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INTRODUCTION 
Steps Toward a Lean and Lively Calculus 

Calculus is central to the mathematical sciences, is 
fundamental to the study of all sciences and engineering, 
and belongs in the core undergraduate mathematics cur-
riculum for all students. The rapid development of mod-
ern physical science which began several centuries ago 
coincided with the invention of the calculus and this sym-
biotic intermingling grew to include engineering and 
eventually the biological and social sciences. Mathemat-
ics continues to evolve and the collegiate curriculum has 
evolved with it. Despite these changes, calculus has been 
a central part of the college curriculum for more than a 
century. 

This central role of calculus was unchallenged until 
about five years ago, when a group of computer scientists 
and mathematicians argued that mathematics and its ap-
plications had changed so radically that a revolution was 
in order: down with calculus—up with finite mathemat-
ics! Marching orders were drawn up at a Sloan Founda-
tion sponsored Conference held at Williamstown College 
in June, 1983. 

In response, many colleges and universities began ex-
perimenting with the teaching of finite mathematics in 
place of, or in addition to, or together with calculus. Al-
though courses in finite mathematics had been taught for 
over two decades, these courses had been viewed neither 
as foundational nor as central, but rather as additional 
study in one branch of mathematics. The claim now was 
that finite mathematics should replace calculus as the 
core because of the growing importance of computers and 
the new questions and applications of mathematics which 
they made possible. 

My personal response to this was to think long and 
hard about the calculus. I eventually decided that despite 
the changes that had taken place in mathematics, the 
Williamstown conferees were wrong: calculus is as im-
portant as ever! 

Calculus has stood the test of time and continues to be 
the foundation and wellspring of most modern mathe-
matics. Moreover, the application of continuous mathe-
matics continues unabated. Indeed, its applicability has 
been enhanced and strengthened by the advent of high-
speed, large-capacity computers. In the article, "In 
Praise of Calculus", reprinted in this volume, Peter Lax 
summarizes a few recent striking developments in the 
mathematical understanding of dynamical systems in 
physics, of scattering and diffraction in wave phenom-
ena, and of the generation and propagation of shock 
waves in fluid dynamics. These are just a few recent de-
velopments in calculus-based branches of mathematics 
that have been aided by high-speed computing. 

Almost all of science is concerned with the study of sys-
tems that change, and the study of change is the very 
heart of the differential calculus. The description of such 

systems usually takes the form of an ordinary or a partial 
differential equation that the system satisfies. The nu-
merical solution of such equations is one of the principal 
tasks of large-scale computing. Even discrete analysis of 
such equations using finite differences is next to mean-
ingless without an understanding of the calculus. Thus, 
all science and engineering students need calculus in 
their studies. Moreover, it is in calculus courses that all 
students begin to learn the important role played by 
mathematics in explaining and understanding our world. 
Based on these facts, there is an overwhelming case for 
calculus remaining as the core of the undergraduate 
mathematics curriculum. 

But. along with all of this, I realized just how much the 
introductory calculus course had changed, how much it 
had eroded in the nearly three decades since I had studied 
it. Although 1 could advance many reasons for this, I de-
cided that I had little interest in focusing on the causes or 
in continuing to participate in the "calculus versus finite 
mathematics" debate. Rather, I felt compelled to try to 
improve the way calculus is taught at American colleges 
and universities. Although it was presumptuous to be-
lieve that I had any chance at success, I felt that I must at 
least try. There was simply too much at risk. 

The United States is currently experiencing a shortage 
of young people studying mathematics, science and engi-
neering, and this shortage is expected to worsen. Calcu-
lus is the gateway and is fundamental to all such study. 
Hence every student who does not complete calculus is 
lost to further study in science, mathematics or engineer-
ing. Moreover, many students who start calculus do not 
complete it successfully. The country cannot afford this 
now, if it ever could. Further, many of those who do fin-
ish the course, have taken a watered down, cookbook 
course in which all they learn are recipes, without even 
being taught what it is that they are cooking. Under-
standably, science and engineering faculties find it diffi-
cult to build on such a foundation, and they feel that they 
must teach their students elementary calculus as well as 
science or engineering. Finally, in past generations many 
students were sufficiently challenged and turned-on in 
their calculus course that they decided to become mathe-
maticians. I don't believe that happens much today. To 
overcome these problems and to recapture that earlier ex-
citement, I decided to see what could be done to improve 
calculus instruction. 

To determine whether others shared these perceptions, 
Steve Maurer and I organized a panel discussion at the 
Joint AMS/MAA Anaheim Meeting in January, 1985, 
entitled "Calculus Instruction, Crucial but Ailing." Sev-
eral hundred people listened to and then reinforced the 
panel's airing of problems connected with introductory 
calculus. Those assembled gave vent to their frustrations 
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and lamented their inability to change things. 
But was change really impossible? To answer this ques-

tion I asked the Sloan Foundation to fund a small focused 
conference/workshop. My formal proposal to the Sloan 
Foundation follows, together with the position papers 
prepared for the Conference which was held at Tulane 
University in January, 1986. The position papers framed 
the beginning discussion at the Conference, and the con-
clusions reached are contained in the summary workshop 
reports. 

The participants to the Conference were diverse: com-
ing from community colleges as well as research universi-
ties, from both public and private institutions, from large 
and small schools, and from all parts of the country. De-
spite this diversity all reached one conclusion: the time 
was right for change. In part, dissatisfaction with teach-
ing calculus and with the results of such teaching has 
grown to the point that there was unanimity at this con-
ference that something had to be done. Further evidence 
of this ripeness for change is provided by the over two 
hundred requests that have been received for more infor-
mation following the appearance of news articles on the 
Tulane Conference. Moreover, the group began to under-
stand that calculus instruction is going to change! Tech-
nology is not going to let calculus instruction stay the 
same! 

Anyone who has seen hand-held calculators which out-
put the graph of an equation visually realizes that we can 
and, indeed, we will have to change what we ask students 
to learn and what we test them on. And this is just a start 
of developments that include the growing availability of 
programs for symbolic and algebraic methods as well as 
for numerical methods. As these become common on 
smaller machines and become easier to use they will have 
further and more revolutionary implications for what we 
should teach. These developments in technology are go-
ing to affect calculus instruction much as inexpensive cal-
culators are affecting grade school instruction in 
arithmetic. Calculus instruction is going to change; the 
only question is whether the change will occur thought-
fully or haphazardly. 

Having agreed that change is desirable, possible, and 
even inevitable, can we agree on the kind of change we 
should strive for? Surprisingly, the Conference partici-
pants did agree—participants that included an engineer-
ing dean, a physicist, and a biological statistician as well 
as a diverse group of faculty from the mathematical sci-
ences. The availability of hand-held calculators such as 
those mentioned above and personal computers with 
both numerical and symbolic capabilities removes the ne-
cessity for covering many of the techniques and for much 
of the drill which now form such a large part of the calcu-
lus. The Conference agreed that the syllabus should be 
leaner, contain/ewer topics, but that it should have more 
conceptual depth, numerically and geometrically. More-
over, the Conference affirmed that calculus instruction 

should make use of the latest technology but that the 
goals of the calculus must extend far beyond facility with 
either calculators or computers. 

A sample syllabus embodying these goals was drawn 
up for the first two semesters of calculus, with alterna-
tives for the second semester. These are to be found in the 
curriculum report in this volume. Most mathematicians 
will note that some of their favorite topics have been 
omitted or have been given only brief coverage. Although 
the price may seem high, this reduction in the number of 
topics is needed to buy the time to teach a conceptual un-
derstanding of what calculus is and why it is important. 
Time must also be set aside in order to experiment with 
giving the students more demanding problems. For not 
only must the content change but the testing must 
change, and calculus teaching must become more inter-
active. The students must also learn that functions are 
not just given by formulas but are generated by the com-
puter or else arise from data. The centrality of the calcu-
lus in the study of systems that change must again be 
made clear as must the role of mathematics in modeling 
and understanding the real world. Teachers must have 
the time to excite their students about mathematics, to 
show them its utility and beauty, and to demonstrate 
what attracts people to its study. 

It is well and good that agreement was achieved on the 
need for, and directions of, reform at the Tulane Confer-
ence. But, supposing that the rest of the community were 
to agree, how could we get from here to there? How do we 
transform current calculus instruction to instruction ful-
filling the goals just described? How do we get tired fac-
ulty excited enough to devote the time and energy neces-
sary for change? How do we get overstressed, career 
conscious students to be willing to work harder and ac-
complish more? How do we get chairs, deans, and pro-
vosts to make the improvement of calculus a priority, 
when their attention is often focused on cutting costs in 
calculus instruction or on more glamorous activities that 
more commonly attract their own funding? How do we 
get anyone to focus on an activity as well established as 
that of teaching calculus? In short, how can we break out 
of the present, familiar, though unsatisfactory situa-
tion—a conspiracy concerning calculus instruction, to 
which faculty, students, and administrators are parties? 

The size of the enterprise is immense, and the inertia is 
great! As many examples attest, attempts at change, no 
matter how successful at first, usually revert to the 
present way of teaching calculus. For all of these reasons, 
it will take a highly coordinated, well-thought-out, na-
tional effort to effect any lasting change. But I don't be-
lieve that it is hopeless! 

How might we begin? First, we should understand that 
we are proposing major changes in calculus instruction. 
Therefore, it will be necessary to create a calculus text-
book written along the lines discussed above. Current 
texts cover too many topics, and most coverage ranges 
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from inadequate to superficial. Moreover, even when the 
text is adequate, the problems are not and the emphasis 
is wrong. Many people argue that the main problem with 
calculus instruction is the current crop of textbooks. But 
as is argued in the article by Renz, the publishers are pro-
ducing what will be used in American colleges and uni-
versities. When a nonstandard text is published, no one 
will use it because it is different. Therefore, before we 
write a new book and produce other curricular materials, 
we must create a market, both national and diverse, in 
which to test, to perfect, and eventually, to showcase the 
book. 

Since there is no incentive for a publisher to do this, we 
must look elsewhere. Although leadership to plan and 
carry out such effort might come from one of the national 
organizations in the mathematical sciences, I don't be-
lieve that is likely. To be successful the calculus initiative 
will have to create and build a consensus for a new calcu-
lus course, both with regard to contents and methods. 
While national organizations such as the MAA, the 
AMS. or the NCTM will be extremely important and even 
necessary to ratify and promote the new course in calcu-
lus, it would be difficult for them to create it. Although 
many points of view will need to be integrated to make the 
effort successful, strong executive leadership will be nec-
essary to make coherent and consistent choices. I don't 
believe that this will be done by a committee or by any 
group that must maintain consensus throughout the pro-
cess. Further, this effort will require substantial re-
sources which I doubt that any national organization 
would be willing or able to commit. Consequently, I be-
lieve that we will have to look elsewhere for leadership. 

I envision that a reform initiative in calculus would 
have to be undertaken by a very small group with an exec-
utive director that is guided by a carefully chosen advi-

sory committee. The group would have to have strong 
links to all parts of the mathematical sciences commu-
nity. First, funding will be extremely important. Faculty 
and administrators will be asked to do something differ-
ent, something that will take more time and effort and 
something that will be more expensive. Moreover, not 
everyone will agree at the outset on the direction taken 
and the choices made. The effort cannot involve volun-
teers because the going will be rough. Second, the source 
of the support will be important to give the project both 
stature and presence in the academic community. There-
fore, it should be sought from both private and govern-
mental foundations such as the Sloan Foundation and 
the National Science Foundation. 

How might the project begin? To create the market for 
the textbook one could set up a two-year pilot program at 
a diverse group of colleges, both two-year and four-year, 
and universities, numbering about ten the first year and 
twice that many the second. Such a program should be 
closely coordinated but flexible enough to respond to lo-
cal conditions. Experiences should be shared with the 
textbook and the other curricular materials being revised 

several times on the basis of actual teaching. 
It should not be difficult to get experienced textbook 

writers interested in participating in the project. Today 
an author who wants to write for the calculus market is 
sharply constrained to follow the existing pattern. Partic-
ipating in this project would enable a strong creative au-
thor to forge a new pattern, to help develop, to write for, 
and to test, this new course. 

Although the ancillary curricular materials would have 
to be designed to meet the needs of the students at the 
different institutions that will be involved, it would seem 
sufficient and highly desirable that a single basic new 
textbook be written for the entire pilot program. Many of 
the benefits from participating in a coordinated national 
effort would be lost, and effort would be spread too thin if 
several different programs were being managed simulta-
neously. Finally, widespread adoption of the new calcu-
lus course would be much less certain if there were several 
new courses. 

What kind of institutional support would be needed for 
the pilot program? First, at the schools involved there 
must be strong departmental commitment carried for-
ward by a single identifiable person. This person would 
be both teacher and administrator for the local effort. At 
his institution this person must receive some released 
time for which the department would be compensated by 
external grants. Moreover, the local leader must receive a 
summer stipend and travel funds to participate in the 
planning and textbook revision workshops. The commit-
ment on the part of the institution, the department, and 
the local leader would be substantial, but the fact that 
several institutions have already indicated a strong inter-
est in participating based only on the news articles sug-
gests that participants would not be difficult to find. 

Finally, the last step in the initiative would be the facil-
itation of wide adoption of the new course through na-
tional and regional workshops. Assistance would be pro-
vided to the new group of adopting institutions during 
this fourth year and possibly beyond. By this point one 
would expect that publishers would probably be produc-
ing "nonstandard textbooks" of their own, some based 
on this effort and some based on other ideas on how cal-
culus should change. The existence of a new, viable cal-
culus course would make other experiments possible. 
Eventually one or more new calculus courses would sup-
plant the present model. 

As I argued above the existing calculus course will 
change; but whether that change is merely haphazard, or 
is coordinated and planned, will depend on whether or 
not someone takes up this challenge. It is a big challenge 
but much depends on it. 

Ronald G. Douglas 
State University of New York 
Stony Brook, New York 

November 1986 
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1 Introduction 

This workshop was charged with developing syllabi for 
the first two semesters of calculus. Although very few of 
the conference position papers made specific recommen-
dations for syllabi, the workshop did have CUPM recom-
mendations from 1965, 1972, and 1981, the Advanced 
Placement Calculus course descriptions, and syllabi from 
the home institutions of many of the conference partici-
pants. This, together with the discussions of the position 
papers during the first two days of the conference, pro-
vided the basis for this workshop's deliberations. 

Syllabi were developed for the following: 

1) Calculus I, a course in the core concepts of the cal-
culus for a general audience 

2) Calculus II, a standard second semester, single 
variable course 

3) Calculus IIM and Calculus IIC, alternative second 
semester courses involving either multivariable cal-
culus (IIM) or use by students of computer symbolic 
manipulation programs (IIC). 

The workshop spent most of its time considering Cal-
culus I. A 35-hour, annotated course description for Cal-
culus I is given later in great detail. Noteworthy features 
include emphasis on functions that are represented 
graphically (such as a curve on an oscilloscope or the 
Dow-Jones average) or numerically (from a table of data 
or a "black box" calculator), extensive use of hand calcu-
lators with "solve" and "integrate" keys, reduction in 
precalculus material and de-emphasis on limits and con-
tinuity, and a reorganization that allows treatment of all 
the elementary functions (including trigonometric, expo-
nential, and logarithmic) from the first week on. 

The Calculus II syllabus, although not as refined as 
that for Calculus I, still gives estimates for the minimum 

number of class hours to be spent on each topic. This 
course description is fairly conservative but does echo the 
spirit of the 1981 CUPM recommendations for second se-
mester calculus. It should be emphasized that both Cal-
culus I and Calculus II are "slim" courses with built-in 
slack time. The Calculus IIM and IIC courses were devel-
oped after the conference by Tom Tucker and Paul Zorn. 
respectively. Calculus IIM may be an attractive alterna-
tive to schools with a required discrete math course in the 
first two years. Calculus IIC may be the course of the fu-
ture; the syllabus here seems to be the first such proposed 
nationally. 

2 Boundary Conditions 

Any syllabus for first year calculus must take into ac-
count a variety of considerations. What is the audience 
and how does it change from the first semester to the sec-
ond? What do other disciplines expect from calculus as a 
service course? How many class-hours constitute a "se-
mester"? What textbooks are available? What prepara-
tion can be expected of students? Are there articulation 
problems with high schools? 

A first semester calculus class is not all engineering 
students, it is not all physical science majors, it is not all 
computer science majors, it is not all social science ma-
jors, and it is definitely not all math majors. The Calculus 
I syllabus is designed for a general audience, "just plain 
folks". If, for example, the computer science concentra-
tion requires only one semester of calculus, then it is im-
portant that that one semester cover all the "core" mate-
rial from calculus. Calculus I can be taken as a terminal 
course—there is no postponement of integration or trigo-
nometry or exponential functions to the second semester. 
It is in the second semester, where enrollments are often 
half that of first semester calculus, that some branching 
may take place. The proposed Calculus II syllabus proba-
bly best serves the engineering and physical science popu-
lation, with a third semester to follow later in vector cal-
culus. The Calculus IIM syllabus, however, may better 
serve the biological sciences, social sciences (economics 
in particular), and even computer science. If math ma-
jors are required to take a discrete math course and a lin-
ear algebra course in the first two years, then Calculus 
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IIM may be the only way to avoid five required courses in 
the first two years. 

As for the number of class-hours per semester, this var-
ies so much from school to school that the workshop de-
cided to design syllabi that could be covered in a mini-
mum of 35 class-hours. Schools with 40, 50, or even 60 
class-hours per semester should find some slack time. 
Suggestions are made for uses of this slack time in each 
syllabus. 

Questions about textbooks, student preparation, and 
articulation may be more matters for the Implementation 
Workshop, but a few comments are in order. Both Calcu-
lus I and II could conceivably be taught from existent 
textbooks. Van Valkenburg shows how this can be done 
with Ash and Ash, The Calculus Tutorial. This does, 
however, entail much jumping back and forth, closing 
one's eyes to some passages, and putting in additional 
material elsewhere. In the end, of course, it would be 
preferable to have a textbook written expressly for the 
given syllabus. One possible mechanism for the creation 
of such a book is a committee (NSF supported?) in the 
Chem Study style. As for student preparation. Calculus I 
assumes a knowledge of elementary functions, which 
means four years of high school mathematics. As Don 
Small's paper on articulation attests, however, many stu-
dents in Calculus 1 have seen some calculus before in high 
school. The syllabi designed by this workshop do not 
make any special provisions for these students. Institu-
tions where this is a problem may wish to consider some 
sort of accelerated program that covers three semesters of 
calculus in two semesters. Such a unified, two semester 
course with multivariable functions appearing through-
out is taught at Colby College. Finally, again with respect 
to articulation, the impact of these syllabi should be felt 
immediately in calculus courses taught in high school. In 
particular, the findings of this conference were discussed 
in detail at a May meeting of College Board's Advanced 
Placement Calculus Committee (the chair of this work-
shop also chairs the AP Committee). 

3 Computers and Calculators 

The role of computers in calculus was discussed in 
some detail by the workshop. There seems to be little 
doubt that computer demonstrations in the classroom are 
desirable. The more important question is to what extent 
should students themselves use computers. There would 
appear to be three levels of usage: 

1) numerical computation, 
2) graphics, 
3) symbolic manipulation. 

The first level can be achieved on a hand-held calculator, 
the second on almost any micro or time-shared main-
frame. At the present, the third level requires a well-
equipped micro or mainframe. The obvious limitation is 
the accessibility of the appropriate level of hardware. It is 

not clear that most institutions can now support large 
numbers of students, say 25% of the freshman class or 
more, doing calculus homework on micros or mainfra-
mes. We take seriously the horror stories of waiting lines 
at 3:00 AM and sign-up sheets for thirty minutes on a 
terminal. Symbolic manipulation programs (snip's, for 
short) can add much to a calculus course, but it does not 
seem realistic to require their use at this time in main-
stream calculus classes, especially in the first semester. 

On the other hand, calculators are ubiquitous and can 
help alleviate the obsession with closed-form solutions 
found in most calculus courses. All of the proposed syl-
labi assume each student has a programmable calculator 
with a "solve" key (finds roots of / tr ) = 0) and an "inte-
grate" key (computes definite integrals numerically). 
There are models by Texas Instruments, Casio, and Ra-
dio Shack that have "integrate" keys and that sell for un-
der $50. We are in contact with Texas Instruments about 
developing a calculator with a "solve" key also. It ap-
pears that one can be marketed at a price less than that of 
a calculus textbook. From our experience, it takes about 
half an hour for a student to learn how to program, say, 
the Texas Instruments 55-111. A typical function takes a 
couple minutes to enter into a calculator and to check 
that it is entered correctly; the "integrate" key takes any-
where from 15 seconds to 2 minutes depending on the 
number of subdivisions requested. The greatest difficulty 
in using programmable calculators is verifying that a 
given function has been entered correctly. Students will 
be forced to develop the number sense to recognize bad 
"answers" when they see them. The question of round-off 
error must also be addressed. Finally, unless exam ques-
tions occasionally require the use of a calculator, all of 
this is for naught. 

The benefits are obvious. If all a student learns is how 
to use a calculator, how to be wary of numerical answers, 
how to check answers for reasonableness, it would be 
worth it. Nevertheless, it must be emphasized that this 
recommendation to use calculators should be viewed only 
as a stopgap. We can easily envision a micro-based, sym-
bolic manipulation calculus course like syllabus II-C as 
the mainstream course in the future. The time is just not 
now. Instead, we make the conservative recommendation 
to use at least the fifteen-year-old technology of calcula-
tors that is so readily available to us. 

4 Goals 

Before designing syllabi, the workshop discussed the 
possible goals of any first year calculus course. Some 
overlap with the style workshop is inevitable here, even 
though this workshop tried to limit itself to questions of 
content rather than style, wherever that distinction was 
well-defined. Some of these goals are things students 
should be able to do (Maurer's "competencies" or Stein's 
"verbs"), some are things students should see and know 
(Stein's "nouns"). Among the competencies should be 
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the ability to give a coherent mathematical argument; 
students must be able not only to give answers but also to 
justify them. Calculus should teach students how to apply 
mathematics in different contexts, to abstract and gener-
alize, to analyze quantitatively and qualitatively. Stu-
dents should learn to read mathematics on their own. 
And, of course, calculus must also teach mechanical 
skills, both by hand and by machine. As for things to 
know, students must understand the fundamental con-
cepts of calculus: change and stasis, behavior at an in-
stant and behavior in the average, approximation and er-
ror. Students must also know the vocabulary of calculus 
used to describe these concepts, and they should feel 
comfortable with that vocabulary when it is used in other 
disciplines. 

In the end, students must be made aware that calculus 
is not taught for its own sake. The invention of the calcu-
lus in the 17th century revolutionized the way we see the 
world. The laws of both the natural and man-made uni-
verses come to us in the form of differential equations, 
equations that we are still trying to understand today, 
equations that can describe chaos as well as order. This 
past and present relevance of the calculus must be em-
phasized. Unfortunately, it is easy to lose sight of these 
lofty ideals in the daily humdrum of differentiation and 
integration exercises; students have other courses to take 
and would rather learn "how" for tests and worry about 
"why" later, if ever. That is why the Calculus I syllabus 
has "honesty" days when important concepts are first in-
troduced. These classes should be devoted to showing 
why we are really interested in, say, the derivative, where 
it really arises. This is perhaps as much a matter of style 
as of content, but the workshop feels this is so important 
that it must be built into the syllabus. 

5 Annotated Syllabus for Calculus I 

The Derivative 

Hours 

1 Honesty days: The point here is to present a 
problem that asks for an instantaneous rate of 
change or local magnification constant (e.g. 
marginal cost, velocity). Interpret graphically as 
the slope of the tangent line and conclude that 
the desired quantity is 

/ ( x + Δχ) - / (χ) 
lim . 

2-4 A dictionary of Sanctions: Introduce the cast of 
characters: 

a) x r (r any rational number), bx and loghx 
(b > 1), sin(x), cos(x), and tan(x), 

b) graphically presented functions, 

c) numerically presented functions (from a ta-
ble, a black box, a calculator), 

d) new functions from old (addition, multiplica-
tion, division, composition). 

What is needed for A:', bx, log,,x is the graph of 
each (consider different cases for r). Treat log,,* 
as inverse of bx:y = AA < = > χ = \oghy. Do not 
get bogged down in properties of log/,. Although 
we do assume audience has seen precalculus ma-
terial, we probably need to give a quick review of 
relationship between sin. cos and (x, y)—coordi-
nates of point on unit circle in order to empha-
size periodicity. Also, remind students of radi-
ans. 

For other representations, we should be hon-
est to say that many functions (from waveforms 
on an oscilloscope to the Dow-Jones Average) 
come to us not algebraically but graphically or 
numerically. "Black box" keys on student calcu-
lators are a source of numerically presented 
functions that might be worth studying in exer-
cises (e.g. invsinh(x)). 

New-functions-from-old should include 
graphical interpretation of + , scalar multiplica-
tion, translation of origin, squaring. One kind of 
new-from-old construction we do not mention is 
splicing: we wish to emphasize the calculus prob-
lems inside the interval rather than the non-
calculus problems at the end-points where we 
splice. Thus the absolute value function does not 
appear here. 

This is the appropriate time to introduce stu-
dents to their programmable calculators. There 
should be exercises requiring students to enter a 
given function (say / ( x ) = ln(l + 2 sin x)) in 
their calculators, to check that the programmed 
function gives correct values (try χ = 0, χ = 
π/2) , and to explore the function (is χ = 3π /2 in 
the domain, what is the range?). 

5 Limits and continuity: We recommend a precise 
english definition of "Iim/(x) = L" rather than 
the mathematically professional e — δ defini-
tion. For example, "/(x) can be made arbitrarily 
close to L by making χ sufficiently close, but not 
equal, to« ." The less precise "small changes inx 
produce small changes in / ( x ) " is also useful. 
Numerically, a continuous function / is one 
whose value at any χ can be computed to any 
given number of digits by putting into /' any 
number near enough x. Since χ is an arbitrary 
real number we could never actually enter χ into 
the/-machine anyway. Graphically, a continu-
ous function is one whose graph can be drawn 
"without lifting pencil from paper". Properties 
of limits with respect to + , · , / should be stated 
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and briefly motivated but not proved. 
6 Definition of f'(x). notation, linearity, polyno-

mials: Exercises computing/' (x) "the long way" 
from the definition of f'(x) should be fe\v and 
easy (e.g., x\ x2 + 5x, NOT 1 / ( V 7 ~ - 3x). In 
same hour, derive the power rule in order to be 
honest with class; the suspense might kill them, 
especially if they have seen some calculus before. 
Also do addition and scalar multiplication so 
general polynomial can be differentiated. 

7 Graphical differentiation: Show h o w / ' ( x ) can 
be graphed given only graph for / (x) . This will 
automatically lead to relationship between quali-
tative behavior of / (x) and sign of f'(x). 

8 sin(x), cos(x), bx and the number e: Graphical 
differentiation should motivate (d/dx) sin χ = 
cos x. Actual proof can be downplayed, espe-
cially the proof that lim/,^0 sin h/h = 1. For 

f(x) = b\ quickly derive that/'(jt) = kbx where 
k is the slope at χ = 0. Then define e to be the 
number such that slope at χ = 0 is 1 (slope at Λ: 
= 0 certainly looks like a continuous function of 
the parameter b—"small changes in b produce 
small changes in slope at χ = 0"). 

9 New-from-old differentiation: Derivative of 
sums, products, reciprocals, and quotients. 
Since the negative power rule follows from the 
quotient rule, we might as well admit that the 
power rule holds for all rational exponents so 
that we can assign some interesting exercises. 
Actual proof must wait until hour 10 or 11. 

