAg

4. This relation partitions the codons into 4 classes, with 8, 24, 24, and 8 elements, respectively. Verifying, 8 C
24C 24C 8 D 64.

no C’s or U’s: fAAA, AAG, AGA, AGG, GAA, GAG, GGA, GGGg
1 C or U: fAAC, AAU; AGC, AGU; . . . ; CAG, UAG; CGG, UGGg

2 C’s or U’s: fACC, ACU, AUC, AUU; CAC, CAU, UAC, UAU; . . . ; CCG, CUG, UCG, UUGg
3 C’s or U’s: fCCC, CCU, CUC, CUU, UCC, UCU, UUC, UUUg

5. This relation partitions the codons into 20 classes: 4 with 1 element each, 12 with 3 elements each, and 4 with 6

elements each. Verifying, 4 � 1C 12 � 3C 4 � 6 D 4C 36C 24 D 64.

1 base: fAAAg, fCCCg, fGGGg, fUUUg
2 bases: fAAC, ACA, CAAg, fACC, CAC, CCAg, . . . , fGUU, UGU, UUGg
3 bases: fACG, AGC, CAG, CGA, GAC, GCAg, . . . , fCGU, CUG, GCU, GUC, UCG, UGCg

6. This relation partitions the codons into 14 classes: 4 with 1 element each, 6 with 6 elements each, and 4 with 6

elements each. Verifying, 4 � 1C 6 � 6C 4 � 6 D 4C 36C 24 D 64. The classes are as in #5 except for the case

of 2 bases, where those 12 classes combine into 6 as follows.

2 bases: fAAC, ACA, ACC, CAA, CAC, CCAg, . . . , fGGU, GUG, GUU, UGG, UGU, UUGg

7. The “standard genetic code” partitions the codons into 21 classes: 2 with 1 element each, 9 with 2 elements

each, 2 with 3 elements each, 5 with 4 elements each, and 3 with 6 elements each. Verifying, 2 � 1C 9 � 2 C 2 �
3C 5 � 4C 3 � 6 D 2C 18C 6C 20C 18 D 64.

alanine: fGCA, GCC, GCG, GCUg
arginine: fAGA, AGG, CGA, CGC, CGG, CGUg

asparagine: fAAC, AAUg
aspartic acid: fGAC, GAUg

cysteine: fUGC, UGUg
glutamic acid: fGAA, GAGg

glutamine: fCAA, CAGg
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glycine: fGGA, GGC, GGG, GGUg
histidine: fCAC, CAUg

isoleucine: fAUA, AUC, AUUg
leucine: fCUA, CUC, CUG, CUU, UUA, UUGg

lysine: fAAA, AAGg
methionine: fAUGg

phenylalanine: fUUC, UUUg
proline: fCCA, CCC, CCG, CCUg
serine: fAGC, AGU, UCA, UCC, UCG, UCUg

threonine: fACA, ACC, ACG, ACUg
tryptophan: fUGGg

tyrosine: fUAC, UAUg
valine: fGUA, GUC, GUG, GUUg

stop: fUAA, UAG, UGAg

Although the relation of #5 is closest in the number of equivalence classes, the relation of #2 is closest struc-

turally. Whenever an amino acid corresponds to four or fewer codons, the first two bases of the codons are the

same. For the three amino acids with six codons, each contains an entire set with some two initial bases and

half of another such quartet. There are chemical reasons that the code allows for variation in the last base; this

is the “wobble effect” hypothesized by Francis Crick in 1966. For related reasons, amino acids with two codons

have codons that end in A and G, or C and U. For more information, see a biology or genetics text, such as Ge-

netics: Analysis of Genes and Genomes by Daniel L. Hartl and Elizabeth W. Jones (6th ed., Jones and Bartlett

Publishers, 2005).



How to change coins, M&M’s, or chicken nuggets:
The linear Diophantine problem of Frobenius

Matthias Beck
San Francisco State University

Summary

Let’s imagine that we introduce a new coin system. Instead of using pennies, nickels, dimes, and quarters, let’s say

we agree on using 4-cent, 7-cent, 9-cent, and 34-cent coins. The reader might point out the following flaw of this

new system: certain amounts cannot be exchanged, for example, 1, 2, or 5 cents. On the other hand, this deficiency

makes our new coin system more interesting than the old one, because we can ask the question: “which amounts

can be changed?” In the next section, we will prove that there are only finitely many integer amounts that cannot

be exchanged using our new coin system. A natural question, first tackled by Ferdinand Georg Frobenius and James

Joseph Sylvester in the 19th century, is: “what is the largest amount that cannot be exchanged?” As mathematicians,

we like to keep questions as general as possible, and so we ask: given coins of denominations a1; a2; : : : ; ad , which are

positive integers without any common factor, can you give a formula for the largest amount that cannot be exchanged

using the coins a1; a2; : : : ; ad ? This problem is known as the Frobenius coin-exchange problem. One of the appeals

of this famous problem is that it can be stated in every-day language and in many disguises, as the title of these notes

suggests. To be precise, suppose we’re given a set of positive integers

A D fa1; a2; : : : ; adg

with gcd .a1; a2; : : : ; ad / D 1 and we call an integer k representable (in terms of A) if there exist nonnegative integers

m1; m2; : : : ; md such that

k D m1a1 C � � � Cmdad :

In the language of coins, this means that we can exchange the amount k using the coins a1; a2; : : : ; ad . The Frobenius

problem (often called the linear Diophantine problem of Frobenius) asks us to find the largest integer that is not

representable. We call this largest integer the Frobenius number and denote it by g.a1; : : : ; ad /. In the worksheet

questions we will outline a proof for the folklore result for d D 2:

g.a; b/ D ab � a � b :

This simple-looking formula for g.a; b/ inspired a great deal of research into formulas for the Frobenius number

g.a1 ; a2; : : : ; ad /, with limited success: While it is safe to assume that the d D 2 solution has been known for more

than a century, no analogous formula exists for d � 3. The case d D 3 is solved algorithmically, i.e., there are efficient

algorithms to compute g.a; b; c/ [7, 9, 10], and in form of a semi-explicit formula [8, 14]. The Frobenius problem for

fixed d � 4 has been proved to be computationally feasible [1, 11], but not even an efficient practical algorithm for

d D 4 is known.

A second classic theorem for the case d D 2, which Sylvester posted as a math problem in the Educational Times

[18], concerns the number of non-representable integers. Sylvester proved that exactly half of the integers between

1 and .a � 1/.b � 1/ are representable (in terms of a and b). In other words, there are exactly 1
2
.a � 1/.b � 1/

non-representable integers. We will also outline a proof of Sylvester’s Theorem.
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Notes to the instructor

The first nine worksheet questions are suitable for any course in which the students discuss gcd’s and the Euclidean

algorithm. The next few questions assume some basic number theory, in particular, knowledge about the greatest-

integer function and inverses in Zn. The different projects naturally vary in depth. Most problems in the Euclidean

algorithm section are elementary; the slightly more complicated ones have a hint attached to them. The problems in

the counting function section are a bit more advanced but should be doable in, e.g., an elementary number theory class.

Further extensions and student research projects are discussed below.

The idea of the proofs hidden in the projects of the Euclidean algorithm section first appeared in [12], to the best of

my knowledge. The questions in the counting function section are from [4].

Extensions: Beyond d D 2

This section includes an outline of what is known for the general Frobenius problem and some open problems, many of

which are suitable for computational exploration and undergraduate research projects. One such extension was already

mentioned in Question 11. For more, we refer to the research monograph [15]; it includes more than 400 references to

articles written about the Frobenius problem.

To give the state of the art for the case d D 3 and beyond, we define the generating function of all representable

integers, given some fixed parameters a1; a2; : : : ; ad with no common factor, as F.x/ WD
P

k representable x
k . One can

prove that this generating function can always be written as a rational function of the form

F.x/ D
X

k representable

xk D p.x/

.1 � xa1/ .1 � xa2/ � � � .1 � xad /
:

Furthermore, in the case d D 2 one can show that F.x/ D 1� xa1a2 . Denham [8] recently discovered the remarkable

fact that for d D 3, the polynomial p in the numerator has either 4 or 6 terms. He gave semi-explicit formulas

for p, from which one can deduce a semi-explicit formula for the Frobenius number g.a; b; c/. This formula was

independently found by Ramı́rez-Alfonsı́n [14]. As we already remarked in the introduction, there is no “easy” formula

for d D 3 that would parallel Theorem 2. However, Denham’s theorem implies that the Frobenius number in the case

d D 3 is quickly computable, a result that is originally due, in various guises, to Herzog [10], Greenberg [9], and

Davison [7].

As much as there seems to be a well-defined border between the cases d D 2 and d D 3, there also seems to be

such a border between the cases d D 3 and d D 4: Bresinsky [6] proved that for d � 4, there is no absolute bound

for the number of terms in p, in sharp contrast to Denham’s theorem.

On the other hand, Barvinok and Woods [1] proved recently that for fixed d , the rational generating function F

can be written as a “short” sum of rational functions; in particular, F can be efficiently computed when d is fixed. A

corollary of this fact is that the Frobenius number can be efficiently computed when d is fixed; this theorem is due

to Kannan [11]. On the other hand, Ramı́rez-Alfonsı́n [13] proved that trying to efficiently compute the Frobenius

number is hopeless if d is left as a variable. While these results settle the theoretical complexity of the computation

of the Frobenius number, practical algorithms are a completely different matter. Both Kannan’s and Barvinok-Woods’

ideas seem complex enough that nobody has yet tried to implement them. The fastest known algorithm is due to

Beihoffer, Nijenhuis, Hendry and Wagon [5]; it is currently being improved by Einstein, Lichtblau, and Wagon.

We conclude with a few projects. These differ distinctively from the questions of the worksheet in that they constitute

open research problems. I list them in what I find decreasing order of difficulty (an estimate that is naturally subjective);

the later projects are most suitable for undergraduate research and computational experiments that should bring new

insights.

Project 1. Come up with a new approach or a new algorithm for the Frobenius problem in the d � 3 cases.

Project 2. There is a very good lower [7] and several upper bounds [15, Chapter 3] for the Frobenius number. Come

up with improved upper bounds.

Project 3. Study vector generalizations of the Frobenius problem [16, 17], which seem for the most part unexplored.
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Project 4. There are several special cases of A D fa1; a2; : : : ; ad g for which the Frobenius problem is solved, for

example, arithmetic sequences [15, Chapter 3]. Extend these special cases and come up with new ones.

Project 5. Study the generalized Frobenius number gj (defined in Question 11): Derive formulas for special cases,

e.g., arithmetic sequences.

Bibliography

[1] Alexander Barvinok and Kevin Woods, Short rational generating functions for lattice point problems, J. Amer.

Math. Soc. 16 (2003), no. 4, 957–979 (electronic), arXiv:math.CO/0211146.

[2] Matthias Beck, Ricardo Diaz, and Sinai Robins, The Frobenius problem, rational polytopes, and Fourier-

Dedekind sums, J. Number Theory 96 (2002), no. 1, 1–21, arXiv:math.NT/0204035.

[3] Matthias Beck and Sinai Robins, Computing the continuous discretely: Integer-point enumeration in polyhedra,

Undergraduate Texts in Mathematics, Springer-Verlag, New York, 2007.

[4] Matthias Beck and Sinai Robins, A formula related to the Frobenius problem in two dimensions, Number theory

(New York, 2003), Springer, New York, 2004, pp. 17–23, arXiv:math.NT/0204037.

[5] Dale Beihoffer, Jemimah Hendry, Albert Nijenhuis, and Stan Wagon, Faster algorithms for Frobenius numbers,

Electron. J. Combin. 12 (2005), no. 1, Research Paper 27, 38 pp. (electronic).

[6] Henrik Bresinsky, Symmetric semigroups of integers generated by 4 elements, Manuscripta Math. 17 (1975),

no. 3, 205–219.

[7] J. Leslie Davison, On the linear Diophantine problem of Frobenius, J. Number Theory 48 (1994), no. 3, 353–363.

[8] Graham Denham, Short generating functions for some semigroup algebras, Electron. J. Combin. 10 (2003),

Research Paper 36, 7 pp. (electronic).

[9] Harold Greenberg, An algorithm for a linear Diophantine equation and a problem of Frobenius, Numer. Math.

34 (1980), no. 4, 349–352.

[10] Jürgen Herzog, Generators and relations of abelian semigroups and semigroup rings., Manuscripta Math. 3

(1970), 175–193.

[11] Ravi Kannan, Lattice translates of a polytope and the Frobenius problem, Combinatorica 12 (1992), no. 2, 161–

177.

[12] Albert Nijenhuis and Herbert S. Wilf, Representations of integers by linear forms in nonnegative integers., J.

Number Theory 4 (1972), 98–106.

[13] Jorge L. Ramı́rez-Alfonsı́n, Complexity of the Frobenius problem, Combinatorica 16 (1996), no. 1, 143–147.

[14] Jorge L. Ramı́rez-Alfonsı́n, The Frobenius number via Hilbert series, preprint, 2002.

[15] Jorge L. Ramı́rez-Alfonsı́n, The Diophantine Frobenius problem, Oxford University Press, 2006.

[16] Les Reid and Leslie G. Roberts, Monomial subrings in arbitrary dimension, J. Algebra 236 (2001), no. 2, 703–

730.

[17] R. Jamie Simpson and Robert Tijdeman, Multi-dimensional versions of a theorem of Fine and Wilf and a formula

of Sylvester, Proc. Amer. Math. Soc. 131 (2003), no. 6, 1661–1671 (electronic).

[18] James J. Sylvester, Mathematical questions with their solutions, Educational Times 41 (1884), 171–178.



68 Part I Classroom-tested Projects

Worksheet on how to change coins, M&M’s, or chicken nuggets:

The linear Diophantine problem of Frobenius

1 The Euclidean algorithm and its consequences

We approach the Frobenius problem through the following important consequence of the Euclidean algorithm.

Theorem 1. Suppose a and b are relatively prime positive integers. Then there exist m; n 2 Z such that 1 D maCnb.

What we really need is the fact that one can find such an integral linear combination of a and b for any integer:

Corollary 2. Suppose a and b are relatively prime positive integers. Given an integer k, there exist m; n 2 Z such

that k D maC nb.

Students who just learned about the Euclidean algorithm might find the Frobenius problem amusing, since this last

corollary almost solves the Frobenius problem: in the latter, we’re “only” asking that m; n 2 Z are nonnegative. It

is this tiny additional condition that makes the Frobenius problem so hard (and interesting!). Let’s put the Euclidean

algorithm to good use.

Question 1. Suppose a and b are relatively prime positive integers. Show that a given integer k can be uniquely written

as

k D ma C nb ;

where m; n 2 Z and 0 � m < b � 1.

This gives a simple but useful criterion for k to be representable — recall that this means that k can be written as a

nonnegative integral linear combination of a and b.

Question 2. Suppose a and b are relatively prime positive integers, and write k 2 Z as k D maCnb wherem; n 2 Z

with 0 � m � b � 1. Show that k is representable (in terms of a and b) if and only if n � 0.

This observation allows us to conclude, among other things, that the Frobenius problem is well defined:

Question 3. Suppose a and b are relatively prime positive integers. Show that every sufficiently large integer is

representable (in terms of a and b).

Question 4. Prove that the general Frobenius problem is well defined. That is, show that, given relatively prime

a1; a2; : : : ; ad , every sufficiently large integer is representable (in terms of a1; a2; : : : ; ad ).

Question 2 can be taken a step further to solve the Frobenius problem for d D 2:

Question 5. Prove that g.a; b/ D ab � a � b.

Hint: Try to maximize possible non-representable integers, using Question 2.

Question 2 can also be used to prove Sylvester’s Theorem. We start with the following:

Question 6. Suppose a and b are relatively prime positive integers and 0 < k < ab is not divisible by a or b. Prove

that k is representable (in terms of a and b) if and only if ab � k is not representable.

Hint: Use Question 2 for a representable integer k. Think about how you can strengthen the conditions of Question 2

using the divisibility properties.

Question 6 allows us to prove Sylvester’s Theorem:

Question 7. Prove that there are 1
2
.a � 1/.b � 1/ non-representable integers.
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2 A counting function

Now we study the counting sequence

rk D #
˚

.m; n/ 2 Z
2 W m; n � 0; maC nb D k

	

where a and b are fixed relatively prime positive numbers. In words, rk counts the representations of k 2 Z�0 as

nonnegative linear combinations of a and b. Question 3 states that this sequence has only finitely many rk’s that are 0,

and the Frobenius problem asks for the largest among the rk’s that is 0.

Question 2 gives us the following almost-periodicity identity for rk .

Question 8. Suppose a and b are relatively prime positive integers, and let rk be given as above. Then

rkCab D rk C 1 :

Remark: There is no analogous formula in the general case of d parameters a1; a2; : : : ; ad . This is one reason why the

Frobenius problem seems to be intractable for d � 3.

Let’s take a moment to look at a geometric interpretation of rk . As usual, fix two relatively prime positive integers a

and b. Consider the line segment Lk D f.x; y/ 2 R2 W x; y � 0; ax C by D kg. The parameter k acts like a dilation

factor of the line segment L1 given by

L1 D
˚

.x; y/ 2 R
2 W x; y � 0; ax C by D 1

	

:

Our counting sequence rk enumerates integer points in Z2 that lie on the line segment Lk . As k increases, the line

segment gets dilated. It is not too far fetched1 to expect that the likelihood for an integer point to lie on the line segment

Lk increases with k. In fact, one might even guess that this “probability” increases linearly with k, as the line segments

are one-dimensional objects. Below we will give a formula (Theorem 3) which shows that this is indeed the case. Figure

1 shows the geometry behind the counting function rk for the first few values of k in the case a D 4; b D 7. Note that

Figure 1. 4x C 7y D k ; k D 1; 2; : : :

the thick line segment for the Frobenius number k D 17 D 4 � 7�4�7 is the last one that does not contain any integer

point.

Similar geometric pictures can be associated to the general Frobenius counting functions

#
n

.m1; m2; : : : ; md / 2 Z
d W allmj � 0; m1a1 C � � � Cmd ad D k

o

:

Now the line segments get replaced by triangles (d D 3), tetrahedra (d D 4), and higher-dimensional simplices, but

the general picture, namely that these counting functions enumerate integer points in Zd in dilates of nice geometric

1However, one should be careful with such a statement—we invite the reader to prove that if a and b are not relatively prime, there are infinitely

many line segmentsLk that do not contain any integer point.
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objects, stays the same. This geometric interpretation gives a glimpse into a subfield of discrete geometry called

Ehrhart theory. It concerns the study of integer-point enumeration in polytopes, of which line segments, triangles,

tetrahedra, etc., are special cases. The reader interested in these topics may consult [3]. There one can find a proof of

the following beautiful formula for rk due to Tiberiu Popoviciu, which we will use to re-derive some results on the

Frobenius problem. First we need to define the greatest-integer function bxc, which denotes the greatest integer less

than or equal to x. A close sibling to this function is the fractional-part function fxg D x � bxc.

Theorem 3 (Popoviciu). If a and b are relatively prime, the counting function

rk D #
˚

.m; n/ 2 Z
2 W m; n � 0; maC nb D k

	

is explicitly given by

rk D k

ab
�
�
b�1k

a

�

�
�
a�1k

b

�

C 1 ;

where b�1b � 1 mod a and a�1a � 1 mod b.

Remark: There are analogous formulas for the general Frobenius counting functions

#
n

.m1; m2; : : : ; md / 2 Z
d W all mj � 0; m1a1 C � � � Cmdad D k

o

but they are not as simple as in Popoviciu’s Theorem, even if d D 3. These “higher-dimensional” counting functions,

nevertheless, give rise to generalized Dedekind sums, finite arithmetic sums that appear in various other mathematical

contexts [2].

Question 9. Using Popoviciu’s Theorem 3, give an alternative proof of formula g.a; b/ D ab�a�b for the Frobenius

number by proving that rab�a�b D 0 and that rk > 0 for every k > ab � a � b.

Hint: Use the periodicity of fxg and the inequality
˚

m
a

	

� 1 � 1
a

for integersm; a.

Question 10. Using Popoviciu’s Theorem 3, give an alternative proof that rk C rab�k D 1 for any integer 1 � k �
ab � 1 that is not divisible by a or b (cf. Question 6), and use this to give another proof of Sylvester’s Theorem.

Recall that Question 6 allowed us to prove Sylvester’s Theorem, so Question 10 gives an alternate proof of Sylvester’s

Theorem.

Question 11. Given two relatively prime positive integers a and b, we say the integer k is j -representable if there are

exactly j solutions .m; n/ 2 Z2
�0 to ma C nb D k. We define gj as the largest j -representable integer. (So g0 is the

Frobenius number.) Prove:

(a) gj is well defined.

(b) gj D .j C 1/ab � a � b.

(c) Given j � 2, the smallest j -representable integer is ab.j � 1/.

(d) There are exactly ab � 1 integers that are uniquely representable.

(e) Given j � 2, there are exactly ab j -representable integers.
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Solutions

1. We mentioned already in Corollary 2 that any integer k can be written as

k D ma C nb

for some m; n 2 Z. From this representation we get others, for example,

k D .mC b/a C .n � a/b or k D .m � b/aC .nC a/b :

In fact, because a and b are relatively prime, all possible representations of k as integral linear combinations of

a and b are given precisely by the expressions

k D .mC jb/a C .n � jb/b ; j 2 Z :

By choosing j accordingly, we can force the coefficient of a to be in the interval Œ0; b � 1�.

2. If n � 0, then k is representable by definition, since both coefficientsm and n in k D maCnb are nonnegative.

Conversely, suppose k is representable, say k D jaClb for some nonnegative integers j and l . If 0 � j � b�1,

we are done; otherwise, we subtract enough multiples of b from j such that 0 � m D j � qb � b � 1. Then

the coefficient l has to be adjusted to n D l C qa, which is positive.

3. Question 2 implies that every integer k � ab is representable, since when writing k D maC nb with 0 � m �
b � 1, n has to be positive.

4. Given an integer k, the Euclidean algorithm asserts the existence of integersm1; m2; : : : ; md such that k can be

represented as k D m1a1 Cm2a2 C� � �Cmdad . With the same argument as in the solution to Question 1, we can

demand that in this representation 0 � m2; m3; : : : ; md < a1, and by extension of Question 2, k is representable

if and only if m1 � 0. Hence certainly all integers beyond a1 .a2 C a3 C � � � C ad / are representable in terms

of a1; a2; : : : ; ad .

5. By Question 2, we have to maximize the integral coefficients m and n in

k D ma C nb ;

subject to 0 � m � b � 1 and n < 0 (so that k is not representable). The maximal choice is apparently

k D .b � 1/aC .�1/b D ab � a � b :

6. Suppose k is representable, so by Question 2 we can write

k D ma C nb

for some nonnegative integersm and n with 0 � m � b � 1. Since k is not divisible by a or b, we have m ¤ 0

and n is not divisible by a; in particular, n is positive. But then

ab � k D ab �ma � nb D .b �m/a � nb ;

and we note that 0 < b�m < b and n > 0. This means that ab�k can be written in the form ab�k D jaC lb

with 0 � j � b � 1 and l < 0, and by Question 2, ab � k is not representable.

7. Question 6 implies that, for k between 1 and ab � 1 and not divisible by a or b, exactly one of k and ab � k is

representable. There are

ab � a � b C 1 D .a � 1/.b � 1/
integers between 1 and ab � 1 that are not divisible by a or b. Finally, if k is divisible by a or b then it is

representable, simply by writing k as a multiple of a or b. Hence the number of nonrepresentable integers is
1
2
.a � 1/.b � 1/.
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8. Question 2 implies that if k is representable then it can be written as

k D ma C nb

for some nonnegative integers m and n with 0 � m � b � 1. If n � a then we get another representation,

namely,

k D .mC b/a C .n � a/b :

We can continue the process of adding b to the coefficient of a and subtracting a from the coefficient of b,

until the latter becomes negative, and those will be precisely the different representations of k. Suppose j is the

largest integer such that n � ja � 0. That is, k has the j C 1 representations

k D maC nb D .mC b/aC .n � a/b D .mC 2b/aC .n � 2a/b D � � � D .mC jb/aC .n � ja/b :

Then k C ab has the j C 2 representations

kC ab D maC .nC a/b D .mC b/aC nb D .mC 2b/aC .n� a/b D � � � D .mC .j C 1/b/aC .n� ja/b ;

precisely one representation more than k has.

9. We have to show that rab�a�b D 0 and that rab�a�bCn > 0 for any positive n. To prove the first assertion, we

compute with Popoviciu’s Theorem 3,

rab�a�b D ab � a � b

ab
�
�
b�1.ab � a � b/

a

�

�
�
a�1.ab � a � b/

b

�

C 1

D 2 � 1

a
� 1

b
�
� �b�1b

a

�

�
� �a�1a

b

�

:

Since b�1b D 1C ja for some integer j ,
n

�b�1b
a

o

D
˚

�1
a

	

D 1 � 1
a

. With essentially the same argument, we

conclude that
n

�a�1a
b

o

D 1 � 1
b

, which implies that rab�a�b D 0.

To prove that rab�a�bCn > 0 for n > 0, we note that for any integer m,
˚

m
a

	

� 1 � 1
a

. Hence Popoviciu’s

Theorem 3 gives for any positive integer n,

rab�a�bCn � ab � a � b C n

ab
�
�

1 � 1

a

�

�
�

1 � 1

b

�

C 1 D n

ab
> 0 :

10. By Popoviciu’s Theorem 3,

rab�k D ab � k
ab

�
�
b�1.ab � k/

a

�

�
�
a�1.ab � k/

b

�

C 1

D 2 � k

ab
�
� �b�1k

a

�

�
� �a�1k

b

�

.?/D � k

ab
C
�
b�1k

a

�

C
�
a�1k

b

�

D 1 � rk :

Here, .?/ follows from the fact that f�xg D 1 � fxg if x 62 Z.

11. (a) Since every integer beyond ab�a�b has at least one representation, every integer beyond .jC1/ab�a�b
has at least j C 1 representations, by Question 8.

(b) As we just showed, every integer beyond .j C1/ab�a�b has at least j C1 representations. Furthermore,

by the formula for g.a; b/ and Question 8, .j C 1/ab � a � b has exactly j representations, and so

gj D .j C 1/ab � a � b.
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(c) Let n be a nonnegative integer. Then

rab.j �1/�n D ab.j � 1/ � n
ab

�
�
b�1.ab.j � 1/� n/

a

�

�
�
a�1.ab.j � 1/� n/

b

�

C 1

D j � n

ab
�
� �b�1n

a

�

�
� �a�1n

b

�

:

If n D 0, this equals j . If n is positive, we use the fact that fxg � 0 to see that

rab.k�1/�n � j � n

ab
< j :

(d) In the interval Œ1; ab�, there are, by Sylvester’s Theorem and the fact that ab is the smallest 2-representable

integer,

ab � .a � 1/.b � 1/
2

� 1

1-representable integers. With Question 8 and again Sylvester’s Theorem, we see that there are

.a � 1/.b � 1/
2

1-representable integers above ab. Hence there is a total of ab � 1 uniquely representable integers.

(e) It suffices to prove this result for j D 2; then the general statement follows by induction with Question 8.

By the previous proof and Question 8, there are ab� .a�1/.b�1/
2

�1 integers with two representations in the

interval ŒabC 1; 2ab�, and .a�1/.b�1/
2

such integers beyond 2ab. Hence, together with the 2-representable

integer ab, there are precisely ab integers with two representations.





Calculator Activities for a

Discrete Mathematics Course

Jean M. Horn and Toni T. Robertson
Northern Virginia Community College

Summary

Using the symbolic capabilities of the TI-89 calculator can enhance discrete mathematics. Our mathematics and com-

puter science majors take discrete mathematics as a post calculus course. Typical students come to the first class with

their TI-89 in hand, both wanting and expecting to be able to use it. In response to their expectations we have de-

veloped a series of calculator activities which can be used to supplement and enhance some of the topics of discrete

mathematics. They are designed to improve the basic understanding of course content, and to provide guidance for

students as they transition from the concrete to the abstract.

Many of our students want the calculator to give them all of the answers. Their first experiences with the calculator

reinforce this idea. As they advance through the curriculum, they begin to experience situations in which the calculator

does not return the anticipated result. Our task is to take students from the level of dependency to the place where they

can use the calculator as an analytical tool. As instructors, one way in which we can accomplish this purpose is by

providing calculator activities which ask questions requiring interpretation of the output. The calculator cannot answer

why, nor does it flag an erroneous answer.

Developing calculator skills is a direct way to improve analytical thinking. The calculator allows students to gain a

sense of what is happening in a problem. It allows them to ask how their calculators can be used to help investigate

problems and formulate solutions in a more concrete fashion. The guidance which an instructor can provide through

activities like these will help students polish these skills while simultaneously reinforcing the concepts of discrete

mathematics.

While these activities are intended for use by students outside of class, a demonstration in class tends to increase

participation. The added benefit is the assurance that all students are using their calculators correctly. This encourages

students to work independently and to delve into extensions of the activity outside of class.

Notes for the instructor

These activities were written for the TI-89 series calculators. Thus they also work on the TI-89 Titanium and Voyage

200 as well. Many will work on the TI-83+, TI-84+ series calculators. These adaptations will be noted with each

activity.

� Activity 1: Modular Arithmetic

This activity introduces students to the mod function. Familiar concepts, like sequence graphing, should inspire

students to explore the mod function further. This activity is often done in class to insure that all students are

comfortable with the TI-89 calculator.

The TI-83+, TI-84+ series calculator does not have the mod n function and will not support this activity.

75
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� Activity 2: Help with Proofs

Discrete mathematics is often the first course in which students are introduced to the concept of proofs. The

calculator will not prove or disprove a statement but can be used as an aid to determine the suspected truth

of a given statement. It has also proved beneficial for finding counterexamples. While students should be do-

ing this type of activity on their own, experience suggests they do not. Students often need guidance to start

experimenting.

Items 1–4 of this activity can be worked using any calculator. Item 5 requires a TI-89 series calculator to handle

the symbolic manipulation.

� Activity 3: The Floor and Ceiling Functions

This activity includes sums, quotients, and composites of the floor and ceiling functions. On the calculator many

of the graphs appear similar but have hidden features which distinguish them. The student must determine when

and where these hidden features exist.

This activity can be adapted for the TI-83+ or TI -84+ by using y D ŒŒx�� for y D bxc and y D ŒŒx C 1�� for

y D dxe. The greatest integer function is found in the MATH NUM menu on these calculators as y = int (x).

Students need to indicate which endpoints are included on their graphs.

� Activity 4: Growth of Functions

This activity helps students understand the concept of “big-oh” and “little-oh.” While some students will have

encountered these in prior computer science courses, it will be a first exposure for others. Students are asked to

interpret data based on changing calculator window size, changing constants, and forming a graphical inspection

of the limit. While we hope students will try graphing functions like those done in this activity, many do not

think of doing so on their own.

This activity is compatible with any graphing calculator.

Other similar calculator activities and work sheets for discrete mathematics are available by contacting the author.
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Calculator worksheet on modular arithmetic

For any integer n > 1 we can define congruence modulo n as an equivalence relation on the set of integers. Distinct

equivalence classes of the relation are the sets Œa� D fy 2 Z j y � a mod ng for a D 1; 2; : : : ; n � 1. The graph of

y � a mod n will show these equivalence classes on the TI-89 calculator. Be sure to put your calculator in sequence

mode for this activity.

1. Graph y � a mod 4 by entering

(

u1 D iPart.mod.n; 4//

ui1 D 1
and using the window nminD 1, nmaxD 24,

xminD �1, xmaxD 14 , yminD �4, ymaxD 8. Record your graph.

2. Now TRACE the function to help you get the sense of the behavior of the graph. As you move from one x-

coordinate to another, estimate the n value and the corresponding y values. Using this display, substitute values

for y and n in y � n mod 4 and record the first five results.

3. There are two ways to think of this graph. In parts 1 and 2 you simply looked at consecutive values of n by

moving from one value to the next. You should have observed the manner in which y values repeated. A second

way to obtain information from the graph is to read across a horizontal line to find values of n for any given y.

Reading horizontally on your graph, what values of n do you find when y D 0, y D 1, y D 2, y D 3? List the

first five values for each y above. What do the values represent when listed this way? Record all answers.

4. Simultaneous congruences can also be solved graphically, such as

(

y � n mod 4

y � n mod 6
. You already have y �

n mod 4 entered at u1. Leaving it there, enter y � n mod 6 at u2. When you graph these two, you have two

patterns showing on the display. Use TRACE to help you make sense of the graph and which pattern goes

with which function. Look carefully for the first value where the graphs intersect. This occurs at n D 1 on

y � n mod 4. Use the up arrow to switch to tracing y � n mod 6. You know you have found a common

solution when the y value does not change. Now try switching between the two functions at n D 7. Does the

cursor remain steady here? Record the value or values obtained. Is this a solution to both equations? Explore

using the TRACE feature on the calculator to change between congruences. Solve the simultaneous congruences

for n D 3 and record your results.



78 Part I Classroom-tested Projects

Calculator worksheet on help with proofs

Your calculator will not do proofs for you, but it can be very useful to you when you try to determine the truth of given

statements. You can use it as an aid to get a sense of whether or not a given statement is true.

1. If asked whether every integer of the form n2 � n is divisible by 2, you may not see that this is true on a

preliminary inspection. However, you can use your calculator to compute a few values of n2 � n and quickly

conjecture that you are trying to prove a true statement. Try this by going to your Y = screen and entering

y1 D x2 � x. Then return to your home screen (press HOME) and enter y1.f�5;�2;�1; 0; 1; 5; 10; 101g/ or

some other integers of your choice. When you press ENTER the calculator will return a list to you. Record this

list. You can then check that the list is divisible by 2 by clearing your entry line, arrowing up to highlight the

list and pressing ENTER. After the list add �2 and press ENTER. Record this new list. Are all of the entries

integers? What does your answer tell you about whether or not you are trying to prove a statement which is true?

Note that this does not give you a method for proving or disproving the statement.

2. Consider the claim that 1
5
n5 C 1

3
n3 C 7

15
n is an integer for every integer n. Examine this statement using a list

of integers to conjecture the truth or falsity of the statement. Be sure to write down the list that you use, as well

as the output when recording your answer and conclusion.

3. Consider the claim that x2 CxC 41 always generates a prime number for all integers x. Examine this statement

with the list f1; 5; 9; 39g. What can you conclude? Have you used enough values to draw a valid conclusion?

Now try the list f1; 5; 9; 39; 41; 49; 115g. Is this list long enough? What do you conclude and why? Record all

your answers.

4. Consider the claim that if x and y are odd, then x2 C y2 is even but not divisible by 4. Here, because of the

two variables, you will need to switch the mode to 3D(MODE,graph,! to submenu,3D). You can then enter

the three-dimensional function as z1 D x2 C y2. Then enter any odd number for x and a list for y to try this

formula for a number of values. After entering the above expression and returning to the home screen, evaluate

it at .1; 3/, .1; 7/, .1; 25/, .1; 101/, .1; 57321/ by entering z1(1,f3,7,25,101,57321g). Are all the entries in the

returned list even? Are they divisible by 4? How can you tell if they are divisible by 4 using the calculator?

Without using the calculator? Try this with some other values of your choosing. Based on this work, do you

think the statement is true or false? Record all answers.

5. Your calculator can help you conjecture that
�

n
r

�

D
�

n
n�r

�

. This is entered as nCr(n,r) on your calculator. Can

you prove this conjecture on your calculator? Show algebraically that
�

n
r

�

D
�

n
n�r

�

is indeed true. Do not rely

on your calculator here. Be sure to record your verification below and explain the logic you used to reach your

conclusion.
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Calculator worksheet on the floor and ceiling functions

The Floor of a real number x, denoted bxc, is the integer n such that n � x < nC 1 (it is also known as the greatest

integer function). The floor function can be found in the MATH Number (2nd 5 1: Number) menu or in the catalog

on the TI-89. The floor function can be graphed by entering y = floor (x) Be sure to put your calculator in dot mode

(F6,2 from the Y= screen) and graph the floor function in the standard window (F2,6 from the Y= screen).

The Ceiling of a real number x, denoted dxe , is the integer n such that n � 1 < x � n. On the TI-89 the ceiling

function can be found in the MATH Number (2nd 5 1: Number) menu or in the catalog. The ceiling function can be

graphed by entering y = ceiling (x). Be sure to put your calculator in dot mode and graph the ceiling function in the

standard window.

Graph the following. Which ones are functions? Do they have any points of discontinuity? On what intervals are

these functions continuous? Pay special attention to what happens at the integers. How do these graphs differ from

those of y D bxc or y D dxe? Describe the differences in your own words. How do they differ from the function you

are taking the floor or ceiling of? Again, describe the difference in your own words. Use a standard graphing window

of �10 � x � 10 for each graph.

1. y D bxc

2. y D dxe

3. y D bx2c

4. y D dx2e

5. y D bxc C dxe

6. y D dxe � bxc

7. y D bdxec

8. y D dxe=bxc

9. y D 1=bxc

10. y D 1=dxe
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Calculator worksheet on the growth of functions

The analysis of the complexity of algorithms in computer science makes use of concepts and techniques found in

discrete mathematics courses. By a careful analysis of the number of steps an algorithm uses, we can say that one

algorithm is faster than another. Mathematically, this requires a study of the growth of functions. We say that a function

f .x/ D O.g.x// as x tends to infinity (read “f .x/ is big-oh of g.x/”) where f and g are functions from the set

of integers (or the set of real numbers) to the set of real numbers provided there are constants C and k such that

jf .x/j � C jg.x/j whenever x > k.

1. Big-oh notation can be used to talk about asymptotic growth of the function as x increases to infinity. What

happens on any small interval is not important in determining whether f .x/ is O.g.x//. Set your calculator

window to 0 � x � 1, 0 � y � 1 and graph the functions f .x/ D x and g.x/ D x2. For this range which

function is larger? What might this cause you to conjecture? Now enlarge your viewing window. What happens?

What conclusion can you now make? Is f .x/ D O.g.x// or is g.x/ D O.f .x//? FindC and k to support your

conclusion.

2. By enlarging the viewing window enough we can get a good idea whether or not f .x/ isO.g.x//. However, we

must remember that we only need to find one constantC such that jf .x/j � C jg.x/j. Let f .x/ D 3x3 C7xC5

and g.x/ D x3. Now graph both functions. Which is larger? What might you conclude from that? Change the

constant in front of g.x/ and graph again. Try C D 2; 3; 15 regraphing each time. What conclusion can you

draw from this?

3. To sort a list of size x, the merge sort takes about f .x/ D x.log.x// steps, and the insertion sort takes about

g.x/ D x2 steps. Is f .x/ D O.g.x//? Is g.x/ D O.f .x//?

4. One of the most useful characterizations of big-oh uses limits. We say that f .x/ is O.g.x// if

lim
x!1

f .x/

g.x/
< 1:

To actually evaluate the limits we will usually have to appeal to L’Hopital’s Rule from calculus, but by graphing

f .x/=g.x/ on a large enough window you can get some idea as to whether or not the ratio goes to a finite limit.

Try f .x/ D 34x100 and g.x/ D 2x. Graph the ratio. Does it go to infinity? What does this tell you about the

relationship between f .x/ and g.x/? Try f .x/ D x.log.x// and g.x/ D x.log.log.x1000///. What conclusion

can you draw here?

5. We say that f .x/ is o.g.x// (read f .x/ is little-oh of g.x/) if for any constant c there exists some k such that

f .x/ � cg.x/ for x > k. This says that f .x/ grows more slowly than g.x/ and is a stronger statement than

saying f .x/ is O.g.x//. Consider the functions f .x/ D 10x and g.x/ D x1:1. Use your calculator to find

where f .x/ and cg.x/ intersect. Find the k associated with c D 0:1; 1; 2; 5; 10.
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Solutions

� Activity 1: Modular Arithmetic

2. 1 � 1 mod 4, 2 � 2 mod 4, 3 � 3 mod 4, 4 � 0 mod 4, 5 � 1 mod 4

3. y D 0: f4; 8; 12; 16; 20g, y D 1: f1; 5; 9; 13; 17g, y D 2: f2; 6; 10; 14; 18g,

y D 3: f3; 7; 11; 15; 19g. These are congruence classes.

4. n D 7 is not a common solution. Solutions for n D 3 are f3; 15; 27; 39; 51; : : :g.

� Activity 2: Help with Proofs

1. Outputs for the given set are f30; 6; 2; 0; 0; 20; 90; 10100g and f15; 3; 1; 0; 0; 10; 45; 5050g. The statement

is true.

2. Answers will vary. The statement is true.

3. Outputs for the given sets are f43; 17; 131; 1601g and f43; 71; 131; 1601; 1763; 2491; 13381g. Since 1763

is divisible by 41, the statement is false. (You may want to use the calculator’s Factor command here.)

4. The results will all be even and not divisible by 4. To test divisibility by 4, look for integer values after

using �4 on the calculator, check if the last two digits divisible by 4 without the calculator. The statement

is true.

5. Answers will vary.

� Activity 3: The Floor and Ceiling Functions

1. This is a function, discontinuous at the integers, continuous on Œn; nC1/ for integers n. This floor function

agrees with y D x at the integers but has a flat step between integers rather than a diagonal line.

2. Function, disc. at integers, cont. on .n; nC 1�.

3. Function, disc. at ˙
p
n, cont. on .�

p
2;�1�; .�1; 1/; Œ1;

p
2/; Œ

p
2;

p
3/, etc.

4. Function, disc. at ˙p
n, cont. on Œ�

p
2;�1/; Œ�1; 0/; .0; 1�; .1;

p
2�; .

p
2;

p
3�, etc.

5. Function, disc. at integers, cont. on .n; nC 1/.

6. Function, disc. at integers, cont. on .n; nC 1/.

7. Function, disc. at integers, cont. on .n; nC 1�.

8. Function, disc. at integers, cont. on .n; nC 1/ except .0; 1/.

9. Function, disc. at integers, cont. on Œn; nC 1/ except Œ0; 1/.

10 Function, disc. at integers, cont. on .�n; nC 1� except .�1; 0�.

� Activity 4: The Growth of Functions

1. x D O.x2/.

2. f .x/ D O.g.x// and g.x/ D O.f .x//; C D 15; g.x/ is strictly greater than f .x/ for x � 1.

3. x= log.x/ D O.x2/.

4. 34x100 D O.2x/ even thoughx100 is greater than 2x untilx is quite large; x.log.log.x/// D O.x.log.x///.

5. k D .10=c/1=10.





Bulgarian Solitaire

Suzanne Dorée
Augsburg College

Summary

A player begins with coins arranged in piles. At each turn she rearranges the coins according to the following rule:

remove the top coin from each pile, possibly eliminating piles, and form a new collected pile of coins. She repeats

the process until she revisits a previously encountered arrangement, having reached a terminal cycle. Where are fixed

points, if any? Are there any 2-cycles? Which states are cyclic? How can we visualize the process?

This process was dubbed “Bulgarian Solitaire” in a 1983 Scientific American column by Martin Gardner [11],

though I first saw it in Doug West and John D’Angelo’s text Mathematical Thinking [22]. In my sophomore level

discrete mathematics class I use an activity on Bulgarian Solitaire called The Coins Go ’Round ’n ’Round to introduce

students to partitions of integers, directed graphs, state graphs, and dynamical systems and to draw connections to the

ubiquitous triangular numbers. In class I avoid using the name “Bulgarian Solitaire” since that would make it too easy

for students to find answers on the Internet.

The activity takes two twenty-minute time blocks, or it can be done all as one entire class period. Each pair of

students needs a dozen coins. It works best when I introduce the process prior to Part I and the graphs prior to Part II.

I provide this introductory material below.

I expect students have seen the triangular numbers

1; 3; 6; 10; 15; 21; : : : ; tk D
k
X

iD1

i D k.k C 1/

2

earlier in the course, preferably including their representation as triangles of dots. It is helpful, but not necessary, for

students to have seen the partitions of an integer. I do not expect that students have seen any graph theory prior to the

activity. My students haven’t and they are able to pick up on the terminology, notation, and ideas when needed.

My experience is that there are parts of the activity that challenge my strongest students, most of which I save as

extra credit, but most parts are easily completed by all of my students. They really get into “playing the game,” and

are curious about what happens.

Notes for the instructor

I begin the activity by demonstrating the process by moving coins on an overhead projector while on the blackboard

I record each state visited and connect it to the subsequent state with an arrow. Rather than piling the coins vertically,

which would be difficult to see on the overhead screen, I extend them up the screen as in Figure 1. I literally remove the

top coin from each pile and form the collected pile each time. For example, starting with (5,1,1,1) as on the worksheet

I show students how to get (4,4), (3,3,2), (3,2,2,1), (4,2,1,1), (4,3,1), and then (3,3,2) again. Along the way I point out

how the singleton piles were eliminated and that for convenience we keep the piles in increasing order by size. By the

end of this introduction on the blackboard I have drawn the progression

.5; 1; 1; 1/! .4; 4/ ! .3; 3; 2/ ! .3; 2; 2; 1/! .4; 2; 1; 1/! .4; 3; 1/ ! back to .3; 3; 2/:
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I explain that we have repeated a state and so we’re going to stop. Without my recording these states on the board, the

class probably would not recognize the repeat. Students usually need to stop and think about why the process would

just repeat from there and so I have them turn to their neighbor to discuss why. I also ask them to decide if we’ll ever

return to (5,1,1,1) again, which of course we won’t. I casually introduce the terminology “4-cycle” and refer to the

repeated elements as “cyclic”. These terms are defined later on the worksheet, but I find students get the idea from this

one example.

At this point I have students work on Exercises 1-4.

Thus far in the activity students have only drawn the progression from one state. I begin the second part by drawing

the first few state graphs on the board, G4 on four coins and G5 on five coins as appear in Figure 2. I point out that

each vertex has out-degree one since there is a unique state to which it goes, but a vertex can have in-degree more than

one (or zero).

If students have not seen the partitions of an integer, I show them how to systematically list the partitions of five

to make sure we have all of the vertices of G5. Before I set them off to work on the remaining exercises, I also list

out the partitions of six. A word of warning: once students have the list, some are tempted to draw the graph by first

calculating where each partition on the list is sent and then trying to connect the whole kit and caboodle. In addition to

taking far more time than necessary, it also results in a tangled picture of the graph. Instead, I encourage them to pick

a particular partition, such as .1; 1; 1; 1; 1; 1/, draw the progression from there, then pick a missing partition, and draw

its progression, etc., each time connecting the new progression to the graph as soon as possible. I encourage them to

work on scratch paper and later redraw the graph in an organized fashion without any crossings.

Now I have students work on Exercises 5-8.
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Worksheet on The Coins Go ’Round ’n ’Round

Part I: A never-ending process

Take some coins and arrange them into piles. You may make any number of piles and have any number of coins in

each pile. The piles may be different heights and a pile may have as few as one coin in it. Now, from that starting

arrangement pick up the top coin from each pile and make one new pile out of those coins. Notice that any pile that

had just a single coin was eliminated. You now have a new arrangement of the coins. Repeat this process to the new

arrangement of coins, i.e. pick up the top coin from each new pile and make one new pile out of those collected coins.

For convenience we list the piles in increasing order by size. Keep repeating the process. Although this process never

ends, we’ll call it quits if we get back to a place we’ve already been.

For example, suppose I take eight coins and place them into one pile of five coins and three piles of one coin each,

which we denote (5,1,1,1). At the first step I remove one coin from each pile, eliminating all but the tallest pile. This

leaves a pile of four coins and the four collected coins, forming two piles of four coins each that we denote (4,4). At

the next step I remove one coin from each pile, leaving three coins in each and two collected coins that form a new

pile. The resulting arrangement is (3,3,2). These steps are illustrated in Figure 1.

=

Figure 1. .5; 1; 1; 1/! .4; 4/ ! .3; 3; 2/.

When I repeat the process I get (3,2,2,1), (4,2,1,1), (4,3,1), and then (3,3,2) again, as you can check. Even though I

did not get back to my original arrangement, since I have returned to an arrangement from earlier, I’ll call it quits. If I

were to continue, it would just repeat through those same four states over and over again. We represent this progression

as

.5; 1; 1; 1/! .4; 4/ ! .3; 3; 2/ ! .3; 2; 2; 1/! .4; 2; 1; 1/! .4; 3; 1/ ! back to .3; 3; 2/:

Exercises

1. Now it’s your turn. Perform the process beginning with the given arrangement and record the progression until

you repeat an arrangement.

(a) (2,1,1,1)

(b) (4)

(c) (3,3)

(d) (4,2,1)

(e) (2,2,2,2)

2. Although we do not always return to our original arrangement, we will necessarily return to some state we have

visited before. Explain why. Also explain why once we return to a previously-visited state the process repeats.

An arrangement of coins that is eventually repeated is called cyclic and the number of steps from a cyclic state to its

next repeat is called the length of the cycle. For example, with eight coins the elements (3,3,2), (3,2,2,1), and (4,2,1,1),

and (4,3,1) are cyclic states that form a cycle of length four, called a 4-cycle for short. An arrangement in a 1-cycle is

called a fixed point, i.e. a fixed point is unchanged by the process.

3. Fixed points

(a) Give an example of a fixed point from your earlier work. Give another example of a fixed point.
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(b) Make a conjecture about which states are fixed points under this process.

(c) Make a conjecture about the number of coins in a fixed point state.

(d) Prove your conjectures. Hint: Be sure to both show that these states are fixed points and that any fixed

point is one of these states.

4. 2-cycles

(a) Give an example of a 2-cycle from your earlier work. Give another example of a 2-cycle.

(b) Make a conjecture about which states are in 2-cycles under this process.

(c) ? Make a conjecture about the number of coins in a 2-cycle state.

Note: The star (?) indicates a more difficult problem.

Part II: The state graphs

Thus far we have drawn the progression from one beginning state. For a fixed number of coins, n, we can visually

represent the entire process using a state graph denoted Gn. The vertices (dots) are all possible arrangements of the

coins, which we continue to list as a tuple ordered by size, regardless of the physical order of the piles. These labels

are known as the partitions of the integer n. We draw an arrow from each vertex to the vertex we get by performing

the process once. There is a unique arrow out of each vertex, but there may be one, several, or no arrows into a vertex.

For example, the state graphs on four and five coins are shown in Figure 2.

(2,2)

(2,1,1)

(5)(1,1,1,1,1)

(4,1) (3,2)

(2,1,1,1)

 

 

 

 

 

(2,2,1)

(3,1,1)

(1,1,1,1) (4) (3,1)

Figure 2. The state graphs G4 and G5.

Exercises

5. State Graphs

(a) Draw G6, the state graph on six coins. Hint: Be sure to include all 11 possible arrangement of six coins.

(b) Draw G7, the state graph on seven coins. Hint: There are 15 vertices.

6. Garden of Eden States

A state having no predecessors, i.e. no arrows into the vertex, is called a Garden of Eden state.

(a) Show that the state (4,4,3,3) on fourteen coins is not Garden of Eden.

(b) The state (4,3,3,2,1,1) on fourteen coins is Garden of Eden. Explain why.

(c) ? State and prove a conjecture about which states on n coins are Garden of Eden.
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7. Ten Coins

(a) Start with an arrangement of ten coins, perform the process, and draw the progression.

(b) Start with an arrangement of ten coins that you haven’t encountered yet, perform the process, and connect

this progression to your graph.

(c) Start with another arrangement of ten coins that you haven’t encountered yet, perform the process, and

connect this progression to your graph.

(d) Make a conjecture about how the process with ten coins will always end.

(e) Generalize your conjecture.

8. Eleven Coins

(a) List the cyclic states on eleven coins. Hint: There is a unique end cycle.

(b) ? Suppose that n is an integer such that there is a fixed point with n coins. Consider the process on nC 1

coins. Make a conjecture about which states are cyclic.
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Solutions and Notes

1. The Process

(a) .2; 1; 1; 1/! .4; 1/ ! .3; 2/ ! .2; 2; 1/! .3; 1; 1/ ! back to .3; 2/

(b) .4/ ! .3; 1/ ! .2; 2/ ! .2; 1; 1/! back to .3; 1/

(c) .3; 3/ ! .2; 2; 2/ ! .3; 1; 1; 1/ ! .4; 2/ ! .3; 2; 1/ ! back to itself

(d) .4; 2; 1/! .3; 3; 1/ ! .3; 2; 2/! .3; 2; 1; 1/! back to .4; 2; 1/

(e) .2; 2; 2; 2/! .4; 1; 1; 1; 1/! .5; 3/ ! .4; 2; 2/ ! .3; 3; 1; 1/! back to .4; 2; 2/

2. We will necessarily return to some state we have visited before because there are only finitely many states. The

process will repeat from there because the process and state are the same as when we were there before.

3. Fixed Points

(a) A fixed point from earlier work is (3,2,1). Other examples include (1) on one coin, (2,1) on three coins,

(4,3,2,1) on ten coins, etc.

(b) Conjecture: A state is fixed if and only if it is of the form .k; k�1; : : : ; 3; 2; 1/. I find it necessary to remind

students that a conjecture should be a complete sentence.

(c) Conjecture: There is a fixed point state for n coins if and only if n is a triangular number.

(d) Proof: First we check that these states are fixed by performing the process and observing that each pile is

reduced by one coin and the smallest pile is eliminated, but there are k collected coins, which reinstates

the largest pile. Conversely, suppose we had a fixed state with largest pile k. Since the process reduces the

size of each pile, the only way we can get a pile of k coins is as the collected pile and so there must be

exactly k piles. The pile of k coins is reduced to k � 1 coins by the process and so there must have been a

pile of k � 1 coins. Similarly that pile of k � 1 coins is reduced to k � 2 coins by the process and so there

must have been a pile of k � 2 coins. The argument continues until we note that the pile of two coins is

reduced to one coin by the process and so there must have been a pile of one coin. This gives us k piles in

total, and so there are no additional piles. We therefore have the triangle state .k; k� 1; k� 2; : : : ; 3; 2; 1/,
with a triangular number of coins. For formal proof see [22].

4. 2-Cycles

This exercise can easily be left as homework or omitted altogether if short on time.

(a) A 2-cycle from earlier work is (4,2,2) $ (3,3,1,1) on eight coins. Other examples include (2) $ (1,1) on

two coins and (6,4,4,2,2) $ (5,5,3,3,1,1) on eighteen coins.

(b) Conjecture: A state is in a 2-cycle if and only if it is of the form

.2t; 2t � 2; 2t � 2; : : : ; 4; 4; 2; 2/ or .2t � 1; 2t � 1; 2t � 3; 2t � 3; : : : ; 3; 3; 1; 1/

for some integer t . My students usually guess the pattern but have difficulty stating it. This result follows

from the characterization of cycles in the work of Akin and Davis [1]. While it is easy to check that states

of this form are in a 2-cycle, it takes a bit more work to prove that these are the only 2-cycles and so I do

not ask my students for proof.

(c) ? I make this part extra credit since it relies on a clearly-stated conjecture in the previous part. Adding

the number of coins from the previous conjecture in the odd case we get

t
X

iD1

2.2t � 1/ D 2 Œt.t C 1/� t � D 2t2:

Conjecture: A two-cycle occurs exactly when the number of coins is twice a square. As far as I can deter-

mine the first direct proof of this fact was given by one of my students, Augsburg College undergraduate

Maria Sieve, [21].
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5. State Graphs

(a) The state graph G6 is shown in Figure 3.

 

 

(6)

(2,2,1,1,1)

(2,2,1,1) (4,1,1) (3,3) (2,2,2) (3,1,1,1)

(5,1)(1,1,1,1,1,1)

(4,2)

(3,2,1)

 

 

Figure 3. The state graph G6.

(b) The state graph G7 is shown in Figure 4.

(5,1,1)

 

 

 

 (1,1,1,1,1,1,1,1) (6,1)

(3,3,1)

(7) (5,2) (4,2,1)

(2,1,1,1,1,1,1) (3,1,1,1,1) (3,2,1,1)

(2,2,2,1) (4,1,1,1)

(2,2,1,1,1)

(3,2,2)(4,3)

 

 

 

 

Figure 4. The state graph G7.

The first seven state graphs are connected, but G8 has two connected components. There are graphs with even

more components [1].

6. Garden of Eden States

(a) (4,4,3,3) is not a Garden of Eden state because .5; 4; 4; 1/! .4; 4; 3; 3/.

(b) Proof: To see why (4,3,3,2,1,1) is a Garden of Eden state, suppose this state had a predecessor. There are six

piles of coins in (4,3,3,2,1,1), only one of which could be the collected coins from a predecessor. Therefore

a predecessor would have to include at least five piles of coins. (It might have additional singleton piles.)

But then there would be at least five collected coins and so our state would include a pile with at least

five coins in it. Since (4,3,3,2,1,1) does not have any pile with more than four coins, the existence of a

predecessor is impossible. Thus (4,3,3,2,1,1) is Garden of Eden, as claimed.

(c) ? I make this part extra credit since it requires a clear understanding of the previous part. Conjecture: A

state is Garden of Eden if and only if each pile is at least two coins smaller than the number of piles. Proof:

That these states are Garden of Eden follows as in the proof for (4,3,3,2,1,1). For the converse, given a

state that does not meet the criteria, the largest pile must be no smaller than one less than the number of

piles. So, we can construct a predecessor by picking up that largest pile, distributing one coin to each of

the remaining piles (which we definitely have enough coins to do), and placing any remaining coins from

the largest pile as new singleton piles.
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7. Ten Coins

(a-c) Any progression on ten coins leads to the fixed point (4,3,2,1). I have sometimes done this part of the

activity as an entire class, where each pair of students tries an arrangement of ten coins at once and then

all report what happens.

(d) Conjecture: Any arrangement of ten coins progresses to the fixed point (4,3,2,1).

(e) Conjecture: For a triangular number of coins, any arrangement progresses to the fixed point. This result is

proved in [5] and [1]. Students may try to generalize further but they should be reminded of the example

of eight coins that has both a terminal 2-cycle and 4-cycle, as evidence that the outcome might depend on

the initial state.

8. Eleven coins

(a) The cyclic states on eleven coins are (5,3,2,1), (4,4,2,1), (4,3,3,1), (4,3,2,2), (4,3,2,1,1). The easiest way to

find these states is to begin with any partition of eleven and apply the process until you reach the 5-cycle.

Without the hint students would not know that these are the only cyclic elements. The pattern is that any

cyclic state on eleven coins is formed from (4,3,2,1) by adding a coin to some pile or to the right of the last

pile [1].

(b) ? I make this part extra credit since it is so difficult that few of my students get it. The question is stated

a bit awkwardly to avoid revealing the answer to Exercise 3. You may want to restate it as “n C 1 coins

when n is triangular”. Conjecture: For a triangular number of coins, n, a state with nC 1 coins is cyclic if

and only if it is formed from the triangular base of n coins with the addition of a single coin. This result is

proved in [1].

For any number of coins, the cyclic states are formed by a triangular base with at most one coin atop each pile

and possibly one coin to the right of the last pile. If the base triangle has k piles, and thus tk D k.kC1/
2

coins,

then there are k C 1 slots for possible additional coins. The cycle length will be a divisor of k C 1 and there are

cycles of each divisor’s length [1].

A somewhat different question that intrigued Gardner was the maximal number of steps needed to get from a

triangular number of coins to the fixed point [11]. The answer he posed became known as the “Bulgarian Solitaire

Conjecture” though it has now been settled, for example in [10].





Can you make the geodesic dome?

Andrew Felt and Linda Lesniak

University of Wisconsin - Steven’s Point Drew University

Summary

This project uses the geodesic dome made famous by Buckminster Fuller to extend students’ understanding of Eulerian

graphs. Students are directed to build a dome and, after determining that the graphical representation of the dome

contains neither an Euler cycle nor trail, to find the minimal number of repeated edges that are necessary to visit each

edge.

Notes for the instructor

I have done this construction six times with classes of up to 30 students, and each time the entire activity took less

than two 50-minute class periods. There are many jobs to be done: corners to be held, rope to be strung through pipe,

pipes to be labeled, desks to be moved, and supervisory work. All of these jobs can be assigned to students.

The 0.884 ratio cited for edge lengths comes from [1] which cites spherical trigonometry for the derivation. The

decimal approximation is precise enough for this construction.

Use rope that is at least as strong as clothesline, and pull it taut as you proceed. Start from the bottom (the outer

ring) and work up; it also helps to duct tape the bottom to the floor. The construction will be flimsy until the final pipe

is tied into place. Preparing the materials will take some effort, but students are very engaged by the activity.

Bibliography

[1] Lloyd Kahn, Domebook One, Pacific Domes, 1970.

[2] Hugh Kenner, Geodesic Math and How to Use It, University of California Press, 2003.

[3] Thomas Zung (editor), Buckminster Fuller: Anthology for the New Millennium, St. Martin’s Press, 2001.

93



94 Part I Classroom-tested Projects

Worksheet for Can you make the geodesic dome?

A geodesic dome is a three dimensional structure that looks roughly spherical, but is made of smaller triangles.

Geodesic domes are very strong and light. There are many different designs. Suppose you want to use plastic pipe

to make a geodesic dome like the one in Figure 1. There are two different edge lengths. The ratio of the lengths of the

dotted edges to solid edges is about 0.884. The drawing is not to scale.
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Figure 1. The design we will work with.

The circles in Figure 1 represent the joints at which the pipes must be fastened together. To join the pipes, you want

to string a rope through each pipe, as shown in Figure 2. Note that the second and third times through the joint, the

rope is looped around the pre-existing rope.

Figure 2. How the rope forms the joints: The second time through a joint the new rope loops around the existing rope.

The rope does not necessarily need to travel directly across a joint. It can take any other pipe out of the joint. See

Figure 3.
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Figure 3. How the rope forms the joints: Loop for the second time through a joint when rope does not go across.

So all you need to do is to string the rope at least once through each pipe. You’d like to use the shortest rope possible.

Your job will be to find out how much rope you need and what route the rope should take through the pipes.

Below is a small example of a different, two dimensional shape.

We could use the following route to string the rope exactly once through each pipe, starting at node b:

If each of the pipes above is 2 feet long, then we would need a rope about 10 feet long. (We ignore the length required

to do the looping at the joints.)

The following questions relate to the design in Figure 1.

1. Find the nodes of odd degree and list them.

2. Is there a way to string a single rope such that the rope goes through each pipe exactly once, with the ends of

the rope at the same node? Explain your answer.

3. Is there a way to string a single rope such that the rope goes through each pipe exactly once, with the ends of

the rope at different nodes? Explain your answer.

4. If the ends of the rope are at different nodes, what is the fewest number of pipes through which the rope must

travel twice? Which nodes should have the rope ends?

5. Find a route through the pipes which minimizes the amount of rope needed. Draw it on Figure 1. (Bonus: There

are many correct answers. Try to make yours easy to construct. Is it best to wander around or to focus on a single

area first?)

Here is a picture of a geodesic dome made by a small class following these instructions.
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Solutions

1. There are six nodes of odd degree: 21, 23, 25, 27, 29, and 36.

2. It is not possible to have the rope pass through each pipe exactly once with ends of the rope at the same node.

This question is equivalent to asking if an Eulerian cycle (or circuit) exists on the graph in Figure 1. Since there

are nodes of odd degree, Euler’s theorem tells us that no Eulerian cycle exists.

3. It is not possible to have the rope pass through each pipe exactly once with ends of the rope at different nodes.

This question is equivalent to asking if an Eulerian trail (tour, path) exists on the graph in Figure 1. Since there

are not exactly two nodes of odd degree (but rather six), Euler’s theorem tells us that no such trail exists.

4. If we use two of the odd degree nodes for the rope ends (that is, the start and end of the trail), then the other four

odd degree nodes must be made even degree by having the rope go through some pipes twice. Suppose we use

nodes 21 and 36 for the rope ends. Then we have rope go through pipes 29-28, 28-27, 25-24 and 24-23 twice

each, so we must travel through four of the dotted (shorter) pipes twice each. There are many other ways to do

this, but four repeated edges is the minimal number possible.

5. One optimal path is shown below. Here is the order in which the rope visits the nodes: 36, 32, 31, 36, 35, 34, 36,

33, 34, 28, 35, 31, 22, 32, 33, 26, 34, 27, 28, 29, 35, 30, 31, 21, 22, 23, 32, 24, 33, 25, 24, 23, 24, 25, 26, 27, 28,

29, 30, 21, 12, 22, 13, 23, 14, 24, 15, 25, 16, 26, 17, 27, 18, 28, 19, 29, 20, 30, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20, 11, 2, 12, 3, 13, 4, 14, 5, 15, 6, 16, 7, 17, 8, 18, 9, 19, 10, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 11, 21. Note that

the upper part of the geodesic dome is constructed first in this answer, with each successively lower layer added

in order.
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Figure 4. The solution detailed above. End vertices are gray. When the path does not use an adjacent edge, as in Figure

2, often the path is drawn over a vertex. Instances of rope passing twice through a pipe are shown with double headed

arrows.



Exploring Polyhedra and

Discovering Euler’s Formula1

Leah Wrenn Berman and Gordon Williams
Ursinus College

Summary

The activities and exercises collected here provide an introduction to Euler’s formula, an introduction to interesting

related topics, and sources for further exploration. While Euler’s formula applies to any planar graph, a natural and

accessible context for the study of Euler’s formula is the study of polyhedra.

The article includes an introduction to Euler’s formula, four student activities, and two appendices containing useful

information for the instructor, such as an inductive proof of Euler’s theorem and several other interesting results that

may be proved using Euler’s theorem. Each activity includes a discussion of connections to discrete mathematics and

notes to the instructor. Three of the activities have worksheets at the end of this article, followed by solutions and a

template for a toroidal polyhedron.

A brief introduction to Euler’s formula

Theorem (Euler’s formula, polyhedral version). Let P be any polyhedron topologically equivalent to a sphere. Let V

be the number of vertices, E the number of edges and F the number of faces of P . Then V �E C F D 2.