10 The chain rule, inverse functions, \nx, \fx: Give 
chain rule in both dy/dx and f'(x) notations. 
Use chain rule to show that if y = g~\x), then 
dy/dx = l / g ' ( v ) and apply to log χ and Vx. 

11 Implicit differentiation: Treat as a formal, ma-
nipulative process motivated by chain rule nota-
tion: d/dx(yi) — 3y2 dy/dx. Avoid theoretical 
considerations of implicitly defined functions 
(implicit function theorem and partial deriva-
tives). 

Uses of the Derivative 

12-15 Qualitative analysis of functions (curve sketch-
ing): This should include the following: 

a) sign of / ' , increasing/decreasing, critical 
points; 

b) sign of/", concavity, points of inflection; 
c) max/min on a closed interval, candidates; 
d) graphical relationship o f / ' a n d / (given the 

graph of / ' , find the graph o f / ) . 

Use all functions in dictionary, not just polyno-
mials. Include f(x) with messy / ' ( x ) so "solve" 
key on calculators can be used. Distinguish rela-

tive (local) max/min from absolute (global) 
max/min. Note that latter problem involves the 
non-calculus end-points as candidates and also 
becomes easy with calculators. Do not empha-
size max/min at points where derivative does not 
exist. 

16-17 Root-finding, Newton s Method, Rolle s Theo-
rem: Mention the non-calculus bisection or se-
cant methods as well as the calculus Newton's 
method. Explain what the "solve" key is doing. 
Question of finding all roots, not just one, 
should arise naturally. That is a good time to 
bring in Rolle's theorem (two roots of f(x) must 
have a root o f / ' ( x ) in between), and hence the 
Mean Value Theorem. 

18-19 Linear approximation and error, big ' 'Oh'' nota-
tion: Derive the equation: 

/ U ) - / ( < / ) = / ' ( « ) ( * - «) + / " ( c ) ( . v - a)2/2, 

and interpret with big Oh notation: 

Δν = / ' ( « ) Δ χ + 0((Δχ) 2 ) . 

That the error in the tangent line approximation 
is Ο(Δχ) 2 ) should be observable on students' own 
calculators. To show that approximation is still 
important even with calculators, there should be 
exercises on relative (percentage) accuracy in 
measurement. Big Oh notation should be wel-
comed by computer scientists. To avoid confu-
sion, little oh is not introduced. 

20-21 Extrema ("word") problems: Maximizing vol-
umes of boxes and silos (does Farmer Brown re-
ally use calculus to fence in his cows?) is OK for 
teaching problem-solving strategy, but it might 
also be nice to see, for example, Snell's Law. 

The Integral 

22 Honesty-day: Again, honesty means telling stu-
dents what we are going to do and why. Sum-
ming examples include work, present value of 
money, total distance, any averaging problem 
(temperature, depth of river), as well as area. 
Contrast should be made with derivative: total 
versus instantaneous, global versus local infor-
mation, (formally) functional versus operator. 
Should finish with definition of \tf a s t n e l i m ' r °f 
Riemann sums. 

23-24 Numerical integration—rectangle, midpoint, 
trapezoidal, and Simpson's rule: Discussion 
should include enough error analysis to give, 
without proof, the order of the error (big Oh 
again). Notice that rectangle rules (left, right, 
upper, lower) and midpoint rules are valid 
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Riemann sums. Trapezoid rule and Simpson's 
rule are not. A nice way to view trapezoid is 
weighted average of left and right rectangle (or 
weighted average of function values with half 
weights at end points because "half" of their in-
fluence lies outside interval). It is easy to see with 
picture that trap and midpoint have errors of op-
posite sign and that both errors depend on con-
cavity ( i . e . /" ) and that midpoint's error is half 
of trap's for a parabola. This suggests a weighted 
average of twice midpoint and once trapezoid. 
This is Simpson's rule. Students should be told 
that the j key on their calculator, which they 
should begin using, might be based on Simp-
son's rule. Again, students should be able to ob-
serve the order of the error on their calculators. 
They should begin to learn that calculators do 
not give the "exact" answer, if they haven't 
learned that already. They also will need to be 
able to give rough estimates for the value of a 
definite integral in order to check that calculator 
answers are reasonable. 

25 Properties of the definite integral: The proper-
ties needed are: 

a) linearity 

b) J2 = is + tf 
c) m(b - a) < J* < M(b - a). 

Change of variable in integrals, \'uf(g(x))g'(x)dx 
= ί;'/(.ν)ί/ν, can be justified by Riemann sums 
and the Mean Value Theorem. 

26-27 The area function, A(x) ~ [If: This is another 
example of new-from-old, but students distrust 
it because A(x) appears to be not computable 
and hence abstract. With calculators having an 
"Integrate" key, the abstract A(x) can become 
concrete. Of course, A(x) has always been con-
crete graphically and there must be exercises 
sketching A(x) given the graph of / ( jc) (do not use 
that/10t) is an antiderivative off(x)—let that be-
come evident). The actual use of A(x) as c.d.f. in 
probability could be mentioned and an interpre-
tation of A(x) in terms of an application from 
"honesty" day should be given. Finally, A(x) can 
be computed explicitly for f(x) = mx + b. 

28 The Fundamental Theorem of Calculus: After 
25-27 the whole class should scream A'(x) = 
/ ( r ) . The FTC in the form \h

af = F(b) - F(a) 
needs to use F'(x) = A '(x) =» F(x) = A(x) + C. 
Either treat this "obvious" fact intuitively or 
prove using Mean Value Theorem. 

29-30 Antidifferentiation: Do sin x, cos x, ex, \/x, In χ 
(given from oracle as χ In χ — JC + C but easily 
checked). Students should also be able to anti-
differentiate JC sin(jc2) by substitution or guess-
and-check. 

Uses of Integral 

31-32 Area between curves and average value: Might 
go back and reinterpret FTC in terms of the av-
erage value of a function, if integral has not been 
viewed as an average from the beginning. Appli-
cations might also include arc length to show off 
the "integral" key. Again, with calculators, area 
between arbitrary polynomials is feasible. Con-
sider also work, present value as well as volume. 

33-35 Easy differential equations: Topics should in-
clude: 

a) acceleration-velocity-position problems 
b) exponential growth: y' ±ky 

c) cyclic behavior: ν" — — v. 

For (a) there should be examples of nonconstant 
acceleration, in order to avoid the formulas stu-
dents have memorized from physics. Note for (b) 
that the growth rate of bx compared to JC" does 
not need l'Hopital's rule: just ask students to 
compare 2 1 0 0 with 100 2 or 100 1 or 100 1 4 . Both (b) 
and (c) are good places to explain the role of the 
calculus in describing the natural and man-
made universe. Kenelly's paper is particularly 
appropriate for (c). 

General Comments. It is worth noting what is not in 
this course: related rates, l'Hopital's rule, e — δ defini-
tion of limit, and precalculus material on lines, circles, 
and domain and range of functions. Other material is 
greatly reduced: limits and continuity, computing deriva-
tives from the quotient definition, computing integrals 
from the Riemann sum definition (using formulas for 
Σ"41 i2 etc.). There are, of course, also topics in this sylla-
bus not usually covered in a standard first semester calcu-
lus course: graphical and numerical treatment of func-
tions, big Oh notation, Newton's method, numerical 
integration, the use of hand calculators. 

The allotment of 35 hours is a minimum. If more time 
is available, it is not a good idea to try to cover additional 
topics. If η hours are available, then a topic given A- hours 
in the syllabus should be given JCH/35 hours. That may be 
a glib response to the question of slack time, but it does 
reflect the workshop's feelings about content-crammed 
courses. The style workshop has many suggestions for 
calculus pedagogy, some of them quite time consuming. 
Slack time in Calculus I is the perfect opportunity to try 
out some of those suggestions. 

6 Syllabus for Calculus II 

Hours 

1-2 Expanded dictionary of functions: tan, sec, arc-
sin, arctan, sinh, cosh. Give enough to read a ta-
ble of integrals—definition, graphs, elementary 
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identities (1 + tan 2 = sec 2, cosh 2 — sinh 2 = 1) 
and formulas for derivatives. 

3-5 Techniques of ant (differentiation: substitution, 
easy integration by parts, tables of integrals. 

6-7 Improper integrals: 

l " 1 \" 1 l ' 1 1 

.ι „ X J ο VX .1 -1 X 

8-9 Parametric equations: elimination of parameter, 
relation between curve and dx/dt, dy/dt. 

10-12 Sequences: include discussion of recurrence re-
lations with examples from population models 
and iterative numerical procedures: limit of a se-
quence. 

13 Honesty day: why study series? 
14 Convergence: concepts yes, tests no. Examples 

should include geometric, harmonic, and alter-
nating series. 

15-17 Taylor series with error form: the idea of higher 
order approximation, radius of convergence 
from ratio test. 

18-19 Dictionary of Taylor series and manipulation of 
series. 

20 Order of magnitude (big Oh) and Taylor series 
(to replace L'Hopital's rule). 

21-23 Complex numbers and polar coordinates: do e'" 
= cos θ + i sin θ with series and geometrically. 

24 Honesty day: where do differential equations 
come from? 

25-27 Graphical methods: vector field and phase plane 
and numerical analysis with models. 

28-30 Closed form solutions: variables separable, con-
stant coefficient linear using complex numbers 
for order η > 1. 

General Comments. This course represents a core of 
material for the second semester. Some topics, such as 
exponential/logarithmic functions or applications of the 
definite integral, are not here because they are already in 
Calculus I. Other topics are simply not mentioned at all: 
logarithmic differentiation (e.g., j c s m v ) , indeterminate 
forms such as oo — oo, special techniques of integration 
including trigonometric substitution and partial frac-
tions, convergence tests for series of numbers, integrating 
factors for linear differential equations. Material that 
might be considered new or unusual includes: recurrence 
relations, big Oh analysis with Taylor series, complex 
numbers, the emphasis on graphical and numerical anal-
ysis of differential equations. The de-emphasis of conver-
gence tests means this course does not look forward to a 
later majors course in analysis as much as most present 
Calculus II courses do. 

This course is even slimmer than Calculus I. Again, the 
general advice is to spend the slack time teaching better 

rather than more—try out some ideas from the style 
workshop, keep using hand calculators, do more model-
ing. On the other hand, the slack time may be sufficient 
to allow one extra favorite topic; for example, the work-
shop seemed reluctant to part with partial fractions. 

7 Syllabus for Calculus II—Computer Alternative 

Hours 

1,2 Honesty days: Why integrate? When in closed 
form? When numerically? Advantages of each. 
Examples of everything. Review Fundamental 
Theorem: it says two ostensibly different things 
are really the same. Provisional estimates of 
standard definite integrals: exp(— x2), cosU' 2). 
Exercises: some numerical integrals by hand, no 
machines; graphical integrals; compare with 
closed form solutions. 

3,4,5 Numerical integration, revisited: (Some meth-
ods already seen in semester I. Here emphasize 
error analysis.) Trapezoid, midpoint, Simpson's 
rules, how to use snip to compute them. Com-
parison of observed errors for each method. Er-
ror formula for each method: don't prove, but 
use them in realistic ways. Use snip to compute 
or estimate graphically extrema off" and / ( 4 ) . 
Maybe an application, e.g. to arclength where 
closed-form techniques usually fail. Exercises: 
estimate Jo exp(x2)dx with three decimal place 
accuracy; compare error estimate with observed 
error for familiar integrands. 

6-9 Techniques of antidifferentiation: as in main II 
syllabus, except that partial fractions are in-
cluded—smp can be used to expand rational 
functions in partial fraction form; the point is 
that algebraic manipulations transform inte-
grand to more tractable form. Important theme 
for this unit: conjectured answers can always be 
checked by differentiation, so do anything neces-
sary to generate reasonable conjectures. Thus, 
e.g., include method of undetermined coeffi-
cients for certain trigonometric integrals. When 
using smp as oracle, say so clearly. 

10,11 Improper integrals: Use smp to illustrate numer-
ically how integrals can either converge or di-
verge. Some error analysis: how tails of, e.g., 
j u o o 1/(Λ:2

 + l)dx get small. Application to nor-
mal probability distribution: where does the Z-
score table come from? 

12,13 Parametric equations: Use smp for graph-
sketching, and for computing arclengths (by nu-
merical integration) for interesting curves, like 
cycloids, hypocycloids. 

14-16 Sequences: Rationale as in II syllabus; smp's in-
valuable here, to list numerical terms of se-
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quences, including recursively defined. New-
ton's and bisection method iterates as examples. 
Comparison of speed of convergence. Smp's al-
low some exercises on understanding definition 
of convergence, e.g., given a sequence and its 
limit, how many terms until deviation from limit 
less than .1 . .01, .001, etc.) 

17 Honesty: Why bother with series? How does cal-
culator compute sin( 1)? Where does polynomial 
estimate p(x) = χ — jr76 + x s / 1 2 0 to sin(jc) 
come from? How do graphs compare? Is deriva-
tive of sin (χ) approximated by derivative of p? 
Use smp to raise, investigate such questions. 

18,19 Convergence of series of numbers: Standard 
examples. To illustrate concept, smp generates 
numerical examples. (Example command: 
Sum|H ί ( - 2 ) , {η. 1, 20}] adds 20 terms.) Geo-
metric and alternating series, studies because 
partial sums can be either computed in closed 
form or estimated easily. Smp's used, e.g.. to es-
timate sin(2) to many decimals by alternating se-
ries. P-series studied as important examples, 
and to draw analogy between series and integral. 
No formal convergence testing. 

20-25 Taylor's theorem with error formula: Idea of es-
timating functions by series is main motivation 
for studying series. Include big Oh analysis of 
Taylor polynomial error. Smp's can compute 
and graph the higher derivatives involved in the 
Taylor error formula, as well as compute numer-
ical estimates to values of standard transcenden-
tal functions, and to integrate such functions by 
series method. (Total time on this topic reduced 
by one day from II syllabus: with smp to expand 
arbitrary functions in series, less need for series 
dictionary.) 

26-28 Alternate plan—Multiple integrals: Smp com-
putes double Riemann sums for integrals over 
rectangles, draws surfaces. (Students often mis-
understand double Riemann sums; smp may 
help show numerically how they approximate in-
tegral, just as in one-variable case.) 

29 Differential equations honesty day: Why bother? 
What do they do? Good modeling examples: 
how do real problems lead to DE's, whether or 
not we can solve them? Closed form vs. numeri-
cal methods? Which are easy and which are 
hard? Graphical techniques: smp's can draw di-
rection fields; point is that solutions exist, can be 
estimated, even if not available in closed form. 

30-32 Closed-form techniques: Separable DE and 
first-order linear. Physical models: free fall with 
air resistance, mixing, population. (Omit 
higher-order DE's unless complex arithmetic 
was covered above.) 

33-35 Numerical DE: Euler and Runge-Kutta meth-
ods. Smp's carry out most of the tedious manip-
ulation. Compare observed errors in simple 
cases; don't treat error formulas rigorously. Se-
ries methods (a nice place to see recursive formu-
las for coefficients of the solution.) 

General Comments. The abbreviation "smp" is used 
to stand for any powerful computer algebra system that 
has graphics. It should be understood that smp's don't 
require programming by the user (although they do allow 
it; some students will discover this and make good use of 
it.) Think of an smp as a super calculator, that does for 
symbolic, numerical, and graphical operations what cal-
culators do for numbers. Smp's are really almost that 
easy to use. They are also much more convenient than 
calculators because they remember their work. Thus, for 
example, one defines a function only once, and refers to it 
by name thereafter, when integrating, differentiating, 
graphing, expanding in a series, etc. Experience shows 
that one day devoted to the mechanics of the smp itself is 
enough: students pick up other commands and a general 
feeling for the system as they go along. 

Having smp's available allows one to treat approxi-
mate and numerical methods more realistically than 
would otherwise be possible. For example, error formulas 
may involve extrema of high derivatives of complicated 
functions. These are hard to compute or even estimate by 
hand, but with an smp, one can just calculate the deriva-
tive symbolically and find its extremum either graphically 
(probably good enough) or by setting the next derivative 
to zero. 

The main advantage of teaching some numerical and 
graphical methods is to strike a balance between them 
and closed-form techniques. The latter are usually over-
emphasized. The point is that calculus offers a variety of 
techniques—one chooses what is appropriate to the given 
situation. A recurring theme of this course should be that 
the methods complement each other. Hence the course is 
structured to present something of each approach to the 
various topics raised: integration, series approximation, 
and differential equations. One advantage is simply to 
make the point that most of the problems raised in calcu-
lus have answers, even if a particular method doesn't 
readily produce them (e.g., the definite integral of a rea-
sonable function exists, even if the fundamental theorem 
doesn't compute it—many students seem to believe that 
the fundamental theorem defines the definite integral.) 

The different smp's available differ in how easily and 
successfully they handle antidifferentiation. Macsyma is 
excellent; SMP is fairly awful. This shouldn't pose a seri-
ous problem. The push-the-button-and-get-the-answer 
aspect of smp's should be played down anyway at this 
level. Better to use the smp to do things that one "could" 
do anyway, given enough time and patience and to con-
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vince students that this is so. (One way: on tests, and in 
exercises, sometimes insist that everything be done by 
pencil—say, compute the first three Newton's method it-
erations to the square root of 6 as rational numbers. 
Bring the stone age to the silicon age.) Almost all smp 
uses proposed above are of that kind. 

The syllabus suggested runs to 35 days, like the first 
semester syllabus. Another difference from the calculus 
11 syllabus is that some baby two-variable integration 
(supported by smp computation of double Riemann 
sums) is given as an optional replacement for the three 
days Calculus II devotes to polar coordinates and com-
plex numbers. One is loath to jettison the latter topics, 
but no use is made elsewhere of polar coordinates, and 
complex numbers are used only in higher-order linear 
DE, which I recommend omitting also. (At St. Olaf, and 
perhaps elsewhere, client departments want multiple in-
tegrals in the first year.) 

In many parts of the syllabus, exercises are suggested 
to use smp's. These give the flavor, but don't exhaust the 
possibilities. 

8 Syllabus for Calculus II—Multivariable Alternative 

Hours 

1 -2 Expanded dictionary of functions: same as Cal-
culus II syllabus. 

3-5 Techniques of antidifferentiation: same as Cal-
culus II syllabus. 

6 Improper integrals 
7 Honesty day: where do multivariable functions 

come from? Obvious examples come from phys-
ics but economics is also a good source. A 
glimpse of the complications caused by the more 
interesting geometry of a two-dimensional do-
main should be given. 

8-10 Two and three dimensional analytic geometry: 
vectors, dot product, cross product, lines and 
planes. 

11-12 Alternative coordinates: polar, cylindrical, and 
spherical coordinates. Application: 3-dimen-
sional computer graphics. 

13-14 Curves: Parametric equations, arc length, veloc-
ity and acceleration vectors. Possible applica-
tion: derivation of Kepler's laws from Newton's 
laws. 

15-16 Partial derivatives and chain rules 
17-19 The gradient: level sets, tangent planes to explic-

itly and implicitly defined functions, directional 
derivatives. 

20 Linear approximation and the differential 
21-23 Critical points and local behavior: Maxima, 

minima, saddle points illustrated with level 
curves and computer graphics. 

24 Lagrange multipliers and constrained extremal 
problems 

25-28 Double and triple integrals in rectangular coor-
dinates: include some discussion of numerical 
techniques. 

29-30 Change of variable in integrals: polar, cylindri-
cal, and spherical coordinates. 

31-35 Elementary vector fields: line integrals and 
work, conservative fields, surface integrals and 
flux. Green's theorem. 

General Comments. Clearly most of the standard 
Calculus II material is missing, especially series and dif-
ferential equations. Many mathematics departments may 
wish to require for all majors a later sophomore or junior 
level course in series and differential equations. In fact, 
except for the six hour prelude of single variable calculus, 
this is really a middle-of-the-road multivariable course 
that could be taught out of any thick calculus textbook. 

We have not made an attempt to rethink the treatment 
of the topics in the manner of Calculus I. On the other 
hand, the spirit of Calculus I and the pedagogical sugges-
tions of the Style Workshop can still be applied. In par-
ticular, we still urge the use of calculators. 

Only a few applications are mentioned in the syllabus. 
The derivation of Kepler's laws should be familiar. The 
computer graphics application in hour 12 refers to the 
problem of computing the two dimensional screen coor-
dinates of a point given the rectangular coordinates of the 
viewer's location. Not only does this make use of lines, 
planes, projection, and spherical coordinates, it also ex-
plains what the computer does to create the pictures of 
surfaces needed later in hours 21-23. 

Finally, although much of the motivation for multiva-
riable calculus comes from physics, there are also some 
nice applications from economics, such as Edgewater 
boxes, Pareto optimality, and level sets of utility func-
tions. 



NOTES ON TEACHING CALCULUS 
Report of the Methods Workshop 

Robert B. Davis Katherine P. Layton Sherman K. Stein 
Susanna S. Epp Alan H. Schoenfeld, Chair Steven S. Terry 
John W. Kenelly Lynn A. Steen H. R. van der Vaart 

1 A Rationale for Change 
2 Goals for Calculus Instruction 
3 What it Takes to do the Job Right 
4 Some Suggestions for Teaching 
5 Dealing with Technology in Calculus Classes 
6 Notes on Testing 
7 About Priorities and Rewards 
8 Issues for Research 
9 Recommendations 

1 A Rationale for Change 

For many years calculus has held a special place in the 
college mathematics curriculum. It has been the intro-
ductory mathematics course, and for good reason. Prop-
erly taught calculus courses served a variety of audiences, 
and served them well. They served as an introduction to 
"what mathematics is all about" for liberal arts students, 
as an introduction to the "language of science" for those 
who would go on to use mathematics, and as an introduc-
tion to fundamental mathematical notions for those who 
would go on to be mathematics majors. Calculus was, 
and deserved its role as, a foundation for college mathe-
matics. 

As we are all too painfully aware, there are now large 
cracks in that foundation. There appears to be general 
dissatisfaction with the calculus, both among students 
and faculty.1 This dissatisfaction does not seem to arise 
simply from the availability of alternate first year courses 
such as discrete mathematics, although the presence of 
such courses may suggest that "calculus for everyone, no 
matter what" may no longer be appropriate. Rather, it 
comes from the perception that calculus courses, as cur-
rently taught, do not meet the needs they were designed 
to meet—and once did meet. Among the complaints fre-
quently voiced about the state of the art, the following are 
frequently heard: 

'There are. of course, many exceptions. At many campuses where 
calculus instruction receives high priority, students and faculty are 
quite content with course offerings. 

• that current practice is perceived to drive students 
away from scientific and mathematical careers. 

• that most current courses are superficial, and that 
typical "mimicry calculus" courses do not develop 
understanding. They fail to prepare science students 
for applications of mathematics to their disciplines, 
and fail to convey to mathematics students a sense of 
mathematics and mathematical thinking. 

• that the range of options in calculus as currently 
taught (as defined, for example, by standard text-
books) is far too narrow; that the scope of mathe-
matical thinking, the expectations of students, and 
the range of behaviors expected of students are all 
too narrow. 

• that calculus is a "stepchild" in many departments, 
a course with large captive enrollments receiving 
minimal attention from tenured faculty. 

• that the departments for which calculus is a service 
course are increasingly unhappy with the course. For 
example, the IEEE has just taken the extraordinary 
step of publishing its own calculus book. Mathemat-
ics departments run the risk of (once again!) having 
their service constituencies offering their own calcu-
lus courses. 

• that calculus as presently taught is essentially irrele-
vant for the nearly 50% of the college students who 
do not go on to use mathematical tools in their ca-
reers; that these students, who were once well served 
by a "liberal arts" introduction to mathematical 
thinking via calculus, are ill-served by current ver-
sions of the course. 

Our purpose in listing these complaints is not to be-
moan the current state, but to indicate that there is cause 
for concern, and reason to change. It is our belief that 
properly designed and taught calculus courses can and 
should meet the needs of the student groups mentioned 
above (liberal arts students, science majors, and mathe-
matics majors). We believe it is essential to teach such 
courses. We believe that some significant improvements 
in instruction can be achieved without additional alloca-
tions of resources, and urge faculty and departments to 
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begin making such improvements as soon as possible. We 
note that some of the changes we recommend will call for 
allocating more resources to calculus instruction than is 
current practice. We urge departments to allocate re-
sources to calculus instruction where possible, and to 
seek additional resources from university administrations 
when such resources are necessary. 

The balance of this report addresses a variety of issues 
relevant to the "delivery" end of calculus—how we can 
teach the subject matter in a way most beneficial for our 
students. 

2 Goals for Calculus Instruction 

Calculus is the language of change. It is a domain of 
rich and powerful ideas—rich in terms of intrinsic inter-
est and their demonstration of fundamental mathemati-
cal notions, and powerful in the scope of their applica-
tions. It is the first college mathematics course for many 
students. It is also the last exposure to formal mathemat-
ics for many of those students. For this reason, among 
others, it is essential that the course help students learn to 
"think mathematical"—that is, to use mathematical 
tools as a means for solving problems, and mathematical 
ideas for making sense of complicated situations. With 
these general comments in mind, we describe the follow-
ing goals for calculus instruction. We note that the goals 
are not in priority order. A goal should not be considered 
less important because it appears near the bottom of the 
list. 

Goals for Instruction in Calculus 

• Calculus instruction should develop students' under-
standing of concepts, as well as their ability to use 
the relevant procedures, in a select set of fundamen-
tal calculus topics. 2 Instruction should be aimed at 
conceptual understanding, and at developing in stu-
dents the ability to apply the subject matter they 
have studied with flexibility and resourcefulness. 

• Calculus instruction should expose students to a 
broad range of problems and problem situations 
(ranging from exercises to open-ended problems and 
exploratory situations), and a broad range of ap-
proaches and techniques for dealing with them 
(ranging from the straightforward application of the 
appropriate formulas to the use of approximation 
methods and modeling techniques). 

• Calculus instruction should help students develop an 
appreciation of what mathematics is, and how it is 
used. 

2In order that this goal be achieved, the calculus "core" needs to con-
sist of fewer topics than are currently crammed into the curriculum. See 
the report from the "content" workshop for a suggested syllabus. 

• Calculus instruction should help students develop 
precision in both written and oral presentation. 

• Calculus instruction should help students develop 
their analytical skills, and the ability to reason in ex-
tended chains of argument. 

• Calculus instruction should help students develop 
the ability to read and use text and other mathemati-
cal materials. 

3 What it Takes to Do the Job Right 

There was a consensus among conference participants 
that the learning of mathematics, especially at introduc-
tory levels such as calculus, requires frequent feedback. 
It was agreed that there is no one particular structure that 
is "right" for such instruction. Thus the issue of teaching 
resources is not appropriately framed, for example, in 
terms of the "small classes vs. large" controversy. 
Rather, the issue is whether any particular instructional 
format provides the kind of experiences that are neces-
sary for students to master mathematics at more than a 
purely mechanical level. 

Mathematics has been called the language of science, 
and an analogy to language learning strikes us as particu-
larly appropriate. One of the goals for the calculus course 
is that students develop precision in written and oral 
work. In order for students to develop the ability to write 
mathematics correctly, students require frequent and de-
tailed comments on at least some of their written work. 
As in English composition classes, some of the reading 
needs to be done by the faculty (or at least by advanced 
graduate students). As in composition classes, this is a 
laborious and time-consuming procedure. If students are 
to learn to "speak" mathematics, they will need opportu-
nities similar to those in language classes, or in language 
laboratories. That is, they need opportunities to present 
their work orally in class, and to have their presentations 
critiqued. Providing good feedback in a calculus course is 
as essential for correcting students' mathematical mis-
conceptions as, for example, providing good feedback in 
tennis is essential for correcting a bad serve. In the ab-
sence of such coaching, students develop misunderstand-
ings that are hard to unlearn, and that become obstacles 
to further learning. 