A graph is said to be a simple graph if it is an undirected graph containing neither loops nor multiple edges. A graph

is a plane graph if it is embedded in the plane without crossing edges. A graph is said to be planar if it admits such an

embedding.

Theorem (Euler’s formula, graph version). Let G be any simple plane graph. Let V be the number of vertices, E the

number of edges and F the number of faces (alternately, the number of connected sets in the complement) ofG. Then

V �E C F D 2.

Note that the number of faces F includes what is sometimes called the outside face, the connected component

containing the unbounded region in the complement of the graph. The supposition that G is a simple graph is not

necessary for the proof (the result holds for graphs with loops and multiple edges), but only simple graphs arise in the

polyhedral context, and adding this assumption simplifies the inductive proof. Note that the adjective “simple” means

different things for graphs and polyhedra; simple polyhedra will be defined later.

Throughout this treatment we are defining polyhedra as embedded compact two-dimensional polygonal surfaces

with planar, nonself-intersecting faces. While some of these criteria are dropped in other contexts (the Kepler-Poinsot

polyhedra are either immersed surfaces or have self-intersecting faces), omitting them introduces complexities we do

not feel are appropriate to the activities collected here.

1Thanks to Doris Schattschneider and Gary Gordon who provided ideas and templates for early versions of some of these activities.
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1 Activity: Polyhedra Exploration

The Polyhedra Exploration worksheet is the centerpiece of an activity designed to lead to the discovery of, and build

confidence in, Euler’s formula. This activity is a discovery-based activity in which students are asked to build models

of various polyhedra, given a description of some feature of the polyhedron, and then asked to collect data on the

number of vertices, edges, and faces of their polyhedron. After all students have contributed data, the class is asked

to make conjectures about relationships between the numbers of vertices, edges, and faces. The obvious conjecture is

Euler’s formula. The worksheet is included at the end of this article.

Connection to discrete mathematics

One of the most important aspects of writing a proof is determining the appropriate proposition to prove. Thus, practice

making conjectures is a useful part of a discrete mathematics course. The activity also leads into the presentation of a

proof of Euler’s formula; one of our favorite proofs of this formula is by induction on the number of edges in a graph.

This is an especially nice proof to use in a discrete mathematics course, because it is an example of a nontrivial proof

using induction in which induction is done on something other than an integer.

Notes for the instructor

We have had the most success with this activity, and it takes the least amount of time, if students have access to

large numbers of Polydrons or GeoFix shapes. When they are available, this activity can take as little as 20 minutes.

Alternatively, tape and polygons made from card stock may be used, though assembly in this case will usually take

more time. If you are using homemade polygons it is important that the length of every side is the same for all

polygons. At a minimum you will need 76 triangles, 29 squares, 14 pentagons, 20 hexagons and 6 octagons. We build

a tetrahedron (polyhedron 0 in the worksheet list) as a demonstration.

At the beginning of the activity students are assigned (either individually or in groups) one of the items on the list

to investigate. Students who finish early may either be assigned a second item from the list or additional assembly

problems, given below. We usually handle problem assignments in both cases by printing polyhedron descriptions on

half sheets of paper or index cards passed out randomly or by randomly assigning numbers to groups. The completed

table is provided in the Solutions section, including the common names for the various polyhedra.

The additional assembly problems below are particularly important for the activities described in the next two

Activities. If you plan on using the additional assembly problems, you will need a large selection of the above shapes,

including at least 30 more triangles, 18 more squares and 34 more pentagons.

Additional assembly problems

The reader may be surprised at how many different examples students will generate if they are challenged to come

up with unique examples subject to minimal constraints. Here are some supplementary exercises for the Polyhedra

Exploration worksheet.

� Using only triangles, make two distinct polyhedra.

� Using only squares, make two distinct polyhedra.

� Using only pentagons, make two distinct polyhedra.

� Using triangles and squares, make a polyhedron where four triangles and a square come together at each corner.

Can you make two different polyhedra?2

� Pick any two polygon shapes and make a polyhedron.

� Make a polyhedron using as many different shapes as you can.

Note that these additional assembly problems are, with the exception of the snub cube, open-ended. If students

make spherical polyhedra, then as with the other worksheet exercises, they will find that V C F is two more than E .

However, be on the lookout for the clever students who decide to make toroidal polyhedra!

2The snub cube, which comes in two mirror image forms.
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2 Activity: ‘‘Some of these things are not like the others’’

This activity asks students to determine features that various polyhedra have in common, and it encourages them to

carefully articulate those features.

Depending on the number of terms selected and the temperament of the students, this activity can take as little as

20 minutes, or as long as a full class. Depending on time availability, it may either be used directly as a follow on to

the Polyhedra Exploration, or the models generated during the Polyhedra Exploration may be saved for a later class

period for use in this activity.

Connection to discrete mathematics

Precision in vocabulary is an important feature in learning how to communicate mathematics effectively; not only are

students exposed to vocabulary about polyhedra, but they should begin to recognize why having the vocabulary is

useful. Students also make and test conjectures in the process of articulating features that various groups of polyhedra

have.

Notes for the instructor

Once a large collection of polyhedral models has been assembled, it is possible to explore a number of questions about

geometric and combinatorial properties of polyhedra. Our preference is to do this before students have been exposed

to very much vocabulary about polyhedra.

We gather the students around a table where all of the interesting looking distinct models have been collected. Then

we sort the models into two different piles. All of the polyhedra in one pile will have a chosen property, and all of the

polyhedra in the remaining pile will not have this property. Part of the goal here is to provide students a context in

which they can be challenged with several important mathematical problems: pattern recognition, geometric reasoning,

hypothesis testing and development of appropriate nomenclature. Students often struggle with each of these, and only

after students are able to describe in words correctly what distinguishes the chosen collection of objects are they told

the formal term they have just defined. A selection of such terms and related definitions is included below.

It is important when doing this activity to wait a long time for students to make suggestions, to steer as little as

possible, and to avoid giving any hints, although you should feel free to make more precise definitions that students

have created. The level of depth and precision for these definitions should be fitted to the other instructional needs of

the course but may also provide nice opportunities to emphasize the importance of making sure that a definition says

what its author thinks it does (a common problem in geometry). Be careful not to reject examples of polyhedra or

define them in ways that would artificially limit your ability later to talk about any of the definitions given. The goal is

to have the students thinking as creatively and broadly as possible.

Regular Polyhedron/Platonic Solid This is a term that can be defined several ways. For convex polyhedra, it suffices

to define a regular polyhedron as one in which all of the faces are regular polygons of exactly one type and each

vertex has the same number of polygons around it. (It would be more precise to say that they are the polyhedra

that are isogonal, isotoxal and isohedral; however there exists a combinatorial (nonconvex) polyhedron that

satisfies all three of these conditions without meeting the modern definition of regularity.3) In most modern

contexts, to be regular means that the polyhedron is “flag transitive.” A flag is a vertex, edge and face of the

polyhedron, all mutually incident, and to be flag transitive is to require that any two such flags may be mapped

to each other by a symmetry of the polyhedron.

Convex Polyhedron Loosely, this means that the polyhedron lacks dents. Precisely, a polyhedron is convex if every

pair of points on or in the polyhedron determines a segment contained entirely on or inside the polyhedron.

Symmetric Polyhedron Any polyhedron with a nontrivial symmetry mapping the polyhedron to itself.

3This is the Petrie dual (or Petrial, or Petrie polyhedron) of the cuboctahedron. For more information about Petrie duals we recommend

Cromwell’s discussion of Petrie polyhedra in [3]. More technical treatments are available in Coxeter’s [2], Grünbaum’s [4], and McMullen and

Schulte’s [6].
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Isogonal Polyhedron Any vertex of the polyhedron may be mapped to any other vertex under a symmetry of the

polyhedron. The triangular prism is isogonal, while the square pyramid is not isogonal, since the vertex at the

apex of the pyramid can’t be mapped to any vertex at the base.

Isohedral Polyhedron Any face of the polyhedron may be mapped to any other face under a symmetry of the polyhe-

dron. Nonregular examples include the triangular bipyramid (or any of the other Catalan solids); Archimedean

solids, such as the cuboctahedron, are not isohedral.

Isotoxal Polyhedron Any edge of the polyhedron may be mapped to any other edge under a symmetry of the polyhe-

dron. The cuboctahedron is a good example of this phenomenon, while the triangular bipyramid does not have

this property.

Uniform or Semiregular Polyhedron An isogonal polyhedron in which all of the faces are regular polygons, not all

congruent.

Vertex Star The collection of polygons incident to a vertex. The combinatorial type of a vertex star is a listing between

parentheses, separated by periods, in cyclic order, of the number of sides of the polygons incident to the vertex.

A single such sequence is sufficient to characterize a uniform polyhedron. For example, a uniform polyhedron

with vertex stars of type (5.6.6) must necessarily be the truncated icosahedron (soccer ball) in which every vertex

is surrounded by a pentagon and two hexagons.

Archimedean Polyhedron A polyhedron in which all of the vertex stars are congruent, and the faces are all regular

polygons.4

Prism A polyhedron with two parallel congruent faces connected by parallelograms. If the congruent faces may be

obtained one from the other by translating in a direction perpendicular to the plane in which each lies, and so the

remaining faces are rectangles, it is a right prism. If the rectangles are in fact squares, and the parallel polygons

are regular, then the prism is also uniform.

Antiprism A convex uniform polyhedron with two parallel congruent regular n-gons and 2n equilateral triangles. The

2n triangles form a strip connecting the two parallel congruent n-gons. The vertex stars are all of combinatorial

type .3:3:3:n/.

Spherical polyhedron A polyhedron that is topologically equivalent to a sphere.

Toroidal polyhedron A polyhedron that is topologically equivalent to a torus.

Simple polyhedron A polyhedron in which the number of edges (degree) at each vertex is three. Like other occur-

rences of the word “simple” in mathematics, some authors may mean something different when they use this

term to describe a polyhedron, such as what we refer to as spherical.

Simplicial polyhedron A polyhedron made up entirely of triangles. Note that the dual of a simplicial polyhedron is

simple and vice versa.

3 Activity: Symmetric Polyhedra and Angle Deficiency

A central theme in discrete mathematics is counting things, especially when counting things known to be equal by two

different methods yields a useful equality. The activity on Symmetric Polyhedra and Angle Deficiency has two parts.

The first part, which is discovery-based, asks students to make a conjecture about the total angle deficiency of a convex

polyhedron, and the second part asks them to prove their conjecture using Euler’s formula. The worksheet is included

at the end of this article.

4Many sources use Archimedean and uniform as synonyms. However, there exists an example of an Archimedean polyhedron that is not uniform,

the pseudorhomicuboctahedron (Johnson solid J37).
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Connection to discrete mathematics

An important class of proofs is “proofs by counting” — i.e., combinatorial proofs. This activity leads students through

a nontrivial proof that proceeds by counting things two ways, as well as providing an application of Euler’s formula.

Notes for the instructor

Exercise 5 on the Symmetric Polyhedra and Angle Deficiency worksheet (included at the end of the article) provides a

good example of proving results by counting things two ways.

Here are two additional exercises you may want to use with this activity. Exercise 0 is a natural question to ask as

a precursor for the worksheet, and Exercise 6 is a natural extension of the questions presented in the worksheet. Note

that Exercise 6 may be answered positively, with prisms and antiprisms providing the remaining possible examples.

Exercise 0. Prove, using induction, that the sum of the angles in a convex n-gon is 180.n � 2/. Using this fact,

determine the measure of a single angle in a regular n-gon.

Exercise 6. Using your answer from Exercise 0, determine whether there are any polyhedra other than those listed in

the table of Exercise 3 of the Symmetric Polyhedra and Angle Deficiency worksheet that: (i) have faces that are regular

polygons where every corner “looks” the same and (ii) has at least two kinds of faces.

Solutions for these exercises and the questions on the worksheet are provided in the solutions section that follows

the worksheets.

4 Activity: Poincare’s formula and higher genus polyhedra

Euler’s formula only applies to polyhedra topologically equivalent to a sphere. This activity encourages students to

construct nonspherical polyhedra, notice that Euler’s formula does not hold, and make conjectures about what an

appropriate generalization might be. It then asks students to think about a complicated polyhedron and, after making

a guess, determine the genus using Poincaré’s generalization of Euler’s formula.

Connection to discrete mathematics

Paying attention to hypotheses is important; Euler’s formula does not hold for nonspherical polyhedra! What is an

appropriate generalization?

Notes for the instructor

Instruct students to construct “donuts” using the template provided on the last page of this article. If they then count

up the numbers of vertices, edges and faces, they will find that the results do not obey the basic formulation of Euler’s

formula. Instead, the formula needs to take into account the genus of the object. Define �.g/ D 2� 2g where g is the

genus of the surface in question; Euler’s formula generalizes to Poincaré’s formula V �ECF D �.g/. The worksheet

for this activity consists of two exercises that formalize this process, and solutions are provided in the solutions section.

Appendix A: Inductive proof of Euler’s theorem using graphs

Every spherical polyhedron corresponds to a simple (no loops or multiple edges) plane (no edges cross) connected

(you can get to any vertex from any vertex) graph. One way to see this is to imagine that the polyhedron is drawn on

the surface of an extremely flexible balloon, with the opening of the balloon (where you blow) in the interior of a face.

Pull the opening of the balloon wide and flatten the balloon to a disk in the plane; then the vertices, edges and faces

of the polyhedron will form a graph in the plane. As long as we regard the outside of the graph as a face, there is a

one-to-one correspondence between the vertices, edges and faces of the original polyhedron (on the blown-up balloon)

and the vertices, edges, and faces (or regions) of the flattened-out balloon. Alternately, we may view the polyhedron as

a transparent model, position an eye close enough to a face and trace the edges and vertices we see in that face (forming

a Schlegel diagram). We can then transcribe the resulting figure into the plane and now the outside face corresponds

to the face we traced the other faces into during our tracing process.
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Therefore, if we can prove the stronger result that Euler’s formula holds for any connected simple plane graph, we

will have shown that Euler’s formula must hold for the subclass of simple plane graphs which correspond to polyhedra.

Note that for students who have had exposure to proofs by induction, the following method of proving Euler’s

theorem, if approached casually, is a nice discovery-based learning topic, which can be used to introduce graph theory

and also serves as an interesting, non-trivial example of a proof by induction, especially in classes where most of the

proofs by induction deal only with properties of sequences of integers.

Theorem 1. Suppose G is a connected simple plane graph with V vertices, E edges, and F faces (or regions). Then

V � E C F D 2:

Proof. The proof is by (strong) induction on the number of edges, E . We assume that the “outside” of the graph is a

face.5 Let G be any connected simple plane graph with V vertices, E edges, and F faces (or regions).

Base Case E D 0. If E D 0 and G is a graph, thenG is the unique connected graph with a single vertex and a single

face, so V D 1, E D 0, F D 1 and V �E C F D 2.

Induction Hypothesis Suppose E � 0, and suppose for any k with 0 � k � E that ifQ is any connected graph with

VQ vertices, EQ D k edges and FQ faces, then VQ �EQ C FQ D 2.

LetG be an arbitrary connected simple plane graph with nC1 edges, and let e be an arbitrary edge ofG. Removing

e yields a graph H—not necessarily connected—with n edges. There are two cases to consider (see Figure 1).

e
e

J

K

(a) (b)

Figure 1. A graph G with a chosen edge e indicated as a dashed line segment; removal of e forms a graphH . (a) Case

1: H is connected; (b) Case 2:H consists of two connected components.

Case 1: H is connected, so e connects two vertices in H (Figure 1(a)) Note that since H is connected and has n

edges, by the induction hypothesis, VH � EH C FH D 2. In this case, because G can’t have edges that cross,

e must connect two vertices that share a face in H . When e is added back in to H to form G, the face in H

becomes two faces in G. Therefore, V D VH , E D EH C 1, and F D FH C 1, so

V �E C F D VH � .EH C 1/C .FH C 1/

D .VH �EH C FH / � 1C 1

D 2:

5The Jordan Curve Theorem allows us to use the graph embedding to divide the plane into an “inside” and an “outside.”
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Case 2: H consists of two connected components (Figure 1(b)) Suppose that removing e from G disconnects the

graph, and H consists of two connected components, J and K, withEJ and EK edges respectively. (Note that

one of the connected components could consist of a single vertex, so that one of EJ or EK could equal zero!)

Since EJ C EK D n, it follows that 0 � EJ � n and 0 � EK � n, so we can apply the induction hypothesis

to each component individually to conclude that VJ � EJ C FJ D 2 and VK � EK C FK D 2. Note that

V D VJ C VK and E D EJ C EK C 1. However, FJ counts the outside face, and FK also counts the outside

face, so F D FJ C FK � 1. Therefore,

V � E C F D .VJ C VK / � .EJ C EK C 1/C .FJ C FK � 1/
D .VJ �EJ C FJ /C .VK �EK C FK/ � 2
D 2C 2 � 2

D 2:

Therefore, by induction on the number of edges, every connected simple plane graph with V vertices, E edges and F

faces satisfies V �E C F D 2.

Appendix B: Other interesting applications of Euler’s formula

Euler’s formula provides a number of nice opportunities to discuss a variety of methods suitable to a discrete mathemat-

ics course. Its proof provides a wonderful nontrivial example of the use of induction as a proof method. In application,

Euler’s formula is a rich source of examples of the classic combinatorial argument involving counting things two dif-

ferent ways. We have collected here some of our favorite examples; they make excellent demonstrations or homework

exercises depending on the level and preparation of the students. Throughout this section we assume all polyhedra are

spherical (so that Euler’s theorem applies).

Our first example is a classical result known since antiquity. Note that every convex polyhedron is spherical, so that

Euler’s theorem applies to proofs involving convex polyhedra.

Theorem 2. There are no more than five regular convex polyhedra.

Proof. We start by observing that there must be at least three polygons at a vertex and that each polygon must have at

least three vertices and three edges. Let P be a regular convex polyhedron, let d be the number of edges emanating

from each vertex (the degree) and let k be the number of sides to a face. (These must all be the same since P is

regular.) Let F be the number of faces, let E be the number of edges, and let V be the number of vertices. If we count

all the edges around each face, we will have counted each edge twice (once for each edge it appears on) so Fk D 2E

or F D 2E=k. Likewise, if we count the number of edges coming out of each vertex, we will have again counted each

edge twice (once for each vertex at its ends) so Vd D 2E or V D 2E=d . Since P is a polyhedron, Euler’s formula

applies, so V � E C F D 2. Substituting for V and F in Euler’s formula we see that 2E
d

� E C 2E
k

D 2, so if we

divide both sides of the equation by 2E we obtain 1
d

� 1
2

C 1
k

D 1
E

. Note that 1
E
> 0 since E > 1, so 1

d
C 1

k
> 1

2
.

We therefore need only check to see for which values of d and k the inequality holds, as in Table 1, using the fact that

both numbers have to be at least three. Observe that only the first 5 rows are admissible cases (each corresponding to

a known regular polyhedron), while the last three exhaust all other possibilities, completing the proof.

It helps to have models of these polyhedra around when discussing this argument, particularly to demonstrate that

five Platonic solids do exist. The tetrahedron, cube (hexahedron), octahedron, dodecahedron and icosahedron form the

complete set of regular convex polyhedra.

Euler’s theorem also has applications to the study of polyhedra that lack the high degree of symmetry seen in the

Platonic solids. One interesting class consists of polyhedra whose faces all have five or more sides. Surprisingly,

Euler’s theorem constrains the number of pentagons in such polyhedra.

Theorem 3. Any polyhedron made up entirely of polygons with five or more sides must have at least 12 pentagons.
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d k 1
d

C 1
k

Polyhedron

3 3 2/3 Tetrahedron

3 4 7/12 Cube

4 3 7/12 Octahedron

3 5 8/15 Dodecahedron

5 3 8/15 Icosahedron

3 6 1/2 Hexagonal tessellation

6 2 1/2 Tessellation by equilateral triangles

4 4 1/2 Square tessellation

d > 4 k > 4 < 1=2

Table 1. Table of admissible and inadmissible values for d and k.

Proof. Let fn be the number of n-gons in our polyhedron P . Note that f3 and f4 are both zero by assumption. The

number of faces F in the polyhedron is then F D
P1

nD5 fn. If we count all the edges around each face and add them

up we will have counted each edge twice, so
P1

nD5 n fn D 2E , where E is the number of edges in P . The degree at

each vertex of the polyhedron must be greater than or equal to three (as in Theorem 2), so if we count up the number of

edges around each vertex, again we would have counted each edge twice, so 3V � 2E or V � 2E=3. The numbers of

vertices, edges and faces of P must obey Euler’s formula, so V �E CF D 2. Substituting for the number of vertices

and faces from our calculations above we see that

2 � 2

3
E �E C F

2 � �1
3
E C F

2 � �1
3

�
�
1

2

1X

nD5

n fn

�

C
1X

nD5

fn

12 � �
1
X

nD5

n fn C
1
X

nD5

6fn

12 � �5f5 � 6f6 �
1
X

nD7

n fn C 6f5 C 6f6 C
1
X

nD7

6fn

12 � f5 �
1
X

nD7

.n � 6/fn:

Since .n � 6/fn � 0 for all n � 7, the only way the inequality can hold is if f5 � 12.

This problem can be made simpler for students by limiting the types of polygons to pentagons and hexagons.

Theorem 4. Any polyhedron made up entirely of regular pentagons and hexagons must have exactly 12 pentagons.

Proof. The proof follows from use of the notion of deficiency at a vertex, namely that at each vertex, the sum of the

angles around that vertex must be less than 360ı. Therefore, the degree at each vertex cannot be more than three since

the angle contribution of each polygon at a vertex is either 108ı or 120ı. Let P be a polyhedron made up entirely

of regular pentagons and hexagons; then the number of faces F is the sum of the number of pentagons p and the

number of hexagons h. Note that since P is a polyhedron, the degree at each vertex d must be at least 3 and due to

the deficiency constraint it can be no more than 3, so d D 3. If we count up all the edges around all the vertices we

will have counted each edge twice, so 3V D 2E or V D 2E=3. As in the proof of Theorem 3, 5pC 6h D 2E . Since

P is a polyhedron, the number of vertices V , edges E and faces F of the polyhedron must satisfy V � E C F D 2.
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Substituting for V and F we obtain

2 D 2E

3
� E C F

2 D �1
3
E C F D �1

3
� 1
2
.5p C 6h/C .p C h/

12 D �5p � 6hC 6p C 6h D p

completing the proof.

Theorem 4 also holds if we allow nonregular pentagons and hexagons, but require the polyhedron to be simple. On

the other hand, there exist nonsimple polyhedra with nonregular pentagonal and hexagonal faces that have more than

12 pentagonal faces.

A simple polyhedron made up entirely of (not necessarily regular) pentagons and hexagons is called a fullerene;

certain fullerenes have important applications in chemistry. A famous example is buckminsterfullerene, C60, also

known as buckyballs, which was first synthesized in 1985 by Robert F. Curl [1]. Every fullerene contains exactly 12

pentagons, but Euler’s formula places no constraints on the number of hexagons. Long before the first buckyballs were

studied in the lab, H. S. M. Coxeter raised the question of what values were possible for f6 in a simple polyhedron

made up of only pentagons and hexagons. This question was answered in 1963 by Branko Grünbaum and Theodore

Motzkin, who were able to demonstrate that while it was impossible to build a fullerene with exactly one hexagon, it

is possible to build one with any other number of hexagons [5]. Readers interested in related topics should consider

either [1] or [5].

An argument very similar to that used in Theorems 3 and 4 may be used to demonstrate that every simple polyhedron

satisfies the equality
1
X

nD3

.6 � n/ � fn D 12:

This sum, in turn, is very useful for determining constraints on the number of faces of polyhedra subject to constraints

about what kinds of faces are available. For example, any simple polyhedron must have at least some faces with five

or fewer sides, any simple polyhedron made up of quadrangles must be combinatorially equivalent to a cube, and in

any figure made up of pentagons, hexagons and heptagons, the number of pentagons and heptagons will differ by 12.
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Worksheet: Polyhedra Exploration

Given the polygon pieces, follow the directions below assigned to you by the instructor for assembling one or more

polyhedra. After you make the construction(s), follow the directions on the next page. We will then inventory the

results for the whole class.

0. (Demonstration) Given: 4 equilateral triangles. Make a polyhedron.

1. Given: 14 equilateral triangles. Make two polyhedra, following the directions in the next two parts.

(a) At every corner, make four triangles come together.

(b) Make a polyhedron that has at least two different numbers of faces meeting at a corner using the remaining

pieces.

2. Given: 8 regular hexagons and 4 equilateral triangles.

(a) Make a polyhedron using four hexagons and four triangles; every corner is the same.

(b) Can you make a polyhedron using only regular hexagons? Give reasons for your answer.

3. Given: 7 squares and 4 equilateral triangles. Make two polyhedra:

(a) Use exactly six squares.

(b) Use the remaining square and four triangles.

4. Given: 6 squares and 8 equilateral triangles. Make a polyhedron with every corner the same: triangle, square,

triangle, square, in that order.

5. Given: 12 regular pentagons. Make a polyhedron with these.

6. Given: 2 regular pentagons, 2 equilateral triangles, 8 squares. Make two polyhedra:

(a) Use the triangles and exactly three squares; make every corner the same.

(b) Use the pentagons and the remaining squares; make every corner the same.

7. Given: 20 equilateral triangles. Make a polyhedron with every corner the same: five triangles come together.

8. Given: 2 squares, 8 equilateral triangles. Make a polyhedron with these. Make every corner the same: three

triangles and one square come together.

9. Given: 8 equilateral triangles and 6 octagons. Make every corner the same.

10. Given: 6 squares and 8 hexagons. Make every corner the same.
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After you have constructed the polyhedra, follow these directions:

For each polyhedron you have constructed, count the number of its corners or vertices (V ), the number of its edges

(E), and the number of its faces (F ). Enter these numbers in the chart as well as the sum V C F . If you know the

name of the polyhedron, fill it in.

Polyhedron Name V (# vertices) F (# faces) E (# edges) V C F

0 tetrahedron 4 4 6 8

1 (a)

1 (b)

2 (a)

2 (b)

3 (a)

3 (b)

4

5

6 (a)

6 (b)

7

8

9

10

What do you notice?
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Worksheet: Symmetric Polyhedra and Angle Deficiency

Working in teams of 2 or 3, carry out the steps indicated below, and record your observations.

Part I, Some simple figures

Exercise 1. Take the pieces necessary to make up one corner of a cube. Split them along one of the edges, and lay them

flat. What is the angle measure of the gap formed along the separated edge?

What you have just measured is the angle deficiency of a vertex of the cube. In general, the angle deficiency of a

vertex of a polyhedron is the sum of the angles formed by the polygons that meet at that vertex, measured in radians,

subtracted from 2� .

When describing the vertices of a symmetric polyhedron made up of regular polygons, a convenient way of cata-

loging them is to list the numbers of edges that belong to each face at a vertex. For example, in the cube, three squares

meet at each vertex. We would denote such a figure by the symbol (4.4.4), because each square has four edges, and call

the faces that make up that corner a vertex star. In general, a vertex star is a collection of faces that meet at a vertex.

The total angle deficiency of a polyhedron is the sum of the angle deficiencies of the vertices of the polyhedron. In

other words, if a figure has 8 vertices (like the cube), you would add up the deficiencies at each of the vertices. In the

case of the cube this would be 4� .

For the following exercises it may be helpful to recall that the interior angle of a regular n-gon is �.n�2/=n radians.

Exercise 2. Build vertex stars for at least two of the polyhedra described below, collect the appropriate data and com-

plete the table.

name vertex # vertices angle total

symbol deficiency angle

at a vertex deficiency

tetrahedron (3.3.3) 4

octahedron (3.3.3.3) 6

icosahedron (3.3.3.3.3) 12

cube (4.4.4) 8 4�

dodecahedron (5.5.5) 20
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Worksheet: Symmetric Polyhedra and Angle Deficiency

Part II, Some slightly more complicated figures

An important class of polyhedra have faces that are regular polygons, with vertices such that every vertex “looks the

same,” and at least two kinds of faces. These polyhedra have very high degrees of symmetry, and traditionally they are

called Archimedean solids.

Exercise 3. Figure out the missing entries in the table below.

name vertex # vertices angle total

symbol deficiency angle

at a vertex deficiency

truncated tetrahedron (3.6.6) 12

truncated cube (3.8.8) 24

truncated octahedron (4.6.6) 24

truncated dodecahedron (3.10.10) 60

truncated icosahedron (5.6.6) 60

cuboctahedron (3.4.3.4) 12

icosidodecahedron (3.5.3.5) 30

snub dodecahedron (3.3.3.3.5) 60

rhombicuboctahedron (3.4.4.4) 24

great rhombicosidodecahedron (4.6.10) 120

rhombicosidodecahedron (3.4.5.4) 60

great rhombicuboctahedron (6.4.8) 48

snub cube (3.3.3.3.4) 24

Exercise 4. Based on the results from Exercise 3, what do you conjecture?
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Exercise 5. Recall that the angle deficiency at a vertex of a polyhedron P is the sum of the angles at the corners of the

faces that meet at that angle subtracted from 2� . Suppose the polyhedron P has V vertices, E edges and F faces, and

suppose that

f1; f2; : : : ; fF are the faces of P ;

v1; v2; : : : ; vV are the vertices of P:

(a) Explain why

V
X

iD1

.sum of angles around vi / D
F
X

j D1

.sum of angles in fi /.

(b) Suppose that nfj
is the number of sides of face fj . What is the sum of the angles in face fj , in radians?

(c) What is

F
X

j D1

nfj
in terms of the number of edges, E , of the polyhedron? Why?

(d) Note that by definition,

total angle deficiency D
V
X

iD1

.2� � .sum of the angles around vi // :

Use the facts you showed from (a), (b) and (c) and Euler’s theorem to determine the total angle deficiency of P.

Does the answer you get agree with your conjecture from Exercise 4?
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Worksheet: Poincare’s Formula and Higher Genus Polyhedra

Exercise 1. Using the template provided, construct a polyhedral “donut” (formally, a torus, plural tori).

(a) Count the number of vertices, edges and faces. What is V �E C F ?

(b) Take two of the polyhedral tori, and glue them along an outer rectangle. You have now created a surface with

two holes, called a two-holed torus. Count the number of vertices, edges and faces, ignoring the glued face.

What is V �E C F ?

(c) Take three of the polyhedral tori, and glue them along two of the outer rectangles. You have now created a

surface with three holes, called a three-holed torus. Count the number of vertices, edges and faces, ignoring the

glued faces. What is V �E C F ?

(d) If you were to create a four-holed torus, what do you predict for the value of V �E C F ?

(e) What about an n-holed torus?

Exercise 2. Consider a solid cube with holes punched out of it in the following way:

� Subdivide each face of a solid cube into nine equal squares whose sides are one third the length of the side of

the cube.

� For each pair of opposing middle squares, cut out a square hole going all the way through the cube.

Without calculating anything, try to determine how many holes there are on the surface formed. Note that the three

tubular holes all meet in a smaller cube (1=27th the size) at the center of the cube. Once you think you have a reasonable

guess, use Poincaré’s formula to check your intuition. Note that when you are counting faces of the punched-out cube,

a face cannot itself have a hole in it!
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Solutions to Worksheets and Additional Exercises

Worksheet Solutions: Polyhedra Exploration

Polyhedron Name V (# vertices) F (# faces) E (# edges) V+F

0 tetrahedron 4 4 6 8

1 (a) octahedron 6 8 12 14

1 (b) triangular bipyramid 5 6 9 11

2 (a) truncated tetrahedron 12 8 18 20

2 (b) (impossible)

3 (a) cube 8 6 12 14

3 (b) square pyramid 5 5 8 10

4 cuboctahedron 12 14 24 26

5 dodecahedron 20 12 30 32

6 (a) triangular prism 6 5 9 11

6 (b) pentagonal prism 10 7 15 17

7 icosahedron 12 20 30 32

8 square antiprism 8 10 16 18

9 truncated cube 24 14 36 38

10 truncated octahedron 24 14 36 38

We notice that in all these cases, V C F D E C 2.

Exercise and Worksheet Solutions: Symmetric Polyhedra and Angle Deficiency

Exercise 0, from Notes to the instructor. Prove that the sum of the angles in a convex n-gon is 180.n � 2/. Determine

the measure of a single angle in a regular n-gon.

Base case: For a single triangle .n D 3/, the sum of the angles is 180ı.

Induction hypothesis: Suppose, for any convex k-gon with k < n, that the sum of the angles in the convex k-gon is

180.k � 2/.
We need to show that given any n > 3, the sum of the angles in the convex n-gon is 180.n � 2/. Label the vertices

of the n-gon cyclically (say, counterclockwise) as v1; v2; : : : ; vn, and construct the diagonal v1v3; note that since the

n-gon is convex, this diagonal must lie inside the polygon. The diagonal divides the n-gon into two smaller polygons,

one triangle and one .n � 1/-gon. Applying the induction hypothesis to each piece, we conclude that the sum of the

angles of the triangle is 180, and the sum of the angles of the .n� 1/-gon is 180.n� 3/; adding the sums together, we

see that the total angle sum of the n-gon is 180.n� 2/, as desired.

With this, we see that a single angle of a regular n-gon is 180.n � 2/=n degrees.

Exercise 1, from Worksheet Part I. The angle measure of the gap is 90ı D �
2

radians.
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Exercise 2, from Worksheet Part I.

name vertex # vertices angle total

symbol deficiency angle

at a vertex deficiency

tetrahedron (3.3.3) 4 � 4�

octahedron (3.3.3.3) 6 2�
3

4�

icosahedron (3.3.3.3.3) 12 �
3

4�

cube (4.4.4) 8 �
2

4�

dodecahedron (5.5.5) 20 �
5

4�

Exercise 3, from Worksheet Part II.

name vertex # vertices angle total

symbol deficiency angle

at a vertex deficiency

truncated tetrahedron (3.6.6) 12 �
3

4�

truncated cube (3.8.8) 24 �
6

4�

truncated octahedron (4.6.6) 24 �
6

4�

truncated dodecahedron (3.10.10) 60 �
15

4�

truncated icosahedron (5.6.6) 60 �
15

4�

cuboctahedron (3.4.3.4) 12 �
3

4�

icosidodecahedron (3.5.3.5) 30 2�
15

4�

snub dodecahedron (3.3.3.3.5) 60 �
15

4�

(small) rhombicuboctahedron (3.4.4.4) 24 �
6

4�

great rhombicosidodecahedron (4.6.10) 120 �
30

4�

(small) rhombicosidodecahedron (3.4.5.4) 60 �
15

4�

great rhombicuboctahedron (6.4.8) 48 �
12

4�

snub cube (3.3.3.3.4) 24 �
6

4�

Exercise 4, from Worksheet Part II. We conjecture that the total angle deficiency is 4� .
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Exercise 5, from Worksheet Part II.

(a) Both sums
PV

iD1.sum of angles around vi/ and
PF

j D1.sum of angles in fi / give the total measure of all the

angles around all vertices. The left-hand sum does it by summing the angle measure around each vertex, while

the right-hand sum does it by summing the angle measure around each face.

(b) Note that a if polygon face fj has nfj
edges, it also has nfj

vertices. Therefore, the sum of the angles in face

fj is �.nfj
� 2/.

(c) The sum
PF

j D1 nfj
equals twice the number of edges. To see this, imagine each time a vertex is counted, a

little bit of each edge that is incident with that vertex is highlighted. Since the sum counts all the vertices exactly

once, and each edge is incident with two vertices, if we count the “highlighted” parts of the edges as we count

the vertices, each edge will be counted twice. That is,
PF

j D1 nfj
D 2E .

(d) Note that

total angle deficiency D
V
X

iD1

.2� � .sum of the angles around vi //

D 2�V �
V
X

iD1

.sum of the angles around vi /

D 2�V �
F
X

iD1

.sum of the angles in fi / ( by (a) )

D 2�V �
 

F
X

iD1

�.nfj �2/

!

( by (b) )

D 2�V �
 

F
X

iD1

�nfj
�

F
X

iD1

2�

!

D 2�V � 2�E C 2�F (by simplifying and (c))

D 2 .V �E C F / �

D 2.2/� (by Euler’s theorem).

That is, the total angle deficiency equals 4� , which is what we had conjectured.

Exercise 6, from Notes for the instructor. Yes. The prisms and antiprisms each have two kinds of faces; an n-prism

has each corner consisting of a regular n-gon and two squares, while an n-antiprism has each corner consisting of a

regular n-gon and three equilateral triangles.

5 Worksheet: Poincare’s Formula and Higher Genus Polyhedra

Exercise 1.

(a) There are 9 vertices, 9 faces, and 18 edges, so V � E C F D 0.

(b) Each torus has 9 vertices, 9 faces, and 18 edges. We need to remove entirely one face of each torus to glue them

together, so the two-holed torus has .9� 1/C .9 � 1/ D 16 faces. Also, we need to remove four edges and four

vertices from one of the tori, so the two-holed torus has .9 � 4/ C 9 D 14 vertices and .18 � 4/ C 18 D 32

edges. Therefore, the two-holed torus has V �E C F D �2.

(c) Reasoning as before, the three-holed torus has .16 � 1/C .9 � 1/ D 23 faces, .14 � 4/C 9 D 19 vertices, and

.32 � 4/C 18 D 46 edges, so V �E C F D �4.

(d) For a four-holed torus, we predict V �E C F D �6.
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(e) For an n-holed torus, we predict V � E C F D 2 � 2n.

Exercise 2. The correct answer to this question is, somewhat surprisingly, five holes. One way to understand this is that

the first square hole punches one hole out of the cube, but the remaining two punches each cut two more holes (since

they pass through the space punched out by the first punch). If we break up the exterior so that each face that has been

punched through now has eight squares on it, using Poincaré’s formula we note that there are 64 vertices, 144 edges

and 72 faces, so we have 64 � 144 C 72 D �8 D 2 � 2.5/, or genus 5. Alternately, one may cut the exterior faces

that had the holes punched through them along their diagonals into two nonconvex c-shaped pieces, in which case we

have 40 vertices, 84 edges and 36 faces, yielding the same conclusion.

It is worth noting that this construction is the first iteration in the construction of the Menger Sponge.
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Template for a paper torus

cut

mountain fold (fold away from you)

valley fold (fold towards you)



Further Explorations with the Towers of Hanoi

Jon Stadler
Capital University

Summary

This project is a supplement to the usual introduction to the Towers of Hanoi problems that appear in most discrete

mathematics texts. Many concepts from discrete mathematics are discussed, including Hamiltonian paths, representa-

tion of integers in other bases, graph theory, and number theory.

Notes for the instructor

Puzzles are a great way to pass time. However, they can also be an excellent source for mathematical applications.

There are few puzzles more famous than the Towers of Hanoi. The point of this project is not to teach the students

how to solve the puzzle, nor is it designed to teach a formula for the minimum number of moves required to solve the

puzzle. In fact, it is highly probable that you have already discussed these things with your class. Instead, the purpose

of this project is to tie together many of the topics that you have taught in your discrete mathematics course.

If you have not already done so, introduce the students to the Towers of Hanoi in your textbook. If your textbook

does not discuss the puzzle, write to the author and demand that it be included in the next edition of the book and then

find a reference on how to solve the puzzle on the Internet. Students will be ready when they know how to solve the

puzzle and a formula for the minimum number of moves required to solve a puzzle with n disks. This project works

well as a long-term project. It is possible to assign different parts of it throughout the term as the appropriate topics

are introduced.

Required knowledge by project component

� Hanoi’s Hypercubes

– Hamiltonian paths

– Definition of factor or divides

� The Code of Hanoi

– Representation of integers in non-decimal bases

� The Graph of Hanoi

– Hamiltonian paths

– Recursion

� The kth Position of the Towers of Hanoi

– Modular arithmetic

– Representation of integers in non-decimal bases

117
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Worksheet on Hanoi’s Hypercubes

Let us suppose that we are trying to solve a Towers of Hanoi puzzle that has n disks. To keep track of our moves, label

the top disk 0, the next disk 1 and so forth, so that the largest disk is labeled n � 1. For example, suppose n D 3. At

the beginning of the puzzle, disk 0 will be on top of disk 1, which rests on top of disk 2, all of which are stacked on

the left-most peg.

As you solve the puzzle, record the number of the disk that you move. With n D 3, first move disk 0, then disk

1, disk 0 (onto disk 1), disk 2, disk 0 (onto the empty peg), disk 1 and finally disk 0. In short, the disks moved are

0102010. Your first exercise involves the relationship between the puzzle’s solution and paths on an n-dimensional

cube.

1. On the cube below, note that there are three directions in which we can travel; left/right, front/back, up/down.

Also notice that if we start at any vertex, we can travel in each of the three listed directions. Start at the vertex

v. Now, read your solution to the 3-disk puzzle and create a path using the following rules. Each time you

encounter a 0, move left or right. Each time you encounter a 1, move forwards or backwards. Each time you

encounter a 2, (you guessed it) move up or down. What kind of path is the resulting path?

v

2. Move on to a puzzle with four disks. What is the sequence of moves that solves this puzzle?

3. The figure below is a 4-dimensional cube, also known has a hypercube or tesseract.

v

You now have four directions in which you can travel. Add to the left/right, up/down and front/back motions the

direction of in/out, represented by the line segments whose slopes are negative. Also add to the rules that if you

encounter a “3” in your solution code, move in the in/out direction. Trace out the solution to the 4-disk Towers

of Hanoi problem, moving through the hypercube according to the rules. What kind of path is the resulting path?

How do you think this generalizes to the solution to the n-disk puzzle and paths on the n-dimensional cube?

4. Describe how to create a solution to the nC 1-disk puzzle from the n-disk puzzle using the numbering system

described here.

5. Let e.n/ be the largest power of 2 that is a factor of n. For example, e.40/ D 3 since 23 is a factor of 40, but 24

is not. Make a table of values for e.n/ for 1 � n � 15. How does the sequence e.1/, e.2/, : : :, e.15/ relate to

the solution to the Towers of Hanoi?
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Worksheet on the Code of Hanoi

When using the system developed in Hanoi’s Hypercubes, one is only told which disk to move, but not where it should

be relocated. When it is time to move any disk with number 1 or higher, there is only one choice (why is this?).

However, the 0 disk can always be moved to either of the other two pegs. (Hint — never place an even-numbered disk

onto an odd-numbered disk or vice versa!) We continue to use the disk numbering system from Hanoi’s Hypercubes,

but also introduce a numbering system for the pegs, labeling the left peg 0, the middle peg 1 and the right peg 2.

To encode the position of the disks, we create a ternary, or base 3 code for the configuration, known as the state of

the puzzle. Let pi denote the number of the peg on which disk i rests, 0 � pi � 2 for 0 � i � n� 1. The state of any

configuration is defined as the ternary string

pn�1pn�2 � � �p2p1p0:

For example, the state of the configuration below is 0112021 since disk 6 is on peg 0, disk 5 is on peg 1, disk 4 is on

peg 1, disk 3 is on peg 2, disk 2 is on peg 0, disk 1 is on peg 2, and disk 0 is on peg 1.

Conversely, given any state, it is possible to determine the disk configuration in the following manner. Determine

which disks rest on each peg, stack disks from the same peg from largest to smallest, and then place them on the

appropriate peg.

With this new method, it is possible to determine all states that can follow a given state. Note that the 0 disk can

always be moved to either of the other two pegs even though it may lead us down the wrong path to the puzzle’s

solution. Thus, the last digit in the ternary string can always be changed to either of the other two numbers. With the

exception of the positions in which all disks are on the same peg, there will be exactly one other disk that can be

moved. This disk is the smallest disk (that is, with the smallest label) that is not on the same peg as disk 0. As an

example, in state v D 22011022, disk 0 can move from peg 2 to pegs 0 or 1, so states 22011020 and 22011021 can

follow v. Notice that in state v, disk 1 is on the same peg as disk 0 and thus, cannot be moved. However, disk 2 is on

peg 0 so it can be moved. Since disks 0 and 1 are on peg 2, disk 2 must be moved to peg 1, so the other state that can

follow v is 22011122.

1. Determine the state of each puzzle below.

0
3 1

2
4

5

0 1 2

a.

5

1

4
6

0

2
3

0 1 2

b.

2. Draw the puzzle for each of the following states.

(a) 0001112 (b) 212011

3. List all states that can follow each state below. If possible, use the method described in the last paragraph of this

worksheet rather than draw the puzzle.

(a) 0212011 (b) 22012000
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Worksheet on the Graph of Hanoi

In many puzzles, it is possible to begin making mistakes that lead the solver away from the solution. The Towers of

Hanoi is no exception. By creating the n-disk Hanoi graph, Hn, it will be possible to get yourself back on track. This

section of the project describes how to create Hn.

The vertices of Hn will be arranged in a triangle and labeled with the 3n possible ternary strings of length n. It is

best to arrange them in a specific order and the arrangements for H1, H2 and H3 are depicted below.

You will not be asked to do this, but to create the vertex arrangement for Hn fromHn�1 in general, append a zero to

the left of each vertex label ofHn�1 to create the top portion of the triangle forHn. On a copy of this top portion, add 1

modulo 3 to each number of every vertex label . For example, if the vertex label is 0201, we obtain 1012 when we add

1 modulo 3 to each number. If n is even, rotate this new arrangement 120ı clockwise and place it to create the bottom

right corner of Hn, otherwise, rotate it 120ı counterclockwise to create the bottom left corner of Hn. With another

copy of the top portion of the triangle, add 2 modulo 3 to each number of every vertex and rotate this arrangement 120ı

counterclockwise if n is even or clockwise if n is odd. Place this new arrangement next to the previous arrangement to

complete the triangle.

Once the vertices are properly arranged, the edges are inserted according to the following rule. Vertices u and v are

adjacent if and only if state u of the puzzle can be obtained from state v and vice versa.

1. Draw in all edges in H1, H2 and H3 above.

2. Find a Hamiltonian path from 0 to 1 in H1, from 00 to 11 in H2 and from 000 to 111 inH3.

3. How does a Hamiltonian path in Hn guarantee that a solution to the n-disk Towers of Hanoi puzzle exists from

any legal configuration?

4. Someone left a partially-solved Towers of Hanoi puzzle in a store in state 011. Use your Hamiltonian path in

H3 to solve the puzzle.

5. Give a recursive method for finding a Hamiltonian path in Hn.
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Worksheet on the kth Position of the Towers of Hanoi

In the fourth volume of their outstanding books Winning Ways for Your Mathematical Plays, Berlekamp, Conway and

Guy describe a creative way of determining the state of the puzzle after k moves using the optimal solution. Their

method is as follows.

To determine the state of the n-disk Towers of Hanoi puzzle after k moves:

� write k in binary, so that k D bn�1bn�2 � � �b2b1b0, where bi 2 f0; 1g for all i ,

� carry out the ternary sum below, without carrying. In other words, add down the columns and record the result

modulo 3.

If n is

even odd

1 � b0 2 � b0

21 � b1 12 � b1

122 � b2 211 � b2

2111 � b3 1222 � b3

12222 � b4 21111 � b4

:::
:::

Example. Suppose we wish to determine the 141st move of the puzzle with eight disks. The binary representation

of 141 is 10001101. Since 8 is even, we form the ternary sum

1 � 1
21 � 0
122 � 1
2111 � 1
12222 � 0
211111 � 0
1222222 � 0

C21111111 � 1

or simply

1

122

2111

C21111111
21110012

:

When we add these four terms in base 3 without carrying, we obtain the string 21110012, which is the state of the

puzzle after 141 moves with 8 disks. The rules are different when n is even or odd so that the puzzle will be solved

when all disks are on peg 2.

1. Determine the state of the puzzle after k moves with n disks for the given k and n.

(a) k D 23, n D 6

(b) k D 81, n D 7

(c) k D 81, n D 8

(d) k D 401, n D 10

2. For the 10-disk puzzle, determine the states of the puzzle after 207 and after 208 moves. Which disk was moved?

On which peg did the disk start and to which peg did it move?
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Solutions

Hanoi’s Hypercubes

1. The path is a Hamiltonian path.

v

2. 010201030102010

3. The path is a Hamiltonian path. The path on the n-dimensional cube corresponding to the solution of the n-disk

puzzle will also be a Hamiltonian path.

v

4. The solution to the nC 1-disk puzzle from the solution to the n-disk puzzle z is the sequence znz.

5.
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e .n/ 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

The sequence is identical to the solution to the 4-disk puzzle.

The Code of Hanoi

1. (a) 220210 (b) 1012212

2. (a)

(b)

3. (a) 0212010; 0212012; 0212211 (b) 22012001; 22012002; 22011000
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The Graph of Hanoi

1. The three graphs are depicted below.

2. Hamiltonian paths on the three graphs are depicted below.

3. Since each vertex lies on the Hamiltonian path, there is a path from any vertex to the solution vertex 1 � � � 1.

Following this path will list the moves in the solution.

4. 011; 211; 212; 210; 220; 222; 221; 201; 202; 200; 100; 102; 101; 121; 122; 120; 110; 112; 111 (this is not the

optimal solution from state 011). Instructor’s note: Answers may vary.

5. To create the Hamiltonian path in Hn from the Hamiltonian path in Hn�1, copy the path from Hn�1 onto the

top corner of Hn. Rotate another copy of the Hamiltonian path from Hn�1 120
ı clockwise and place it in the

bottom left portion of Hn. Rotate a third copy 120ı counterclockwise and place it in the bottom right portion

of Hn. Finally, draw edges between vertices 011 � � �11 and 211 � � �11 as well as between vertices 100 � � �00 and

200 � � �00.

The kth Positions of the Towers of Hanoi.

1. (a) 12000 (b) 2102221 (c) 1201112 (d) 110012220

2. The states after the 207th and 208th moves are 22002222 and 22012222 respectively. Disk 4 has been moved

from peg 0 to peg 1.



The Two Color Theorem

David Hunter
Westmont College

Summary

The purpose of this project is to help students prove that, under certain conditions, a map can be two-colored. There

are at least four ways to approach this problem; the proofs vary in difficulty and use several techniques from discrete

mathematics, including induction, structural induction, graphs, decision trees, and parity checks.

Notes for the instructor

There are two parts to this project, and each part guides the students through two different proofs of the result. Part I

is fairly straightforward and could be assigned as a homework problem or as an in-class group activity. Part II is more

challenging and is suitable for a longer-term (group) project, ideally after the students have completed Part I.

Solution I.1 is the easiest and most intuitive, and gives a good example of an inductive argument in a simple

geometric setting. Solution I.2 avoids induction by using a parity check argument.

Solution II.1 involves some intuition about the topology of curves in the plane. To develop this intuition, students

might want to experiment with loops of string (possibly even knotted). The trickiest part of the proof involves showing

that a smoothing can always be chosen so that the curve remains connected. This property (and the basis of the

inductive argument) can be discovered by constructing a binary decision tree, where each branch gives the result of

smoothing a vertex in two different ways. This decision tree is related to the calculation of the Kauffman bracket

polynomial, an important invariant in knot theory. Interested students could investigate related topics in knot theory in

[3] or [1].

The only topological insight needed for solution II.2 is that each intersection yields a four-sided face, and that all

faces of the graph are obtained in this way. Granting this, the graph theory argument is standard, though perhaps quite

challenging for most students. This approach gives the most general characterization of a two-colorable map, and

invites investigation of the converse, leading to connections with graph walking.
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Worksheet on the Two Color Theorem, Part I

The Four Color Theorem is a great example of a result that is simple to state, but very hard to prove. Yet under certain

conditions, it is possible to show that two colors suffice. Consider any finite collection of (infinite) straight lines in the

plane.

These lines divide the plane into regions, forming a line map. This assignment will help you write two proofs of the

following result.

Theorem 1. Any line map can be two-colored.

Why do we need two proofs of this theorem? Well, we certainly don’t “need” two proofs—one is enough to establish

the validity of the theorem. But finding more than one proof for a result gives us practice with different proof tech-

niques, and can sometimes show how different areas of mathematics are connected. It is also interesting to compare

two different proofs of the same result: any similarities point to something fundamental in the theorem that makes it

work.

Exercise 1. Prove Theorem 1 by induction on the number of lines.

Hint: The secret to constructing an inductive argument often lies in seeing the structures involved from an inductive

point of view. In this case, observe that given a line map with n lines, removing any line will yield a line map with

n� 1 lines. So, when writing your inductive argument, consider using the following inductive hypothesis.

Inductive Hypothesis: Any line map with n� 1 lines can be two-colored.

Suppose you are given a line map with n lines. If you remove some line l , you can apply the inductive hypothesis to

the resulting graph. Then you need to explain how you can put l back and create a two-coloring for the original given

line map. Remember that you also need a base case.

Exercise 2. Prove Theorem 1 without using induction.

Hint: One approach you might try is as follows. Pick a “good” side and a “bad” side for each line. It doesn’t matter

how you choose these, just keep track of each line’s good side. For each region R in the map, count the number of

lines that R is on the good side of. This assigns each region a number. Explain how these numbers can produce a valid

two-coloring.

Exercise 3. What do your two proofs have in common?

Hint: What geometric properties of lines did you use in each proof?
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Worksheet on the Two Color Theorem, Part II

A closed curve in the plane is a continuous loop, possibly with self-intersections. For example, a closed curve can be

drawn by placing a pencil at point X , drawing any curve without lifting the pencil, and finishing the curve at pointX .

Any closed curve divides the plane into regions, forming a closed curve map. This project will help you construct two

different proofs of the following.

Theorem 2. Any closed curve map can be two-colored.

For simplicity, assume that the curve is in general position (i.e., no multiple crossings, no self-tangents).

Exercise 4. Prove Theorem 2 using induction on the number of crossings.

Hint: The structure of this proof will be similar to the proof in Exercise 1 of Part I, where you used induction on the

number of lines. In Exercise 1, you proved the inductive step by removing and adding back a line. In this exercise, you

can prove the inductive step by removing and adding back a crossing.

A crossing can be removed by performing a smoothing:

Start by proving two facts about the smoothing process:

1. Smoothing (and reversing a smoothing) preserves a two-coloring of the map.

2. For any crossing, there is always a choice of smoothing that leaves the curve connected.

Exercise 5. Prove Theorem 2 using graph theory.

Hint: To convert a closed curve to a planar graph G, place a vertex in each region, and draw an edge between any two

vertices whose regions share a common border (i.e., take the dual graph). Two-coloring the vertices of G is the same

as two-coloring the regions of the closed curve map.

The key observation, which you need to justify, is that all the faces of G have an even number of edges. Using this

fact, you should be able to finish the proof of the theorem using induction on the number of faces in G.



128 Part I Classroom-tested Projects

Solutions

I. Straight lines in the plane:

1. Use induction on the number of lines. If there are no lines, color the entire region white. Now let n > 0. Suppose

as inductive hypothesis that any collection of n�1 lines can be two-colored. Given a collection of n lines, remove

any line l and two-color the resulting map, by inductive hypothesis. Now put l back. Reverse the coloring on

one side of the line l . Each side of l will be correctly two-colored, and it remains to show that any two regions

whose border lies on l have opposite colors. But any two such regions must have been the same region when l

was removed, so the reversal of colors guarantees that the new regions will have opposite colors.

2. (This solution is adapted from [2], which considers a map formed by a collection circles in the plane.) Choose

an orientation (i.e., a preferred direction) on each line. For each regionR, count the number k.R/ of lines l such

that R is on the right side of l .

1

2

3

3

2
3

2

0

1

4

If k.R/ is even, color R black; otherwise, color R white. By construction, this is a two-coloring, since regions

on opposite sides of any boundary will have different colors.

3. Both proofs used the fact that a line divides the plane into two disjoint half-planes. This is sometimes called the

plane separation postulate in modern treatments of geometry.

II. Closed curve:

4. At any given crossing, there are two ways to perform a smoothing. Therefore, you can represent the process of

smoothing all the crossings as a binary decision tree. For example, the tree below illustrates the different ways to

smooth the upper left crossing followed by the lower left crossing for the curve given in the problem statement.

Notice that a smoothing may change the number of components of the curve, but it is always possible to choose

a smoothing that leaves the curve connected. To see this, consider any crossing in any given curve:
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A

D

C

B

1 2

A

D C

B

C
D

BA

Suppose, without loss of generality, that when traversing the original curve starting at point A, you encounter

pointsA, C , B , D, and then A, in order. This must happen (up to a choice of labels) because the original curve

is closed and connected. Then, since C is connected to B directly (without passing through A), smoothing #2

must not disconnect the curve.

Now we can prove that any closed curve map can be two-colored by induction on the number of crossings. If

there are no crossings, simply color the inside of the curve black and the outside white. (Note that we are using

the Jordan Curve Theorem here.) Let n > 0. Suppose, as inductive hypothesis, that any closed curve graph with

n� 1 crossings can be two-colored. Given a curve with n crossings, perform a smoothing on any crossing (and

choose the smoothing so that the curve remains connected). By inductive hypothesis, the smoothed curve map

can be two-colored. The following picture shows how to color the n-crossing curve map using the coloring of

the .n � 1/-crossing curve map.

black black

white
white

white

black black

5. Given any closed curve map, construct a planar graphG as follows: place one vertex in each region, and connect

any two vertices whose regions share a common border (i.e., take the dual graph of the graph whose vertices are

the crossings of the curve, and whose edges follow the curve).

Claim. All the faces of G have an even number of edges.

Proof of claim. By duality, each face of G contains one crossing, and the number of edges of each face is

the number of paths to the crossing. Since the curve is closed, each crossing has an even number of paths to

it, because the curve cannot terminate at a crossing. (Note that this argument holds without assuming general

position. If the given curve is in general position, then each face ofG must have four edges.)

It now suffices to prove the following.

Lemma. If every face of a planar graph has an even number of edges, then the vertices of the graph can be

two-colored.

Proof. We proceed by induction on the number of faces in the graph. If the graph has no faces, then it has no

cycles, so it is bipartite, i.e., two-colorable. Let n > 0. Suppose as inductive hypothesis that every planar graph

with n � 1 faces—all having an even number of edges—is vertex two-colorable. Let G be a planar graph with
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n faces, all of which have an even number of edges. Since G is planar, it must have a face with an edge on the

“border” ofG, that is, an edge that is part of no other face. Let X1X2 � � �X2k be such a face, with edge X1X2 on

the border of G. Form a new graphG0 by removing edge X1X2 fromG. By construction,G0 has n� 1 faces, so

it can be two-colored. Since the trail X2X3 � � �X2kX1 can be two-colored, the colors must alternate. And since

this trail has an even number of vertices, the first vertex X2 and the last vertex X1 must have different colors.

Hence the two-coloring of G0 gives a valid two-coloring of G.



Counting Perfect Matchings and Benzenoids

Fred J. Rispoli
Dowling College

Summary

The connection between perfect matchings and benzene was discovered by the German chemist Kekulé in the mid

1800s. Subsequently, chemists have learned that the number of perfect matchings contained in a molecular model is an

important parameter related to chemical stability. Hence, counting perfect matchings has been an important problem

in chemistry for over 50 years. However, counting perfect matchings in general graphs is a computationally difficult

problem. Consequently, chemists and graph theorists have developed efficient counting methods for certain classes

of graphs that arise in modeling special hydrocarbons called benzenoids. Many of these methods involve counting

principles usually discussed in discrete mathematics courses. In this article we discuss several of these methods and

show how to implement a general determinant based formula.

Notes for the instructor

This project works well as an enrichment topic for an advanced discrete mathematics course focused on applications.

Students should be familiar with counting techniques, graphs and determinants. I usually give the paper to students

to read and then present a summary of the material at the end of the course. I spend roughly one class meeting on it.

Exercises that reinforce and extend some key ideas are given in the last section, along with selected solutions.
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[11] H. Sachs, P. Hansen and M. Zheng, “Kekulé count in tubular hydrocarbons,” MATCH Communications in Math-

ematical and in Computer Chemistry 33 (1996) 169–241.
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Perfect Matchings and Benzenoids

Given a graph G, a perfect matching is a subgraph M that contains every vertex of G such that all vertices in M

have degree 1. Chemists, who use graphs to model hydrocarbon molecules, are interested in perfect matchings since

they provide possible double-bond arrangements for carbon bonds. For example, Figure 1 contains two different graph

models of benzene. The duplicate edges in the model on the left illustrate possible locations for double carbon bonds.

Since every carbon atom must have exactly four bonds, there are actually two possible arrangements for the double car-

bon bonds. To study possible locations of double-bonds, chemists model benzene-like molecules called “benzenoids,”

by omitting the hydrogen bonds and use special hexagonal grid graphs such as the model on the right in Figure 1 (and

also Figures 2-8). In these models perfect matchings are used to indicate the location of the double bonds. In the graph

on the right side of Figure 1 the bold edges are used to illustrate the perfect matching corresponding to the double

bonds in the graph on the left.

It is a well-established fact that, roughly speaking, for benzenoid molecules with the same number of hexagons,

the chemical stability increases with the number of perfect matchings in its associated hexagonal graph. Surprisingly,

when we consider special classes of benzenoids and count perfect matchings, many well-known numbers arise such

as Fibonacci numbers and powers of 2. In this article we shall discuss techniques used to enumerate perfect matchings

in hexagonal graphs.

Figure 1. A graph model of benzene and its associated hexagonal graph.

A graph G is called 2-connected if it is connected and at least two vertices must be removed to make G discon-

nected. A hexagonal system is a 2-connected planar graph such that each interior face can be drawn as a regular

hexagon. Notice that this condition forces all vertex degrees in a hexagonal system to be 3 or 2, and only 2 on the

exterior boundary. Moreover, every pair of adjacent hexagons have exactly one edge in common. For convenience,

all hexagonal systems illustrated in this article will be drawn with two vertical edges. We leave it as an exercise to

show that every hexagonal system is bipartite which can be proved using induction on the number of hexagons in the

hexagonal system. Hence, we may partition the vertices into subsets of black vertices B D fbig and white vertices

W D fwj g which is illustrated in Figure 2. Clearly G must have an even number of vertices in order for it to contain

a perfect matching M . Moreover, ifG has 2n vertices, then M must have exactly n edges.

A hydrocarbon is a substance consisting only of carbon and hydrogen atoms. A benzenoid is a special type of

hydrocarbon that has a benzene like structure. Every benzenoid has a unique corresponding hexagonal system H

obtained by removing the edges representing carbon-hydrogen bonds and letting the remaining edges of H represent

either single or double carbon-carbon bonds. In Figure 2 the hexagonal system obtained from naphthalene is given.

Observe that there are eight carbon-hydrogen bonds that have been suppressed, all resulting in degree 2 vertices. It is

known that all hexagonal systems that arise from benzenoids contain a perfect matching.

For any graph G, the number of perfect matchings in G is denoted by �.G/. For example, in Figure 2 the bold

edges illustrate a perfect matching, and the reader should confirm that �.H/ D 3. For general graphs G, computing

�.G/ is known to be an NP-hard problem (see [6]). That is, for an arbitrary graph with n vertices, there is no known

algorithm to compute �.G/ involvingO.nk/ operations where k is a fixed constant. This remains true even when G

is a bipartite graph. However, as we shall see, there are efficient methods that can be used to compute �.G/ for special

classes of planar graphs such as hexagonal systems, and also explicit formulas for special types of hexagonal systems.
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Figure 2. The hexagonal system associated with naphthalene.

Counting Perfect Matchings for Special Classes

A linear chain of length h, denoted by L, consists of h hexagons such that all adjacent pairs of hexagons share exactly

one vertical edge and no nonvertical edges. A linear chain of length 2 is given in Figure 2. Observe that for any linear

chain there is a one-to-one correspondence between perfect matchings in L and the vertical edges in L. Thus every

linear chain of length h has exactly hC 1 perfect matchings. Linear chains are very important because they are used

as building blocks of more complex hexagonal systems.

Given any hexagon in a hexagonal system, we refer to its six edges using the terms northeast, east, southeast,

southwest, west and northwest. The northern edges consist of both the northwest and northeast edges; southern edges

are defined similarly. In Figure 2 the bold edges are precisely the two northeast edges, the two southeast edges and the

western edge in the western-most hexagon. A rectangular hexagonal system, denoted by RŒh; v�, consists of v linear

chains, L1; : : : ; Lv , each of length h, together with v � 1 linear chains L1; : : : ; Lv�1 each of length h � 1, such that

for i D 1; : : : ; v � 1, all northern edges of Li are southern edges of Li , and all southern edges of Li are northern

edges of LiC1. For example, a linear chain with h hexagons is RŒh; 1�, and RŒ5; 4� appears in Figure 3.

Figure 3. The rectangular hexagonal system RŒ5; 4�.

Theorem 1. For a rectangular hexagonal system RŒh; v�, we have �.RŒh; v�/ D .hC 1/v .

Proof. Every perfect matching of RŒh; v� contains only edges in the v linear chains L1, . . . , Lv (i.e., the odd in-

dexed/longer rows of hexagons), and none of the vertical edges in the v � 1 linear chains L1, . . . , Lv�1 (i.e., the even

indexed/shorter rows). To see this suppose that we color every other vertex in the top linear chain L1 white, and the

remaining vertices black, where the vertical edges in L1 are incident to the black vertices. If one or more of the vertical

edges from L1 is part of a perfect matching, then finding matching edges for the remainder of L1 is impossible, since

there will be more white vertices available than black. The fact that none of the vertical edges from L1 can be used

in a perfect matching forces the same for L2; : : : ; Lv�1: Hence, any perfect matching from Li can be used with any

perfect matching of any of the other linear chains Lj ; j ¤ i , and hence, �.RŒh; v�/ is the product of �.L1/, �.L2/,

. . . , �.Lv/: Since �.Li / D hC 1; for all i D 1; 2; : : : ; v, we have that �.RŒh; v�/ D .hC 1/v .