We note that in many departments substantial im-
provements can be made by assigning higher priority to 
calculus and by making the appropriate internal resource 
allocations (including the time, energy, and rewards de-
voted to calculus teaching). We also note, however, that 
current practice often makes it unduly difficult to teach 
calculus effectively. For example, difficulties are often 
caused when students enter a course with widely varying 
levels of preparation. (The first few weeks of many 
courses are spent in review, to give weaker students a 
chance to catch up. Many of them don't.) The course out-
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lined in the content panel's report is a "no-nonsense" 
course that begins with real calculus on the first day. It is 
essential that students be ready for it—and it is thus es-
sential to have an effective diagnostic and placement pro-
gram. Many of the current difficulties with calculus 
would be lessened if only those students who are prepared 
to take courses are permitted to enroll in them. 3 It is im-
portant to have adequately trained teaching assistants, 
for their role in such courses (at least for many course 
structures at many institutions) is significant. As noted in 
the next section, there are a number of low-cost TA train-
ing programs that departments can adopt. 

It may be appropriate for departments to explore a va-
riety of course structures to determine the ones that work 
for them. As noted above, composition courses are gener-
ally taught in small sections with frequent and detailed 
feedback. Elementary language courses have language 
labs, and elementary science courses often have large lec-
tures, but smaller laboratory sections where students re-
ceive more individualized training. Comparable struc-
tures may be appropriate for some mathematics courses. 

Unfortunately, many mathematics departments do not 
have the resources to teach the kinds of calculus courses 
described in the previous paragraph. As calculus enroll-
ments have grown, mathematics departments have first 
cut back on feedback and then on small sections. The 
results of such cutbacks were described in Section 1 of 
this report. If we take seriously the idea that mathematics 
is the language of science, and we expect students to learn 
to read and write that language, then resources compara-
ble to the resources currently allocated for language in-
struction are essential to get the job done. In general 
mathematicians have been quite naive about university 
politics, and the issue here is a political one. If colleges 
and universities wish to see mathematics instruction meet 
the goals described in this report, they will need to allo-
cate the appropriate resources to the task. Mathemati-
cians will have to make this clear, and they will have to 
argue convincingly for the needed resources. 

Though the focus in this section has been on allocation 
of time and energy, it is clear that a different kind of re-
source would be tremendously useful as well. The com-
munity would profit greatly from information and mate-
rials that would assist in the delivery of good calculus 
instruction. Some exist, and are mentioned in the bal-
ance of this report. We also hope to see specific kinds of 
materials developed, both for use with students and to 
assist the faculty. See section 9 for details. 

'Failure rates in many courses are reported at 50% and above. We 
believe that with a good placement program, with high quality instruc-
tion, and a good support structure for a course, failure rates should be 
below 15%. A failure rate above 15% indicates that there are problems 
with either placement, instruction, or support structure. 

4 Some Suggestions for Teaching 

Achieving the goals outlined in Section 2 may call for 
employing a variety of teaching methods. As is always the 
case, instructors will feel comfortable with some methods 
and not with others. Our intention here is to point to 
some possibilities that the reader may find worth consid-
ering. 

Three MAA publications are helpful in this regard.4 

College Mathematics: Suggestions on How to Teach It 
provides a basic description of useful classroom tech-
niques, although it is mostly lecture-oriented. Training 
Programs for Teaching Assistants in Mathematics de-
scribes some low-cost TA Training Programs. MAA 

Notes #1, Problem Solving in the Mathematics Curricu-
lum, contains fifty pages of suggestions for teaching 
problem solving. Many, if not all, of those suggestions 
can be adapted for use in standard instruction. 

During the conference that produced this report, nu-
merous suggestions were made regarding techniques for 
teaching calculus that individuals had used successfully. 
Other suggestions appear in the papers that comprise the 
conference proceedings. The following techniques were 
recommended: 

• the use of complex problems from the "real world" 
to serve as a context for doing mathematics, and for 
introducing mathematical ideas (See Bob Davis' pa-
per). 

• the use of elementary theoretical problems as "cog-
nitive bridges" to help students develop their under-
standing of theoretical ideas (See Susanna Epp's pa-
per). 

• the use of occasional non-standard, context-free 
problems (See Sherman Stein's paper). 

• replacing many "show that" problems with equiva-
lent "is it true; provide a proof or give a counterex-
ample" problems (and, of course, assigning some 
similar problems for which a plausible conjecture is 
not true). In general, having students construct ex-
amples. 

• assigning multi-step problems, and other problems 
that go beyond the "plug into the technique we just 
studied" mode. 

• assigning some problems that may take two or three 
weeks to solve, and allowing students to hand in pre-
liminary attempts for comment. 

• assigning a collection of problems at the beginning 
of the term, which can be solved at various points 
during the term (and not revealing when they are 
solvable). 

information about these and other MAA publications can be ob-
tained by writing the Mathematical Association of America, 1529 
Eighteenth Street N.W., Washington, DC, 20036. 
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• giving problems to be worked in class, by groups of 
three or four students. 

• giving mathematics reading assignments, where stu-
dents are instructed to read a text or other specially 
prepared materials, and then to work problems 
based on those readings. 

• giving assignments to be worked by groups of stu-
dents rather than by individuals. 

• giving assignments that call for coherent written ar-
guments, and grading them according to quality of 
exposition. 

• having students give "formal presentations" in class 
or in specially arranged sessions. 

• giving oral examinations. 
• using graphical or tabular representations of func-

tions as well as algebraic ones. 
• using a variety of techniques for exploiting technol-

ogy; see section 5 of this report. 

We hope that the MAA and other groups will compile 
more extensive sets of suggestions (fleshed out with typi-
cal examples, classroom protocols, etc.), and that they 
will work to make useful classroom materials available. 

It is important for instructors to define their expecta-
tions for class performance clearly, and very early in the 
term. A course that emphasizes understanding may be 
novel to the student, who will need to understand the 
"rules of the game." It is also important to give some typ-
ical assignments, graded according to the appropriate 
standards, early in the term. If new behavior patterns are 
established early, there is a good chance they will take 
root. If, however, students can proceed through the 
course for the first few weeks in a relatively mechanical 
way, it may be too late at that point to make the appropri-
ate changes. 

Especially because students may not be used to the ex-
pectations or demands of courses that stress understand-
ing, it is important for the instructors' presentations to 
reflect the kinds of thinking that students are expected to 
develop. Thus, for example, when presenting a theorem, 
it is useful to do more than "motivate" the theorem, state 
it, and prove it; if time permits (and time does permit in 
the revised syllabus suggested by the content panel), the-
orems should arise as the "natural" answers to interest-
ing questions. The rationales for the proofs, if not the 
proofs themselves, can be worked out as problem-solving 
tasks by teacher and students together. Also, it was ob-
served at the conference that students' class notes are, 
more often than not, verbatim copies of what the teacher 
has written on the blackboard. Students will take those 
notes as their models of the appropriate type of mathe-
matical exposition. Hence it is important that our own 
boardwork meet the appropriate standards of coherence 
and completeness. 

Finally, we should comment on the core calculus cur-
riculum itself. The content workshop members deliber-
ately selected a "slim" curriculum. Their suggested first 
semester syllabus can be covered in 35 hours, and the sec-
ond in 30. Often one has much more time available. If 
you do, we urge you to resist the temptation to add more 
material under the assumption that "more is better." 
More is not better in this case. It is more important for 
students to understand a small number of fundamental 
ideas than to deal with a large number of topics superfi-
cially. We recommend that you not add more topics to 
the syllabus, but that you use the time you have to explore 
the fundamental ideas of calculus in greater depth. 

5 Dealing with Technology in Calculus Classes 

Given the central role that calculus plays in preparing 
students for careers in science, it is important that the 
course (where appropriate) introduce such students to 
the mathematical tools that they will be using. Given that 
calculus is, de facto, the course in "mathematical liter-
acy" for students who will not pursue scientific careers, it 
is important that the course (again, where appropriate) 
illustrate the use of contemporary technology as it applies 
to mathematics. 5 

We encourage the appropriate use of relevant technol-
ogies (in particular, the use of calculators and computers) 
in calculus instruction. It is important for students to be 
introduced to contemporary tools for mathematical anal-
ysis and students will profit from using calculators and 
computers. Many topics are dramatically illustrated with 
the help of technology. Moreover, the use of technologi-
cal tools to do computational hackwork can free both 
teacher and students from computational tedium—thus 
allowing them to focus on conceptual rather than compu-
tational matters. 

Many calculator and computer-based technologies are 
available for classroom use. Indeed, one recommenda-
tion of the content panel at the calculus conference was 
that every student be required to obtain a programmable 
calculator with a "solve" key and a numerical integration 
key, and that the calculus course take advantage of the 
power of such tools. Since the content panel's recommen-
dations address the uses of hand-held calculators in cal-
culus, we shall focus on computer-based technologies. 

^Although our focus is primarily on electronic technologies, we 
should note that a variety of technologies are useful in (and rarely found 
in) mathematics classrooms. For example, prepared graphs or multiple 
overlays on overhead projectors can often illustrate points much more 
clearly than sketches at the blackboard. Xeroxed class notes can free 
students from the need to copy long arguments into their notebooks and 
give the teacher more time to discuss main ideas. A range of films, in-
cluding some produced by the MAA, illustrate mathematical points 
quite nicely. Videotapes can be used as parts of TA training programs, 
or to allow faculty to review their teaching performance. Videodiscs are 
a new technology, and one that may prove useful. 
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Computer-based tools for potential use in calculus in-
clude number crunchers and graph crunchers, computer 
algebra systems, calculus teaching kits, computer-as-
sisted instruction and intelligent tutoring systems, and 
microworlds. 

Number crunchers enable a class to deal with "real" 
problems and illustrative examples from the sciences. 
Graphing programs can relieve the tedium of sketching 
simple curves. They can allow one to use more complex 
functions for analysis than otherwise possible. They can 
also be used to get across a number of theoretical 
points—for example, showing how well (or poorly) the 
sum of several terms in the Taylor series approximation 
to j\x) converges to f(x), or demonstrating the asymp-
totic behavior of functions that have been analyzed sym-
bolically. 

Computer algebra systems (among them mu-math, 
MACSIMA, TK-Solver) now perform tasks that are diffi-
cult to perform by hand. Complicated integrals can be 
evaluated, symbolically or numerically; nasty equations 
can be solved, etc. Specific examples of the use symbol 
manipulation packages in calculus may be found in the 
conference papers by Paul Zorn and Don Small. 

There are now on the market a number of software 
packages designed for calculus instruction. It is not our 
purpose here to evaluate them, but to note their exis-
tence. There are also a number of packages for com-
puter-assisted instruction (especially for algebra and trig, 
which may be used for remedial work), and "intelligent 
tutoring systems." These systems, much more sophisti-
cated than the old "drill and practice" programs, build 
models of the student's performance and select sequences 
of instruction and practice problems based on detailed 
assessments of the students' work.*1 Though such pro-
grams do not exist for calculus at present, it is reasonable 
to expect them to appear in the near future—and it is rea-
sonable for the mathematical community to try to take 
advantage of them. The same comment applies to "mi-
croworlds," self-contained computer-based environ-
ments such as LOGO. LOGO has been used for simula-
tions of force interactions at the level of college physics; 
we hope the community will try to exploit similar environ-
ments for college mathematics. 

This report can only suggest the wide range of applica-
tions of technology to the teaching of calculus. Fortu-
nately, the MAA's Committee on Computers in Mathe-
matics Education is currently preparing a report on the 
use of computers in mathematics instruction at the col-
lege level. We hope that more reports will become avail-
able, and that other materials (sample protocols of suc-
cessful classroom sessions, illustrative examples of the 
use of technology, etc.) will be produced. 

"See, e.g. Derek Sleeman and John Seely Brown's Intelligent tutoring 
Systems (Academic Press, 1982). 

6 Notes on Testing 

It is an old (but true) saying that "tests drive the curric-
ulum." Examinations give the students the real "bottom 
line"—what they are really expected to know, whatever 
the classroom rhetoric about "understanding" may be. 
That bottom line, of course, determines what students 
will study—and learn. 

Standard hour-long examinations serve a valuable pur-
pose. They are limited, however, in that they examine 
only a subset of the students' skills. Section 2 of this re-
port listed a broad set of goals for calculus instruction. If 
we take those goals seriously, we will need means of eval-
uating students' progress towards them—both because 
testing those competencies will make sure that students 
work to develop them, and because we need to know our-
selves whether our instruction is successful. We suggest 
that testing procedures correspond to the goals of instruc-
tion. There may be four or five very different types of tests 
that can be used during a course to evaluate a student's 
work. 

Some of the techniques suggested in Section 4 are also 
relevant to evaluation, and will not be repeated. Here are 
some additional suggestions that participants at the con-
ference have tried and found useful: 

• open-ended exams (that is, exams with no time pres-
sure, and perhaps open book), where the goal is to 
test understanding rather than speed. (This can be 
done with the help of a proctored "test center.") 

• some short, time exams, where the goal of the exam 
is to test understanding and speed (e.g., on differen-
tiation). 

• exams with problems of graded difficulty: an easy 
problem or two. some medium problems, some hard 
ones (rather than having ten problems of compara-
ble difficulty and making the exam a race to the fin-
ish). 

• formal oral presentations graded as they might be 
graded in a speech class. 

• reading assignments on new material (possibly al-
lowing access to TA's or yourself for answering ques-
tions), accompanied by test problems on that mate-
rial. 

• take-home exams, essay questions, oral exams, etc. 
• standard questions in "non-standard" formats 
• students compile "portfolios" of their best work dur-

ing the term, illustrating the projects they had com-
pleted, problems they had solved, etc. 

There are multiple goals for calculus instruction, and it 
makes sense to design tests with those goals in mind. It is 
also useful to remind the students explicitly of those 
goals, and of the purpose of the testing. Developing such 
a broad variety of tests can be a time-consuming en-
deavor. We encourage organizations like the MAA to 
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compile "test banks" consisting of a range of evaluation 
procedures (including sample problems) and discussions 
of their use. 

7 About Priorities and Rewards 

Calculus is an instructional "stepchild" in many de-
partments. It is often considered to be a service obliga-
tion, with a large captive audience of (somewhat) uninter-
ested students. In departments suffering from enrollment 
pressures calculus is often the first course to give way to 
large lectures or to be handed over to TA's. The senti-
ment, in general, seems to be that a mathematics depart-
ment's real attention should be saved for majors—per-
haps beginning with linear algebra courses. 

It may be that we are losing some of our potential ma-
jors as a result of this attitude and the quality of instruc-
tion that results from it. 7 Our service constituencies are 
unhappy with much of our instruction, and it appears 
that much of that unhappiness is justified. On the posi-
tive side, it is also likely that our own majors, having ex-
perienced some "real mathematics" instead of a mechan-
ical plug-in course, would have less trouble in the 
mathematics courses they take as upper division stu-
dents. For all of these reasons, it seems appropriate for 
mathematics departments to devote increased resources 
to calculus instruction. In short, it is in our best interest 
to "do it right." 

It may be necessary to lobby with college and university 
administrations in order to obtain adequate resources. 
Fiscal resources are not enough, however. Earlier we dis-
cussed the "bottom line" for students. There is a similar 
bottom line for faculty. If perfunctory instruction will 
suffice and if the kind of effort required for truly high 
quality instruction will go unrewarded, faculty have little 
incentive to produce such instruction. 

We hope that mathematics departments will provide 
the kinds of rewards that will encourage faculty to teach 
as well as they can. Moreover, we hope they will adopt the 
kinds of evaluation procedures that will (a) identify those 
faculty who are doing well, and (b) help all faculty to im-
prove their teaching. A forthcoming publication from the 
MAA Committee on the Teaching of Undergraduate 
Mathematics' Subcommittee on the Evaluation of Teach-
ing will include references for a variety of evaluation pro-
cedures. 

Statistics indicate that the number of graduating mathematics ma-
jors is less than half the number of freshmen who enter college expect-
ing to be mathematics majors. It need not be this way. At one college 
known for its mathematics teaching, for example, 5% of the entering 
class declare themselves to be potential mathematics majors—but 10% 
of the senior class graduates with degrees in mathematics. 

8 Issues for Research 

This report has been based on information now avail-
able to us. This information is adequate to identify some 
of the problems with current calculus instruction, to sug-
gest the kind of curriculum that would allow students to 
learn some real mathematics, and to suggest some effec-
tive methods of instruction. Yet there is much that we do 
not know, and that would be most useful as we try to de-
velop better means of instruction. In particular: 

We could use more data on current practice. What are 
current enrollment patterns across the country? What 
percentage of classes are taught in small sections, in large 
lectures only, in large lectures with recitations, self-
paced, etc.? What kinds of feedback policies are cur-
rently used? How often is homework collected and how 
carefully is it graded? What other kinds of feedback are 
given? Are placement and diagnostic exams used, and 
how do the failure rates at institutions with placement 
and diagnostic programs compare to the failure rates at 
institutions without them? Do tests such as the SAT 
Math exams, or the MAA placement exams, serve as 
good predictors of readiness or success for calculus 
courses as they are currently taught? Do (or would) they 
serve as good predictors for the kinds of courses that we 
would like to see taught? What kinds of testing and eval-
uation procedures are used? And so on. 

We need more information about courses that meet the 
kinds of goals outlined in this report. What colleges and 
universities already offer such courses? How does one 
identify them? How does one document that the courses 
do indeed meet those goals? How and why do those 
courses work? What kinds of course structures have been 
used, what kinds of placement programs, homework and 
testing policies, evaluation procedures? What kinds of 
departmental incentives were offered? How did the whole 
system function? 

Finally, we need to know more about what students 
learn in their mathematics classes. A close look at stu-
dents' work (by means of interviews, videotapes of stu-
dents working problems, etc.) is often a disturbing, but 
valuable source of information. More detailed research 
on students' mathematics learning would be helpful, 
both to tell us about current difficulties in instruction and 
to suggest ways that might help us to improve. 

9 Recommendations 

Recommendation 1. We believe that calculus in-
struction can be much improved, and that it can meet the 
following goals: 

• to help students understand a select set of funda-
mental topics in calculus, and help them develop the 
ability to apply what they have learned with flexibil-
ity and resourcefulness. 
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• to expose students to a broad range of problems and 
problem situations, and a broad range of ap-
proaches and techniques for dealing with them. 

• to help students develop an appreciation of what 
mathematics is, and how it is used. 

• to help students develop precision in both written 
and oral presentation. 

• to help students develop their analytical skills and 
the ability to reason in extended chains of argument. 

• to help students develop the ability to read and use 
text and other mathematical materials. 

We recommend that individual faculty be given freedom 
to experiment in their instruction, perhaps along the lines 
suggested in this report. We recommend that mathemat-
ics departments allocate adequate resources and estab-
lish the appropriate priorities and rewards to encourage 
high quality instruction in calculus classes. 

Recommendation 2. We would like to see the follow-
ing resources developed and made available. 

A. Resources for use with students: 

• textbooks and other supplementary materials 
aimed at presenting the calculus for the appro-
priate level of conceptual understanding. 

• Sets of conceptual problems for all topics in the 
syllabus, covering broad ranges of difficulty. 

• sets of problems that can be appropriately used 
with the available technologies: number and 
graph crunchers, symbolic algebra packages, 
etc. 

• a compilation of readings from other disciplines, 
in which mathematics is used in a significant 
way. 

B. Resources for the faculty's help and guidance: 
• Information about successful practices: class 

structures, feedback procedures, etc. 
• Demonstrations of prototypically good instruc-

tion: written descriptions and/or videotapes of 
classroom procedures that have worked, particu-
larly useful problem sets or types of assignments, 
etc. 

• Detailed sets of reliable non-standard proce-
dures for evaluating the students' work, keyed to 
the goals of instruction. 

• Sample descriptions of departmental evaluation 
procedures, both for identifying and rewarding 
good instruction, and for helping faculty to do a 
better job of teaching 

• Research results describing current practice, 
identifying exemplary programs, and pointing 
the way to improved instruction. 

Recommendation 3. We hope that discussions of ef-
fective calculus instruction will continue, at meetings of 
mathematics societies, of faculty and administrators re-
sponsible for overseeing their departments' calculus 
courses, of faculty who teach calculus, and of university 
administrators. 
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1 Introduction 

In two days of discussion the 23 conference partici-
pants examined ideas, developing some, discarding oth-
ers, and reached a growing sense of the nature of the 
mathematics that should be contained in a calculus 
course, objectives for the course, and changes in style of 
presentation that should take place in order to reach the 
objectives. During their deliberations on the third day of 
the conference/workshop, the seven participants in 
Workshop III: Implementation articulated needed strat-
egies for implementation of a new calculus course. Be-
cause the three workshop groups met simultaneously, the 
exact content of the new calculus and details of the 
method of presentation were not known to the implemen-
tation panel during its deliberations. 

2 Activities Needed for Implementation 

Seven sets of activities needed during the implementa-
tion process were addressed by the implementation 
panel, based on the teaching of content to be determined 
by Workshop I and using the methods and strategies to 
be described and developed based on the report of Work-
shop II. The activities discussed below are given essen-
tially as they were addressed by the group as a plan for 
implementation to be based on existing materials, but 
each was seen as necessary in an ideal or major revision to 
be based on new materials. They are grouped under three 
headings: Development, Field Testing, and Public Rela-
tions/Endorsements. 

3 Development 

Selection of Institution for Participation in Initial Ac-
tivities. Satisfactory implementation of the new calcu-

lus so that it can become the standard will require careful 
selection of schools to take part in all stages of the proj-
ect. The participation of prestige or elite schools to vali-
date the project is essential. However, to have the new 
calculus become the norm will require representation of 
the breadth of institutions involved in the teaching of cal-
culus—state universities, four-year colleges, community 
colleges. Participants in Workshop III mentioned Carne-
gie-Mellon University, Massachusetts Institute of Tech-
nology, Harvey Mudd, Grinnell, Williams, Colby, and 
St. Olaf as institutions who may have already begun to 
make significant changes in their calculus courses. The 
MAA Newsletter, the American Mathematical Society 
Notices, and the SI AM News could be used to raise the 
questions: Are you currently teaching something differ-
ent from standard calculus and if so what? Pilot projects 
might in some cases be parallel to or a continuation of 
what has already been taking place. In addition to inclu-
sions of innovative schools, schools thought of as conserv-
ative in approach should also be included. 

A Preliminary Conference of Participants. Once par-
ticipants are selected, a conference of representatives 
from participating institutions is seen as essential. The 
conference would serve the general purpose of dissemina-
tion of materials and the development of understanding 
of these materials. Previously prepared materials should 
bt provided to all participants together with an opportu-
nity to utilize them in practice sessions, followed by activ-
ities that require the participants to develop further ma-
terials. Instructors will need to learn strategies and 
techniques to involve students in problem solving. Prob-
lems and techniques developed at the conference should 
be published. In the European style, new problems and 
techniques should be identified with the name of their au-
thors in order to provide recognition for participants. A 
network of participants should be established in order to 
share information and to provide reinforcement and sup-
port as the initial projects begin. 

Treatment of Material Omitted From The Standard 
Course In Order To Arrive At The New Course. The 
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goal for the new calculus is an increase in student under-
standing of the fundamental ideas and operational meth-
ods of calculus sufficient to make unnecessary the exten-
sive coverage of topics now presented in a standard 
calculus text. Evaluation of the success of the new calcu-
lus will of necessity be based on how well students can 
learn and utilize "standard" topics not explicitly covered 
but needed later. The development of alternative presen-
tation techniques and materials (videos, computer as-
sisted instruction, small module booklets, omitted sec-
tions of the textbook) for topics not covered will be 
essential. The new calculus course itself should require a 
student to develop an understanding of topics not covered 
in class, to learn and be tested on new but related mathe-
matics. 

4 Field Testing 

Implementation Within A Mathematics Depart-
ment. At each participating school careful thought 
must be given to the preparation of the teachers for pilot 
classes. It is recommended that from the very beginning 
at schools with graduate programs the group of teachers 
should include a teaching assistant or teaching assis-
tants. 

Not only will this establish the creditability of course 
materials as suitable for general use, demonstrating that 
they can be taught not only by senior faculty but by new 
teaching assistants, but the enthusiasm and attitudes of 
the younger teacher will also contribute to the process. 
One or more individuals who attended the preliminary 
workshop should be responsible for a "local workshop." 
A syllabus for the course, discussions of classroom tech-
niques, problems, methods of stimulating discussion, 
and testing materials should all be reviewed and shared, 
and sample presentations should be made. Again the ob-
jective would be not only to learn about prepared mate-
rial but to create material and to practice its use. In a 
small department it may be desirable or necessary for all 
members of the department to participate in the pilot 
program. In a large department it might be the case that 
parallel sections will be used, some using the new calcu-
lus, others continuing past practices. In the latter case, 
an evaluation can be done of the contrast between the two 
approaches. 

In many institutions the feeling exists that users are 
aware of the content of the calculus course and the 
amount of material covered is in response to user de-
mand. Especially in these locations, those planning im-
plementation must take care to make arrangements for 
suitable presentation of the omitted materials. (See Item 
I above.) Hopefully, articles on how to read a mathemat-
ics book, how to write a clear explanation, and how to 
teach the above two topics will be available. The MAA 
Handbook for teaching assistants, which contains tech-

niques for presentation of mathematics, would be useful. 
An essential element in the success of the pilot pro-

gram will be a clear understanding of evaluation tech-
niques for the program and plans for their implementa-
tion during the first year and during subsequent years. A 
full evaluation of the project should be delayed to the sec-
ond year. 

A serious program, national in scope, for teaching 
graduate students to teach in the style needed for the suc-
cess of the new calculus will in and of itself facilitate the 
implementation of the new course. If all graduate stu-
dents are taught to see the new calculus as the appropri-
ate course, if all learn successful methods of presenta-
tion, and if this activity can be seen as fun and 
stimulating, then within a five- to ten-year period mathe-
matics instruction will be different. The nationwide 
build-up of Ph.D. programs caused a greater emphasis to 
be placed on research and led to a swing away from con-
cern with teaching. A new calculus course can provide the 
impetus for a needed swing back toward more concern 
for teaching. 

Appropriate support for paper grading or other forms 
of daily work monitoring will cost approximately $15 per 
student per semester and is seen as an essential resource 
need. The MAA National Study of Resources for Colle-
giate Mathematics will be addressing resource issues 
broadly. Departments can build on it to address the re-
sources needed for a new form of teaching. 

Within a mathematics department every effort must be 
made to keep those in the department not involved in the 
project aware of the process, aware of its successes and its 
failures. A fair presentation and an openness will be 
needed in order for the department as a whole to adopt 
the project and to support it. It is possible that there will 
be a rejection of the process by some "old timers" in the 
department and disarming or neutralizing their opposi-
tion can more effectively be done by information, honest 
statements of what is actually happening—both its 
strengths and its weaknesses. 

Dialogue With Others In The University But Outside 
The Mathematics Department. It is important from the 
beginning to emphasize the trade off that is being 
made—better prepared students who are able to read and 
work on their own, but a leaner coverage of material. 
This can be restated by noting that techniques that are 
not used are promptly forgotten, but concepts that are 
understood and used in a number of settings will be natu-
rally reinforced. Repeated and consistent statements of 
this theme will be needed to develop a framework in 
which the pilot program can function and be understood. 

It will be politically helpful on a campus to emphasize 
the change in teaching style and the quality of teaching 
that will be provided. Certainly the direction of the proj-
ect is in keeping with the major study in undergraduate 



REPORT OF THE IMPLEMENTATION WORKSHOP X X V 

education supported by the National Institute of Educa-
tion and entitled Involvement in Learning. The literature 
available on learning research and on evaluation of teach-
ing is often unknown to mathematicians and mathemat-
ics faculty. It will be important for those involved in the 
process not only to know this material but to utilize its 
results in communicating the objective of the new calcu-
lus to others outside the department. If there are individ-
uals on the campus who themselves are involved in learn-
ing research they can be brought into the project for 
support. 

Opportunities for dialogue with other departments 
need to be provided on a regular basis. Not only should 
the mathematics department touch base with other de-
partments as the project begins but an agreed upon 
method for further contact should be established from 
the beginning. 

5 Public Relations and Endorsements 

Public Relations. At every stage of the process there 
should be a public relation effort. The clear consensus of 
the appropriate future direction for calculus that devel-
oped at the conference should be stated fully in a position 
paper in order to bring others in the mathematics com-
munity to an understanding of and support for the pro-
posed changes. The position paper should be a "puff 
piece," attempting to communicate the "spirit of New 
Orleans" to non-attendees. This paper and a news release 
should be shared with SIAM News, Focus, Chronicle of 
Higher Education, AMS Notices, AMATYC, MAA 
Board of Governors, MAA Section Officers, MAA Sec-
tion Meetings, the Mathematical/Sciences Education 
Board, the Conference Board of Mathematical/Sciences. 
Presentation should be scheduled at meetings of the 
American Council on Education and the American Asso-
ciation of Higher Education in order to inform adminis-
trators of the need and support for change in calculus. 
Public relations efforts at each stage should be aimed at 
making the new calculus the property of the entire math-
ematics community and not just a program of the partici-
pants at the New Orleans conference or for those involved 
in the initial projects. A list of individual and organiza-
tional contacts should be made at an early date and prog-
ress reports (or perhaps a newsletter) should be issued 
regularly. 

Endorsements. Endorsements of the proposed 
changes should be sought from key individuals and orga-
nizations within the mathematics community, and from 
individuals and organizations in related disciplines. Ob-
viously the move to obtain endorsements will be heavily 
dependent upon the success of the public relation effort 
and of the initial projects. Efforts to obtain endorsements 
should move gradually and be directly tied to the develop-

ment of firm plans and to initial successes. Endorsements 
from users of mathematics in other disciplines can pro-
vide an important source of encouragement to mathe-
matics faculties and key information to be shared with 
local faculty in other disciplines as projects develop. 

In addition to endorsements, financial support will 
also be needed. An assumption is made that a primary 
grant will be provided by a foundation or government 
agency. However, individual schools could and should 
build on "local" grants from industry or foundations 
(e.g. Westinghouse. General Electric, IBM. Amoco Re-
search) or grants available within an institution, from ed-
ucational agencies, and from regional, state, and local 
government. Given the expectation of massive change, it 
is possible that publishers might find a way to assist the 
overall project financially. 

6 Possible Timetables 

The implementation panel's ideas did not lead to a for-
mal timetable nor to a consensus on how best to imple-
ment the new calculus in an ideal way. A review of the 
recommendations of all three workshops was seen as nec-
essary before a plan and a timetable could be established. 
The identification of necessary leadership, the acquisi-
tion of adequate funding, as well as time for thoughtful 
reflection were seen as essential before definite plans 
could be formulated. 

Workshop Ill's recommendation for a timetable was in 
an effort to move as swiftly as possible. It was based on 
the remarkable consensus that took place at the confer-
ence and grew out of the enthusiasm of the conference. 
The panels' initial discussions focused on the develop-
ment of a plan that would build on the momentum of the 
conference with the aim of beginning the teaching of the 
new calculus course in the fall of 1986 in a number of 
diverse institutions. For this reason a method was sought 
to avoid the delay that would be necessitated by awaiting 
the publication of a new text containing not only the con-
tent prescribed by Workshop I but also a presentation 
that would lead to methods and strategies developed by 
Workshop II. Renz, based on his experience in publish-
ing, estimated that publication of a text of the scope and 
magnitude for a year or longer course would require at a 
minimum two years, realistically three. On the other 
hand, a trial from a set of notes used in a small number of 
settings might be an insufficient beginning. Building on 
this hypothesis, the group developed a plan for imple-
mentation based on using current texts. A lean coverage 
of material would be selected from a text. Authors of the 
best seller texts would be asked for help as they not only 
know well their own materials but also are experts in writ-
ing and organization. This approach could be imple-
mented at a number of schools and could be based on 
more than one book. Further, comparison between the 
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outcome for sections teaching the new lean calculus and 
those using the conventional approach would be facili-
tated. 

In answering the question. "Could a truly different 
content and style be developed from an existing text?" 
the group identified the following disadvantages. Skip-
ping in a text always creates problems of appropriate se-
quencing and often leads to inadvertent omission of 
needed techniques or material. The style of an existing 
text might make it impossible for the "new" calculus 
course to seem to be new, not only differing in content 
and style but also sufficiently different so that the thrust 
of the new direction would be clear and lead to needed 
development of new materials and a new text. Addition-
ally, although basing implementation on existing texts 
has the potential to shorten the time frame, even this 
strategy might not be possible to implement by fall. 

Since the ending of the conference, Ron Douglas has 
suggested an alternate procedure. He notes that in asking 
Workshop III to consider the problems of implementa-
tion, it was agreed that they had an impossible task since 
they did not know what they would be implementing. As 
it turned out most of the effort was concerned with how to 
implement a partial solution. However, in thinking care-
fully about the recommendations of Workshop I and II 
which the group received with considerable enthusiasm, 
Douglas has come to the conclusion that they are radical 
and would not fit into a change in the current calculus 
course. In particular, he does not believe that the recom-
mended course can be taught from existing books. For 
these reasons, Douglas plans to work toward having pilot 
programs in place for Fall '87. Presently a prospectus and 
rough budget have been developed in order to find money 
from foundations, both private and governmental. The 
following is a rough timetable. 

October 86 Team chosen to prepare textbook and 
other curricular materials 

February 87 Ten colleges and universities chosen to 
participate in the pilot program 

April 87 Working draft of textbook completed 
June 87 Conference of leaders of pilot projects 

and textbook team to make final plans 
for Fall semester 

September 87 
November 87 

January 88 

January 88 
June 88 

September 88 
January 89 

March 89 

Spring 89 

September 89 
January 90 

Spring 90 

September 90 

Fall semester—ten schools 
Ten more colleges and universities cho-
sen to par + ;cipate in pilot program 
Conference of all pilot project leaders, 
old and new, to share experiences and to 
"fine-tune" the second semester 
Winter semester—ten schools 
Revision of Textbook and other changes 
based on experiences of the first year 
Fall semester—twenty schools 
Assessment conference and planning 
conference 
Textbook and curricular materials in fi-
nal form 
Selected workshop presentations to allow 
additional colleges and univers*Mes to in-
troduce the new courses with assistance 
from the program 
Fall semester—fifty or more schools 
Major presentation at AMS/MAA An 
nual Meeting 
Workshop presentations at all regional 
MAA Meetings 
Coordination and assistance provided 
for colleges and universities introducing 
the reformed calculus for the academic 
year 90-91 

There are many questions left unanswered and the 
timetable may need changing but "calculus reform for all 
by 1990" has a nice ring io it. 

In conclusion, two aspects of discussion seem to pro-
vide a focus for future planning. The first is the unanim-
ity of agreement that the appropriate direction for the fu-
ture has been found by the conference. The second is 
contained in the answer given by a participant to the 
question "Why would anyone try this?". Answer—be-
cause it will be more fun to teach the new calculus and 
this fun and enthusiasm can be conveyed to undergradu-
ates, hopefully leading more students into mathematics 
as a career and to the rebuilding of mathematics faculties 
that will be needed in the 1990s. 
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In Praise of Calculus*·· 
Peter D. Lax, NYU-Courant Institute of Mathematical Sciences, New York, NY 

Plans for the education of future mathematicians must be based on a shrewd notion 
about the future development of mathematics. To glimpse the future, we must look 
at the current state of mathematics as well as the trends in it and in the sciences and 
technologies contiguous with mathematics. 

The single most striking new development in all these fields is the rise, indeed 
ubiquity, of computers of high speed and large capacity. They make possible 
numerical and symbolic explorations on an unprecedented scale; much physical 
experimentation can be replaced by numerical modeling; vast amounts of data can 
be stored and subtly processed for the extraction of hidden details—as is done, for 
example, in computerized tomography. This computer revolution has altered the 
face of applied mathematics. For instance, linear algebra has changed from a 
moribund to a very active research area because efficient and stable ways of 
carrying out matrix operations are needed for the numerical solution of partial 
differential equations. 

Tony Ralston is right when he points out that the availability of computing has 
brought to the fore an impressive array of discrete problems, combinatorial in 
nature, that are very challenging intellectually and important in a wide range of 
applications. Some classes of these discrete problems are formalized as topics in 
computer science, others as topics in mathematics; teaching these latter topics and 
doing research in them is the task of departments of mathematics. 

On the other hand, it is as wrong as wrong can be to say that calculus has lost in 
any sense, relative or absolute, its importance in formulating notions and solving 
problems of mathematics. The following very brief review of some developments in 
the last 25 years should set this matter straight: 

• The theory of analytic functions of several complex variables and modern 
differential geometry are two fields that have grown from collections of examples 
and isolated theorems to edifices deserving the name of theory, with many deep and 
astonishing results and connections to other branches of mathematics. 

• Modern differential topology, dating from Milnor's great discoveries, continues 
to astonish us with its results and methods. Thorn's theory of unfolding of singulari-
ties is a thing of beauty and has a great range of applicability. Donaldson's recent 
work on four-dimensional manifolds is a remarkable combination of Friedman's 
results and the theory of Yang-Mills fields. 

• Modern dynamics succeeded in solving many of the outstanding problems of 
classical dynamics. The Kolmogorov-Arnold-Moser theorem shows, for example, 
that the so-called ergodic hypothesis is false in general for differentiable volume-
preserving maps. It is now recognized that even low-dimensional systems can 
exhibit chaotic, pseudo-random behavior. On the other hand, a surprising number 
of completely integrable systems of physical interest have come to light. 

• The modern theory of partial differential equations has a number of impressive 
achievements to its credit. Using the tools of microlocal analysis—pseudo-
differential and Fourier integral operators—a number of problems concerning 
linear partial differential equations, such as diffraction and scattering, have been 
solved. The progress in nonlinear theories has been just as great: For example, 
astonishing things have been discovered about singularities of solutions of varia-
tional problems, (in particular, about minimal surfaces) in more than 7 variables. 

é 



2 TOWARD A LEAN A N D LIVELY CALCULUS 

Some important partial differential equations have been recognized as infinite-
dimensional, completely integrable Hamiltonian systems, and their solutions display 
unusually stable structures, called solitons. 

• The theory of probability has made great strides; among its modern tools is 
integration in function space, introduced by Wiener and used by Feynman, Kac, 
and many others in recent times in a variety of contexts. 

• The branches of applied mathematics which might be called classical have not 
lagged behind. In fluid dynamics, we are beginning to understand much better the 
generation and propagation of shock waves in compressible media. For incompress-
ible media, we have learned to estimate the size of possible singularities, and also 
the size (in the sense of Hausdorff dimension) of the so-called strange attractor sets. 
It is likely that these developments, combined with notions of modern dynamics, 
will bring us one step closer to understanding the mystery of turbulence. 

• Computational fluid dynamics is almost entirely a modern creation. Its tools 
are finite differences, finite element approximations, spectral and pseudospectral 
methods, Monte-Carlo techniques, and off-beat ways for treating vorticity and 
discontinuities. The consumers of computational fluid dynamics are the aerospace 
technologies, meteorologists, oceanographers, astrophysicists and others. 

• Two other active applied fields are quantum field theory and statistical me-
chanics. Lately, these two appear to merge inasmuch as methods developed in one 
of them seem applicable to the other. In this connection, I mention a statistical 
mechanics approach to discrete problems: the method of simulated annealing 
developed by Kirkpatrick, Gelatt, and Vecchi (Science, May 13, 1983), and applied 
by them very successfully to the Travelling Salesman Problem. 

• A neoclassical applied branch is mathematical biology and physiology; the 
father of the field is Helmholtz, but large scale computing is an important ingredi-
ent of its recent successes. 

All of these recent developments are in calculus-based branches of mathematics. 
To underemphasize calculus during the formative years of future mathematicians 
would prevent many from acquiring the kind of facility with calculus that is needed 
to work in analysis—pure, applied or mixed. A calculus-deficient education would 
shunt students into a small corner of mathematics, instead of opening up its whole 
panorama. Fortunately, it is very unlikely that such a one-sided curriculum would 
be adopted in a department that has a balanced view of mathematics. 

I am not saying that finite mathematics should not be taught; it should—to 
mathematicians and computer scientists. It seems reasonable to try to introduce 
some of its topics into the last year or so of the high school curriculum. 

As to calculus: mathematicians need not less, but more of it The real crisis is that at 
present it is badly taught; the syllabus has remained stationary, and modern points 
of view, especially those having to do with the role of applications and computing, 
are poorly represented. 

R e p r i n t e d w i t h p e r m i s s i o n from The C o l l e g e M a t h e m a t i c s J o u r n a l , Volume 1 5 , 
Number 5 , November 1 9 8 4 . C o p y r i g h t 1 9 8 4 by t h e M a t h e m a t i c a l A s s o c i a t i o n o f 
A m e r i c a , 1529 E i g h t e e n t h S t r e e t , N . W . , W a s h i n g t o n , D. C. 2 0 0 3 6 . 



The Importance of Calculus 
in Core Mathematics* 

Ronald G. Doughs 

Ronald G. Douglas is a professor, Dept. 
of Mathematics, SUNY at Stony Brook, 
Stony Brook, NY 11794. 

Although calculus has formed the 
core of the undergraduate mathe-

matics curriculum for most of this cen-
tury, there has been much debate re-
cently concerning this role [3]. The 
case is being made that discrete mathe-
matics is now of paramount importance 
and should therefore form the core. 
Discrete mathematics, the mathemat-
ics dealing with discrete finite systems, 
includes such topics as the study of 
permutations, Boolean algebras, ma-
trices, semigroups, and graphs; it con-
siders both their structure and their 
manipulation. Although the study of 
such topics goes back a century or more, 
recent interest has been sparked by the 
growing importance of computers in 
our society. 

Calculus has been a central factor in 
our expanding knowledge of the uni-
verse. It is the key to understanding 
systems that change in the social, the 
biological, or the physical sciences. Stu-
dents need calculus to understand the 
nature of scientific laws and their appli-
cation in the modern world Rapid large-
scale computing has increased, not les-
sened, the role of calculus in solving 
many of the outstanding problems of 
science and technology. The issue 
should not be whether to replace calcu-
lus in the core curriculum, but rather 

Reprinted with permission from the Journal of 
College Science Teaching. Copyright 1985 by 
the National Science Teachers Association, 
1742 Connecticut Ave., N.W., Washington, 
D.C. 20009. 

•This is based on my presentation on the panel 
entitled "Discrete Mathematics as a Rival to 
Calculus in the Core of Undergraduate Math-
ematics" during the annual meeting of the Amer-
ican Association for the Advancement of Science 
held in New York, May 25, 1984. 

how to transfuse and invigorate the 
pallid, passive calculus which is pres-
ently taught in so many American col-
leges and universities. To speak of a 
"calculus crisis" would not be overly 
dramatic. 
Calculus has stood the test of time 

and has been taught to science and 
engineering students since formal study 
in these areas began. It is the founda-
tion and wellspring for most modern 
mathematics. Moreover, the develop-
ment and application of continuous 
mathematics continues unabated. In-
deed, its applicability is enhanced and 
strengthened by the advent of high-
speed, large-capacity computers. In a 
recent note, "In Praise of Calculus" [ 1 ], 
Peter Lax summarized a few recent 
striking developments in the mathe-
matical understanding of dynamical sys-
tems in physics, of scattering and dif-
fraction in wave phenomena, and of 
the generation and propagation of 
shock waves in fluid dynamics. 

These are just a few recent devel-
opments in calculus-based branches of 
mathematics. It is clear that math-
ematicians, both pure and applied, need 
to learn calculus early in their careers. 
Similarly, computer scientists will need 
to learn calculus if they are to under-
stand many of the most exciting appli-
cations of large-scale computing. 
The development of calculus coin-

cided with the revolution in the physi-
cal sciences in the seventeenth and eigh-
teenth centuries. It is no coincidence 
that Newton is honored both as a codis-

3 
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coverer of the calculus and as the foun-
der of Newtonian mechanics. The under-
standing of physical laws is inextricably 
interwoven with calculus. The difficul-
ties inherent in the well-known phys-
ics courses without calculus make this 
clear. 

Almost all of science is concerned 
with the study of systems that change. 
The analysis of such systems is the 
very heart of the differential calculus, 
and indeed that analysis cannot pro-
gress very far without it. The descrip-
tion of such systems usually takes the 
form of an ordinary or a partial differ-
ential equation which the system satis-
fies. The numerical solution of such 
equations is one of the principal tasks 
of large-scale computing. Even the anal-
ysis of such equations using finite dif-
ferences is next to meaningless with-
out an understanding of the calculus. 
Thus, all science and engineering stu-
dents need calculus very early in their 
studies. 

But calculus is useful for a much 
larger group of students. Two decades 
ago CP. Snow described the "two cul-
tures" phenomenon, that is, that mod-
ern educated society can be divided into 
those people with an understanding of 
science and those without. The conse-
quences of this division continue today, 
and Snow's cultural grouping can be 
sharpened into those people who under-
stand the role of mathematics in ex-
plaining and studying our world and 
those who don't. Calculus is an excel-
lent laboratory in which all students 
can begin to learn this important role 
of mathematics. 

The case for calculus remaining in the 
core of undergraduate mathematics is 
overwhelming for a wide variety of 
students. If that is so, then why is it 
being questioned, and what is the fuss 
all about? In part, it is because calculus 
is widely perceived as being difficult; 
in part, it is because calculus has not 

been rethought since the advent of com-
puters; and, in part, it is because there 
is a large body of useful discrete mathe-
matics that doesn't fit conveniently into 
the present curriculum. And finally, it 
is because calculus is not being taught 
very well in most American colleges 
and universities. 

Calculus is difficult because calculus 
is difficult. It is a coherent theory that 
builds on all of high school mathemat-
ics and then builds on itself. That is, 
one must thoroughly understand what 
has come before in order to go on. The 
calculus student is attempting to under-
stand the culmination of humankind's 
grappling with the notions of limit 
and of the continuum. This stretches 
and enlarges the students' physical and 
geometrical intuition. It demands that 
they master techniques that are two 
and three centuries old, but still useful. 
These ideas are worth struggling over, 
and there is a pay-off. 

The structure of today's calculus 
course has changed little in the last 
several decades. Although various 
reforms have been proposed from time 
to time, a quick review of the most 
popular calculus texts will show that 
little change has occurred. Many topics 
are included because an individual de-
partment wants it, and most at-
tempts at changing the standard calcu-
lus courses have failed. Certainly, the 
t i m e is o v e r d u e for a s e r i o u s 
rethinking of the calculus we teach. I 
hope that will be one of the outcomes 
of the debate on calculus versus dis-
crete mathematics. 

There is widespread interest in 
many topics from discrete mathemat-
ics; they are useful in computer science 
and many of its supporting activities. 
Moreover, there are many exciting and 
interesting applications of discrete 
mathematics, and many areas are 
flourishing. Obviously, some students 
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need to learn some or all of these top-
ics, but not necessarily all students, and 
it should not be at the expense of calculus. 

Moreover, the argument for any of 
these topics being in the core is not 
convincing, especially since it is diffi-
cult at this time to decide what will 
stand the test of time and what won't. 
In particular, no coherent discrete math-
ematics course exists. Rather, a series 
of topics continues to evolve, and the 
precise list depends on the person pro-
posing it. Such courses are important 
in the undergraduate curriculum, but 
play a limited role in the core under-
graduate mathematics curriculum. 

Finally, the principal problem with 
calculus today is the way it is taught in 
most American colleges and universi-

ties. Calculus is usually taught in large 
lectures, with very limited interaction 
between students and teachers. More-
over, homework is only sometimes as-
signed and almost never graded. This 
is not because instructors today are lazy 
or less interested in students learning 
calculus, but because of numbers. An 
instructor teaching 200-300 students 
cannot collect and read homework; 
there is barely time to give and grade 
two or three exams a semester. More-
over, even recitation sections have 
grown to the point where teaching 
assistants can do little to ameliorate 
the situation. 

The demoralizing effect this has on 
both faculty and students cannot be 
overstated. Calculus cannot be learned 

passively. As the subject builds, the 
student must continually master ideas 
and techniques in order to profitably 
continue [2]. Therefore, it is not sur-
prising that the goals I stated earlier 
for calculus are hardly ever achieved. 
This is the real crisis in core mathe-
matics, and our energies should be 
directed to solving it. • 
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A Proposal to Hold <a Conference/Workshop to Develop Alternate Curricula 

and Teaching Methods for Calculus at the College Level 

1. Introduction 

The importance of calculus in the college curriculum has long 

been recognized. Calculus has been taught to students in science 

and engineering since formal study in these areas began. More 

recently, students in the biological and social sciences have been 

required to take a semester or even a year of calculus. The percen-

tage of undergraduate students enrolled in calculus has grown 

steadily during the past two decades and now at most American colleges 

and universities, considerably more than half the students take 

calculus sometime during their studies. 

Since calculus is central to the understanding of systems that 

change, whatever the field, it has played a central role in expanding 

our "knowledge of the universe. Further, although the mathematical 

sciences have grown and burgeoned in all directions, calculus has 

retained its centrality in the core undergraduate mathematics curriculum. 

Finally, performance in calculus courses plays an important role in deter-

mining those students who will go on to pursue careers in science and 

engineering and even in professions such as medicine. In fact, poor 

performance in calculus is one of the larger obstacles to obtaining 

1 

Attached are prepublication copies of two articles which further 

elaborate on the importance of calculus. 
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a better re-presentation of minorities and women in these 

careers. For all these reasons, the successful study of calculus 

is of critical importance to our society. 

Despite this, the teaching of calculus is in a state of 

disarray and near crisis at most American colleges and universities. 

Evidence of this is provided by a failure rate of nearly half at many 

colleges and universities. Moreover, when the current level of perfor-

mance of even the successful students is compared with that of students 

two decades ago, one really understands the cause for concern. Morale 

is low among both faculty and students and nearly all faculty now view 

the teaching of calculus as an unpleasant but necessary chore. While 

there are exceptions, they are few and far between. At the recent 

(well-attended) AMS/MAA Panel entitled "Calculus Instruction, Crucial 

But Ailing" held in Anaheim on January 11, 1985, no one took issue with 

the statement that "calculus instruction is ailing" and each speaker, 

both from the panel and from the audience, had a personal "horror story" 

to tell. 

The problems with calculus instruction are serious and many. 

(1) The calculus curriculum has not been seriously rethought for over 

two decades and certainly, not since the ubiquity of computers 

available for both numerical and symbolic computation. The present 

calculus curriculum contains too many topics so that important ideas 

and concepts are often not understood or are overlooked even by the good 

students. 

(2) The present mix of calculus students is drastically different 

from that when the current curriculum and teaching methods were devised. 



PROPOSAL TO HOLD A CONFERENCE/WORKSHOP TO DEVELOP ALTERNATE 
CURRICULA A N D TEACHING METHODS FOR CALCULUS AT THE COLLEGE LEVEL 9 

( 3 ) The level of expectation in most calculus courses was lowered to 

accommodate the flood of poorly prepared and poorly motivated students 

which followed the "sixties." Many students are capable of much more 

and both students and faculty realize this. Moreover, this low expectation 

has allowed performance in high school mathematics to deteriorate further. 

( 4 ) Finally, calculus enrollments have grown dramatically during the 

past decade as have all undergraduate mathematics enrollments, while 

resourses in many instances have shrunk. This has resulted in larger 

classes with less and less interaction between students and instruc-

tor. Although this is widely understood for offerings in computer 

science, it is actually true for all the mathematical sciences. 

As we mentioned earlier, the existence of serious problems in 

calculus is well-understood within the mathematical sciences. Hence 

•attempts to improve calculus instruction have been made by mathe-

matics departments at many colleges and universities as well as by 

several national organizations in the mathematical sciences. For the 

most part, these efforts have had little impact on the problems. 

The difficulties inherent in one department making significant 

changes in calculus instruction are obvious. A course as large as 

calculus needs a textbook and the only textbooks available present 

the standard curriculum. Moreover, since departments in other 

disciplines want the topics "essential" for them to remain unchanged, 

this leaves little latitude for reform. Finally, the faculty in most 

mathematics departments have such diverse opinions on the calculus, 

it is difficult to reach any consensus for change. The latter is what 
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makes it unlikely that any recommendation for far-reaching change 

will originate from within any organization representing the mathema-

tical sciences. For example, although the recent MAA Curricular Study 

in the Mathematical Sciences had a panel devoted to calculus, the recora 

mendations which it made were relatively bland and almost uniformly 

ignored. 

I believe a different approach might yield significant results. 

I propose that the Sloan Foundation support a small intensive 

conference/workshop in January, 1986 at Tulane University in New 

Orleans. Representatives from all the mathematical sciences would be 

invited with emphasis on choosing people with a long standing interest 

and expertise in calculus. Spokesmen from those disciplines which 

depend on calculus would also be sought. Finally, people with actual 

experience in the teaching of calculus would be invited looking espe-

cially for representatives of currently successful innovative 

programs. The participants would be asked to formulate alternate 

curricula and methods for teaching calculus. Further, the participants 

would be asked to address the very real problems, both political and 

economical, in having the proposed alternate curricula tried and adopted 

at American colleges and universities. 

This would be a formidable task but one that is important and 

infinitely worthwhile. The widespead agreement that there are serious 

problems in calculus instruction which must be addressed, has, I 

believe, provided a real opportunity for the success of this approach. 

And the support of the Sloan Foundation would give the recommendations 

of the proposed conference/workshop a visibility and a credibility which 

would be difficult to achieve in any other way. 
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2. The Proposal 

a) We propose that a four day conference be held in January, 1986 on 

the campus of Tulane University in New Orleans (in conjunction with 

the annual joint meeting of the American Mathematical Society and the 

Mathematical Association of America to mini.ri ,e travel expenses). 

b) Format of the conference: 

i) A kick off dinner with a provocative keynote address held 

held the night before the conference begins, followed by 

informal discussions and an opportunity for the participants to 

get acquainted. 

ii) Two days of prepared papers (see below for topics) with 

substantial time for the discussion of each paper. 

iii) One day of group workshops tc develop position papers on 

various topics (see below). 

iii) A final day to discuss the position papers and to plan 

future steps. 

c) Number of attendees: up to twenty-five with most involved as 

either presenters of papers or workshop leaders. 

d) Topics to be covered: 

The following list is tentative and li- ely to be changed as 

participants are chosen and add their ideas and points of view. 