A parallelogram hexagonal system, denoted by P Œh; v�, consists of v linear chains L1; : : : ; Lv , each of length h,

such that for i D 1; : : : ; v � 1, all southern edges of hexagons in Li , except for the southeast edge of the eastern-

most hexagon in Li , are also northern edges of hexagons in LiC1, except for the northwest edge of the western-most

hexagon in LiC1; Figure 4 shows P Œ5; 3�. To count perfect matchings in parallelogram hexagonal systems we need

the well-known function for counting combinations, C.n; r/ D nŠ
rŠ.n�r/Š

; where n and r nonnegative integers, with

0 � r � n.
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Figure 4. The parallelogram hexagonal system P Œ5; 3�.

Theorem 2. For a parallelogram hexagonal system P Œh; v�, we have �.P Œh; v�/ D C.hC v; v/.

Proof. The proof is by induction on k D hC v. Clearly, the formula holds for P Œ1; 1� (which corresponds to benzene

and is given in Figure 1). Notice that P Œh; 1� and P Œ1; h� are linear chains of length h. Hence, �.P Œh; 1�/ D hC 1 and

the formula holds for both P Œh; 1� and P Œ1; h�. Assume that the result holds for all parallelogram hexagonal systems

P Œh; v� with hC v D k.

Consider P Œh; vC 1� (the case P ŒhC 1; v� is similar). Let L be the northern-most linear chain of P Œh; vC 1�, and

let M be a perfect matching of P Œh; v C 1�. Suppose that M contains the eastern-most vertical edge of L (see the

graph on the left in Figure 5). Then M must also contain the northwest edge of every hexagon in L. The remaining

edges in M can be any perfect matching of the hexagonal system P Œh; vC 1� with L removed; that is, P Œh; v�. By the

inductive assumption, there are C.hC v; v/ such perfect matchings.

Suppose that M contains the eastern-most northeast edge of L (see the graph on the right in Figure 5.). Then M

must also contain the southeast edge of every hexagon in the eastern-most hexagon of every linear chain in P Œh; vC1�.
The remaining edges ofM can now be any perfect matching of the hexagonal system P Œh; vC1�with the eastern-most

hexagon removed from every row; that is, P Œh�1; vC 1� By the inductive assumption, there are C.hCv; vC 1/ such

perfect matchings.

Every perfect matching in P Œh; v C 1� contains either the eastern-most vertical edge of L or the eastern-most

northeast edge of L, but not both. Therefore, �.P Œh; vC 1�/ D C.hC v; v/CC.hC v; vC 1/. By Pascal’s Identity,

�.P Œh; v C 1�/ D C.hC v C 1; v C 1/.

Figure 5. An illustration of the proof of Theorem 2.

Example 1.

(a) Use Theorem 1 to compute the number of perfect matchings for RŒ5; 4�.

(b) Use Theorem 2 to compute the number of perfect matchings for P Œ5; 3�.

(c) Determine the number of perfect matchings in Figure 6 which is obtained from RŒ5; 4� by deleting the interior

hexagons.

Figure 6. RŒ5; 4� with the interior hexagons deleted.
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Solution.

(a) �.RŒ5; 4�/ D 64 D 1296.

(b) �.P Œ5; 3�/ D C.8; 3/ D 56.

(c) Consider the two hexagons adjacent to the linear chain on top, and label them H1 and H2; with H1 on the left

side. As in the proof of Theorem 1, none of the four vertical edges in H1 and H2 can be part of a perfect matching.

Moreover, the southeast edge of H1 must be in every perfect matching, and this forces a sequence of eight edges that

must also be in every perfect matching until we get to the linear chain on the bottom. A similar sequence of eight

edges starting with the southwest edge ofH2 must be in every perfect matching. But again, no vertical edges from the

two hexagons adjacent to the linear chain on the bottom can be used in a perfect matching. Consequently, any perfect

matching can be used for the linear chain on the bottom. Since there are six possible perfect matchings for the linear

chain on top which can be used with any of the six perfect matchings for the linear chain on the bottom we get a total

of 62 D 36 perfect matchings. �

A hexagonal system is called a fibonaccene chain if it consists of a chain of hexagons H1; : : : ; Hv, with H1 on

top, and only the following shared edges: For i even and 1 < i < v, Hi shares its northwest edge with Hi�1 and its

southwest edge with HiC1; H1 shares only its southeast edge and Hv shares only its northeast edge when v is odd,

and only its northwest edge when v is even. The name is due to the fact that � satisfies a Fibonacci-style recurrence

relation, given in Theorem 3. The proof is left as an exercise.

Figure 7. Fibonaccene chains with 5 and 6 hexagons, and a fibonaccene chain with an additional hexagon.

Theorem 3. Let H be a fibonaccene chain with h hexagons and let ah D �.H/. Then a1 D 2; a2 D 3; and

ah D ah�1 C ah�2 for h � 3.

Example 2.

(a) Use Theorem 3 to determine the number of perfect matchings for the two fibonaccene chains given on the left in

Figure 7.

(b) Determine the number of perfect matchings for the fibonaccene chain with an additional hexagon given in Figure

7.

Solution.

(a) We need to find the terms a5 and a6 in the sequence 2, 3, 5, 8, 13, 21. Hence the chain on the left contains 13

perfect matchings and the chain in the middle of Figure 7 contains 21.

(b) Let H1 be the additional hexagon. Every perfect matching must contain either the northwest edge of H1 or its

western vertical edge. If a perfect matching contains the northwest edge of H1, then this forces eight edges that must

be in the perfect matching, and leaves two possibilities for matching edges in the hexagon on the bottom. So there

are two perfect matchings with this edge. If a perfect matching contains the western vertical edge, then any perfect

matching of the fibonaccene chain with five hexagons can be used. Thus, there is a total of 2 C 13 D 15 perfect

matchings. �

The final special class we consider arises from tubular benzenoids which were discovered in the early 1990s. A

tubulene is a benzenoid whose carbon skeleton is a rectangular hexagonal system embedded in a cylinder with open

ends (top and bottom). There are several different types of tubulene structures depending on how much they are

“twisted,” but here we consider only the untwisted variety (for more information on tubulenes and perfect matchings,

see [5] and [11].) Let T Œh; k� denote the tubulene obtained from RŒh; v� embedded in a cylinder, where k D 2v � 1,
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i.e., k is the number of rows of hexagons. For example, if T Œ5; 1� is drawn on paper it would look like a linear chain

of length 5 with its left most vertical edge and its right most vertical edge “glued” together. Notice that as a result

of the glued edges, the number of perfect matchings is reduced from 6 to 4. It is left for the reader to show that

�.T Œ5; 1�/ D 4. In Figure 8 an illustration of T Œ5; 7� is given. The long vertical lines are used to indicate the edges

that are glued together; or equivalently, the vertical line used to cut the cylinder.

Figure 8. The tubulene hexagonal system T Œ5; 7�.

Theorem 4. For a tubulene hexagonal system T Œh; k�, we have �.T Œh; k�/ D 2kC1.

A proof of Theorem 4 is left as an exercise. By applying the theorem we see that �.T Œ5; 7�/ D 28 D 256. It is

interesting to note that �.T Œh; k�/ is independent of h, but dependent only on k. Thus �.T Œh; k�/ will increase if the

tubulene is extended in the vertical direction, but does not change at all when it is extended horizontally. What does

this imply in terms of chemical properties of tubulene?

To analyze stability levels and obtain a measure of energy, chemists have investigated a graph parameter based on

� defined as follows. Given a hexagonal system H , let �.H/ denote the number of hexagons in H . Then the Kekulé

index is defined by �.H/ D log2 �.H /

�.H /
. This index is considered by some chemists as an “average resonance energy per

hexagon,” and is known to satisfy 0 � �.H/ � 1. For more details, see [11]. If we now compare the Kekulé index of

T Œ5; 7� and RŒ5; 4�; we see that �.T Œ5; 7�/ D 28, which implies that �.T Œ5; 7�/ D 8=35 D 0:2286. From Theorem 1,

we know that �.RŒ5; 4�/ D 64, and consequently �.RŒ5; 4�/ D 10:3399=32 D 0:3231. As a general rule higher energy

implies less stability. Since the benzenoid associated with RŒ5; 4� has a higher energy level compared to T Œ5; 7�, we

conclude that it is less stable than the benzenoid associated with T Œ5; 7�.

The Determinant Formula

Next we discuss a method of computing �.H/ for all hexagonal systems. Since every hexagonal system is bipartite,

they can be represented with matrices defined as follows. Let H be a hexagonal system and let E denote the set of

edges inH . Let B[W be the set of vertices ofH , whereB D fb1; : : : ; bng andW D fw1; : : : ; wng. We assume thatB

and W contain the same number of vertices since this is a necessary condition for the existence of a perfect matching.

Now define the n� n biadjacency matrixA.H/ D Œaij �; by aij D 1 if fbi ; wj g 2 E and aij D 0 if fbi ; wj g … E . The

biadjacency matrix for the hexagonal system in Figure 2 is given below where the columns represent w1; : : : ; w5; and

the rows represent b1; : : : ; b5.

A.H/ D

2

6
6
6
6
6
4

1 1 0 0 0

0 1 1 0 0

1 0 0 1 0

0 1 0 1 1

0 0 1 0 1

3

7
7
7
7
7
5

Recall that given an n � n matrix A, the determinant of A is defined by

det.A/ D
X

�

.sgn �/a1�.1/a2�.2/ : : : an�.n/
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where the sum runs over all nŠ permutations � of f1; 2; : : : ; ng, and sgn � is C1 or �1, according to whether �

is an even permutation or an odd one (for a reference on determinants, see [4].) By storing the adjacency data of a

hexagonal system H with 2n vertices in an n � n matrix, we can establish a one-to-one correspondence between

perfect matchings in H and the nonzero terms in the expansion of det.A.H//. For example, the perfect matching M

below corresponds to the permutation � shown.

M D ffb1; w2g; fb2; w3g; fb3; w1g; fb4; w4g; fb5; w5gg � D
�
1 2 3 4 5

2 3 1 4 5

�

Observe that when the term associated with � is used in calculating the determinant of A.H/, the product of the bold

numbers in the A.H/ given above is computed and gives a result of 1. This is true in general, the nonzero terms of

det.A.H// whose permutations correspond to a perfect matching will either be 1 or �1, and it can be proven that

every nonzero term will have the same sign (for a proof, see [9].) The terms whose associated permutation do not

correspond to a perfect matching will yield a 0 in the determinant expansion. Hence, jdet.A.H//j counts the number

of permutations in H . This fact was first proven by Kasteleyn [7].

Theorem 5. For a hexagonal system H , �.H/ D jdet.A.H//j.

Theorem 5 may be implemented using many different technologies. Most of the time required is in labeling the

vertices, finding the biadjacency matrix and entering data. For example, to compute �.H/ for the hexagonal system

given in Figure 9, the computation requires finding the biadjacency matrixA.H/ which is a 32� 32matrix. Calculating

the determinant gives �.H/ D 1; 764.

Example 3.

Use the determinant formula to compute the number of perfect matchings contained in the hexagonal system given

in Figure 9.

Figure 9. A hexagonal system with 1,764 perfect matchings.

We conclude this article by noting that computing �.G/ is an important problem in many areas of science and

mathematics. For example, perfect matching enumeration is used in the famous dimer problem in physics and to help

solve many tiling problems. Counting perfect matchings in the parallelogram hexagonal system P Œh; v� can also be

used to count non-decreasing sequences of length v with elements from f0; 1; : : : ; hg, and lattice paths in a rectangular

lattice (see [3]).
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Exercises on Counting Perfect Matches and Benzenoids

1. (a) Draw all three perfect matchings contained in the linear chain of length 2 given in Figure 2.

(b) Show that there is a one-to-one correspondence between the perfect matchings in the linear chain of length

2 and its vertical edges.

2. (a) Draw all perfect matchings in the rectangular hexagonal system RŒ3; 2�.

(b) Draw all perfect matchings in the parallelogram hexagonal system P Œ3; 2�.

In exercises 3 to 7 determine the number of perfect matchings contained in each of the following hexagonal

systems.

3.

4.

5.



140 Part I Classroom-tested Projects

6.

7.

8. Determine if the given hexagonal systems contains a perfect matching. If so, determine exactly how many.

(a)

(b)

(c)

9. Use induction on the number of hexagons to show that every hexagonal system is bipartite.
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In exercises 10, 11, 12 and 13 use the determinant formula to calculate the number of perfect matchings

in the given hexagonal systems.

10.

11.

12.

13.

14. (a) Draw all of the perfect matchings in a fibonaccene chain of length 4, 5 and 6.

(b) Prove Theorem 3.

15. (a) Show that a linear chain with five hexagons contains six perfect matchings.

(b) Show that the tubulene T Œ5; 1� satisfies �.T Œ5; 1�/D 4.

(c) Show that �(T Œh; 1�/ D 4, for all h � 2.

16. Prove Theorem 4.

17. Show that limh!1 �.T Œh; k�/ D 0 and limk!1 �.T Œh; k�/ D 1
2h
:

18. Find limv!1 �.RŒ7; v�/:
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Selected solutions

1. Notice that each vertical edge corresponds to a unique perfect matching.

3. 11

4. 7; 776

5. 377

6. 792

7. 1; 024

8. (a) 0, (b) 29, (c) 0

9. Figure 1 shows that the result is true for a hexagonal system with one hexagon. For the inductive step remove a

hexagon with edges on the boundary and consider cases defined by the number of boundary edges removed.

10. 105

11. 980

12. 130

14. (b) See [9].

15. (a) A linear chain with five hexagons contains six vertical edges, and hence, six perfect matchings. The tubulene

T Œ5; 1� contains the four perfect matchings given below (assume that the vertical edges on the ends are glued

together.)

16. See [11].

17. The result follows from �.T Œh; k�/ D log2 2kC1

hk
D kC1

hk
.

18. 3
13



Exploring Data Compression via Binary Trees1

Mark Daniel Ward
Purdue University

Summary

We investigate the Lempel-Ziv ’77 data compression algorithm by considering an analogous algorithm for efficiently

embedding strings in binary trees. This project includes a discussion of this comparison with two optional addenda on

error correction and decompression, followed by exercises and solutions.

Notes for the instructor

Students in discrete mathematics often have a dual interest in computer science. This project succinctly combines these

two areas. Data compression can be viewed as a discrete mathematics topic with many ramifications for computer

scientists. Students who have completed one or two semesters of computer science (in particular, who are familiar

with trees) may be eager to implement the algorithms discussed in C++, Java, or another object-oriented programming

language.

The Lempel-Ziv ’77 data compression algorithm was introduced in [1]. Analysis of the multiplicity matching pa-

rameter of suffix trees was presented in the present author’s Ph.D. thesis; an abridged journal version with many more

references to the literature can be found in [3]. An error correcting version of LZ’77 is outlined in [2].
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Exploring Data Compression and Error Correction

We first discuss a standard method of embedding binary strings into a tree retrieval structure, often abbreviated as a

“trie”. A trie is a rather efficient tree structure. Every node has at most two children. When a node has no children, we

refer to it as a leaf. A string is inserted at the minimal depth necessary; in other words, each string is inserted at the

earliest depth that allows it to be distinguished from all other strings that currently reside in the trie. A “0” in a string

corresponds to a left branch in the trie; a “1” corresponds to a right branch. Consider two strings:

S1 D 0010111011

S2 D 1001010101

When we embed S1 and S2 into a trie, we can immediately distinguish these two strings just by examining their first

elements, which are 0 and 1, respectively.

S1 S2

If we embed another string, say S3 D 1110001010, we note that the first bit of S1 already distinguishes S1 from

S3, but two bits of S3 are necessary to make a distinction from S2. After S3 is embedded into the above trie, we have

S1

S2 S3

If S4 has a long prefix in common with S1, for instance, S4 D 1010111100, then we have

S1

S2

S3

S4

Currently four strings S1, S2, S3, and S4 have been inserted into the trie. Suppose that S D Si for some i . If S

begins with 0, we know immediately that S D S1. Otherwise, S begins with 1, so S is found to the right of the root

of the trie. If S begins with 11, then S D S3; otherwise, S begins with 10, and in this case, we proceed one level

further into the trie to determine if S D S2 (equivalently, S begins with 100) or S D S4 (i.e., S begins with 101). This

example illustrates an unambiguous way to efficiently embed binary strings into a binary tree. Many tree structures are

found in the literature and have been extensively analyzed; the trie structure given above is one of the most popular

and frequently analyzed.

For another example, consider the following eight strings:

S1 D 0101010100

S2 D 1001001001

S3 D 1000000111

S4 D 0111010000
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S5 D 1100101011

S6 D 1010010110

S7 D 0011001001

S8 D 0100001000

The associated trie is

S1 S2S3

S4

S5

S6

S7

S8

Next, we discuss a particular type of trie. In the examples above, the strings Si were not dependent on each other;

the strings were generated independently. We now consider strings that are generated as suffixes of a common word.

We write X for a long binary string, for instance, X D 01101001001110011010. . . . Then we write S1 to denote X

itself. We let S2 denote X with only the first character removed (so S2 is the second suffix of X). We let S3 denote X

with only the first and second characters removed (so S3 is the third suffix of X). So we have

S1 D 01101001001110011010 : : :

S2 D 1101001001110011010 : : :

S3 D 101001001110011010 : : :

S4 D 01001001110011010 : : :

S5 D 1001001110011010 : : :

S6 D 001001110011010 : : :

Computer scientists often use the term “suffix tree” to denote the trie constructed from the suffixes of a word. So

the suffix tree associated with S1; : : : ; S6 is constructed by the same method that the tries above were constructed.

Therefore, the suffix tree built from the first six suffixes of X is

S1

S2

S3S4 S5

S6

In the 1970s, Jacob Ziv and Abraham Lempel introduced a variety of sequential data compression algorithms. In

particular, they presented LZ’77 and LZ’78, two schemes that still pervade every aspect of modern data compression

theory and practice. Although thirty years have passed since these algorithms were introduced, these algorithms still

remain popular and widely-used. Below, we describe a slightly simplified version of LZ’77.
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Keeping in mind the suffix trees constructed above, we now discuss the motivating concept for LZ’77. Our goal is

to compress a binary string, performing the compression one block at a time. To see the novel idea behind LZ’77, take

a second look at the suffix tree associated with

X D 01101001001110011010 : : :

in the last example above. Notice that S4 and S1 both have several characters at the beginning in common. For this

reason, S1 and S4 are placed close together in the suffix tree; both of these strings begin with the prefix 01. We can

make the following three observations:

1. The string S4 is very comparable to the string S1.

2. Both of these strings have a common prefix of length 2.

3. The next character of S4 after this common prefix is 0.

So we have described the first three characters of S4 by noticing that there is a block of length 2 (namely, 01) in

common with S1, and then the third character of S4 is 0. So S4 D 010 : : :. This is the inspiration behind LZ’77. (As

a side note, in step 3, we encode the next character explicitly so that the algorithm never gets “stuck.” This reasoning

for this extra character is crucial for the LZ’77 algorithm but admittedly will seem mysterious to those who are new to

the algorithm. Nonetheless, we insist that step 3 above is crucial in LZ’77 for preventing the algorithm from getting

stuck.)

Next we make a general statement of the algorithm; afterwards, we consider several illustrative examples.

We compress a binary stringX D X1X2X3 : : : in blocks, starting from the beginning. Consider the stage of the com-

pression when the first n bits (namely,X1X2 : : : Xn) have already been compressed. Then SnC1 D XnC1XnC2XnC3 : : :

remains uncompressed.

In order to compress the next block of SnC1, we consider the various strings SiC1, for 0 � i < n. We aim to find

the value of i such that SnC1 and SiC1 have the longest prefix in common. We find this desired value of i , and we

write L to denote the length of the longest common prefix. Then we are able to compress the first LC 1 characters of

SnC1 by noting that:

1. The string SnC1 is very comparable to SiC1.

2. Both of these strings have a common prefix of length L.

3. The next character of SnC1 after this common prefix XnC1XnC2 : : : XnCL is exactly XnCLC1.

Notice the similarity in these three steps to our earlier comparison ofS1 and S4. Despite the notation, our comparison

of SnC1 D XnC1XnC2XnC3 : : : to SiC1 D XiC1XiC2XiC3 is just the same idea as found in our comparison of S1 to

S4.

Finally, we note that the ingenuity behind Lempel and Ziv’s LZ’77 scheme is that, rather than storing SnC1, it is

often more efficient to store the following three pieces of information:

1. a pointer toXiC1, i.e., to the beginning of SiC1,

2. the length L of the common prefix,

3. the next character after this common prefix XnC1XnC2 : : : XnCL , namely, XnCLC1.

(In fact, this is a provably more efficient scheme when X is generated with a Markov dependency.) At any rate, it is

most helpful to consider some examples.

Example 1. Suppose X D 101101000110 00010100 : : : and n D 12 (the small space in X is just written for the

clarity of the reader in this example; of course X does not contain any actual gaps or spaces). So we are considering

the stage where the first twelve bits of X , namely X1 : : : X12 D 101101000110, have already been compressed. The

rest of X , namely S13 D X13X14 : : : D 00010100 : : :, is still uncompressed.
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In the notation given above, we have

SnC1 D XnC1XnC2 : : : D 00010100 : : :

We should compare this string to SiC1 D XiC1XiC2 : : : for i D 6, because S7 D X7X8 : : : has a prefix of length

L D 4 (namely, 0001) in common with S13. Thus, the first five characters of S13 can be efficiently compressed by:

1. storing a pointer to X7,

2. recording the length L D 4 of the common prefix between S7 D X7X8 : : : and S13 D X13X14 : : :,

3. noting that the next character after this common prefix X13X14X15X16 is X17 D 0.

By this method, X13X14X15X16X17 efficiently gets compressed. The algorithm proceeds to the next step, with

X1 : : : X17 already compressed; the remainder S18 D X18X19 : : : still needs to be compressed.

Incidentally, when constructing the suffix tree built on S1; S2; : : : ; S13, one notices that S7 and S13 are siblings.

This is not a coincidence; the general situation will be described at the end of the next example.

Example 2. Suppose X D 0110110 01110100000100010 : : : and n D 7. So the first seven bits of X , namely

X1 : : : X7 D 0110110, have already been compressed. The rest ofX , namely S8 D X8X9 : : : D 01110100000100010 : : :,

has not yet been compressed.

We should compare S8 to SiC1 D XiC1XiC2 : : : for i D 0 or i D 3, because S1 D X1X2 : : : and S4 D X4X5 : : :

each have a prefix of length L D 3 (namely, 011) in common with S8. So, the first four characters of SnC1 D
XnC1XnC2 : : : can be efficiently compressed with the usual three steps:

1. storing a pointer to X1 (or a pointer to X4; either pointer is OK to use),

2. recording the length L D 3 of the common prefix between S1 and S8,

3. noting that the next character after this common prefix X8X9X10 is X11 D 1.

By this method, X8X9X10X11 is efficiently compressed. The algorithm proceeds to the next step, with X1 : : : X11

already compressed, and S12 D X12X13 : : : is still uncompressed.

Consider the suffix tree built on S1; S2; : : : ; S8. We note that S8’s parent has S1 and S4 as descendants. This is true

in general: the parent of the uncompressed string (in this case, the parent of S8) will be an ancestor of the appropriate

strings Si used to perform the compression (in this case, S1 and S4). In fact, all descendants of the parent of the

uncompressed string are appropriate candidates for performing the compression. Drawing the relevant suffix trees is

extremely helpful for illustrating the situation.
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Addendum about Error Correction

For those readers wishing to explore research in this vein: Whenever two or more values of i are valid (i.e., two or

more strings Si are available for use in the compression), then some error correction can be performed at this stage in

the compression. In fact, this author dedicated his entire Ph.D. thesis to a precise study of how much error correction

can be performed in such a situation. The number of Si ’s available is called the multiplicity matching parameter; see

the References section for more details.

At each stage of the compression, whenever there are multiple pointers to choose from, let Mn denote the number

of valid values of i when compressing XnC1XnC2 : : :; in the example just given, M7 D 2 because i D 0 or i D 3

could be used. Then we can embed blog2Mnc extra bits at no extra cost whatsoever. (Of course, for many n, we have

Mn D 1, and no parity check can be performed.)

As an example, when Mn D 2, we can perform a parity check, choosing the first pointer if a “1” is required in our

parity check, or selecting the second pointer if a “0” is required in our parity check. For example, the algorithm can

check the parity of the bits compressed up until the present stage. If an error is detected, a warning message about the

inconsistency could be given, or some error recovery could be performed. Such methods allow students a great degree

of freedom and creativity, because there are many possible ways of implementing the algorithm in an object-oriented

computer language.

Addendum about Decompression

Students who are quite eager to implement the LZ’77 algorithm with these extra features will certainly want to know

how to write decompression algorithms too. Such files are uncompressed in an analogous way to the method by

which they are compressed. The decompression is performed block-by-block, starting at the beginning of the file.

In order to decompress the next block, we consider the stage at which n bits have already been decompressed, say

X1X2 : : : Xn. In the compressed version of the file, we encounter a triple that describes a pointer, a length, and a next

bit. The pointer to some XiC1 and the length L tell us to copy XiC1XiC2 : : : XiCL into the next L positions, namely

XnC1XnC2 : : : XnCL . The next bit is exactly XnCLC1 . By repeatedly decoding triples, we reproduce the original

(uncompressed) file.

We note that students who are interested in both discrete mathematics and computer science will perhaps enjoy

implementing the LZ’77 program in C++, Java, or another object-oriented programming language. Afterwards, they

are able to measure the redundancy present in this aspect of LZ’77 by computing and tabulatingMn at each step during

the execution of the program. They are also able to experiment with a variety of uses for the redundant bits that are

available at most stages of the compression. Students can devise various error correction schemes or image embedding

techniques. See the references for a published implementation of the LZ’77 algorithm with error correcting extensions.
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Questions on Exploring Data Compression via Binary Trees

1. Construct the trie associated with the following eight strings:

S1 D 0001000011

S2 D 0011011111

S3 D 0101010110

S4 D 0010000101

S5 D 1110000001

S6 D 1001010001

S7 D 0000010011

S8 D 1100001001

2. Consider the string X D 01011001111101001110: : : : Let S1; S2; : : : ; S8 denote the first eight suffixes of X .

Construct the suffix tree associated with these eight strings.

3. Consider the string X D 110110001010 10010011: : : : Suppose that the first twelve characters (namely,

X1 : : : X12 D 110110001010) have been compressed and the remainder (i.e., S13 D 10010011 : : :) is un-

compressed. What is the next block to be compressed in the LZ’77 algorithm?

4. Consider the string X D 1111001101001101110110101 001101101000011: : : : Suppose that the first twenty-

five characters (namely, X1 : : : X25 D 1111001101001101110110101) have been compressed and the remain-

der (i.e., S26 D 001101101000011 : : :) is uncompressed. What is the next block to be compressed in the LZ’77

algorithm?
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Solutions

1. The desired trie is

S1 S2

S3

S4

S5

S6

S7

S8

2. The eight strings are

S1 D 01011001111101001110 : : :

S2 D 1011001111101001110 : : :

S3 D 011001111101001110 : : :

S4 D 11001111101001110 : : :

S5 D 1001111101001110 : : :

S6 D 001111101001110 : : :

S7 D 01111101001110 : : :

S8 D 1111101001110 : : :

and the suffix tree associated with these eight strings is

S1 S2

S3

S4S5

S6

S7

S8

3. We see that S13 D 10010011 : : : and S5 D 1000101010010011 : : :have a prefix ofL D 3 characters in common

(namely, X13X14X15 D X5X6X7 D 100). So the next block has four characters, namely X13X14X15 D 100,

followed by the next character, which is X16 D 1.

4. We see that S26 D 001101101000011 : : : and S11 D 001101110110101001101101000011 : : : have a prefix of

L D 7 characters in common (namely, X26 : : : X32 D X11 : : : X17 D 0011011). So the next block has eight

characters: namely, X26 : : : X32 D 0011011, followed by the next character, which is X33 D 0.



A Problem in Typography

Larry E. Thomas
Saint Peter’s College

Summary

This project shows how a problem in computerized typesetting can be viewed as a problem in finding the shortest path

from the beginning to the end of a weighted acyclic graph. Students are shown how to construct such a graph from the

diagnostic information provided by Donald Knuth’s typesetting program, TEX.

Notes for the instructor

This project uses a very special case of the general Knuth-Plass algorithm in order to make it manageable. The actual

algorithm as implemented in [1] is general enough to handle unjustified text and mathematical expressions, but includ-

ing all of the details would turn this into a course rather than a project. This treatment emphasizes the general idea of

the algorithm, so the actual formulas for such things as badness and demerits are omitted. The details can be found in

[2, 5, 4, 3, 6].
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Worksheet on a Problem in Typography

1. The general problem

Mathematics is used behind the scenes in all sorts of places where you might not expect to find it. One of these places

is in word processing programs. Such programs have to determine the best way to break text into lines for display on a

printed page. In times past, when type was set by hand, a skilled typesetter made the decisions about where to break the

lines and how much space to leave between words. These days almost all typesetting is done by computer programs,

so there has to be some kind of algorithm for the program to use to make these decisions. In what follows we will

look at one of the most celebrated of these algorithms, the Knuth-Plass (KP) line-breaking algorithm. The algorithm

forms the basis of the method the typesetting program TEX uses to justify text and is therefore used by various other

programs based on TEX. The algorithm is based on a very elegant use of graph theory.

To keep things manageable, we will consider a special case of the algorithm: the problem of setting a paragraph

of fully justified text. This means that we want to arrange the lines of text on the page so that both the left and right

margins are even. When we arrange the lines we have to answer two questions: Where should we break the text

between two lines and how much space should we leave between the words.

As they stand these questions are not very well defined. In a typical text there are a lot of places where the line

could be broken and there are a number of ways to put space between the words. What we are really looking for is the

best way to arrange a paragraph of text on the page. But what do we mean by best? How can we tell if one way of

formatting the paragraph is better than another?

In order to answer these questions, Knuth and Plass introduced badness and demerits. These two numerical quan-

tities attempt to measure the aesthetic quality and readability of a paragraph. Generally speaking, badness measures

whether the words on a line are too close together or too far apart, while demerits measure how well a given line

fits in with the other lines in the paragraph. (For example, demerits are added if two adjacent lines of text end in

discretionary hyphens.) Of course, there are precise formulas for badness and demerits, but an intuitive idea of these

quantities should suffice for a general overview of the algorithm.

2. A specific problem

While working through the algorithm we will use a portion of the text that Knuth used in examples throughout [2].

The problem is to set the following text in a paragraph 2.5 inches wide:

Mr. Drofnats---or‘‘R. J.,’’ as he preferred to be called---was

happiest when he was at work typesetting beautiful documents.

The text is shown in a regular monospaced typewriter font. When we set the text in a proportional font using Knuth’s

TEX typesetting program this is the result:

Mr. Drofnats—or “R. J.,” as he pre-

ferred to be called—was happiest when he

was at work typesetting beautiful docu-

ments.

Problem 1. Find out something about Donald E. Knuth. Use what you find to discern the hidden message in the name

of his character Mr. Drofnats.

To achieve this result using the Knuth-Plass algorithm the program scans the text of the paragraph a character at a

time and does all of the following:

� It chooses feasible breakpoints as places where it will consider breaking a line. Feasible breakpoints are chosen

so that the badness of a line never exceeds a certain predefined tolerance1. So the feasible breakpoints are chosen

so that the words in a line will not be too far apart or too close together.

1The tolerance can be changed by the user. The default value of the tolerance is 200 and its maximum value is 10,000, which is TEX’s version of

infinitely large. Lines with badness exceeding the tolerance will not be included in the final paragraph. When the tolerance is 10,000 the algorithm

will tolerate any lines.
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� For each feasible breakpoint it computes the demerits for the line ending at that breakpoint. The demerits mea-

sure how readable the line is as part of the entire paragraph. For example, the demerits of a line will increase if

the line breaks at a hyphen.

� The program keeps a data structure in which the feasible breakpoints form an acyclic graph from the start of the

paragraph to its end. The edges of the graph are weighted by the demerits.

� The program accumulates information about the graph so that it can find the path through the graph from the

beginning to the end that minimizes the sum of the demerits along the path.

So we see that the algorithm structures the problem of formatting a paragraph as a problem of finding the shortest path

from start to finish in a (weighted) graph. In practice the steps in the algorithm are carried out in a dynamic fashion.

That is, as the paragraph is read the list of possible feasible breakpoints is continually adjusted, and data about the

demerits is continually updated, so that the algorithm builds the shortest path as it goes along. The underlying method

and data structures used are similar to those used in Dijkstra’s algorithm. Unlike the algorithms used in many standard

word processors, the Knuth-Plass algorithm considers the entire paragraph before it makes its final decision.

Problem 2. If there are n possible places to place line breaks (not necessarily feasible) in a paragraph, how many

possible ways are there to divide the paragraph into lines? The short paragraph about Mr. Drofnats has about 30

possible places to place line breaks (including spaces between words and places to break words at hyphens). How

many ways are there to divide the paragraph into lines?

Problem 3. If the tolerance for badness is increased will the number of feasible breakpoints in a paragraph increase

or decrease?

It is time to return to Mr. Drofnats to see what the graph for his paragraph looks like. First, we can look at the

feasible breakpoints as marked in the following version of the text. A superscript n indicates a feasible breakpoint that

could be used to end line number n in the typeset version of the text.

Mr. Drofnats---or‘‘R. J.,’’ as he pre1ferred to be called---was

happiest when2 he2 was at work typesetting beautiful doc3u3ments.4

This means that the only feasible breakpoint to end the first line is after pre. The second line could be broken after

when or he without having too much or too little space between words in the second line. And the feasible choices

for breaking the third line are after doc and docu. Which of these two possibilities is actually chosen depends on the

choice of breakpoint in the previous line. This same information is better summarized in a graph as shown in Fig. 1.

(The superscripts in the paragraph above correspond to the levels of the corresponding vertices in the graph. That is,

all of the possible break-points for the first line are on the first level, those for the second line are on the second level,

and so on.)

The vertices in the graph show the possible breakpoints; they are numbered from 0 to 6 for reference. The numbers

on the edges are the demerits associated with breaking a line at a given point. For example, if the second line breaks

after he and the third after doc-, line 3 has 103101 demerits. Notice that there is no edge from vertex 2 to vertex 5.

This is because the badness of line 3 exceeds the tolerance for badness if the second line breaks after when and the

third breaks after u-. In this case it means that the words in line 3 would be too close together if the breaks were at

vertices 2 and 5.

The graph shows three possible ways to break the lines in the paragraph. The one we saw at the beginning of this

section corresponds to following the path 0-1-3-5-6. This path, with total demerits 24,682, is the shortest path. Another

path is 0-1-2-4-6, with total demerits 50,543, which would lead to the following setting of the text:

Mr. Drofnats—or “R. J.” as he pre-

ferred to be called—was happiest when

he was at work typesetting beautiful doc-

uments.

The final possibility is 0-1-3-4-6, with total demerits 112,367, is the worst choice. It gives:

Mr. Drofnats—or “R. J.” as he pre-

ferred to be called—was happiest when he

was at work typesetting beautiful doc-

uments.
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Start

pre-

when he

u-doc-

ments.

Figure 1. A Knuth-Plass graph.

If you compare these last two examples with the first one you will see that in one case the second line is a little too

spread out and in the other the second line is a little too squeezed together.

3. Drawing the graph

As part of its diagnostic apparatus, TEX provides the information necessary to draw the graph for a paragraph. In our

case it provided this rather cryptic information:

[]/cmr10/Mr. Drofnats---or‘‘R. J.,’’ as he pre-

@\discretionary via @@0 b=11 p=50 d=2941

@@1: line 1.2- t=2941 -> @@0

ferred to be called---was hap-pi-est when

@ via @@1 b=131 p=0 d=29881

@@2: line 2.0 t=32822 -> @@1

he

@ via @@1 b=25 p=0 d=1225

@@3: line 2.3 t=4166 -> @@1

was at work type-set-ting beau-ti-ful doc-

@\discretionary via @@2 b=1 p=50 d=12621

@\discretionary via @@3 b=291 p=50 d=103101

@@4: line 3.2- t=45443 -> @@2

u-

@\discretionary via @@3 b=44 p=50 d=15416

@@5: line 3.1- t=19582 -> @@3

ments.

@\par via @@4 b=0 p=-10000 d=5100

@\par via @@5 b=0 p=-10000 d=5100

@@6: line 4.2- t=24682 -> @@5

If you compare this listing with the graph in Figure 1 you can see that the listing shows a clever way to represent

a graph without drawing any vertices or edges. The lines in the listing that begin with @@ show the feasible break-
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points, that is the vertices in the graph. Lines that begin with a single @ symbol mark the ways the following feasible

breakpoints can be reached. For example, we can decode the following lines

ferred to be called---was hap-pi-est when

@ via @@1 b=131 p=0 d=29881

@@2: line 2.0 t=32822 -> @@1

he

to mean that the feasible breakpoint in vertex 2 is after when, that vertex 2 can be reached from vertex 1, and that the

resulting line of text will have badness 131 and 29,881 demerits. This means that there is an edge in the graph from

vertex 1 to vertex 2 and that edge will be labeled with 29,881 demerits. You are urged to go through the rest of the

listing to see how 1 can be created.

By the way, the notation p=0 on the second line means that no penalties were assigned to the second line of text.

Penalties measure the readability of the text and are used along with badness in the formula for demerits. Penalties are

assigned if a break occurs at a hyphen, for example. Penalties are also assigned if a line with a lot of space between

words is next to one with very little space between words. The full Knuth-Plass algorithm uses penalties to enhance

the aesthetic appeal of the typeset text; they were omitted from this simplified version of the algorithm.

Problem 4. Setting the text

Mrs. Johnson, the last living relative of Albert Johnson, was surprised when

she inherited a small---but in the end adequate---collection of etchings.

in lines 3 inches wide produces this listing

[]\tenrm Mrs. Johnson, the last living relative of Albert

@ via @@0 b=86 p=0 d=9216

@@1: line 1.3 t=9216 -> @@0

@secondpass

[]\tenrm Mrs. John-son, the last liv-ing rel-a-tive of Al-

@\discretionary via @@0 b=24 p=50 d=3656

@@1: line 1.1- t=3656 -> @@0

bert

@ via @@0 b=86 p=0 d=9216

@@2: line 1.3 t=9216 -> @@0

John-son, was sur-prised when she in-her-

@\discretionary via @@1 b=991 p=50 d=1014501

@@3: line 2.0- t=1018157 -> @@1

ited

@ via @@1 b=66 p=0 d=5776

@@4: line 2.1 t=9432 -> @@1

a

@ via @@1 b=0 p=0 d=100

@ via @@2 b=958 p=0 d=947024

@@5: line 2.2 t=3756 -> @@1

small---but in the end adequate---collection

@ via @@3 b=0 p=0 d=10100

@@6: line 3.2 t=1028257 -> @@3

of

@ via @@4 b=48 p=0 d=3364

@ via @@5 b=733 p=0 d=562049

@@7: line 3.1 t=12796 -> @@4

etch-ings.
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@\par via @@6 b=0 p=-10000 d=100

@\par via @@7 b=0 p=-10000 d=100

@@8: line 4.2- t=12896 -> @@7

(a) Draw the graph corresponding to this listing. Be sure to put the feasible breakpoints in the vertices, number the

vertices, and put the demerits on each edge.

(b) Find all of the paths from the start of the graph to the last feasible breakpoint and compute the total demerits for

each path.

Problem 5.

(a) Try this little experiment. Draw two vertical parallel lines about 3 inches apart. For each of the paths you found

through the graph in the previous problem, “typeset” the text by hand by printing the letters, breaking the lines

at the indicated feasible breakpoints, and leaving the proper amount of space between each word.

(b) Compare the results of the work you just did. Can you see why the text from the shortest path through the graph

is considered the best choice?
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Solutions

1. Drofnats is Stanford, backwards.

2. There are 2n possible ways to break the paragraph into lines. If n D 30, this amounts to 1,073,741,824 possibil-

ities.

3. If the tolerance is increased, more possible breakpoints will qualify as feasible.

4. (a)

Start

bert

aitedher-

collection

etchings.

of

Al-

Figure 2. Problem 4(a).

(b) 0-1-3-6-8 has 1,028,357 demerits

0-1-4-7-8 has 12,896 demerits

0-1-5-7-8 has 565,905 demerits

0-2-5-7-8 had 1,518,389 demerits

5. Path 0-1-3-6-8 has total demerits 1,028,357 and corresponds to the following way to set the text:

Mrs. Johnson, the last living relative of Al-

bert Johnson, was surprised when she inher-

ited a small—but in the end adequate—collection

of etchings.

Path 0-1-4-7-8 has total demerits 12,896 and produces:

Mrs. Johnson, the last living relative of Al-

bert Johnson, was surprised when she inherited

a small—but in the end adequate—collection of

etchings.

Path 0-1-5-7-8 has total demerits 565,905:

Mrs. Johnson, the last living relative of Al-

bert Johnson, was surprised when she inherited a

small—but in the end adequate—collection of

etchings.

Path 0-2-5-7-8 has total demerits 1,518,389, producing:

Mrs. Johnson, the last living relative of Albert

Johnson, was surprised when she inherited a

small—but in the end adequate—collection of

etchings.





Graph Complexity

Michael Orrison
Harvey Mudd College

Summary

This project asks students to define, motivate, and explore an objective measure of the complexity of a graph.

Notes for the instructor

This is an open-ended, capstone-like project designed to come at the end of the graph theory portion of a discrete

mathematics course. I like this project because it provides a natural opportunity to discuss the general nature of math-

ematical research. Based on student feedback, I believe it is particularly successful because it gives students a genuine

(and often unexpected) opportunity to express themselves in a mathematics course. Moreover, their insights have led,

in some cases, to intriguing, worthwhile, and enjoyable independent student research projects.

At least two one-hour class periods should be set aside for this project. The first hour can be devoted to allowing

students to work individually or in groups to devise and experiment with a measure of the complexity of a graph. The

second hour can then be devoted to the presentation and discussion of the results. If you have the time and interest,

this project may easily be turned into a more substantial research project (which I have done in a graph theory course)

by asking the students, at each stage, to explore more fully their measure of complexity.

To get the students going, I think it is worth mentioning that mathematicians and computer scientists have defined

the complexity of a graph in several different ways (and for several different purposes). After that, however, I suggest

stepping aside to give the students an opportunity to grapple with idea of graph complexity on their own. That said, as

the instructor, it may be helpful to know that the complexity of a graph has been defined, for example, as

� the number of spanning trees of a graph [1],

� the value of a certain formula involving the number of vertices, edges, and proper paths in a graph [2],

� the minimum number of additions, subtractions, and scalar multiplications required to multiply an adjacency

matrix of a graph and an arbitrary vector [3], and

� the number of Boolean operations, based on a pre-determined set of Boolean operators (usually union and

intersection), necessary to construct a graph from a fixed generating set of graphs [4].

Examples of straightforward measures of complexity that have come up in my class include

� the genus of a graph,

� the crossing number of a graph,

� the chromatic number of a graph,

� the sample variance of the degrees of the vertices of a graph,
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� the average runtime of a fixed algorithm that takes a graph as input, and

� the minimum number of complete graphs required to construct a graph.

Note, for example, that if a student uses the chromatic number of a graph to measure complexity, then the graph on

the left in Figure 1 is more complex than the graph on the right (6 vs. 3). On the other hand, if the sample variance of

the degrees of the vertices is used to measure complexity, then the graph on the right in Figure 1 is more complex than

the graph on the left (1.07 vs. 1.36).

Editor’s note: This project was adapted by the author and his colleague Darryl Yong for the 2006 Imagine Math

Day for high school students and their teachers; it was very successful.
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Graph Complexity

Complexity is in the eye of the beholder. For example, suppose you are given the graphs in Figure 1. Which would

you say is more complex? Do you think your classmates would agree with you? Can you imagine situations in which

one, both, or neither would be considered complex?

Figure 1. Which graph is more complex?

For this project, you will define a measure of the complexity of a graph. You are encouraged to use any of the graph

theoretic concepts you have encountered so far. You may even want to define and use some new concepts along the

way!

Project

1. Define a measure of the complexity of a graph. For simplicity, your measure should assign to each graph a

nonnegative real number such that if a graph G is assigned a higher number than that of G0, then we will say

thatG is “more complex” than G0.

2. Motivate your measure of the complexity of a graph. Give several examples of graphs and compute (or approx-

imate) their complexity according to your measure.

3. Describe some properties of your measure. For example, according to your measure, is the complexity of a graph

always greater than or equal to the complexity of any one of its subgraphs? State and attempt to prove at least

one conjecture about your measure.
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Introduction

A course in discrete mathematics is a relatively recent addition, within the last 30 or 40 years, to the modern American

undergraduate curriculum, born out of a need to instruct computer science majors in algorithmic thought. The roots

of discrete mathematics, however, are as old as mathematics itself, with the notion of counting a discrete operation,

usually cited as the first mathematical development in ancient cultures. By contrast, a course in finite mathematics is

sometimes presented as a fast-paced news reel of facts and formulae, often memorized by the students, with the text

offering only passing mention of the motivating problems and original work that eventually found resolution in the

modern concepts of induction, recursion and algorithm. This chapter focuses on the pedagogy of historical projects,

which offer excerpts from original sources, place the material in context, and provide direction to the subject matter.

Each historical project is centered around a publication of mathematical significance, such as Blaise Pascal’s “Trea-

tise on the Arithmetical Triangle” [2, vol. 30] from the 1650s or Alan Turing’s 1936 paper “On Computable Numbers

with an Application to the Entscheidungsproblem” [3]. The projects are designed to introduce or provide supple-

mentary material for topics in the curriculum, such as induction in a discrete mathematics course, or compilers and

computability for a computer science course. Each project provides a discussion of the historical exigency of the piece,

a few biographical comments about the author, excerpts from the original work, and a sequence of questions to help the

student appreciate the source. The main pedagogical idea is to teach and learn certain course topics from the primary

historical source, thus recovering motivation for studying the material.

For use in the classroom, allow several weeks per project with one or two projects per course. The time spent

working on a project may vary from two to six weeks, depending on the depth and breadth in which the material is

covered. Some instructors may wish not to assign all parts of a project, while others may wish to add further questions.

The source files for the projects may be downloaded from the web resource [1] and edited. Before assignment, the

instructor should work through all details of a project, not only for acquaintance with the historical source, but to

determine which questions best suit the course material. Pay particular attention to the language of the historical

author, and its mathematical content. Be prepared to examine a quote from the source in class and discuss its meaning,

either verbally or with present-day formulas. Student solutions may be collected in installments or only once upon

completing the project. In either event, monitor student progress on what for them is a lengthy assignment. Each

project should count for a significant portion of the course grade (about 20%) and may take the place of an in-class

examination. Begin early in the course with a discussion of the relevance of the historical piece, its relation to the

course curriculum, and how modern textbook techniques owe their development to problems often posed centuries

earlier. Each project offers a “Notes for the instructor” for more detailed information about the level, content and

implementation of the project.

The topics covered by the projects include naive set theory, mathematical induction, binary arithmetic, computabil-

ity, graph theory, and the combinatorics of the Catalan numbers. They range in level from beginning undergraduate

courses in discrete mathematics to advanced undergraduate courses in logic, graph theory, and computer science. Most

are independent of each other, although a few projects build on the same source or present closely related topics via dif-
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ferent sources. Each historical source is one which either solved an outstanding problem, inaugurated a mathematical

technique, or offered a novel point of view on existing material.

The next page is a list of instructions to students concerning “How to Work on Your Project.” A good student

solution should reflect the benefits afforded by close attention to these points. The instructor may wish to photocopy

the following instructions for distribution to the entire class.

After completion of a course using historical projects, students write the following about the benefits of history:

“See how the concepts developed and understand the process.”

“Learn the roots of what you’ve come to believe in.”

“Appropriate question building.”

“Helps with English-math conversion.”

“It leads me to my own discoveries.”
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How to Work on Your Project:

What is Expected

Here are some words of advice and encouragement for completing the historical project. This is a significant course

requirement, in which you will examine a key historical episode in the development of a mathematical topic. The

historical presentation is often more verbal than modern textbook formulations, which carries the advantage that no

technical knowledge is assumed a priori. On the other hand, you must carefully read the historical author’s words and

be prepared to experiment with your own calculations to verify or amplify the historical source. Here are some specific

instructions.

1. Start today. This is a major assignment, requiring more work than most homework problems from a textbook.

Work on the project every day before it is due.

2. Read the entire project to see what is involved. From what time period is the historical piece? What modern

topics have evolved from the source?

3. Next read the project very carefully and make a list of any unfamiliar words or concepts. Do you understand the

language of the historical author? If not, ask your instructor.

4. Feel free to seek additional historical or mathematical information about the source from either the library or

the Internet. Always question the validity of Internet sources.

5. Begin answering questions in the project. Use complete sentences along with equations, tables, or diagrams to

support your work. Some questions will be rather simple, while others require detailed solutions. Identify the

difficult questions early and seek help from your instructor if you don’t know how to proceed.

6. Seek feedback from your instructor even if you feel that you have answered the questions correctly, since you

may have misinterpreted a passage.

7. The final solution to the project should be a written paper in which you address all the issues raised in the

project. Use complete sentences along with modern equations to support your claims. Discuss any connections

from the historical source with present-day techniques that you may have encountered. How does the historical

source differ from the textbook presentation?





Binary Arithmetic:

From Leibniz to von Neumann

Jerry M. Lodder
New Mexico State University

The Era of Leibniz

Gottfried Wilhelm Leibniz (1646–1716) is often described as the last universalist, having contributed to virtually all

fields of scholarly interest of his time, including law, history, theology, politics, engineering, geology, physics, and

perhaps most importantly, philosophy, mathematics and logic [1, 9, 11]. The young Leibniz began to teach himself

Latin at the age of 8, and Greek a few years later, in order to read classics not written in his native language, German.

Later in life, he wrote:

Before I reached the school-class in which logic was taught, I was deep into the historians and poets, for

I began to read the historians almost as soon as I was able to read at all, and I found great pleasure and

ease in verse. But as soon as I began to learn logic, I was greatly excited by the division and order in it. I

immediately noticed, to the extent that a boy of 13 could, that there must be a great deal in it [5, p. 516].

His study of logic and intellectual quest for order continued throughout his life and became a basic principle to

his method of inquiry. At the age of 20 he published Dissertatio de arte combinatoria (Dissertation on the Art of

Combinatorics) in which he sought a characteristica generalis (general characteristic) or a lingua generalis (general

language) that would serve as a universal symbolic language and reduce all debate to calculation. Leibniz maintained:

If controversies were to arise, there would be no more need of disputation between two philosophers than

between two accountants. For it would suffice to take their pencils in their hands, to sit down to their

slates, and to say to each other: : : : Let us calculate [14, p. 170].

The Leipzig-born scholar traveled extensively with diplomatic visits to Paris and London, and extended trips to

Austria and Italy to research the history of the House of Brunswick. The years 1672–1676 were spent in Paris in

an attempt to persuade King Louis XIV (1638–1715) not to invade Germany, but Egypt instead, although Leibniz

was never granted an audience with the French king. During this time in Paris, however, the young German became

acquainted with several of the leading philosophers of the day, acquired access to unpublished manuscripts of Blaise

Pascal (1623–1662) and René Descartes (1596–1650), and met the renowned Christiaan Huygens (1629–1695), from

whom he learned much about contemporary mathematics. During these years he laid the foundation of his calculus

and the core of what would become his philosophical legacy.

Leibniz’s invention of the differential and integral calculus is, in part, a product of his search for a universal language.

Questions in the calculus can be reduced to the rules of calculation which the symbols for derivative, d , and integral,
R

, satisfy. Sadly a priority dispute with Isaac Newton (1642–1727) over the invention of calculus cast a pall over

Leibniz’s later years. Moreover, he became a subject of ridicule with his philosophy that this is the best of all possible

worlds bitterly satirized in Voltaire’s (1694–1778) play Candide.

Let’s turn to the universal genius’s 1703 publication “Explication de l’arithmétique binaire, qui se sert des seuls

caractères 0 et 1, avec des remarques sur son utilité, et sur ce qu’elle donne le sens des anciennes figures Chinoises

169



170 Part II Historical Projects in Discrete Mathematics and Computer Science

de Fohy” [6, p. 223–227] (An Explanation of Binary Arithmetic Using only the Characters 0 and 1, with Remarks

about its Utility and the Meaning it Gives to the Ancient Chinese Figures of Fuxi), which originally appeared in the

journal Memoires de l’Académie Royale des Sciences [13]. Here again, with the reduction of arithmetic to expressions

involving only zeroes and ones, we see a possible candidate for Leibniz’s characteristica generalis. Of binary numer-

ation, he writes “it permits new discoveries [in] : : : arithmetic : : : in geometry, because when the numbers are reduced

to the simplest principles, like 0 and 1, a wonderful order appears everywhere.” Concerning the binary calculations

themselves “ : : : these operations are so easy that we shall never have to guess or apply trial and error, as we must do

in ordinary division. Nor do we need to learn anything by rote.” Certainly Leibniz was not the first to experiment with

binary numbers or the general concept of a number base [7]. However, with base 2 numeration, Leibniz witnessed the

confluence of several intellectual ideas of his world view, not just the characteristica generalis, but also theological

and mystical ideas of order, harmony and creation [16]. Additionally his 1703 paper [13] contains a striking application

of binary numeration to the ancient Chinese text of divination, the Yijing (I-Ching or Book of Changes).

Early in life Leibniz developed an interest in China, corresponded with Catholic missionaries there, and wrote on

questions of theology concerning the Chinese. Surprisingly he believed that he had found an historical precedent for

his binary arithmetic in the ancient Chinese lineations or 64 hexagrams of the Yijing. This, he thought, might be the

origin of a universal symbolic language. A hexagram consists of six lines atop one another, each of which is either

solid or broken, forming a total of 64 possibilities, while a grouping of only three such lines is called a trigram (or

cova). Leibniz lists the eight possible trigrams in his exposition on binary arithmetic, juxtaposed with their binary

equivalents.

He had been in possession of his ideas concerning binary arithmetic well before his 1703 publication. In 1679

Leibniz outlined plans for a binary digital calculating machine, and in 1697 he sent a congratulatory birthday letter

to his patron Duke Rudolph August of Brunswick, in which he discusses binary numeration and the related creation

theme with 0 denoting nothing and 1 denoting God [16]. Furthermore, Leibniz sent the French Jesuit Joachim Bouvet

(1656–1730) an account of his binary system while Bouvet was working in China. The Jesuits are an educational

order of Catholic priests, who, while in China, sought the conversion of the Chinese to Christianity, hopefully by

the identification of an ancient theology common to both religions. Bouvet began a study of the Yijing, viewing this

text as the possible missing link between the two religions [16]. It was from this Jesuit priest that Leibniz received

the hexagrams attributed to Fuxi, the mythical first Emperor of China and legendary inventor of Chinese writing. In

actuality, the hexagrams are derived from the philosopher Shao Yong’s (1011–1077) Huangji jingshi shu (Book of

Sublime Principle Which Governs All Things Within the World). Shortly after receiving Bouvet’s letter containing

the hexagrams and Bouvet’s identification of a relation between them and binary numeration, Leibniz submitted for

publication his 1703 paper “Explanation of Binary Arithmetic” [3, p. 44].

Here is the first question of the student module:

1. Concerning the utility of the binary system, Leibniz cites an application to weighing masses. Suppose that a two-

pan balance is used for weighing stones. A stone of unknown (integral) weight is placed on the left pan, while standard

weights are placed only on the right pan until both sides balance. For example, if standard weights of 1, 4, 6 are used,

then a stone of weight 7 on the left pan would balance the standard weights 1 and 6 on the right. Two standard weights

with the same value cannot be used. Leibniz claims that all stones of integral weight between 1 and 15 inclusive can

be weighed with just four standard weights. What are these four standard weights? Explain how each stone of weight

between 1 and 15 inclusive can be weighed with the four standard weights. Make a table with one column for each of

the four standard weights and another column for the stone of unknown weight. For each of the 15 stones, place an

“X” in the columns for the standard weights used to weigh the stone.

Let’s now read from an “Explanation of Binary Arithmetic,” using a modified version of the Ching-Oxtoby transla-

tion [3, p. 81–86].
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An Explanation of Binary Arithmetic

Using only the Characters 0 and 1, with Remarks

about its Utility and the Meaning it Gives to the

Ancient Chinese Figures of Fuxi

By G.W. Leibniz

Ordinary arithmetical calculations are performed according to a progression of tens. We use ten

characters, which are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, that signify zero, one and the following numbers

up to nine, inclusive. After reaching ten, we begin again, writing ten with 10, and ten times ten

or one hundred with 100, and ten times one hundred or one thousand with 1000, and ten times

one thousand with 10000, and so on.

2. Write the numbers 1, 10, 100, 1000 and 10000 as powers of ten. Express your answer in complete sentences or

with equations. What pattern do you notice in the exponents?

But instead of the progression by tens, I have already used for several years the simplest of all

progressions, that by twos, having found that this contributes to the perfection of the science of

numbers. Thus I use no characters other than 0 and 1, and then, reaching two, I begin again.

This is why two is written here as 10, and two times two or four as 100, and two times four or

eight as 1000, and two times eight or sixteen as 1000, and so on.

3. Write the numbers 1, 2, 4, 8 and 16 as powers of two. Express your answer in complete sentences or with equations.

What pattern do you notice in the exponents? How do the exponents compare with those in question 2? How does the

progression by twos compare with the standard weights in question 1?

Here is the Table of Numbers according to this pattern, which we can continue as far as we wish.

4. Compare the entries from 1 to 15 in Leibniz’s “Table of Numbers” on the following page with the table for

weighing stones that you constructed previously in question 1. Today a number written only with the characters 0

and 1 according to Leibniz’s “progression of twos” is said to be written in binary notation, or base 2. Find the binary

equivalents of the (base 10) numbers

34; 64; 100; 1015 :

Be sure to explain your work.

At a glance we see the reason for the famous property of the double geometric progression in

whole numbers, which states that given only one of these numbers in each degree, we can form

all other whole numbers below the double of the highest degree. Since, as we would say, for

example, 111 or 7 is the sum of four, two and one, and that 1101 or 13 is the sum of eight, four

and one.
1 0 0 4 1 0 0 0 8

1 0 2 1 0 0 4

1 1 1 1

1 1 1 7 1 1 0 1 13

This property is useful to investigators for weighing all kinds of masses with just a few weights

or could be used in monetary systems to provide a range of change with just a few coins.
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Table of Numbers

ı ı ı ı ı 0 0

ı ı ı ı ı 1 1

ı ı ı ı 1 0 2

ı ı ı ı 1 1 3

ı ı ı 1 0 0 4

ı ı ı 1 0 1 5

ı ı ı 1 1 0 6

ı ı ı 1 1 1 7

ı ı 1 0 0 0 8

ı ı 1 0 0 1 9

ı ı 1 0 1 0 10

ı ı 1 0 1 1 11

ı ı 1 1 0 0 12

ı ı 1 1 0 1 13

ı ı 1 1 1 0 14

ı ı 1 1 1 1 15

ı 1 0 0 0 0 16

ı 1 0 0 0 1 17

ı 1 0 0 1 0 18

ı 1 0 0 1 1 19

ı 1 0 1 0 0 20

ı 1 0 1 0 1 21

ı 1 0 1 1 0 22

ı 1 0 1 1 1 23

ı 1 1 0 0 0 24

ı 1 1 0 0 1 25

ı 1 1 0 1 0 26

ı 1 1 0 1 1 27

ı 1 1 1 0 0 28

ı 1 1 1 0 1 29

ı 1 1 1 1 0 30

ı 1 1 1 1 1 31

1 0 0 0 0 0 32

etc.

5. Using modern notation, Leibniz’s “double geometric progression” or “progression by twos” would be written 20,

21, 22, 23, : : : , 2n. Guess a simple formula for

20 C 21 C 22 C 23 C � � � C 2n

based on Leibniz’s verbal description “that given only one of these numbers in each degree,” we should be able to

achieve all whole numbers “below the double of the highest degree.” Prove that your guess is correct using only

algebra (addition and multiplication). Hint: Multiply .20 C 21 C 22 C 23 C � � � C 2n/ by 1, where 1 is written as 2� 1.

Leibniz continues:

This expression of numbers, once established, facilitates all kinds of operations.
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For example, addition (1)

1 1 0 6 1 0 1 5 1 1 1 0 14

1 1 1 7 1 0 1 1 11 1 0 0 0 1 17

. . . . . .

1 1 0 1 13 1 0 0 0 0 16 1 1 1 1 1 31

For subtraction

1 1 0 1 13 1 0 0 0 0 16 1 1 1 1 1 31

1 1 1 7 1 0 1 1 11 1 0 0 0 1 17

1 1 0 6 1 0 1 5 1 1 1 0 14

For multiplication (2)

1 1 3 1 0 1 5 1 0 1 5

1 1 3 1 1 3 1 0 1 5

1 1 1 0 1 1 0 1

1 1 1 0 1 1 0 1 0

. .

1 0 0 1 9 1 1 1 1 15 1 1 0 0 1 25

For division

15 6 1 6 1 1 1 1 0 1 5

3 6 1 6 1 6 1 1

6 1 1

All these operations are so easy that we shall never have to guess or apply trial and error, as we

must do in ordinary division. Nor do we need to learn anything by rote here, as must be done

in ordinary calculation, where, for example, it is necessary to know that 6 and 7 taken together

makes 13, and that 5 multiplied by 3 gives 15, following the so-called Pythagorean table1 that

one times one is one. But here everything is found and proven from the source, just as we see

in the preceding examples under the signs (1) and (2).

6. Using your knowledge of base 10 addition, explain the examples of base 2 addition given above by Leibniz. What

is the likely meaning of the dot Leibniz includes in certain columns for addition? Using binary arithmetic, compute

1101C1110, without converting these numbers to base 10. Explain the examples for binary subtraction, multiplication

and division above. Keep in mind that these should be base 2 analogues of base 10 procedures. Since Leibniz’s example

for division may be incomplete by today’s standards, you may wish to supplement his work with additional steps,

indicating clearly what multiples of 3 are subtracted from 15 in base 2. Finally, using binary arithmetic, compute the

following.

11010� 1101; .1101/ � .11/; 1101� 101 :

Be sure to explain your work. For the division problem, you may state what the remainder is in terms of a binary whole

number, without writing it as a fraction.

However, I am not at all recommending this manner of counting as a replacement for the ordinary

practice of tens. For aside from the fact that we are accustomed to this, there is no need to learn

what we have already memorized; the practice of tens is shorter, the numbers not as long. If

we were accustomed to proceed by twelves or by sixteens, there would be even more of an

1This is likely a reference to the multiplication table.
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advantage. As compensation for its length, however, calculation by twos, that is by 0 and by 1, is

most basic for science; it permits new discoveries which become useful even in the practice of

arithmetic, and especially in geometry, because when the numbers are reduced to the simplest

principles, like 0 and 1, a wonderful order appears everywhere. For example, even in the Table

of Numbers, we see in each column those periods which always reappear. In the first column

it is 01, in the second 0011, in the third 00001111, in the fourth 0000000011111111, and so

on. Small zeroes are put into the table to fill the void at the beginning of the column, and to

mark these periods better. Lines are also traced in the table indicating that what these lines

enclose always reoccurs below them. The square numbers, cubes and other powers, as well

as the triangular numbers,2 pyramidal numbers,3 and other figurate numbers, also have similar

periods, so that one can immediately write the tables without even calculating. A certain tedium

at the beginning, which later serves to spare us calculation and to allow us to go by rule infinitely

far, is extremely advantageous.

What is surprising in this calculation is that this arithmetic of 0 and 1 contains the mystery of

lines of an ancient king and philosopher named Fuxi, who is believed to have lived more than

four thousand years ago and whom the Chinese regard as the founder of their empire and of

their sciences. There are several figures of lines that are attributed to him; they all go back to

this arithmetic. But it is enough to place here the so-called figures of the eight Cova [trigrams],

which are basic, and to add to these an explanation which is manifest, so that it is understood

that a whole line — signifies unity or one, and that a broken line – – signifies zero or 0.

– – — – – — – – — – – —

– – – – — — – – – – — —

– – – – – – – – — — — —

0 ) 0 ) 0 ) 0 )

0 0 ) ) 0 0 ) )

0 0 0 0 ) ) ) )

0 1 10 11 100 101 110 111

0 1 2 3 4 5 6 7

: : : [S]carcely two years ago I sent to the Reverend Father Bouvet, the famous French Jesuit

living in Peking, my manner of counting by 0 and 1, and it was all he needed to recognize that

this holds the key to Fuxi’s4 figures. So he wrote to me on November 14, 1701, sending me the

great figure of this princely philosopher which goes to 64. : : :

Although striking to Leibniz, the link between the 64 hexagrams of the Yijing and binary numeration appears today

as only an intellectual curiosity. The base 2 system did not provide a common origin to Christianity and Confucianism,

as Leibniz and Bouvet had sought.

The Electronic Age

John von Neumann (1903–1957) was a leading mathematician, physicist and engineer of the twentieth century, having

contributed significantly to the foundations of quantum mechanics, the development of the atomic bomb, and the log-

ical structure of the electronic digital computer [8, 10]. Born in Budapest Hungary, the young von Neumann showed

a gift for mathematics, received a doctorate in the subject from the University of Budapest and a degree in chemi-

cal engineering from the Eidgenössische Technische Hochschule (Swiss Federal Polytechnic) in Zurich. He met the

renowned David Hilbert (1862–1943) on a visit to Göttingen in 1926, after which he was offered the position of a

2The sequence 1, 3, 6, 10, 15, : : : , giving the number of dots in certain triangles [12, p. 49] forms the triangular numbers.
3The sequence 1, 4, 10, 20, 35, : : : , giving the number of dots in certain pyramids [19, p. 76] forms the pyramidal numbers.
4The mythical first Emperor of China.
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Privatdozent (an un-salaried lecturer) at the University of Berlin and then at the University of Hamburg. In 1930 he

visited the United States, accepting a salaried lectureship at Princeton University, a move which would shape the rest

of his life.