Papers would be prepared and distributed to the participants before 

the conference. 
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i) What are the essential aspects of calculus that a student 

should learn in the standard calculus curriculum? Should there be 

more than one calculus track at a small college? at a larger college or 

university? What should the different emphases be? What topics in 

the current curriculum should be scaled down or even omitted? 

ii) What is the appropriate level of rigor for the standard calcu-

lus sequence(s)? Should the emphasis be on rigor, in developing 

intuition, or in providing a conceptual understanding? How impor-

tant is the role of calculus in developing mathematical maturity? 

iii) How can the student best learn that calculus is the study of 

systems that change? Can one understand the role of calculus in 

scientific thought without including applications in calculus 

courses? Is it important that students understand this role of 

calculus? 

iv) Computer sortware is now available which will solve the 

routine problems of calculus such as the differentiating and 

integrating of elementary functions in closed form. Should as much 

class time be devoted to learning to do such calculations as has 

been standard in the past? Should more stress be placed on 

understanding the applications of these techniques? * 

v) Calculus can be viewed as the study of linear (and ;. dratic) 

approximation of "nice functions." This fits in well with 

numerical analysis and can be nicely illustrated with the aid of 

the computer. Should this be done in calculus? For all students? 
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vi) Calculus is a course which builds on itself, needs constant 

reinforcement of learning, and in which rote memorization has 

little role. Can calculus be taught effectively in large-lecture 

sections? Is the collection and reading of homework necessary? 

What is the best use of teaching assistants, either graduate and 

undergraduate? Is personal contact with the lecturer important? 

vii) Are there enough contact hours to do justice to the present 

curriculum or to alternate curricula? In high school, calculus 

classes are small and there are five to ten class hours a week. 

Would many students benefit if calculus were taught under similar 

conditions in college? 

viii) Everyone is dissatisfied with the current crop of calculus 

textbooks. Yet, if an author writes and manages to get published a 

textbook which is a little different, most colleges and 

universities will refuse to use it. How can we break out of this 

cycle? 

ix) Many of the best students have taken calculus in high school. 

What should be done with these students? Should there be an 

"honors calculus"? For whom? And what should the emphasis be? 

x) How can one identify currently successful innovative calculus 

programs? How can such programs be transferred and adopted at 

other colleges and universities? 

xi) What would be the major problems in implementing new calculus 

curricula or a new approach to calculus instruction at a college or 

university? How can they be overcome? 
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xii) Any change in calculus is likely, to produce positive effects, 

both in performance and morale in the first few years. Can the long 

run effectiveness of a new program be predicted in the short term? 

e) Third-day Workshop Topics 

The papers presented on the first two days will reflect a 

variety of viewpoints and will undoubtedly spark some controversy. 

It will be the task of the third-day workshops to develop concrete 

proposals for alternate curricula and teaching methods. Although 

more than one proposal is likely, all proposals should represent 

the recommendation of the conference. The workshops will attempt 

to synthesize the ideas in the various papers into proposals. 

Workshop 1 : Develop one or more detailed college calculus 

curricula. 

A proposal should include a detailed list of topics to be 

covered in one or - in a sequence of courses, the philosophy of the 

course, the intended audience, the goals, and the intended 

approach. 

Workshop 2 : Develop recommendations on teaching methods for 

calculus. 

The workshop should prepare a critique of existing teaching 

methods stating both the strengths and weaknesses of a given 

method for various groups of students. New and innovative methods 

should be described in enough detail to allow them to be tried. 
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Economics and other factors should be addressed but the final 

recommendations should not be bound by these factors. 

Workshop 3: Develop a position paper on how to proceed after the 

conference. 

This is especially important since many previous curricular 

reforms for calculus have had little effect because of inadequate 

follow-up. The workshop should address the question of how the 

recommendations of the other workshops can be implemented. How can 

colleges and universities be induced to try the proposals? How can 

the results of the trials along with the other recommendations of the 

conference be made available to the mathematical sciences community 

and other interested parties. 

f) Final Day 

i) Morning - reports by the three workshop leaders and 

discussion of the reports. 

ii) Afternoon - general session to discuss any remaining issues, 

loose ends, and to summarize the conference/workshop. 
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INSTRUCTION 

R. G. Douglas 

Let me begin by welcoming you all here. The problems of 

improving or even changing an enterprize as large as that of 

calculus instruction are daunting but I'm excited and grateful 

that you have agreed to help me try. 

I first encountered the ideas of calculus in my reading of 

popular physics literature in about the ninth or tenth grade. I 

remember well my frustration at my inability to share my discove-

ry with my classmates although try I did. I am reminded of that 

experience every time I teach calculus. Even so I would not have 

imagined myself in the role of calculus reformer even a couple of 

years ago. Let me say a few words on how I happen to be here. 

Most of you are familar with the current debate on the roles 

of "continuous" and "discrete" mathematics in the undergraduate 

curriculum. I joined that debate on the side of calculus a 

couple of years ago. Early on in my preparation I decided I 

could not defend calculus as it is presently taught but rather I 

had to speak in terms of what it could be. In thinking about 

this I began to realize just how far from such an ideal we have 

come in most colleges and universities. Further, as a department 

chairman I was already only too familar with the "failure rates" 

and the other "nuts and bolts" issues affecting calculus. My 

mind began to search for some way to change the situation. After 

meeting and talking with Steve Maurer and Cathleen Horawetz, one 

an officer and the other a trustee of the Sloan Foundation, I 

came up with the idea for this conference. Because I felt the 

problem to be an extremely important one and that this approach 

had a chance for success, I organized this conference and managed 

to persuade all of you to join me. 

I am not going to try to defend calculus here. Some of my 

thoughts on that issue appear in the article appended here. And 

the article of Peter Lax, appended to his position paper, also 

speaks to this issue. Rather we shall accept at this conference 

that calculus is important! Our task is, rather, to rethink what 

and how calculus is taught at American colleges and universities 

17 
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and then to reaffirm that which is good and recommend changes in 

what is not. When more than one possibility seems to us to be 

valid, then we should say so. In preparing for this Conference, I 

reread the recommendations of the MAA Committee on the Undergra-

duate Program in Mathematics for calculus. As clearly indicated 

in the report itself, the subcommittee on calculus made conserva-

tive recommendations but recommendations which I believe are 

sound. Unfortunately, I don't believe the report has had much 

ef f ect. 

In organizing this conference I have held back somewhat in 

presenting my own thoughts and ideas. I haven't invited you here 

merely to ratify a proposal already formulated by me to save 

calculus. Many views and opinions are represented here and I 

expect we will hear at least two sides to every issue. Still I 

want to take this opportunity to share some of my thoughts and 

opinions. Although I can't document their validity since most 

are based on only anedoctal evidence, they seem to fit the known 

data well and there has been substantial agreement by those with 

whom I have discussed them. 

What are the problems with calculus instruction? Some of 

you have suggested in your position papers that no problem exists 

and indeed in discussing calculus over the past few years with 

colleagues across the country at different kinds of institutions 

I found that the situation of calculus varies greatly from col-

lege to college. Still at most places, teaching calculus is 

viewed at best as an unwelcome chore by both young and old facul-

ty. The feeling is that one is not teaching "mathematics" howe-

ver one defines it. Indeed, this is borne out by the fact that 

few, if any, undergraduate students are inspired to major in 

mathematics as a result of their calculus course. Actually the 

contrary is often t r u e — o n e sees students who decide not to major 

in mathematics because of their calculus course. When I was an 

undergraduate in the late fifties, the hot areas were engineering 

and the physical sciences, but in most calculus classes one or 

two students became sufficiently inspired by the beauty and the 

utility of mathematics to become mathematics majors. We lament 

the legions going into computer science today but would we have 

gone into mathematics on the basis of the present calculus 

course. 

There are many causes for the problems in calculus instruc-

tion. Let me discuss a couple. First a larger and different mix 
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of generally less well-prepared students take calculus today. 

This is a consequence of major societal forces and changes in our 

country and we could devote several conferences to discussing 

this but that is not my intenion. We get the students we get and 

we should formulate calculus instruction for them. We should not 

try to design it for either superstudents or superteachers but we 

must work with what we have. We must design calculus for the 

needs of the students who take calculus. We should not, however, 

water it down. We must not apologize because calculus is diffi-

cult but we should make clear our commitment to the integrity of 

the subject. I believe we should concentrate on offering a 

conceptually oriented course in which many secondary topics have 

been eliminated from both semesters. I believe students should 

learn that the fundamental notion of the differential calculus is 

how effective linear and quadratic approximation is for studying 

nice functions and how this can be used to study systems that 

change. Students should see in calculus how mathematics is used 

to understand the real world. We should describe no more than 

two or three syllabuses for each of the first two semesters of 

calculus. We should do this in sufficient detail as to topics, 

appp1ications, definitions, proofs, etc. to make our intentions 

clear. We want to discuss the emphasis of the course—the kind 

of problems the student is expected to be able to do, whether a 

conceptual or a rigorous understanding is expected, etc. Many 

participants make clear in their posi#tion papers that they 

believe that how we teach calculus is at least as importatnt as 

what we teach. 

Second, we have tried to teach calculus as though it could 

be learned passsively with little contact between student and 

instructor. This is largely because we have been unwilling or 

unable to communicate with administrators, politicians, and the 

general public on the special needs of calculus instruction. The 

subject builds, it uses all of high school mathematics, and it 

requires constant interaction with questions asked and answered, 

and homework collected, read, and returned. Calculus can not be 

taught with large lectures and large recitations only. Students 

must feel that there is someone interested personaly in their 

progress. A student in calculus who waits for the midterm to 

study is almost certainly doomed to failure. If a student does 

poorly on one topic in calculus, he will not have another chance 

on the next, a situation which is common in introductory courses 

in most other subjects. Deans, provosts, and presidents must 

understand this, as well as governors, legislators, and the 
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general public. It is impossible to do calculus well without 

adequate resources, and a large part of the calculus problem is 

that financial stringencies during the past decade or more have 

forced many universitites and colleges to try. 

To summarize we must agree on at most two or three sylla-

buses for the first two semesters of calculus. This must include 

coming to grips with the role of the computer in calculus al-

though not all options need to treat the computer the same. We 

should recommend possible styles and approaches. Moreover, we 

should be honest in discussing the resources needed to teach 

calculus effectively. Perhaps we will need to test our recommen-

dations with experiments. Finally, we must address the problems 

of making certain that our recommendations are discussed, modi-

fied if necessary, and then broadly adopted. This requires 

confronting the very real economic and political issues surrou-

nding calculus instruction. Lastly, we have to figure out how to 

put fun back into teaching calculus—how to give faculty an 

enthusiam for teaching calculus which at present is largely 

absent. All of this is indeed a tall order and this Conference, 

no matter how successful can only be the beginning. 
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Lida K. Barrett and Kay Van Mol 

Introduction 

A systematic analysis of the mathematics references in the 

undergraduate catalog of a college or university coupled with an 

appraisal of the roles mathematics plays in baccalaureate degree 

programs brings into focus the role of calculus in undergraduate 

education. The contrast between the beauty and power of calculus and 

the mastery level required of undergraduates leads to recommendations 

for a modified and enhanced presentation of calculus. Such an 

analysis of the calculus component of undergraduate education at 

Northern Illinois University follows. 

Mathematics as a General Education Requirement 

Northern Illinois University is a comprehensive university with 

colleges of Liberal Arts and Sciences, Business, Education, Visual and 

Performing Arts, Professional Studies (predominantly health-related— 

nursing, physical therapy, community health, communicative disorders, 

medical technology—but also home economics and library science), and 

a new College of Engineering and Engineering Technology which is being 

developed based on an engineering technology program. All 

undergraduate students are required to complete a common general 

education program of 37 hours, including 12 semester hours of univer-

sity requirements (6 hours of English, 3 of communication studies, and 

3 of mathematics). The mathematics courses that satisfy this require-

ment are College Algebra, Introduction to Mathematics (for the 

development of mathematical skills useful in daily life), Trigonometry 

and Elementary Functions, Foundations of Elementary School 

Mathematics, Finite Mathematics, and the first semester of a 

three-semester sequence in calculus. Additionally, as a part of 

general education a student must earn 7 hours in courses chosen from 

a specified list of courses in biological sciences, chemistry, 

computer science, geography, geology, mathematical sciences, physics, 

and statistics (taught by the Department of Mathematical Sciences). 

The mathematics courses that meet this requirement are a basic 

statistics course (not calculus based), entitled Excursions into 

Mathematics (for the development of a student's understanding and 

appreciation of selective mathematical concepts) and the first 

semester of calculus (which cannot be used to meet both the university 

requirement and science requirement). Mathematics majors cannot use 

mathematics courses to meet the science requirement. 

Mathematics Used as a Prerequisite or Corequisite 

Mathematics courses appear in the curriculum structure most often 

as prerequisites or corequisites for courses in other departments. At 

Northern Illinois University, 13 different mathematics courses are 
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used as prerequisites for 67 courses. Six of these courses—College 

Algebra, Introduction to Mathematics, Trigonometry and Elementary 

Functions, Foundations in Elementary School Mathematics, Finite 

Mathematics, and Basic Statistics—do not require an understanding of 

calculus. These courses are used as prerequisites for non-calculus-

based science courses such as general chemistry, general physics, and 

astronomy. The basic statistics course, or a calculus-based 

statistics course, is a prerequisite for two sociology courses and two 

health science courses. At Northern, as at many universities, 

statistics courses are offered in the College of Business and in some 

departments in other colleges (e.g., in the College of Education). 

There are 19 courses for which one of the five pre-calculus 

mathematics courses is used as a prerequisite. Finite Mathematics is 

a prerequisite or corequisite for several courses related to data 

processing, business statistics, and mathematical modeling in the 

social sciences. Mathematics for Elementary Teachers is required for 

courses in elementary education and special education. 

A one-semester calculus course for business and social science 

serves as a prerequisite for only two courses, Computer Programming in 

FORTRAN and Introduction to Mathematical Methods for .Economics. For 

the economics course, two semesters of the three-semester calculus 

course is an alternate choice as a prerequisite. The business and 

social science calculus, however, is an elective sometimes taken prior 

to entry to the junior/senior programs in the College of Business, 

and as an optional course that may be used toward satisfying the 

Bachelor of Science degree requirements in the College of Liberal 

Arts. (These degree requirements are described below.) The three 

semesters of calculus serve as prerequisites as follows: Calculus I 

for 16 courses; Calculus II, 14 courses; Calculus III, 4 courses. 

Departments requiring Calculus I and II include biological sciences, 

chemistry, computer sciences, economics, engineering technology, 

geography, geology, and physics. (The use of the calculus sequence 

will increase as the engineering program develops). 

In the Department of Mathematical Sciences, Foundations of 

Applied Mathematics, Differential Equations, the calculus-based 

statistics course, and Introduction to Probability and Statistics all 

require a calculus background. The statistics courses are required by 

the social sciences—economics, geography, psychology, sociology, 

political science—and by geology. Differential equations and applied 

mathematics courses are required by chemistry, physics, and 

technology. When a mathematics course is stated as a prerequisite for 

a given course the implication is that the specific content of that 

mathematics course is needed for satisfactory completion of the 

course. 

The College of Liberal Arts and Sciences requires all students 

earning the Bachelor of Science degree to demonstrate competence in 

laboratory science and/or mathematics/computational skills equivalent 

to that obtained through two years of regular college instruction 

(11-14 semester hours). There are four alternatives for completing 
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this requirement: the first includes Finite Mathematics, Calculus 

for Business and Social Science, Elementary Statistics, and a computer 

science programming course; the second, Calculus I and II and a 

computer science programming course or Introduction to Probability and 

Statistics; the third, Finite Mathematics, Calculus for Business and 

Social Science, and a two-semester laboratory science sequence; the 

fourth, Calculus I and a two-semester laboratory science sequence. 

Alternatives one and two are required for a Bachelor of Science in 

major programs in communication studies, for certain programs in 

computer science, and for majors in economics, geography, history, 

political science, psychology, and sociology, as well as for a compre-

hensive major in the social science. Alternatives three and four are 

required by biological sciences, chemistry, certain programs in 

computer science, geology, meteorology (a geography major), and 

physics. Any of the four alternatives are acceptable for 

anthropology, the general major in communication studies, and 

journalism. 

The College of Business offers a junior/senior program with ten 

freshman/ sophomore courses required of all students prior to 

admission in the junior year. These courses include Finite 

Mathematics and Business Statistics (taught in the College of 

Business). 

The College of Education offers only three undergraduate degrees: 

Elementary Education, which requires two mathematics courses 

especially designed for this program, Special Education, which 

requires the same two courses, and Physical Education with no 

requirement in mathematics beyond the university's general education 

requirements. The university's general education requirement in 

mathematics satisfies the mathematics portion of the State 

certification requirement of ten semester hours of mathematics and 

science. 

In the College of Professional Studies the professional programs 

have science requirements in chemistry, biological sciences, and 

physics. A student may elect the non-calculus-based courses and in 

that case needs only College Algebra and Trigonometry and Elementary 

Functions. Certain of these programs also require Basic Statistics. 

Courses in home economics (now called human and family resources) also 

require only pre-calculus courses with certain programs requiring 

Basic Statistics. 

The College of Visual and Performing Arts, with Departments of 

Art, Music and Theatre, requires no mathematics (beyond the general 

education requirements) in any of its programs. In the new College of 

Engineering and Engineering Technology the standard three semesters of 

calculus as well as differential equations will be required. The 

technology programs in the college will require only one semester of 

calculus. 

The Three Roles of Mathematics 
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Mathematics courses serve three roles in the curriculum. First, 

mathematics is required for all students seeking a baccalaureate 

degree. This acknowledges the pervasive role of mathematics in our 

society by requiring all students to develop an understanding of the 

concepts and modes of thought of mathematics. Second, mathematics 

courses are used as tool courses for other disciplines. The set of 

mathematics courses required in social science programs—introduction 

to calculus, computer programming, and statistics—acknowledges the 

need of students in these programs to have certain mathematical tools 

for work in their disciplines. In the science programs, calculus, 

differential equations, and applied mathematics are tools needed for 

success in those majors. Third, mathematics courses function most 

often in the curriculum as prerequisites for given courses. In these 

cases mathematics is often a language used to state concepts of the 

discipline, to develop new results, and to solve problems. A student 

without the particular mathematical skills required for a given course 

presumably cannot understand the material of the course. 

The Contribution of Calculus to the Curriculum 

There are portions of curriculum for which no calculus is 

required. At Northern Illinois University these include programs in 

the College of Visual and Performing Arts, the College of Education, 

the Bachelor of Arts programs in the humanities, and most of the 

degree programs in the College of Business where the stated 

requirement is finite mathematics and non-calculus-based statistics. 

For these students the knowledge, understanding, and appreciation of 

mathematics is limited to basic mathematical concepts not including 

the concepts of calculus. 

The Bachelor of Science degree programs in the social sciences 

and the sciences include in all cases a calculus requirement. In the 

social sciences a one-semester course of an elementary nature in 

calculus presents the ideas and techniques of polynomial calculus with 

an explanation of differentiation and integration. The theorems that 

establish results and the theoretical framework are sketchily 

presented. The science programs require the three full semesters of 

calculus, and in most cases a student is introduced to the 

foundational theorems of calculus. 

The use of mathematics courses as prerequisites and corequisites 

for other courses in specific degree programs gives the best evidence 

of the importance of the concepts of mathematics and calculus to a 

given discipline. Science courses require mathematics in order to 

present results at an advanced level in a systematic way. The ideas 

of calculus are used in a substantial manner. However, the science 

courses required in programs in the health sciences—nursing, physical 

therapy, medical technology—are basic science courses and carry no 

calculus prerequisite. 

The knowledge of mathematics, mathematical ideas, thought 

patterns, and techniques is seen as valuable to the social science 
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student and a one-semester calculus course is required in each 

program. Calculus, then, is required in the curriculum of these 

degree programs, but the techniques of calculus are not seen as 

sufficiently needed in course work to require a calculus prerequisite 

except in a single elective course in research methods. The calculus 

course can be, and often is, postponed until the senior year. 

Conclusions 

To a mathematician this review of the overall picture of the 

mathematics requirements presents no real surprises. The thorough 

incorporation of mathematics within disciplines outside of science has 

not taken place. There is much talk of the growing quantification of 

society, and science and technology increasingly affect our lives. 

For example, statistical techniques are often used to arrive at 

projections (e.g., in elections) and to present information. In spite 

of these facts, the ideas of calculus—rates of change and summation, 

their interrelationship, and the computation and assessments that can 

only be done with calculus—are beyond most educated individuals' 

reach. 

Calculus as it is known and appreciated by mathematicians plays a 

minor role in the overall curriculum. Scientists and engineers learn 

the techniques of calculus and through their work learn to appreciate 

some of the power of the ideas of calculus and the way these ideas 

interplay with those of their given disciplines. However, most other 

students take a calculus course that teaches predominantly computa-

tional skills. They only learn calculus techniques that can solve 

problems—rates of change, areas, and certain kinds of summations. 

Students best learn to understand calculus and retain their 

understanding if future coursework requires the understanding of the 

ideas of calculus in order to use those calculus techniques. This 

element is missing for most students studying outside the sciences. 

Questions 

What does calculus have to offer to the overall curriculum? What 

could be the nature of a calculus course designed for the social 

sciences or the humanities? What might be the impact of a calculus 

course that would enable educated citizens to more fully understand 

the nature of calculus, the power of its results and ideas, and the 

effect that the mathematics based on calculus has had on science and 

technology? Would a wider appreciation of calculus expand an educated 

citizen's appreciation of our technological society? 

Recommendations 

The average university student today, given the level of high 

school preparation, is not prepared to take a rigorous calculus course 

without a sequence of preparatory courses. The presence within the 

curriculum of a calculus course that presents problems that can be 
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solved only by calculus and that presents the concepts of rate of 

change and of summation, and the relationship of rate of change to 

summation would provide a view of quantitative results and of possi-

bilities for problem solving that is not present in today's 

curriculum. A calculus course that presents the ideas of calculus in 

a way that is accessible to more of today's students, one which will 

lead to an understanding of these ideas as more than formulas that 

lead to numerical results, could expand a student's understanding of 

science and the scientific results possible only after the ideas of 

calculus are known. An appropriate treatment of calculus, a course 

required of all undergraduates, might lead to a better understanding 

of aspects of the scientific revolution and the widespread impact of 

science and technology in the contemporary world. 

Most current calculus courses attempt to accomplish these objec-

tives. However, until the educational process requires a further use 

of calculus beyond an introductory course, students' command of the 

ideas of calculus cannot be assessed or reinforced. Not only must we 

write better textbooks for calculus courses, but we must also see that 

writers in other disciplines present results in such a way as to 

display directly the contribution of mathematics, and in particular 

calculus, rather than in a manner that avoids these ideas and thereby 

obscures their contribution. We must train scholars in other disci-

plines who understand and appreciate mathematics. As "writing across 

the curriculum" has come to be seen as necessary to develop students' 

power of critical thinking, "mathematics across the curriculum" is 

essential if we are to produce educated citizens not intimidated by 

science and technology. 

1 A new general education program recently adopted will require 41 

hours. The mathematics requirement will be based on two years of 

high school mathematics and college algebra will no longer meet the 

requirement. 
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Professor Douglas has asked me to do two things: first, 

describe briefly the two-year calculus course at University 

High School in Urbana, Illinois (called "Uni"); and second, 

give the perspective of a mathematician who has become a 

full-time student of educational matters. This paper is in 

three sections: first, the Uni calculus course; second, a 

modern view of how information may be coded in the human 

mind; and third, differences to be found when one compares 

different courses in mathematics at various levels. 

I. CALCULUS AT UNIVERSITY HIGH SCHOOL 

Uni students are younger than those in neighboring 

public schools, often graduating from high school by age 16 

or 17. By age 14 or 15 many have completed the study of 

typical "high school" mathematics, and consequently Uni has 

a two-year sequence in calculus, taught to juniors and 

seniors (who are typically 15 or 16 years o l d ) . The point 

of discussing student age so prominently is that Uni 

students are further ahead in mathematics curriculum than 

most U.S. students their age. How should one take 

advantage of this situation? 

27 
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We have argued that one ought not to aim primarily for 

moving through the curriculum as quickly as possible, but 

can instead best serve these intellectually-gifted students 

by seeking a deeper-than-usua1 level of understanding, and 

also by trying to help them build up ingenuity and 

strategic-planning skill by emphasizing heuristics and 

methods of analyzing mathematical problems. 

Although, hopefully, the students do not see the design 

principles that underlie the creation of the calculus 

course, it may be wise to state two or three of them here: 

1. We want students to see mathematics as a reasonable 

response to a reasonable challenge (and not as an arbitrary 

collection of meaningless rituals). 

2. We want the student's new challenges to grow out of 

their experience—which of course means that we must often 

begin by providing that experience. 

3. In general, we want to be honest with students—let 

them know where difficulties lie, how we will deal with 

them, where special attention is needed, and where we will 

defer discussion until later. 

4 . We try to recognize explicitly a number of different 

goals. Learning key concepts is clearly a major goal; 

acquiring routine skills 1s an obvious goal; developing 

more subtle or "creative" analytical skills is a goal, but 

one that is less common in mathematics instruction in 

general; being able to read sections in the calculus 

textbook on your own is a goal (and, again, one that is 
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usually neglected in most courses); being able to use a 

formula correctly even when you don't understand it fully 

is a very common goal in many mathematics courses (and in 

far too many engineering c o u r s e s ) — w e give it very little 

place in this course, but we do include it, explicitly. 

After all, 1 may want to select, say, an air conditioner 

for my home without learning much about insulating 

materials, etc., by merely "putting numbers into a 

formula". We also want students to be able to tackle 

larger problems where one single problem may take several 

days to solve, and may require looking up methods that one 

does not know from memory (such as various numerical 

analysis or successive approximation methods). Finally, we 

want students to become skillful in relating mathematics to 

real-world phenomena, especially in physics. 

Let me give some examples of what the course itself 

looks 1i ke: 

1. The first task we have tackled in recent years is 

computing the work done in compressing a spring. It is 

clear that computing the work done by a force is easy 

whenever the force is constant. In this case the force is 

not constant. Suppose we pretend it is constant—we find 

that we can (easily) get bounds on the possible error from 

this assumption. Suppose we use this assumption over only 

ha)f the d i s t a n c e — w e find that the total error is smaller. 

We can continue this strategy, assuming a constant force 

over only 1/4 of the distance. We consider the 
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possibilities in general, when one has an increasing number 

of possibly additive errors, but the individual errors are 

getting smaller. In the present case, fortunately, we can 

easily get bounds on the totaI error. We see that, given 

any allowed error, we can make the actual error smaller 

than that. 

Hence, we move on to consideration of the limit of an 

infinite sequence. 

This analysis is re-interpreted geometrically as 

finding the area of a triangle, and the method is applied 

to finding areas under parabolas and other curves. 

In the course of doing this we are led to: 

i) Finite difference methods to conjecture summation 

formulas such as 

1 + 2^ + + n'^ = n(n + 1 ) (2n + 1) ; 6 

ii) Mathematical induction for prov i ng such formulas; 

iii) The use of the Law of Trichotomy and indirect 

proofs to show that the limit of .9, .99, .999, 

... is exact 1y 1; 

iv) Consideration of the role of axioms in such 

proofs, and NOT merely intuition; 

v) Formulation for a correct definition of the limit 

of a sequence; 

vi) Proof that the limit of a sequence, if it exists, 

must be unique; 

vii) Intuitive formulations of the meaning of 

convergence of infinite sequences. 
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This is how the course begins. We would argue that it 

gives a reasonably representative view of what calculus is 

all a b o u t — a serious view, and one that we can build on for 

the rest of the two years. 

2. As a second example, cf. our next treatment of 

sequences. We want the students to see why such a thing as 

a "sequence" is worth considering, so we deal with a few 

examples: 

i) Inscribing "triangular sectors" in a circle, to 

approx i mat eTT; '/h 

M ) Considering (1 + h) for h=l, .1, .01, 

iii) Approximating v'2 by numbers of the form Ν χ 10 , 

where we look for the smallest number that is too 

large, and the largest number that is too small, 

thereby getting: 

2, 1.5, 1.42, ... 

1, 1.4, 1.41, ... 

iv) Considering: 

s ι η -• 

for 9 = 1» · U .01. ... radians. 