Becoming a Professor of Mathematics at the prestigious Institute for Advanced Study (Princeton, New Jersey) in

1933, von Neumann was able to devote his time to the study of analysis, continuous geometry, fluid dynamics, wave

propagation and differential equations. In 1943 he became a member of the Los Alamos Laboratory and helped de-

velop the atomic bomb. The particular problem he faced, the implosion problem, was how to produce an extremely

fast reaction in a small amount of the uranium isotope U235 in order to cause a great amount of energy to be released.

In conjunction with Seth Neddermeyer, Edward Teller and James Tuck, this problem was solved with a high explo-

sive lens designed to produce a spherical shock wave to cause the implosion necessary to detonate the bomb. Von

Neumann’s strength was his ability to model theoretical phenomena mathematically and solve the resulting equations

numerically [8, p. 181], which required adroit skills in calculation.

Meanwhile in 1941 John William Mauchly (1907–1980), as a newly appointed Assistant Professor at the Univer-

sity of Pennsylvania’s Moore School of Electrical Engineering, began discussions with graduate student John Presper

Eckert (1919–1995) and others about the possibility of an electronic digital computing device that would be faster

and more accurate than any existing machine, designed in part to meet the computing needs of the Ballistics Research

Laboratory (BRL) of the Army Ordnance Department in Aberdeen, Maryland. With the help of mathematician and

First Lieutenant Herman Goldstine (1913–), Mauchly’s proposal for a high-speed vacuum-tube computer received

funding from the BRL in 1943. The device was dubbed the Electronic Numerical Integrator and Computer (ENIAC).

Tested in late 1945, and unveiled in 1946, the ENIAC was a behemoth containing 18,000 vacuum tubes and requiring

1,800 square feet of floor space for the computer alone [15, p. 133]. Arithmetic on the ENIAC was performed using

the base 10 decimal system, requiring the ability to store ten different values for each digit of a numerical quantity.

The multiplication table for all digits between zero and nine was also stored on the machine. The ENIAC was not

programmable in the modern sense of a coded program, and contained no sub-unit similar to a present-day compiler.

To alter its function, i.e., to implement a different numerical algorithm, external switches and cables had to be reposi-

tioned. Designs for a more robust machine may have been in place as the ENIAC went into production, but the rush to

meet the needs of the war effort took precedence.

By serendipity, in the summer of 1944 Goldstine met von Neumann at a railway station in Aberdeen, both working

on separate highly classified projects. Goldstine writes: “Prior to that time I had never met this great mathematician,

but I knew much about him of course and had heard him lecture on several occasions” [8, p. 182]. After a discussion of

the computing power of the ENIAC, von Neumann became keenly interested in this machine, and in late 1945 tested it

on computations needed for the design of the hydrogen bomb. Von Neumann quickly became involved with the logical

structure of the next generation of computing machinery, the Electronic Discrete Variable Automatic Computer (ED-

VAC), designed around the “stored program” concept. The instructions of an algorithm could be stored electronically

on the EDVAC and then executed in sequential order. In this way, von Neumann had outlined a “universal computing

machine” in the sense of Alan Turing (1912–1954), with the universal character referring to the machine’s ability

to execute any algorithmic procedure that could be reduced to simple logical steps. Turing first introduced a logical

description of his universal computing machine in 1936 [17] as the solution to a problem posed by David Hilbert. Von

Neumann, who had studied logic early in his career, was certainly aware of Turing’s work, and in 1938 had offered

Turing an assistantship at the Institute for Advanced Study [8, p. 271]. In 1945 von Neumann issued his white pa-

per “First Draft of a Report on the EDVAC” [18] under the auspices of the University of Pennsylvania and the United

States Army Ordnance Department. Although this draft was never revised, the ideas therein soon became known as von

Neumann architecture in computer design. Let’s read a few excerpts from this paper [18] related to binary arithmetic.

First Draft of a Report on the EDVAC

2.2 First: Since the device is primarily a computer, it will have to perform the elementary oper-

ations of arithmetic most frequently. There are addition, subtraction, multiplication and division:

C, �, �, �. It is therefore reasonable that it should contain specialized organs for just these
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operations. At any rate a central arithmetical part of the device will probably have to exist, and

this constitutes the first specific part: CA.

4.3 It is clear that a very high speed computing device should ideally have vacuum tube ele-

ments. Vacuum tube aggregates like counters and scalers have been used and found reliable at

reaction times (synaptic delays) as short as a microsecond ( D 10�6 seconds).

5.1 Let us now consider certain functions of the first specific part: the central arithmetical part

CA.

The element in the sense of 4.3, the vacuum tube used as a current valve or gate, is an all-

or-none device, or at least it approximates one: According to whether the grid bias is above

or below cut-off; it will pass current or not. It is true that it needs definite potentials on all its

electrodes in order to maintain either state, but there are combinations of vacuum tubes which

have perfect equilibria: Several states in each of which the combination can exist indefinitely,

without any outside support, while appropriate outside stimuli (electric pulses) will transfer it

from one equilibrium into another. These are the so called trigger circuits, the basic one having

two equilibria. The trigger circuits with more than two equilibria are disproportionately more

involved.

Thus, whether the tubes are used as gates or as triggers, the all-or-none, two equilibrium ar-

rangements are the simplest ones. Since these tube arrangements are to handle numbers by

means of their digits, it is natural to use a system of arithmetic in which the digits are also two

valued. This suggests the use of the binary system.

5.2 A consistent use of the binary system is also likely to simplify the operations of multiplication

and division considerably. Specifically it does away with the decimal multiplication table. In other

words: Binary arithmetic has a simpler and more one-piece logical structure than any other,

particularly than the decimal5 one.

7. Let a and b denote binary variables with one digit each. Using only the logical connectives ^ (and), _ (or) and �
(not), find a logical expression which gives the digit in the ones place (the right-hand digit) of a C b. Find a logical

expression which gives the digit in the twos place (the left-hand digit) of aC b. Explain your answer.

Extra Credit A: Find a pattern in the binary representation of the square numbers 1, 4, 9, 16, 25, : : : . Leibniz claims

to have found such patterns.

Extra Credit B: If in question 1 above, standard weights can be placed on both sides of the balance, what four

standard weights should be used in order to weigh all stones of integral weight between 1 and 40 inclusive?

5base 10
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Notes for the instructor

The project is ideal for a beginning-level discrete mathematics or computer programming course. It could be assigned

independently or in conjunction with the project “Turing Machines and Binary Addition,” available from the web

resource [2]. After completion of the project, the instructor may wish to lead the class in the discovery of divisibility

properties of integers that become apparent after studying their expression in binary form. The pattern of zeroes in the

base 2 expansion of the perfect squares leads to the conjecture that 8j.n2 � 1/, n an odd integer, where the vertical bar

denotes “divides.” In this way, the class is following in Leibniz’s footsteps when he claims that “calculation by twos

: : : is most basic for science; it permits new discoveries, : : : , because when the numbers are reduced to the simplest

principles, like 0 and 1, a wonderful order appears everywhere” [13].
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Arithmetic Backwards from

Shannon to the Chinese Abacus

Jerry M. Lodder
New Mexico State University

Recall that in the 1945 white paper “First Draft of a Report on the EDVAC” (Electronic Discrete Variable Automatic

Computer), John von Neumann (1903–1957) advocated the use of binary arithmetic for the digital computers of his

day. Vacuum tubes afforded these machines a speed of computation unmatched by other calculational devices, with von

Neumann writing: “Vacuum tube aggregates . . . have been found reliable at reaction times as short as a microsecond

. . . ” [7, p. 188].

Predating this, in 1938 Claude Shannon (1916–2001) published a ground-breaking paper “A Symbolic Analysis of

Relay and Switching Circuits” [4] in which he demonstrated how electronic circuits can be used for binary arithmetic,

and more generally for computations in Boolean algebra and logic. These relay contacts and switches performed at

speeds slower than vacuum tubes. Shannon identified an economy of representing numbers electronically in binary

notation as well as an ease for arithmetic operations, such as addition. These advantages of base two arithmetic are

nearly identical to those cited by von Neumann. Shannon [4] writes:

A circuit is to be designed that will automatically add two numbers, using only relays and

switches. Although any numbering base could be used the circuit is greatly simplified by us-

ing the scale of two. Each digit is thus either 0 or 1; the number whose digits in order are ak ,

ak�1, ak�2, : : :, a2, a1, a0 has the value
Pk

j D0 aj 2
j .

1. Explain how the base 10 number 95 can be written in base 2 using the above formula. In particular, compute ak ,

ak�1, ak�2, : : :, a2, a1, a0 for the number 95. What is k in this case? Write
Pk

j D0 aj 2
j in terms of addition symbols

using the above value for k and each value of aj .

Claude Elwood Shannon was a pioneer in electrical engineering, mathematics and computer science, having founded

the field of information theory, and discovered key relationships between Boolean algebra and computer circuits [6].

Born in the state of Michigan in 1916, he showed an interest in mechanical devices, and studied both electrical engi-

neering and mathematics at the University of Michigan. Having received Bachelor of Science degrees in both of these

subjects, he then accepted a research assistantship in the Department of Electrical Engineering at the Massachusetts

Institute of Technology. The fundamental relation between Boolean logic and electrical circuits formed the topic of his

master’s thesis at MIT, and became his first published paper [4], for which he received an award from the combined

engineering societies of the United States. In 1940 he earned his doctorate in mathematics from MIT with the disser-

tation “An Algebra for Theoretical Genetics.” He spent the academic year 1940–41 visiting the Institute for Advanced

Study in Princeton, New Jersey, where he began to formulate his ideas about information theory and efficient com-

munication systems. The next fifteen years were productively spent at Bell Laboratories, and in 1948 he launched a

new field of study, information theory, with the paper “A Mathematical Theory of Communication” [5]. He published

extensively in communication theory, cryptography, game theory and computer science. In 1956 Dr. Shannon accepted

a professorship at MIT, and retired in 1978.
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Let’s read a few excerpts from “A Symbolic Analysis of Relay and Switching Circuits” [4] with an eye toward

understanding the circuitry behind binary arithmetic.

A Symbolic Analysis of Relay

and Switching Circuits

Claude E. Shannon

I. Introduction

In the control and protective circuits of complex electrical systems it is frequently necessary to

make intricate interconnections of relay contacts and switches. Examples of these circuits occur

in automatic telephone exchanges, industrial motor-control equipment, and in almost any circuits

designed to perform complex operations automatically. In this paper a mathematical analysis of

certain of the properties of such networks will be made. . . .

II. Series-Parallel Two-Terminal Circuits

Fundamental Definitions and Postulates

We shall limit our treatment of circuits containing only relay contacts and switches, and therefore

at any given time the circuit between two terminals must be either open (infinite impedance) or

closed (zero impedance). Let us associate a symbol Xab or more simply X with the terminals

a and b. This variable, a function of time, will be called the hindrance of the two-terminal circuit

a–b. The symbol 0 (zero) will be used to represent the hindrance of a closed circuit and the

symbol 1 (unity) to represent the hindrance of an open circuit. Thus when the circuit a–b is open

Xab D 1 and when closed Xab D 0. . . . Now let the symbol + (plus) be defined to mean the series

connection of the two-terminal circuits whose hindrances are added together. Thus Xab C Xcd

is the hindrance of the circuit a–d when b and c are connected together. Similarly the product

of two hindrances Xab �Xcd or more briefly XabXcd will be defined to mean the hindrance of the

circuit formed by connecting the circuits a–b and c–d in parallel. A relay contact or switch will be

represented in a circuit by the symbol in Figure 1, the letter being the corresponding hindrance

function. Figure 2 shows the interpretation of the plus sign and Figure 3 the multiplication sign.

a ı
Xab

ı b

Figure 1. Figure 1. Symbol for hindrance function.

ı
X

ı ı
Y

ı D ı
X C Y

ı

Figure 2. Figure 2. Interpretation of addition.

ı
X

ı
D ı

X � Y
ı

ı
Y

ı

Figure 3. Figure 3. Interpretation of multiplication.
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2. ConsiderXab as a Boolean variable with only two possible values 0 or 1. If Xab D 0, then the switch in Figure 1

is closed, and current flows from a to b. If Xab D 1, then the switch is open, and current does not flow from a to b.

Now let X and Y be two Boolean variables. In a table listing all possible values for X and Y , record the results for X

and Y joined in series, i.e., X C Y . Be sure to justify your answer by discussing whether current flows in the series

circuit. Note that if current flows from left to right in Figure 2, then X C Y D 0, while if current does not flow, then

X C Y D 1. To what extent does X C Y represent a usual notation of addition? To what extent does X C Y represent

a construction in logic?

3. In a table listing all possible values for X and Y , record the results for X and Y joined in parallel, i.e., X � Y .

Justify your answer by discussing whether current flows in the parallel circuit. To what extent does X � Y represent a

usual notion of multiplication? To what extent does X � Y represent a construction in logic?

4. These basic series and parallel circuits may be combined in any combination, using any finite number of switches.

let X , Y , Z and W be Boolean variables, used as switches in the picture below. In a table listing all possible values

for X , Y , Z and W , compute the value (0 or 1) of the circuit:

ı
X

ı ı
Y

ı

ı
Z

ı ı
W

ı

Explain your result in terms of a simple logical construction involving the results for the basic circuits X C Y and

Z CW :

ı
X

ı ı
Y

ı ı
Z

ı ı
W

ı

Shannon continues:

We shall now define a new operation to be called negation. The negative of a hindrance X will

be written X 0 and is defined to be a variable which is equal to 1 when X equals 0 and equal to

0 when X equals 1.

5. In a table listing both values for X , compute the value of the circuit:

ı
X

ı ı
X 0

ı

In another table, compute the value of the circuit:

ı
X

ı

ı
X 0

ı

Can you interpret these tables in terms of simple logical constructions?

6. Now let a and b be binary variables with one digit. Recall from the project “Binary Arithmetic: From Leibniz

to von Neumann” that the digit in the ones place (the right-hand digit) of the arithmetic sum a C b can be expressed

using the “exclusive or” operation. Find a circuit which gives this digit. Justify your answer with a table that lists all



182 Part II Historical Projects in Discrete Mathematics and Computer Science

possible values of a and b. Note that the arithmetic sum aC b is the result of adding the binary values of a and b, not

a and b combined in series.

7. Let a and b be binary variables with one digit as in question 6. Find a circuit which gives the digit in the twos

place (the left-hand digit) of the arithmetic sum a C b. Justify your answer using a table listing all possible values of

a and b.

8. Let a and b be binary variables with two possible digits. In Shannon’s notation,

a D a12
1 C a02

0; b D b12
1 C b02

0:

The digits of a are a1, a0, and the digits of b are b1, b0. Let c0 be the result of the carried digit from a0 C b0. Either

c0 D 0 or c0 D 1. In terms of the values for a1, b1 and c0, when is the digit in the twos place for the arithmetic sum

a C b equal to zero? equal to one? Using a1, b1 and c0 as switches, find a circuit which gives the digit in the twos

place for aC b. Justify your answer using a table that lists all possible values for a1, b1 and c0.

9. Let a and b be binary variables with two digits as in question 8. Using a1, b1 and c0 as switches, find a circuit

which gives the digit in the fours place (the left-most digit) of a C b. Justify your answer using a table listing all

possible values for a1, b1 and c0.

Recall that of binary numeration, Leibniz [1, p. 225] writes:

However, I am not at all recommending this manner of counting as a replacement for the ordinary

practice of tens. . . . [The] practice of tens is shorter, the numbers not as long. If we were

accustomed to proceed by twelves or by sixteens, there would be even more of an advantage.

Writing large numbers by hand in binary notation easily results in transcription errors, since there are often many digits

in a number base 2. However, entering base 10 numbers on a computer requires a conversion to base 2 at some level,

a conversion which is not readily made, since 10 is not an integral power of 2. Let’s now examine the Chinese abacus,

and remember that Leibniz’s intellectual curiosity had led him to the study of Chinese culture and religion, with an

interpretation of the ancient text Yijing (the I-ching or Book of Changes) in terms of binary numeration.

The Chinese abacus (suan pan) consists of bars set in a rectangular frame, with the number of bars being 9, 11, 13,

17 or more [2, p. 211]. Each bar contains two upper beads and five lower beads, separated by a crossbar. Each upper

bead counts as five units, and each lower bead counts as one unit. Traditionally numbers are represented positionally

using base 10. A decimal point can be arbitrarily chosen between two bars of the abacus, and the digits are then

arranged from left to right in decreasing powers of ten, so that the ones place is to the right of the tens place, the tens

place is to the right of the hundreds place [3, p. 74–75]. Before representing a number on the abacus, all beads are

moved away from the central crossbar so that they rest against the frame. Placing the decimal point at the far right of

the frame, the base 10 number 197 would be displayed by moving one upper bead and two lower beads against the

crossbar of the right-most bar, one upper bead and four lower beads against the crossbar of the bar immediately to the

left of that, and one lower bead against the crossbar of the next bar.

The number 197 set on a Chinese abacus.

Go to the library or the world wide web and research how (base 10) addition is performed on an abacus. Pay particular

attention to the operation known today as “carrying.” Notice that representing a number in base 10 requires a minimum

of ten distinct values for bead arrangements along a given bar, which includes the value zero.
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10. On a Chinese abacus, how many distinct numerical values can be represented along a given bar, including the

value zero? Note that certain numbers greater than ten can be constructed by using two five-beads on the same bar. Let

N denote this number of distinct values. If the full range of values for bead arrangements is employed on each bar,

what number base is represented on a Chinese abacus?

11. UsingN as in question 10, write the base 10 numbers from 1 to 20 inclusive in base N . Although you may invent

any symbols that you wish for additional digits in this new base, be sure to explain what your symbols mean. For now,

call the new digits n1, n2, n3, etc., where n1 D 10, n2 D 11, n3 D 12, etc.

12. In a table list the base 10 numbers 1 through 32 inclusive, their binary equivalents and their base N equivalents.

Is there a pattern between the base 2 and base N representations? Explain.

13. Consider the number 9n25n4 in base N , where n4 is in the ones place, 5 in the N ’s place, n2 in the N 2’s place,

and 9 in the N 3’s place. Explain how to perform the addition

9n25n4 C n172n2

in base N on a Chinese abacus. What is the value of this sum in base N ? Convert the final sum to base 10, and explain

the conversion process.

Extra Credit: What is the sum 9n25n4 C n172n2 in base 2? Justify your answer.

Notes for the instructor

The project builds naturally on the previous offering “Binary Arithmetic: From Leibniz to von Neumann,” and is

well suited for a first course in discrete mathematics or computer science. The project also includes an examination

of arithmetic on a Chinese abacus, and, in a departure from the historical record, explores base 16 (hexadecimal)

operations on the abacus. This use results from the full potential of all numerical values that can be represented on

one bar of the Chinese abacus, and provides as an enrichment exercise in two-power base arithmetic. Today base 16 is

often used by computer scientists as a shorthand for base 2, since, as observed by Leibniz, larger bases afford shorter

lengths of notation in place value numeration.
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Pascal’s Treatise on the Arithmetical Triangle:
Mathematical Induction, Combinations,

the Binomial Theorem and Fermat’s Theorem1

David Pengelley
New Mexico State University

Introduction

Blaise Pascal (1623–1662) was born in Clermont-Ferrand in central France. Even as a teenager his father introduced

him to meetings for mathematical discussion in Paris run by Marin Mersenne, who served as a primary conduit for

transmitting mathematical ideas widely at that time, before the existence of any research journals. He quickly became

involved in the development of projective geometry, the first in a sequence of highly creative mathematical and sci-

entific episodes in his life, punctuated by periods of religious fervor. Around age twenty-one he spent several years

developing a mechanical addition and subtraction machine, in part to help his father in tax computations as a local

administrator. It was the first of its kind ever to be marketed. Then for several years he was at the center of efforts

to understand vacuum, which led to an understanding of barometric pressure. In fact the scientific unit of pressure is

named the pascal. He is also known for Pascal’s Law on the behavior of fluid pressure.

Around 1654 Pascal conducted his studies on the Arithmetical Triangle (“Pascal’s Triangle”) and its relationship to

probabilities. His correspondence with Pierre de Fermat (1601–1665) in that year marks the beginning of probability

theory. Several years later, Pascal refined his ideas on area problems via the method of indivisibles already being de-

veloped by others, and solved various problems of areas, volumes, centers of gravity, and lengths of curves. Later in

the seventeenth century, Gottfried Leibniz, one of the two inventors of the infinitesimal calculus which supplanted the

method of indivisibles, explicitly credited Pascal’s approach as stimulating his own ideas on the so-called characteristic

triangle of infinitesimals in his fundamental theorem of calculus. After only two years of work on the calculus of indi-

visibles, Pascal fell gravely ill, abandoned almost all intellectual work to devote himself to prayer and charitable work,

and died three years later at age thirty-nine. In addition to his work in mathematics and physics, Pascal is prominent

for his Provincial Letters defending Christianity, which gave rise to his posthumously published Pensées (Thoughts)

on religious philosophy [1, 2]. Pascal was an extremely complex person, and one of the outstanding scientists of the

mid-seventeenth century, but we will never know how much more he might have accomplished with more sustained

efforts and a longer life.

Pascal’s Traité du Triangle Arithmetique (in English translation in [5, vol. 30]) makes a systematic study of the

numbers in his triangle. They have simultaneous roles in mathematics as figurate numbers2, combination numbers,

and binomial coefficients, and he elaborates on all these. Given their multifaceted nature, it is no wonder that these

ubiquitous numbers had already been in use for over 500 years, in places ranging from China to the Islamic world [3].

Pascal, however, was the first to connect binomial coefficients with combinatorial coefficients in probability. In fact, a

1With thanks to Joel Lucero-Bryan and Jerry Lodder.
2Figurate numbers count the number of equally spaced dots in geometric figures. Especially important to Pascal were the numbers of dots in

equilateral triangles, triangular pyramids, and so forth in higher dimensions.

185



186 Part II Historical Projects in Discrete Mathematics and Computer Science

major motivation for Pascal was a question from the beginnings of probability theory, about the equitable division of

stakes in an interrupted game of chance. The question had been posed to Pascal around 1652 by Antoine Gombaud,

the Chevalier de Méré, who wanted to improve his chances at gambling: Suppose two players are playing a fair game,

to continue until one player wins a certain number of rounds, but the game is interrupted before either player reaches

the winning number. How should the stakes be divided equitably, based on the number of rounds each player has

won [3, p. 431, 451ff]? The solution requires the combinatorial properties inherent in the numbers in the Arithmetical

Triangle, as Pascal demonstrated in his treatise, since they count the number of ways various occurrences can combine

to produce a given result. The Arithmetical Triangle overflows with fascinating patterns and applications, and we will

see several of these in reading his treatise. We will study parts of Pascal’s explanation of the connections between the

numbers in his triangle and combination numbers. The reader is encouraged to read his entire treatise to see its many

other aspects and connections.

From Pascal’s treatise we will also learn the principle of mathematical induction. Pascal explains this in the specific

context of proofs about the numbers in the triangle. The basic idea of mathematical induction had occurred in the

mathematics of the Islamic world during the Middle Ages, and in southern Europe in the fourteenth century [3], but

Pascal’s was perhaps the first text to make a complete explicit statement and justification of this extremely powerful

method of proof in modern mathematics. Mathematical induction is an astonishingly clever technique that allows us

to prove claims about infinitely many interlinked phenomena all at once, even when proving just a single one of them

in isolation would be very difficult! It will be a challenging technique to master, but will provide tremendous power

for future mathematical work.

Learning about the connections of the Arithmetical Triangle to the binomial theorem in algebra will also allow an

application to proving a famous and extremely important theorem on prime numbers discovered by Pascal’s corre-

spondent Pierre de Fermat (1601–1665) of Toulouse, on congruence remainders and prime numbers. This prepares

one to understand the RSA cryptosystem, which today is at the heart of securing electronic transactions. We’ll see how

all these things are interconnected, and along the way we’ll also acquire important mathematical tools, like notations

for general indexing, summations, and products, and learn how to work with recurrence relations.

Part One: The Arithmetical Triangle and Mathematical Induction

Let us begin reading Blaise Pascal’s

TREATISE ON THE ARITHMETICAL TRIANGLE

Definitions

I call arithmetical triangle a figure constructed as follows:

From any point, G, I draw two lines perpendicular to each other, GV, G� in each of which I

take as many equal and contiguous parts as I please, beginning with G, which I number 1, 2, 3,

4, etc., and these numbers are the exponents of the sections of the lines.

Next I connect the points of the first section in each of the two lines by another line, which is

the base of the resulting triangle.

In the same way I connect the two points of the second section by another line, making a

second triangle of which it is the base.

And in this way connecting all the points of section with the same exponent, I construct as

many triangles and bases as there are exponents.

Through each of the points of section and parallel to the sides I draw lines whose intersec-

tions make little squares which I call cells.

Cells between two parallels drawn from left to right are called cells of the same parallel row,

as, for example, cells G, � , � , etc., or ',  , � , etc.

Those between two lines drawn from top to bottom are called cells of the same perpendicular

row, as, for example, cells G; '; A;D; etc., or �;  ; B; etc.
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�
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� ı �

Those cut diagonally by the same base are called cells of the same base, as, for example,

D;B; �; �; or A; ; � .

Cells of the same base equidistant from its extremities are called reciprocals, as, for example,

E;R and B; �; because the parallel exponent of one is the same as the perpendicular exponent

of the other, as is apparent in the above example, where E is in the second perpendicular row

and in the fourth parallel row and its reciprocal, R, is in the second parallel row and in the

fourth perpendicular row, reciprocally. It is very easy to demonstrate that cells with exponents

reciprocally the same are in the same base and are equidistant from its extremities.

It is also very easy to demonstrate that the perpendicular exponent of any cell when added

to is parallel exponent exceeds by unity the exponent of its base.

For example, cell F is in the third perpendicular row and in the fourth parallel row and in the

sixth base, and the exponents of rows 3 and 4, added together, exceed by unity the exponent of

base 6, a property which follows from the fact that the two sides of the triangle have the same

number of parts; but this is understood rather than demonstrated.

Of the same kind is the observation that each base has one more cell than the preceding

base, and that each has as many cells as its exponent has units; thus the second base, '� , has

two cells, the third, A � , has three, etc.

Now the numbers assigned to each cell are found by the following method:

The number of the first cell, which is at the right angle, is arbitrary; but that number having

been assigned, all the rest are determined, and for this reason it is called the generator of the

triangle. Each of the others is specified by a single rule as follows:

The number of each cell is equal to the sum of the numbers of the perpendicular and parallel

cells immediately preceding. Thus cell F , that is, the number of cell F; equals the sum of cell C

and cell E; and similarly with the rest.
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Whence several consequences are drawn. The most important follow, wherein I consider

triangles generated by unity, but what is said of them will hold for all others.

First Consequence

In every arithmetical triangle all the cells of the first parallel row and of the first perpendicular

row are the same as the generating cell.

For by definition each cell of the triangle is equal to the sum of the immediately preceding

perpendicular and parallel cells. But the cells of the first parallel row have no preceding perpen-

dicular cells, and those of the first perpendicular row have no preceding parallel cells; therefore

they are all equal to each other and consequently to the generating number.

Thus ' D G C 0; that is, ' D G;

A D ' C 0; that is, ';

� D G C 0; � D � C 0;

And similarly of the rest.

Second Consequence

In every arithmetical triangle each cell is equal to the sum of all the cells of the preceding parallel

row from its own perpendicular row to the first, inclusive.

Let any cell, !; be taken. I say that it is equal to R C � C  C '; which are the cells of the

next higher parallel row from the perpendicular row of ! to the first perpendicular row.

This is evident if we simply consider a cell as the sum of its component cells.
For ! equals RC C

„ƒ‚…

� C B
„ƒ‚…

 C A
„ƒ‚…
',

for A and ' are equal to each other by the preceding consequence.

Therefore ! D RC � C  C '.

Third Consequence

In every arithmetical triangle each cell is equal to the sum of all the cells of the preceding

perpendicular row from its own parallel row to the first, inclusive.

Let any cell, C; be taken. I say that it is equal to BC C�; which are the cells of the preceding

perpendicular row from the parallel row of cell C to the first parallel row.

This is also apparent, as above, simply by the interpretation of cells.
For C D B C �

„ƒ‚…

 C �
„ƒ‚…

�;
for � D � by the first consequence.

Therefore C D B C C �:

Fourth Consequence

In every arithmetical triangle each cell exceeds by unity the sum of all the cells within its parallel

and perpendicular rows, exclusive.

Let any cell, �; be taken. I say that � � G D R C � C  C ' C � C � C � C G; which are all

the numbers between row �!CBA and row �S� exclusive.

This is also apparent by interpretation.
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For � D �CR C !
„ ƒ‚ …

� C � C C
„ ƒ‚ …

� C  C B
„ ƒ‚ …

G C ' C A
„ƒ‚…

G:
Therefore � D �CR C � C � C � C  CG C ' CG:

N.B. I have written in the enunciation each cell exceeds by unity because the generator

is unity. If it were some other number, the enunciation should read: each cell exceeds by the

generating number.

1. Pascal’s Triangle and its numbers

(a) Let us use the notation Ti;j to denote what Pascal calls the number assigned to the cell in parallel row i

(which we today call just row i ) and perpendicular row j (which we today call column j ). We call the

i and j by the name indices (plural of index) in our notation. Using this notation, explain exactly what

Pascal’s rule is for determining all the numbers in all the cells. Be sure to give full details. This should

include explaining for exactly which values of the indices he defines the numbers.

(b) In terms of our notation Ti;j , explain his terms exponent, base, reciprocal, parallel row, perpendicular row,

and generator.

(c) Rewrite Pascal’s first two “Consequences” entirely in the Ti;j notation.

(d) Rewrite his proofs of these word for word in our notation also.

(e) Do you find his proofs entirely satisfactory? Explain why or why not.

(f) Improve on his proofs using our notation. In other words, make them apply for arbitrary prescribed situa-

tions, not just the particular examples he lays out.

2. Modern mathematical notation

Read in a modern textbook about index, summation, and product notations, and recurrence relations. Do some

exercises.

Fifth Consequence

In every arithmetical triangle each cell is equal to its reciprocal.

For in the second base, '�; it is evident that the two reciprocal cells, '; �; are equal to each

other and to G.

In the third base, A; ; �; it is also obvious that the reciprocals, �; A; are equal to each other

and to G:

In the fourth base it is obvious that the extremes, D; �; are again equal to each other and to

G:

And those between, B; �; are obviously equal since B D AC and � D � C . But � C D
AC  by what has just been shown. Therefore, etc.

Similarly it can be shown for all the other bases that reciprocals are equal, because the

extremes are always equal to G and the rest can always be considered as the sum of cells in

the preceding base which are themselves reciprocals.

3. Symmetry in the triangle: first contact with mathematical induction

Write the Fifth Consequence using our index notation. Use index notation and the ideas in Pascal’s proof to

prove the Consequence in full generality, not just for the example he gives. Explain the conceptual ideas behind

the general proof.
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4. Mathematical induction: gaining more familiarity

(a) Read in a modern textbook about mathematical induction.

(b) Prove Pascal’s First Consequence by mathematical induction. (Hint: for a proof by mathematical induction,

always first state very clearly exactly what the n-th mathematical statement P.n/ says. Then state and prove

the base step. Then state the inductive step very clearly before you prove it.)

(c) Write the general form of Pascal’s Second Consequence, and give a general proof using summation nota-

tion, but following his approach.

(d) Now prove the Second Consequence by mathematical induction, i.e., a different proof.

(e) Optional: More patterns.

i. Write the Fourth Consequence using summation notation. Hint: You can write it using a sum of sums.

Try writing Pascal’s proof in full generality, using summation notation to help. If you don’t complete

it his way, explain why it is difficult.

ii. Prove the Fourth Consequence by mathematical induction.

Seventh Consequence

In every arithmetical triangle the sum of the cells of each base is double that of the preceding

base.

Let any base, DB��; be taken. I say that the sum of its cells is double the sum of the cells of

the preceding base, A � .

For the extremes . . . . . . . . . . . . . . . . . . . . . . . D;
„ƒ‚…

�;
„ƒ‚…

are equal to the extremes . . . . . . . . . . . . . . . A; �;

and each of the rest . . . . . . . . . . . . . . . . . . . . B;
„ƒ‚…

�;
„ƒ‚…

is equal to two cells of the other base . . . AC  ;  C �:

Therefore D C �C B C � D 2AC 2 C 2�:

The same thing is demonstrated in the same way of all other bases.

Eighth Consequence

In every arithmetical triangle the sum of the cells of each base is a number of the double pro-

gression beginning with unity whose exponent is the same as that of the base.

For the first base is unity.

The second is double the first; therefore it is 2.

The third is double the second; therefore it is 4.

And so on to infinity.

N.B. If the generator were not unity but some other number, such as 3, the same thing would

be true. But we should have to take not the numbers of the double progression beginning with

unity, that is, 1, 2, 4, 8, 16, etc., but those of the double progression beginning with the generator

3, that is, 3, 6, 12, 24, 48, etc.

5. Sums of bases in the triangle: a geometric progression

(a) Use our index notation Ti;j to explain exactly which are the numbers in the n-th base.

(b) In full generality, write the Seventh Consequence and its proof, using our Ti;j notation.

(c) Write the statement of the Eighth Consequence in our notation, using modern exponential notation to

describe his double progression. Use summation notation as needed, and introduce additional new notation

if helpful. Then prove the Eighth Consequence by mathematical induction.
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The next consequence is the most important and famous in the whole treatise. Pascal derives a formula for the ratio

of consecutive numbers in a base. From this he will obtain an elegant and efficient formula for all the numbers in the

triangle.

Twelfth Consequence

In every arithmetical triangle, of two contiguous cells in the same base the upper is to the lower

as the number of cells from the upper to the top of the base is to the number of cells from the

lower to the bottom of the base, inclusive.

Let any two contiguous cells of the same base, E, C , be taken. I say that

E W C WW 2 W 3

the the because there are two because there are three

lower upper cells from E to the cells from C to the top,

bottom, namely E, H , namely C , R,�.

Although this proposition has an infinity of cases, I shall demonstrate it very briefly by sup-

posing two lemmas:

The first, which is self-evident, that this proportion is found in the second base, for it is

perfectly obvious that ' W � WW 1 W 1;
The second, that if this proportion is found in any base, it will necessarily be found in the

following base.

Whence it is apparent that it is necessarily in all the bases. For it is in the second base by

the first lemma; therefore by the second lemma it is in the third base, therefore in the fourth, and

to infinity.

It is only necessary therefore to demonstrate the second lemma as follows: If this proportion

is found in any base, as, for example, in the fourth,D�, that is, if D W B WW 1 W 3, and B W � WW 2 W 2,
and � W � WW 3 W 1, etc., I say the same proportion will be found in the following base, H�, and

that, for example, E W C WW 2 W 3.
For D W B WW 1 W 3, by hypothesis.

Therefore D C B
„ ƒ‚ …

W B WW 1C 3
„ƒ‚…

W 3

E W B WW 4 W 3

Similarly B W � WW 2 W 2; by hypothesis

Therefore B C �
„ƒ‚…

W B WW 2C 2
„ƒ‚…

W 2

C W B WW 4 W 2

But B W E WW 3 W 4

Therefore, by compounding the ratios, C W E WW 3 W 2: Q.E.D.

The proof is the same for all other bases, since it requires only that the proportion be found

in the preceding base,and that each cell be equal to the cell before it together with the cell above

it, which is everywhere the case.

6. Pascal’s Twelfth Consequence: the key to our modern factorial formula

(a) Rewrite Pascal’s Twelfth Consequence as a generalized modern formula, entirely in our Ti;j terminology.

Also verify its correctness in a couple of examples taken from his table in the initial definitions section.

(b) Adapt Pascal’s proof by example of his Twelfth Consequence into modern generalized form to prove the

formula you obtained above. Use the principle of mathematical induction to create your proof.

Now Pascal is ready to describe a formula for an arbitrary number in the triangle.
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Problem

Given the perpendicular and parallel exponents of a cell, to find its number without making use

of the arithmetical triangle.

Let it be proposed, for example, to find the number of cell � of the fifth perpendicular and of

the third parallel row.

All the numbers which precede the perpendicular exponent, 5, having been taken, namely

1, 2, 3, 4, let there be taken the same number of natural numbers, beginning with the parallel

exponent, 3, namely 3, 4, 5, 6.

Let the first numbers be multiplied together and let the product be 24. Let the second num-

bers be multiplied together and let the product be 360, which, divided by the first product, 24,

gives as quotient 15, which is the number sought.

For � is to the first cell of its base, V , in the ratio compounded of all the ratios of the cells

between, that is to say, � W V

in the ratio compounded of � W �; � W K; K W Q; Q W V
or by the twelfth consequence 3 W 4 4 W 3 5 W 2 6 W 1

Therefore � W V WW 3 � 4 � 5 � 6 W 4 � 3 � 2 � 1:
But V is unity; therefore � is the quotient of the division of the product of 3 � 4 � 5 � 6 by the

product of 4 � 3 � 2 � 1:
N.B. If the generator were not unity, we should have had to multiply the quotient by the

generator.

7. Pascal’s formula for the numbers in the Arithmetical Triangle

(a) Write down the general formula Pascal claims in solving his “Problem.” Your formula should read Ti;j D
“some formula in terms of i and j .” Also write your formula entirely in terms of factorials.

(b) Look at the reason Pascal indicates for his formula for a cell, and use it to make a general proof for your

formula above for an arbitrary Ti;j . You may try to make your proof just like Pascal is indicating, or you

may prove it by mathematical induction.

VARIOUS USES OF THE ARITHMETICAL TRIANGLE

WHOSE GENERATOR IS UNITY

Having given the proportions obtaining between the cells and the rows of arithmetical triangles,

I turn in the following treatises to various uses of those triangles whose generator is unity. But

I leave out many more than I include; it is extraordinary how fertile in properties this triangle is.

Everyone can try his hand. I only call your attention here to the fact that in everything that follows

I am speaking exclusively of arithmetical triangles whose generator is unity.

Part Two: Combinations and the Arithmetical Triangle

We continue reading Pascal’s Treatise on the Arithmetical Triangle:

USE OF THE ARITHMETICAL TRIANGLE FOR COMBINATIONS

The word combination has been used in several different senses, so that to avoid ambiguity I

am obliged to say how I understand it.

When of many things we may choose a certain number, all the ways of taking as many as

we are allowed out of all those offered to our choice are here called the different combinations.
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For example, if of four things expressed by the four letters, A, B, C , D, we are permitted to

take, say any two, all the different ways of taking two out of the four put before us are called

combinations.

Thus we shall find by experience that there are six different ways of choosing two out of four;

for we can take A and B, or A and C , or A and D, or B and C , or B and D, or C and D.

I do not count A and A as one of the ways of taking two; for they are not different things, they

are only one thing repeated.

Nor do I count A and B and B and A as two different ways; for in both ways we take only the

same two things but in a different order, and I am not concerned with the order; so that I could

make myself understood at once by those who are used to considering combinations, simply by

saying that I speak only of combinations made without changing the order.

We shall also find by experience that there are four ways of taking three things out of four;

for we can take ABC or ABD or ACD or BCD.

Finally we shall find that we can take four out of four in one way only, ABCD.

I shall speak therefore in the following terms:

1 in 4 can be combined 4 times.

2 in 4 can be combined 6 times.

3 in 4 can be combined 4 times.

4 in 4 can be combined 1 time.

Or:

the number of combinations of 1 in 4 is 4.

the number of combinations of 2 in 4 is 6.

the number of combinations of 3 in 4 is 4.

the number of combinations of 4 in 4 is 1.

But the sum of all the combinations in general that can be made in 4 is 15, because the

number of combinations of 1 in 4, of 2 in 4, of 3 in 4, of 4 in 4, when joined together, is 15.

After this explanation I shall give the following consequences in the form of lemmas:

Lemma 1

There are no combinations of a number in a smaller number; for example, 4 cannot be

combined in 2.

...

Proposition 2

The number of any cell is equal to the number of combinations of a number less by unity

than its parallel exponent in a number less by unity than the exponent of its base.

Let any cell be taken, say F in the fourth parallel row and in the sixth base. I say that it is

equal to the number of combinations of 3 in 5, less by unity than 4 and 6, for it is equal to the

cells AC B C C . Therefore by the preceding proposition, etc.

1. Combinations according to Pascal

(a) Explain in your own words what Pascal says about how many combinations there are for choosing two

things out of four things.

(b) Write Pascal’s Proposition 2 using our Ti;j notation for numbers in the triangle. In other words, fill in a

sentence saying “Ti;j is the number of combinations of choosing things from things.” Pascal’s

justification for his Proposition 2 is based on his Lemma 4 and Proposition 1, which are not included in

this project. However, the reader is encouraged to study and understand them, to wit:
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(c) Optional: From Pascal’s treatise [5, vol. 30], rewrite his statements and explanations of his Lemma 4

and Proposition 1 in your own words. State and prove Lemma 4 in the general case; that is, show that the

number of combinations of k in n is the sum of the combinations of k � 1 in n � 1 and the combinations

of k in n � 1. Also explain why Proposition 2 follows from Proposition 1.

2. Combinations and Pascal’s recursion formula

(a) The modern symbol
�
n
r

�

means the number of ways (“combinations”) of choosing r things from amongst

n things. Explain how this is related to what we have been learning about the Arithmetical Triangle from

reading Pascal. In particular, explain how the numbers Ti;j are related to the numbers
�

n
r

�

. Do this by

writing an equation expressing Ti;j in
�

n
r

�

notation, and also writing an equation expressing
�

n
r

�

in Ti;j

notation. Now use the formula we learned earlier, from Pascal’s solution to his Problem,3 to write a formula

for the combination number
�

n
r

�

, and manipulate it to express it entirely in terms of factorials.

(b) Now read in a modern textbook about the multiplication rule for counting possibilities, about permutations,

and about combinations. Explain how a combination is different from a permutation.

(c) Read in a modern textbook about the algebra of combinations, Pascal’s recursion formula, and how the

text presents Pascal’s Triangle. How is it different from Pascal’s presentation?

Part Three: The Binomial Theorem and Fermat’s Theorem

Now we can put together all of what we have learned from Pascal to prove an extremely important result in number

theory, called Fermat’s Little Theorem, which is at the heart of today’s encryption methods in digital communica-

tions. The ingredients will be the binomial theorem, proof by mathematical induction as learned from Pascal, Pascal’s

formula for the numbers in his triangle (solved in his Problem), and uniqueness of prime factorization.

1. The binomial theorem and combinations

Read in a modern textbook about the binomial theorem. Write an explanation of the proof of the binomial

theorem using the idea of counting combinations.

2. Discovering Fermat’s “Little” Theorem: prime numbers and congruence remainders

(a) Make a table of the remainders of an upon division by n for positive integer values of both a and n

ranging up to 14. To do this you should learn about congruence arithmetic, and figure out how to do these

calculations quickly and easily without a calculator.

(b) Based on your table, make a conjecture of the form ap �‹ (mod p) for p a prime number and a any

integer. This is called Fermat’s “Little” Theorem; it is one of the most important phenomena in number

theory. Also make some other interesting conjectures from patterns in your table, and try to prove them,

perhaps using the binomial theorem.

(c) Write up the details of proving Fermat’s Theorem by mathematical induction on a, with p held fixed.

Use the binomial theorem, our knowledge of Pascal’s “factorial” formula for binomial coefficients, and

the Fundamental Theorem of Arithmetic (uniqueness of prime factorization) to analyze divisibility of the

binomial coefficients by a prime p.

(d) Optional: Read about what Fermat was trying to do when he discovered his Theorem [4, p. 159ff].

Describe what you find in your own words.

3. Optional: The RSA cryptosystem

Read and study the RSA cryptosystem and its applications to digital security, including how it works, which

follows from Fermat’s Theorem. Write up the details in your own words, with some example calculations.

3Given the perpendicular and parallel exponents of a cell, to find its number without making use of the arithmetical triangle.
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Notes for the instructor

The project’s primary aim is for students of introductory discrete mathematics to learn the concept of mathematical

induction and its application directly from reading the pioneering work Treatise on the Arithmetical Triangle of Blaise

Pascal in the 1650s. There are three project parts, covering several standard topics: mathematical induction, combina-

tions, and the binomial theorem and Fermat’s Theorem. The project even ends with optional application to the RSA

cryptosystem. With the entirety of its applications the project can constitute as much as 20% of a semester course. It

works well to have students complete and submit small pieces of the project as one goes along.

In some places the instructor should give students guidance on reading and exercises from their textbook recom-

mended by the project. There are also some places, especially in the third part, where the project expects either

substantial independent learning from the student or more substantial instructor guidance.

In his treatise, Pascal, after arranging the figurate numbers in a defining triangular table, notices several patterns

in the table, which he would like to claim continue indefinitely. Exhibiting unusual rigor for his day, Pascal offers

a condition for the persistence of a pattern, stated verbally in his Twelfth Consequence, a condition known today as

mathematical induction. This is perhaps the first complete enunciation and justification in the literature of the logical

principle of mathematical induction, all provided in the context of a particular application. Moreover, this Twelfth

Consequence immediately results in the modern formula for the combination numbers or binomial coefficients.

When Pascal’s original writing becomes a student’s initial contact for learning the idea of mathematical induction,

a textbook is then merely a supplement. We have found that students come to grips with mathematical induction

better by first seeing how Pascal eases into the idea through the proof of several patterns in the triangle, and then

formalizes the principle and applies it further. Have students first read and work quite a bit with Pascal’s verbal

description, and then hold an instructor-moderated class discussion comparing this to the axiomatic formulation of

induction students can read in the textbook. We intentionally wait on having students read the textbook approach

until they have become comfortable with Pascal’s. In fact, many students become and remain more comfortable with

Pascal’s more verbal way of handling mathematical induction than with their textbooks. Students can become so

comfortable with Pascal’s treatise that, on a final exam, many will voluntarily choose a question requiring new analysis

of a part of Pascal’s treatise using mathematical induction that they have never seen, over an analogous exercise from

their modern textbook.
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Early Writings on Graph Theory:
Euler Circuits and The Königsberg Bridge Problem
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Figure 1. The Königsberg Bridges.

In a 1670 letter to Christian Huygens (1629–1695), the celebrated philosopher and mathematician Gottfried W.

Leibniz (1646–1716) wrote as follows:

I am not content with algebra, in that it yields neither the shortest proofs nor the most beautiful

constructions of geometry. Consequently, in view of this, I consider that we need yet another

kind of analysis, geometric or linear, which deals directly with position, as algebra deals with

magnitude. [1, p. 30]

Known today as the field of ‘topology,’ Leibniz’s study of position was slow to develop as a mathematical field. As C.

F. Gauss (1777–1855) noted in 1833,

Of the geometry of position, which Leibniz initiated and to which only two geometers, Euler and

Vandermonde, have given a feeble glance, we know and possess, after a century and a half,

very little more than nothing. [1, p. 30]

The ‘feeble glance’ which Leonhard Euler (1707–1783) directed towards the geometry of position consists of a single

paper now considered to be the starting point of modern graph theory. Within the history of mathematics, the eigh-

teenth century itself is commonly known as ‘The Age of Euler’ in recognition of the tremendous contributions that

Euler made to mathematics during this period. Born in Basel, Switzerland, Euler studied mathematics under Johann

Bernoulli (1667–1748), then one of the leading European mathematicians of the time and among the first — along

with his brother Jakob Bernoulli (1654–1705) — to apply the new calculus techniques developed by Leibniz in the late

seventeenth century to the study of curves. Euler soon surpassed his early teacher, and made important contributions

197
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to an astounding variety of subjects, ranging from number theory and analysis to astronomy and optics to mapmaking,

in addition to graph theory and topology. His work was particularly important in re-defining calculus as the study of

analytic functions, in contrast to the seventeenth century view of calculus as the study of curves. Amazingly, nearly

half of Euler’s nearly 900 books, papers and other works were written after he became almost totally blind in 1771.

The paper we examine in this project appeared in Commentarii Academiae Scientiarum Imperialis Petropolitanae

in 1736. In it, Euler undertakes a mathematical formulation of the now-famous Königsberg Bridge Problem: is it

possible to plan a stroll through the town of Königsberg which crosses each of the town’s seven bridges once and

only once? Like other early graph theory work, the Königsberg Bridge Problem has the appearance of being little

more than an interesting puzzle. Yet from such deceptively frivolous origins, graph theory has grown into a powerful

and deep mathematical theory with applications in the physical, biological, and social sciences. The resolution of the

Four Color Problem — one of graph theory’s most famous historical problems — even raised new questions about

the notion of mathematical proof itself. First formulated by Augustus De Morgan in an 1852 letter to Hamilton, the

Four Color Problem asks whether four colors are sufficient to color every planar map in such a way that regions

sharing a boundary are colored in different colors. In 1976, after a long history of failed attempts to prove this is

the case, Kenneth Appel (1932– ) and Wolfgang Haken (1928– ) published a computer-assisted proof which many

mathematicians were unwilling to accept as valid. At the heart of the issue is a question that could be asked of any

computer-assisted proof: should an argument that can not be directly checked by any member of the mathematical

community be considered a valid proof?

This modern controversy highlights the historical fact that standards of proof have always varied from century to

century, and from culture to culture. This project will highlight one part of this historical story by examining the

differences in precision between an eighteenth century proof and a modern treatment of the same result. In particular,

we wish to contrast Euler’s approach to the problem of finding necessary and sufficient conditions for the existence of

what is now known as an ‘Euler circuit’ to a modern proof of the main result of the paper.

In what follows, we take our translation from [1, pp. 3–8], with some portions eliminated in order to focus only

on those most relevant to Euler’s reformulation of the ‘bridge crossing problem’ as a purely mathematical problem.

Definitions of modern terminology are introduced as we proceed through Euler’s paper; modern proofs of two lemmas

used in the proof of the main result are also included in an appendix.

SOLUTIO PROBLEMATIS AD GEOMETRIAM SITUS PERTINENTIS

1 In addition to that branch of geometry which is concerned with magnitudes, and which has

always received the greatest attention, there is another branch, previously almost unknown,

which Leibniz first mentioned, calling it the geometry of position. This branch is concerned

only with the determination of position and its properties; it does not involve measurements,

nor calculations made with them. It has not yet been satisfactorily determined what kind of

problems are relevant to this geometry of position, or what methods should be used in solv-

ing them. Hence, when a problem was recently mentioned, which seemed geometrical but

was so constructed that it did not require the measurement of distances, nor did calculation

help at all, I had no doubt that it was concerned with the geometry of position — especially

as its solution involved only position, and no calculation was of any use. I have therefore

decided to give here the method which I have found for solving this kind of problem, as an

example of the geometry of position.

2 The problem, which I am told is widely known, is as follows: in Königsberg in Prussia, there

is an island A, called the Kneiphof ; the river which surrounds it is divided into two branches,

as can be seen in Fig. [1.2], and these branches are crossed by seven bridges, a, b, c, d, e,

f and g. Concerning these bridges, it was asked whether anyone could arrange a route in

such a way that he would cross each bridge once and only once. I was told that some peo-

ple asserted that this was impossible, while others were in doubt: but nobody would actually

assert that it could be done. From this, I have formulated the general problem: whatever be

the arrangement and division of the river into branches, and however many bridges there

be, can one find out whether or not it is possible to cross each bridge exactly once?
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Notice that Euler begins his analysis of the ‘bridge crossing’ problem by first replacing the map of the city by

a simpler diagram showing only the main feature. In modern graph theory, we simplify this diagram even further

to include only points (representing land masses) and line segments (representing bridges). These points and line

segments are referred to as vertices (singular: vertex) and edges respectively. The collection of vertices and edges

together with the relationships between them is called a graph. More precisely, a graph consists of a set of vertices and

a set of edges, where each edge may be viewed as an ordered pair of two (usually distinct) vertices. In the case where

an edge connects a vertex to itself, we refer to that edge as a loop.

1. Sketch the diagram of a graph with five vertices and eight edges to represent the following bridge problem.

3 As far as the problem of the seven bridges of Königsberg is concerned, it can be solved by

making an exhaustive list of all possible routes, and then finding whether or not any route

satisfies the conditions of the problem. Because of the number of possibilities, this method

of solution would be too difficult and laborious, and in other problems with more bridges it

would be impossible. Moreover, if this method is followed to its conclusion, many irrelevant

routes will be found, which is the reason for the difficulty of this method. Hence I rejected

it, and looked for another method concerned only with the problem of whether or not the

specified route could be found; I considered that such a method would be much simpler.

4 My whole method relies on the particularly convenient way in which the crossing of a bridge

can be represented. For this I use the capital letters A, B, C, D, for each of the land areas

separated by the river. If a traveller goes from A to B over bridge a or b, I write this as AB

— where the first letter refers to the area the traveller is leaving, and the second refers to
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the area he arrives at after crossing the bridge. Thus, if the traveller leaves B and crosses

into D over bridge f, this crossing is represented by BD, and the two crossing AB and BD

combined I shall denote by the three letters ABD, where the middle letter B refers to both

the area which is entered in the first crossing and to the one which is left in the second

crossing.

5 Similarly, if the traveller goes on from D to C over the bridge g, I shall represent these three

successive crossings by the four letters ABDC, which should be taken to mean that the

traveller, starting in A, crosses to B, goes on to D, and finally arrives in C. Since each land

area is separated from every other by a branch of the river, the traveller must have crossed

three bridges. Similarly, the successive crossing of four bridges would be represented by

five letters, and in general, however many bridges the traveller crosses, his journey is de-

noted by a number of letters one greater than the number of bridges. Thus the crossing of

seven bridges requires eight letters to represent it.

After rejecting the impractical strategy of solving the bridge-crossing problem by making an exhaustive list of all

possible routes, Euler again reformulates the problem in terms of sequences of letters (vertices) representing land

masses, thereby making the diagram itself unnecessary to the solution of the problem. Today, we say that two vertices

joined by an edge in the graph are adjacent, and refer to a sequence of adjacent vertices as a walk. Technically, a walk

is a sequence of alternating (adjacent) vertices and edges v0e1v1e1 : : : envn in which both the order of the vertices and

the order of the edges used between adjacent vertices are specified. In the case where no edge of the graph is repeated

(as required in a bridge-crossing route), the walk is known as a path. If the initial and terminal vertex are equal, the

path is said to be a circuit.

There is one more definition we need: a graph is said to be connected if for every pair of vertices u; v in the graph,

there is a walk from u to v. Notice that a graph which is not connected will consist of several components, or subgraphs,

each of which is connected. We can now give the modern definition of the concept from Euler’s article. If every edge

of a connected graph is used exactly once (as desired in a bridge-crossing route), the path (circuit) is said to be an

Euler path (circuit).

2. For the bridge problem shown in Question 1 above, how many capital letters (representing graph vertices) will

be needed to represent an Euler path?

Having reformulated the bridge crossing problem in terms of sequences of letters (vertices) alone, Euler now turns

to the question of determining whether a given bridge crossing problem admits of a solution. As you read through

Euler’s development of a procedure for deciding this question in paragraphs 7–13 below (we omit paragraph 6), pay

attention to the style of argument employed, and how this differs from that used in a modern textbook.

7 The problem is therefore reduced to finding a sequence of eight letters, formed from the

four letters A, B, C and D, in which the various pairs of letters occur the required number of

times. Before I turn to the problem of finding such a sequence, it would be useful to find out

whether or not it is even possible to arrange the letters in this way, for if it were possible to

show that there is no such arrangement, then any work directed toward finding it would be

wasted. I have therefore tried to find a rule which will be useful in this case, and in others,

for determining whether or not such an arrangement can exist.

8 In order to try to find such a rule, I consider a single area A, into which there lead any

number of bridges a, b, c, d, etc. (Fig. [1.3]). Let us take first the single bridge a which leads

into A: if a traveller crosses this bridge, he must either have been in A before crossing, or

have come into A after crossing, so that in either case the letter A will occur once in the

representation described above. If three bridges (a, b and c, say) lead to A, and if the

traveller crosses all three, then in the representation of his journey the letter A will occur

twice, whether he starts his journey from A or not. Similarly, if five bridges lead to A, the
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representation of a journey across all of them would have three occurrences of the letter A.

And in general, if the number of bridges is any odd number, and if it is increased by one,

then the number of occurrences of A is half of the result.

3. In paragraph 8, Euler deduces a rule for determining how many times a vertex must appear in the representation

of the route for a given bridge problem for the case where an odd number of bridges leads to the land mass

represented by that vertex. Before reading further, use this rule to determine how many times each of the

vertices A,B , C and D would appear in the representation of a route for the Königsberg Bridge Problem. Given

Euler’s earlier conclusion (paragraph 5) that a solution to this problem requires a sequence of eight vertices, is

such a sequence possible? Explain.

9 In the case of the Königsberg bridges, therefore, there must be three occurrences of the

letter A in the representation of the route, since five bridges (a, b, c, d, e) lead to the area

A. Next, since three bridges lead to B, the letter B must occur twice; similarly, D must occur

twice, and C also. So in a series of eight letters, representing the crossing of seven bridges,

the letter A must occur three times, and the letters B, C and D twice each — but this cannot

happen in a sequence of eight letters. It follows that such a journey cannot be undertaken

across the seven bridges of Königsberg.

10 It is similarly possible to tell whether a journey can be made crossing each bridge once, for

any arrangement of bridges, whenever the number of bridges leading to each area is odd.

For if the sum of the number of times each letter must occur is one more than the number

of bridges, then the journey can be made; if, however, as happened in our example, the

number of occurrences is greater than one more than the number of bridges, then such

a journey can never be accomplished. The rule which I gave for finding the number of

occurrences of the letter A from the number of bridges leading to the area A holds equally

whether all of the bridges come from another area B, as shown in Fig. [1.3], or whether

they come from different areas, since I was considering the area A alone, and trying to find

out how many times the letter A must occur.

11 If, however, the number of bridges leading to A is even, then in describing the journey one

must consider whether or not the traveller starts his journey from A; for if two bridges lead to

A, and the traveller starts from A, then the letter A must occur twice, once to represent his

leaving A by one bridge, and once to represent his returning to A by the other. If, however,

the traveller starts his journey from another area, then the letter A will only occur once;

for this one occurrence will represent both his arrival in A and his departure from there,

according to my method of representation.

12 If there are four bridges leading to A, and if the traveller starts from A, then in the represen-

tation of the whole journey, the letter A must occur three times if he is to cross each bridge

once; if he begins his walk in another area, then the letter A will occur twice. If there are six

bridges leading to A, then the letter A will occur four times if the journey starts from A, and if

the traveller does not start by leaving A, then it must occur three times. So, in general, if the

number of bridges is even, then the number of occurrences of A will be half of this number

if the journey is not started from A, and the number of occurrences will be one greater than

half the number of bridges if the journey does start at A.

13 Since one can start from only one area in any journey, I shall define, corresponding to the

number of bridges leading to each area, the number of occurrences of the letter denoting
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that area to be half the number of bridges plus one, if the number of bridges is odd, and

if the number of bridges is even, to be half of it. Then, if the total of all the occurrences

is equal to the number of bridges plus one, the required journey will be possible, and will

have to start from an area with an odd number of bridges leading to it. If, however, the

total number of letters is one less than the number of bridges plus one, then the journey

is possible starting from an area with an even number of bridges leading to it, since the

number of letters will therefore be increased by one.

Notice that Euler’s definition concerning ‘the number of occurrences of the letter denoting that area’ depends on

whether the number of bridges (edges) leading to each area (vertex) is even or odd. In contemporary terminology, the

number of edges incident on a vertex v is referred to as the degree of vertex v.

4. Let deg.v/ denote the degree of vertex v in a graph G. Euler’s definition of ‘the number of occurrences of v’

can then be re-stated as follows:

� If deg.v/ is even, then v occurs 1
2

deg.v/ times.

� If deg.v/ is odd, then v occurs 1
2
Œdeg.v/C 1� times.

Based on Euler’s discussion in paragraphs 9–12, how convinced are you that this definition gives a correct

description of the Königsberg Bridge Problem? How convincing do you find Euler’s claim (in paragraph 13)

that the required route can be found in the case where ‘the total of all the occurrences is equal to the number of

bridges plus one’? Comment on how a proof of this claim in a modern textbook might differ from the argument

which Euler presents for it in paragraphs 9–12.

14 So, whatever arrangement of water and bridges is given, the following method will deter-

mine whether or not it is possible to cross each of the bridges: I first denote by the letters

A, B, C, etc. the various areas which are separated from one another by the water. I then

take the total number of bridges, add one, and write the result above the working which

follows. Thirdly, I write the letters A, B, C, etc. in a column, and write next to each one

the number of bridges leading to it. Fourthly, I indicate with an asterisk those letters which

have an even number next to them. Fifthly, next to each even one I write half the number,

and next to each odd one I write half the number increased by one. Sixthly, I add together

these last numbers, and if this sum is one less than, or equal to, the number written above,

which is the number of bridges plus one, I conclude that the required journey is possible. It

must be remembered that if the sum is one less than the number written above, then the

journey must begin from one of the areas marked with an asterisk, and it must begin from

an unmarked one if the sum is equal. Thus in the Königsberg problem, I set out the working

as follows:

Number of bridges 7, which gives 8

Bridges

A, 5 3

B, 3 2

C, 3 2

D, 3 2

Since this gives more than 8, such a journey can never be made.

15 Suppose that there are two islands A and B surrounded by water which leads to four rivers

as shown in Fig. [1.4]. Fifteen bridges (a, b, c, d, etc.) cross the rivers and the water sur-

rounding the islands, and it is required to determine whether one can arrange a journey

which crosses each bridge exactly once. First, therefore, I name all the areas separated
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by water as A, B, C, D, E, F, so that there are six of them. Next, I increase the number of

bridges (15) by one, and write the result (16) above the working which follows.

16

A*, 8 4

B*, 4 2

C*, 4 2

D, 3 2

E, 5 3

F*, 6 3

16

Thirdly, I write the letters A, B, C, etc. in a column, and write next to each one the number of

bridges which lead to the corresponding area, so that eight bridges lead to A, four to B, and

so on. Fourthly, I indicate with an asterisk those letters which have an even number next to

them. Fifthly, I write in the third column half the even numbers in the second column, and

then I add one to the odd numbers and write down half the result in each case. Sixthly, I

add up all the numbers in the third column in turn, and I get the sum 16; since this is equal

to the number (16) written above, it follows that the required journey can be made if it starts

from area D or E, since these are not marked with an asterisk. The journey can be done

as follows:

E a F b B c F d A e F f C g A h C i D k A m E n A p B o E l D,

where I have written the bridges which are crossed between the corresponding capital

letters.

FIG. 1.4

5. Apply Euler’s procedure to determine whether the graph representing the ‘bridge-crossing’ problem in question

1 above contains an Euler path. If so, find one.

In paragraphs 16 and 17, Euler makes some observations intended to simplify the procedure for determining whether

a given bridge-crossing problem has a solution. As you read these paragraphs, consider how to reformulate these

observations in terms of degree.

16 In this way it will be easy, even in the most complicated cases, to determine whether or not

a journey can be made crossing each bridge once and once only. I shall, however, describe

a much simpler method for determining this which is not difficult to derive from the present

method, after I have first made a few preliminary observations. First, I observe that the



204 Part II Historical Projects in Discrete Mathematics and Computer Science

numbers of bridges written next to the letters A, B, C, etc. together add up to twice the total

number of bridges. The reason for this is that, in the calculation where every bridge leading

to a given area is counted, each bridge is counted twice, once for each of the two areas

which it joins.

17 It follows that the total of the numbers of bridges leading to each area must be an even

number, since half of it is equal to the number of bridges. This is impossible if only one of

these numbers is odd, or if three are odd, or five, and so on. Hence if some of the numbers

of bridges attached to the letters A, B, C, etc. are odd, then there must be an even number

of these. Thus, in the Königsberg problem, there were odd numbers attached to the letters

A, B, C and D, as can be seen from Paragraph 14, and in the last example (in Paragraph

15), only two numbers were odd, namely those attached to D and E.

6. The result described in Paragraph 16 is sometimes referred to as ‘The Handshake Theorem,’ based on the

equivalent problem of counting the number of handshakes that occur during a social gathering at which every

person present shakes hands with every other person present exactly once. A modern statement of the Handshake

Theorem would be: The sum of the degree of all vertices in a finite graph equals twice the number of edges in

the graph. Locate this theorem in a modern textbook, and comment on how the proof given there compares to

Euler’s discussion in paragraph 16.

7. The result described in Paragraph 17 can be re-stated as follows: Every finite graph contains an even number of

vertices with odd degree. Locate this theorem in a modern textbook, and comment on how the proof given there

compares to Euler’s discussion in paragraph 17.

Euler now uses the above observations to develop simplified rules for determining whether a given bridge-crossing

problem has a solution. Again, consider how you might reformulate this argument in modern graph theoretic terms;

we will consider a modern proof of the main results below.

18 Since the total of the numbers attached to the letters A, B, C, etc. is equal to twice the

number of bridges, it is clear that if this sum is increased by 2 and then divided by 2, then

it will give the number which is written above the working. If, therefore, all of the numbers

attached to the letters A, B, C, D, etc. are even, and half of each of them is taken to obtain

the numbers in the third column, then the sum of these numbers will be one less than

the number written above. Whatever area marks the beginning of the journey, it will have

an even number of bridges leading to it, as required. This will happen in the Königsberg

problem if the traveller crosses each bridge twice, since each bridge can be treated as if it

were split in two, and the number of bridges leading into each area will therefore be even.

19 Furthermore, if only two of the numbers attached to the letters A, B, C, etc. are odd, and the

rest are even, then the journey specified will always be possible if the journey starts from

an area with an odd number of bridges leading to it. For, if the even numbers are halved,

and the odd ones are increased by one, as required, the sum of their halves will be one

greater than the number of bridges, and hence equal to the number written above. It can

further be seen from this that if four, or six, or eight. . . odd numbers appear in the second

column, then the sum of the numbers in the third column will be greater by one, two, three.

. . than the number written above, and the journey will be impossible.

20 So whatever arrangement may be proposed, one can easily determine whether or not a

journey can be made, crossing each bridge once, by the following rules:

If there are more than two areas to which an odd number of bridges lead, then

such a journey is impossible.
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If, however, the number of bridges is odd for exactly two areas, then the journey is

possible if it starts in either of these areas.

If, finally, there are no areas to which an odd number of bridges leads, then the

required journey can be accomplished starting from any area.

With these rules, the given problem can always be solved.

21 When it has been determined that such a journey can be made, one still has to find how it

should be arranged. For this I use the following rule: let those pairs of bridges which lead

from one area to another be mentally removed, thereby considerably reducing the number

of bridges; it is then an easy task to construct the required route across the remaining

bridges, and the bridges which have been removed will not significantly alter the route

found, as will become clear after a little thought. I do not therefore think it worthwhile to

give any further details concerning the finding of the routes.

The main results of Euler’s paper can be stated in modern terminology as follows:

Theorem. A finite graphG contains an Euler circuit if and only ifG is connected and contains no vertices

of odd degree.

Corollary. A finite graphG contains an Euler path if and only ifG is connected and contains at most two

vertices of odd degree.

8. Illustrate why the modern statement specifies thatG is connected by giving an example of a disconnected graph

which has vertices of even degree only and contains no Euler circuit. Explain how you know that your example

contains no Euler circuit.

9. Comment on Euler’s proof of this theorem and corollary as they appear in paragraphs 16–19. How convincing

do you find his proof? Where and how does he make use of the assumption that the graph is connected in his

proof?

10. Below is the sketch of a modern proof of the ‘if’ direction of the main theorem. The first published proof of this

direction is due to the German mathematician Carl Hierholzer (1840–1871); following Hierholzer’s premature

death, this proof was prepared for publication by a colleague and appeared in 1873 [3]. Complete the proof

sketch below by filling in the missing details. (Specific questions that you will need to address in your completed

proof are indicated in italics.)

Note: You may make use of the lemmas that are provided (with proofs) in the appendix of this project to do so.

Claim. If G is connected and has no vertices of odd degree, then G contains an Euler circuit.

Proof. Suppose G is connected and has no vertices of odd degree.

We show that G contains an Euler circuit as follows:

Case I: Consider the case where every edge in G is a loop.

� Since every edge in G is a loop, G must contain only one vertex.

How do we know a connected graph in which every edge inG is a loop contains only one vertex?

� Since every edge in G is a loop on the single vertex v, the graphG must contain an Euler circuit.

What will an Euler circuit in a connected graph on the single vertex v look like as a sequence of alternating

vertices and edges?

Case II: Consider the case where at least one edge inG is not a loop.

� Choose any vertex v inG that is incident on at least one edge that is not a loop.
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� Let fvug and fvwg be two distinct edges on which v is incident which are not loops, where the vertices u

and w may be equal.

How do we know two such edges exist?

� Let W be a simple path (i.e., a path with no repeated edges and no repeated vertices) from v to w that

does not use the edge fvwg.

How do we know there is a walk from v to w that does not use this edge?

(You may wish to consider what happens in the case where every walk from v tow uses the edge fvwg; what

happens to the graph when the edge fvwg is removed? The graph property discussed above in Question 7

of this project may be useful here.)

Why can we assume that this walk is, in fact, a simple path?

� Use W to obtain a circuit C starting and ending at v.

How is this done?

� Consider the two cases:

– C uses every edge of G.

Why are we now done?

– C does not use every edge inG.

� Consider the graph G0 obtained by removing the edges of C from the graph G along with any

vertices that become isolated when these edges are removed. Note that G0 consists of finitely

many connected components and that each of these connected components has vertices of even

degree only. How do we know that each connected component of G0 has only vertices of even

degree?

� Select a vertex v0 inG0 which appears in C .

How do we know that such a vertex exists?

� Apply the process outlined above (beginning with CASE I) to the connected component of G0

that contains v0 in order to obtain a circuit C 0 in G0 with no repeated edges, and combine C with

C 0 to obtain a new circuit C1 in G that does not repeat any edges. How do we know that we can

apply this process to the connected component in question? How do we combine the circuits C

and C 0 from our construction into a single circuit? How do we know that the combined walk C1

is a circuit? How do we know that the combined circuit C1 does not contain any repeated edges?

� Repeat this process as required until a circuit is obtained that includes every edge of G.

How do we know this process will eventually terminate?

11. Now write a careful (modern) proof of the ‘only if’ direction. Begin by assuming that G is a connected graph

which contains an Euler circuit. Then prove that G has no vertices of odd degree.

12. Finally, give a careful (modern) proof of the corollary.

Notes for the instructor

The project is suitable for a beginning-level discrete mathematics course, or for a ‘transition to proof’ course. It

could be assigned independently or in conjunction with one or both of the projects “Early Writings on Graph Theory:

Hamiltonian Circuits and The Icosian Game” and “Early Writings on Graph Theory: Topological Connections,” both

of which appear in this volume. By introducing modern graph theory terminology alongside Euler’s original writing,

the project assumes no prior background in graph theory. Thus, the project can be assigned prior to, concurrently

with, or immediately following the introduction of basic graph theory concepts. The first part of the project in which

students are required to read and understand Euler’s analysis of the ‘bridge problem’ is well suited for small group

discussion. Questions 6 and 7 ask students to compare Euler’s treatment of key results to the treatment of these same

results in a modern textbook, with the objective of drawing students’ attention to current standards regarding formal

proof. The instructor may wish to provide access to several different modern textbooks for students to reference on

these questions. The project culminates with exercises which require students to ‘fill in the gaps’ in a modern proof of
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Euler’s main theorem (Questions 10–12). These questions are ideally suited for individual practice in proof writing,

but could also be completed in small groups.

Appendix: Lemmas Used in Proving Euler’s Theorem

Lemma I. For every graph G, ifW is a walk in G that has repeated edges, then W has repeated vertices.

Proof. Let G be a graph and W a walk in G that has a repeated edge e. Let v and w be the endpoint vertices of e. If

e is a loop, note that v D w, and v is a repeated vertex of W since the sequence ‘vev’ must appear somewhere in W .

Thus, we need only consider the case where e is not a loop and v ¤ w. In this case, one of the following must occur:

1. The edge e is immediately repeated in the walk W . That is, W includes a segment of the form ‘vewev’ a

segment of the form ‘wevew’.

2. The edge e is not immediately repeated, but occurs later in the walk W and in the same order. That is, eitherW

includes a segment of the form ‘vew : : : vew’ or W includes a segment of the form ‘wev : : : wev’.

3. The edge e is not immediately repeated, but occurs later in the walk W in the reverse order. That is, either W

includes a segment of the form ‘vew : : : wev’ or W includes a segment of the form ‘wev : : : vew’.

Since one of the vertices v or w is repeated in the first case, while both the vertices v and w are repeated in the latter

two cases, this completes the proof.

Corollary. For every graph G, ifW is a walk in G that has no repeated vertices, then W has no repeated edges.

Proof. This is the contrapositive of Lemma I.

Lemma II. If G is a connected graph, then every pair of vertices of G is connected by a ‘simple path’ which repeats

neither edges nor vertices.

Proof. Let G be a connected graph. Let u and w be any arbitrary vertices in G. Since G is connected, we know

G contains a walk W from u to w. Denote this walk by the sequence ‘v0e0v1e1 : : : vnenvnC1’, where e0; e1; : : : en

denote edges, v0; : : : ; vnC1 denote vertices with v0 D u the starting vertex and vnC1 D w the ending vertex.

Note thatW may include repeated vertices. If so, construct a new walk W 0 from u to w as follows:

� Let v be the first repeated vertex in the walk W . Then v D vi and v D vj for some i < j . To construct the

new walk W 0, delete the segment of the original walk between the first occurrence of v and its next occurrence,

including the second occurrence of v. That is, replace

v0
„ƒ‚…

u

e1v1e2 : : : vi�1ei�1

v
‚…„ƒ
vi eiviC1eiC1 : : : ej �1vj �1ej

v
‚…„ƒ
vj

„ ƒ‚ …

delete

ej C1vj C1 : : : vn�1en�1vnen vnC1
„ƒ‚…

w

by

ue1v1e2 : : : vi�1ei�1

v
‚…„ƒ
vi ej C1vj C1 : : : vn�1en�1vnenw:

Since ‘vej C1’ appeared in the original walkW , we know the edge ej C1 is incident on the vertex v D vi . Thus,

the new sequence of alternating edges and vertices is also a walk from u D v0 to w D vnC1.

(Also note that if j D n C 1, then the repeated vertex was w D vnC1 and the walk now ends at vi , where we

know that vi D vj D vnC1 D w; thus, the new walk also ends at w.)

� If the new walk W 0 contains a repeated vertex, we repeat the above process. Since the sequence is finite, we

know that we will obtain a walk with no repeated vertices after a finite number of deletions.

In this way, we obtain a new walk S from u to w that contains no repeated vertices. By the corollary to Lemma I, it

follows that S contains no repeated edges. Thus, by definition of simple path, S is a simple path from u to w. Since u

and w were arbitrary, this completes the proof.
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Counting Triangulations of a Convex Polygon1

Desh Ranjan
New Mexico State University

Introduction

In a 1751 letter to Christian Goldbach (1690–1764), Leonhard Euler (1707–1783) discusses the problem of counting

the number of triangulations of a convex polygon. Euler, one of the most prolific mathematicians of all times, and

Goldbach, who was a Professor of Mathematics and historian at St. Petersburg and later served as a tutor for Tsar Pe-

ter II, carried out extensive correspondence, mostly on mathematical matters. In his letter, Euler provides a “guessed”

method for computing the number of triangulations of a polygon that has n sides but does not provide a proof of his

method. The method, if correct, leads to a formula for calculating the number of triangulations of an n-sided polygon

which can be used to quickly calculate this number [1, p. 339–350] [2]. Later, Euler communicated this problem to

the Hungarian mathematician Jan Andrej Segner (1704–1777). Segner, who spent most of his professional career in

Germany (under the German name Johann Andreas von Segner), was the first Professor of Mathematics at the Uni-

versity of Göttingen, becoming the chair in 1735. Segner “solved” the problem by providing a proven correct method

for computing the number of triangulations of a convex n-sided polygon using the number of triangulations for poly-

gons with fewer than n sides [5]. However, this method did not establish the validity (or invalidity) of Euler’s guessed

method. Segner communicated his result to Euler in 1756 and in his communication he also calculated the number of

triangulations for the n-sided polygons for n D 1; : : : ; 20 [5]. Interestingly enough, he made simple arithmetical errors

in calculating the number of triangulations for polygons with 15 and 20 sides. Euler corrected these mistakes and also

calculated the number of triangulations for polygons with up to 25 sides. It turns out that with the corrections, Euler’s

guessed method gives the right number of triangulations of polygons with up to 25 sides.

Was Euler’s guessed method correct? It looked as if it were but there was no proof. The problem was posed as

an open challenge to mathematicians by Joseph Liouville (1809–1882) in the late 1830s. He received solutions or

purported solutions to the problem by many mathematicians (including one by Belgian mathematician Catalan which

was correct but not so elegant), some of which were later published in the Liouville journal, one of the primary

journals of mathematics at that time and for many decades. The most elegant of these solutions was communicated

to him in a paper by Gabriel Lamé (1795–1870) in 1838. French mathematician, engineer and physicist Lamé was

educated at the prestigious École Polytechnique and later at the École des Mines [3, p. 601–602]. From 1832 to 1844

he served as the chair of physics at the École Polytechnique, and in 1843 joined the Paris Academy of Sciences in the

geometry section. He contributed to the fields of differential geometry, number theory, thermodynamics and applied

mathematics. Among his publications are textbooks in physics and papers on heat transfer, where he introduced the

rather useful technique of curvilinear coordinates. In 1851 he was appointed Professor of Mathematical Physics and

Probability at the University of Paris, and resigned eleven years later after becoming deaf. Gauss considered Lamé the

foremost French mathematician of his day [3, p. 601–602].

A translated version of this paper by Lamé is the key historical source for this project. This translation is presented

in its entirety before the description of the major project tasks in the next section. Interestingly, and perhaps somewhat

ironically, today these numbers (the number of triangulations of an n sided polygon for n D 1; 2; 3; : : :) are called

1With thanks to David Pengelley, Inna Pivkina and Karen Villaverde.
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Catalan numbers. Although none of Segner, Euler or Catalan provided any insight into why they were interested

in calculating the number of triangulations of convex polygons, the related problem of computing optimal polygon

triangulations has become a well-studied problem in the realm of algorithm design and is fairly commonly used to

illustrate the effectiveness of dynamic programming paradigm for designing efficient algorithms.

Understanding Triangulations

A diagonal in a (convex) polygon is a straight line that connects two non-adjacent vertices of the polygon. Two

diagonals are different if they have at least one different endpoint. A triangulation of a polygon is a division of the

polygon into triangles by drawing non-intersecting diagonals. For example, the 6-sided polygon ABCDEF below is

triangulated into four triangles by using the diagonalsAD;AE;BD.

A B

C

DE

F

Figure 1. A Triangulation of ABCDEF .

Two triangulations are different if at least one of the diagonals in a triangulation is different from all diagonals in

the other triangulation.

TASKS:

1.1 Draw a triangulation of ABCDEF that is different from the triangulation in Figure 1. How many diagonals

does your triangulation have? How many triangles does it divideABCDEF into?

1.2 Consider an n-sided polygon A1A2 : : : An. How many different possible diagonals does this polygon have?

Note: We are talking about all possible diagonals, not just diagonals in a triangulation.

1.3 Use mathematical induction to prove that any triangulation of an n-sided polygon has n� 2 triangles and n� 3
diagonals.

Let’s now read from Lamé’s letter to Liouville [4].

Excerpt from a letter of Monsieur Lamé to Monsieur Liouville on the question:

Given a convex polygon, in how many ways can one

partition it into triangles by means of diagonals?2

The formula that you communicated to me yesterday is easily deduced from the comparison of

two methods leading to the same goal.

Indeed, with the help of two different methods, one can evaluate the number of decompositions

of a polygon into triangles: by consideration of the sides, or of the vertices.

2See a Memoir of Segner (Novi Commentarii Acad. Petrop., vol. VII, p. 203). The author found equation (1) of M. Lamé; but formula (3)

presents a much simpler solution. Formula (3) is no doubt due to Euler. It is pointed out without proof on page 14 of the volume cited above. The

equivalence of equations (1) and (3) is not easy to establish. M. Terquem proposed this problem to me, achieving it with the help of some properties

of factorials. I then communicated it to various geometers: none of them solved it; M. Lamé has been very successful: I am unaware of whether

others before him have obtained such an elegant solution. J. LIOUVILLE
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I.

Let ABCDEF : : : be a convex polygon of nC1 sides, and denote by the symbol Pk the total num-

ber of decompositions of a polygon of k sides into triangles. An arbitrary sideAB of ABCDEF : : :

serves as the base of a triangle, in each of the PnC1 decompositions of the polygon, and the

triangle will have its vertex at C , or D, or F : : : ; to the triangle CBA there will correspond Pn

different decompositions; to DBA another group of decompositions, represented by the product

P3Pn�1; to EBA the group P4Pn�2; to FBA, P5Pn�3; and so forth, until the triangle ZAB, which

will belong to a final group Pn. Now, all these groups are completely distinct: their sum therefore

gives PnC1. Thus one has

PnC1 D Pn C P3Pn�1 C P4Pn�2 C P5Pn�3 C � � � C Pn�3P5 C Pn�2P4 CPn�1P3 C Pn. (1)

II.

Let abcde : : : be a polygon of n sides. To each of the n � 3 diagonals, which end at one of the

vertices a, there will correspond a group of decompositions, for which this diagonal will serve

as the side of two adjacent triangles: to the first diagonal ac corresponds the group P3Pn�1;

to the second ad corresponds P4Pn�2; to the third ae, P5Pn�3, and so forth until the last ax,

which will occur in the group P3Pn�1. These groups are not totally different, because it is easy

to see that some of the partial decompositions, belonging to one of them, is also found in the

preceding ones. Moreover they do not include the partial decompositions of Pn in which none of

the diagonals ending in a occurs.

But if one does the same for each of the other vertices of the polygon, and combines all the

sums of the groups of these vertices, by their total sum

n .P3Pn�1 C P4Pn�2 C � � � C Pn�2P4 C Pn�1P3/

one will be certain to include all the partial decompositions of Pn; each of these is itself repeated

therein a certain number of times.

Indeed, if one imagines an arbitrary such decomposition, it contains n � 2 triangles, having

altogether 3n � 6 sides; if one removes from this number the n sides of the polygon, and takes

half of the remainder, which is n�3, one will have the number of diagonals appearing in the given

decomposition. Now, it is clear that this partial decomposition is repeated, in the preceding total

sum, as many times as these n � 3 diagonals have ends, that is 2n � 6 times: since each end

is a vertex of the polygon, and in evaluating the groups of this vertex, the diagonal furnished a

group including the particular partial decomposition under consideration.

Thus, since each of the partial decompositions of the total group Pn is repeated 2n � 6 times in

n .P3Pn�1 C P4Pn�2 C � � � C Pn�2P4 C Pn�1P3/, one obtains Pn upon dividing this sum by 2n�6.
Therefore one has

Pn D n .P3Pn�1 C P4Pn�2 C � � � C Pn�2P4 C Pn�1P3/

2n� 6 . (2)

III.

The first formula (1) gives

P3Pn�1 CP4Pn�2 C � � � C Pn�2P4 C Pn�1P3 D PnC1 � 2Pn,

and the second (2) gives

P3Pn�1 C P4Pn�2 C � � � C Pn�2P4 C Pn�1P3 D 2n� 6

n
Pn;
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so finally

PnC1 � 2Pn D 2n� 6
n

Pn,

or

PnC1 D 4n� 6

n
Pn. (3)

This is what was to be proven.

Paris, 25 August, 1838

Optimal Triangulation and Counting Triangulations

The Optimal Polygon Triangulation Problem is the following: Given an n-sided polygon A1A2 : : : An and a weight

wi;j for each diagonal AiAj , find a triangulation of the polygon such that the sum of the weights of the diagonals in

the triangulations is minimized. A naı̈ve way to solve the problem is to generate all possible triangulations one by one,

calculate their weight (i.e. sum of weights of all the diagonals in the triangulation) and keep the best. The efficiency

of this naı̈ve method depends on the number of possible triangulations of a polygon with n sides. Thus, we would like

to count how many different triangulations an n-sided polygon has. As mentioned in the introduction, the problem of

counting the number of triangulations of an n-sided convex polygon was already being discussed in the mid-eighteenth

century by well-known figures in mathematics like Euler and Segner and an elegant solution was provided by Lamé in

1838. As noted before, the numbers Pn in Lamé’s paper are now called Catalan numbers.

TASKS:

2.1 Read Section I in Lamé’s paper. Explain what Lamé is saying in your own words and derive the general recursive

formula for PnC1, i.e., formula (1) in Lamé’s paper.

2.2 Use the recursive formula to calculate Pi for i D 2; 3; 4; 5; 6; 7; 8 by hand and display it as a table.

2.3 Draw all triangulations of polygons with n sides for n D 4; 5.

2.4 Lamé’s recurrence relation in his section 1 for n D 5 yields

P6 D P5 C P3P4 C P4P3 C P5:

Draw all triangulations of a 6-sided polygon classified into groups according to the idea of the recurrence

relation, i.e., the triangulations should be classified into four groups with each group corresponding to a term on

the right-hand side of the recurrence above.

2.5 Write a simple recursive function SRCAT.n/ (for “Simple Recurrence CATalan”) in Java that given an input n

calculates Pn using the recurrence relation (1) in Lamé’s paper directly.

2.6 Write another Java program that repeatedly uses SRCAT to calculate Pi for i D 3; 4; 5; : : : Restrict the total

time your program uses to 10 minutes. What is the largest value N0 of i for which your program calculates Pi ?

Print out a table with i and the time required in seconds by SRCAT to calculate each of the Pi values. Your table

should have a row for each i D 3; 4; 5; : : : ; N0.

2.7 From your calculations you may observe that it seems that for all n, if n � 3 then PnC1 � 2�Pn. Give a simple

mathematical argument that establishes the truth of this statement.

2.8 Prove that for all n, if n � 3 then Pn � 2n=8.

2.9 What does this tell you about the efficiency of the naı̈ve algorithm for solving the optimal polygon triangulation

problem?
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2.10 Write a Java program that repeatedly uses the recurrence given in formula (1) in Lamé’s paper to calculate Pi for

i D 3; 4; 5 : : : but that stores the computed values in an array systematically and uses them as needed. Restrict

the total time your program uses to 10 minutes. What is the largest value M0 of i for which your program

calculates Pi ?

2.11 Extend your program to print out a table of values of i and time required in seconds to compute Pi for i D
3; 4; : : : ;M0.

2.12 Graph the tables obtained in 2.6 and 2.11. Analyse these graphs and write down your observations.

Lame’s Method for deriving a formula for Pn

Section II of Lamé’s paper gives an alternative way of counting triangulations of a polygon. Read this section carefully.

TASKS:

Consider a 6-sided polygon ABCDEF .

3.1 Draw all triangulations of the polygon where:

– AC is one of the diagonals in the triangulation.

– AD is one of the diagonals in the triangulation.

– AE is one of the diagonals in the triangulation.

How many total triangulations did you draw?

3.2 Repeat the same with vertex B as the “special” vertex, i.e., draw all triangulations where:

– BD is one of the diagonals in the triangulation.

– BE is one of the diagonals in the triangulation.

– BF is one of the diagonals in the triangulation.

How many total triangulations did you draw?

3.3 Do the same with vertices C , D, E , F being “special”.

3.4 Consider the triangulation ofABCDEF in figure 1 (of section 1). How many times is that triangulation repeated

in all the triangulations that you drew for ABCDEF in this section? Identify the diagonals in whose group it

was drawn.

3.5 Do the same for the different triangulations of ABCDEF that you drew in section 1.

3.6 What would you guess about the number of times any triangulation of ABCDEF is repeated? Argue why your

guess is correct.

3.7 Consider the n-sided polygon A1A2 : : : An. Let Pi denote the number of different triangulations of a polygon

with i sides.

(a) Calculate, in terms of Pi ’s, the number of triangulations of this polygon that have A1A3 as a diagonal, that

have A1A4 as a diagonal, that have A1Aj as a diagonal.

(b) Consider drawing triangulations treating A1 as the “special” vertex. That is, draw all triangulations where

A1A3 is a diagonal, then draw all triangulations where A1A4 is a diagonal, etc. all the way up to where

A1An�1 is a diagonal. What is the number of triangulations you draw (in terms of Pi ’s) when A1 is treated

as a special vertex?

(c) Suppose we repeat the above process with another vertex (say A2) being the special vertex instead of A1.

What can you say about the number of triangulations drawn as compared to the number of triangulations

drawn when A1 was chosen as the special vertex? Explain in your own words why this is true.



214 Part II Historical Projects in Discrete Mathematics and Computer Science

(d ) Consider doing what you did for A1 in (b) successively for each vertex. That is, enumerate all trian-

gulations treating A1 as a special vertex, treating A2 as a special vertex, . . . treating An as a special

vertex. Now consider the specific triangulation of A1; A2; : : : ; An obtained by drawing the diagonals

A1A3; A1A4; : : : ; A1An�1. How many times is this triangulation enumerated? What about the triangula-

tion obtained by drawing the diagonalsA1A4; A1A5; : : : ; A1An�2 and the two diagonalsA2A4; An�2An?

Justify your answer.

(e) What is your guess as to how many times any specific triangulation is enumerated? Explain in your own

words why this is the case.

3.8 Combine (b) and (e) to derive the formula (2) in Lamé’s paper. Explain in your own words how this formula is

obtained.

3.9 Combine formulas (1) and (2) in Lamé’s paper to obtain the formula (3) in Lamé’s paper. Show all the steps in

your calculation. Explain why this formula is better for calculating Pn.

3.10 Using formula (3) in Lamé’s paper, show that PnC2 D 1
nC1

�
2n
n

�

where
�

2n
n

�

D .2n/Š
nŠnŠ

.

3.11 Write a simple recursive function ASRCAT.n/ (for ”Another Simple Recurvise CATalan”) in Java that given an

input n calculates Pn using the recurrence relation (3) in Lamé’s paper directly.

3.12 Write another Java program that repeatedly uses ASRCAT to calculate Pi for i D 3; 4; 5; : : : Restrict the total

time your program uses to 10 minutes. What is the largest value L0 of i for which your program calculates Pi ?

3.13 Extend your program to print out a table of values of i and time required in seconds by ASRCAT.n/ to compute

each of the Pi values for i D 3; 4; : : : ; L0. Your table should have a row for each i D 3; 4; : : : ; L0.

3.14 Write a better Java program using the ideas from dynamic programming (“store and re-use”) that repeatedly

calculates Pi for i D 3; 4; : : : Restrict the total time your program uses to 10 minutes. What is the largest value

L1 of i for which your program calculates Pi .

3.15 Extend your program to print out a table of values of i and the time required in seconds to calculate each of the

Pi values. Your table should have a row for each i D 3; 4; : : : ; L1.

3.16 Graph the tables obtained in 3.13 and 3.15. Analyse all four graphs obtained and write down your observations.

How do the results for the second two programs compare with your first two programs? How fast does the

running time of the last two programs grow?

3.17 Discuss how the choice of Lamé’s formulas (1) or (3), or using dynamic versus naı̈ve recursive programming

influences the effectiveness of computation.

Notes for the instructor

This project is most suitable for use in an upper-division undergraduate algorithm design and analysis course. In

particular, it is best used at the time when the students are learning the dynamic programming paradigm for algorithm

design. It allows them to see why a naı̈ve solution is infeasible for solving the Optimal Polygon Triangulation Problem

for a polygon with a large number of sides and how the dynamic programming technique allows one to do the same

calculation much more efficiently.

Some of the tasks, as stated in the project, ask the students to write JAVA programs. Use of JAVA is not critical. Any

programming language that allows for recursion and use of arrays (e.g., C, C++) can be substituted for JAVA without

affecting the project.
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Early Writings on Graph Theory:

Hamiltonian Circuits and The Icosian Game
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Introduction

Problems that are today considered to be part of modern graph theory originally appeared in a variety of different

connections and contexts. Some of these original questions appear little more than games or puzzles. In the instance

of the ‘Icosian Game’, this observation seems quite literally true. Yet for the game’s inventor, the Icosian Game

encapsulated deep mathematical ideas which we will explore in this project.

Sir William Rowan Hamilton (1805–1865) was a child prodigy with a gift for both languages and mathematics. His

academic talents were fostered by his uncle James Hamilton, an Anglican clergyman with whom he lived from the age

of 3. Under his uncle’s tutelage, Hamilton mastered a large number of languages — including Latin, Greek, Hebrew,

Persian, Arabic and Sanskrit — by the age of 10. His early interest in languages was soon eclipsed by his interests

in mathematics and physics, spurred in part by his contact with an American calculating prodigy. Hamilton entered

Trinity College in Dublin in 1823, and quickly distinguished himself. He was appointed Astronomer Royal of Ireland

at the age of 22 based on his early work in optics and dynamics. Highly regarded not only by his nineteenth century

colleagues, Hamilton is today recognized as a leading mathematician and physicist of the nineteenth century.

In mathematics, Hamilton is best remembered for his creation of a new algebraic system known as the ‘quaternions’

in 1843. The system of quaternions consists of ‘numbers’ of the form Q D a C bi C cj C dk subject to certain

basic ‘arithmetic’ rules. The project that led Hamilton to the discovery of quaternions was the search for an algebraic

system that could be reasonably interpreted in the three-dimensional space of physics, in a manner analogous to

the interpretation of the algebra of complex numbers a C bi in a two-dimensional plane. Although this geometrical

interpretation of the complex numbers is now standard, it was discovered by mathematicians only in the early 1800s

and thus was relatively new in Hamilton’s time. Hamilton was one of several nineteenth century British mathematicians

interested in developing a purely algebraic foundation for complex numbers that would capture the essence of this

geometrical interpretation. His algebraic development of the complex numbers as ordered pairs of real numbers .a; b/

subject to certain operations appeared in a landmark 1837 essay entitled Theory of Conjugate Functions, or Algebraic

Couples; with a Preliminary and Elementary Essay on Algebra as the Science of Pure Time.

Hamilton concluded his 1837 essay with a statement concerning his hope that he would soon publish a similar

work on the algebra of triplets. After years of unsuccessful work on this problem, Hamilton was able to solve it

in 1843 only by abandoning the property of commutativity. For example, two of the basic multiplication rules of

the quaternion system are ij D k and j i D �k, so that ij ¤ j i . Hamilton also replaced ‘triplets’ by the ‘four-

dimensional’ quaternion aC bi C cj C dk. Soon after Hamilton’s discovery, physicists realized that only the ‘vector

part’ bi C cj C dk of a quaternion was needed to represent three-dimensional space. Although vectors replaced

the use of quaternions in physics by the end of the nineteenth century, the algebraic system of vectors retains the

non-commutativity of quaternions.

Today’s students of mathematics are familiar with a variety of non-commutative algebraic operations, including vec-
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tor cross-product and matrix multiplication. In Hamilton’s day, however, quaternions constituted a major breakthrough

comparable to the discovery of non-Euclidean geometry. Immediately following Hamilton’s 1843 announcement of

his discovery, at least seven other “new numbers systems” were discovered by several other British algebraists. In

the ‘Icosian Game’, Hamilton himself developed yet another example of a non-commutative algebraic system. In this

project, we explore both the algebra of that system and the graph theoretical notion of ‘Hamiltonian circuit’ on which

Hamilton’s interpretation of this algebra is based. The idea for the game was first exhibited by Hamilton at an 1857

meeting of the British Association in Dublin [3], and later sold for 25 pounds to ‘John Jacques and Son,’ a wholesale

dealer in games. We begin with the preface to the instructions pamphlet which Hamilton prepared for marketing of the

game in 1859 [1, pp. 32–35].

The Icosian Game and Hamiltonian Circuits

THE ICOSIAN GAME

W

X

Z

H

J

V

K L

MF

P

CB

G D

N

R

Q

S

T

In this new Game (invented by Sir WILLIAM ROWAN HAMILTON, LL.D., &c., of Dublin, and by

him named Icosian from a Greek word signifying ‘twenty’) a player is to place the whole or part of

a set of twenty numbered pieces or men upon the points or in the holes of a board, represented

by the diagram above drawn, in such a manner as always to proceed along the lines of the

figure, and also to fulfill certain other conditions, which may in various ways be assigned by

another player. Ingenuity and skill may thus be exercised in proposing as well as in resolving

problems of the game. For example, the first of the two players may place the first five pieces

in any five consecutive holes, and then require the second player to place the remaining fifteen

men consecutively in such a manner that the succession may be cyclical, that is, so that No. 20

may be adjacent to No. 1; and it is always possible to answer any question of this kind. Thus, if

B C D F G be the five given initial points, it is allowed to complete the succession by following

the alphabetical order of the twenty consonants, as suggested by the diagram itself; but after

placing the piece No. 6 in hole H, as before, it is also allowed (by the supposed conditions) to

put No. 7 in X instead of J, and then to conclude with the succession, W R S T V J K L M N P

Q Z. Other Examples of Icosian Problems, with solutions of some of them, will be found in the

following page.

In graph theoretic terminology, the holes of the game board are referred to as vertices (singular: vertex) and the

lines that join two holes (vertices) are called edges. The collection of vertices and edges in a given relationship (as
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represented by a diagram such as the game board) is called a graph. Two vertices that are joined by an edge in the

graph are said to be adjacent. Thus, the instruction “always to proceed along the lines of the figure” requires the player

to find a sequence of adjacent vertices; such a sequence is known as a path. In the case where no vertex is repeated in

the sequence, the path is said to be a simple path. In the case where every vertex of the graph is used exactly once in

the sequence, the path is said to be a Hamiltonian path. The term cycle is now used to describe what Hamilton referred

to as a ‘cyclical’ path.

1. Explain why the rules of the Icosian Game require players to always find a simple path.

2. Use modern terminology to formally define the terms cycle and Hamiltonian cycle.

Following the preface, Hamilton includes several examples of Icosian Problems in the Instruction Pamphlet. We

consider only the first two problems as a means of familiarizing ourselves with the concepts of Hamiltonian cycle and

Hamiltonian path.

EXAMPLES OF ICOSIAN PROBLEMS

FIRST PROBLEM

Five initial points are given; cover the board, and finish cyclically. (As hinted in the preceding

page, a succession is said to be cyclical when the last piece is adjacent to the first.)

[This problem is always possible in at least two, and sometimes in four, different ways. Two

examples have been assigned: the following are a few others.]

Example 3. Given B C P N M as initial: two solutions exist; one is the succession, D F K L T S

R Q Z X W V J H G; the other is D F G H X W V J K L T S R Q Z.

Example 4. Five initials, L T S R Q. Four solutions.

Example 5. Five initials, J V T S R. Two solutions.

3. Explain why Hamilton’s first problem is equivalent to the problem of finding a Hamiltonian circuit beginning

from a given initial sequence of five vertices.

4. In Example 3, Hamilton specifies B C P N M as the first five vertices in the desired circuit. He then claims that

the two solutions listed in the example are the only two solutions of this particular problem. Prove that these are

in fact the only two solutions by completing the details of the following argument. Include copies of the diagram

illustrating each step of the argument in a different color as part of your proof.

(a) Explain why the initial conditions for this example imply that the solution to the problem must include

either the sequence RS T or the sequence T S R.

(b) Explain why the initial conditions for this example imply that the solution to the problem must include

either the sequence RQZ or the sequence ZQR.

(c) Explain why we can now conclude that the solution to this problem must include either the sequence

X W V or the sequence V W X .

(d) Explain why the initial conditions for this example imply that the solution to the problem must include

either the sequence F DM or the sequence M DF .

(e) Explain why we can now conclude that the solution to this problem must include either the sequence

K LT or the sequence T LK.

(f) Use the information from above concerning which edges and vertices we know must be part of the solution

to prove that the two circuits Hamilton lists are the only solutions to the problem.

5. In Example 4, Hamilton claims there are four Hamiltonian circuits that begin with the vertices LT S RQ. Find

them. (You do not need to prove these are the only four.)
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Although Hamilton claims that every initial sequence of five vertices will lead to at least two solutions (and possibly

four) within the Icosian Game, he does not offer a proof of this claim. Nor does he claim that this is true of all graphs.

6. Show that it is not true of every graph that any initial sequence of five vertices will lead to at least one Hamil-

tonian circuit by finding an example of a graph with at least five vertices that has no Hamiltonian circuit. Prove

that your graph does not contain a Hamiltonian circuit.

The next question pertains to Hamilton’s second problem, which Hamilton describes in the pamphlet as follows:

EXAMPLES OF ICOSIAN PROBLEMS (continued)

SECOND PROBLEM

Three initial points are given; cover the board non-cyclically. (A succession is said to be non-

cyclical when the last piece is not adjacent to the first.)

[This problem is sometimes soluble in only one way; sometimes in only two ways; sometimes in

four ways; and sometimes it is not soluble at all, as will be seen in the following examples.]

Example 6. Three initial points, B C D; cover, and end with T. There is in this case only one

solution, namely, F G H X Z Q P N M L K J V W R S T.

Example 7. Same initials; cover, and end with W. Two solutions.

Example 8. Same initials; cover, and end with J. Two solutions.

[The same number of solutions exists, if it be required, having the same three initials, to end with

K, or L, or N, or V.]

Example 9. Same initials; cover, and end with R. Four solutions.

Example 10. Same initials; cover, and end with M. Impossible.

[The same result, if it be required to end with F, or H, or P, or Q, or S, or X.]

7. In Example 10, Hamilton claims the problem of finding a ‘non-cyclical’ path that uses all vertices beginning

with B C D and ending withM is impossible. Prove that he is correct.

The Icosian Game and Non-Commutative Algebra

We now turn to the portion of Hamilton’s pamphlet which links the Icosian Game to a non-commutative algebra.

HINTS ON THE ICOSIAN CALCULUS,

OF WHICH THE ICOSIAN GAME IS DESIGNED TO BE AN ILLUSTRATION.

I. In a “MEMORANDUM respecting a New System of Roots of Unity,” which appeared in the

Philosophical magazine for December 1856, Sir W. R. Hamilton expressed himself nearly as

follows (a few words only being here omitted):

‘I have lately been led to the conception of a new system, or rather family of systems, of non-

commutative roots of unity, which are entirely distinct from the i j k of quaternions, though having

some general analogy thereto; and which admit, even more easily than the quaternion symbols

do, of geometrical interpretation. In the system which seems at present to be the most inter-

esting one among those included in this new family, I assume three symbols, �; �; �, such that

�2 D 1; �3 D 1; �5 D 1; � D ��; where �� must be distinguished from ��, since otherwise we

should have �6 D 1; � D 1. As a very simple specimen of the symbolical conclusions deduced

from these fundamental assumptions I may mention that if we make � D ��2 D ���, we shall

have also �5 D 1, � D ���; so that � is a new fifth root of reciprocity. A long train of such sym-

bolical deductions is found to follow; and every one of the results may be interpreted as having
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reference to the passage from face to face (or from corner to corner) of the icosahedron (or

of the dodecahedron): on which account, I am at present disposed to give the name of ‘Icosian

Calculus’ to this new system of symbols, and of rules for their operations.’

The system of “non-commutative roots of unity” described above employs three symbols �; �; � subject to the fol-

lowing (non-commutative) rules:

�2 D 1 ; �3 D 1 ; �5 D 1 ; � D �� ; �� ¤ ��:

The symbol ‘1’ represents the identity, so that 1� D �1 D �, 1� D �1 D �, and 1� D �1 D �. In Part II of Hints on the

Icosian Calculus, Hamilton describes in detail how to interpret his system of ‘non-commutative roots of unity’ within

the Icosian Game. First, consider only the symbolic action of �, �, � as defined by the above multiplication rules to

complete Questions 8 and 9.

8. Prove symbolically that � D ��.

9. Prove symbolically that ��2 D ���.

(This shows that it makes sense to define the new symbol � by � D ��2 D ���.)

Extra Credit Question. Show symbolically that �5 D 1.

We now consider Hamilton’s interpretation of this algebraic system within the Icosian Game. This interpretation

provides a concrete method for deriving new symbolic equations such as those mentioned in the following excerpt.

HINTS ON THE ICOSIAN CALCULUS (continued)

II. In a LITHOGRAPH, which was distributed in Section A of the British Association, during

its Meeting at Dublin in 1857, Sir W. R. H. pointed out a few other symbolical results of the

same kind: especially the equations ��2� D ���, ��2� D ���, ��3� D �2, ��3� D �2; and

the formula .�3�3.��/2/2 D 1, which serves as a common mathematical type for the solution

of all cases of the First Problem of the Game. He also gave at the same time an oral (and

hitherto unprinted) account of his rules of interpretation of the principal symbols; which rules,

with reference to the present Icosian Diagram (or ICOSIAN), may be briefly stated as follows:

1. The operation � reverses (or reads backwards) a line of the figure; changing, for example,

B C to C B.

2. The operation � causes a line to turn in a particular direction round its final point; changing,

for instance, B C to D C.

3. The operation � changes a line considered as a side of a pentagon to the following side

thereof, proceeding always right-handedly for every pentagon except the large or outer

one; thus � changes B C to C D, but S R to R W.

4. The operation � is contrasted with �, and changes a line considered as a side of a different

pentagon, and in the opposite order or rotation, to the consecutive side of that other pen-

tagon; thus � changes B C to C P, and S R to R Q; but it changes also R S to S T, whereas

� would change R S to S N.

5. The only operations employed in the game are those marked � and �; but another oper-

ation, ! D ����� D �����, having the property that !2 D 1, was also mentioned in

the Lithograph above referred to; and to complete the present statement of interpretations,

it may be added that the effect of this operation ! is to change an edge of a pentagonal

dodecahedron to the opposite edge of that solid ; for example, in the diagram, B C to T V.
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Note that proceeding “right handedly” may be described as moving clockwise around the appropriate pentagon,

so that action which is “in the opposite order” of proceeding “right handedly” may be described as moving counter-

clockwise.

10. Use the interpretation of � in (1) to explain why �2 D 1.

Begin by looking at the effect of applying the operation � twice in succession, beginning with the edge B C .

Then explain in general.

11. Use the interpretation of � in (2) to explain why �3 D 1.

Begin by looking at the effect of applying the operation � three times in succession, beginning with the edge

B C . Then look at the effect of applying the operation � three times in succession, beginning with the edge P N .

Finally, explain in general.

12. Use the interpretation of � in (3) to explain why �5 D 1.

Begin by looking at the effect of applying the operation � five times in succession, beginning with the edge

B C . Then look at the effect of applying the operation � five times in succession, beginning with the edge S R.

Finally, explain in general.

13. Use the interpretation of � in (4) to explain why �5 D 1.

Begin by looking at the effect of applying the operation � five times in succession, beginning with the edge

B C . Then look at the effect of applying the operation � five times in succession, beginning with the edge RS .

Finally, explain in general. (Note that this provides a geometric solution of the extra credit question stated above,

immediately following question 9.)

14. Beginning with the edge B C , use the interpretations given for the four symbols �; �; �; � to illustrate that

� D ��2 D ���.

Extra Credit Question. Establish the equation ��2� D ��� symbolically; then illustrate this equation within the

Icosian Game, first beginning with the edge B C and then beginning with the edge RS .

Some Closing Remarks

Notice Hamilton’s claim that an algebraic proof using equations of the type .�3�3.��/2/2 D 1 can be used to find

all Hamiltonian cycles beginning with a specified initial sequence of five vertices. Notice also the contrast between the

graph theoretical proof that you completed in question 4 above, and the proof that we would get of this same result

by interpreting this degree 20 equation within the context of the Icosian Game Board. In general, however, it is not

viable to associate an algebraic system with an arbitrary graph as a means to find all Hamiltonian circuits within that

graph. In fact, as you demonstrated in question 6 above, a graph may contain no Hamiltonian circuits at all. Unlike the

known situation for other kinds of circuits (e.g., Euler circuits), there is no known simple condition on a graph which

allows one to determine in all cases whether a Hamiltonian circuit exists or not. In the case that a graph does contain

a Hamiltonian circuit, we say the graph is Hamiltonian.

The more general question of determining a condition under which a graph is Hamiltonian was first studied by

Thomas Penyngton Kirkman (1840–1892). Unlike Hamilton, who was primarily interested in the algebraic connec-

tions of one specific graph, Kirkman was interested in the general study of ‘Hamiltonian circuits’ in arbitrary graphs.

The rector of a small and isolated English parish, Kirkman presented a paper on this subject to the Royal Society on

6 August 1855. Regrettably, his solution of the problem was incorrect. He did, however, present a second paper in

1856 in which he described a general class of graphs which do not contain such a circuit. Kirkman also studied the

existence of Hamiltonian circuits on the dodecahedron, a variation of the Icosian Game which Hamilton also studied.

In fact, the two men met once in 1861 when Hamilton visited Kirkman at his rectory. That Hamilton’s name became

associated with the circuits, and not Kirkman’s, appears to be one of the accidents of history, or perhaps a credit to the

fame of Hamilton’s quaternions and work in mathematical physics.
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Notes for the instructor

This project contains two sub-sections “The Icosian Game and Hamiltonian Circuits” and “The Icosian Game and Non-

Commutative Algebra,” both of which were developed specifically for use in an introductory undergraduate course in

discrete mathematics. Because no prior background in graph theory is assumed, the connection to symbolic algebra

makes the project suitable for use in a junior-level abstract algebra course as well. In a discrete mathematics course,

the project could be assigned independently or in conjunction with one or both of the projects “Early Writings on

Graph Theory: Euler Circuits and The Königsberg Bridge Problem” and “Early Writings on Graph Theory: Topolog-

ical Connections,” both of which appear in this volume. For students with no prior knowledge of non-commutative

algebras, the instructor may wish to provide more explicit directions for Questions 8 and 9, or work these together as

a whole class. Otherwise, the project may be completed by students working in small groups over 2–3 in-class days,

or assigned as a week-long individual project outside of class. Multiple copies of the Icosian Game diagram will be

needed for each student; use of color pencils or markers is also highly recommended.
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Are All Infinities Created Equal?1

Guram Bezhanishvili
New Mexico State University

Georg Ferdinand Ludwig Philip Cantor (1845–1918), the founder of set theory, and considered by many as one of the

most original minds in the history of mathematics, was born in St. Petersburg, Russia in 1845. His parents, who were of

Jewish descent, moved the family to Frankfurt, Germany in 1856. Georg entered the Wiesbaden Gymnasium at the age

of 15, and two years later began his university career at Zürich. In 1863 he moved to the University of Berlin, which

during Cantor’s time was considered the world’s center of mathematical research. Four years later Cantor received his

doctorate from the great Karl Weierstrass (1815–1897). In 1869 Cantor obtained an unpaid lecturing post, which ten

years later flourished into a full professorship, at the minor University of Halle. However, he never achieved his dream

of holding a Chair of Mathematics at Berlin. It is believed that one of the main reasons for this was the rejection of

his theories of infinite sets by the leading mathematicians of that time, most noticeably by Leopold Kronecker (1823–

1891), a professor at the University of Berlin and a very influential figure in German mathematics, both mathematically

and politically.

Cantor married in 1874 and had two sons and four daughters. Ten years later Georg suffered the first of the mental

breakdowns that were to plague him for the rest of his life. He died in 1918 in a mental hospital at Halle. By that time

his revolutionary ideas were becoming accepted by some of the leading figures of the new century. For example, one of

the greatest mathematicians of the twentieth century, David Hilbert (1862–1943), described Cantor’s new mathematics

as “the most astonishing product of mathematical thought” [5, p. 359], and claimed that “no one shall ever expel us

from the paradise which Cantor has created for us” [5, p. 353].

In this project we will learn about Cantor’s treatment of infinite sets. We will discuss the cardinality of a set, the

notion of equivalence of two sets, and study how to compare infinite sets with each other. We will introduce countable

sets and show that many sets are countable, including the set of integers and the set of rational numbers. We will also

discuss Cantor’s diagonalization method which allows us to show that not every infinite set is countable. In particular,

we will show that the set of real numbers is not countable. We will also examine the cardinal number @0, the first in

the hierarchy of transfinite cardinal numbers, and obtain a method that allows us to create infinitely many transfinite

cardinal numbers.

We will learn much of this by studying and working with the historical source [3], which is an English translation

of two papers by Cantor [1, 2] that appeared in 1895 and 1897. More on Georg Cantor can be found in [4, 5, 6] and in

the literature cited therein.

We begin by reading Cantor’s definition of the cardinal number of a given set. Note that in this translation Jourdain

uses “aggregate” instead of the more familiar “set.”

1. Read carefully the following quote from Cantor.

Every aggregate M has a definite “power,” which we also call its “cardinal number.”

We will call by the name “power” or “cardinal number” ofM the general concept which, by means

of our active faculty of thought, arises from the aggregate M when we make abstraction of the

1Thanks are due to Joel Lucero-Bryan for team-teaching this project in an undergraduate course in discrete mathematics at New Mexico State

University.
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nature of its various elements m and of the order in which they are given.

We denote the result of this double act of abstraction, the cardinal number or power of M , by

M:

What do you think Cantor means by “cardinal number”? Why? Given a set M consisting of ten round marbles, each

of a different color, what is M ?

2. Read the following quote from Cantor.

We say that two aggregates M and N are “equivalent,” in signs

M � N or N � M;

if it is possible to put them, by some law, in such a relation to one another that to every element

of each one of them corresponds one and only one element of the other.

In modern terminology describe what it means for two sets to be equivalent.

3. Prove the following claim of Cantor.

Every aggregate is equivalent to itself:

M � M:

4. Prove the following claim of Cantor.

If two aggregates are equivalent to a third, they are equivalent to one another, that is to say:

from M � P and N � P follows M � N:

5. Read carefully the following quote from Cantor.

Of fundamental importance is the theorem that two aggregatesM and N have the same cardinal

number if, and only if, they are equivalent: thus,

from M � N , we get M D N ,

and

from M D N , we get M � N .

Thus the equivalence of aggregates forms the necessary and sufficient condition for the equality

of their cardinal numbers.

Explain in your own words what Cantor means in the above.

6. Let P be the set of all perfect squares

f 0; 1; 4; 9; 16; 25; : : : g;

and let N denote the set of all natural numbers

f 0; 1; 2; 3; 4; 5; : : : g:

From Cantor’s statement above, do P and N have the same cardinality? Justify your answer.
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7. Let Z denote the set of all integers. Do N and Z have the same cardinality? Justify your answer.

8. Let N � N denote the Cartesian product of N with itself; that is

N � N D f.n; m/ W n;m 2 Ng:

Do N and N � N have the same cardinality? Justify your answer. Hint: Draw a picture of N � N. Can you label each

element of N � N by a unique natural number?

9. Let Q denote the set of all rational numbers; that is

Q D
na

b
W a 2 Z and b 2 N � f0g

o

:

What is the cardinality of Q? Justify your answer. Hint: Establish a 1-1 correspondence between Q and (a subset of)

Z � .N � f0g/ and modify your solution to (8).

10. Read carefully the following quote from Cantor.

If for two aggregatesM and N with the cardinal numbers a D M and b D N , both the conditions:

(a) There is no part2 of M which is equivalent to N ,

(b) There is a part N1 of N , such that N1 � M ,

are fulfilled, it is obvious that these conditions still hold if in them M and N are replaced by two

equivalent aggregates M 0 and N 0. Thus they express a definite relation of the cardinal numbers

a and b to one another.

Further, the equivalence of M and N , and thus the equality of a and b, is excluded; for if we

had M � N , we would have, because N1 � M , the equivalence N1 � N , and then, because

M � N , there would exist a part M1 of M such that M1 � M , and therefore we should have

M1 � N ; and this contradicts the condition (a).

Thirdly, the relation of a to b is such that it makes impossible the same relation of b to a; for if

in (a) and (b) the parts played by M and N are interchanged, two conditions arise which are

contradictory to the former ones.

We express the relation of a to b characterized by (a) and (b) by saying: a is “less” than b or b is

“greater” than a; in signs

a < b or b > a:

Describe in modern terminology when two cardinals a D M and b D N are in the relation a < b.

11. Prove the following claim of Cantor.

We can easily prove that,

if a < b and b < c; then we always have a < c:

12. Read carefully the following quote from Cantor.

Aggregates with finite cardinal numbers are called “finite aggregates,” all others we will call

“transfinite aggregates” and their cardinal numbers “transfinite cardinal numbers.”

The first example of a transfinite aggregate is given by the totality of finite cardinal numbers �;

we call its cardinal number “Aleph-zero,” and denote it by @0;

In the modern terminology, a set whose cardinal number is @0 is called “countable.” What symbol is used today to

denote the “totality of finite cardinal numbers �”?

2The modern terminology is “subset”.
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13. Prove the following claim of Cantor.

The number @0 is greater than any finite number �:

@0 > �:

14. Prove the following claim of Cantor.

On the other hand, @0 is the least transfinite cardinal number. If a is any transfinite cardinal

number different from @0, then

@0 < a:

Hint: Let a D A. Can you define a 1-1 map from N into A? What can you deduce from this?

15. Let Œ0; 1� denote the set of all real numbers between 0 and 1. Show that @0 < Œ0; 1�. We outline what is now known

as Cantor’s diagonalization method as one way to prove this. Represent real numbers in Œ0; 1� as infinite decimals

(which do not end in infinitely repeating 9’s). Assume that N � Œ0; 1�. Then to each infinite decimal one can assign a

unique natural number, so the infinite decimals can be enumerated as follows:

:a11a12 : : : a1n : : :

:a21a22 : : : a2n : : :
:::

:an1an2 : : : ann : : :
:::

Can you construct an infinite decimal :b1b2 : : : bn : : : such that ann ¤ bn for each positive n? What can you conclude

from this?

16. Let R denote the set of all real numbers. Is R strictly greater than @0? Justify your answer.

17. For a set M , let P.M/ denote the set of all subsets of M ; that is P.M/ D fN W N � M g. Prove the following

claim of Cantor:

P.M/ > M:

Hint: Employ a generalized version of Cantor’s diagonalization method. Assume thatM � P.M/. Then there is a 1-1

and onto function f W M ! P.M/. Consider the set N D fm 2 M W m … f .m/g. Can you deduce that N � M is

not in the range of f ? Does this imply a contradiction?

18. Using the previous exercise, give an infinite increasing sequence of transfinite cardinal numbers.

Notes for the instructor

This project is designed for an undergraduate course in discrete mathematics. It could be assigned as a three-week

project on naive set-theory with an emphasis on 1-1 correspondences. Since some of Cantor’s writings require non-

trivial interpretations, it is advisable that, in the beginning, the instructor leads the class carefully, especially in reading

Cantor’s “definition” of cardinal number. The instructor may also wish to lead the class in discovering that the set of

rational numbers is countable, and especially in using Cantor’s diagonalization method to show that the set of real

numbers is not countable. There is a shadow of the axiom of choice in Cantor’s claim that @0 < a for any transfinite

cardinal number a different from @0 (Exercise 14). The instructor may wish to spend a little bit of class time on giving

an informal explanation of the main idea behind the axiom of choice.
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Early Writings on Graph Theory:

Topological Connections

Janet Heine Barnett
Colorado State University - Pueblo

Introduction

The earliest origins of graph theory can be found in puzzles and game, including Euler’s Königsberg Bridge Prob-

lem and Hamilton’s Icosian Game. A second important branch of mathematics that grew out of these same humble

beginnings was the study of position (“analysis situs”), known today as topology1. In this project, we examine some

important connections between algebra, topology and graph theory that were recognized during the years from 1845–

1930.

The origin of these connections lie in work done by physicist Gustav Robert Kirchhoff (1824–1887) on the flow

of electricity in a network of wires. Kirchhoff showed how the current flow around a network (which may be thought

of as a graph) leads to a set of linear equations, one for each circuit in the graph. Because these equations are not

necessarily independent, the question of how to determine a complete set of mutually independent equations naturally

arose. Following Kirchhoff’s publication of his answer to this question in 1847, mathematicians slowly began to apply

his mathematical techniques to problems in topology. The work done by the French mathematician Henri Poincaré

(1854–1912) was especially important, and laid the foundations of a new subject now known as “algebraic topology.”

This project is based on excerpts from a 1922 paper in which Oswald Veblen [1880–1960] shows how Poincaré

formalized the ideas of Kirchhoff. An American mathematician born in Iowa, Veblen’s father was also a mathematician

who taught mathematics and physics at the State University of Iowa. At that time, graduate programs in mathematics

were relatively young in the United States. A member of the first generation of American mathematicians to complete

their advanced work in the United States rather than Europe, Oswald Veblen completed his Ph.D. at the University

of Chicago in 1903. He remained in Chicago for two years before joining the mathematics faculty at Princeton. In

1930, he became the first faculty member of the newly founded Institute for Advanced Study at Princeton.2 A talented

fund-raiser and organizer, Veblen also served on the Institute’s Board of Trustees in its early years.

During the Nazi years, Veblen was instrumental in assisting European mathematicians to find refuge in the United

States. Although some American mathematicians, including George Birkhoff (1844–1944), voiced opposition to these

efforts — fearing that talented young American mathematicians would lose academic positions to the immigrants —

the Rockefeller Foundation and other philanthropic bodies provided financial support to these efforts as a means of

1According to Euler, the first person to discuss “analysis situs” was the mathematician and philosopher Gottfreid Leibniz (1646–1716). In a

1679 letter to Christian Huygens (1629–1695), Leibniz wrote:

I am not content with algebra, in that it yields neither the shortest proofs nor the most beautiful constructions of geometry. Conse-

quently, in view of this, I consider that we need yet another kind of analysis, geometric or linear, which deals directly with position,

as algebra deals with magnitude. [1, p. 30]

Although Leibniz himself did not appear to make contributions to the development of analysis situs, he did make important contributions to the

development of another kind of analysis. Today, Leibniz is recognized alongside the mathematician and physicist Isaac Newton (1642–1727) as an

independent co-inventor of calculus.
2The celebrated physicist Albert Einstein (1879–1955) was another early faculty member of the Institute, joining Veblen there in 1931.
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recruiting world-class mathematicians and scientists to the United States. Veblen was also instrumental in the estab-

lishment of the American Mathematical Society’s Mathematical Reviews, a publication aimed at providing researchers

with reviews of recent mathematical papers in a timely fashion. Founded during the late 1930s when the well-known

German review journal Zentrallblatt für Mathematik und ihre Grenzgebiete was refusing to publish reviews written by

Soviet and Jewish scholars, the Mathematical Reviews continues to play an important role in disseminating research

results and promoting communication within the mathematical community.

In addition to his administrative and philanthropic work, Veblen was an active researcher who made important

contributions in projective and differential geometry in addition to topology, authoring influential books in all three

areas. In this project, we examine extracts from his Analysis Situs, the first textbook to be written on combinatorial

topology. Veblen first presented this work in a series of invited Colloquium Lectures of the American Mathematical

Society in 1916. Although he remained interested in topology afterwards, he published little research in this area

following the 1922 publication of Analysis Situs. The extracts we examine are taken from [1, pp. 136–141].

Note: This project assumes the reader is familiar with basic notions of graph theory, including the definition of

isomorphism and isomorphism invariant. Parts of the project (clearly marked as such) also assume familiarity with the

basic linear algebra concepts of rank, kernel and linear independence. As needed, the reader should refer to a standard

linear algebra textbook to review these concepts.

Analysis Situs

American Mathematical Society Colloquium Lectures 1916

Symbols for Sets of Cells

a
1
1

a
2
1

a
3
1

a
6
1

a
4
1

a
5
1

a
1
0 a

3
0

a
2
0

a
4
0

[FIG. 8.3]

14 Let us denote the 0-cells of a one-dimensional complex C1 by a0
1; a

0
2; : : : ; a

0
˛0

and the 1-cells

by a1
1; a

1
2; : : : ; a

1
˛1

.

Any set of 0-cells of C1 may be denoted by a symbol .x1; x2; : : : ; x˛0
/ in which xi D 1 if a0

i

is in the set and xi D 0 if a0
i is not in the set. Thus, for example, the pair of points a0

1 , a0
4

in Fig. [8.3] is denoted by .1; 0; 0; 1/. The total number of symbols .x1; x2; : : : ; x˛0
/ is 2˛0 .

Hence the total number of sets of 0-cells, barring the null-set, is 2˛0 � 1. The symbol for a

null-set, .0; 0; : : : ; 0/ will be referred to as zero and denoted by 0. The marks 0 and 1 which

appear in the symbols just defined, may profitably be regarded as residues, modulo 2, i.e.,

as symbols which may be combined algebraically according to the rules

0C 0 D 1C 1 D 0; 0C 1 D 1C 0 D 1;

0 � 0 D 0 � 1 D 1 � 0 D 0; 1 � 1 D 1
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Under this convention the sum (mod. 2) of two symbols, or of the two sets of points which

correspond to the symbols .x1; x2; : : : ; x˛0
/ D X and .y1; y2; : : : ; y˛0

/ D Y , may be defined

as .x1 C y1; x2 C y2; : : : ; x˛0
C y˛0

/ D X C Y .

Geometrically, X C Y is the set of all points which are in X or in Y but not in both. For

example, if X D .1; 0; 0; 1/ and Y D .0; 1; 0; 1/,X CY D .1; 1; 0; 0/; i.e., X represents a0
1 and

a0
4, Y represents a0

2 and a0
4 , and X C Y represents a0

1 and a0
2. Since a0

4 appears in both X

and Y , it is suppressed in forming the sum, modulo 2. This type of addition has the obvious

property that if two sets contain each an even number of 0-cells, the sum (mod. 2) contains

an even number of 0-cells.

15 Any set, S , of 1-cells in C1 may be denoted by a symbol .x1; x2; : : : ; x˛1
/ in which xi D 1 if

a1
i is in the set and xi D 0 if a1

i is not in the set. The 1-cells in the set may be thought of as

labeled with 1’s and those not in the set as labeled with 0’s. The symbol is also regarded

as representing the one-dimensional complex composed of the 1-cells of S and the 0-

cells which bound them. Thus, for example, in Fig. [8.3] the boundaries of two of the faces

are .1; 0; 1; 0; 1; 0/ and .1; 1; 0; 0; 0; 1/. The sum (mod. 2) of two symbols .x1; x2; : : : ; x˛1
/ is

defined in the same way as for the case of symbols representing 0-cells. Correspondingly

if C 0
1 and C 00

1 are one-dimensional complexes which have a certain number (which may be

zero) of 1-cells in common and have no other common points except the ends of these

1-cells, the sum C 0
1 C C 00

1 (mod. 2) is defined as the one-dimensional complex obtained

by suppressing all 1-cells common to C 0 and C 00 and retaining all 1-cells which appear

only in C 0
1 or in C 00

1 . For example, in Fig. [8.3], the sum of the two curves represented by

.1; 0; 1; 0; 1; 0/ and .1; 1; 0; 0; 0; 1/ is .0; 1; 1; 0; 1; 1/ which represents the curve composed of

a1
2; a

1
4; a

1
5; a

1
6 and their ends.

1. The following questions are based on Section 14 of Veblen’s paper, in which Veblen discusses symbols for sets

of 0-cells.

(a) In graph terminology, what is a ‘0-cell’? What is a ‘1-cell’?

(b) How would the set of points fa0
1; a

0
3; a

0
4g in Fig. 8.3 be represented by Veblen?

(c) Identify the set of points in Fig. 8.3 that are represented by the following 4-tuples.

W D .0; 1; 1; 0/ Z D .1; 1; 1; 1/

(d) Find W CZ forW D .0; 1; 1; 0/ and Z D .1; 1; 1; 1/.

Identify the set of points in Fig. 8.3 that is represented by W CZ.

(e) In the last paragraph of Section 14, Veblen asserts the addition modulo 2 has a certain ‘obvious property.’

What property is this? How obvious is this property? Give a formal proof of the property, and interpret it

in terms of sets of ‘0-cells’.

2. The following questions are based on Section 15 of Veblen’s paper, in which Veblen discusses symbols for sets

of 1-cells.

Referring to Fig. 8.3 in Veblen’s paper, let

M be the circuit defined by edges a1
1, a1

3, a1
4, a1

6,

N be the circuit defined by edges a1
2, a1

3, a1
4 .

(a) How would Veblen represent M and N as 6-tuples?

(b) Find M CN mod 2, and identify the circuit represented by this sum in Fig. 8.3.

In sections 16 and 17 of his article, Veblen defines two important matrices associated with a graph, denoted by him

as H0 and H1 respectively. In section 20, he provides more detail concerning the matrix H1 for graphs that are not

connected. Project questions pertaining to each of these three sections of Veblen’s paper provide additional clarification

of these ideas.
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16 Any one-dimensional complex falls into R0 sub-complexes each of which is connected. Let

us denote these sub-complexes by C 1
1 ; C

2
1 ; : : : ; C

R0

1 and let the notation be assigned in

such a way that a0
i (i D 1; 2; :::; m1) are the 0-cells of C 1

1 , a0
i (i D m1 C 1;m1 C 2; :::; m2)

those of C 2
1 , and so on.

With this choice of notation, the sets of vertices of C 1
1 ; C

2
1 ; : : : ; C

R0

1 , respectively, are repre-

sented by the symbols .x1; x2; : : : ; x˛0
/ which constitute the rows of the following matrix.

H0 D

















m1
‚ …„ ƒ

1 1 : : : 1

m2�m1
‚ …„ ƒ

0 0 : : : 0

˛0�mR0�1

‚ …„ ƒ

0 0 : : : 0

0 0 : : : 0 1 1 : : : 1 0 0 : : : 0
:::

:::
:::

:::

0 0 : : : 0 0 0 : : : 0 1 1 : : : 1

















D k�0
ij k

For most purposes it is sufficient to limit attention to connected complexes. In such cases

R0 D 1, and H0 consists of one row all of whose elements are 1.

3. The following questions are based on Section 16 of Veblen’s paper, in which Veblen defines the matrix H0.

(a) In the first paragraph of this section, Veblen assumes that we may label the ‘0-cells of a one-dimensional

complex’ in a particular way. What graph isomorphism invariant allows him to make this assumption?

(b) Find the matrix H0 for graphs G1 and G2 in the appendix. Using Veblen’s notation, label the vertices and

edges of each graph so that the correspondence to the associated matrix H0 is clear.

Continuing with Section 17, we consider Veblen’s initial discussion of the matrix H1:

17 By the definition . . . a 0-cell is incident with a 1-cell if it is one of the ends of the 1-cell,

and under the same conditions the 1-cell is incident with the 0-cell. The incidence relations

between the 0-cells and the 1-cells may be represented in a table or matrix of ˛0 rows and

˛1 columns as follows: The 0-cells of C1 having been denoted by a0
i , (i D 1; 2; : : : ; ˛0) and

the 1-cells by a1
j , (j D 1; 2; : : : ; ˛1), let the element of the i th row and the j th column of the

matrix be 1 if a0
i is incident with a1

j and let it be 0 if a0
i is not incident with a1

j . For example,

the table for the linear graph of Fig. [8.3] formed by the vertices and edges of a tetrahedron

is as follows:
˛1

1 ˛1
2 ˛1

3 ˛1
4 ˛1

5 ˛1
6

˛0
1 1 0 0 0 1 1

˛0
2 0 1 0 1 0 1

˛0
3 0 0 1 1 1 0

˛0
4 1 1 1 0 0 0

In the case of the complex used . . . to define a simple closed curve






1 1

1 1






We shall denote the element of the i th row and j th column of the matrix of incidence

relations between the 0-cells and 1-cells by �1
ij and the matrix itself by

k�1
ij k D H1

The i th row of H1 is the symbol for the set of all 1-cells incident with a0
i and the j th column

is the symbol for the set of all 0-cells incident with a1
j .
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The condition which we have imposed on the graph, that both ends of every 1-cell shall

be among the ˛0 0-cells, implies that every column of the matrix contains exactly two 1’s.