In each case, the students program a programmable 

calculator or computer to produce a sequence of 

approximations. The students are asked to try to imagine 

all possible "pathologies" that might appear in sequences, 

such as: 

1, 0, 1, 0, 1, 0, ... 

1, .9, 1, .99, 1, .999, ... 

I t I f 2» 3» 3 9 · · · 
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and so on. It Is left for students to try to formulate an 

appropriate definition of convergence; each candidate is 

checked against the "monsters" that have been collected, to 

see if it makes a correct delineation between "what ought 

to be called convergent" and "what ought to be called 

divergent". 

3. Finally, as an example of a "larger problem that may 

take several days to solve", here is one: Recently a 

batter hit a home run completely out of the park in 

Detroit. How fast was the ball traveling when it left the 

bat? 

Clearly, one has to begin with some estimates of the 

distances and heights involved. Clearly, also, one has to 

reinterpret the problem, turning it into one question, or 

several questions, for which reasonable answers can be 

found. (Students often, at first, confuse this with the 

problem of determining the angle of elevation of a cannon 

shot so as to maximize the distance traveled if muzzle 

velocity is fixed; they must think through how the height 

of the center field bleachers alters the nature of the 

problem.) Some of the relevant calculations are 

non-routine. (This course is described in more detail in 

Davis, 1984, and in Davis, Young, and McLoughlfn, 1982.) 
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Two questions might be raised: (i) Is this course in 

any way different from most calculus courses?, and (ii) Is 

it relevant to typical needs in other settings? Our 

observations of other courses gives a strong affirmative 

answer to the first. To answer the second question 

requires more of an act of faith, but we would argue that 

the educational values we pursue ought indeed to be 

relevant in many other settings. (Various examples of work 

done by students in this course are published from time to 

time in the Journa1 of Mathemat i ca1 Behav i or.) 

II. MENTAL REPRESENTATIONS OF MATHEMATICAL KNOWLEDGE 

Two or three decades ago the typical psychological 

study of a "concept" dealt with what I would prefer to call 

a "decision r u l e " — f o r example, wooden blocks of different 

sizes, shapes, and colors might be used. Some would be 

"selected", others would be "rejected", and the subject was 

supposed to determine the rule that shaped these decisions 

(which might be something like: "either large and green, or 

else small and not blue"). I do not think this kind of 

study correctly captured what mathematicians usually think 

of as a concept. 
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I would argue that a mathematical "concept" is a much 

larger thing, and it contains important internal structure. 

The concept of "limit of a sequence" includes: (i) 

knowledge of specific examples that make clear why one is 

studying this kind of thing; (ii) knowledge of what the 

general goals are in studying such things; and some 

background notion of which sequences ought to be "useful" 

and which seem unpromising; (iii) knowledge of several 

definitions, at different levels of intuitive power or 

formal clarity; (iv) knowledge of approx i mat i ons. and how 

the 1imit of a sequence is an essentially different kind of 

thing from a mere approximation (e.g., because of 

uniqueness); (v) knowledge of how to prove that the limit 

of a sum is the sum of the limits (when these exist), and 

other similar theorems; (vi) knowledge of how axioms are 

used in making these proofs; (vii) knowledge of how 

indirect proofs are used; and other similar matters. 

Even if you feel that this includes too much, I suspect 

most mathematicians would agree that a "concept" is some 

kind of idea, some mental representation that has its own 

internal structure. One can speak of "the concept of 

derivative", or "the concept of indirect "proof", or "the 

concept of a vector space", or "the concept of an analytic 

function of a complex variable". Just as the concept of an 

airplane involves knowing parts (such as wings, landing 

gear, engines, etc.) and the relations to one another (plus 

the fact that it takes off, flies, and lands, and so on) 
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something similar is the case with most mathematical 

concepts. 

Whereas the earlier psychological studies did not 

represent this "internal structure" in a satisfactory way, 

recent work in cognitive science has done much better, 

as shown by the approaches of liinsky, Papert, Schank, 

Charniak, Lakoff, Simon, Fan 1 man, Rissland, and others. 

What is relevant for our present concern with calculus 

seems to be perhaps five things: 

1. Learning the key concepts of calculus is one of the 

main goals of studying the subject; 

2. "Concepts", in the precision, subtlety, and 

abstraction of mathematical concepts, are not a 

common experience of human beings; most people most 

of the time get by with far less well-formed 

"concepts" as in (say) "the concept of 'war'", or 

"the concept of 'love'", or "the concept of a 

'city'"; 

3. Building an adequate mental representation for an 

important mathematical idea is often hard work; 

most people do not seem to do it easily (and people 

often try to avoid it); 

4. Alternatives—of a sort, a n y h o w — d o exist, and 

people often resort to them. Some of the most 

common alternatives focus on notation, paying scant 

regard to what the symbols mean. (This seems to be 

true from the earliest arithmetic through contour 

Integration in complex variables and the Einstein 

summation convention In tensor calculus.) 
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5. Finally, a major question facing us is whether the 

existence of these "alternatives" (or 

pseudo-alternatives) that seem to obviate the need 

to master concepts is in fact a welcome blessing or 

a harmful curse. 

When one sees large numbers of inexperienced teaching 

assistants presenting a "notational" calculus to vast 

numbers of freshmen who may not be prepared to think about 

mathematics, it can seem that only the existence of 

non-conceptual "manipulative" notational alternatives 

allows the whole enterprise to continue to operate. 

But when one looks carefully at some individual 

students, who seem never to suspect that symbols can have 

meanings. the whole scene becomes far less satisfying. In 

our own studies we have found this at every level from 

beginning arithmetic through some upper-class university 

courses in engineering, from a sixth-grader who wrote 

more than one decimal point in a single n u m e r a l — a s in 

.3 + 4. = . 7 . — with the symbol .7., whose size was unknown 

to her (as, in fact, were the sizes of 4. and . 3 ) , to 

calculus students who cannot solve the "what angle of 

elevation maximizes the distance" problem because it never 

occurs to them to consider y=0 as being in some way 

relevant to the task at hand. These students show every 

evidence of having suffered considerably from their pursuit 

of a meaningless, ritualistic manipulation of symbols. 

(Cf., e.g., Davis, 1985.) 
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I I I . TYPES OF COURSES 

We have believed that we can distinguish a number of 

different approaches to the teaching of caicuius: 

1. By far the most common is a rather superficial course 

that focuses on notation, on routine problems, and on a few 

simple applications. Students learn to write derivatives 

in relatively simple cases, anti-derivatives in easy cases, 

something about the meaning of rates of change, etc. This 

is NOT necessarily an easy course, but the difficulty comes 

mainly from the rapid pace of moving through the material, 

and from an attempt to cover a large number of details 

without much focus on main key ideas. 

In fact, one can defend such a course on several 

grounds: 

i) From the point of view of selecting students for 

advanced work, this course serves a useful 

screening role because of its "survival of the 

fittest" approach; 

ii) Many people have passed through such courses and 

emerged as successful scientists, engineers, or 

mathemat i c i ans; 

iii) If the course does not take the time to develop 

concepts and problem-analysis strategies in much 

depth, one can argue that that will come later, in 

courses in engineering and so on. 
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iv) The most extreme argument might be based on the 

claim that a superficial introductory course may 

follow an unavoidable law of human 

learning—perhaps humans MUST acquire a 

superficial, gap-and-error-1aden version of any 

knowledge before they can begin the process of 

refining and improving it. 

(So as not to confuse the reader, let me say that I still 

prefer an Introductory calculus course that tries to 

achieve much greater depth and to develop more 

problem-attack skills. But it would be foolish to act as 

if opposing arguments do not exist.) 

To return to our list of alternative types of courses: 

2. Some mathematicians think that the main alternative to 

a superficial calculus course is a course in real 

variables. This is NOT what I would propose as an 

alternative for beginning students. 

3. A common alternative to the "superficial" course is one 

where some (more-or-less) correct proofs of theorems are 

shown to students. As usually Implemented, this approach 

fails. Most students do not understand the proofs, do not 

have a clear perception of the difficulties that must be 

overcome, could not repeat the proofs, and surely cannot 

devise original proofs of this type. 
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4. A viable alternative does begin to appear when we try 

for what might be called "cognitive clarity". Key ideas 

are presented very carefully and thoroughly, so that 

difficulties are clearly perceived and so that students are 

able to see how these difficulties are met and dealt with. 

Some details are perhaps slighted, in the interest of 

clarity and emphasis—but not to the extent that anything 

serious is lost. 

5 . Further variations appear when one adds an extensive 

consideration of problem-analysis heuristics. 

6. One can also add "projects", perhaps undertaken by 

several students working together, that may combine 

modeling a real situation, writing computer programs, using 

some numerical analysis or successive approximation 

methods, etc. 

7. The most Important "additive" for me is what I think of 

as cognitive (or even epistemological) clarity. This 

involves being accurate about the nature of our goals and 

our methods. If the question Is to use axioms to achieve a 

more precise foundation for something of which we have 

intuitive or vague knowledge, that task should be made 

clear, and where possible the students should be invited 

Inside the operation and should become participants. 

Similarly for any other aspect of the work. 
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In particular, how we think about key concepts should 

be made clear, at least to some extent. How do you think 

of a function? A machine with inputs and outputs? A 

mapping? However you think of it, that should be made 

clear to students. 

This is not a common approach, and I fear that 1 may be 

misunderstood. I don't mean something very personal and 

vague and complex—many good mathematicians and scientists 

of my acquaintance have some strikingly simp1e and powerfυ 1 

ways of thinking about key ideas. Our experience is that 

students, too, can find these ideas both powerful and 

simple, if we take some pains to let them in on the secret. 
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S u s a n n a ^ E p p 
D e p a r t m e n t o f Ha t h e m a i i c a i S c i e n c e s 

D P Ρ a υ . U π > ν e r s i t u 
C h i c a g o , I l l i n o i s 6 0 6 1 4 

T h e P r o b l e m s 

E i q h t y e a r s a g o rng d e p a r t m e n t i n s t i t u t e d a c o u r s e i n 

m a t h e m a t i c a l r e a s o n i n g ; t o s e i n e a s a t r a n s i t i o n b e t w e e n c a l c u l u s 

a n d h i q h e r - i e v e l m a t h c l a s s e s . We h a d f o u n d t h a t s t u d e n t s w e r e 

e n t e r i n g o u r h i g h e r - 1 e v e I c l a s s e s w o e f u l l y u n a b l e t o c o n s t r u c t t h e 

m o s t s i m p l e p r o o f s o r t o f i g u r e o u t a n s w e r s t o e a s y a b s t r a c t 

q u e s t i o n s . T h e i d e a o f t h e c o u r s e w a s t o g i v e s t u d e n t s a b e t t e r 

c h a n c e f a r s u c c e s s i n m a r e a d v a n c e d c l a s s e s < i > b y t e a c h i n g t h e 

b a s i c t e c h n i q u e s o f m a t h e m a t i c a l p r o o f i n s u c h a w a y t h a t s t u d e n t s 

w o u l d l e a r n t o u s e t h e m t h e m s e l v e s , a n d ( 2 > b y s p e n d i n g a n 

a d e q u a t e a m o u n t o f t i m e o n t h e r u d i m e n t s o f s e t t h e o r y , 

e q u i v a l e n c e r e l a t i o n s , a n d f u n c t i o n p r o p e r t i e s r a t h e r t h a n 

h u r r y i n g t h r o u g h t h e s e t o p i c s q u i c k l y a s o f t e n h a p p e n s a t t h e 

b e g i n n i n g o f a d v a n c e d c o u r s e s . 

O v e r t h e n e x t s e v e r a l y e a r s 1 h a d p r i m a r y r e s p o n s i b i l i t y f o r 

d e v e l o p i n g t h e c o u r s e . D u r i n g t h i s p e r i o d I c a m e t o r e a l i z e t h a t 

m a n y o f my s t u d e n t s ' d i f f i c u l t i e s w e r e m u c h m o r e p r o f o u n d t h a n I 

h a d a n t i c i p a t e d . Q u i t e s i m p l y , my s t u d e n t s a n d I s p o k e d i f f e r e n t 

l a n g u a g e s . I w o u l d s a y "Of c o u r s e , t h i s f o l l o w s f r o m t h a t " o r " A s 

y o u c a n s e e t h i s m e a n s t h e s a m e a s t h a t " a n d my s t u d e n t s w o u l d 

l o o k a t me b l a n k l y . 

V e r y f e w o f my s t u d e n t s h a d a n i n t u i t i v e f e e l f o r t h e 

e q u i v a l e n c e b e t w e e n a s t a t e m e n t a n d i t s c o n t r a p o s i t i v e o r r e a l i z e d 
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that a statement can be true and its c o n v e r s e false. Host 

students did not u n d e r s t a n d what it m e a n s For a n ' i f - t h e n ' 

statement to be false, and many also were inconsistent aoout 

taking n e g a t i o n s of "and' and "or s t a t e m e n t s . Large numbers used 

the words " n e i t h e r - n o r " incorrectly, and hardiy any interpreted 

the phrases only i f or " necessary and s u f f i c i e n t " according to 

their definitions in logic. Ail aspects of trie use of q u a n t i f i e r s 

were poorly understood, especially the negation of q u a n t i f i e d 

statements and the i n t e p r e t a t J o n of m u i t i p t y - q u a n t if led 

s t a t e m e n t s . Students neither were able to apply universal 

statements in abstract settings to draw c o n c l u s i o n s aoout 

particular elements nor did they Know wiiat processes must be 

followed to e s t a b l i s h the truth o f universaliy (or even 

ex ι s t e n 1 1 a I 1y) q u a n t i f i e d s t a t e m e n t s . Specifically, tne technique 

of showing that something is true in general by showing that it is 

true in a particular but arbitrarily chosen instance did n o t come 

natural iy to most of my s t u d e n t s . Nor did many students 

understand that to show the existence of an oo.ject w i t h a certain 

property, one should try to find the object. 

The c o n c l u s i o n s I came to through observing my students are 

in substantial agreement w i t h the results of systematic studies 

made by modern cognitive p s y c h o l o g i s t s . As the B r i t i s h 

psychologist P. N, J o h n s o n - L a i r d put it in 1975: "It has .become a 

truism that w h a t e v e r formal logic may be, it is not a model of how 

people make inferences." C 5 ] ft common estimate is that under 5/ 

of people use "correct" logic s p o n t a n e o u s l y . Even Fiaget in his 

later years came to modify his view that the development of formal 
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m o d e s o f t h o u g h t w a s a n a t u r a l o c c u r r e n c e a t a c e r t a i n s t a g e o f 

a d o l e s c e n c e a n d a c k n o w l e d g e d , t h a t h i s o r i g i n a l w o r k h a d b e e n b a s e d 

o n a " s o m e w h a t p r i w i l e d g e d p o p u l a t i o n . ' [ 8 1 

I n a c o u r s e s u c h a s mine, t h e c o n s e q u e n c e s o f s u c h p o o r 

i n t u i t i o n f o r l o g i c a n d l a n g u a g e w e r e d e v a s t a t i n g . F o r e x a m p l e , 

a t o n e p o i n t i n t h e c o u r s e s t u d e n t s w e r e a s k e d t o p r o v e t h a t t h e 

s u m o f t w o r a t i o n a l n u m b e r s i s r a t i o n a l . C o n s i d e r w h a t t h o u g h t 

p r o c e s s e s a r e i n v o l v e d i n c r e a t i n g s u c h a p r o o f . H e r e i s a 

p a r t ι a 1 l i s t . 

( ! ? O n e m u s t u n d e r s t a n d , e i t h e r c o n s c i o u s l y o r s u b c o n s c i o u s l y , 

t h a t t h e s t a t e m e n t i s u n i v e r s a l , t h a t i t s a y s s o m e t h i n g a b o u t 

ai i' p a i r s o f r a t i o n a l n u m b e r s . 

( 2 ) O n e m u s t r e a l i z e t h a t t o p r o v e t h i s u n i v e r s a l s t a t e m e n t i s 

t r u e , o n e s u p p o s e s o n e h a s t w o p a r t i c u l a r b u t a r b i t r a r i l y 

c h o s e n r a t i o n a l n u m b e r s a n d s h o w s t h a t their s u m i s r a t i o n a l . 

( T h a t i s , o n e m u s t u n d e r s t a n d e i t h e r c o n s c i o u s l y o r 

s u b c o n s c i o u s l y t h e m e t h o d a f p r o o f u s i n g t h e g e n e r i c 

p a r t l c u l a r . " > 

(. 3 ) O n e m u s t k n o w b o t h t h a t i f a n u m b e r i s r a t i o n a l t h e n i t c a n 

b e e x p r e s s e d a s a. q u o t i e n t o f i n t e g e r s a n d a l s o t h a t i f a 

n u m b e r c a n b e e x p r e s s e d a s a q u o t i e n t o f i n t e g e r s t h e n i t i s 

r a t i o n a l . f T h a t i s , o n e m u s t u n d e r s t a n d , h o w t o u s e b o t h 

d i r e c t i o n s o f a d e f i n i t i o n : t h e " i f " a n d t h e o n l y i f . " A i s o 

i t i s h e l p f u l t o a s s o c i a t e a v i s i o n o f a b l u r r y t r a c t i o n w i t h 

t h e t e r m r a t i o n a l . ) 

( 4 ) O n e m u s t u n d e r s t a n d t h e r u l e f o r a d d i n g f r a c t i o n s a s a n 

a b s t r a c t u n i v e r s a l t r u t h t h a t c a n b e a p p l i e d i n a n g e n e r a l 

a l g e b r a i c s e t t i n g . 
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(5) Since virtually every step in the proof is a conclusion of 

a syllogism, one must understand how conclusions follow in 

syllogistic reasoning by applying universally applicable facts 

to particular instances. 

At another point in the course, students were asked to prove 

by contradiction that the negative of an irrational number is 

irrational. To succeed at this task, one must realize that if the 

given statement is false then there is an irrational number whose 

negative is rational. (That is, one must be aware at some level 

of consciousness that the negation of a universal statement is 

existential.) Also, of course, one needs a sense for the logical 

flow of proof by contradiction. 

At still another point in the course-, students M>ere asked to 

prove that the composition of one-to-one functions is one-to-one. 

To construct a proof of this statement, a. really sophisticated 

ability to instantiate is necessary. One must understand that 

when a function f is one-to-one, the statement "if 8(x )=f(x^) 

then *i~H2 n o * ̂ 5 for all x^ and x^ when x^ happens to be 

called g(x^) and x^ happens to be called g(x^)• 

As noted, the above understandings need not be at a conscious 

level. Lots of working mathematicians have never studied formal 

logic and get along just fine. Unfortunately, that is part of the 

problem. On the one hand we have the professor for whom formal 

reasoning is second nature and who is usually not even consciously 

aware of the formal logical components of mathematically correct 

arguments. And on the other hand we have a mass of students for 

most of whom hardly any of the logical component elements of 
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arguments are understood on an intuitive level, 1 he lack of 

insight of the professor to students' problems with logic and 

language are manifested in many ways. For example, it is common 

nowadays to omit the words "only if" in formal definitions. 

Supposedly this is in the interest of simplicity.' In fact, in 

my experience, if one hopes to impart to students a useful working 

knowledge of a definition, it is not only necessary to state the 

definition in "if and only if" form but also to state the 'if" and 

the "only if" directions as separate sentences and to emphasise 

the universal character of each direction. For example, in giving 

the definition of rational number one needs to explain both that 

whenever a quantity in a discussion is known to be rational then 

it must be a quotient of two integers and also that whenever a 

number is known to be a quotient of two integers then one can 

infer that it is rational. Nor is it sufficient to state that an 

irrational number is one that is not rational. One must go on to 

explain that this means the number cannot be expressed as a 

quotient of any two integers. 

Similarly, it is common in mathematical writing to leave out 

or to veil the presence of universal and existential quantifiers. 

As Alan Bundy states when introducing the concept of quantifier in 

his book The Computer Modelling of Mathematical Reasoning 121: 

"Variables in mathematical expressions often have ambiguous 

status, whose resolution depends on the context." He then 

compares the x's in the two sentences 

2 2 
(x-y)(x+y) = χ -y 

and 

2 
Solve χ +2x+i = Ο for χ 
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e x p l a i n i n g t h s t i n t h e f i r s t c a s e t h e u n i v e r s a l u s a g e i s 

o r d i n a r i l y i n t e n d e d M ' h i l e i n t h e s e c o n d c a s e t h e e x i s t e n t i a l u s a g e 

i s m e a n t , He n e x t g i v e s a n e x a m p l e o f a s i n g l e s e n t e n e e in w h i c h 

t h e t w o u s a g e s a r e c o m b i n e d : 

2 
S o l v e a x + b x + c - 0 f o r x -

Now t o a m a t h e m a t i c i s n t h i s p r o b l e m i s p e r f e c t l y c l e a r B u r t o a 

h i g h s c h o o l a l g e b r a s t u d e n t t h e s t a t u s o f t h e v a r i a b l e s m a y s e e m 

m y s t e r i o u s i n d e e d . 

I m p l i c a t i o n s f o r t h e T e a c h i n g o f C a l c u l u s 

T h e i m p l i c a t i o n s o f t h e s e o b s e r v a t i o n s f o r t h e t e » c n i ng o f 

osioulus a r e p r o f o u n d , C a l c u l u s h a s s o m a n y d e f i n i t i o n s ; sn n m i j 

t h e o r e m s , s o m a n y appl i c s t i o n s , s o m u c h n o t a t i o n «so m u c h " a b u s e 

o f l a n g u a g e " ( a s t h e F r e n c h c a l l i t ) t s o m u c h l o g i c s ! c o m p l e x i t y 

s o m u c h a b s t r a c t i o n . C o n s i d e r a s t u d e n t w h o d o e s n o t e v e n krrnw 

t h a t t o p r o n e 3 s u m o f t w o r a t i o n a l n u m b e r s i s r a t i o n a l o n e q t a r t ? 

w i t h t w o a r b i t r a r i l y c h o s e n r a t i o n a l n u m b e r s , How c a n s u n n a 

s t u d e n t b e g i n t o u n d e r s t a n d e v e n t h e m o s t " i n t u i t i v e " e x p l a n a t i o n 

t h a t t h e l i m i t o f t h e s u m o f a n y t w o f u n c t i o n s ( w h i c h h a v e ! t w i t s ) 

i s t h e s u m o f t h e i r l i m i t s ? N o t t o m e n t i o n t h e f u n d a m e n t a l 

t h e o r e m o f c a l c u l u s * 

I t s e e m s t h a t m o s t m a t h e m a t i c s p r o f e s s o r s a t m o s t c o l l e g e s 

a n d u n i v e r s i t i e s a r e a w a r e o f a n i n t e l l e c t u a l g u l f b e t w e e n 

t h e m s e l v e s a n d t h e i r s t u d e n t s . L a s t y e a r a t t h e J o i n t H a t h e m a t i c s 

f l e e t ι n g s t h e A s s o c i a t i o n f o r Women i n f l a t b e m a t I C S s p o n s o r e d an 

p a n e l w h i c h f e a t u r e d f i v e m a t h e m a t i c i a n s w h o h a d l e f t a c a d e m i a f o r 

e m p l o y m e n t i n b u s i n e s s o r i n d u s t r y . O n e p a n e l i s t a f t e r a n o t h e r 

s p o k e o f b e i n g d i s i l l u s i o n e d w i t h t h e q u a l i t y o f s t u d e n t t h e y h a d 

h a d t o t e a c h d u r i n g t h e i r p e r i o d s a s a c a d e m i c s . M a r i a ΒI a w e 
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( D i s c r e t e f i a t h e m a t i c s i l a n a g e r a t t h e IBM S a n J o s e R e s e a r c h 

L a b o r a t o r y . ' w a s e s p e c i a l l y e l o q u e n t a s s h e s p o k e o f h e r d e s p a i r 

a n d f r u s t r a t i o n a t t h e t h o u g h t t h a t a i l t h e y e a r s s h e had. s p e n t i n 

g r a d u a t e s c h o o l d e v e l o p i n g h e r c a p a c i t y f o r a b s t r a c t t h o u g h t w o u l d 

b e w a s t e d i n a n e f f o r t t o t e a c h s t u d e n t s w h o w o u l d n o t a n d c o u l d 

n e v e r l e a r n c o l l e g e m a t h e m a t i c s . fcihiie i t w a s n o t t o o s u r p r i s i n g 

t h a t t h e p a n e l i s t s s p o k e s o d i s p a r a g i n g l y i t h e y h a d a f t e r a l l 

c h o s e n t o i e a u e c l a s s r o o m t e a c h i n g ) . w h a t w a s s u r p r ι s i n c . w a s t h e 

l o u d l y s y m p a t h e t i c r e a c t i o n a t t h e l a r g e a u d i e n c e . 

P r o f e s s o r s r e a c t t o t h e g u l f b e t w e e n t h e m s e l v e s a n d t h e i r 

s t u d e n t s i n d i f f e r e n t w a y s . O n e r e a c t i o n i s t o i g n o r e i t . t o 

s t a t e t h e d e f i n i t i o n s a n d p r o v e t h e t h e o r e m s a s i f t h e s t u d e n t s 

w o u l d u n d e r s t a n d t h e m a n d w e r e m a t u r e e n o u g h t o b e a b i e to d e r i v e 

s i m p l e c o n s e q u e n c e s ( s u c h a s p r o b l e m s o l u t i o n s ) o n t h e i r o w n . 

T h i s a p p r o a c h i s o f t e n a s s o c i a t e d w i t h t h e c a l c u l u s i n s t r u c t i o n o f 

20 t o 3 0 y e a r s a g o a n d i s f o n d l y r e m e m b e r e d b y m a n y 

m a t h e m a t i c i a n s . ( I t i s b i t t e r l y r e m e m b e r e d b y m a n y p h y s i c i s t s a n d 

e n g i n e e r s . ) A n o t h e r r e s p o n s e , w i d e l y a d o p t e d t o d a y , i s t o e x p o s e 

t h e b a s i c c o n c e p t s o f c a l c u l u s a t a m o d e r a t e l y h i g h l e v e l , 

e m p h a s i z i n g i n t u i t i o n , b u t f o c u s p r i m a r i l y o n s k i l l s , a n d o n l y 

t e s t s t u d e n t s o n t h e i r a b i l i t y t o p e r f o r m c e r t a i n m e c h a n i c a l 

c o m p u t a t i o n s i n r e s p o n s e t o c e r t a i n v e r b a l c u e s . I n t h i s a p p r o a c h 

t h e v a s t m a j o r i t y o f s t u d e n t s i n d u l g e t h e i r p r o f e s s o r s b y 

l i s t e n i n g q u i e t l y t o t h e i r o f t e n i n s p i r e d , a n d b e a u t i f u l l y 

i n t u i t i v e e x p l a n a t i o n s and . t h e p r o f e s s o r s r e p a y t h e i r s t u d e n t s 

c o u r t e s y b y m a k i n g t h e i r e x p l a n a t i o n s b r i e f , s p e n d i n g l o t s o f t i m e 

d e m o n s t r a t i n g p r o c e d u r e s t o s o l v e r o t e p r o b l e m s , a n d n e v e r a s k i n g 

s t u d e n t s t o d o a n y t h i n g o n a n e x a m t h a t r e q u i r e s g e n u i n e k n o w l e d g e 
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of concepts. 