Conversely, any matrix whose elements are 0’s and 1’s and which is such that each column

contains exactly two 1’s can be regarded as the incidence matrix of a linear graph. For

to obtain such a graph it is only necessary to take ˛0 points in a 3-space, denote them

arbitrarily by a0
1; a

0
2; : : : ; a

0
˛0

, and join the pairs which correspond to 1’s in the same column

successively by arcs not meeting the arcs previously constructed.

4. The following questions are based on Section 17 of Veblen’s paper, in which Veblen defines the incidence matrix

H1.

(a) Find the incidence matrix H1 for graph G3 in the appendix.

(b) Sketch and label a graph with incidence matrix

H1 D

0

B
B
B
B
B
@

1 1 1 1 0 0 0

1 0 0 0 1 1 0

0 0 0 0 0 1 1

0 1 1 0 1 0 0

0 0 0 1 0 0 1

1

C
C
C
C
C
A

:

(c) Give two reasons why no graph can have incidence matrix

H1 D

0

@

1 1 1 1 0

0 1 1 0 1

1 1 0 0 1

1

A :

(d) Explain why isomorphic graphs do not necessarily have the same incidence matrix.

Is there some way in which we could use incidence matrices to determine if two graphs are isomorphic?

Explain.

In Section 20 of his article, Veblen provides a more detailed analysis of the form and properties of H1 for graphs

that are not connected.

20 Denoting the connected sub-complexes of C1 by C 1
1 ; C

2
1 ; : : : ; C

R0

1 as in 16 let the notation

be so assigned that a1
1; a

1
2; : : : ; a

1
m1

are the 1-cells in C1, a1
m1C1, a1

m1C2, : : : ; a1
m2

the 1-cells

in C2; and so on. The matrix H1 then must take the form











I 0 0 0

0 II 0 0

0 0 III 0











where all the non-zero elements are to be found in the matrices I, II, III, etc., and I is the

matrix of C1, II of C2, etc. This is evident because no element of one of the complexes C i
1

is incident with any element of any of the others.

There are two non-zero elements in each column of H1. Hence if we add the rows corre-

sponding to any of the blocks I, II, etc. the sum is zero (mod. 2) in every column. Hence the

rows of H1 are connected by R0 linear relations.

Any linear combination (mod. 2) of the rows of H1 corresponds to adding a certain number

of them together. If this gave zeros in all the columns it would mean that there were two or

no 1’s in each column of the matrix formed by the given rows, and this would mean that any

1-cell incident with one of the 0-cells corresponding to these rows would also be incident
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with another such 0-cell. These 0-cells and the 1-cells incident with them would therefore

form a sub-complex of C1 which was not connected with any of the remaining 0-cells and

1-cells of C1. Hence it would consist of one or more of the complexes C i
1 (i D 1; 2; : : : ; R0)

and the linear relations with which we started would be dependent on the R0 relations

already found. Hence there are exactly R0 linearly independent linear relations among the

rows of H1, so that if �1 is the rank of H1,

�1 D ˛0 �R0:

5. The following questions are based on Section 20 of Veblen’s paper, in which he discusses the matrix H1 for

graphs that are not connected.

(a) In the first paragraph of this section, Veblen asserts that the matrix H1 must take the form of a block

diagonal matrix. Illustrate this by finding the matrix H1 for graphs G1 and G2 in the appendix. Then

explain in general why this must be true.

(b) In the second paragraph of this section, Veblen asserts that the rows of matrix H1 are related by R0 linear

relations. What does the value R0 represent? Determine the R0 linear relations for the incidence matrices

H1 of graphs G1 and G2 from part (a) above.

Suggestions: Denote the i th row of H1 by zi . You may also wish to review Section 14 of Veblen’s paper

in which he explains the notation ‘0’ as it applies to the representation of sets of 0-cells.

(c) Verify the relationship �1 D ˛0 � R0 for the incidence matrices of graphs G1 and G2.

Note. You will need to know how to find the rank of a matrix to complete part (c) of this question; as

required, review this concept in a linear algebra textbook. Since all sums are modulo 2, you will also

need to reduce the matrices to determine their rank by hand, rather than using the matrix utility on your

calculator or some other computing device.

Returning to Veblen’s paper, we find the introduction of the concept of a ‘one-dimensional circuit.’

One-dimensional Circuits

22 A connected linear graph each vertex of which is an end of two and only two 1-cells it called

a one-dimensional circuit or a 1-circuit. Any closed curve is decomposed by any finite set

of points on it into a 1-circuit. Conversely, it is easy to see that the set of all points on a

1-circuit is a simple closed curve. It is obvious, further, that any linear graph such that each

vertex is an end of two and only two 1-cells is either a 1-circuit or a set of 1-circuits no two

of which have a point in common.

Consider a linear graph C1 such that each vertex is an end of an even number of edges. Let

us denote by 2ni the number of edges incident with each vertex at a0
i . The edges incident

with each vertex a0
i may be grouped arbitrarily in ni pairs no two of which have an edge in

common; let these pairs of edges be called the pairs associated with the vertex a0
i . Let C 0

1

be a graph coincident with C1 in such a way that (1) there is one and only one point of C 0
1

on each point of C1 which is not a vertex and (2) there are ni vertices of C 0
1 on each vertex

a0
i of C1 each of these vertices of C 0

1 being incident only with the two edges of C 0
1 which

coincide with a pair associated with at a0
i .

The linear graph C 0
1 has just two edges incident with each of its vertices and therefore

consists of a number of 1-circuits. Each of these 1-circuits is coincident with a 1-circuit of

C1, and no two of the 1-circuits of C1 thus determined have a 1-cell in common. Hence C1

consists of a number of 1-circuits which have only a finite number of 0-cells in common.
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It is obvious that a linear graph composed of a number of closed curves having only a

finite number of points in common has an even number of 1-cells incident with each vertex.

Hence a necessary and sufficient condition that C1 consist of a number of 1-circuits having

only 0-cells in common is that each 0-cell of C1 be incident with an even number of 1-

cells. A set of 1-circuits having only 0-cells in common will be referred to briefly as a set of

1-circuits.

6. The following questions are based on Section 22, in which Veblen discusses one-dimensional circuits.

(a) First paragraph: Note that Veblen is now only interested in connected graphs. According to his definition

of ‘1-circuit’, can a 1-circuit repeat edges? vertices?

(b) Second paragraph: Veblen outlines a method for constructing a new graph C 0
1 from a given linear graph

C1.

i. What conditions on the graph C1 are required for this construction?

ii. The resulting graph C 0
1 will depend on how we pair up the edges at each vertex. Illustrate this fact

using graph G4 from the appendix. That is, apply Veblen’s construction method twice to graph G4,

using different pairings of edges each time.

(c) Third paragraph: Veblen claims that each 1-circuit of the graph C 0
1 constructed by this method will be

coincident with a 1-circuit of the original graph C1.

Use graph G5 from the appendix to show that this is not the case for any arbitrary pairing of edges in the

original graph. That is, find a pairing of the four edges at vertex D of graph G5 which gives us a 1-circuit

of the graph C 0
1 that is not coincident with a 1-circuit of the graph C 0

1.

(d) In the final paragraph of Section 22, Veblen states the conclusion of this section in the form of a ‘necessary

and sufficient’ statement. To what (familiar) theorem from graph theory is this conclusion related? Explain,

and comment on Veblen’s proof (especially in light of question 5c above).

In Section 24 of Analysis Situs, Veblen introduced an algebraic representation of one-dimensional circuits.

24 Let us now inquire under what circumstances a symbol .x1; x2; : : : ; x˛1
/ for a one-dimensional

complex contained in C1 will represent a 1-circuit or a system of 1-circuits. Consider

�1
i1x1 C �1

i2x2 C � � � C �1
i˛1
x˛1

where the coefficients �1
ij are the elements of the i th row of H1. Each term �1

ijxj of this

sum is 0 if a1
j is not in the set of 1-cells represented by .x1; x2; : : : ; x˛1

/ because in this

case xj D 0; it is also zero if a1
j is not incident with a0

i because �1
ij D 0 in case. The term

�1
ijxj D 1 if a1

j is incident with a0
i and in the set represented by .x1; x2; : : : ; x˛1

/ because

in this case �1
ij D 1 and xj D 1. Hence there are as many non-zero terms in the sum as

there are 1-cells represented by .x1; x2; : : : ; x˛1
/ which are incident with a0

i . Hence by �22

the required condition is that the number of non-zero terms in the sum must be even. In

other words if the x’s and �1
ij ’s are reduced modulo 2 as explained in �14 we must have

.H1/

˛1X

iD1

�1
ijxj D 0 .i D 1; 2; : : : ; ˛0/

if and only if .x1; x2; : : : ; x˛1
/ represents a 1-circuit or set of 1-circuits. The matrix of this set

of equations (or congruences, mod. 2) is H1.
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7. Note that, in the algebraic representation of one-dimensional circuits discussed in Section 24, the number of

non-zero terms in the sum �1
i1x1 C �1

i2x2 C � � � C �1
i˛1
x˛1

corresponds to the degree of the vertex a0
i .

(a) Veblen’s conclusion in the penultimate sentence of Section 24 could be re-stated in terms of solutions to

the matrix-vector equation H1
�!v D �!

0 , where H1 is the incidence matrix of the graph. Complete the

following example to illustrate this conclusion:

Let H1 be the incidence matrix for graph G3 from the appendix. (See part a of question 4 above.) Let
�!
X D .1; 0; 1; 1; 0/ and

�!
Y D .1; 0; 0; 1; 1/. Determine the matrix-vector products (modulo 2) H1

�!
X and

H1
�!
Y . Use these results to determine whether (i)

�!
X represents a set of 1-circuits in the graph G3; and (ii)

�!
Y represents a set of 1-circuits in the graph G3. Explain.

(b) What advantage might there be in representing graphs and circuits in terms of matrices and linear equa-

tions?

In the final excerpt from Veblen’s paper below, a connection is made between the matrix H1 and the problem of

determining whether there exists a complete set of 1-circuits that will generate all possible 1-circuits for a given graph.

25 If the rank of the matrix H1 of the equations (H1) be �1 the theory of linear homogeneous

equations (congruences, mod. 2) tells us that there is a set of ˛1 � �1 linearly independent

solutions of (H1) upon which all other solutions are linearly dependent. This means geo-

metrically that there exists a set of ˛1 � �1 1-circuits or systems of 1-circuits from which

all others can be obtained by repeated applications of the operation of adding (mod. 2)

described in �14. We shall call this a complete set of 1-circuits or systems of 1-circuits.

8. The following questions are based primarily on Section 25, in which Veblen discusses how to use the matrixH1

to determine if there is a complete set of 1-circuits that will generate all possible 1-circuits for a given graph.

Note. You will need to know about null space, basis sets and rank to complete this question; as required,

review these concepts in a linear algebra textbook.

(a) Explain Veblen’s conclusion in terms of the null space of the matrixH1. You may find it helpful to review

section 24 of Veblen’s paper, and project question 7 above.

(b) Consider the incidence matrix H1 for graph G6 in the appendix.

� Find a basis for the null space of that matrix, again using modulo 2 sums.

� Use your null-space basis to identify a complete system of 1-circuits for this graph.

� Write the circuit C D .0; 0; 1; 1; 1; 0; 1/ as the sum of circuits in your complete system of 1-circuits

for this graph.

Notes for the instructor

This project was developed for use in a beginning-level discrete mathematics course; it could also be used in a more

advanced level discrete mathematics course. Familiarity with basic notions of graph theory, including the definition

of isomorphism and isomorphism invariant, is assumed. Parts of the project (clearly marked as such) also assume

familiarity with the basic linear algebra concepts of rank, kernel and linear independence. The instructor may either

omit these questions or refer students to a standard linear algebra textbook as needed for review. In view of the more

advanced nature of this project, small group work is recommended for its use within a beginning level course. Al-

though the project could be assigned independently, assigning it following completion of one or both of the projects

“Early Writings on Graph Theory: Hamiltonian Circuits and The Icosian Game” and “Early Writings on Graph The-

ory: Topological Connections” is also recommended for beginning-level courses; both projects appear in the current

volume. Use of color pencils or markers will be helpful in answering Question 6.
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Appendix: Graphs for Veblen Graph Theory Project
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A Study of Logic and Programming

via Turing Machines

Jerry M. Lodder
New Mexico State University

An Introduction to Turing Machines

During the International Congress of Mathematicians in Paris in 1900 David Hilbert (1862–1943), one of the leading

mathematicians of the last century, proposed a list of problems for following generations to ponder [8, p. 290–329], [9].

On the list was whether the axioms of arithmetic are consistent, a question which would have profound consequences

for the foundations of mathematics. Continuing in this direction, in 1928 Hilbert proposed the decision problem (das

Entscheidungsproblem) [10, 11, 12], which asked whether there was a standard procedure that can be applied to decide

whether a given mathematical statement is true. Both Alonzo Church (1903–1995) [2, 3] and Alan Turing (1912–1954)

[13] published papers in 1936 demonstrating that the decision problem has no solution, although it is the algorithmic

character of Turing’s paper “On Computable Numbers, with an Application to the Entscheidungsproblem” [13] that

forms the basis for the modern programmable computer. Today his construction is known as a Turing machine.

Let’s first study a few excerpts from Turing’s original paper [13, p. 231–234], and then design a few machines to

perform certain tasks.

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO

THE ENTSCHEIDUNGSPROBLEM

By A. M. Turing

1. Computing Machines.

We have said that the computable numbers are those whose decimals are calculable by finite

means. This requires more explicit definition. No real attempt will be made to justify the defini-

tions given until we reach �9. For present I shall only say that the justification lies in the fact that

the human memory is necessarily limited.

We may compare a man in the process of computing a real number to a machine which is only

capable of a finite number of conditions q1, q2; : : : ; qR, which will be called the “m-configurations”.

The machine is supplied with a “tape” (the analogue of paper) running through it, and divided

into sections (called “squares”) each capable of bearing a “symbol”. At any moment there is just

one square, say the r -th, bearing the symbol S.r/ which is “in the machine”. We may call this

square the “scanned square”. The symbol on the scanned square may be called the “scanned

symbol”. The “scanned symbol” is the only one of which the machine is, so to speak, “directly

aware”. However, by altering its m-configuration the machine can effectively remember some of

the symbols it has “seen” (scanned) previously. The possible behaviour of the machine at any

moment is determined by the m-configuration qn and the scanned symbol S.r/. This pair qn,

S.r/ will be called the “configuration”; thus the configuration determines the possible behaviour

241
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of the machine. In some of the configurations in which the scanned square is blank (i.e. bears no

symbol) the machine writes down a new symbol on the scanned square; in other configurations it

erases the scanned symbol. The machine may also change the square which is being scanned,

but only by shifting it one place to right or left. In addition to any of these operations the m-

configuration may be changed. Some of the symbols written down will form the sequence of

figures which is the decimal of the real number which is being computed. The others are just

rough notes to “assist the memory”. It will only be these rough notes which will be liable to

erasure.

It is my contention that these operations include all those which are used in the computation

of a number. The defense of this contention will be easier when the theory of the machines is

familiar to the reader. In the next section I therefore proceed with the development of the theory

and assume that it is understood what is meant by “machine”, “tape”, “scanned”, etc.

2. Definitions.

Automatic machines.

If at each stage the motion of a machine (in the sense of �1) is completely determined by the

configuration, we shall call the machine an “automatic machine” (or a-machine).

For some purposes we might use machines (choice machines or c-machines) whose motion

is only partially determined by the configuration (hence the use of the word “possible” in �1).

When such a machine reaches one of these ambiguous configurations, it cannot go on until

some arbitrary choice has been made by an external operator. This would be the case if we

were using machines to deal with axiomatic systems. In this paper I deal only with automatic

machines, and will therefore often omit the prefix a-.

Computing machines.

If an a-machine prints two kinds of symbols, of which the first kind (called figures) consists

entirely of 0 and 1 (the others being called symbols of the second kind), then the machine will

be called a computing machine. If the machine is supplied with a blank tape and set in motion,

starting from the correct initial m-configuration the subsequence of the symbols printed by it

which are of the first kind will be called the sequence computed by the machine. The real number

whose expression as a binary decimal is obtained by prefacing this sequence by a decimal point

is called the number printed by the machine.

At any stage of the motion of the machine, the number of the scanned square, the complete se-

quence of all symbols on the tape, and them-configuration will be said to describe the complete

configuration at that stage. The changes of the machine and tape between successive complete

configurations will be called the moves of the machine. : : :

3. Examples of computing machines.

I. A machine can be constructed to compute the sequence 010101 : : : . The machine is to have

the four m-configurations “b”, “c”, “f ”, “e” and is capable of printing “0” and “1”. The behaviour

of the machine is described in the following table [Example 1] in which “R” means “the machine

moves so that it scans the square immediately on the right of the one it was scanning previously”.

Similarly for “L”. “E” means “the scanned symbol is erased and “P ” stands for “prints”. This table

(and all succeeding tables of the same kind) is to be understood to mean that for a configuration

described in the first two columns the operations in the third column are carried out successively,

and the machine then goes over into them-configuration described in the last column. When the

second column is blank, it is understood that the behaviour of the third and fourth columns

applies for any symbol and for no symbol. The machine starts in the m-configuration b with a

blank tape.
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Configuration Behaviour

m-config. symbol operation final m-config.

b none P(0), R c

c none R e

e none P(1), R f

f none R b

If (contrary to the description �1) we allow the letters L, R to appear more than once in the

operations column we can simplify the table considerably.

Configuration Behaviour

m-config. symbol operation final m-config.

b none P(0) b

b 0 R, R, P(1) b

b 1 R, R, P(0) b

1.1. Describe the workings of a Turing machine (referred to as a “computing machine” in the original paper).

1.2. What is the precise output of the machine in Example 1? Certain squares may be left blank. Be sure to justify

your answer.

1.3. Design a Turing machine which generates the following output. Be sure to justify your answer.

010010100101001 : : :

1.4. Describe the behavior of the following machine, which begins with a blank tape, with the machine in configu-

ration ˛.

Configuration Behavior

m-config. symbol operation final m-config.

˛ none R P(1) ˇ

˛ 1 R P(0) ˇ

˛ 0 HALT (none)

ˇ 1 R P(1) ˛

ˇ 0 R P(0) ˛

1.5. Given finite, non-empty, sets A and B , design a Turing machine which tests whether A � B . Suppose that the

first character on the tape is a 0, simply to indicate the beginning of the tape. To the right of 0 follow the (distinct,

non-blank) elements of A, listed in consecutive positions, followed by the symbol &. To the right of & follow the

(distinct, non-blank) elements of B , listed in consecutive positions, followed by the symbol Z to indicate the end of

the tape:

0 . . . & . . . Z

The symbols 0, &, Z are neither elements of A nor B . The machine starts reading the tape in the rightmost position,

at Z. If A � B , have the machine erase all the elements of A and return a tape with blanks for every square which

originally contained an element of A. You may use the following operations for the behavior of the machine:

� R: Move one position to the right.

� L: Move one position to the left.

� S: Store the scanned character in memory. Only one character can be stored at a time.
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� C: Compare the currently scanned character with the character in memory. The only operation of C is to change

the final configuration depending on whether the scanned square matches what is in memory.

� E: Erase the currently scanned square.

� P( ): Print whatever is in parentheses in the current square.

You may use multiple operations for the machine in response to a given configuration. Also, for a configuration qn,

you may use the word “other” to denote all symbols S.r/ not specifically identified for the given qn. Be sure that your

machine halts.

Turing Machines, Induction and Recursion

The logic behind the modern programmable computer owes much to Turing’s “computing machines,” discussed in the

first section of the project. Since the state of the machine, orm-configuration as it was called by Turing, can be altered

according to the symbol being scanned, the operation of the machine can be changed depending on what symbols have

been written on the tape, and affords the machine a degree of programmability. The program consists of the list of

configurations of the machine and its behavior for each configuration. Turing’s description of his machine, however,

did not include memory in its modern usage for computers, and symbols read on the tape could not be stored in any

separate device. Using a brilliant design feature for the tape, Turing achieves a limited type of memory for the machine,

which allows it to compute many arithmetic operations. The numbers needed for a calculation are printed on every

other square of the tape, while the squares between these are used as “rough notes to ‘assist the memory.’ It will only

be these rough notes which will be liable to erasure” [13, p. 232].

Turing continues [13, p. 235]:

The convention of writing the figures only on alternate squares is very useful: I shall always make

use of it. I shall call the one sequence of alternate squares F -squares, and the other sequence

E-squares. The symbols on E-squares will be liable to erasure. The symbols on F -squares form

a continuous sequence. : : : There is no need to have more than one E-square between each

pair of F -squares: an apparent need of more E-squares can be satisfied by having a sufficiently

rich variety of symbols capable of being printed on E-squares.

Let’s examine the Englishman’s use of these two types of squares. Determine the output of the following Turing

machine, which begins in configuration a with the tape

X : : :

and the scanner at the far left, reading the symbol X .

Configuration Behavior

m-config. symbol operation final m-config.

a X R a

a 1 R, R a

a blank P(1), R, R, P(1), R, R, P(0) b

b X E, R c

b other L b

c 0 R, P(X), R a

c 1 R, P(X), R d

d 0 R, R e

d other R, R d

e blank P(1) b

e other R, R e
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2.1. What is the precise output of the machine as it just finishes configuration a and enters configuration b for the

first time? Justify your answer.

2.2. What is the precise output of the machine as it just finishes configuration a and enters configuration b for the

second time? Justify your answer.

2.3. What is the precise output of the machine as it just finishes configuration a and enters configuration b for the

third time? Justify your answer.

2.4. Guess what the output of the machine is as it just finishes configuration a and enters configuration b for the n-th

time. Use induction to prove that your guess is correct. Be sure to write carefully the details of this proof by induction.

2.5. Design a Turing machine, which when given two arbitrary natural numbers, n and m, will compute the product

n �m. Suppose that the machine begins with the tape

A 1 1 : : : 1 1 B 1 1 : : : 1 1 C

where the number of ones between A and B is n, the number of ones between B and C ism, and the machine begins

scanning the tape at the far left, reading the symbol A. The output of the machine should be:

A 1 : : : 1 B 1 : : : 1 C 1 1 : : : 1 D

where the number of ones between C and D is n � m. Use induction to verify that the machine produces the correct

output.

Letting T denote the Turing machine which multipliesn andm together, so that the value of T .n; m/ is n �m, design

T so that for n 2 N,

T .n; 1/ D n

and for m 2 N,m � 2, we have

T .n; m/ D T .n; m � 1/C n:

Such an equation provides an example of a recursively defined function, an important topic in computer science. In

our case, the algorithm for multiplication,T , is defined in terms of addition, a more elementary operation.

The Universal Computing Machine

The decision problem of Hilbert asked whether there is a standard procedure, an algorithm in modern terminology,

which can be invoked to decide whether an arbitrary statement (within some system of logic) is valid. In answering

this question, Turing introduced several fundamental concepts, certainly of importance to logic, but also pivotal to the

development of the modern programmable computer. The first of these is a “computing machine,” called a “Turing

machine” today, which is the forerunner of a modern computer program. The next concept is the “universal computing

machine,” which is in fact a particular type of Turing machine that accepts the instructions of some other machine M

in standard form, and outputs the same sequence as M . Turing writes [13, p. 241–242]:

It is possible to invent a single machine which can be used to compute any computable se-

quence. If this machine U is supplied with a tape on the beginning of which is written the S:D

[standard description] of some computing machine M , then U will compute the same sequence

as M .

The reader should review �3 Examples of computing machines reprinted above under “An Introduction to Turing

Machines,” and have the table from Example 1 at hand before reading the following excerpts [13, p. 239–241]:

5. Enumeration of computable sequences.

A computable sequence  is determined by a description of a machine which computes  .

Thus the sequence 001011011101111. . . is determined by the table on p. 234, and, in fact, any

computable sequence is capable of being described in terms of such a table.
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It will be useful to put these tables into a kind of standard form. In the first place let us suppose

that the table is given in the same form as the first table, for example, 1 on p. 233. That is to

say, that the entry in the operations column is always one of the form E: E;R: E;L: P˛: P˛;R:

P˛; L: R: L: or no entry at all. The table can always be put into this form by introducing more

m-configurations. Now let us give numbers to the m-configurations, calling them q1; : : : ; qR as in

�1. The initial m-configuration is always to be called q1. We also give numbers to the symbols

S1; : : : ; Sm and, in particular, blank D S0, 0 D S1, 1 D S2. The lines of the table are now of form

m-config. Symbol Operations Final m-config.

qi Sj PSk ; L qm .N1/

qi Sj PSk ; R qm .N2/

qi Sj PSk qm .N3/

Lines such as

qi Sj E; R qm

are to be written as

qi Sj PS0; R qm

and lines such as

qi Sj R qm

to be written as

qi Sj PSj ; R qm

In this way we reduce each line of the table to a line of one of the forms .N1/, .N2/, .N3/.

From each line of form .N1/ let us form an expression qi Sj Sk Lqm; from each line of form .N2/

we form an expression qi Sj Sk Rqm; and from each line of form .N3/ we form an expression

qi Sj Sk N qm.

Let us write down all expressions so formed from the table for the machine and separate them

by semi-colons. In this way we obtain a complete description of the machine. In this description

we shall replace qi by the letter “D” followed by the letter “A” repeated i times, and Sj by

“D” followed by “C ” repeated j times. This new description of the machine may be called the

standard description (S.D). It is made up entirely from the letters “A”, “C ”, “D”, “L”, “R”, “N ”, and

from “;”. ...

Let us find a description number for the machine I of �3. When we rename the m-configurations

its table becomes:

m-config. Symbol Operations Final m-config.

q1 S0 PS1; R q2

q2 S0 PS0; R q3

q3 S0 PS2; R q4

q4 S0 PS0; R q1

Other tables could be obtained by adding irrelevant lines such as

q1 S1 PS1; R q2

Our first standard form would be

q1 S0 S1R q2I q2 S0 S0Rq3I q3 S0 S2R q4I q4 S0 S0R q1I :

The standard description is

DADDCRDAAIDAADDRDAAAIDAAADDCCRDAAAAIDAAAADDRDAI
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Continuing from [13, p. 243], we read:

Each instruction consists of five consecutive parts

(i) “D” followed by a sequence of letters “A”. This describes the relevant m-configuration.

(ii) “D” followed by a sequence of letters “C ”. This describes the scanned symbol.

(iii) “D” followed by another sequence of letters “C ”. This describes the symbol into which the

scanned symbol is to be changed.

(iv) “L”, “R”, or “N ”, describing whether the machine is to move to left, right, or not at all.

(v) “D” followed by a sequence of letters “A”. This describes the final m-configuration.

3.1. What is the output of the following machine, T , if T begins in configuration a with a blank tape, scanning the

blank at the far left?

Configuration Behavior

m-config. symbol operation final m-config.

a 1 R c

a blank P(1), R b

b 0 R a

b blank P(1) a

c blank P(0) b

3.2. Rewrite the output of machine T using the “standard description” for the output symbols, i.e., S0 D blank,

S1 D 0, S2 D 1, and then replace each Sj with D followed by C repeated j times.

3.3. What is the standard description (S:D) of machine T ? Be sure that every instruction, including the last one, is

followed by a semi-colon. Make sure that you have the correct answer to this before continuing.

3.4. Suppose that the number of configurations for a given machine M is limited to nine, while the number of

symbols which M can recognize or write is limited to four. The machine M begins in its first listed configuration (a)

with a blank tape, reading the blank at the far left. Now suppose that the standard description of M is written on every

other square (in fact the F -squares) of a second tape, with each instruction followed by a semi-colon (on an F -square

as well), with the last semi-colon followed by the symbol “::” on an F -square. Initially all other squares on this second

tape are blank. If the standard description for machine I of �3 in Turing’s paper is entered on tape in this way, what is

the output of the following machine U , which begins in configuration one reading the tape at the far left? Note that

20R is shorthand for “move 20 squares to the right,” and similarly for 10R. How does this compare with the actual

output of machine I, �3?

3.5. If the standard description of machine T from question 3.1 is written on tape as described in 3.4, what is the

output of U when applied to this tape? How does this compare to the actual output of T ?

3.6. Describe in words the operation of configuration one from machine U . Describe separately the operations of

configurations two, three, and four.

3.7. Note that only the first 16 configurations of U are listed. From this point, if U was originally supplied with the

standard description of a machineM (as specified in 3.4), thenU should output the same sequence asM , except coded

according to the standard description of the output symbols. Moreover, U keeps track of the current configuration of

M in the first 18 squares immediately following “::”. The position of the scanner forM is recorded via the symbol “T”

on the tape which U processes. Beginning with configuration 17, outline the remaining operations of U . You may use

phrases such as “match m-configuration,” “match scanned symbol,” or “ move scanner forM ,” etc. Be sure to include

a written explanation of these and any other operations you decide to use in your outline. For this part, you do not need

to design an actual Turing machine to perform these tasks. Does recursion occur in your outline? How?
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Configuration Behavior

m-config. symbol operation final m-config.

1 D R 1

1 A R 2

1 :: none none

1 other R 1

2 blank R 2

2 A R 4

2 D R, R 3

3 D R, P(X) 5

3 C R 4

4 ; R 1

4 :: none none

4 other R 4

5 :: 20R, P(Y), R, R, P(D), 10R, P(Z) 6

5 other R 5

6 X E, R 7

6 other L 6

7 C R, P(X) 8

7 R R, P(X) 10

7 L none none

7 N R, P(X) 11

8 Y 4R 9

8 other R 8

9 blank P(C) 6

9 C R, R 9

10 Z E, P(T) 12

10 other R 10

11 Y R, P(T) 12

11 other R 11

12 X E, 4R, P(X) 13

12 other L 12

13 :: R, R 14

13 other R 13

14 blank P(A) 15

14 Y none none

14 other R, R 14

15 X E, R 16

15 other L 15

16 ; none 17

16 A R, P(X) 13

3.8. Beginning with configuration 17, find the actual machine instructions of U so that U finds a match between an

arbitrary configuration stored on the 18 squares to the right of “::” and a configuration at the beginning of a coded

instruction to the left of “::”. Suppose that the standard description entered on tape is that of a machine M for which

there is always a well-defined configuration to follow every move ofM . Use only the operations “R,” “L,” “E,” “P( ),”

“none,” and be sure to explain the new steps of U . What is the present-day terminology used to describe U ?

Extra Credit: Write a computer program for a universal computing machine (in the language of your choice).

Demonstrate with several examples that your universal machine functions properly.
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The Decision Problem, Das Entscheidungsproblem

Turing’s paper “On Computable Numbers with an Application to the Entscheidungsproblem” proved most influential

not only for mathematical logic, but also for the development of the programmable computer, and together with work

of Alonzo Church (1903–1995) [2, 3] and others [7], inaugurated a new field of study known today as computability.

Recall that Turing’s original motivation for writing the paper was to answer the decision problem of David Hilbert,

posed in 1928 along with a list of other problems [10, 11] dealing with the consistency, completeness and independence

of the axioms of a logical system in general. The solutions to these problems, in particular Kurt Gödel’s (1906–1978)

demonstration of the incompleteness of arithmetic with the existence of statements that are not provable (as true or

false) [6], had profound consequences for mathematics, and brought mathematical logic to the fore as a separate field

of study [7]. In this section, however, we deal primarily with the problem of deciding whether a given statement is

valid within a logical system, the decision problem, which Hilbert expressed as [12, p. 112–113]:

: : : [T]here emerges the fundamental importance of determining whether or not a given formula

of the predicate calculus is universally valid. : : : A formula : : : is called satisfiable if the sentential

variables can be replaced with the values truth and falsehood : : : in such a way that the formula

[becomes] a true sentence. : : : It is customary to refer to the equivalent problems of universal

validity and satisfiability by the common name of the decision problem.

Following Gödel’s results, the decision problem remained, although it must be reinterpreted as meaning whether

there is a procedure by which a given proposition can be determined to be either “provable” or “unprovable”. In the

text Introduction to Mathematical Logic [4, p. 99], Church formulated this problem as:

The decision problem of a logistic system is the problem to find an effective procedure or algo-

rithm, a decision procedure, by which for an arbitrary well-formed formula of the system, it is

possible to determine whether or not it is a theorem : : : .

To be sure, Church proves that the decision problem has no solution [2, 3], although it is the algorithmic character of

Turing’s solution that is pivotal to the logical underpinnings of the programmable computer. Moreover, the simplicity

of a Turing machine provides a degree of accessibility to logic and computability ideal for readers new to this material.

The concept of a universal computing machine, studied above, has evolved into what now is known as a compiler or

interpreter in computer science, and is indispensable for the processing of any programming language. The question

then arises, does the universal computing machine provide a solution to the decision problem? The universal machine

is the standard procedure for answering all questions that can in turn be phrased in terms of a computer program.

First, study the following excerpts from Turing’s paper [13, p. 232–233]:

Automatic machines.

If at each stage the motion of a machine is completely determined by the configuration, we shall

call the machine an “automatic machine” (or a-machine). : : :

Computing machines.

If an a-machine prints two kinds of symbols, of which the first kind (called figures) consists

entirely of 0 and 1 (the others being called symbols of the second kind), then the machine will

be called a computing machine. If the machine is supplied with a blank tape and set in motion,

starting from the correct initial m-configuration, the subsequence of symbols printed by it which

are of the first kind will be called the sequence computed by the machine. : : :

Circular and circle-free machines.

If a computing machine never writes down more than a finite number of symbols of the first kind,

it will be called circular. Otherwise it is said to be circle-free. : : :

A machine will be circular if it reaches a configuration from which there is no possible move, or

if it goes on moving and possibly printing symbols of the second kind, but cannot print any more

symbols of the first kind.
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Computable sequences and numbers.

A sequence is said to be computable if it can be computed by a circle-free machine. A number

is computable if it differs by an integer from the number computed by a circle-free machine. : : :

4.1. Consider the following machine, T1, which begins in m-configuration a with a blank tape, reading the blank at

the far left. Is T1 circle-free? Justify your answer.

T1 W

Configuration Behavior

m-config. symbol operation final m-config.

a blank R; P.1/ b

a 0 R b

b 1 R; R; P.0/ a

b blank (none) a

4.2. Consider the following machine, T2, which begins in m-configuration a with a blank tape, reading the blank at

the far left. Is T2 circle-free? Justify your answer.

T2 W

Configuration Behavior

m-config. symbol operation final m-config.

a blank R; P.1/ b

a 0 R b

b 1 R; R; P.0/ a

b 0 R a

4.3. Describe in your own words the key feature which distinguishes a circle-free machine from a circular machine.

4.4. Is the sequence 101001000100001 : : : computable? If so, find a circle-free machine (with a finite number of

m-configurations) that computes this sequence on every other square (the F -squares) of a tape which is originally

blank. If not, prove that there is no circle-free machine that computes the above sequence.

Turing’s insight into the decision problem begins by listing all computable sequences in some order:

�1; �2; �3; : : : ; �n; : : : ;

where �n is the n-th computable sequence. Moreover, let �n.k/ denote the k-th figure (0 or 1) of �n. For example, if

�2 D 101010 : : : ;

then �2.1/ D 1, �2.2/ D 0, �2.3/ D 1, etc. Turing then considers the sequence ˇ0 defined by ˇ0.n/ D �n.n/. If the

decision problem has a solution, then [13, p. 247]:

We can invent a machine D which, when supplied with the S:D [standard description] of any

computing machine M will test this S:D and if M is circular will mark the S:D with the symbol

“u” [unsatisfactory] and if it is circle-free will mark it with “s” [satisfactory]. By combining the

machines D and U [the universal computing machine] we could construct a machine H to

compute the sequence ˇ0.

4.5. Is the number of computable sequences finite or infinite? If finite, list the computable sequences. If infinite,

find a one-to-one correspondence between the natural numbers, N, and a subset of the computable sequences. Use the

result of this question to carefully explain whyH must be circle-free.

4.6. Since H is circle-free, the sequence computed by H must be listed among the �n’s. Suppose this occurs for

n D N0. In a written paragraph, explain how ˇ0.N0/ should be computed. Is it possible to construct a machineH that

computes ˇ0? If so, find the configuration table for H . If not, what part of H , i.e., D or U , cannot be constructed?

Justify your answer.

4.7. Does the universal computing machine solve the decision problem? Explain.

4.8. By what name is the decision problem known today in computer science? Support your answer with excerpts

from outside sources.
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Notes for the instructor

The project contains four sub-projects “An Introduction to Turing Machines,” “Turing Machines, Induction and Re-

cursion,” “The Universal Computing Machine,” and “The Decision Problem,” with the first two of these ideal for an

introductory undergraduate course in discrete mathematics or computer programming. The first could be assigned as a

separate two-week project while covering naı̈ve set theory, while the second could be assigned while the class studies

inductive or recursive constructions. A variant of this second sub-project used recently in a beginning programming

course requires the construction of a Turing machine to compute the sum of two positive binary integers. This version

of the project, “Turing Machines and Binary Addition,” is available from the web resource [1].

The latter two sub-projects, which sketch the main results of Turing’s paper, are well suited for an advanced or

intermediate course in discrete mathematics, logic, or programming. The universal machine is a Turing machine that

accepts as its input any other machine, T , and computes the same output as T . This foreshadows the development of

a compiler or interpreter in computer science. The decision problem asks whether there is a decision procedure that

can be applied to any well-formulated mathematical statement and determine whether the statement is true or false.

Turing’s negative solution to this problem forms the historical legacy of his paper, not to mention the notion of “Turing

computable” to refer to that which can be computed via a Turing machine.
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Church’s Thesis1
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Introduction

In this project we will learn about both primitive recursive and general recursive functions. We will also learn about

Turing computable functions, and will discuss why the class of general recursive functions coincides with the class

of Turing computable functions. We will introduce the effectively calculable functions, and the ideas behind Alonzo

Church’s (1903–1995) proposal to identify the class of effectively calculable functions with the class of general recur-

sive functions, known as “Church’s thesis.” We will analyze Kurt Gödel’s (1906–1978) initial rejection of Church’s

thesis, together with the work of Alan Turing (1912–1954) that finally convinced Gödel of the validity of Church’s

thesis. We will learn much of this by studying and working with primary historical sources by Gödel, Stephen Cole

Kleene (1909–1994), and Turing.

We begin by asking the following question: What does it mean for a function f to be effectively calculable? Obvi-

ously if we can find an algorithm to calculate f , then f is effectively calculable. For example, the famous Euclidean

algorithm tells us that the binary function producing the greatest common divisor of two integers is effectively cal-

culable. But what if we can not find an algorithm that calculates f ? The reason could be that there is no algorithm

calculating f ; or it could be that f is effectively calculable but we were not successful in finding an algorithm. Thus,

it is evident that we need better means to identify effectively calculable functions.

The problem of identifying the effectively calculable functions (of natural numbers) was at the center stage of

mathematical research in the twenties and thirties of the twentieth century. In the early thirties at Princeton, Church

and his two gifted students Kleene and John Barkley Rosser (1907–1989) were developing the theory of �-definable

functions. Church proposed to identify the effectively calculable functions with the �-definable functions. Here is

Kleene’s description of these events, taken from page 59 of [12]:

The concept of �-definability existed full-fledged by the fall of 1933 and was circulating among

the logicians at Princeton. Church had been speculating, and finally definitely proposed, that the

�-definable functions are all the effectively calculable functions—what he published in [2], and

which I in [11] Chapter XII (or almost in [10]) called “Church’s thesis”.

When Church proposed this thesis, I sat down to disprove it by diagonalizing out of the class of

the �-definable functions. But, quickly realizing that the diagonalization cannot be done effec-

tively, I became overnight a supporter of the thesis.

Though Kleene became an “overnight” supporter of the thesis, it was a different story with Gödel. Gödel arrived

at Princeton in the fall of 1933. Church proposed his thesis to Gödel early in 1934, but, according to a November 29,

1935 letter from Church to Kleene, Gödel regarded it “as thoroughly unsatisfactory.” Instead, in his lectures during the

spring of 1934 at Princeton [6], Gödel generalized the notion of primitive recursive functions, which was introduced

1Thanks are due to Joel Lucero-Bryan for team-teaching this project in an advanced undergraduate course in mathematical logic at New Mexico

State University.
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by him in his epoch-making paper on undecidable propositions [5].2 He did this by modifying a suggestion made by

Jacques Herbrand (1908–1931) in a 1931 letter, to obtain the notion of general recursive functions (also known as the

Herbrand-Gödel general recursive functions). Below we give an excerpt from the abovementioned letter from Church

to Kleene (taken from [4]) that gives an account of his discussion of effective calculability with Gödel:

In regard to Gödel and the notions of recursiveness and effective calculability, the history is the

following. In discussion [sic] with him the notion of lambda-definability, it developed that there

was no good definition of effective calculability. My proposal that lambda-definability be taken as

a definition of it he regarded as thoroughly unsatisfactory. I replied that if he would propose any

definition of effective calculability which seemed even partially satisfactory I would undertake to

prove that it was included in lambda-definability. His only idea at the time was that it might be

possible, in terms of effective calculability as an undefined notion, to state a set of axioms which

would embody the generally accepted properties of this notion, and to do something on that

basis. Evidently it occurred to him later that Herbrand’s definition of recursiveness, which has no

regard to effective calculability, could be modified in the direction of effective calculability, and

he made this proposal in his lectures. At that time he did specifically raise the question of the

connection between recursiveness in this new sense and effective calculability, but said he did

not think that the two ideas could be satisfactorily identified “except heuristically.”

It appears that Gödel’s rejection of �-definability as a possible “definition” of effective calculability was the main

reason behind Church’s announcement of his thesis in terms of general recursive functions [1]. Church made his

announcement at a meeting of the American Mathematical Society in New York City on April 19, 1935. Below is an

excerpt from his abstract:

Following a suggestion of Herbrand, but modifying it in an important respect, Gödel has pro-

posed (in a set of lectures at Princeton, N. J., 1934) a definition of the term recursive function,

in a very general sense. In this paper a definition of recursive function of positive integers which

is essentially Gödel’s is adopted. And it is maintained that the notion of an effectively calculable

function of positive integers should be identified with that of a recursive function, since other

plausible definitions of effective calculability turn out to yield notions which are either equivalent

to or weaker than recursiveness.

Note that in the abstract Church relegated �-definability to “other plausible definitions of effective calculability”

that were “either equivalent to or weaker than recursiveness,” which indicates that, at the time, Church was not yet

certain whether �-definability was equivalent to general recursiveness. Kleene filled in this gap in [8] by showing that

these two notions were indeed equivalent. Thus, in the full version of his paper [2], Church was already fully aware

that the two notions of general recursiveness and �-definability coincide.

Kleene’s theorem that identified general recursive and �-definable functions, together with Kleene’s famous Normal

Form Theorem3 were beginning to convince Gödel of the validity of Church’s thesis. However, it wasn’t until the work

of Turing that he finally accepted Church’s thesis.

Turing’s famous paper [15] appeared in 1936 (a correction to it was published in 1937). Turing introduced what we

now call Turing machines, and defined a function to be computable if it can be computed on a Turing machine. His

work was entirely independent of the related research being done in Princeton. According to [12], page 61:

Turing learned of the work at Princeton on �-definability and general recursiveness just as he

was ready to send off his manuscript, to which he then added an appendix outlining a proof of

the equivalence of his computability to �-definability. In [16] he gave a proof of the equivalence

in detail.

Thus, Turing introduced his notion of computability in 1936–1937 and, using some of the results of Kleene, showed

that the three notions of Turing computable, general recursive, and �-definable functions coincide.

2It has to be noted that what we now call “primitive recursive” functions Gödel simply called “recursive.” The term “primitive recursive” was

introduced by Kleene in [7].
3The Normal Form Theorem appeared in [7] and considerably simplified the notion of general recursive functions.
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On page 72 of Gödel’s “postscriptum” to his 1934 lecture notes which he prepared in 1964 for [3], Gödel states:

Turing’s work gives an analysis of the concept of “mechanical procedure” (alias “algorithm” or

“computation procedure” or “finite combinatorial procedure”). This concept is shown to be equiv-

alent with that of a “Turing machine”.

Thus, Gödel made it clear that, in his view, Turing’s work was of fundamental importance in establishing the validity

of Church’s thesis. In particular, it influenced Gödel to accept it.

Our account of effective calculability would be incomplete if we did not mention that around the same time and inde-

pendently of Turing, but not of the work in Princeton, Emil Leon Post (1897–1954) formulated yet another equivalent

version of computability [13]. However, his work was less detailed than Turing’s.

Lastly we mention that partial recursive functions were introduced by Kleene in [9]. In [11] he also generalized the

notion of Turing computable functions to partial functions and showed that a partial function is Turing computable if,

and only if, it is partial recursive. The importance of his work is underlined in footnote 20 of [4] quoted below:

It is difficult for those who have learned about recursive functions via a treatment that empha-

sized partial functions from the outset to realize just how important Kleene’s contribution was.

Thus Rogers’ excellent and influential treatise [14], p. 12, contains an historical account which

gives the impression that the subject had been formulated in terms of partial functions from the

beginning.

To summarize, in the 1930s there were several versions proposed to formalize the intuitive concept of effective

calculability. These were �-definability (Church), general recursiveness (Gödel), Turing computability (Turing), and

Post computability (Post). All these concepts were seen to be equivalent to each other, thus producing evidence for

general acceptance of Church’s thesis.

This project will only scratch the surface of the subject. Instead of working with partial functions, we will restrict

our attention to total functions. We will learn about primitive recursive and general recursive functions from the work

of Gödel and Kleene. We will also learn about Turing machines, Turing computable sequences (of natural numbers),

and Turing computable real numbers (in the interval Œ0; 1�) from the work of Turing and Kleene. We will examine

Turing’s and Kleene’s definitions of computable functions (of natural numbers), and show that every general recursive

function is computable on a Turing machine. The fact that every Turing computable function is general recursive

requires the relatively advanced technique of Gödel numbers and will not be addressed in this project. Instead we refer

the interested reader to [5], [6] or [11] for the definition of Gödel numbers, and [16] or [11] for the proof that every

Turing computable function is general recursive.

The four sources by Gödel, Turing, and Kleene that will be used in the project are [6], [15], [10], and [11]. Edited

versions of the first three with forewords have been reprinted in [3].

Part I. Primitive recursive functions

Note: For the reading in part I we will use excerpts of Gödel’s 1934 lecture notes [6] reprinted in Davis [3] and edited

by Gödel himself. We decided to choose the reprinted version over the original since its definition of rule (1) is more

convenient for our purposes.

1.(a) Read carefully the following excerpt of Gödel’s 1934 lecture notes [6] reprinted in Davis [3].

The function �.x1; : : : ; xn/ shall be compound with respect to  .x1; : : : ; xm/ and �i .x1; : : : ; xn/

(i D 1; : : : ; m) if, for all natural numbers x1; : : : ; xn,

(1) �.x1; : : : ; xn/ D  .�1.x1; : : : ; xn/; : : : ; �m.x1; : : : ; xn//.

�.x1; : : : ; xn/ shall be said to be recursive with respect to  .x1; : : : ; xn�1/ and �.x1; : : : ; xnC1/ if,

for all natural numbers k; x2; : : : ; xn,

(2)
�.0; x2; : : : ; xn/ D  .x2; : : : ; xn/

�.k C 1; x2; : : : ; xn/ D �.k; �.k; x2; : : : ; xn/; x2; : : : ; xn/:



256 Part II Historical Projects in Discrete Mathematics and Computer Science

In both (1) and (2), we allow the omission of each of the variables in any (or all) of its occurrences

on the right side (e.g., �.x; y/ D  .�1.x/; �2.x; y// is permitted under (1))4. We define the class

of recursive functions to be the totality of functions which can be generated by substitution,

according to the scheme (1), and recursion, according to the scheme (2), from the successor

function x C 1, constant functions f .x1; : : : ; xn/ D c, and identity functions U n
j .x1; : : : ; xn/ D xj

(1 � j � n). In other words, a function � shall be recursive if there exists a finite sequence of

functions �1; : : : ; �n which terminates with � such that each function of the sequence is either

the successor function x C 1 or a constant function f .x1; : : : ; xn/ D c, or an identity function

U n
j .x1; : : : ; xn/ D xj , or is compound with respect to preceding functions, or is recursive with

respect to preceding functions.

1.(b) Rewrite rule (1) for n D 1 and m D 2. Also rewrite rule (2) for n D 1. Explain in your own words what the

rules express.

1.(c) Give a definition of primitive recursive functions in your own words.

1.(d) On page 44 of [3] Gödel states:

The functions x C y, xy, xy and xŠ are clearly [primitive] recursive.

Give an argument for why this is so. Hint: Review your answer to 1.(c) and make sure that you have a good grasp of

Gödel’s definition of primitive recursive functions.

1.(e) Is every function of natural numbers primitive recursive? Hint: Use a cardinality argument.

1.(f) Read carefully the excerpts from Church’s 1935 letter to Kleene and Church’s 1935 abstract appearing above.

Also read carefully the following excerpt of Gödel’s 1934 lecture notes [6] reprinted in Davis [3].

Recursive functions have the important property that, for each given set of values of the argu-

ments, the value of the function can be computed by a finite procedure5.

Do you see any connection between Gödel’s writing and Church’s thesis? Explain your answer.

Part II. General recursive functions

2.(a) Read carefully the following excerpt of section 1 of Kleene [10].

We consider the following schemata as operations for the definition of a function � from given

functions appearing in the right members of the equations (c is any constant natural number):

(I) �.x/ D x0,

(II) �.x1; : : : ; xn/ D c,

(III) �.x1; : : : ; xn/ D xi ,

(IV) �.x1; : : : ; xn/ D �.�.x1; : : : ; xn/; : : : ; �m.x1; : : : ; xn//,

(Va)

(

�.0/ D c

�.y0/ D �.y; �.y//;

(Vb)

(

�.0; x1; : : : ; xn/ D  .x1; : : : ; xn/

�.y0; x1; : : : ; xn/ D �.y; �.y; x1; : : : ; xn/; x1; : : : ; xn/;

4[This sentence could have been] omitted, since the removal of any of the occurrences of variables on the right may be effected by means of the

functionUn
j

. [This footnote occurs in the original source.]
5The converse seems to be true, if, besides recursions according to the scheme (2), recursions of other forms (e.g., with respect to two variables

simultaneously) are admitted. This cannot be proved, since the notion of finite computation is not defined, but it serves as a heuristic principle. [This

footnote occurs in the original source.]
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Schema (I) introduces the successor function, Schema (II) the constant functions, and Schema

(III) the identity functions. Schema (IV) is the schema of definition by substitution, and Schema

(V) the schema of primitive recursion. Together we may call them (and more generally, schemata

reducible to a series of applications of them) the primitive recursive schemata.

A function � that can be defined from given functions  1; : : : ;  k by a series of applications of

these schemata we call primitive recursive in the given functions; and in particular, a function �

definable ab initio6 by these means, primitive recursive.

Is your answer to 1.(c) equivalent to Kleene’s definition of primitive recursive functions? Explain why.

2.(b) Recall (or look up) the definitions of total and partial functions. Discuss briefly the difference between the

two. Read carefully the following definition of the �-operator taken from the beginning of section 3 of Kleene [10].

Consider the operator: �y (the least y such that). If this operator is applied to a predicate

R.x1; : : : ; xn; y/ of the nC 1 variables x1; : : : ; xn; y, and if this predicate satisfies the condition

.2/ .8x1/ � � � .8xn/.9y/R.x1; : : : ; xn; y/;

we obtain a function �yR.x1; : : : ; xn; y/ of the remaining n free variables x1; : : : ; xn.

Thence we have a new schema,

.VI1/ �.x1; : : : ; xn/ D �yŒ�.x1; : : : ; xn; y/ D 0�;

for the definition of a function � from a given function � which satisfies the condition

.3/ .8x1/ � � � .8xn/.9y/Œ�.x1 ; : : : ; xn; y/ D 0�:

Give an example of a function obtainable by the application of the �-operator that is not total. What does condition

(3) guarantee about the function obtained by using schema (VI1)?

2.(c) Read carefully excerpts of theorem III and the corollary to it taken from page 51 of Kleene [10].

THEOREM III. The class of general recursive functions is closed under applications of Schemata

(I)–(VI) with (3) holding for applications of (VI).

COROLLARY. Every function obtainable by applications of Schemata (I)–(VI) with (3) holding for

applications of (VI) is general recursive.

Based on the corollary, give a definition of general recursive functions. Explain whether or not every primitive recursive

function is general recursive.

2.(d) Is every function of natural numbers general recursive? Explain your answer.

2.(e) (Extra Credit) Give a reasonable argument for why the class of general recursive functions is strictly larger than

the class of primitive recursive functions.

6From the beginning.
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Part III. Turing machines

3.(a) Read carefully the following excerpt of section 1 of Turing [15].

We may compare a man in the process of computing a real number to a machine which is only

capable of a finite number of conditions q1; q2; : : : ; qR which will be called “m-configurations”.

The machine is supplied with a “tape” (the analogue of paper) running through it, and divided

into sections (called “squares”) each capable of bearing a “symbol”. At any moment there is just

one square, say the r -th, bearing the symbol S.r/ which is “in the machine”. We may call this

square the “scanned square”. The symbol on the scanned square may be called the “scanned

symbol”. The “scanned symbol” is the only one of which the machine is, so to speak, “directly

aware”. However, by altering its m-configuration the machine can effectively remember some of

the symbols which it has “seen” (scanned) previously. The possible behaviour of the machine

at any moment is determined by the m-configuration qn and the scanned symbol S.r/. This

pair qn;S.r/ will be called the “configuration”: thus the configuration determines the possible

behaviour of the machine. In some of the configurations in which the scanned square is blank

(i.e. bears no symbol) the machine writes down a new symbol on the scanned square: in other

configurations it erases the scanned symbol. The machine may also change the square which

is being scanned, but only by shifting it one place to right or left. In addition to any of these

operations the m-configuration may be changed. Some of the symbols written down will form

the sequence of figures which is the decimal of the real number which is being computed. The

others are just rough notes to “assist the memory”. It will only be these rough notes which will

be liable to erasure.

Also read carefully the following excerpt of section 2 of Turing [15].

Automatic machines.

If at each stage the motion of a machine (in the sense of �1) is completely determined by the

configuration, we shall call the machine an “automatic machine” (or a-machine).

For some purposes we might use machines (choice machines or c-machines) whose motion

is only partially determined by the configuration (hence the use of the word “possible” in �1).

When such a machine reaches one of these ambiguous configurations, it cannot go on until

some arbitrary choice has been made by an external operator. This would be the case if we

were using machines to deal with axiomatic systems. In this paper I deal only with automatic

machines, and will therefore often omit the prefix a-.

Computing machines.

If an a-machine prints two kinds of symbols, of which the first kind (called figures) consists

entirely of 0 and 1 (the others being called symbols of the second kind), then the machine will

be called a computing machine. If the machine is supplied with a blank tape and set in motion,

starting from the correct initial m-configuration, the subsequence of the symbols printed by it

which are of the first kind will be called the sequence computed by the machine. The real number

whose expression as a binary decimal is obtained by prefacing this sequence by a decimal point

is called the number computed by the machine.

At any stage of the motion of the machine, the number of the scanned square, the complete se-

quence of all symbols on the tape, and them-configuration will be said to describe the complete

configuration at that stage. The changes of the machine and tape between successive complete

configurations will be called the moves of the machine.

Circular and circle-free machines.

If a computing machine never writes down more than a finite number of symbols of the first kind,

it will be called circular. Otherwise it is said to be circle-free.
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A machine will be circular if it reaches a configuration from which there is no possible move, or if

it goes on moving, and possibly printing symbols of the second kind, but cannot print any more

symbols of the first kind. . .

Computable sequences and numbers.

A sequence is said to be computable if it can be computed by a circle-free machine. A number

is computable if it differs by an integer from the number computed by a circle-free machine.

Note: The machines that Turing designed will be called Turing machines.

3.(b) What are the primary components of a Turing machine? Describe m-configurations, configurations, and com-

plete configurations of a Turing machine, and their differences.

3.(c) Formulate in your own words Turing’s definition of a computing machine, a computable sequence (of natural

numbers), and a computable real number (in the interval Œ0; 1�).

3.(d) Read carefully the following excerpt of section 3 of Turing [15] where it is shown that the sequence 010101 : : :

is computable.

A machine can be constructed to compute the sequence 010101 : : : . The machine is to have

the four configurations “b”, “c”, “f”, “e” and is capable of printing “0” and “1”. The behaviour of

the machine is described in the following table in which “R” means “the machine moves so that

it scans the square immediately on the right of the one it was scanning previously”. Similarly

for “L”. “E” means “the scanned symbol is erased” and “P ” stands for “prints”. This table (and

all succeeding tables of the same kind) is to be understood to mean that for a configuration

described in the first two columns the operations in the third column are carried out successively,

and the machine then goes over into them-configuration described in the last column. When the

second column is left blank, it is understood that the behaviour of the third and fourth columns

applies for any symbol and for no symbol. The machine starts in the m-configuration b with a

blank tape.

Configuration Behaviour

m-config. symbol

b None

c None

e None

f None

operations final m-config.

P0; R c

R e

P1; R f

R b

If (contrary to the description in �1) we allow the letters L;R to appear more than once in the

operations column we can simplify the table considerably.

m-config. symbol operations final m-config.

b

8

<

:

None

0

1

P 0

R;R; P1

R;R; P 0

b

b

b

What can you conclude about the real number 1
3

? Design a Turing machine that computes the real number 1
7

. Give an

argument for why the machine you just designed does what it is supposed to do.

3.(e) (Extra Credit) Read carefully the following excerpt of section 3 of Turing [15] where it is shown that the

sequence 001011011101111011111 : : : is computable.
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As a slightly more difficult example we can construct a machine to compute the sequence

001011011101111011111 : : : . The machine is to be capable of five m-configurations, viz. “o”, “q”,

“p”, “f”, “b” and of printing “@”, “x”, “0”, “1”. The first three symbols on the tape will be “@@0”; the

other figures follow on alternate squares. On the intermediate squares we never print anything

but “x”. These letters serve to “keep the place” for us and are erased when we have finished

with them. We also arrange that in the sequence of figures on alternate squares there shall be

no blanks.

Configuration Behaviour

m-config. symbol operations
final

m-config.
b P@; R; P @; R; P 0; R;R; P 0;L; L o

o

�
1

0

R; Px; L; L; L o

q

q

�
Any (0 or 1)

None

R;R

P1; L

q

p

p

8

<

:

x

@

None

E;R

R

L;L

q

f

p

f

�

Any

None

R;R

P0; L; L

f

o

To illustrate the working of this machine a table is given below of the first few complete configu-

rations. These complete configurations are described by writing down the sequence of symbols

which are on the tape, with the m-configuration written below the scanned symbol. The succes-

sive complete configurations are separated by colons.

W @@0 0 W @@0 0 W @@0 0 W @@0 0 W @@0 0 1

b o q q q p

@@0 0 1 W @@0 0 1 W @@0 0 1 W @@0 0 1 W @@0 0 1 W
p p f f

@@0 0 1 W @@0 0 1 W @@0 0 1 0 W
f f o

@@0 0 1x0 W : : : :
o

In this example Turing uses the symbols “@” and “x”, which are the symbols of the second kind. Explain the need for

these symbols, and their use in this particular Turing machine. Give an argument for why the machine described above

does what it is supposed to do.

Part IV. Turing computable functions

4.(a) Read carefully Turing’s definition of computable functions of natural numbers taken from page 254 of [15].

If  is a computable sequence in which 0 appears infinitely7 often, and n is an integer, then let

us define �.; n/ to be the number of figures 1 between the n-th and the .n C 1/-th figure 0 in  .

Then �.n/ is computable if, for all n and some  , �.n/ D �.; n/.

7If M computes  , then the problem whether M prints 0 infinitely often is of the same character as the problem whether M is circle-free.

[This footnote occurs in the original source.]
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Note: We will call these functions Turing computable.

4.(b) In your own words explain what it means for a function of natural numbers of one variable to be Turing com-

putable. Extra Credit. Generalize the concept of Turing computable functions to functions of two variables. Hint: Can

you code every function of two variables by a function of one variable? Generalize the concept of Turing computable

functions to functions of multiple variables.

4.(c) In your own words explain Kleene’s definition of a Turing machine by reading carefully the following excerpt

from section 67 of Kleene [11].

The machine is supplied with a linear tape, (potentially) infinite in both directions (say to the

left and right ). The tape is divided into squares. Each square is capable of being blank, or of

having printed upon it any one of a finite list s1; : : : ; sj (j � 1) of symbols, fixed for a particular

machine. If we write “s0” to stand for “blank”, a given square can thus have any one of j C 1

conditions s0; : : : ; sj . The tape will be so employed that in any “situation” only a finite number

(� 0) of squares will be printed.

The tape will pass through the machine so that in a given “situation” the machine scans just one

square (the scanned square). The symbol on this square, or s0 if it is blank, we call the scanned

symbol (even though s0 is not properly a symbol).

The machine is capable of being in any one of a finite list q0; : : : ; qk (k � 1) of (machine) states

(called by Turing “machine configurations” or “m-configurations”). We call q0 the passive (or

terminal) state; and q1; : : : ; qk we call active states. The list q0; : : : ; qk is fixed for a particular

machine.

A (tape vs. machine) situation (called by Turing “complete configuration”) consists in a particular

printing on the tape (i.e. which squares are printed, and each with which of the j symbols), a

particular position of the tape in the machine (i.e. which square is scanned), and a particular

state (i.e. which of the k C 1 states the machine is in). If the state is active, we call the situation

active; otherwise, passive.

Given an active situation, the machine performs an (atomic) act (called a “move” by Turing). The

act performed is determined by the scanned symbol sa and the machine state qc in the given

situation. This pair .sa; qc/ we call the configuration. (It is active in the present case that qc is

active; otherwise passive.) The act alters the three parts of the situation to produce a resulting

situation, thus. First, the scanned symbol sa is changed to sb. (But a D b is permitted, in which

case the “change” is identical.) Second, the tape is shifted in the machine (or the machine shifts

along the tape) so that the square scanned in the resulting situation is either one square to the

left of, or the same square as, or one square to the right of, the square scanned in the given

situation. Third, the machine state qc is changed to qd . (But c D d is permitted.)

No act is performed, if the given situation is passive.

The machine is used in the following way. We choose some active situation in which to start the

machine. We call this the initial situation or input. Our notation will be chosen so that the state

in this situation (the initial state) is q1. The machine then performs an atomic act. If the situation

resulting from this act is active, the machine acts again. The machine continues in this manner,

clicking off successive acts, as long and only as long as active situations result. If eventually a

passive situation is reached, the machine is said then to stop. The situation in which it stops we

call the terminal situation or output.

The change from the initial situation to the terminal situation (when there is one) may be called

the operation performed by the machine.

To describe an atomic act, we use an expression of one of the three following forms:

sbLqd ; sbCqd ; sbRqd :
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The “L”, “C ”, “R”, indicate that the resulting scanned square is to the left of, the same as (“cen-

ter”), or to the right of, respectively, the given scanned square.

The first part of the act (i.e. the change of sa to sb) falls into four cases: when a D 0 and b > 0, it

is “prints sb”; when a > 0 and b D 0, “erases sa”; when a; b > 0 and a ¤ b, “erases sa and prints

sb” or briefly “overprints sb”; when a D b, “no change”. We often describe this part of the act as

“prints sb” without regard to the case.

To define a particular machine, we must list the symbols s1; : : : ; sj and the active states q1; : : : ; qk,

and for each active configuration .sa; qc/ we must specify the atomic act to be performed. These

specifications may be given by displaying the descriptions of the required acts in the form of a

(machine) table with k rows for the active states and j C 1 columns for the square conditions.

EXAMPLE I. The following table defines a machine (“Machine A”) having only one symbol s1
and only one active state q1.

Name of Machine Scanned symbol

machine state s0 s1

A q1 s1Cq0 s1Rq1

Suppose the symbol s1 is actually a tally mark “j”. Let us see what the machine does, if a tape of

the following appearance is placed initially in the machine so that the square which we identify

by writing the machine state q1 over it is the scanned square. The conditions of all squares not

shown will be immaterial, and will not be changed during the action.

q1

j j j

The machine is in the state q1, and is scanning a square on which the symbol s1 is printed.

In this configuration, the atomic act ordered by the table is s1Rq1; i.e. no change is made in

the condition of the scanned square, the machine shifts right, and again assumes state q1. The

resulting situation appears as follows.

q1

j j j

The next three acts lead successively to the following situations, in the last of which the machine

stops.

q1

j j j

q1

j j j

q0

j j j j

Machine A performs the following operation: It seeks the first blank square at or to the right of

the scanned square, prints a j there, and stops scanning that square.

4.(d) Explain the similarities and differences of Turing’s and Kleene’s definitions. Which definition of Turing ma-

chines do you prefer? Explain why.

4.(e) The following is Kleene’s definition of Turing computable functions of multiple variables (see [11], p. 359).
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Now we define how a machine shall ‘compute’ a partial number-theoretic function � of n vari-

ables (cf. �63). The definition for an ordinary (i.e. completely defined) number-theoretic function

is obtained by omitting the reference to the possibility that �.x1; : : : ; xn/ may be undefined.

We begin by agreeing to represent the natural numbers 0; 1; 2; : : : by the sequence of tallies

j; jj; jjj; : : : , respectively, the tally “j” being the symbol s1. There are y C 1 tallies in the represen-

tation of the natural number y.

Then to represent an m-tuple y1; : : : ; ym (m � 1) of natural numbers on the tape, we print the

corresponding numbers of tallies, leaving a single blank between each two groups of tallies and

before the first and after the last.

EXAMPLE 2. The triple 3; 0; 2 is represented thus:

j j j j j j j j

We say that (the representation of) a number y (or of any m-tuple y1; : : : ; ym) on the tape is

(scanned) in the standard position, when the scanned square is the one bearing the last tally in

the representation of y (or of ym).

Now we say that a given machine A computes a given partial function � of n variables (n � 1),

if the following holds for each n-tuple x1; : : : ; xn of natural numbers. (For the case n D 0, cf.

Remark 1 below.) Let x1; : : : ; xn be represented on the tape, with the tape blank elsewhere, i.e.

outside of the x1 C � � � C xn C 2nC 1 squares required for the representation. Let A be started

scanning the representation of x1; : : : ; xn in standard position. Then A will eventually stop with

the n C 1-tuple x1; : : : ; xn; x represented on the tape and scanned in standard position, if and

only if �.x1; : : : ; xn/ is defined and �.x1; : : : ; xn/ D x. (If �.x1; : : : ; xn/ is undefined, A may fail to

stop. It may stop but without an nC 1-tuple x1; : : : ; xn; x scanned in standard position.)

Example 2 (concluded). If �.3; 0; 2/ D 1 and A computes �, then when A is started in the

situation

q1

j j j j j j j j

with all squares other than those shown blank, it must eventually stop in the situation

q0

j j j j j j j j j j

where the condition of the squares other than those shown is immaterial.

Although only one symbol s1 or “j” is used in stating the arguments and in receiving the function

value, others may be used in the progress of the computation. For each n � 1, each machine

(with its first symbol s1 serving as the tally) computes a certain partial function of n variables.

A partial function � is computable, if there is a machine A which computes it.

Remark 1 that Kleene refers to is on page 363 of Kleene [11]. Below we give an excerpt from it.

REMARK 1. In this chapter, outside the present remark and passages referring to it, we shall

understand that we are dealing with functions of n � 1 variables. Since we have not provided for

representing n-tuples of natural numbers on the tape for n D 0, we say a machine computes a

function � of 0 variables, if it computes the function �.x/ of 1 variable such that �.x/ ' �.

State in your own words Kleene’s definition of Turing computable functions of multiple variables. Kleene mentions

that the representation of the tuple x1; : : : ; xn on a tape requires x1 C � � � C xn C 2nC 1 squares. Explain why.

4.(f) Are Turing’s and Kleene’s definitions of computable functions of one variable equivalent? Explain why.

4.(g) (Extra Credit) Is your generalization of Turing computability to functions of multiple variables equivalent to

Kleene’s definition of computable functions of multiple variables? Explain why.
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Part V. Turing computable and general recursive functions

5.(a) Explain why the successor function s.x/ D x C 1 is Turing computable.

5.(b) Explain why the constant functions f .x1; : : : ; xn/ D c are Turing computable.

5.(c) Explain why the identity functions U n
j .x1; : : : ; xn/ D xj are Turing computable.

5.(d) Explain why, whenever  .x1; : : : ; xm/ and �1.x1; : : : ; xn/; : : : ; �m.x1; : : : ; xn/ are Turing computable, then

�.x1; : : : ; xn/ defined by

�.x1; : : : ; xn/ D  .�1.x1; : : : ; xn/; : : : ; �m.x1; : : : ; xn//

is also Turing computable. In other words, explain why the schema of substitution preserves Turing computability.

5.(e) Explain why, whenever  .x1; : : : ; xn�1/ and �.x1; : : : ; xnC1/ are Turing computable, then �.x1; : : : ; xn/ de-

fined by

�.0; x2; : : : ; xn/ D  .x2; : : : ; xn/

and

�.k C 1; x2; : : : ; xn/ D �.k; �.k; x2; : : : ; xn/; x2; : : : ; xn/

is also Turing computable. In other words, explain why the schema of primitive recursion preserves Turing computabil-

ity.

5. (f) Explain why, whenever �.x1; : : : ; xn; y/ is Turing computable and

.8x1/ : : : .8xn/.9y/Œ�.x1; : : : ; xn; y/ D 0�;

then �.x1; : : : ; xn/ defined by

�.x1; : : : ; xn/ D �yŒ�.x1; : : : ; xn; y/ D 0�

is also Turing computable. In other words, explain why Kleene’s �-operator preserves Turing computability.

5.(g) Using exercises 5.(a)–5.(f) make a deduction concerning primitive recursive and general recursive functions.

How is your conclusion related to Church’s thesis?

Notes for the instructor

This project is designed for an advanced undergraduate or graduate course in mathematical logic. It is also well suited

for an advanced undergraduate or graduate course in computability theory. It could be assigned as a three to four week

project on primitive recursive, general recursive, and Turing computable functions. If there is any extra time available,

the instructor may wish to elaborate on why every Turing computable function is general recursive.

Bibliography

[1] Church, A., “An Unsolvable Problem of Elementary Number Theory, Preliminary Report (abstract),” Bull. Amer.

Math. Soc., 41 (1935), 332–333.

[2] Church, A., “An Unsolvable Problem of Elementary Number Theory,” Amer. Journal Math., 58 (1936), 345–363.

This paper with a short foreword by Davis was reprinted on pages 88–107 of [3].

[3] Davis, M., The Undecidable. Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable

Functions, Martin Davis (editor), Raven Press, Hewlett, NY, 1965.
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Two-Way Deterministic Finite Automata

Hing Leung
New Mexico State University

Introduction

In 1943, McCulloch and Pitts [4] published a pioneering work on a model for studying the behavior of the nervous

systems. Following up on the ideas of McCulloch and Pitts, Kleene [2] wrote the first paper on finite automata, which

proved a theorem that we now call Kleene’s theorem. A finite automaton can be considered as the simplest machine

model in that the machine has a finite memory; that is, the memory size is independent of the input length. In a 1959

paper [5], Michael Rabin and Dana Scott presented a comprehensive study on the theory of finite automata, for which

they received the Turing award in 1976, the highest award in computer science. The citation for the Turing Award

states that the award was granted:

For their joint paper “Finite Automata and Their Decision Problem,” which introduced the idea

of nondeterministic machines, which has proved to be an enormously valuable concept. Their

(Scott & Rabin) classic paper has been a continuous source of inspiration for subsequent work

in this field.

In this project, we will not discuss nondeterministic machines. We consider two-way finite automata which is an-

other concept that was introduced in the seminal paper by Rabin and Scott [5].

In an early stage, the theory of finite automata was developed as a mathematical theory for sequential circuits. A

sequential circuit maintains a current state from a finite number of possible states. The circuit logic (which is a finite

state control) decides the new state based on the current state of the circuit and the given input symbol. Once an input

symbol is processed, the circuit will not be able to read it again.

A main application of finite automata is text processing. In compiler design, finite automata are used to capture the

logic of lexical analysis. Other applications include string matching, natural language processing, text compression,

etc.

A one-way deterministic finite automata (DFA) is defined as the mathematical model of a machine with a finite

amount of memory where the input is processed once from left to right. After an input has been read, the DFA decides

whether the input is accepted or rejected.

Two-Way Finite Automata

A Turing machine is an abstract mathematical model of a computer. Recall that a Turing machine can move back and

forth in the working tape while reading and/or writing.

There are several variants of Turing machines in the literature. Our variant of a Turing machine consists of a finite-

state control (also called the program), a read-only input tape where the input is given and a working tape (also called

memory) where computations are performed.

In computing an answer, intermediate results are computed and kept in the working tape so that it can be referenced

later for further computations.

267
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Unlike a real computer, a Turing machine has no limit to the amount of memory that it can use. As the input becomes

more complicated (say longer or of larger value), a Turing machine may use more memory to compute.

Consider the problem of primality testing. That is, given a positive integer, we want to test if it is a prime. As the

given integer becomes larger, we need to use more memory to test for primality. We say that the primality testing

problem requires an unbounded amount of memory to solve.

However, there are other problems that may require only a finite amount of memory to solve. Consider the problem

of computing the parity of a binary sequence. The parity is the number of occurrences of 1’s in the binary sequence

modulo 2. (Note: The concept defined is not the same as whether the binary sequence, when considered as a binary

number, is odd or even.) One can keep reading the binary sequence bit by bit, and maintain the intermediate result of

the current parity in the working tape. That is, the memory usage is one bit (thus, finite) in the working tape no matter

how long the binary sequence is. Note that the length of the input is not counted in the memory use. We assume that

the input tape allows only read operations. The input tape cannot be over-written.

One may wonder what computational problems can be solved using finite memory Turing machines. Another inter-

esting question is whether we can simplify the model of Turing machines using finite memory.

Since the memory usage is finite (independent of the size of the input), we can incorporate1 the finite memory into

the finite state control so that the Turing machine no longer uses a working tape. The resulting model is called the

two-way deterministic finite automaton2 (2DFA) in that it consists of a finite state control and a read-only input tape

that allows an input to be read back and forth. As in the case of DFA, the 2DFA decides whether a given input is

accepted or rejected.

One can see that a 2DFA can be equivalently defined as a read only Turing machine (without the ability to write

symbols on the tape).

DFA and 2DFA

In comparison, DFA and 2DFA differ in that an input can be read only once from left to right by a DFA, whereas a

2DFA can read the input back and forth with no limit on how many times an input symbol can be read.

In computer science, DFA has been studied heavily, since many problems are found to be solvable by DFA. Many

textbooks in discrete mathematics discuss the DFA model. However, no textbooks in discrete mathematics discuss the

model of 2DFA.

Is 2DFA unrealistic? As we have discussed before, 2DFA is a very interesting model in that it captures/solves

problems that are solvable by a computer using finite memory. In fact, in most real life computing tasks performed

by a computer, the input has been saved into the computer’s hard disk, or is kept in a CD-ROM or DVD-ROM. Thus,

there is no reason why a program cannot read the input more than once using two-way processing. So, 2DFA is indeed

a very meaningful and arguably more realistic model than DFA.

How does DFA compare to 2DFA? Clearly, DFA is a restricted version of 2DFA. Therefore, 2DFA can solve any

problems that are solvable by DFA. Next, are there problems that can be solved by 2DFA but cannot be solved by DFA?

This question is one of many fundamental questions answered in Rabin and Scott’s paper [5] on the theory of finite

automata. It is proved that 2DFA can be simulated by DFA. That is, whatever problems can be solved by 2DFA can

also be solved by DFA.

One may wonder why we should study 2DFA given that DFA, being a simpler model, can do the same job. Are there

advantages of 2DFA over DFA? It turns out that 2DFA can be significantly3 simpler in design for solving the same

problem than DFA. In this project, we are going to illustrate the advantages of 2DFA using a number of examples.

It is difficult to explain why most textbooks4 in automata theory are not covering 2DFA. One possible reason is

that the equivalence proof (that 2DFA can be simulated by the simpler model DFA) given by Rabin and Scott is too

difficult.

1The technique involved, which we omit, is not really direct or immediate. But it is not difficult either.
2There is another machine model called two-way nondeterministic finite automata. But we are not going to discuss nondeterministic automata

in this project.
3Technically (and, more accurately), we say that 2DFA can be exponentially more succinct in descriptional size than DFA for solving the same

problems.
4Two textbooks ([1], [3]) cover 2DFA. One [1] follows the approach by Rabin and Scott, and the other [3] follows Shepherdson’s ideas.
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John C. Shepherdson [6] was able to offer another proof of this important result. It is a very clean proof that we

want to present in this project. Instead of going through the proof steps, we emphasize the technique for constructing5

a DFA from a 2DFA.

Shepherdson is a retired professor in mathematics at the University of Bristol, Great Britain. He published many

papers in symbolic logic, computability, logic programming and fuzzy logic.

In fact, Rabin and Scott referred the readers to Shepherdson’s proof in their pioneering paper, and decided to give

only a sketch of their proof of the equivalence result. Following is an excerpt from Rabin and Scott’s paper about

Shepherdson’s proof:

The result, with its original proof, was presented to the Summer Institute of Symbolic Logic in

1957 at Cornell University. Subsequently J. C. Shepherdson communicated to us a very elegant

proof which also appears in this Journal. In view of this we confine ourselves here to sketching

the main ideas of our proof.

We hope that the students using this project will not find Shepherdson’s construction tricky, but instead will find

that it makes a lot of sense and is the logical way to go for proving the equivalence result. Students will be required to

read from the verbal explanations given by Shepherdson, and derive from it computer programs for solving problems

in this project.

Project

We assume that students are familiar with the concept and formal definition of DFA.

Following are the definitions of one-way and two-way deterministic finite automata (adapted) from the paper by

Shepherdson [6].

Definition 1. A one-way finite automaton (DFA) over a finite alphabet6 † is a system A D
.Q; ı; q0; F /, where Q is a finite non-empty set (the internal states of A), ı is a function from

Q � † into Q (the table of moves of A), q0 is an element of Q (the initial state of A), and F is

a subset of Q (the designated final states of A). The class T .A/ of tapes accepted7 by A is the

class of all finite sequences �1; : : : ; �n of symbols of † for which the sequence q0 (initial state),

q1; : : : ; qn defined by qiC1 D ı.qi ; �iC1/ .i D 0; : : : ; n � 1/ satisfies qn 2 F . A set of tapes is said

to be definable by a one-way automaton if it is equal to T .A/ for some A.

Definition 2. A two-way finite automaton (2DFA) over † is a system A D .Q; ı; q0; F / as in

Definition 1 with the difference that now ı is a function from Q � † into Q � D where D D
fL; S; Rg. A operates as follows: It starts on the leftmost square of the given tape in state q0.

When its internal state is q and it scans the symbol � , then if ı.q; �/ D .q0; d / it goes into the

new state q0 and moves one square to the left, stays where it is, or moves one square to the

right according as d D L; S , or R. The class T .A/ of tapes accepted by A is the class of those

tapes t such that A eventually moves off the right-hand edge of t in a state belonging to F .

We want to design a 2DFA over † D f0; 1g that accepts tapes containing two 1’s separated by four symbols in

between them. That is, the 2DFA accepts finite sequences �1 : : : �n of symbols of † such that �i D �iC5 D 1 for

some i 2 f1; : : : ; n � 5g. For example, the sequence 001010101100 should be accepted as the 5th and 10th symbols

are both 1.

The following 10-state 2DFA A1, where q0 is the starting state and q9 is the only final state, systematically checks

every possible 6-symbol subsequence to see if it begins and ends with 1’s.

5In contrast, it is difficult to construct mechanically a DFA from a 2DFA based on the proof of Rabin and Scott.
6† is the set of input symbols. In the examples considered in this project, the input is always a binary sequence with †D f0; 1g.
7The word ‘accepted’ is used as the DFA is considered a machine. One can replace the word ‘accepted’ by the word ‘denoted’ or ‘defined’ in

the definition of T.A/.
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current state symbol new state go to

q0 0 q0 R

q0 1 q1 R

q1 0 or 1 q2 R

q2 0 or 1 q3 R

q3 0 or 1 q4 R

q4 0 or 1 q5 R

q5 0 q6 L

q5 1 q9 R

q6 0 or 1 q7 L

q7 0 or 1 q8 L

q8 0 or 1 q0 L

q9 0 or 1 q9 R

[1] Demonstrate the steps performed by A1 in accepting the tape 11001010.

[2] Demonstrate the steps performed byA1 in processing the tape 11001001. Conclude that the tape is not accepted

by A1.

Another example 2DFA A2 (taken from Example 2.14 of the textbook by Hopcroft and Ullman [1]) is given as

follows, where q0 is the starting state and F D fq0; q1; q2g:

current state symbol new state go to

q0 0 q0 R

q0 1 q1 R

q1 0 q1 R

q1 1 q2 L

q2 0 q0 R

q2 1 q2 L

[3] Demonstrate that the input 101001 is accepted by A2.

[4] Demonstrate that the input 10111 is not accepted by A2. Indeed, A2 will run into an infinite loop.

Given the description of a 2DFA, Shepherdson explained how to derive the description of an equivalent DFA that

accepts the same set of inputs. The following is an excerpt (modified slightly) from Shepherdson [6] describing the

construction:

The only way an initial portion t of the input tape can influence the future behaviour of the two-

way machine A when A is not actually scanning this portion of the tape is via the state transitions

of A which it causes. The external effect of t is thus completely determined by the transition

function, or “table”, �t which gives (in addition to the state in which the machine originally exits

from t), for each state q of A in which A might re-enter t , the corresponding state q0 which A

would be in when it left t again. This is all the information the machine can ever get about t

however many times it comes back to refer to t ; so it is all the machine needs to remember

about t . But there are only a finite number of different such transition tables (since the number

of states of A is finite), so the machine has no need to use the input tape to supplement its

own internal memory; a one-way machine NA with a sufficiently large number of internal states

could store the whole transition table �t of t as it moved forward, and would then have no need

to reverse and refer back to t later. If we think of the different states which A could be in when

it re-entered t as the different questions A could ask about t , and the corresponding states A

would be in when it subsequently left A again, as the answers, then we can state the result more

crudely and succinctly thus: A machine can spare itself the necessity of coming back to refer to

a piece of tape t again, if, before it leaves t , it thinks of all the possible questions it might later
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come back and ask about t , answers these questions now and carries the table of question-

answer combinations forward along the tape with it, altering the answers where necessary as it

goes along.

To summarize Shepherdson’s idea, we need to maintain for each prefix t two pieces of information: (1) the state in

which the machine exits from t (when starting at q0 in the leftmost square of the input), and (2) the external effect �t .

Let us refer to the processing of the input tape 101001 by A2. Consider the first symbol of the input which is a 1.

That is, let t D 1.

To answer the first question, we observe that when A2 begins with the initial state q0 at the symbol 1, it will exit t

to its right at state q1.

Next, we summarize the external effect �t where t D 1 by answering the following questions:

1. Suppose later in the processing of the input, the first symbol 1 is revisited by a left move from the right. What

will be the effect if it is revisited with a state q0?

2. Suppose later in the processing of the input, the first symbol 1 is revisited by a left move from the right. What

will be the effect if it is visited with a state q1?

3. Suppose later in the processing of the input, the first symbol 1 is revisited by a left move from the right. What

will be the effect if it is visited with a state q2?

Verify that the answers to the three questions are: (1) move right at state q1, (2) move left at state q2 and (3) move

left at state q2. In short the external effect can be succinctly summarized as a 3-tuple [(q1, R), (q2, L), (q2, L)].

We combine the two pieces of information computed in a 4-tuple [(q1, R), (q1, R), (q2, L), (q2, L)]. Let us call this

4-tuple the effect of t where t D 1. Note that the first entry is the answer to the first question, whereas the next three

entries are the external effect of t . That is, the effect of t is the total effect, which is more than just the external effect.

Next, given the effect computed for the first symbol 1, we want to compute the effect of the first two symbols 10 of

the input 101001.

From the effect [(q1, R), (q1, R), (q2, L), (q2, L)] of the symbol 1, we know that the machine exits 1 to its right with

the state q1. Thus, the machine is at state q1 when visiting the second symbol 0. According to the transition table, the

machine will again move to the right of the second symbol at state q1.

To compute the external effect of t D 10, we have to answer the following questions:

1. Suppose later in the processing of the input, the second symbol 0 is revisited by a left move from the right. What

will be the effect if it is revisited with a state q0?

2. Suppose later in the processing of the input, the second symbol 0 is revisited by a left move from the right. What

will be the effect if it is visited with a state q1?

3. Suppose later in the processing of the input, the second symbol 0 is revisited by a left move from the right. What

will be the effect if it is visited with a state q2?

The answers are as follows:

1. When the second symbol 0 is revisited with a state q0, the machine according to the transition table will move

to the right with the state q0.

2. When the second symbol 0 is revisited with a state q1, the machine according to the transition table will move

to the right with the state q1.

3. When the second symbol 0 is revisited with a state q2, the machine according to the transition table will move

to the right with the state q0.

Therefore, the effect of t D 10 is summarized in the 4-tuple [(q1, R), (q0, R), (q1, R), (q0, R)].

Note that in the above computations, we do not make use of the external effect computed for the first prefix 1 to

compute the effect for the prefix 10. This is not usually the case. In general, the external effect for t is needed in

computing the new effect when t is extended by one more symbol.
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[5] Next, with the answers [(q1, R), (q0, R), (q1, R), (q0, R)] for the effect for 10, compute the effect when the

input is extended by the third symbol 1.

From the effect for 10, we know that the machine arrives at the third symbol 1 at state q1. According to the transition

table, the machine will move to the left to the 2nd symbol at state q2. Next, consulting the last entry of the effect for

10, we know the machine will leave 10 to its right at state q0. Thus, the machine revisits the third symbol 1 at state

q0. Again, from the transition table, the machine moves to the right at state q1. Verify that the external effect of 101 is

[(q1, R), (q1, R), (q1, R)]. That is, the effect for 101 is [(q1, R), (q1, R), (q1, R), (q1, R)].

In answering question [5], you should provide the steps involved in computing the external effect for 101.

Note that given the effect for t and a new symbol 1, we can compute the effect for t 0 D t1 by referring to the

transition table for the machine. There is no need to know what t is. Only the effect for t is needed in computing the

new effect for t 0.

[6] Repeatedly, compute the effects by extending the current input 101 with symbols 0, 0, 1. From the effect

computed for 101001, conclude that the input is accepted. Recall that 101001 was shown in [3] to be accepted by A2.

[7] Repeat the whole exercise with the input 10111 as in [4]. Conclude that the input 10111 is not accepted.

To summarize, in simulatingA2 by a DFA, we need only remember the effect of the sequence of input symbols that

has been processed so far.

[8] How many different effects can there be in simulating A2 by a DFA? How many states are needed for a DFA

to accept the same set of inputs as A2? Note that there are only finitely many different effects even though we have an

infinite number of inputs of finite lengths.

[9] Applying Shepherdson’s method to A1, how many states are there in the DFA constructed?

The work involved is very tedious. It is impossible to do it by hand. You should write a program to perform the

computation.

Note that the smallest DFA8 accepting the same set of inputs as A1 has 33 states.

In computer programming, we can detect if the end-of-input has been reached. For example, in C programming, we

write

while ((input=getChar()) != EOF)

Thus, it is very reasonable to extend the 2DFA model so that the machine can detect the two ends of an input tape.

Read the following excerpt (modified slightly) from Shepherdson’s paper [6] regarding extending the 2DFA model

by providing each input tape with special marker symbols b, e at the beginning and end of the input. Let us call this

new model 2DFA-with-endmarkers.

At first sight it would appear that with a two-way automaton more general sets of tapes could be

defined if all tapes were provided with special marker symbols b, e (not in†) at the beginning and

end, respectively. For then it would be possible, e.g., to design a two-way machine which, under

certain conditions, would go back to the beginning of a tape, checking for a certain property,

and then return again. This would appear to be impossible for an unmarked tape because of the

danger of inadvertently going off the left-hand edge of the tape in the middle of the computation.

In fact, the machine has no way of telling when it has returned to the first symbol of the tape.

However, the previous construction result implies that this is not so; that the addition of markers

does not make any further classes of tapes definable by two-way automata. For if the set fbgU feg
(of all tapes of the form bte for t 2 U ) is definable by a two-way automaton then it is definable by

a one-way automaton; and it is easy to prove that fbgU feg is definable by a one-way automaton

if and only if U is.

8There is a mechanical method for computing the number of states of a smallest DFA.
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We assume that a 2DFA-with-endmarkers starts on the left endmarker b at the initial state.

Suppose we want to design a 2DFA-with-endmarkers over † D f0; 1g to accept input tapes that have a symbol 1 in

the sixth position from the right end. For example, the input 10101011 has eight symbols with the third symbol being

a 1, which is the sixth position from the last (eighth) position. The following 2DFA-with-endmarkersA3, where q0 is

the starting state and q9 is the accepting state, accepts the input tapes described. Observe that an accepted input must

begin with b and end with e. Furthermore, b and e do not appear in other positions of the string accepted.

current state symbol new state go to

q0 b q1 R

q1 0 or 1 q1 R

q1 e q2 L

q2 0 or 1 q3 L

q3 0 or 1 q4 L

q4 0 or 1 q5 L

q5 0 or 1 q6 L

q6 0 or 1 q7 L

q7 1 q8 R

q8 0 or 1 q8 R

q8 e q9 R

[10] Following the discussion by Shepherdson and based on the definition of A3, explain the construction of a

DFA equivalent to A3 accepting the same set of input tapes where the inputs are delimited by b and e. How many

states does the DFA have? Next, modify the DFA constructed to accept inputs with the endmarkers b and e removed.

What is the change in the number of states of the DFA?

As in [9], you should write a program to perform the computation.

Note that it can be shown that the smallest DFA accepting the same set of inputs (without the endmarkers b and e)

as A3 has 64 states.

Consider another 2DFA-with-endmarkersA4, where q0 is the starting state and q9 is the accepting state, as defined

below.

current state symbol new state go to

q0 b q1 R

q1 0 or 1 q1 R

q1 e q2 L

qi 0 qiC1 L i D 2; 3; 4

qi 1 qi L i D 2; 3; 4

q5 0 q7 L

q5 1 q6 L

q6 0 q6 L

q6 1 q7 L

q7 0 q7 L

q7 1 q5 L

q7 b q8 R

q8 0 or 1 q8 R

q8 e q9 R

[11] Re-do part [10] for A4.

Note that it can be shown that the smallest DFA accepting the same set of inputs (without the endmarkers b and e)

as A4 has 64 states.
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Notes for the instructor

The project is suitable to be used in a senior undergraduate theory of computation course in computer science. While

the programming skills needed to solve some of the project questions are not particularly challenging, they are not

trivial either. It is suggested that a student needs two years of programming training before attempting the programming

tasks given in this project. As extra credit problem, one can ask the students to deduce (using the Myhill-Nerode

theorem) the sizes of smallest DFAs that are equivalent to A1, A2, A3 and A4, respectively.
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A Rabbi, Three Sums, and Three Problems

Shai Simonson
Stonehill College

1 Introduction

We present a slice of discrete math history and connect it to three neat problems and their solutions. The solutions

emphasize the value of exploring and tabulating data in order to help discover theorems. Often, the exploration not

only helps discover theorems, but suggests a direction and idea for a proof.

The methodology is a model of how to use mathematical history and data patterns in teaching discrete mathematics.

Proofs in discrete math tend to be constructive. Discovering patterns can suggest an algorithm, which in turn can

suggest a proof. Furthermore, many theorems in discrete math make use of basic sums and combinatorial identities

that have been known for hundreds of years. Familiarity with the history of an identity can also suggest relevant proof

methods.

Underlying the content in this article is the implicit theme of how mathematics and computers support each other.

Computers can be used to generate data for pattern searching, or to help with calculations that are otherwise too

cumbersome. Symbiotically, these same theorems, whose statements and proofs are motivated by the data gathered

with the use of a computer, are themselves applicable to computer science in the analysis of algorithms as well as other

areas.

2 A Rabbi’s Identities

Rabbi Levi ben Gershon (1288–1344, also known as Gersonides) lived in southern France and was a well-known

scientist, mathematician, and philosopher among both Jewish and Christian scholars of his day [Si1], [Si2]. Levi dis-

covered formulas for certain kinds of sums. These include the well-known formulas for sums of consecutive integers,

sums of consecutive squares, and sums of consecutive cubes.

1C 2C � � � C n D n.nC 1/

2
(A)

12 C 22 C 32 C � � � C n2 D n.nC 1/.2nC 1/

6
(B)

13 C 23 C 33 C � � � C n3 D
�
n.n C 1/

2

�2

(C)

Levi was certainly not the first to discover these formulas, but he was the first to use mathematical induction style

arguments in his proofs [Ka]. Levi used induction to prove (C), but different methods for (A) and (B). His methods

serve as a good review of techniques for generating and proving these closed formulas, as well as a source of clever

exercises for students.

Levi’s work also highlights the pros and cons of symbolic algebra versus the Euclid-style “prose”-algebra of the

middle ages. In symbolic algebra we write x2 C y2, but for Euclid, Levi, and all mathematicians before the 16th

century, this formula would have been written out as “the sum of the square of x with the square of y.” Did the

277
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limitations of “prose”-algebra prevent Levi from extending his induction proofs to other sums? Perhaps Levi simply

modeled each proof on whatever constructive ideas led him to the discovery of the sum. No one knows the answers to

these questions, but they make for good debate in the classroom. Levi’s work is not widely known, and we hope the

reader enjoys the details of this discussion.

Each of Levi’s three formulas (A), (B), and (C) plays a role in the solution of three different problems discussed in

Section 3.

2.1 Triangle Numbers

The numbers generated by formula (A) are called triangle numbers, because they look like triangles if you draw

them with dots. Triangle numbers have a natural combinatorial interpretation. The nth triangle number is equal to the

number of ways to choose two items from nC 1. This is usually written as
�

nC1
2

�

. If you try to count these pairs and

number the items 1 through nC 1, then the first item can be paired with n others, the second item with n � 1 others,

and so on, until the .n � 1/st item can be paired with only the nth item. This sum is 1 C 2 C � � � C n. The first five

triangle numbers are 1, 3, 6, 10, and 15.

Although Levi understood the distributive property, and he could essentially perform algebraic manipulations like

“FOIL”-ing, he had no symbolic algebra as we know it today. All his work was written out in Euclid-style prose just

like the work of his Jewish, Christian, and Islamic contemporaries. Without symbolic algebra, we lose the compact

form of formula (A) but we gain three new ways to read that formula. It is a lesson worth remembering.

Indeed Levi has three versions of formula (A) each with its own proof. These are theorems (26), (27), and (28) in

his book Maaseh Hoshev, literally “the way of calculation.” The title of his book is also a pun on a biblical phrase that

describes labor on the tabernacle needing intensive thought, analysis, and calculation.

(26) The sum of consecutive numbers from one up to an even number is equal to half the number of terms

times the number of terms plus one.

Levi proves this identity by adding the numbers up in pairs, each successive pair coming from the front and back of

the series. He notes that each pair sums to nC 1 and there are n=2 such pairs. He had two other proofs to take care of

the case when n is odd.

(27) The sum of consecutive terms from one up to an odd number is equal to the middle term times the

number of terms.

The proof pairs up numbers from the inside working outward, showing that each pair sums to twice the middle term.

(28) The sum of consecutive numbers from one up to an odd number is equal to half the last term times

the number following the last term.

The proof uses (27) with some additional algebra arguments.

2.2 Square Pyramid Numbers

A number generated by formula (B) is called a square pyramid number, because it can be constructed by stacking

squares of diminishing size on top of one another, forming a square-base pyramid. The first five square pyramid

numbers are 1, 5, 14, 30, and 55. Levi’s proof of this formula is longwinded and complex, building the formula

logically from many simpler algebraic identities. A sketch of his proof with many details omitted is shown below.

Filling in the missing details for each step is a good source of exercises for students.

The numbering of the lemmas is faithful to his book Maaseh Hoshev. Going forward, all the lemmas are translated

from Levi’s prose into modern symbolic notation.

First he proves the two identities, (29) and (30), by “pairing” tricks. In the first identity (29), he pairs numbers from

back and front as he did for triangle numbers. In the second identity (30), he pairs 1 from the left group with n from

the right, 2 from the left group with n� 1 from the right, etc.

.1C 3C � � � C .2n � 1// D n2; (29)
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.1 C 2C � � � C n/C .1C 2C � � � C nC .nC 1// D .nC 1/2: (30)

Using (30) Levi proves

1C .1C 2/C .1C 2C 3/C � � � C .1C 2C � � � C n/ D
(

22 C 42 C 62 C � � � C n2 if n is even,

12 C 32 C 52 C � � � C n2 if n is odd.
(32)

He puts lemma (32) aside for later. Then he proves three more simple lemmas.

He proves

.1 C 2C 3C � � � C n/C .2C 3C 4C � � � C n/C � � � C n D 12 C 22 C 32 C � � � C n2 (33)

by rearranging the numbers.

He proves

.1 C 2C 3C � � � C n/C .2C 3C 4C � � � C n/C � � � C n (34)

C 1C .1 C 2/C .1 C 2C 3/C � � � C .1 C 2C � � � C .n � 1//
D n.1 C 2C 3C � � � C n/

not by using (33) but by another simple rearranging argument.

And, he proves

.nC 1/2 C n2 � .nC 1C n/ D 2n2 (35)

by essentially multiplying it out.

Levi then uses (33) and (35) to prove

.1C 2C 3C � � � C n/C .2C 3C 4C � � � C n/C � � � C n � .1 C 2C 3C � � � C n/ (36)

D
(

2.22 C 42 C 62 C :::C .n � 1/2/ when n � 1 is even,

2.12 C 32 C 52 C � � � C .n � 1/2/ when n � 1 is odd.

And, he combines (32), (34), and (36) to prove

n.1C 2C 3C � � � C .nC 1// D
(

3.12 C 32 C 52 C � � � C n2/ when n is odd,

3.22 C 42 C 62 C � � � C n2/ when n is even.
(37)

Finally, Levi uses (32), (33), (34), and (37) to prove

�

n� n� 1
3

�

.1 C 2C 3C � � � C n/ D 12 C 22 C 32 C � � � C n2: (38)

This last identity is formula (B) in disguise. Notice that formula (A) can be used to replace .1 C 2 C 3 C � � � C n/

with
n.nC1/

2
.

2.3 Sums of Cubes

Levi proves formula (C) by mathematical induction. The proof by induction for formula (C) comes directly from the

inductive lemma

.1C 2C 3C � � � C n/2 D n3 C .1C 2C 3C � � � C .n � 1//2 (41)

which he proves essentially by “FOIL”-ing out the left side. The proof of (C) is remarkably short and clear in compar-

ison to the proof of (B).

Levi was one of the first to use the idea of mathematical induction, 300 years before Pascal [Ka]. It is interesting

that he chose induction to prove formula (C), but not for formulas (A) and (B). Why do you think this was? His proof

for (A) is fairly simple, but considering the complexity of his proof for (B), one naturally wonders why he did not use

induction there as well. These are the kinds of questions that interest historians of mathematics.
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3 Three Problems

Building on Levi’s work, we tackle three counting problems. The first two are fairly well-known and have elegant

closed-form solutions. The third problem is not well-known and the solution requires extra effort. Before we start on

the three problems it is helpful to solve a little warm-up problem, and add one more formula, (D), to Levi’s (A), (B),

and (C).

3.1 Triangular Pyramid Numbers — A Warm-Up Problem

The sum of the first n triangle numbers is called a triangular pyramid number because it is formed by stacking triangles

of diminishing size on top of each other into a triangular pyramid. Let’s warm up by deriving a closed form for the nth

triangular pyramid number. The easy way to do this is to use Levi’s formulas (A) and (B) to help:

n
X

iD1

i.i C 1/

2
D 1

2

 
n
X

iD1

i2 C
n
X

iD1

i

!

D 1

2

�
n.n C 1/.2nC 1/

6
C n.n C 1/

2

�

:

Simplifying the right side proves that the nth triangular pyramid number is equal to

1C 3C 6C � � � C n.nC 1/

2
D n.nC 1/.nC 2/

6
: (D)

With formulas (A), (B), (C), and (D), we are armed to attack our three counting problems. However, before we move

ahead to the three problems promised, there is a short interesting tangent showing a connection between the relatively

simple discrete math formulas (B) and (D), and state of the art number theory.

Is there a number (besides 1) that is both a triangular pyramid number and a square pyramid number? That is, do

formulas (B) and (D) generate any common integers besides 1? It would make a good children’s Sherlock Holmes

mystery, where somebody knocks down a pyramid of oranges in the store, and when the oranges are rebuilt into

a pyramid, it looks like none are missing, but the grocer insists that some oranges are missing. A young Holmes

interviews the grocer and confirms that the original pyramid was square while the rebuilt pyramid is triangular. Holmes

declares, “The grocer is telling the truth; there are oranges missing. Because as everyone knows, there is no number

besides 1 that is both a triangular pyramid number and a square pyramid number.”

Well, in fact, nobody knew this for sure until 1988 when Beukers and Top proved it using some high powered

methods [BT], [HL]. Their work is a special case of finding rational points on elliptic curves.

Now let’s begin on the three problems.

3.2 Problem 1 — Counting Squares in a Grid

How many squares are there in an n by n grid? See Figure 1.

Figure 1. A 4 by 4 grid.

Before one tackles any counting problem, it never hurts to get some data. Let’s make a chart for the first four values

of n, and count the squares explicitly. You can generate the first few cases by hand pretty quickly, but if you are a clever

programmer, you might enjoy writing a program to count the squares. The advantage of a program is that once it’s

finished, it generates lots more data very quickly. Moreover, sometimes the process itself of writing a program reveals

an organized way to think about the counting. We won’t need a program in these examples, but the use of programs in

similar problems can be exciting and helpful for students and researchers alike.
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Number of Squares

n in an n by n Grid

1 1

2 5

3 14

4 30

Compare the numbers in the table above with those generated from identity (B), and observe that they are identical.

Indeed, it looks as though the number of squares in an n by n grid is the same as the sum of the first n squares. And,

we can prove it. There are n2 squares of size 1, and .n � 1/2 squares of size 2, . . . , and one square of size n.

3.3 Problem 2 — Counting Rectangles in a Grid

Counting the number of rectangles explicitly is a lot more work than counting squares. Doing it for grids of size 1 by

1, 2 by 2, 3 by 3, and 4 by 4, we get the chart below:

Number of Rectangles

n in an n by n Grid

1 1

2 9

3 36

4 100

The pattern is interesting. The numbers are squares, and moreover they are squares of triangle numbers. Levi’s

identity (C) says that the square of the nth triangle number is the sum of the first n cubes. It seems, therefore, that the

number of rectangles in an n by n grid is the sum of the first n cubes.

We can construct a combinatorial proof of this discovery. Indeed, attempting to write a program to count the rectan-

gles might lead to this proof. Each rectangle in an n by n grid is uniquely defined by selecting two of the nC 1 vertical

lines and two of the nC1 horizontal lines. The area outlined by these four lines is the rectangle that they define. Hence

the number of rectangles is

 

nC 1

2

!2

D .1 C 2C � � � C n/2 D 13 C 23 C � � � C n3:

3.4 Problem 3 — Counting Triangles

How many triangles in the triangular “grid” with four edges per side? See Figure 2.

Figure 2. A triangular grid.

This last puzzle does not yield its secret so easily. Our exploration builds conjectures, looks for patterns, tests the

conjectures and revises them.

First we gather some data by counting the number of triangles explicitly for different size triangular figures with the

number of edges on a side varying from 1 to 5. To make sure we don’t miss any triangles, it is a good idea to organize
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the counting by the size of the triangles, or by whether or not the triangles point up or down. The total results are

summarized below:

Number of Triangles in a Triangular

n Figure with Sides of Length n

1 1

2 5

3 13

4 27

5 48

These numbers are not so familiar. We aren’t as lucky as we were last time, but if we look harder we may still see

a pattern that suggests a closed form and a proof. Let’s count the triangles by size. That idea worked for squares and

rectangles.

Number of Triangles in a Triangular

Figure with Sides of Length n

n Size 1 Size 2 Size 3 Size 4 Size 5

1 1 0 0 0 0

2 4 1 0 0 0

3 9 3 1 0 0

4 16 7 3 1 0

5 25 13 6 3 1

This table has one nice column — the square numbers of column 1 — but column 2 is not familiar, and the other

columns are too short to reveal any patterns. Let’s explore further. You may have noticed that some of the triangles

point upward and some point downward. Let’s separately count triangles that point up, and triangles that point down.

Number of Triangles in a Triangular Figure with Sides of Length n

n Triangles that Point Up Triangles that Point Down Total

1 1 0 1

2 4 1 5

3 10 3 13

4 20 7 27

5 35 13 48

The first column should look familiar. The numbers in it are the triangular pyramid numbers. However, the second

column is still a mystery. Let’s break it down a little more, this time by type of triangle (up or down) and size.

Number of Triangles in a Triangular Figure with Sides of Length n

Triangles that Point Up Triangles that Point Down

n Size 1 Size 2 Size 3 Size 4 Size 5 Size 1 Size 2 Size 3 Size 4 Size 5 Total

1 1 0 0 0 0 0 0 0 0 0 1

2 3 1 0 0 0 1 0 0 0 0 5

3 6 3 1 0 0 3 0 0 0 0 13

4 10 6 3 1 0 6 1 0 0 0 27

5 15 10 6 3 1 10 3 0 0 0 48

Now we are getting somewhere. It’s a table of triangle numbers! Let Tn be the nth triangle number. The sum of the

nth row of the triangles that point up is Tn larger than the sum of the .n � 1/st row of triangles that point up. Less

obvious is that the sum of the nth row of the triangles that point down is Tn�1 larger than the sum of the .n�2/nd row

of triangles that point down. This means we would expect the next two rows in the table to be
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6 21 15 10 6 3 1 0 15 6 1 0 0 0 0

7 28 21 15 10 6 3 1 21 10 3 0 0 0 0

Once we discover patterns like these, we are directed by our own exploration and serendipitous discovery to try to

explain why they might be so. Let Un and Dn, respectively, be the number of up-pointing and down-pointing triangles

in a triangular “grid” with n edges per side. Figure 2 shows the grid when n D 4.

Lemma 1. Un D Un�1 C Tn:

Proof. A triangle figure with n edges per side contains all the up-pointing triangles of a similar figure with n�1 edges

per side, plus whatever extra up-pointing triangles we get by including one or more of the n edges from the bottom of

the triangle. There is one up-pointing triangle that uses all these edges (the whole figure), two that use n � 1 of these

edges, three that use n� 2 of these edges, . . . , and n triangles that use exactly one of these edges. This sum is Tn. See

Figure 3 for an example when n D 5.

1 2 3 4 5

Figure 3. A triangular grid with a new row containing five edges.

The next proof is similar but slightly more difficult than the previous one. The difficulty is surmountable because

our patterns tell us exactly what we must look for in the proof. And, when you know what to look for, then a proof is

easier to find.

Lemma 2. Dn D Dn�2 C Tn�1:

Proof. A triangle figure with n edges per side contains all the down-pointing triangles of a similar figure with n � 2

edges per side, plus whatever extra down-pointing triangles we get by including a point on any one of the two new

rows. The number of down-pointing triangles with i edges per side that include a point on the bottom (nth) row equals

n�.2i�1/. This is because there are n�1 down-pointing triangles with one edge per side that use points on the bottom

row, and every time you add an edge to the side of the triangle, you lose the triangles that used the right and leftmost

points on the nth row. See Figure 4 for an example when n D 6. For a similar reason, the number of down-pointing

Figure 4. A triangular grid with two new rows. There are 5 one-sided, 3 two-sided, and 1 three-sided triangles pointing

downward with the point on the bottom (sixth) row. There are 4 on-sided and 2 two-sided triangles pointing downward,

with the point on the fifth row.
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triangles with i edges per side that include a point on the next to bottom (.n � 1/st) row equals n � 2i . The sum of

these two as i ranges from 1 to n
2

is Tn�1 (when i is greater than n
2

, there are no triangles).

Let Mn D Un CDn, i.e., the total number of triangles in a triangular grid with n edges per side (M is the translit-

erated first letter of the Hebrew word for triangle). Lemmas 1 and 2 imply that Mn D Mn�2 C Tn C 2Tn�1. Also,

M0 D 0 and M1 D 1. Recall that Tn D n.nC1/
2

. Then we have

Theorem 1.

Mn D Mn�2 C n.nC 1/

2
C 2

.n � 1/n
2

D Mn�2 C 3n2

2
� n

2
:

This seems to solve our problem but it is not as satisfying as the solutions for squares and rectangles. It would be

nice to get a closed formula for the number of triangles; that is, a formula without any recurrence or loops, like we had

for squares and rectangles.

Recurrence equations are easier to discover than closed formulas, but closed formulas are often easier to use for

calculations. Fortunately, many recurrence equations can be solved and turned into closed formulas by simply “unrav-

eling” the formulas. This means repeatedly applying the recurrence over and over again, starting with the base case,

constructing a summation that we then turn into a closed form. In this case, since the recurrence equation skips two

indices with each iteration, we get two different summations, one for the even indices and one for the odd.

Starting with even indices, we have

M0 D 0;

M2 D M0 C 3

2

�

22
�

� 1

2
.2/ ;

M4 D M2 C 3

2

�

42
�

� 1

2
.4/ :

This generalizes to

M2n D 3

2

�

22 C 42 C 62 C � � � C .2n/2
�

� 1

2
.2C 4C 6C � � � C 2n/

D 3

2
� 4

�

12 C 22 C 32 C � � � C n2
�

� .1C 2C 3C � � � C n/

D 6
.n .nC 1/ .2nC 1//

6
� n.n C 1/

2

D n.nC 1/.2nC 1/ � n.nC 1/

2

D .4n3 C 5n2 C n/

2
:

The first line above comes from unraveling the recurrence of Theorem 1; the third line is derived from the second

line using Levi’s identities (A) and (B); the fourth line is due to identity (A); and the rest is straightforward algebra.

As we did for the even indices, let’s find the pattern and closed form for the odd values, M2nC1.

M2nC1 D 1C 3

2

�

32 C 52 C � � � C .2nC 1/2
�

� 1

2
.3C 5C � � � C .2nC 1//

D 3

2

�

12 C 32 C 52 C � � � C .2nC 1/2
�

� 1

2
.1C 3C 5C � � � C .2nC 1//

D .2nC 1/ .1C 2C 3C � � � C .2nC 2//

2
� .nC 1/2

2

D .2nC 1/.nC 1/.2nC 3/

2
� .nC 1/2

2

D 4n3 C 11n2 C 9nC 2

2
:
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As before, the first line above comes from unraveling Theorem 1. The third line is derived from the second line using

Levi’s identities (29) and (37). And, as before, the fourth line is due to identity (A), and the rest is straightforward

algebra.

The two formulas for the number of triangles in a grid are not as pretty as the closed forms for the number of squares

and rectangles. But they are the truth, and you can’t choose the truth! An equivalent but much prettier way to write

these formulas is

Mn D

8

ˆ̂
<

ˆ
:̂

n.nC 2/.2nC 1/

8
when n is even,

n.nC 2/.2nC 1/ � 1
8

when n is odd.

or simply

Mn D n.nC 2/.2nC 1/

8
C 1

16
..�1/n � 1/ :

The stuff at the end of the formula just takes care of the minor difference between the odd and even cases. Notice

the similarity between the main part of this formula
n.nC2/.2nC1/

8
and the closed form for the number of squares in a

grid,
n.nC1/.2nC1/

6
.

4 Conclusion

We presented a trio of problems that focus on the benefits of discovery and experiment in discrete mathematics. The

solutions to the problems use recurrence equations, summations, and counting concepts, and involve some famous

identities.

There are many ways this material can be used in the classroom. Several identities of Levi ben Gershon (1288–

1344) can be used with discussion centered on contrasting different style proofs and analyzing why someone might

use one technique over another. The three problems (squares, rectangles and triangles in a grid) can be used in group

exploration and discovery, with the instructor as the guide in a Pólya-style lecture.
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Storing Graphs in Computer Memory

Larry E. Thomas
Saint Peter’s College

1 Introduction

Many of the structures we use in discrete mathematics are nonlinear when they are drawn in the usual way on paper.

For example, a graph will often have many edges leaving or entering a given vertex, with the number of edges chang-

ing from vertex to vertex. Drawing such a graph on paper could produce a rather messy diagram which takes two

dimensions to represent. However, most graph algorithms used in problems of any size are executed on a computer

which has only a linear (one-dimensional) memory. The question naturally arises: How do we represent an inherently

two-dimensional object, such as a graph or a matrix, in one dimension? This note explores some of the ways this

question can be answered.

2 A computer’s memory

We will begin with a simplified explanation of the way the memory of a regular desktop computer might be organized.

The memory consists of consecutive locations where data, represented in a binary code, can be stored. In a memory

with n consecutive locations, the locations are numbered with addresses beginning with address 0: 0; 1; 2; : : : ; n. If,

for example, a single location can hold one byte (eight bits) of binary code, a one-kilobyte memory will have locations

numbered 0; 1; 2; : : : ; 1024, since 1Kb of memory contains 210 D 1024 bytes.1 Pictorially, we can think of the mem-

ory as a long collection of numbered boxes as seen in Figure 1.

15

:::

4

3

2

1

0

:::

Figure 1. A 16-location memory.

This long collection of numbered boxes is essentially a linear construct. Our problem is to find a way to store

information about nonlinear discrete structures, such as matrices and graphs, in this linear construct.

1It is important to note that a single piece of data stored in memory may occupy more than one location. Typically, it takes one location to store

a character, such as the letter R, in memory, but it might take four locations to store an integer, and six or more to store a decimal number.

287
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3 Representing matrices

Most modern computer languages have built-in facilities representing vectors and matrices. In this section we will

have a behind-the-scenes look at how this representation is accomplished in standard procedural languages such as

C++.

3.1 Locator functions

Locator functions are at the heart of formula-based representations. A locator function maps an element of a discrete

structure to a specific location in a computer’s memory. Locator functions are commonly used to represent vectors and

matrices, both of which are usually called arrays in programming languages. A vector is a one-dimensional array and

a matrix is a two-dimensional array.

3.2 Vectors

Finding a locator function for a vector is straightforward. Suppose we want to compute the addresses in which to store

the elements of the vector v D .v1; v2; : : : ; vn/. The computer will decide where to place v1 in memory; let ˛ be the

address of the location holding v1. The computer also knows s, the number of locations it takes to store each element

of v. Then the locator function

addr.i/ D ˛ C .i � 1/s; 1 � i � n

gives the address of vi .

3.3 Matrices

The locator function for a matrix is a bit more complicated. We can view the problem as storing the first row of the

matrix in sequential locations, just as we stored a single vector above, then storing the second row, then the third, and

so on.2 Consider finding the locator function for the elements of an m� n matrix A. As before, let ˛ be the address of

A11 and let s be the number of locations it takes to store one element of A. Then r D ns is the number of locations it

takes to store one row of A. It follows that the locator function

addr.i; j / D ˛ C .i � 1/r C .j � 1/s; 1 � i � m; 1 � j � n

gives the address of aij .

To see that this formula does indeed give sequential, contiguous locations in which to store the elements of A, let

us consider an example. Suppose that A is a 3 � 4 matrix. The following matrix shows the addresses in which the

elements of A will be stored.
2

6
6
4

˛ ˛ C s ˛ C 2s ˛ C 3s

˛ C 4s ˛ C 5s ˛ C 6s ˛ C 7s

˛ C 8s ˛ C 9s ˛ C 10s ˛ C 11s

˛ C 12s ˛ C 13s ˛ C 14s ˛ C 15s

3

7
7
5

We can see that the addresses are indeed sequential and contiguous, beginning at ˛ and ending at ˛ C 15s.

4 The treasure hunt game

The rigid structure of vectors and matrices makes it fairly easy to find locator functions for them. While it is possible

to find the equivalent of locator functions for unruly structures such as trees and graphs, it would be useful to have

an intuitive way to represent vertices and edges. To gain flexibility and intuitive appeal, we have to give up the idea

of storing data sequentially, but we still need to use the one-dimensional computer memory as shown in Figure 1. We

need a way to jump around in this memory to follow the edges of a graph wherever they lead us.

The method computer programmers use to jump around in memory can be introduced using the Treasure Hunt

Game. In this game someone hides boxes in various places. Each box contains a letter of the alphabet and a clue about

2This is the row-major order and is commonly used now. The order which goes column-by-column is column-major order.
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where to find the next box. The players are given a clue about where to find the first box; then they set out to find all

of the other boxes. When they find a box they record the letter in the box and then they use the new clue (the pointer)

to find the next box. When they have found the last box, the letters they recorded will spell out the Magic Word.

Since we will eventually be using a computer’s memory to store the boxes, we require that all of the boxes be hidden

someplace along a straight road, representing the linear nature of the memory. Figure 2 shows an example.

Start at 20

. . . . . .0 10 20 30 40 50

L 50 R z E 40 U 0 E 10

Figure 2. The Treasure Hunt game.

The numbers along the top of the “road” give the distance in feet, say, from the beginning. The boxes are shown

below the road; each box contains a letter and the position of the next box. When the game begins, the players are told

to go 20 miles from the beginning to find the first box. They find a box containing the letter E and the number 40. The

number 40 points them to the next box, which is located 40 miles from the beginning. When they arrive at the position

40 miles from the beginning, they find another box containing the letter U and the pointer 0, telling them to look at

position 0 for the next box. They do so and find the letter L and a pointer to position 50. At 50 they find the letter E

and the pointer 10. When they go to position 10, they find the letter R, but instead of a numerical pointer, they find the

symbol z. This symbol indicates that there are no more boxes. If the players recorded the letters as they found them,

they found the Magic Word to be EULER.

There is a complete analogy between the road in the Treasure Hunt game and a computer’s memory. In terms of a

computer program retrieving data that has been stored in memory, the above paragraph could be rewritten as follows:

The program starts by looking in location 20 for the first letter. It finds the letter E and a pointer to location 40. So

it looks in location 40 where it finds the letter U and a pointer to location 0. In location 0 it finds the letter L and a

pointer to location 50, where it finds an E and a pointer to location 10. At location 10 it finds the letter R and the

special symbol z, which is used here to indicated that there is no more data.

The structure that results from storing a piece of data along with a pointer to the next piece of data is called a

linked list. In practice it is the programmer’s responsibility to indicate which pieces of data are to be linked, but the

programmer does not decide on the actual memory locations that will be used to stored the linked data. These locations

are chosen by the computer’s systems programs. In fact, if the same program is run twice the locations chosen on each

run may be different.

Fortunately, it is rare that a programmer needs to know the actual memory addresses in the linked list. All the

programmer needs to know is which nodes are linked. In the example, it is important for the programmer to know that

the first E is linked to the U, but the programmer does not need to know which addresses are involved in establishing

the link. That means that it is not necessary, or even possible, to show the numerical values of the addresses in drawing

diagrams to represent linked lists. We will still use boxes as in Figure 2, but we will leave the “clue” or “pointer”

section blank and we will arrange the boxes so that linked boxes follow each other. Figure 3 shows the standard way

of representing a linked list in computer science texts.

Start E U L E R˘ ˘ ˘ ˘ z- - - --

Figure 3. The treasure hunt’s linked list.
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5 Graphs

Now that we know something about pointers we can look at some of the standard ways of storing a graph in a

computer’s memory. We will start with the adjacency matrix and then consider the vector-based adjacency list and

the linked adjacency list. The last two methods rely on the adjacency list of a vertex. If v is a vertex in a graph, its

adjacency list, adj.v/, is just a set of the vertices that are adjacent to v. In Figure 4(a), for example, adj.2/ D f1; 3; 4; 5g.

5.1 Adjacency matrices

In texts on discrete mathematics the most common way to represent a graph seems to be the adjacency matrix of the

graph. For a graph with n vertices numbered 1; 2; 3; : : : ; n, the adjacency matrix A D Œaij � is defined by

aij D
(

1 if vertex i is adjacent to vertex j ,

0 otherwise.

The adjacency matrix for the graph in Figure 4(a) is

A D

2

6
6
6
6
6
4

0 1 0 0 0

1 0 1 1 1

0 1 0 0 1

0 1 0 0 0

0 1 1 0 0

3

7
7
7
7
7
5

:

Standard matrix operations such as multiplication and transposition can be used to analyze a graph using its adjacency

matrix.

1

2

3 4

5

(a)

1

2 3

4

5

6 7

(b)

8

Figure 4. Two graphs.

5.2 Vector-based adjacency lists

One way to represent a graph is to use two vectors to keep track of the edges between vertices. First the vertices have

to be numbered as shown, for example, in the graphs of Figure 4. Then a vector e is created to record adj.v/ for each

vertex v: first all of the elements of adj.1/ are listed in e, then all elements of adj.2/, and so on. The order in which the

vertices are listed is immaterial. Another vector, p holds the indices in e where the individual adjacency lists begin. p

is constructed so that the vertices in adj.i/ lie in positions pŒi � through pŒi C 1� � 1. We can think of the elements of

p as pointers to positions in e. So the graph in part (a) of the Figure 4 is represented as shown in Figure 5.

Note that, for example, the vertices that can be reached from the vertex numbered 2 are in positions pŒ2� D 2

through pŒ3� � 1 D 5 in e. The definition of p leads to an “extra” last element that references one index position past

the end of e. The list for Figure 4(b) can be constructed similarly to produce Figure 6.
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p D Œ1; 2; 6; 8; 9; 11�:

pŒ1� pŒ2� pŒ3� pŒ4� pŒ5� pŒ6�

? ? ? ? ? ?

e 1 1 3 4 5 2 5 2 2 3

Figure 5. Vector-based adjacency list for Figure 4(a).

p D Œ1; 3; 4; 5; 6; 9; 11; 14; 15�:

pŒ1� pŒ2� pŒ3� pŒ4� pŒ5� pŒ6� pŒ7� pŒ8� pŒ9�

? ? ? ? ? ? ? ? ?

e 2 3 1 1 5 4 6 7 5 7 5 6 8 7

Figure 6. Vector-based adjacency list for Figure 4(b).

The size of vector e is twice the number of edges in the graph and the size of p is one more than the number

of vertices. The definition of p makes it easy to calculate the degree of a vertex since the degree of vertex i is just

pŒiC1��pŒi �. The number of edges in the graph is .pŒnC1��1/2, where n is the number of vertices. If the number of

edges in the graph is less than n2, this method of storage takes less room than using a traditional adjacency matrix. This

method of representation is not much used since the method based on pointers, which we present next, is generally

easier to deal with. But it is useful in languages such as COBOL and FORTRAN, which do not have pointers.3

5.3 Linked adjacency lists

The most common way to represent graphs in standard graph algorithms is the linked adjacency list based on the link

lists we saw in Section 4. For each vertex v in the graph, the elements in adj.v/ are placed in a linked list. It is easy to

traverse these lists to find all of the vertices adjacent to v. Since it is easy to add and delete elements in these lists, it is

easy to add and delete edges in the graph. A vector of n pointers is used to gain access to the individual linked lists.

Figure 7 shows the representation of the graph in Figure 4(a).

[5]

[4]

[3]

[2]

[1]

˘

˘

˘

˘

˘

-

-

-

-

- 2 z

1 ˘ - 3 ˘ - 4 ˘ - 5 z

2 ˘ - 5 z

2 z

2 ˘ - 3 z

Figure 7. The linked representation of Figure 4(a).

3The vectors p and e can be combined into one longer vector by adding nC 1 to each element of p and prepending it to e.
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6 Additional Reading

Vector-based adjacency lists and linked adjacency lists are common topics in texts on data structures and algorithms.

Two excellent choices are:

Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., Stein, Clifford, Introduction to Algorithms, McGraw-

Hill, New York, 2001.

Sahni, Sartaj, Data Structures, Algorithms, and Applications in C++, McGraw-Hill, New York, 1998.



Inclusion-Exclusion and the

Topology of Partially Ordered Sets

Eric Gottlieb
Rhodes College

1 Introduction

It is surprising and satisfying that the principle of inclusion-exclusion, a well-known combinatorial tool, is a special

case of a more general phenomenon that also gives rise to the classical Möbius function of number theory. Specifically,

the principle of inclusion-exclusion is equivalent to Möbius inversion on the Boolean lattice, while the classical Möbius

function arises from Möbius inversion on the lattice of divisors. Generalized Möbius inversion was developed by Gian-

Carlo Rota [8] in 1964.

To use Möbius inversion, one must be able to compute the value of what is known as the generalized Möbius

function. This function provides a link between combinatorics and topology and motivates a broader exploration of

the topology of partially ordered sets.

We will begin by using the principle of inclusion-exclusion to derive a formula for the Euler totient function. This

will lead us to define the classical Möbius function, which turns out to be the generalized Möbius function of D,

the lattice of divisors. We will use D as a point of departure to explain generalized Möbius inversion. Then, we will

compute the Möbius function for the Boolean lattice B and show that Möbius inversion on B gives rise to the principle

of inclusion-exclusion. We will conclude with a discussion of poset topology.

In this purely expository article, our intent is to convey some connections between number theory, combinatorics,

and topology. For this reason, we do not work in full generality and leave unproved some of the results that we use.

The reader who seeks a fuller treatment of the topics presented here is encouraged to consult Stanley [9].

2 The Principle of Inclusion-Exclusion

The principle of inclusion-exclusion (PIE) is a way to count the number of elements in the union of a collection of

sets A1; : : : ; An. A good first approximation to this number would be jA1j C � � � C jAnj. The problem is that some

elements get counted more than once. This is true, for example, of elements in Ai \Aj where i ¤ j . To improve our

approximation, we need to subtract all of the jAi \ Aj j’s. But then the elements in Ai \ Aj \ Al are undercounted

when i; j , and l are distinct, so the number of elements in sets of this type needs to be added back in. This process

continues until we finally add or subtract (depending on whether k is odd or even) jA1 \ � � � \ Anj to the alternating

sum.

In Figure 1, it is easily verified that jA[B [C j D 34. Our first approximation to this number is jAj C jBj C jC j D
15C 15C 21 D 51, which is too big. We must subtract jA\Bj C jA\C j C jB \C j D 3C 5C 10 D 18, obtaining

33. The final correction comes from adding jA\ B \ C j D 1 to give 34.
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A B

C

8
2

3

4
1

9

7

Figure 1. 34 D 15C 15C 21� 3 � 5 � 10C 1.

Theorem 2.1 (PIE). Let A1; : : : ; An be finite sets. Then

jA1 [ � � � [Anj D
X

1�i1<���<ik �n

k�1

.�1/kC1jAi1 \ � � � \Aik j:

The proof can be found in any elementary combinatorics book (see [5], for example), so we do not include it here.

Later in this article, we will show that it follows from generalized Möbius inversion.

We will now use the PIE to compute the value of the Euler totient function, which is useful in number theory and

algebra. An integer n > 1 is prime if the only divisors of n are 1 and n. For example, 2, 3, 23, and 137 are prime, while

1, 4, 16, and 133 are not. A totative of a positive integer n is a positive integer not exceeding n that has no prime factor

in common with n. The Euler totient function � gives the number of totatives of n. For example, �.12/ D 4 since 12

has four totatives, namely 1, 5, 7, and 11. See [1] or any other elementary number theory text for further details.

Theorem 2.2. Let n be a positive integer with prime factorization n D p
˛1

1 : : : p
˛k

k
. Then �.n/ D n

Qk
iD1

�

1 � 1
pi

�

.

Proof. The formula works if n D 1. If n > 1, let Ai denote the set of numbers in Œn� D f1; : : : ; ng that are divisible

by pi . Then A1 [ � � � [Ak is the set of positive integers not exceeding n having a prime factor in common with n, so

�.n/ D n � jA1 [ � � � [Akj.
It is easy to see that jAi1 \ � � � \Air j D n=.pi1 � � �pir /. By the PIE we have

jA1 [ � � � [ Akj D
X

1�i1<���<ir �k

r�1

.�1/rC1jAi1 \ � � � \Air j

D
X

1�i1<���<ir �k

r�1

.�1/rC1 n

pi1 � � �pir

so that

�.n/ D n � jA1 [ � � � [Akj
D n �

X

1�i1<���<ir �k

r�1

.�1/rC1 n

pi1 � � � � � �pir

(8)

D n

0

B
@1C

X

1�i1<���<ir �k

r�1

.�1/r 1

pi1 � � �pir

1

C
A

D n
X

1�i1<���<ir �k

r�0

.�1/r 1

pi1 � � �pir

(9)

D n

k
Y

iD1

�

1 � 1

pi

�

: �

There are other appealing applications of the PIE, including an elegant demonstration that the proportion of permu-

tations on n letters with no fixed point approaches 1=e as n grows. This application is included in many combinatorics

texts (for example, it is outlined in the exercises of [5]), so we do not give it here.
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3 The Classical Möbius Function

Examining expression (9) for �.n/ we see a natural motivation to define the function�.d/ for a positive integer d by

�.d/ D
�
.�1/r if d is the product of r distinct primes,

0 otherwise.

for then we get the cleaner summation formula

�.n/ D
X

d jn

�.d/
n

d
: (10)

Here d jn means that d is a factor of n. The function � is called the classical Möbius function. Some of its many

interesting properties are mentioned at the website [6]. Most important for us is the following theorem.

Theorem 3.1 (Classical Möbius inversion). Let f and g be two integer-valued functions on the positive integers.

Then the following two conditions are equivalent:

� f .n/ D
P

d jn g.d/ for all positive integers n.

� g.n/ D
P

d jn �.d/f .
n
d
/ for all positive integers n.

We will show in the next section that this result follows from generalized Möbius inversion.

Applying classical Möbius inversion to equation (10) with f .n/ D n and g.n/ D �.n/ gives the unexpected and

attractive result

n D
X

d jn

�.d/:

For example, 12 D 1C 1C 2C 2C 2C 4 D �.1/C �.2/C �.3/C �.4/C �.6/C �.12/.

4 Partially ordered sets

We now develop some basic definitions and conventions concerning partially ordered sets. We will use this terminology

in the next section, when we show how classical Möbius inversion is a special case of a more general phenomenon

occurring in the context of locally finite partially ordered sets.

A partially ordered set, or poset, is a set P together with a relation �P satisfying the following conditions.

� x �P x for all x 2 P . This property is known as reflexivity.

� If x �P y and y �P x then x D y for all x; y 2 P . This property is known as antisymmetry.

� If x �P y and y �P z then x �P z for all x; y; z 2 P . This property is known as transitivity.

For those not familiar with partially ordered sets, perhaps their most counterintuitive aspect is the fact that two elements

may fail to be comparable. That is, there may be distinct x; y 2 P so that x 6�P y and y 6�P x.