Of course, there are good reasons for giving attention tc the 

mechanical aspects of calculus. The best is based on the sound 

pedagogical promise that understanding in mathematics C O R F S in 

pieces. Often ; iearning to use certain techniques mechanically 

helps one progress to conceptual understanding. But this approach 

becomes p e r v e r t e d if in p r a c t i c e oonoeptusl u n d e r s t a n d i n g is 

indefinitely postponed. Another benefit of emphasizing mechanics 

is that such activities as practice in formal differentiation and 

integration improve students' pattern recognition skills. A 

possible third argument in favor of an emphasis on calculus 

mechanics is to prepare students for courses in physics and 

economics and engineering. But I won't make this argument. For 

too many years I have heard complaints from my colleagues in other 

departments about the mathematical knowledge of the students we 

send them. Invariably, the "simple" examples they give as 

evidence that our students can't perform involve being able to 

thinks not just compute on cue. 

The fact is that the state of most students' conceptual 

knowledge of mathematics after they have taken calculus is 

abysmal. The most dramatic formal studies on this subject have 

been done by John Clement, Jack Lochhead, and others in the 

Cognitive Development Project at the University of Massachusetts 

at Amherst. They found that a large majority of calculus and 

post-calculus students tested at universities throughout the 

country could not set up or even correctly interpret simple 

proportionality equations, In summarising the results of their 

many experiments, Lochhead wrote: "many college students are not 
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facile at r e a d i n g or w r i t i n g simple a l g e b r a i c equations and at a. 

deeper I eue ι "students seem to iack any we i ί defined, notion of 

variable or of function. " C 6 J Currently Ha das Kit; is studying 

student d i f f i c u l t i e s witn c a l c u l u s by examining their s p o n t a n e o u s 

written q u e s t i o n s . Among her findings are the m i s u s e of course 

vocabulary by students (for example, "How do you find the tanqent 

to the slope? or Any number- has no d e r i v a t i v e " * , the inability 

to instantiate Known" theorems in new s i t u a t i o n s (for- example, 

asking for the rule to d i f f e r e n t i a t e a function of the form 

f g 
^ ) , and lack of u n d e r s t a n d i n g of d e f i n i t i o n s , not .just of 

s o p h i s t i c a t e d concepts such as limit bat also of more fundamental 

ones such as secant and tanqent. L 9 ] 

Γα me it seems i n c o n t r o v e r t i b l e that the primary aim of 

calculus instruction should be the d e v e l o p m e n t of conceptual as 

opposed to purely mechanical u n d e r s t a n d i n g . In this computer age. 

software packages are now or soon will be available to perform any 

standard calculus computation including taking symbolic 

d e r i v a t i v e s and integrals and. evert testing series for c o n v e r g e n c e . 

People using these packages need some computational facility 

themselves (just as e x p e r i e n c e doing a r i t h m e t i c by hand is needed 

for a person to make best use of a c a l c u l a t o r ) . But the main 

requirement to use calculus p a c k a g e s e f f e c t i v e l y is firm 

conceptual u n d e r s t a n d i n g of the subject m a t t e r . W i t h computers to 

take care of mechanical d e t a i l s , the premium is on the a b i l i t i e s 

to abstract, to infer, and to translate back and forth between 

formal m a t h e m a t i c s and. real world p r o b l e m s . Yet these are 

abilities of the highest order, normally a s s o c i a t e d with a small 

number of students of exceptional talent. 
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Suggest ions 

Never in history have mathematicians been called upon to 

teach so much mathematics to so many students. Under these 

circumstances, it should not be surprising that new pedagogical 

methods may be necessary. The shortcuts and gaps that can be 

followed and filled in by students of unusual ability may not be 

n e g o t i a b l e far those less f o r t u n a t e . Τα a m u c h greater extent 

than is currently the case, there is a need to respond to 

students' lack of sophistication; not by giving up but by helping 

t hem . 

One possibility is to modify precalculus courses to make them 

include additional work to increase students' logical maturity. I 

see this as a potential benefit of the movement to introduce 

discrete mathematics early in students' undergraduate careers. 

Within the context of a course in calculus, I would suggest the 

following measures. Some (perhaps all) may be controversial. I 

have found all of them useful. 

(1) State logically complex sentences (such as the definition 

of limit) and pose problems in a variety of equivalent ways. Left 

to themselves, students usually do not turn concepts over in their 

minds to view them from many angles. For instance, one could ask 

students to 

"Describe the values of the expression * * when 
Cx-1 > 

χ takes values very close to 1" 

as we 11 as to 
. . 1 im < x + l) 

Find 
x-+l , ..2' 

(x-I) 
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< 2 > When l e c t u r i n g , write m o r e o r iess i n c o m p l e t e s e n t e n c e s . 

W h e n t h e w o r d s " i f-then" o r " f o r a l l χ i n t h e i n t e r v a l L a . b J " a r e 

not w r i t t e n o u t , t h e y w i l l n o t a p p e a r i n s t u d e n t s ; n o t e s , n o r w i l i 

t h e y b e s u p p l i e d m e n t a l l y . 

( 3 ) 11a Κ e a n e f f o r t to c l a r i f y s t a t e m e n t s w h o s e quant i f i c a t i o n 

i s i m p l i c i t . F o r e x a m p l e , t h e i m p l i c i t q u a n t i f i c a t i o n o f t h e 

p h r a s e s o l v e the e q u a t i o n g o e s h a n d - i n - h a n d w i t h a m e c h a n i c a l 

a p p r o a c h b a s e d o n f o r m a l s y m b o l m a n i p u l a t i o n r a t h e r t n a n a 

c o n c e p t u a l a p p r o a c h b a s e d o n s t u d y i n g n u m b e r s arid the ir 

p r o p e r t i e s . L e o n H e n k i n s u g g e s t s t h a t t e a c h e r s o f b e g i n n i n g 

a l g e b r a s t u d e n t s a v o i d u s i n g p h r a s e s l i k e " S o l v e t h e e q u a t i o n 2 x - r 3 

= O'" a n d i n s t e a d s a y " F i n d a n u m b e r χ s u c h t h a t 2 x + 3 = O. A n d 

i n s t e a d o f "Solve a x+b = O" h e s u g g e s t s " I f a a n d b a r e n u m b e r s 

and a / 0 . f i n d a number χ such that a x + b = O . " 1 4 J O r , i n s t e a d o f 

asking students to solve equations, one could ask them q u e s t i o n s 2 

like "Are there a n y r e a l numbers such that χ -3x+2 = O? o r s u c h 

that χ -x + 1 = O ? " or "such that y x + 1 + y ' 2 x + i = 2 ? ' College 

calculus students would, also benefit from occasionally having 

problems phrased in these ways. 

(4) Avoid unnecessary notation and terminology. For most 

students, each mathematical term and symbol is a hurdle to be 

crossed. Let's not put any more in their way than we have to. 

(5) Try to avoid notational and linguistic 'abuses" as much as 

possible. In the long run, it is worth the extra effort to say 

"Let f be the function defined by the rule..." rather than "Let 

f(x) be the function..." 

(6) Frequently clarify lines of argument by explaining the 

underlying logic. 
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(?) (lake students m e m o r i z e ρ » e c ι s e ι y - w o r d e d d e f i n i t i o n s and 

perhaps theorem s t a t e m e n t s also, M e m o r ι sation is greatiu 

underrated as a pedagogical tool, At the least, m e m o r i z a t i o n of a 

definition or theorem forces s t u d e n t s to read it carefullu; at 

best, it e n c o u r a g e s them to understand it (since it is easier to 

memorize something intelligible than g i b b e r i s h ) . Also 

m e m o r i z a t i o n of precise language gives students e x p e r i e n c e in 

using it and. m a k e s it necessary for them to pay attention to words 

like "if" 3nd "then that they m i g h t o t h e r w i s e ignore. 

iB> Develop or seek out problems to act as cognitive biidqet 

to abstract u n d e r s t a n d i n g . 1 have found, for example, that 

students are fairly capable of u n d e r s t a n d i n g concepts in pureiy 

geometric terms. They do not seem to have problems learning to 

d i s t i n g u i s h between the graphs of c o n t i n u o u s and d i s c o n t i n u o u s 

functions or between concave up and concave down. The 

d i f f i c u l t i e s arise when a n a l y s i s is added to the picture. One 

reason is that, in mu e x p e r i e n c e at least, beginning calculus 

students do nor know the abstract d e f i n i t i o n of graph of a 

function. i hey can pi ot and. connect points for a function given 

by a specific formula, but they do n o t · k n o w that far a general 

function f, t" < χ ) is the height to the g r a p h of f at x. Now since 

most calculus e x p l a n a t i o n s are given in terms of generic 

functions f and generic' points κ. this s e r i o u s l y inhibits 

s t u d e n t s ' ability to follow text and c l a s s r o o m exp i a n a t i o n s . 

ίο counteract this difficulty, i would suggest adding 

problems of the following type to the usual cuilection on 

graphing. 
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L e t £ a n d q be fur i i : t i o r i c l e f ι n e d t o r a i i r e a ι n u m b e r s . 

( a > s u p p o s e f < 4 ί = y . W h a t o o i n t m u s t i i e a n t h e q r a p n o t i -

( b ) S u p p o s e t h e p o i n t ~ 1 , 2 > l i e s o n t r i e g r a p h o i f · w h a t c a n 

b e i n f e r r e d , a b o u t f y 

i. c ) S u p p o s e t h e p o i n t l J , α (, j > > t i e s o n t h e g r a p h o f t . w h a t 

c a n b e i n f e r r e d a b o u t t h e r e i a t i o n b e t w e e n f a n d q v 

i d / S u p p o s e t h e g r a p h s o f f a n d g h a v e a. p o i n t i n c o m m o n , s a g 

i x _ . u „ > . W h a t c a n De i n f e r r e d a b o u t t h e r e l a t i o n b e t w e e n 
Ο " Ο 

f ( χ ) a η d. q ι χ _ >' J 

υ - u 

L a t e t , j u s t p r i o r t o t h e i n t r o d u c t i o n c/t t h e a n a l y t i c 

d e t ι η 11 i o n ο f t h e s l o p e o f t h e t a n g e n t ι j n e , o n e w o u 1 d. a s s i g n 

e x e r c i s e s s u c h a s t h e s e , 

i . L e t f b e t h e f u n c t i o n w h o s e g r a p h ι s g i v e n b e l o w . 

( a ) L a b e l t h e p o i n t s i J. . ί i 2 > ) a n d i ΐ . f ί 4 ) J a n t h e g r a p h a r i i 

d r a w t h e s e c a n t l i n e t h r o u g h t h e s e t w o p o i n t s 

( b > f i n d a n e x p r e s s i o n f o r t h e s t u p e oi t r i e r e c a n t , ι » n e 

t h r - o u Q h t h e p o J n t s ( 2. , f '. 2 ι ) a n d ( 4 , £ ( 4 ) ) . 
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2. Let f be the function whose graph is indicated below and 

suppose h is a (small) positive number. 

(a) Label the points (3,f(3)) and (3+h,f(3+h)) and draw the 

secant line through these points. 

(b) Find an expression for the slope of the secant line 

through the points (3,f(3>) and (3+h,f(3 + h)). 

3. Let f be the function whose graph is indicated below. 

Suppose also that χ is a number and h is a positive number and 

f takes values at χ and x+h. 

(a) Label the points (x,f(x)> and <x+h,f(x+h>) on the graph 

of f and draw the secant line through these points. 

(b) Find an expression for the slope of the secant line 

through the points (x,f(x)> and (x+h,f(x+h)). 
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4. Let χ be the number represented by the labeled point on the 

number line below and suppose h is a negative number. Indicate 

and label a reasonable choice of point to represent the number 

x + h. 

χ 

(9) Do not be satisfied with narrow understanding of abstract 

principles, Throughout their mathematical careers students have 

great difficulty learning universal facts in their generality. 

(Logically speaking, they have difficulty instantiating universal 

statements over the full extent of their domains.) Much 

mathematics instruction takes these problems into account, For 

example, precalculus texts often have exercises that are graded 2 

with problems like "Factor χ +5x+4" in the "ft" set, "Factor 

3x 2 -14x+8" in the "B" set and "Factor 24x 2 -31xy-15y 2 " in the "C" 

set. ill In calculus, also, concepts can be understood at "ft," 

"B," and "C" levels of generality. For example, in a study of the 

chain rule an "ft level" problem would be 

"Find 4̂  for y = <3x+2> 2," 
dx 

a. "B level" problem would be 

"Find ^ for y = -/sin 2x," 
dx 

and a "C level" problem would be 

4 
"Assume f is a differentiable function. Let y = [f(x)I and 

suppose f'(l) = 5 and jjjl = -160. Find f(l). C3I 
' x = l 

It is ironic that the same students who, as second graders, 

were judged needful of spending a full year on two-place addition 
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before m o v i n g to the complexity ot the three-pi ace case are as 

18-year olds expected to g e n e r a l i s e in one homework ass ignment 

from "A level ' chain rule problems to C level ones. Perhaps 

problems of increasing difficulty could be assigned and discussed 

over a period of several days, c o n c u r r e n t l y with other topics it 

necessary, to allow time for the abstraction process to occur. 

(10) Include questions that test conceptual u n d e r s t a n d i n g on 

homework and on exams. In [?J Jean Pedersen and Peter Ross make 

some excellent s u g g e s t i o n s of such p r o b l e m s , w h i c h test 

u n d e r s t a n d i n g both of geometric and analytic aspects of concepts 

(11) Take r e s p o n s i b i l i t y for all aspects of students 

mathematical d e v e l o p m e n t . We do not help our students when we 

ignore "mere' algebra m i s t a k e s .just because a i g e b r a is not the 

subject of our course. 

( 12) Give students o p p o r t u n i t i e s to speak and write using the 

course vocabulary. 

Ca> Insist that students give complete, coherent answers to 

questions on e x a m s . No favor is done s t u d e n t s ' intellectual 

deve l aprnen t by giving full credit for a few s c r i b b l e s . 

(b) Have students present solutions to problems at tne board 

occasionally, and insist that they explain their work aloud to the 

rest of the c l a s s . You may be appalled by their misuse of 

language, but don't despair. Just correct the worst m i s t a k e s 

courteously and find something to praise. Host people do not 

learn to speak a foreign language by attending lectures and doing 

grammar e x e r c i s e s . They have to make fools of themselves by 
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talking out loud. The same goes for learning the language of 

mathemat ics. 

(c) Occasionally break classes up into small groups for 

collective problem-solving experiences. Even if this is done only 

once or twice a. semester, it can have impact on students* ability 

to put their mathematical thoughts into words. Collaboration also 

encourages students to explore new ideas more boldly than theu 

would on their own. 

(d) Every once in a while restrain the impulse to give the 

answer to a question on the homework as soon as it is asked. 

Instead, open the question up for class discussion, (This works 

only for carefully selected problems.) In one of the liveliest 

classes 1 have ever taught, a student asked rne to answer the 

following homework question. 

"Determine whether the following statement is true, and 

support your answer by giving a proof or a counterexample; 

If a, b, and c are integers and a^b and a^c then a^b-c." 

Instead of complying, I told the class to imagine they were the 

mathematical research division of a. large company and had been 

given the job, as a group, of figuring out the answer to this 

question. Important decisions depended on the answer and the 

company was counting on its being correct. In the discussion that 

followed, I acted as moderator. I guided, but I did not reveal 

the answer. fit one point the board contained two false proofs, a 

false counterexample, and a true counterexample. (I am happy to 

report that, overwhelmingly, the students were convinced by the 

true counterexample when it finally appeared.) During the 
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discussion almost all the logic we had covered to that point in 

the course was reviewed and its importance to the determination of 

the mathematical truth of the situation was apparent. There was 

also a lively follow-up discussion on the nature of mathematical 

discovery. 

Conclusion 

If all the suggestions made above were incorporated into the 

teaching of calculus, it would probably be impossible to cover as 

many topics as is now standard. The question is: What i s the 

trade off? If it comes to a. choice, will we settle for 

superficial Knowledge of a lot or deeper understanding of less? 

Perhaps less is more. 

Do I think that by following these suggestions a new breed of 

mathematical super-students will be created? Certainly not. But 

I do think there are many students "out there" of reasonable 

mathematical aptitude for whom mathematics is more mysterious than 

it needs to be. These are the students we can affect with better 

pedagogy. I think it is worth trying. 
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A liberal education develops one's wide spectrum of intellectual capabilities, and mathematics 
has traditionally played a major role in general education. Why not today? More precisely, why 
does everyone readily admit to a critical need for the study of mathematics on the one hand and, on 
the other hand, avoid it at all possible cost? The author contends that a sizeable part of the answer 
lies in the education vs training debate, and the mathematics community has let its courses, 
especially its calculus courses, become techniques-and-tools training courses — thus, violating its 
general educational role. 

Historically, calculus has been the end course in the fully educated individual's liberal 
education, and it suffers most from a dilution of mathematics requirements. In this paper, we hope 
to reestablish the creditable role of calculus in a liberal education and present a course philosophy 
that will maintain its position. Thus, our successive tasks will be to defend the course's role, 
critique the faults in the current presentations, and outline possible corrections. 

1. General educational requirements and calculus. 

Initially, let us examine the theme that mathematics deals with the subtle properties of simple 
systems. This contrasts quite sharply with the companion observation that the sciences deal with 
simple properties in complex systems. A linguist would note this difference immediately from the 
languages used by mathematicians as opposed to other scientists. In the case of mathematics, the 
terms are often very simple — sets, groups, functions ~ and yet the meanings are most elaborate in 
their richness and subtlety. In distinct contrast, scientists use highly complex terms with 
underlying simple meanings. The "cultures" are as marked by their languages as the Hawaiian 
culture is by its lack of a word for weather and the Eskimo by its hundred different words for cold. 

If subtle studies of simple systems is the basic fiber of mathematics, then what are the general 
educational and course structural implications? A common study pattern error will illuminate some 
of these elements. To wit, Johnny has two exams: one in biology and the other in mathematics. 
He studies the complex vocabulary of his biology course and he gets a rather simple understanding 
of the complex terms. He takes the biology examination and he applies his cursory understanding 
of the complex terms to some standard and direct applications. He scores very well. Then he walks 
across the hall to his mathematics examination with a simple understanding of all the mathematical 
terms. Since the terms are common words and typically used in many other contexts, he spends · 
little time on his mathematics test — after all he had to bone up on all the unusual spellings in 
biology! The test requires — as it should — an analysis of some of the subtle properties of the 
simple terms and Johnny blows it! His parents and many others complain, and the mathematics 
instructor is reprimanded by the administration for ineffective teaching. As a result, the future 
mathematics tests will tend to be simple applications in very standard settings — after all 
mathematics is a basic skill. The end result is "mimicry mathematics" — the teacher works in class 
and then tests essentially the exact same problems and techniques. As a result, Johnny gets a good 
mathematics grade, but he does not develop the mental processes that are needed in thought 
provoking situations, and a less well-educated individual is the product. 

61 
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In this context, calculus instruction has drifted into a similar pattern; the current "show and tell" 
practices violate the course's basic role. What is that role? Calculus provides answers to the very 
simple question, "How do things change?" The answers are rich and more subtle than anyone can 
imagine. Civilization has benefited immensely by the search for answers to this question, and each 
individual will be a better educated person for having participated in parts of this search. It is this 
development of the ability to make intellectual inquiries and synthesize one's observations in the 
dynamics of change that is calculus' strength and natural position. In almost the same manner that 
a philosophy student never expects to answer the question, "What is truth," the mathematics 
student should not be after pat answers and routine techniques. Both the mathematics student and 
the philosophy student should see the journey as their reward, and their own personal 
understanding of the nature of thoughts and things as their real goal. 

The history of great ideas is a basic component in one's general education, and calculus is truly 
one of the great intellectual achievements of mankind. The successive discoveries of Descartes, 
Newton and Cauchy should be studied for their beauty and rich history alone. Through the 
historical review of intellectual ideas, general history courses claim to give students a valuable 
perspective on contemporary events. Surely there are ample problems in today's economic crises 
and overpowering technological changes to warrant a request that educated people understand the 
history of how mankind learned to quantify and analyze change. 

A historical prespective also gives us a better understanding of the essential role of the calculus 
in everyone's general education. Since the laws of nature are differential equations, it is obvious 
that calculus and the age of modern science had to arrive in that order. The discovery of calculus 
introduced and opened the way for scientific understanding. In a like manner, an individual is 
educationally unable to fully function in a scientifically dominated world without an ability to 
understand the language of scientific relations. 

Since change is a fundamental element in every conceivable human activity, a correctly 
structured calculus course should have universal importance and appeal. The mathematics 
community has been a willing participant in the public sham that calculus is primarily for science 
and engineering students, and it is past time for us to stand up and say that the study of change is 
essential to everyone's intellectual development! Many foreign cultures see the study of 
mathematics as much a part of one's general development as, say, literature, and students in foreign 
countries continually study mathematics. Strangely, though, in the United States middle level 
mathematics is reserved for a selected clientele, and the public does not see mathematics as a 
universal requirement after the initial high school years. Could it be that we have made calculus 
into a course for the few and missed its basic nature by our own tunnel vision? 

If calculus is to concentrate on the study of change — how do things change! They change as a 
result of something internal, something external, or something that can be "nothing at all." In the 
respective cases, one gets compounded growth and decay, the universal oscillatory cycles of 
nature, and constant change. In the latter case, nothing is being added to effect the change and, 
along with everything else, the change doesn't change either! 

Change inherently suggests connections and that requires that we digress for a moment to 
discuss functions. Maybe the harm starts when the beginning algebra teachers fail to give the 
students a conceptual understanding of variables. For many students, variables are simply letter 
symbols used in manipulative practice exercises. As a result, functions are ~ as the students have 
been carefully coached to say ~ ordered pairs of these things. They miss completely the idea that 
functions capture all the spirit and essence of connections and interdependencies. Functions are, in 
one sense, simple connections; in a larger sense, they embrace all the subde elements of input and 
output, control and observations, and cause and effects. They model the world itself. But most 
students miss this and see mathematics as tools and cold abstractions that have no relevance or 
meaning. Accordingly, the dynamics of these connections, i.e., calculus, is an equally 
meaningless exercise in symbol manipulation, hardly a course that one could justify as being an 
essential part of each student's general education requirements and surely a specialty course that is 
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reserved for people who manipulate symbols. 
Let's take a very elementary result from calculus and, through it, give an example of how the 

course could contribute to one's liberal education. If y = sin x, then y" = -sin x. In this one 
simple result we can note, and the liberally educated person should be able to note, the basic 
character and patterns of nature's fundamental cycle. In this case, the cycle could be one from 
business, or one from science, or one from history. The result is the same — a cycle is driven by 
forces that are exactly opposite from its state. That is, prices are the lowest when supplies are the 
highest, distortion peaks when the resistance is the weakest, and social outcries are their loudest at 
the beginning of the end. In even simpler terms, people tend to scream on a roller coaster when the 
falling is essentially over. And more importantly, in the ebb and flow of economic cycles, leaders 
would be well advised to time their corrective actions by the shifts in the trends and not by the 
vocal levels of the populations. This kind of insight into the character of natural cycles should be 
part of everyone's basic education. 

Countercyclical investors understand the natural forces in the stock market and they wisely "go 
against the crowd" in their buy-and-sell activities. Data reported on the television program, "Wall 
Street Week," on October 18,1985, supports the wisdom of the countercyclical approach [4]. The 
Investors Intelligence Poll of Market Advisors noted that popular opinion may be the "best" 
indicator of the "worst" action possible. 

Advisors Predicting Future Changes 

Date Dow Average Decline Increase in Dow Time interval 

Aug. 2, 1963 689.38 91.4% +250 in next 21 months 
Jan. 12, 1973 1047.49 62.6% -470 in next 23 months 
Dec. 13,1974 577.60 63.5% +425 in next 14 months 
Jan. 14, 1977 983.18 78.8% -235 in next 14 months 
Aug. 13, 1982 784.34 65.7% +500 in next 15 months 
Oct. 18, 1985 1368.84 61.9% ??? 

[Added note: By February 27,1986 the market had increased 345 points to a high of 1713.99] 

Calculus is a conceptual subject that gives special insight into the behavioral fundamentals of 
other processes as well. If you want to capture the essence of a process, then note its operating 
state, pay close attention to changes in that state, and most notably, try to judge the nature of the 
changes in that change. If you do this, then you will have captured position, direction and trend — 
the key elements in the behavior of any system. A student in calculus would readily recognize 
these as the function, its derivative and its concavity. But how many of our typical calculus 
students would characterize functions and their first and second derivatives as the items that 
quantify the essential behavior of any process? 

Why is it that verbal descriptions seldom go past the first and second order effects? Assuredly, 
evening television newscasters talk at great length about increasing and decreasing rates of 
inflationary increases, and business publications are loaded with charts that plot values of the 
percent change. But you would be hard-pressed even to name, in nonmathematical terms, anything 
that describes third derivative effects. It might be that human insight is limited by traditional 
discussions that seldom go past first and second order effects. And it might be that our inner ear 
has an accelerometer, never physically sensing anything beyond acceleration, and our vocabulary 
shows it. This is the character of how we discuss change, and this analysis should be a part of 
everyone's development Later observations that physics deals with velocity and acceleration; 
statistics deals with means and standard deviations; and projective geometry deals with segment 
ratios and cross ratios (ratios of ratios) will clearly be natural instances of first and second order 
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effects being emphasized. Educated people would have discussed first and second order effects in 
their calculus courses and would have seen them to be sufficient; thus, precluding any need for the 
inclusion of third and higher order effect in any of their other studies. 

For every yin there is a yang, and for every study of change there should be a study of 
"non-change." This is the section of calculus that fails the most in its attempt to reach its general 
educational goals. Through the years, integration as area and volume have become a means in 
themselves. Anyone who has taught a senior level course in probability theory is all too familiar 
with the long struggle that it takes to teach probability and integration theory to students who cannot 
conceptualize the integral as anything but areas and volumes. Not only are we failing in the general 
education of students, we are failing our own educational interests as well! 

In a course that develops the measurement of change, it would be most natural to ask for 
techniques that quantify the removal of change. The topic could easily be introduced by a review of 
the ideas of averages, i.e., the measure of a collection of events when the changes or variations in 
values are "removed." Students would readily note that you "add them up and divide by n." What 
more is the Riemann Sum? Maybe the initial examples and problems would have to be carefully 
picked to be over unit intervals, but that is a trivial organizational detail. The mean value theorem 
for integrals is now perfectly natural — "somehow, somewhere, everything has an average." And 
all the mystery disappears from all those little rectangles being added; the volume is naturally the 
average cross section times length. 

Later, weighted averages can be discussed and the integral extended to even more powerful 
ways of measuring the removal of variability and change. This suggests that probability, i.e., the 
quantification of chance, is a natural area to use as a replacement for substantial parts of the sections 
on integration techniques. Once the integral has been introduced as an average and Riemann Sums 
explained in terms of many ways to use averages, e.g., heights, cross sections, pressures; then 
numerical values for definite integrals would be routinely found in many varied contexts. Weighted 
averages would then be a natural extension and probability could be a rich addition to the course. 
Microcomputers would permit the easy calculation of the numerical values of the definite integrals 
and class and homework time would be devoted to the analysis of the ideas. The author knows that 
this proposal calls for everyone to raise the difficult questions of numerical convergence and the 
like. But careful organization of the material would avoid such convergence pitfalls. We need only 
to look at the current textbooks and the special care that we use to select surface area problems in 
order to see the selectivities that we will use in the name of good teaching. It has been said that 
there are only 16 workable surface area problems in elementary calculus — 10 in the textbooks and 
6 saved by tie teachers for the test problems. 