For example, the Boolean lattice1 on n elements is denoted by Bn and is defined to be the set of subsets of Œn� D
f1; : : : ; ng with A �Bn B whenever A � B . Thus ; �B4

f1; 3g and f1; 3g �B4
f1; 3; 4g. However, there is no order

relation between f1; 2g and f4g in B4 since neither set is contained in the other.

Let Dn denote the set of divisors of the positive integer n. Order the elements of Dn by l �Dn m if and only

if l jm. The poset Dn is called the lattice of divisors of n. In D60, we have 3 �D60
6 but there is no order relation

between 10 and 12 since neither divides the other. Observe that Dn generalizes Bn since Dp1 ���pr is the same as Br

when p1; : : : ; pr are distinct primes.

If x �P y and there is no element z ¤ x; y so that x �P z �P y, then we say that y covers x and write x ÉP y.

The Hasse diagram is a useful way to represent posets visually. To construct the Hasse diagram of a poset P , the

elements of P are written on the page in such a way that if xÉP y, then x appears lower than y on the page and there

is a line joining x and y. Figure 2 shows the Hasse diagrams of B4 and D60.2

1A lattice is a special kind of poset.
2Find the skeleton of a four-dimensional cube in the Hasse diagram of B4 and of two 3-dimensional cubes that share a face in the Hasse diagram

of D60 . Hint for the first one: look at the set of subsets of f1; 2; 3g and at the set of supersets of f4g.
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{1, 2, 3, 4}

{1, 2, 3} {1, 2, 4} {2, 3, 4}{1, 3, 4}

{1, 3} {3, 4}{2, 4}{2, 3}{1, 2} {1, 4}

{1} {4}{3}{2}

{ }

60

30 20 12

15 10 6 4

5 3 2

1

Figure 2. The Hasse diagrams of B4 and D60.

The sets underlying B4 and D60 are finite. Any such poset is called a finite poset. Sometimes it is more convenient

to work with posets that are infinite but for which every subset of the form Œx; y� D fz 2 P j x �P z and z �P yg
is finite. Such a subset is called an interval of P . A poset in which every interval is finite is called locally finite. For

example, let B denote the set of finite subsets of N, the natural numbers, ordered by inclusion. Let D denote the set of

positive integers ordered by divisibility. Then both B and D are locally finite.

The Boolean lattices B and D share another useful property. A minimum element of a poset P is denoted by O0P and

is defined by the property that O0 �P x for all x 2 P . A poset is lower bounded if it has a minimum element. Both B

and D are lower bounded with O0B D ; and O0D D 1. The reader is encouraged to consult [5] or [9] for more on posets,

lattices, and related terms.

5 Möbius Inversion on the Lattice of Divisors

We can rewrite Theorem 3.1 as follows.

Theorem 5.1. Let f and g be any two integer-valued functions on the set of positive integers. Then the following two

conditions are equivalent:

� f .n/ D
P

d�Dn g.d/;

� g.n/ D
P

d�Dn�.d/f .n=d/:

Note that the sums are finite since D is lower bounded. This version of the theorem might lead the reader to wonder

whether analogous theorems might hold for other locally finite lower bounded posets. The affirmative conclusion,

which appears here as Theorems 5.3 and 5.4, was given in Rota’s 1964 paper [8].

Incidence algebras are the most natural way to understand the generalized Möbius function and generalized Möbius

inversion so we will use them here. This discussion is not difficult, but it is outside the scope of most undergraduate

combinatorics classes. Readers wishing to forego it could skip ahead to equation (11), which can be treated as a

recursive definition of the generalized Möbius function, and to Theorems 5.3 and 5.4.

Let P be a locally finite poset. A complex-valued function f on the closed nonempty intervals of P is called an

incidence function of P . We write f .a; b/ D f .Œa; b�/. We denote the set of incidence functions on P by I.P /. The

set I.P / is closed under sums and scalar multiples. Since P is locally finite, we can define a product3 on I.P / by

.fg/.a; b/ D
X

c2Œa;b�

f .a; c/g.c; b/;

making I.P / into an associative algebra over C. This algebra, which is called the incidence algebra of P , has identity

element

ıP .a; b/ D
�
1 a D b;

0 a <P b:

3Such a product is known as a convolution.
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We can express the conditions from Theorem 5.1 in the incidence algebra using the zeta function, which is defined

on the intervals of an arbitrary poset P by �P .a; b/ D 1 for all a � b. Notice that if f and g are in I.P / and P is

locally finite, then f .a; b/ D .g�P /.a; b/ if and only if f .a; b/ D
P

c2Œa;b� g.a; c/. In the lattice of divisors, this is

the same as the first condition of Theorem 5.1; just take f .n/ D f .1; n/ and g.d/ D g.1; d/.

It can be shown (see Prop. 3.6.2 of [9]) that for any locally finite poset P , the function �P is invertible. The inverse

function is called the Möbius function of P and is denoted �P . Thus f D g�P is equivalent to g D f�P , and in

particular f D g�D if and only if g D f�D. By reasoning similar to that above, this is equivalent to the second

condition of Theorem 5.1 provided that �D.m; n/ D �.n=m/. To prove this identity we use a recursive formula,

which we now derive. If a �P b then

X

c2Œa;b�

�P .a; c/ D
X

c2Œa;b�

�P .a; c/�P .c; b/ D .�P �P /.a; b/ D ıP .a; b/ D
�
1 a D b;

0 a < b;

so that

�P .a; b/ D
�

1 a D b;

�
P

a�c<b�P .a; c/ a <P b:
(11)

Now it is a simple matter to calculate the Möbius function of any interval.

Theorem 5.2. Supposemjn. Then �D.m; n/ D �.n=m/.

Proof. We proceed by induction on the number of divisors of n=m. The base step is established by the observation that

�D.n; n/ D 1 D �.1/.

For the induction step, suppose n=m has more than one divisor and write

�D.m; n/ D �
X

m�Dx<Dn

�.m; x/:

There are fewer divisors of x=m than of n=m so, by induction hypothesis, we can write

�D.m; n/ D �
X

m�Dx<Dn

�.x=m/:

Let r be the number of primes dividingm=n. Ifm=n is squarefree, then each x=m is also squarefree.4 In constructing

x=m we are free to choose any subset of the primes dividing n=m except all r of them. Using the fact that the

alternating sum of the binomial coefficients is 0, we obtain

�D.m; n/ D �
r�1
X

iD0

.�1/i
 

r

i

!

D .�1/r �
r
X

iD0

.�1/i
 

r

i

!

D .�1/r D �.n=m/:

If m=n contains a square, then the only nonzero terms in the sum are those for which x=m is squarefree. In con-

structing a squarefree x=m we are free to use any subset of the primes, including all r of them. Thus we get

�D.m; n/ D �
r
X

iD0

.�1/i
 

r

i

!

D 0 D �.n=m/: �

We have seen that the equivalence of the relations f D g�P and g D f�P gives rise to classical Möbius inversion

by takingP D D. Generalized Möbius inversion is precisely this equivalence with P unspecified. However, it is more

elementary and more natural to express generalized Möbius inversion without reference to the incidence algebra and

in terms of complex-valued functions on P instead of using incidence functions.

Let f and g be in I.P /. Then f D g�P if and only if g D f�P . In particular, f .O0; x/ D .g�P /.O0; x/ D
P

y�P x g.
O0; y/ if and only if g.O0; x/ D .f�P /.O0; x/ D

P

y�x f .
O0; y/�P .y; x/. Setting f .x/ D f .O0; x/ and g.x/ D

g.O0; x/ gives the following theorem.

4An integer is squarefree if it is not divisible by the square of any prime.
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Theorem 5.3 (Lower bounded Möbius inversion). Let P be a locally finite lower bounded poset and let f and g be

complex-valued functions on P . The following two conditions are equivalent.

� f .x/ D
P

y�x g.y/ for all x 2 P .

� g.x/ D
P

y�x f .y/�P .y; x/ for all x 2 P .

A poset is upper bounded if it has a maximum element, usually denoted by O1. The following upper bounded Möbius

inversion theorem can be proved similarly to the lower bounded version.

Theorem 5.4 (Upper bounded Möbius inversion). Let P be a locally finite upper bounded poset and let f and g be

complex-valued functions on P . The following two conditions are equivalent.

� f .x/ D
P

y�x g.y/ for all x 2 P .

� g.x/ D
P

y�x f .y/�P .x; y/ for all x 2 P .

6 Möbius Inversion on the Boolean Lattice

We will now see that Möbius inversion on B gives rise to the PIE. To do this, we must compute �B . Once again, we

use formula (11).

Theorem 6.1. �B.A; B/ D .�1/jBnAj for all finite subsets A � B of N.

Proof. The result obviously holds if A D B . Suppose A ¨ B . Then

�B.A; B/ D �
X

A�C¨B

�B.A; C/

D �
X

A�C¨B

.�1/jCnAj

D �
jBnAj�1
X

iD0

.�1/i
 

jB nAj
i

!

D .�1/jBnAj: �

Intervals in B and D are products of simpler posets, and Möbius functions of poset products are well behaved. These

facts can be used to give cleaner calculations of the Möbius functions of these posets. See Proposition 3.8.2 of [9] for

details.

Theorems 5.4 and 6.1 say that f .B/ D
P

A�B g.A/ if and only if g.B/ D
P

A�B.�1/jAnBjf .A/. We will now

show that the PIE follows from this statement. Let C1; : : : ; Cn be finite sets and let C D C1 [ � � � [ Cn. For B � Œn�

define f .B/ D j \i2B Ci j. Let g.B/ denote the number of elements x 2 C such that x 2 Ci if and only if i 2 B .

The sets A between B and Œn� partition the elements x counted by f ; the part containing x consists of those elements

of C having the same index set Ax D fi j x 2 Ci g � B as x. These elements are counted by g.Ax /. Thus

f .B/ D
P

A�B g.A/. Applying Theorem 5.4 yields g.B/ D
P

A�B.�1/jAnBjf .A/. Taking B D ; gives

0 D g.;/ D
X

A�Œn�

.�1/jAjf .A/:

Note that f .;/ D jC j. Solving for jC j we obtain

jC j D
X

;¤A�Œn�

.�1/jAjC1f .A/

which is equivalent to the statement of Theorem 2.1.
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7 Poset topology

We now introduce some notions from topology that will allow us to understand the Möbius function in a new way.

There are several places in this section where we use terms (e.g., homotopic and barycentric subdivision) without

defining them. The reader seeking further explanation is encouraged to consult [4] or any other text introducing al-

gebraic topology. We begin with the notion of simplicial complexes, which are used to compute the homology and

cohomology of triangulated topological objects.

A 0-dimensional geometric simplex is a point in Euclidean space. An .nC1/-dimensional geometric simplex †nC1

is obtained from an n-dimensional geometric simplex†n by placing a new pointP outside of a hyperplane containing

†n and joiningP by line segments to each point in†n. Thus, a 1-dimensional geometric simplex is a line segment, a

2-dimensional geometric simplex is a triangle, and a 3-dimensional geometric simplex is a tetrahedron. See Figure 3.

For technical reasons, we must also define a .�1/-dimensional simplex to be the empty set.

Figure 3. Simplices of dimensions 0, 1, 2, and 3.

An n-dimensional face of a simplex † is an n-dimensional simplex that is the intersection of † with a hyperplane

that does not intersect the interior of †. If † is n-dimensional, then it is convenient to think of † as having † as an

n-dimensional face.

Thus, if † is 3-dimensional, then its unique .�1/-dimensional face is the empty set; its four 0-dimensional faces

are its corners; its six 1-dimensional faces are the segments joining its corners; its four 2-dimensional faces are the

triangles on its boundary determined by the corners; and its unique 3-dimensional face is all of †.

The binomial coefficients in this sequence provide motivation to move the notion of simplex out of the realm of

geometry and into the realm of combinatorics. An abstract simplex � is the power set of some finite set V . The

.nC 1/-sets in� are likened to the n-dimensional faces of its geometric counterpart.

A geometric simplicial complex is a collection of simplices that are “glued” together in a “nice” way. Specifically,

the intersection of any two simplices in the set should be a face of both simplices in the intersection. See Figure 4 for

an example of a connected simplicial complex.

1 3
9

4

2

5
6

7

8

Figure 4. A connected simplicial complex.

Moving again to the combinatorial, an abstract simplicial complex is a collection� of subsets of some finite set V

which contains fvg whenever v 2 V and which is closed under containment. That is, if A � B 2 � then A 2 �. For

example, the geometric simplex shown in Figure 4 corresponds to the abstract simplex

P.f1; 2; 3; 4g/[ P.f2; 4; 5g/[ P.f5; 6; 7g/[ P.f6; 7; 8g/[ ff4; 7g; f3; 7g; f3; 9g; f9gg:

Here P.A/ denotes the set of all subsets of A. We don’t need P.f4; 7g/ here since its elements ;; f4g, and f7g are in

other sets in the union. The same applies to f3; 7g and f3; 9g, though we do need to include f9g since it is in none of

the other sets.
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Figure 5. The surfaces of the tetrahedron and octahedron as triangulations of the 2-sphere.

It is often the case that natural geometric objects, like the 2-sphere or the torus, can be viewed as simplicial com-

plexes. This is called a triangulation of the object. The sphere, for example, is homeomorphic to (i.e., topologically

the same as) the simplicial complex that is the boundary of a 3-simplex. It is also homeomorphic to the boundary of

the octahedron. See Figure 5. One can similarly triangulate the torus by viewing it as three triangular antiprisms (i.e.,

octahedra) stuck together at opposite faces. See Figure 6.

Figure 6. The torus as a simplicial complex.

A topological invariant is some algebraic entity, such as a number or a group, that is associated to a geometric

object. Often, invariants are computed from a triangulation of the object. By definition, invariants depend only on the

geometric object and not on which triangulation of the object we choose.

To show that the sphere and the torus are topologically distinct, one can show that some topological invariant

assumes different values on the two objects. One such invariant is the Euler characteristic, which is obtained by taking

the sum � D f0 � f1 C f2. Here f0; f1, and f2 are the number of 0-, 1-, and 2-dimensional faces of a simplicial

complex homeomorphic to the object in question.

The definition of the Euler characteristic generalizes to higher dimensions in the obvious way. For example, the

simplicial complex shown in Figure 4 has Euler characteristic f0 � f1 C f2 � f3 D 9 � 16C 7 � 1 D �1.

The Euler characteristic of the sphere can be computed as 4�6C 4D 2 or as 6�12C 8D 2 depending on whether

the triangulation in question is the boundary of the tetrahedron or the octahedron. The fact that the Euler characteristic

of the sphere has value 2 is known as Euler’s formula.

The Euler characteristic of the torus is 9 � 27C 18 D 0 as can be seen by examining the triangulation in Figure 6.

Thus, the sphere and the torus are not homeomorphic. Had the numbers turned out to be the same, we would be unable

to draw any conclusions about whether or not the sphere and the torus are homeomorphic since it is possible for

nonhomeomorphic objects to have the same Euler characteristic.

The reduced Euler characteristic Q� is defined to be � � 1. The curious practice of creating a new topological

invariant that is obviously equivalent to the Euler characteristic in terms of its ability to distinguish between objects

can be justified for technical reasons. We mention Q� because of its connection to the Möbius function.

A chain in a poset P is a subset of P for which every two elements are comparable. A chain is maximal if there is

no other chain that strictly contains it. For example, the elements ;; f1; 3g; f1; 2; 3; 7g form a chain in B. If P is finite,

then the set of chains of P form an abstract simplicial complex since every singleton of P is a chain and every subset

of a chain is a chain. This simplicial complex is called the order complex of P and is denoted by�.P /.

P is called bounded if it has elements O0 and O1 that satisfy O0 � x � O1 for all x 2 P . If P is bounded let OP D
P n fO0; O1g. Figures 7 and 8 show the order complexes of OB4 and OD60, respectively. The reader is encouraged to verify

that the triangles of these order complexes correspond to maximal chains in OB4 and OD60.
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Figure 7. The order complex of B4. Six triangles on the bottom and the vertex labeled 234 are obscured from view.
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Figure 8. The order complex of D60.

It is an amazing observation that if P is bounded, then �P .O0; O1/ is the reduced Euler characteristic of the order

complex of �. OP /. This realization has spurred researchers to investigate finer topological aspects of order complexes.

Björner and Wachs (see [2] and [3]) adapted and generalized a tool used in polytope theory called shellability for

use on order complexes. The resulting technique, known as lexicographical shellability, allows one to compute more

refined invariants of�. OP / by finding a certain kind of labeling of the edges of the Hasse diagram ofP . It is not always

easy to find a suitable labeling, but working directly with the poset instead of its order complex makes the problem

more accessible.

We conclude by pointing out that abstract simplicial complexes are ubiquitous in combinatorics. Examples include

antichains in posets; cliques, matchings, and spanning forests in graphs; monotonic subsequences of sequences of real

numbers, in the spirit of Erdös-Szekeres; and non-attacking rook placements on chessboards. Topological aspects of

some of these have been investigated; others, to the best of our knowledge, have not.
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Guided Group Discovery in a Discrete Mathematics

Course for Mathematics Majors1

Mary E. Flahive
Oregon State University

1 Introduction

In this article we discuss the use of guided group discovery in Oregon State University’s discrete mathematics course

for math majors. Since Fall 2003 this course has been taught at Oregon State using an ongoing modification of Kenneth

P. Bogart’s successful group discovery method and notes [2], “Teaching Introductory Combinatorics by Guided Group

Discovery.” Section 2 summarizes Ken’s notes and method, and Sections 3 and 4 respectively contain the adaptation

of his notes and the implementation of his method at Oregon State.

Ken’s prototype was a small elective course in which the average entering student was very motivated to learn the

material. In our department the course is required, and it is financially unrealistic for us to expect either very small

classes or in-class assistance from a senior student. We think our modification is sufficiently general that it can be

successfully used by other mathematics departments with similar student demographics. Since the adaptation is an

ongoing project, the interested reader is referred to [6] for current information on its status.

Ken generously served as a consultant for our adaptation of his method, both informally in Fall 2003 and during the

first year of the grant. We are grateful for his help.

2 A Short Overview of the Bogart Course

The goal of Ken’s project was to design notes and a method for teaching enumerative combinatorics in which “a large

majority of the students would learn a large majority of the material of beginning combinatorics.” The method was

informed by earlier work in mathematics education, including Davidson’s work on small group discovery [3]; Schoen-

feld’s research on problem solving [8]; and the work of Dubinsky and his collaborators on the genetic decomposition

of mathematical knowledge [1, 4, 5].

The set of class notes is the only written resource for the course, and is comprised of inter-connected problem se-

quences in combinatorial mathematics and graph theory. Through working the problems students learn combinatorial

processes and are guided to the discovery of general principles. Students are expected to complete 90% of the prob-

lems, with the proviso that they should not systematically avoid the more challenging problems. Most of the problems

are preceded by symbols, whose meaning is summarized in the following table:

� essential for this or the next section

� essential

ı motivational material

C summary

! especially interesting

� difficult

1This material is based upon work supported by the National Science Foundation under Grant No. 0410641. Any opinions, findings, and

conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science

Foundation.
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This is an important feature of the notes, since the symbols assist the student and they also provide important cues for

an instructor who wants to design a cohesive set of mandatory problems to be completed by the class.

The learning strategy of group discovery is based on the premise that most students learn well from working co-

operatively with peers. Unlike many classes in which an expository lecture is the primary medium for conveying

information, students in group discovery classes are actively involved in their own learning during class as well as

outside the classroom. In the Bogart implementation of group discovery, most of the course grade comes from non-

group work, including traditional in-class exams and the expectation that final solutions will be completed without

consultation or collaboration.

During class time, the instructor must work to achieve a balance between giving students sufficient time to work

successfully in groups and ensuring students are satisfactorily progressing through the material. Also, the notes are

constructed so that an instructor can decide to guide some groups of students to push ahead and work on more difficult

problems whose solution might even replace some required problems.

In the Bogart method, the instructor also guides by providing selective and thoughtful use of discussion which in-

volves the whole class or a large portion of the class. This can range from a chance for students to discuss their under-

standing of a specific problem at the board to a review facilitated by the instructor. An interesting use of large-group

discussion is to model successful group dynamics with no all-knowing participant. This can be especially effective

when it is used at times when most of the students think they have hit a dead end on a problem sequence. As students

are encouraged to explain what they and their group have tried or where they have trouble with a problem, the class

can see that careful and patient listening to others can lead to progress.

Ken hoped guided discovery would strengthen the students’ sense of their own responsibility for their learning, and

that the instructor would foster an atmosphere where students themselves initiate discussions which involve a large

percentage of the class. Careful use of large-group discussion is an integral part of the Bogart method, and can be an

exemplary teaching method for the many future mathematics teachers who populate our classes.

3 The Adapted Notes

While using Ken’s notes in Fall 2003, I was impressed by the student response to many of the problem sequences as

well as by the amount of personal responsibility shown by most of the students. Some of this can be attributed to the

type of problems, which are especially conducive to group discussion. This is true both because many of the problems

are easily understood by students at different levels of mathematical maturity and because a slight change in wording

can result in a major change in technique.

But we think most of the enthusiasm comes from the way the notes are constructed as well as the Bogart implemen-

tation of group discovery. As a check on our faithfulness to the original spirit, we asked Rosa Orellana to review our

implementation from this point of view. Her report can be found at [6]. Rosa is a member of Dartmouth’s faculty who

has taught from Ken’s notes and was also involved in their development.

3.1 Why adapt?

The prerequisites for Ken’s course are: “comfort with sets, functions, and algebraic notation (including some summa-

tion notation); some experience with reading (and perhaps doing) proofs; and, ideally, a modest exposure to mathe-

matical induction.” A typical OSU math major takes this course concurrently with advanced calculus in the first term

of their third year of study. As preparation, students have completed the calculus sequence and one course in matrix

algebra. Since these are also service courses for engineering students, they provide little experience with mathematical

proof and in general our students do not satisfy Ken’s prerequisites when they begin this course.

Ken thought our class was the first in which his notes were used in a required course in which the usual enrollment2

was at least twice as large as the maximum recommended by his original project. Ken encouraged us to apply for an

NSF grant to adapt his notes and method for the larger classes which are more typical of required courses at state

universities.

2The usual class size has been in the mid- to high-20s, and in Fall 2007 there are two sections with about 16 students each.
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There are other differences between the course (and classes) at Oregon State and the assumptions made by Ken and

his advisory board on the intended use of his notes and method. In addition to the smaller classes and the different level

of mathematical preparation, Ken’s prototype class was an elective class and the average student began the course with

more interest in the material. Our more extensive syllabus of discrete mathematics also required some adjustment.

Even with these differences, the basic philosophy of the notes transfers well and also complements the more tradi-

tional course in advanced calculus which is usually taken concurrently by our majors.

3.2 Changes in the structure of the notes

Before giving an overview of some of the differences in mathematical content, we first describe some changes we have

made in the basic structure of the notes.

Ken’s original notes assumed a familiarity with basic topics, such as relations and mathematical induction, that we

cannot expect from our students when they enter this course. Although Ken’s appendices contained some review of

this material, flipping back and forth from those sections to the main book interfered with the students’ appreciation

of what they were doing and how things fit together. In the adaptation, this basic material has been expanded and

incorporated into the fabric of the early chapters. Three review appendices remain, but we find an average student

doesn’t need to do more than scan them outside of class.

Because the topic of Ken’s course was enumerative combinatorics, some of his problem sequences cover material

that is not basic to our more general syllabus of discrete mathematics. In our adaptation, much of that advanced

material has been moved to optional sections which are not required in the mainstream problem sequences.

Ken’s first chapter was very long, and we have spread that material over three chapters in the adaptation. The new

presentation encourages students to review frequently and tries to facilitate that summarizing process by packaging the

material in more obvious units. In addition, since many of our students don’t have sufficient mathematical maturity to

ferret out the definitions and theorems from the exercises, we have added more formal definitions, more statements of

theorems, and an occasional example of a complete mathematical proof. Ken’s advisory board and evaluator advocated

the inclusion of more summarizing material, and we have designed separate summarizing handouts for each chapter.

They are available as TEXdocuments as well as in PDF format so that instructors can tailor the summaries to their

individual courses.

Since this course is required for math majors, we’ve found that some problems had to be re-worded to distinguish

between whether a complete proof is expected or whether a less-formal explanation would suffice. Developing and

improving this skill is an important goal for the course, and we cannot assume our students enter with much proof

experience.

3.3 Changes in content

In this section we discuss three specific areas in which changes were made in the notes for our classes: functions,

equivalence relations, and mathematical induction.

As the students progressed through Ken’s notes, we found serious deficiencies in their concept of function. A ba-

sic technique in enumerative combinatorics is to count the size of a finite set by establishing a bijection between it

and another set whose size has already been established.3 In order to successfully apply this technique, the problem

solver’s understanding of function must have evolved from plugging values into a given function through determining

whether or not a relation is a function. In fact, he or she should recognize how the notion of function is useful for

the problem and then construct the proper function; that is, the student must have at least arrived at the object stage

of conceptualization [1]. In the original project Ken and his advisory board assumed that students would enter with

sufficient knowledge to understand something as being characterized as a function without having a specific expres-

sion. However, from our listening to group discussions and our reading and commenting on their written work, it soon

became clear that many of our students were far from this stage. Later course instructors and Professor Orellana have

analyzed the adaptation from the point of view of addressing this problem while maintaining the interest of students

whose concept of function has evolved into the process stage.

3In the appendix to this article we give our modification of one of Ken’s problem sequences using the Bijection Principle.
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Another significant difference from the original notes is the adaptation’s emphasis on equivalence relations. Many

of Ken’s problem sequences on the Quotient Principle and distributions have been changed to questions on equivalence

relations. In addition to having wider application to equivalence classes of unequal size, using equivalence relations

is an important skill to be obtained from a beginning course in discrete mathematics and is expected in the later

required course in abstract algebra. The current edition has a full chapter on equivalence relations, absorbing much

of the material from the original appendix as well as expanding problem sequences using the Quotient Principle. Ken

supported this as a necessary and important change for a course in discrete mathematics.

Ken’s notes introduce students to the Principle of Mathematical Induction through problem sequences which involve

proof by contradiction. Specifically, problems ask students to prove a proposition indexed over all positive integers by

contradicting the existence of a smallest counterexample. Once students have done problems using this technique, the

commentary then introduces induction as the framework for a more natural direct proof. This was a successful new

perspective for some advanced students in our classes, but others protested, saying that “this induction” looked nothing

like the one they used in advanced calculus. These students were associating induction with formulaic exercises (such

as finding a closed form for the sum of the first n positive integers) rather than as a method for proving a sequence

of statements indexed by the positive integers. The problems in the notes were more varied than those they had

encountered elsewhere, and we found that our students need more experience with problems that ask them to identify

the underlying inductive process. Induction now occurs earlier in the adaptation, and more problems have been added,

including a new sequence which builds student understanding of inductive processes. Ken and I were both intrigued

by this from a pedagogical point of view as well as the more practical point of view of how it might be addressed.

4 The Adapted Method

The ongoing adaptation has been used in our discrete mathematics course since Fall 2004. The course is offered once

a year, and three different instructors have used the adapted notes. In the longterm it is hoped that an instructor will

teach the course for two consecutive years and then serve as a mentor for the next instructor (which could be in their

second year if two sections are offered). The classes now meet twice a week in 75-minute sessions in order to provide

sufficient immersion in the problems. For the first few years the classes met in 100-minute blocks, but we found it was

more difficult for everyone to remain on task for that amount of time.

With our classes meeting on Mondays and Wednesdays, the usual format has been to assign a range of problem

numbers on Monday, and this forms a minimal assignment to be completed by the beginning of the following Monday’s

class. Students spend class time working in four-person groups that have usually been formed by the instructor and

whose composition changes about every other week.

Ken required students to solve 90% of the problems by the end of the term. In our ten-week courses, our classes

regularly cover at most five of the seven chapters in the adaptation. It has been reasonable to expect the students to

work about twenty problems a week for the first few weeks. As the term proceeds, problems become progressively

harder, solutions often require making connections with earlier information, and completing about 12–15 problems is

a reasonable expectation. Occasionally the list of mandatory problems is modified at the end of Wednesday’s class,

but in general it seems wise to set weekly expectations which the students strive to meet. Students are encouraged to

work together outside class, but the final written draft of their problem solutions is expected to be done independently.

We have all found that quick and frequent feedback is essential, and our goal has been to collect written work

on Monday and to return the graded work two days later in Wednesday’s class. Ken’s method allows for unlimited

re-submission of problems, but in our classes both the number of re-submissions and the re-submittal window are

restricted and varies according to the instructor.4 All instructors have used our modification of Ken’s 0—5—9/10

“triage” grading-scale, adding a possible grade of 7 as a compensation for fewer resubmits. Some instructors have

assigned a separate grade which specifically assesses student writing.

Which problems are graded? There is a great deal of variability in this. Some instructors collect all assigned prob-

lems and grade a subset, while others give a short list of problems at the end of Wednesday’s class. When I’ve taught

4I allowed for a pre-specified number (about 8–10) of resubmits during the the ten-week quarter and they must be handed in within two weeks

of my grading. A problem could be submitted more than twice.
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the course, I’ve purposely changed my expectations as the term progressed. For the first five weeks of the term, stu-

dents turned in all assigned problems and I graded about five problems per week. Toward the end of the term, the

students handed only in the smaller subset of problems which would be graded since by this time they should have

learned what was expected for a complete mathematical solution. Although I encouraged the students to discuss their

graded solutions with other members of their group before working on resubmits, time pressure from other courses

made this an unrealistic expectation. The benefits of explaining work to peers and of analyzing others’ work are many,

enough that it might be worthwhile to encourage more of this type of collaboration. For instance, perhaps some peer

review can be part of the grading scheme.

What about motivating students to do more? Students who understand the material more quickly can be encouraged

to form groups which would do more problems, for instance ones in the optional sections. These sections contain

problem sequences on material that is somewhat ancillary to our course (for instance Ramsey numbers) but can provide

an intellectual challenge for these students. The second time I taught the course, three students formed a group which

regularly worked on these sections. Two of those students were more experienced, and although sometimes the group

work became close to a tutorial for the other student, all three students seemed satisfied with the arrangement. This

group formed fairly early in the term and the midterm served as a check that they were learning the basic material.

After the middle of the term we agreed that they would invest more time in harder problems with the understanding

that they would be able to replace the final with take-home problems of greater difficulty. (And the less experienced

student agreed to take the regular final.)

Ken and all of our instructors have agreed that in larger classes (especially those with fluid group membership) it is

important for most of the students to be at about the same place most of the time: at a minimum, they should finish the

chapters at about the same time. Students proceeded linearly through the chapters, and were regularly encouraged to

return to problems which at first stumped them.

Although it is always a small percentage of class time, the amount and frequency of whole-class discussion is the

feature with the most variability in the different classes. For instance, some instructors expect every student to present

at least one problem to the class every term.

There are possible advantages to a larger class. For example, I found there were always students who were eager

to report on their group’s work or to voice their group’s unresolved questions in an end-of-class wrap up. For harder

problems, several different approaches would sometimes result in spirited arguments that continued after class, and

the larger class size might have increased the chance of that happening. Because there were always five or six groups,

each group knew that class could not be a private group tutorial with the instructor and many learned to make good use

of the group time as well as any whole-class discussion time. In addition, most students seemed not at all fazed (and

obliged) when asked to switch groups, and this might have been more difficult if there were fewer people in the room.

5 Concluding Remarks

In this project Ken Bogart’s notes and method were adapted for larger class size, weaker mathematical background and

motivation, and some difference in course material. A continuing challenge is maintaining discovery while expanding

the interstitial discussion and encouragement, each of which seems to be necessary in a class with five or more groups.

These notes foster and develop important mathematical instincts in different ways from our other courses for math

majors. Among these are: checking small cases first; formulating and testing conjectures; the importance of testing

for counterexamples in combination with trying to construct a proof. By the end of each term, all students knew not

to expect problems which were simply quick applications of cookbook algorithms and many had voiced at least some

satisfaction with this feature of the course.

The current adaptation and supporting materials are available on the website [6]. More information for instructors

will be added to the site in coming years. Please contact me if you’d like more information.
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Appendix: An adapted problem sequence

The following is an example of our adaptation of a problem sequence which builds on the notion of function and was

designed from an actual class experience.

At the start of a two-hour meeting of the Fall 2003 class, most of the groups were beginning Ken’s problem sequence

on the enumeration of labeled trees (Problems 104 to 116). By the end of the first hour, many groups saw a pattern

emerging from counting the number for small vertex sets. Some students were ready to accept the conjecture without

proof, while others wanted to find a general argument. After a short break, most of the students agreed to forge ahead

and work on understanding Prüfer codes. A game evolved in which one group member would give a Prüfer code for

their personal private tree and the rest of the group would then find the tree. By the end of the second hour, all of

the groups had played the game and most students were convinced there would always exist a unique tree for every

Prüfer code. Many of them left class trying to establish the necessary bijection by describing the sequences which were

guaranteed to be Prüfer codes. Most of the students had progressed from barely knowing the definition of tree through

making conjectures in the middle of class to leaving the class with some idea of how a proof might be constructed.

The adapted sequence we give below uses this game.

Labeled Trees and Prufer Codes

Next you will explore the idea of labeled trees. Figure 1 gives all different labelings of a fixed tree with three vertices.

Notice that the convention for labeling the vertices of trees is that the tree which has edges between vertices 1 and 2

and between vertices 2 and 3 is different from the tree that has edges between vertices 1 and 3 and between vertices 2

and 3.

1 2
3

2 3
1

2 1
3

Figure 1. The three labeled trees on three vertices.

1. How many labeled trees are there on the vertex set f1; 2g? On the vertex set f1; 2; 3g? How many labeled trees

are there on four vertices? How many labeled trees are there with five vertices? You don’t have a lot of data to

formulate a guess, but try to guess a formula for the number of labeled trees with vertex set f1; 2; : : : ; ng. When

you get to four and especially five vertices, draw all the unlabeled trees you can think of, and then figure out in

how many different ways you can put labels on the vertices.

The next problems will develop a method for proving the formula you just guessed in the last problem. In order to

do this, an auxiliary sequence is defined.

Given a tree with n � 2 vertices which has been labeled in any way using the elements of Œn�, define the auxiliary

sequence b1; b2; : : : in the following inductive manner:

Step 1: If the tree has two vertices, the sequence consists of one term, the larger label, which means the sequence is

b1 D 2. Otherwise, let a1 be the lowest-numbered vertex of degree 1 in the tree. (How do you know there is

such a vertex?) Let b1 be the label of the unique vertex in the tree adjacent to a1 and write down b1. (Why is b1

unique?) For example, in the first graph in Figure 2, a1 is 1 and b1 is 2.

Step 2: Suppose a1 through ai�1 have already been identified, and let ai be the lowest-numbered vertex of degree 1

in the tree you get by deleting vertices a1 through ai�1. (How do you know the resulting graph is always a tree?)

Let bi be the unique vertex in this new tree adjacent to ai . For example, in the first graph in Figure 2, a2 D 2

and b2 D 3. Then a3 D 5 and b3 D 4.

2. We use the letter B to stand for the sequence of bis inductively obtained in this way. Use your earlier work to

answer the questions posed in the above two-step algorithm.
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Figure 2. Three different graphs.

3. For the tree (the first graph) in Figure 2, the sequence B is 2344378. At this point, work with your group to draw

some other labeled trees on eight vertices and construct the sequence B associated with each tree.

4. How long is the sequence B computed from a labeled tree with n vertices?

5. From your examples, decide if you can predict the last member of the sequence B . Explain.

6. Is it possible for a1 to be in B? Can you tell from B what a1 is?

For a labeled tree T , the associated sequence P.T / WD b1; b2; : : : ; bn�2 is called a Prüfer coding or Prüfer code

of T . For instance, the Prüfer code for the labeled tree T of Figure 2 is P.T / D 234437. Notice that we do not include

the last term of B in the Prüfer code because we know it is n.

Let S be the set of all labeled trees on nine vertices. For each tree T 2 S, define P.T / to be the Prüfer code for T .

7. Why is the relation f .T; P.T // W T 2 Sg a function with domain S? Find a co-domain for this function. (At

this point you’re not asked to find the smallest co-domain.)

8. Play the following game in your group: In turn, each of you should secretly write down a tree, determine its

Prüfer code, and then share the code with the whole group. The other members of the group then should find

all labeled trees that have your sequence as its Prüfer code. How many labeled trees are found? What does your

answer say about the function P ?

9. Now, as a group write down any sequence of seven integers from f1; 2; : : : ; 9g. Try to find a tree T 2 S for

which your sequence is P.T /. Do this for several different sequences. Use this information to find the smallest

co-domain for the functionP ?

10. Find a bijection between the set of labeled trees with n vertices and another set that you already now how to

count.

11. Find the number of labeled trees with n vertices. Is this the formula you conjectured earlier in Problem 1?

(The idea of writing the last sequence of problems as a game originated with the Fall 2003 Math 399 class at Oregon

State.)

In addition to providing a way to count labeled trees, there is a good bit of other interesting information encoded in

the Prüfer code for a tree. You can begin to see this by working the next two problems and the problems in the optional

section that follows them.

12. What can you say about the vertices of degree 1 from the Prüfer code for a tree labeled with the integers from 1

to n; that is, what vertex or vertices in the sequence b1; b2; : : : ; bn�1 can have degree 1?

13. What can you say about the Prüfer code for a tree in which exactly two vertices have degree 1? Does this

characterize such trees?
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The Use of Logic in Teaching Proof

Susanna S. Epp
DePaul University

Introduction

Even rather simple proofs and disproofs are built atop a normally unexpressed substructure of great logical and lin-

guistic complexity. For example, in [7] I described several of the many reasoning processes needed to establish the

truth or falsity of the following statements: (1) The square of any rational number is rational; (2) For all real numbers

a and b, if a > b then a2 > b2; and (3) For all real numbers x, if x is irrational then �x is irrational. The article

cites evidence that a significant number of students taking college mathematics courses do not bring with them an

intuitive feeling for the logic required to succeed in determining truth and falsity of such statements and argues that

some explicit instruction in logical reasoning is needed in courses that require students to engage in proof writing.

However, because proofs and disproofs of even elementary statements require a substantial base of understanding, a

“clarifying” analysis for a proof may be so complex that if students could understand it, they would not need it in the

first place. Figuring out how to present proof construction simply enough to be intelligible yet detailed enough to be

effective is one of an instructor’s greatest challenges.

The following sections contain ideas for helping students learn to construct simple proofs and disproofs. Most are

approaches I have used myself and for which student reaction has been positive. Others are ideas for which colleagues

have reported success.

For students who come to a course with reasonably good intuition for logical principles, merely seeing them stated

and working a few examples can be a pleasure — like the delight of the Molière character who learned one day that

he’d been speaking prose all his life. For many students, however, simple exposure to principles of logic is not sufficient

to counteract deeply ingrained incorrect patterns of thought, and follow-up instruction is needed to illustrate the uses

of the principles in mathematical contexts. Thus Section 1 contains not only suggestions for how to take advantage

of having provided students with a brief introduction to basic principles of logical reasoning before requiring them to

make serious attempts at mathematical proof, but also advice for how to help students develop a firmer and deeper grasp

of reasoning principles as proof and disproof of various mathematical topics are discussed. Section 2 offers additional

strategies to guide students through their initial proof efforts and lead them to see the desirability of expressing proofs

with care, and Section 3 discusses additional ways to help students come to learn the need for proof.

1 Building on Initial Coverage of Logical Principles

Using Puzzle Problems

To make the transition from elementary logic to proof, it can be helpful to assign puzzle problems, such as Raymond

Smullyan’s knights and knaves [20]. These puzzles posit an island where each inhabitant is either a knight, who always

tells the truth, or a knave, who always lies, but it is impossible to distinguish knights from knaves by their appearance.

Each puzzle describes a situation in which certain inhabitants make certain statements, and the goal is to figure out

who is lying and who is telling the truth. When solutions are discussed in class, quite a number of students make it

clear that they do not have a natural feeling for the kind of indirect reasoning needed to solve most of the puzzles.

313
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Nonetheless, almost all students seem to enjoy the puzzles, and working on them helps develop a basis of intuition for

proof by contradiction. Discussing the solutions serves to illustrate how inference rules are used in practice and helps

students develop a sense for the flow of deductive reasoning, which they will use later in mathematical proofs of all

types.

Using Natural Deduction Proofs

John Barwise and John Etchemendy developed computer software called Tarski’s World, named after the logician

Alfred Tarski, to represent situations in a world that consists of a grid containing a number of geometric shapes in a

variety of positions. The accompanying courseware [2, 3] shows students how, among other things, to produce natural

deduction proofs of statements about the shapes in the world. Work of Lee and Stenning [11] supports the view that

use of these materials improves students’ ability to reason deductively. Another teacher who uses instruction in natural

deduction to prepare students for reasoning in more general environments is Richard L. Morrow, a middle school

mathematics coordinator with advanced training in logic [16]. When Morrow first taught geometry to a group of gifted

eighth graders, his students finished the book a month before the end of the year. Thinking to fill in the extra time,

Morrow began the course the next year with a few weeks study of formal logic, focusing on student construction of

natural deduction proofs. While his students said they found the work difficult at first, they eventually all succeeded

and, to his amazement, they then learned the geometry so much faster that they still finished the book a month early.

Using Disproof by Counterexample

In any course that asks students to write proofs, one can start by giving students statements to identify as true or false,

asking them to justify a determination of true “as best as you can” and to support an answer of false by providing a

counterexample. One reason for beginning in this way is that most students find it easier to understand and construct

disproofs by counterexample than to understand and construct even simple direct proofs. A second reason is that the

more experience students have in seeing that a single counterexample disproves a universal statement, the more likely

they are to understand that a general argument is needed to show that no counterexample exists. Finally, offering

students mathematical statements whose truth or falsity they have to determine themselves helps make the point that

proof and counterexample are first and foremost problem-solving tools.

Direct Proof: Identifying the Starting Point and Conclusion to Be Shown

The most important initial point to communicate to beginning students about proving a universal statement is that

they will have to move from something that is supposed to be true to something that must be shown to follow. It then

becomes natural to

� identify what is supposed and what is to be shown, which determines the outer structure of the proof, and

� address the crucial question “How do I show that?” which determines the proof’s inner structure and depends

critically on the definitions of the terms in the statement.

The most common type of mathematical statement is universal and conditional, having the form

For all elements x in a certain set, if [hypothesis] then [conclusion].

A direct proof of such a statement has the following outline:

� Suppose that x is a particular but arbitrarily chosen (or “generic”) element of the set for which the hypothesis is

true.

� We must show that x also makes the conclusion true.

The amazing thing about this proof technique is that merely by reasoning about a single element x, one deduces

that the conclusion follows from the hypothesis for every element of the set — which is typically of infinite size. The

validity of the reasoning is determined by the fact that x is arbitrarily chosen, or “generic,” which means that it has
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all the characteristics and only those characteristics common to every other element of the set. Hence everything one

deduces about it is equally true of every other element of the set, and thus a descriptive name for this type of reasoning

is generalizing from the generic particular.

A dramatic way to emphasize the power of this proof method is to show how one can use it to structure proofs

involving terms one does not even understand. For instance, given the statement “For all toths T , if T has a rath,

then every wade of T is brillig,” the starting point and conclusion to be shown for a proof would be “Suppose T is

any toth that has a rath. We must show that every wade of T is brillig.” This transformation may seem obvious to

a mathematician, but it does not come naturally to many students. Yet as students venture further and further into

realms of mathematical abstraction, instinctive ability to use the transformation becomes increasingly essential to their

success.

Recognizing the ‘‘Suppose’’ and ‘‘To Show’’ in Proof by Contraposition and Proof by Contradiction

Once one has introduced proof by contraposition and proof by contradiction as well as direct proof, one can help stu-

dents understand the differences among them by pointing out that while for each method there is something supposed

and something to be shown, these “somethings” are dramatically different in each case. In a direct proof one supposes

one has a particular but arbitrarily chosen object that satisfies the hypothesis, and one shows that this object satisfies

the conclusion. In a proof by contraposition one supposes one has a particular but arbitrarily chosen object for which

the conclusion is false, and one shows that for this object the hypothesis is also false. In a proof by contradiction one

supposes that the entire statement to be proved is false, and one shows that this supposition leads to a contradiction.

Use of Definitions

Mathematically speaking, the most important part of a statement’s proof is how one gets from the hypothesis to the

conclusion. For most of the proofs undergraduate students are asked to construct, the majority of this task is achieved

through a logico-linguistic analysis of definitions. The reason is that the inner structure of a straightforward, or routine,

mathematical proof is largely determined by the meanings of the terms.

Note that, although they are frequently stated less formally, definitions are actually bidirectional. For instance, for

n to be an even integer means that “n is even if, and only if, n equals twice some integer.” Thus if we know that n is

even, we can deduce that n equals twice some integer (from the “only if” part of the definition), and if we know that

n equals twice some integer, we can deduce that n is even (from the “if” part of the definition).

To answer the question “How do I show that the conclusion follows from the hypothesis?” the prover needs an

operational understanding of the “if” direction of the definitions of the mathematical terms in the conclusion. For

example, to derive the conclusion that a certain quantity is rational, one needs to show that it can be expressed as a

ratio of integers with a nonzero denominator. To derive the conclusion that one set is a subset of another, one needs to

show that any element in the one set is an element in the other. To derive the conclusion that a function f is one-to-

one, one needs to show that given any elements x1 and x2 in the domain for which f .x1/ D f .x2/, one can conclude

that x1 D x2. Similarly, to work forward from the hypothesis toward the conclusion, the prover needs an operational

understanding of the “only if” direction of the mathematical terms in the hypothesis. Helping students translate the

formal wording of a definition into such operational terms is one of the most important tasks facing a teacher in a

course introducing students to proof.

One way to help students learn to use definitions is to try to induce them to see a definition as providing a test that

has to be passed to decide whether something is the case. As soon as a new definition is introduced, one can introduce

a range of examples, phrasing each as a question. For instance, immediately after defining rational, one can write “Is

0.873 rational?” and simultaneously ask the question out loud. To a student’s answer of “yes,” one can write “Yes,

because” and look expectantly at the student. The student may be surprised that additional words seem to be called

for but is generally able to supply the reason without difficulty (or other students may help out). One can move on to

slightly more complicated examples (Is �.5=3/ rational? Is 0 rational? Is 0:25252525 : : : rational?), each time acting

as if it is taken for granted that the student answering the question will give a reason. Soon students learn to give the

reference to the definition without prompting, and gradually they come to understand the value of using the definition

to answer such questions. Coming to see a definition as the ultimate test that determines whether or not a given object
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has a given property can help students accept certain facts, such as that 0 is an even number, which, surprisingly, they

often disbelieve.

It is also useful to discuss alternative but logically equivalent ways to phrase definitions because it is often the case

that the truth or falsity of a mathematical statement is more apparent if one uses one phrasing of a definition rather than

another. Moore [15] gives several examples of student failure resulting from a lack of awareness of alternative versions

of definitions. In an introductory course, an instructor needs to build in exploration of such alternative phrasings, re-

viewing the fact of their logical equivalence and showing how to operate with each version in the circumstances where

it is superior to the others. Selden and Selden [19] argue that students’ difficulty “packing and unpacking” the logic

of mathematical definitions and theorems seriously undermines their ability to judge the correctness of mathematical

arguments and to formulate arguments of their own. My experience supports this view. It is the main reason I give

students practice in translating back and forth from formal mathematical statements to their many different informal

versions. Because so many students find this difficult, I often continue to assign translation exercises throughout a

large portion of the course.

Another reason to discuss alternative wordings for definitions is to compensate for the fact that quite a few students

are still in the process of developing a more sophisticated concept of variable. For example, one way to state the

definition of even is “n is even if, and only if, there is an integer k such that n D 2k,” and in the usual development

of many proofs it is important to be able to use this formulation. However, students with a naı̈ve understanding of

variables and quantification often make mistakes when they use it. For instance, to prove that the sum of any two even

integers is even, they represent both as 2k, thereby only considering the case where the integers are the same. To help

them come to a more mature understanding of the definition, it is helpful (1) to restate it less formally without using

an additional variable such as k (as in the second paragraph of this section), and (2) to write it several times using a

variable but each time with a different symbol to represent it, pointing out that it is the existence of the integer k, not

the symbol used for it, that is important.

In [21] Tall and Vinner introduced the notion of “concept image,” which sheds considerable light on students’

understanding of mathematical definitions. A concept image for a definition is “the total cognitive structure that is

associated with the concept, which includes all the mental pictures and associated properties and processes.” An

overly narrow concept image leads to mistaken assumptions and may result in incorrect mathematical arguments. For

students to develop concept images adequate to help them effectively evaluate abstract mathematical statements, they

need experience with a broad range of examples for each newly defined term. They also need to become acquainted

with the diagrams and other visual representations that mathematicians use in reasoning about the term. These might

be arrow diagrams for relations and functions, the image of a nonspecific real number and its floor sitting on a number

line for the study of the floor function, or a kind of blurry generic fraction with an indeterminate numerator and

denominator for discussions about rational numbers.

2 Guiding Students’ Fledgling Efforts

No matter how much one tries to prepare students for the process of writing proofs on their own, a certain number

find it very difficult. It seems that some students cannot believe that an instructor is serious about demanding coherent

expression, while others simply have difficulty putting all the pieces together in a way that makes sense. To learn as

complex a skill as proof construction, most students need quite a bit of individual, back-and-forth interaction with an

instructor. To the extent that one cannot act as a private tutor to every student, one can try to devise effective substitutes.

For example, one can

� have students complete a few fill-in-the-blank proofs as homework to give them an out-of-class experience of

participating in the development of a complete proof without making them responsible for its entire construction;

� supply a variety of model solutions for some of the homework problems to show students that their individual

work is really supposed to resemble the kind of proofs that have been developed in class;

� suggest that students read their proofs out loud to test whether they are written in coherent sentences;

� discuss the kinds of errors often made in writing proofs.

Additional strategies are discussed in greater detail below.
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Student Critiques of Proofs

A number of textbooks for “bridge” and discrete mathematics courses contain exercises asking students to determine

whether a proposed proof for a given statement is valid or not. Campbell and Baker [4] developed activities that take

these exercises one step further. Each activity “consists of a given statement and several different proposed proofs of

that statement,” some of which are valid and some of which are not. Students are divided into groups, and each group is

given “one of the statement’s proposed proofs, with directions. . . to determine if the proof is an acceptable argument,”

and, if so, to answer the following questions:

1) “What type of logical argument did the author use (direct, contradiction, contrapositive)?

2) How well written is the proof?

3) Was it easy to follow? Why or why not?

4) Can you think of some specific details which would make it clearer? If so, what are they?”

If students determine that the proposed proof is not an acceptable argument, they are asked to “identify all the

major problems” they find with it. Each time a group finishes evaluating one proposed proof, it is given another, until

each group has critiqued the entire collection. In the next class period, the students and the instructor discuss the

various groups’ critiques, “both on the level of identifying major issues, as well as minor problems such as style and

clarity.” Campbell reports that “having a variety of proposed proofs, all of the same statement, seems not only to help

the students in recognizing certain logical errors, but also in developing a language of their own, recognizing that a

statement can be correctly proven in a variety of ways, and learning the importance of reviewing one’s work with a

careful and objective eye.” She also comments that students have benefited by becoming aware of the importance of

format and of making proofs reader friendly.

Whole-Class Proofs

One technique for increasing student involvement in the proof-development process is for a teacher to do the writing

on the board but have the students supply the individual steps. Richard L. Morrow [16] reported that when he uses this

approach, he allows each student to give only one step so that as many students participate as possible. He wrote that

“everyone gets to absorb the step, including its genesis or motivation, reason and role in the proof” and stated that the

process makes it so that he “can

1) demonstrate how to go to the final steps and work backwards, when getting stuck approaching the proof from

the beginning,

2) knowingly allow a proof to head off in the wrong direction and ask for suggestions on what to do when we get

stuck — something which is sure to happen to many students when working alone,

3) demonstrate the value of marking up a diagram before writing down the steps,

4) show the value of getting a holistic view of the situation before putting down the series of steps — the right

brain is especially useful in geometry proofs,

5) watch faces and judge how well the class or individuals are doing,

6) demonstrate that proofs do not need to be perfect or elegant to work,

7) let students know that everyone (or nearly so) is in the process of learning to do these things.”

Identifying the Crux of a Proof

Many of the proofs one asks students to develop depend on a single central idea. Starting the proof-development

process by trying to identify it accords with Leron’s [12] suggestion to work down from a “top-level view of the proof.”

For other proofs, however, one may only come to realize the essential features after plowing mechanically through its

details. Coming to see the crux of a proof in this way occurs, therefore, during the part of the problem-solving process

Polya refers to as “looking back” [17]. A practiced mathematician can easily reconstruct a lengthy proof just by
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recollecting its essence, but students often have difficulty when told the main idea because they are still struggling to

master the underlying logic of proof construction. Becoming aware that it is possible to reconstruct proofs from a few

central ideas can help motivate them to develop facility with the more routine aspects of mathematical argumentation.

Using Informal Explanations

Hodgson and Morandi [10] report success following an idea of Mason, Burton, and Stacey [14] to have students first

develop an informal explanation to convince a fellow student of the truth of a statement before trying to write a proof

formally. Initially, the student verbalizes the explanation, using a tape recorder to refine it until a fellow student finds

it convincing. Then the student writes up the explanation carefully. Only after completing these steps does the student

rewrite the explanation, filling in any necessary details and using standard mathematical language. In their article,

Hodgson and Morandi follow a student through the process as she develops a proof that for all integers n, the product

n.nC 1/.nC 2/ is divisible by 6.

Student Presentations

Having students present proofs from homework assignments for the rest of the class at the board is especially effective

if started in the very first class period after proofs have been assigned. It is important, however, to make sure to preserve

the self-esteem of the presenters. One can thank them for being good sports when they volunteer and point out that to

the extent that they make mistakes, discussion about them helps everyone in the class avoid similar errors in the future.

If a student’s proofs are good, the other students see that the demands made by their instructor can actually be met by

one of their own kind. If a student’s proofs contain mistakes or sections that are not well expressed, an instructor can

ask for suggestions for improvement from the rest of the class. A ploy is to ask students to imagine they are a research

team for a large company and that if they can collectively come up with a perfect answer they will get to share a

sizeable bonus. After the class has finished its critique and some changes have been recorded, the instructor can take a

turn, using the opportunity both to comment on significant errors that have gone undetected and also to show students

the kinds of things the instructor will be looking for when grading students’ work.

When I use this technique, I discuss small details as well as larger issues, but I try to put my criticisms in perspective,

explaining frankly that certain corrections are more important than others, but that I also care about what might seem

to be relatively minor points. For instance, if a student’s proof states that a certain number, say n, is even because it

equals 2k, I would ask what was missing. Most likely, based on the emphasis I had previously placed on definitions,

one of the other students would tell me to add “for some integer k.” I would agree, pointing out that, for example,

1 D 2 � .1=2/ and yet 1 is not even and adding that it is not enough for n to be 2 times something — that something

has to be an integer.

My primary reason for engaging in these kinds of critiques is to provide immediate feedback on students’ proof

writing, but an important secondary reason is to counteract student anxiety about how their proofs will be evaluated.

Since there is more than one right way to construct any given proof and since different instructors may well have

different standards of correctness, I feel obliged to try to give my students a sense of the range of proof styles I

consider acceptable and to indicate which parts of a proof I consider most important. So when I critique student

proofs, present my own, and write proofs at the board that have been developed collaboratively with members of the

class, I discuss alternative ways of expressing the steps that I would consider acceptable. I also talk about conventions

of mathematical writing, such as giving only part of the reason for a certain step, enough to indicate that the writer of

the proof has considered and resolved the issue but not so much as to overload the proof with unnecessary verbiage.

In addition, I point out that the amount of detail included in a proof varies considerably depending on the intended

audience. In my courses I generally suggest that students address their proofs to a fellow student who has missed the

last few classes.

At DePaul University some instructors have begun requiring students to present solutions to selected proof problems

individually during office hours. Some require students to present one proof or disproof from each of the main types

discussed in the course, while others offer students the possibility of raising their grade on a test by presenting a revised

version of one of the problems they missed. Students are alerted that the instructor may stop to ask for clarification

and base part of their grade on how effectively they respond, but because the presentations are private students do not
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need to worry about being embarrassed in front of their peers. In some cases the instructor’s questions simply allow the

student to demonstrate understanding of the reasons for certain steps; in other cases they raise more serious issues about

the correctness of the argument or the incorrect use of terminology. Because several of the student’s difficulties can be

cleared up in the same session, such one-on-one student-instructor interaction can result in significant improvement in

student understanding.

Rewriting Proofs

Requiring students to rewrite proofs until they are correct is a useful way to help students improve their proof-writing

skills. In a large class it may be impossible for an instructor to find time to provide suggestions for improvement for

the majority of assigned problems, but it may be possible to make sure that students rewrite at least one of each type

of proof that is assigned. Nancy L. Hagelgans, Ursinus College, gave the following concrete suggestions [8].

1) Have students submit double-spaced, word-processed drafts electronically, except for first drafts taken from

tests.

2) Write comments in pencil.

3) Comment on the appropriateness of the proof method or the lack of evident method.

4) If the method is appropriate, comment on the argument.

5) If the argument is valid, comment on the English composition.

6) Mention the good points: “A great first sentence!” “Clear organization!” “Good choice of method of proof!”

“Excellent proof so far!”

7) Have conferences outside class with a few of the weakest students after several drafts.

Some variations she suggests are to have the whole class discuss selected first drafts that are projected on a screen,

have student pairs discuss and write comments on each others’ first drafts in class, and have students write comments

on copies of selected first drafts. Another variation is to have students work on proofs in groups in class and go from

group to group reviewing their work and offering hints on how to correct it.

Addressing Process Issues

To help students cope with the often frustrating enterprise of mathematical discovery, one can encourage class discus-

sion about the psychological aspects of the process. For instance, if a few students have found a counterexample for a

mathematical statement that stymied a majority of the class, one can ask the successful students to share the thoughts

that went through their minds when the counterexample occurred to them. One can also point out that mathematical

discovery may involve emotional ups and downs, that even the best mathematicians find mistakes in their arguments

which force them to abandon one approach and seek another. For example, work of Schoenfeld [18] supports the

view that while successful problem solvers are persistent, they readily change to new approaches when previous ones

do not appear to be working, though they might eventually return to a previous approach if a new attempt seems

unsuccessful.1

To assist students in structuring their time when they are trying to determine truth or falsity of a mathematical

statement, one can suggest that they begin by imagining they actually have an object or objects satisfying the conditions

described in the hypothesis. They can then ask themselves whether the conclusion must necessarily follow. If, after

some effort, they do not see why this must be so, they can explore the possibility that the statement might be false by

trying to think of elements that satisfy the hypothesis but not the conclusion. If this effort also fails, they can posit a

situation where the hypothesis is true and the conclusion is false and try to derive a contradiction. If this method also

seems to lead nowhere, the very process of having tried it and the other approaches may have resulted in insights that

could lead to greater success when one of the previous approaches is tried again.

1The Nova program “The Proof,” which describes Andrew Wiles’ discovery of a proof for Fermat’s Last Theorem, provides a powerful example

for the effectiveness of this strategy.
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3 Motivating the Need for Proof

A common use of proof is to affirm the general truth of properties that one has seen to be true in some cases, thereby

coming to understand the essential reasons why the property always holds. While all introduction-to-proof courses try

to convey this point, in courses where exploration and experimentation play a major role, it is the primary way the

need for proof is introduced. For example, in the Mount Holyoke course Laboratory in Mathematical Experimentation

[6] students work in groups on laboratory-style projects, most of which use the computer as an experimental tool to

generate examples. Students are expected to come to see patterns and are then prompted to conjecture generaliza-

tions. Finally they are asked to support their conjectures with analytical arguments including, when possible, complete

proofs. Projects are chosen from, among others, number theory, dynamical systems, and graph theory. The Franklin

and Marshall College course Introduction to Higher Mathematics is structured in a similar way [13]. An initial “mod-

ule” guides students through a sequence of increasingly pointed questions and activities to discover and verify basic

properties of even and odd integers. Another module leads students to discover patterns related to the Fibonacci se-

quence by having them fill in values in a table for n, the nth Fibonacci number fn, and the sum of the first n Fibonacci

numbers S.n/. Later modules treat a variety of mathematical topics, such as polynomials and complex numbers, com-

binatorics and graph theory, difference equations and iteration, and number theory. The Foundations of Computing

course at Butler University, developed by Peter Henderson [9], incorporates a once-a-week laboratory for exploration

and experimentation alongside a more conventionally organized exposition of discrete mathematics that emphasizes

logic and proof. In the lab sessions, students grapple with theoretical problems, which are often phrased engagingly as

puzzles. These motivate the need for proof by requiring ingenuity and proof-like analysis (such as recursive thinking

and identification of invariant properties) to solve.

When students are skeptical about the need for proof, a particularly effective way to motivate it is to have them

evaluate statements about whose truth or falsity reasonable people might reasonably disagree. Fortunately, there are

more such statements than one might think because what is obvious to a mathematician is not always obvious to a

student. It is also possible to find relatively elementary statements upon which most people would need to reflect in

order to reach a definitive answer. Such statements are especially effective when used for student presentations in class.

For instance, consider the statement “For all integers a, b, and c, if a divides bc then a divides b or a divides c.” If

one assigns a homework problem asking students either to prove or provide a counterexample for this statement and

then uses it for class discussion, it is common for one part of a class to claim it is false and another to say it is true.

Once when two students from each group were chosen to go to the board to present their solutions, the result was one

false proof, one partial “proof,” one incorrect counterexample, and one correct counterexample. Such an outcome is a

powerful argument for the importance of careful reasoning, especially if one points out that the ability to come up with

correct answers to such mathematical questions provides the theoretical foundation to be able to engineer airplanes

that do not crash, develop encryption systems to keep transmission of credit card information secure, and so forth.

This approach was developed as a formal teaching method, called “scientific debate,” by a group of mathematics

educators in France. In a first step, “the teacher initiates and organizes the production of scientific [mathematical]

statements by the students. These are written on the blackboard without any immediate evaluation of their validity.”

In the second step, “the statements are put to the students for consideration and discussion. They come to a decision

about their validity by taking a vote, with each opinion supported in some way, e.g., by scientific argument, by proof,

by refutation, by counter-example, etc.” In the third step, “the statements which can be validated by a full demon-

stration become theorems, whilst those which are established as incorrect are preserved as ‘false-statements,’ with a

corresponding counter-example.” [1]

The approach is taken even further in courses that use the “Moore method” or a “modified Moore method.” In these

courses students are given a list of definitions and an ordered set of statements proposed as possible theorems. They

are given the job of proving the statements that are true and finding counterexamples for those that are false but are

not allowed to consult textbooks or obtain solutions from an outside source. Classes consist primarily of presentations

by students of their work, which is followed-up by questions and comments from members of the class. The method,

originated by R. L. Moore for graduate courses at the University of Texas, has been modified by others to adapt it

for use with a broader range of students and in less advanced courses. For instance, Chalice [5] includes elementary

exercises on definitions to help the average student understand how they are applied to simple examples, and he
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encourages students to visit during office hours for hints on problems that give them difficulty. He also gives three

exams during the semester, and when students are preparing for an exam he makes available to them careful proofs of

the theorems that will be covered.

Conclusion

A few years ago I had an experience with one particular class that made a special impression on me. The class was

unusually small, only twelve students, and was the second quarter of a sequence. The previous quarter had dealt

with logic, an introduction to direct and indirect proof, mathematical induction, and elementary combinatorics, all

interwoven with various computer science applications. The second quarter was to cover set theory, function properties,

recursion, some analysis of algorithms, relations on sets, and an introduction to graph theory, also with an admixture

of applications. The class met only once a week but in three-hour sessions.

The small size of the class and the length of the sessions gave me a chance to work with students more intimately

than usual. I began each period by having students discuss in groups of three or four the homework they had prepared

for that day and went from group to group talking with each at length. Overall the class atmosphere was excellent,

and several students showed the kind of eager, enthusiastic intelligence that is a teacher’s joy. What surprised me was

that as the course moved from one topic to the next, almost all the students who had attained a relatively sophisticated

level of achievement in dealing with a previous topic made it clear that they felt they had to struggle to succeed with

the next. Yet as we worked through their questions and difficulties, they ultimately performed excellently with the new

topic as well. Their understanding of general methodological principles clearly made it easier for them to learn the

new material but it did not make it trivial for them.

This experience brought home to me more effectively than any before that abstract mathematical thinking is not

something that either one is able to do or one is not able to do. Because of the experience I have become especially

conscious of the need to respect my students and never to act surprised by their questions. Even when a student asks

a question whose answer I have already discussed, I try to respond to it as if it were fresh. After all, nobody can

concentrate 100% of the time when new ideas are coming in fast and furiously. In all likelihood the student was not

mentally prepared to absorb the answer when I previously addressed the question. For the student to formulate the

question means that they have thought about the issue, want to know the answer, and are probably ready to understand

it. That is cause to celebrate. It may also be that clarifying the issue at this point in the course (if possible in a slightly

different way from that presented earlier) will give the other students in the class greater insight also.

My main advice to those teaching courses whose goal is to develop students’ mathematical reasoning powers is to

play an activist role but recognize that achieving success is a long-term process. I have sometimes been surprised when

students who in my view fell far short of achieving the levels of accomplishment I strive for tell me how valuable they

found the course in helping them do better work in their other courses or (I am always pleased to hear) in their jobs.

The analogy I like to draw is of a child learning to walk. It takes months of daily effort for most children to take

their first steps and several more months until they actually become steady on their feet. When a child is trying to move

from one stage to the next in learning to walk and has failed several times, we don’t say “Forget it.” We remain calm,

good humored, and encouraging. And when the child finally succeeds, we spare nothing in expressing our delight.
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