A general education calculus course should noi "return to the good ole days." However, there 
are parts of the old calculus course that should be recaptured. (By the way, all the students that 
used to be — weren't!) In some of the old and strangely brief texts, one will find reams of different 
and varied applications of Riemann Sums. Admittedly, convergence problems and the like are 
given short shrift, and some of the sections reduce to the casual introduction of formulas. But the 
students surely saw calculus and infinite sums as widely applicable techniques to be used in a rich 
collection of varied problems. Contrast that with today's typical 200-page treatment of volumes of 
revolutions and next to nothing else. Is it any wonder that our students think that the volumes are 
the ends in themselves? And, correspondingly, do you really think that the so-called level of rigor 
in these new "theoretically correct" treatments could handle anything other than the carefully 
controlled environment that the author selects? 

The proposed course, with an emphasis on averages and "non-change," would prepare the 
students for a lifetime of dealing with averages, moving averages, quantified chance, and 
approximations. They might not be able to find the volume of a molded object of revolution, but I 
believe that their thirty-nine dollar calculator with its definite integral button could. 

2. Defect in the current instructional approach to calculus. 
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In a simple summary, today's calculus essentially is an intense collection of mechanical 
manipulations of polynomials, with techniques and tools that students perceive to be ends in 
themselves. That premise is the profile of what the paper will now use as an outline to critique the 
current course. 

The current calculus course is still thought of on campus as a bear, and along with organic 
chemistry, it keeps the world of science graduates pure. The pre-war German engineering schools 
had a better student selection technique and the screening process did not increase teaching loads. 
There, you had to form, with hand files, an almost perfect cube from a hunk of pig iron. The Hen-
Professor could easily use a caliper to check your "admissions test" results in a moment and there 
was a minimum amount of faculty distraction. The advanced classrooms were reserved for the 
dedicated few [3]. In many ways we see the same elements of artificial barriers in today's "show 
and tell and work like hell" calculus courses. 

Most calculus examinations emphasize the manipulative skills that are stressed in calculus, and 
the students learn "how to play the game." The result is a collection of graduates who have skills 
that start to approach the abilities of some of the symbolic manipulators on today's microcomputers 
[2]. If bench engineers can find definite integrals on their pocket calculators as easily as they can 
find square roots, then we can hardly sell calculus as a course that develops "needed" manipulation 
techniques. 

In most of today's calculus texts, one needs to get past the first two hundred pages and, after 
that, past the first twenty problems in each exercise group before one finds questions that involve 
anything other than polynomials or, in the later case, expressions that are essentially polynomials in 
disguise. Students who are taught that calculus is the mathematical study of motion, would get the 
impression from these textbooks that things move around exclusively on polynomials. This is 
hardly the case, and this becomes clear when one realizes that internal forces create exponential and 
logarithmic changes and external forces create cyclical or circular function responses. The author 
feels that the use of polynomial expressions, as an ease of entry tool to introduce topics, has been 
expanded and expanded to the point that the study of polynomials dominates the typical course, 
when in fact the basic nature of motion suggests that the emphasis should be on the transcendental 
functions. 

We have already mentioned that students clearly perceive the course as being important for 
tools and techniques. Even though this student feeling may be incorrect, and I doubt that it is, the 
perception is still a fact with which the calculus instructors must deal. 

In a critique of the problems in a calculus course, the current textbooks are always questioned 
— and the publishers get off the hook with the accurate observation that they "publish what the 
marketplace wants." That may be the case, but we all need to examine carefully today's collegiate 
publishing and marketing process. There is a disturbing trend that introductory college-level texts 
are starting to be developed with the same procedures as the ones used for high school books. That 
is, a good marketing formula is assembled and word craftsmen are employed to write the 
successful outline. The texts are sold on the basis of "early trig" or "late exponentials" and not on 
the basis of mathematical merits. Departmental selection committees look through the "new 
models" to see that they match the formula specification required by the service audiences. For 
example, physics professors insist that so and so be covered in the first semester and engineering 
professors expect After that, particular parts are scanned and each person's favorite treatment 
of a particular topic must stand the test. Needless to say, the publishers have anticipated this and 
every possible variation is included. Why else would you find in one of today's successful texts 
the (distasteful) cancelling of formal differentials on one page and a rather correct theoretical 
discussion of differentiability on the next? Pity the poor student when gutter-level comments are 
routinely mixed with strange excursions into high levels of rigor. What we need is a mathematician 
to write a coherent and honest approach to the subject, but I expect such a text would not sell! And 
that fault is clearly the responsibility of the mathematics faculties. 
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3. Corrections that should be considered. 

One's own examinations are the most readily available starting place for an individual teacher to 
begin to effect the essential changes that the course so desparately needs. We all know that the 
mathematical community has called for basic changes in the calculus [1]. And we all know that the 
commercial publishers are "staying awake nights" to redesign the texts for better market 
penetration! And surely there is not a single mathematics department that fails to have a committee 
charged with the consideration and review of the faculty's approach to calculus instruction. But, 
in the meantime, the problems are here and now, and the individual need not wait. Corrections can 
start with your own examinations. 

Most calculus tests are time trials. The instructors have the misguided feeling that equal credit 
problems should be equally difficult. As a result, the typical test questions are all of the same level 
and length. If time is called at the end of the class, and this is the norm, then the test is very likely 
to be what the test specialists would call a "speed test." Instead, we need to be giving a "power 
test." That is, the questions should be of graduated difficulty, and they should proceed from an 
almost trivial question to one that is a special challenge. Ample time should be allowed and, if 
necessary, fewer but more conceptual and non-routine questions should be used. A good analogy 
is supplied by a hurdles race. If all the hurdles are equally spaced and of the same height, then the 
runners are being measured in time against each other. If a runner can clear any one of the jumps, 
then given sufficient time, he or she can clear them all. A better test of hurdle strength would be 
provided by a sequence of several hurdles of increasing heights. Then, runners would be 
measured not by how fast they completed the test, but by how far they managed to get, i.e., the 
best would go all the way ana the middle ability ones would be stopped somewhere along the 
sequence. This modification in our own classroom testing patterns would be a big step forward in 
the direction of making calculus into a conceptual course, and there is no. one stopping each 
instructor from doing this on his or her own. However, the whole department may want to take a 
unified move in this direction and prevent the students from searching out the "easiest" professor. 

Microcomputer graphics should dramatically change our approach to graphs in calculus 
instruction. At this point in time, we use the calculus to get the information that is necessary to 
build the graph of the curve. After the picture has been sketched, the discussion terminates and no 
real global discussion of the nature of the process is given. It really should be the other way 
around. We can now start with the picture in a few seconds, and then time can be spent on the 
dynamics of the curve with the calculus information being added to enrich and amplify the points 
that are being made. 

Much has been said about inexpensive calculators with definite integral keys and it should be 
clear that collectively we have to take a very critical look at the parts of calculus that have as their 
singular goal the finding of values for definite integrals. 

Riemann Sums should be given a meaningful treatment with fresh examples and exercises. 
The use of averages and the expansion of the integral as an average concept looks like a productive 
path. Parts of the volumes of revolution section could easily be scrapped and replaced with a 
variety of applications of Riemann Sums from topics other than area and volume. 

The current calculus course suffers from poor textbooks, disinterested students and misguided 
teachers. But calculus is still an intellectually strong and important discipline and the course 
survives in spite of the damages that we have made. If mathematics is indeed the subtle study of 
simple things, then should not we take this strong and simple course back to its subtle root 

the mathematical study of change. 
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ON THE TEACHING OF CALCULUS 

by 

Peter D. Lax 

About fifteen years ago, when I first taught a calculus course with computing 

and applications, the teaching of applied mathematics had a very precarious place 

in the college curriculum. It seemed to me then, and still does now, that the 

teaching of calculus is the natural vehicle for introducing applications, and that 

applications give the proper shape to calculus; they show how, and to what end, 

calculus is used. Without them a calculus course is in danger of resembling a 

guided tour through a carpentry shop, with instruction on how to use each tool 

(including some antiquated ones), but giving no sense of how to use them to build a 

thing of beauty and utility; or a music class where most of the time is spent in 

practicing scales and finger exercises, with little chance to listen to or play 

a composition much above the level of chopsticks; or a language class where grammar 

and syntax are taught systematically, but where there is little conversation, 

composition or reading of literature. 

Alfred North Whitehead thought that the retention of inert material in the 

curriculum does the greatest harm to education. Calculus, as currently taught, is, 

alas, full of inert material, which will remain there as long as the teaching of 

calculus is controlled by the establishment, i.e. the group presently entrusted 

with teaching it. There is a reason for an establishment; calculus is a very big 

enterprise, taught to a very large number of students with diverse needs and 

backgrounds; it is hard to resist the temptation to design a course that can be 

taught with equal ease by a senescent member of the department, by an adjunct 

picked up on the first of September, or a graduate student recently arrived from 

the Orient. 

The only way the situation can be remedied is to entrust the teaching of 

calculus to those who actively use it in their own research. This is what 
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happened in the last 30 years to the introductory courses in physics and chemistry, 

but is yet to happen to calculus. To be sure, there has been some advance; some 

new topics, notably probability, have been added, and attempts have been made to 

infuse more rigor. 

I turn now to a brief list of topics and attitudes that I feel are given undue 

prominence in the neotraditional course. 

There is too much preoccupation with what might be called the magic in 

calculus. For instance, too much time is spent in pulling exact integrals like 

rabbits out of a hat, and, what is worse, in drilling students how to perform 

this parlor trick. Summing infinite series is another topic that has the aura of 

a magic trick, and is overemphasized at the expense of the concept of approximation 

and iteration of functions. 

I feel that rigor at this level is misplaced; it appears as an arid game to 

most of those who comprehend it, and mumbo-jumbo to those that don't. Besides, 

many of the tricky proofs can be avoided by starting with sensible definitions, 

such as functions that are uniformly continuous over a closed interval, instead of 

functions that are merely continuous at every point of it. There is no need to 

prove in the first two years of calculus that the latter class is included in the 

former. Similarly, the fundamental lemma of calculus -f is constant if 

f ^ ΞΕ 0 - is easy to prove and intuitively clear for functions that are uniformly 

differentiable, i.e. for which the difference quotients tend uniformly to f' ; 

there is no reason to prove this in a calculus class for functions assumed to be 

merely differentiable at every point. Even more extreme examples can be given 

involving functions of several variables. 

I turn now to some examples that illustrate the role of computing in teaching 

the concepts and uses of calculus. 

Many students have difficulty grasping the idea that the integral of a function 

over an interval is a number. The reason is that this number is difficult to 

produce by traditional methods, i.e. by antidifferentiation, and so the central 

idea is often lost. Numerical methods have the great virtue that they apply 

universally. 

It was Newton's sublime discovery that the laws of nature (well, most of them) 

take the shape of differential equations. When special methods are introduced to 

deal with each one of the pitifully small class of equations that can be handled 
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analytically, students are apt to lose sight of the general idea that every 

differential equation has a solution, and that the solution is uniquely 

determined by its initial data. Numerical methods are universal and give students 

an intuitive grasp of existence and uniqueness of solutions. Even more important 

is the ability to explore the qualitative and quantitative properties of solutions 

and discovering experimentally limit cycles, damping, fixed points, stability, loss 

of stability, etc. 

Computer experimentation is an indispensable companion for the design and 

analysis of algorithms for numerical integration, for solving differential 

equations, for finding zeros, maxima, etc., Nothing convincees students (and 

nonstudents) of the superior efficiency of a clever algorithm over a routine 

one than seeing the one outperform the other in actual calculations. 

How and to what extent should computing be part of a calculus class? What 

kind of computing facilities are needed? There are no universal answers and there 

will never be any; as the computing literacy of the population shifts - and that 

of the the students is likely to shift faster than that of the teachers - different 

alternatives will emerge. At any rate I do not wish to see the classroom transformed 

into a computer lab; blackboard and chalk, pencil and paper are and will remain 

essential tools of teaching and learning. And I certainly don't want to see the 

magic of canned programs and fancy graphics replace the other kind of magic decried 

earlier. 

I like to start the first calculus class with a calculator in hand, and point 

out all the functions that the calculator is able to evaluate to eight significant 

figures. 

I describe the Newton algorithms for taking square roots and cube roots, and 

demonstrate their efficacy on a few examples. Sooner or later one of the students 

asks where these clever algorithms come from; this answer is: from knowing calculus. 

As a useful by-product of this demonstration, the students become familiar 

with the phenomenon of convergence, and are well prepared for the concept. 

A hand-held calculur is useful in demonstrating the power of a highly 

accurate integration scheme when few points are used. But beyond that, when more 

elaborate calculations are needed to drive a point home, when tables and graphs 

become indispensable to digest the meaning of a calculation, we must rely on a 

minicomputer and adequate ways of displaying results. 
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Happily, reasonably powerful minis are now available, at reasonable 

cost, so that most students can gain access to them. One way to make them 

available is through a computer lab; an informative article by Breuer and Zwas 

on how to use such a lab has appeared in the September 1985 issue of SLAM News. 

In the future - partly here already - we can look forward to a bewildering 

variety of software packages performing and displaying the operations studied in 

calculus. Some of this will be tied to a test, others not; some of it will be 

available for a fee, others gratis. All conceivable hardware and programming 

language will be enlisted. I hope this workshop will generate discussions of what 

is desired, and suggest some mechanism for disseminating information on what is 

available. 

I would like to close by taking a couple of swipes at two recent educational 

proposals that bear on the teaching of calculus. They are made by two well-meaning 

groups of enthusiasts whose view of mathematics is woefully narrow. The first 

advocates teaching all concepts algorithimically. This seems to me wrong; for 

a concept, when presented properly, can be absorbed as a whole, while an algorithm 

remains a sequence of steps. It is only after a concept has been understood, and 

made part of one's thinking, that we turn to the intriguing task of devising 

efficient algorithms. 

The second proposal advocates diminishing the emphasis on teaching calculus in 

favor of teaching discrete mathematics. No doubt, discrete mathematics is a 

collection of beautiful subjects, many of which have gained great importance because 

they are intimately related to computers; but it is rubbish to say that calculus 

based mathematics has become less important. I have described elsewhere the recent 

explosion of theoretical developments in calculus based mathematics; here I want to 

point out that at the birth of calculus Newton showed how to write down equations of 

motion for systems governed by the most complicated concatenation of forces. But 

he did not show how to solve these equations, except for a small but significant 

class of problems. That today we can use computers to explore the behavior of 

solutions of all such equations is truly revolutionary; we are only beginning to 

glimpse the consequences. 
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During 1982-84, I had the privilege of serving as a Program 
Officer at the Alfred Ρ Sloan Foundation in New York. It was a 
privilege because, in attempting to educate myself to make 
informed judgments about funding requests, I had a much better 
opportunity than most mathematicians to develop a national 
perspective on problems and opportunities in the mathematics 
profession. 

My goal in this paper is to try to share some of my 
perspective, as it relates to the teaching of calculus. To that 
end, the organization of this paper is as follows. After some 
introductory remarks I will turn to a listing of the key aspects 
of the current environment, as I see it. Then I will discuss 
some of the responses I hope this conference will make. 

I wish I had a clearer perspective than I do — It would be 
nice to have one theme to drive home. Unfortunately, things 
aren't so simple, and this paper is rather discursive. 

To begin with, many of you may be wondering what I am doing 
at this conference. I am best known as an advocate of discrete 
mathematics, to the extent of urging that it replace a certain 
amount of calculus. So, did Ron Douglas invite me as a saboteur? 

Of course not. I have been advocating discrete math because 
I think it is pretty and important mathematics, and because the 
weight of tradition will relegate it to the periphery unless 
someone advocates it. But the fact is, by my own wish much of my 
teaching has always been in continuous mathematics, especially 
calculus. 

I am at this conference because the same general 
developments which lie behind the discussions of discrete 
mathematics are crucial for fresh discussions of calculus. If 
there are changes to be made in calculus instruction, and I 
believe there are, the same weight of tradition will bury them 
unless many of us speak up. 

The Sloan Foundation too, because of its recent efforts in 
discrete mathematics, may be thought by many to be an unlikely 
source of funding for this conference. Not so. Although I am no 
longer their employee, I think I can say with confidence that 
their interest is, and always has been, broad. Their goal is to 
encourage the best of ideas in mathematics and mathematics 
education — to the extent that they can with a small part of a 
small budget (relative, at least, to government funds). In 
particular, having funded a part of the Reformation, Sloan is 
happy to consider funding part of the Counterreformation as well! 
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One more introductory idea. I crib this from another 
article of mine [7], which deals specifically with the prospects 
for more discrete mathematics. I regard that article as a 
companion to this one, because many of the same general 
background issues are discussed. In any event, one of the things 
I did in preparing that article was to review a classic hard 
calculus book of the early 60's: Apostol [4]. That review led 
to a new insight: "It's not a calculus book. It has all sorts 
of things in it that we discrete math advocates have been talking 
about — combinatorics, induction, probability and statistics, 
difference equations, numerical analysis. Granted, much of this 
is in the second volume, certain current perspectives and topics 
are completely lacking (the algorithmic perspective, the topic of 
graph theory), and it is all wrapped around calculus as the core. 
Nonetheless, it's clear that Apostol wasn't trying to teach just 
calculus; he was trying to teach mathematics, as an integrated 
two-year course, according to the best judgment he could make at 
the time." 

I think our present conference is based on the premise that 
there still can be an integrated two-year course in mathematics, 
appropriate for the majority of future users of mathematics, and 
that calculus can still be the core. At any rate it should be 
the premise of this conference, even if I personally might debate 
the unique centrality of calculus. The issue for the conference 
then becomes: what renewal of the calculus is necessary to make 
that core as vibrant as it should be? 

What's Going on out There 

In light of the previous paragraph, the most important 
observation I can report is that 

1) The idea that there can be an integrated, general 
purpose program in mathematics for the first two 
undergraduate years is under attack. 

The attack is not a conscious effort based on disagreement 
in principal with the goal of a common sequence. Rather it is 
the result of various structural aspects of undergraduate 
education. 

First, as more and more students take mathematics, there is 
a natural tendency to create different courses by interest groups 
— engineering calculus, social science calculus, math for 
business majors, math for computer science majors. Second, lack 
of interest by mathematics departments over the years in 
servicing groups who weren't considered talented or to have "real 
interest" in mathematics itself has led to other departments 
teaching their own math courses for their students. Such 
offerings come to have less and less in common. Finally, the 
general view in computer science departments that discrete math 
is more important than calculus (with some departments not 
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requiring any calculus at all) is perhaps a larger threat to a 
common curriculum than everything else heretofore — because the 
computer science crowd includes a lot of smart students who would 
otherwise take the mainstream math courses, indeed, might 
otherwise become math majors. Furthermore, there are lots of CS 
students, and the CS departments, unlike the psychology 
departments, don't want to teach their own math courses — they 
don't have the staff. So the math department has a service 
course which begins to overwhelm the previous core courses in 
enrollment. 

Admittedly, some people don't feel that the growing 
fragmentation of offerings is much of a problem. Is not 
diversification a natural and good concomitant of growth and 
evolution? But I do very much feel this is a problem. 

Partly I feel this way because of my background — I was 
educated at a small liberal arts college and teach at one. We 
don't have the enrollments or the staff to design a large variety 
of introductory courses. More important, we are against it in 
principle. The Liberal Arts creed is that one is best educated 
for a useful career by being educated for no career in 
particular. And this works — so long as the career-independent 
education in fact involves a lot of learning which is broadly 
useful in many careers. If the mathematics which gets taught 
ceases to be broadly useful, then liberal arts mathematics 
education is in trouble. 

Finally, there is a major problem with diversification of 
offerings for the students. They have to choose their futures 
earlier and earlier. For instance, if CS requires a year of 
discrete math by the end of the sophomore year, and mathematics 
requires instead linear algebra and multivariate calculus, then 
most students must commit themselves one way or the other by the 
beginning of their sophomore year. If CS requires discrete math 
in the freshman year, and the math department requires calculus, 
the dilemma is worse. 

The question of core curricula comes up in other disciplines 
as well. Indeed, a few years ago, my college considered 
introducing a required core curriculum for all students. Despite 
what I have said above, I was against this. Indeed, I argued 
that trying to show students unity in overall intellectual 
endeavors was precisely the wrong thing to do. What people need 
to learn is how to cope with increasing disunity, both 
intellectual and social. 

Yet in mathematics I do think some standardization in our 
introductory offerings is much needed. This is because 
mathematics is a basic skills area. If you don't learn any 
probability or statistics, and aren't among the few bright enough 
or eager enough to pick it up later on your own, you really will 
be at a loss for various purposes. If you learn only discrete 
math and not continuous (or vice versa), you really will be 
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cutting certain options out. Whereas for history, you can take 
your first course at the end of your sophomore year and still 
major in it, and, if that first course is ancient Chinese history 
you can still go into a modern European upper level course 
afterwards, in mathematics such things don't happen. 
Furthermore, mathematics is not a subject students pick up again 
later in their studies. On the contrary, the problem is that too 
many stop after one course, too many more after two courses, and 
so on. For all these reasons, some sort of agreed upon central 
curriculum in the first two years is very much to be desired. 

So much for a sermon, one which I hope was actually 
unnecessary for this audience. But keep in mind: if we want a 
common curriculum that most mathematically able students will opt 
to take, it's got to touch more bases than the traditional 
curriculum. 

2) Mathematicians say that what they are really 
teaching is how to think, but actually, we are more 
technique and fact oriented than many other 
disciplines. 

While at Sloan I didn't work just on mathematics issues. I 
saw proposals from many disciplines. One of the things I learned 
is that the self-justification "we teach students how to think" 
is not the private preserve of mathematicians. Almost every 
discipline asserts it. But if it's modes of thought rather than 
specifics that a discipline considers important, and all their 
courses teach it, then almost any course ought to be an entrance 
into the major. As remarked above, this is true of history. It 
is not true of math. 

To cite another example, if you ask a mathematician what he 
accomplishes in some course, he will usually answer by telling 
you the theorems he gets to, not the methods of reasoning he 
tries to instill or the competencies he tries to impart. 

I'm not saying we should make all courses equal as far as 
entering our departments is concerned, or that we should stop 
teaching key theorems. But I am saying that our image of 
ourselves as educators is erroneous. 

3) There are several "standard" versions of the 
calculus sequence today, running from 2 to 4 
semesters. 

Historically there were 4 semesters. Then in most places it 
moved to 3 to make room for linear algebra. In some places, it 
is now two, by which I mean one gets up through the basic 
concepts of multivariate calculus in 2 semesters. Some of the 
2-semester places are MIT, Carnegie Mellon, Dartmouth, Williams, 
Haverford and Grinnell. Sometimes this is accomplished by going 
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fast and having 4 or 5 meetings a week, and/or having very bright 
students). Sometimes it is accomplished by "kicking upstairs" 
some traditional material. For instance, at Grinnell all 
material about sequences, series and power series is deleted from 
the calculus course. It reappears, combined with material on 
numerical analysis and differential equations, in a 
sophomore-junior course taken mostly by math and physical science 
majors. 

There is even more diversity in the relation of discrete to 
continuous. At many places discrete math is first offered at the 
junior level. On the other hand, at a number of schools it is 
now required before calculus. (My impression is that the latter 
schools have weaker students, mostly interested in computing, so 
that discrete math serves in part as a fresher version of 
pre-calculus and in part as pre computer science.) Finally, 
there are a few places where some calculus and some discrete math 
are joint prerequisites for further mathematics of any sort. For 
instance, Dartmouth now has a system where a semester of calculus 
and a semester of discrete are required for all further work in 
math or computer science. 

In short, there are many experiments going on with calculus 
and with the mix of subjects in the first two years. 
Nonetheless, a traditional calculus sequence, with a traditional 
curriculum, is well entrenched. It is not hard to understand 
why. Calculus is the least denominator. Since everyone knows 
it, you can have anyone teach it — your least innovative or 
least energetic department members, even your graduate students 
who don't speak English. But, if everybody is going to teach it, 
indeed teach it simultaneously, then you've got to stick to 
common ground. Ergo: nothing changes. 

4) Most calculus books have changed very little. 

This least denominator argument above applies equally well 
to books. Or maybe I should say greatest denominator. For a 
book to sell well, it must include not only whatever everyone 
regards as traditional, but also whatever anyone regards as 
traditional. Indeed, if typical books have changed in the last 
10 years, it is by the addition of new business, social science 
and biological science applications, and more material on 
numerical methods, without the elimination of any physical 
science and engineering applications. All this makes for giant 
books, and thus makes it harder for faculty to decide that large 
chunks of material don't really need to be taught anymore. 

This is not the whole story. There is a whole class of 
calculus books that hardly existed 20 years ago — the 
exclusively business/social science/biological science oriented 
books. In many ways these are interesting books. First, they 
are much shorter — they show that it is possible to delete a lot 
of traditional material. Second, a few of them are quite well 
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written. (I happen to like [5], but this opinion is based solely 
on browsing, not teaching.) The good books succeed in motivating 
the material and showing that deletions do not necessarily mean a 
course without conceptual content. Third, a few of them are 
nicely experimental. For instance, [11] mixes a certain amount 
of discrete math into his calculus by including a recursive 
approach to sequences, a sequence approach to limits, and a 
pairing of difference and differential equations. (I have a 
report, however, that this is a horrible book to teach from.) 

There is second new class of calculus books — those for 
weaker students. Unfortunately, these two new classes are more 
or less the same. This is unfortunate for two reasons. First, 
this tends to perpetuate the division into careers by ability. 
Second, it perpetuates in the minds of faculty the idea that only 
the thick books are the real calculus. 

I do know of one thin calculus book that cannot be faulted 
for being wishy washy, [6]. So perhaps this is an existence 
proof that a short, solid calculus is possible. But I'm not 
happy with that book either — in addition to throwing out all 
the special topics, it throws out the motivation and any sense 
that the subject is applicable. 

Finally, in the 70's there was a spate of books with titles 
like Calculus and the Computer [9], These arose from attempts to 
teach calculus with a heavy computing orientation. Most of these 
books have died out. Perhaps they came too soon; in those days 
one needed a mainframe. But perhaps they failed because faculty 
felt they took too much attention away from the core issues. I 
don't know. But this does lead me to the next item. 

5) Now computers can do symbolic manipulations as well 
as numerical ones, and even microcomputers can do 
the former moderately well. Furthermore, the 
mathematics community now seems pretty well aware of 
this development, although only a fraction of 
faculty have actually tried out the software, and 
very few courses use it. 

I'm less prone now than two years ago to make visionary 
statements about the great change such "computer algebra" will 
cause. First, it is not likely to have much impact on classes 
until it is available on hand calculators. (On the other hand, 
it is already having considerable impact on the daily life of 
engineers and on the research of many academics.) Second, it is 
unlikely to save much time in courses. Perhaps, as with today's 
hand calculators, after an initial period of fuss computer 
algebra on calculators will have little effect on the "daily 
life" of calculus classes. However, I hope not. I really do 
hope such software will allow us to accelerate a change towards 
more emphasis on ideas and less on techniques. But this is a 
hope. As far as what's going on out there, the answer is: the 
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jury is still out — in fact, it just went out. 

6) Academic mathematicians are not very happy these 
days. 

Salaries are down in real dollars from before the 
inflationary surge. Class sizes are up in elementary courses, 
while upper level courses often languish. The students are often 
abysmal. The graduate students who often teach the elementary 
courses aren't much better and there aren't many of them. The 
amount of money available from one's school for travel and 
professional activities, let alone for phoning, xerox and office 
supplies, is very tight. Finally, grant money for research is 
hard to get, and federal money for curricular development at the 
undergraduate level is nonexistent. It does not seem that the 
professoriate gets much respect. 

This is not particularly a problem of mathematics — it is 
academia wide. However, it is the general perception among 
academic mathematicians that they are suffering more. There may 
be truth to this. The surge in introductory enrollments is not 
universal. At the research level, the David Report [3] has made 
the case that mathematics ijs getting a worse deal. Perhaps a 
case can be made at the undergraduate level as well. But it's 
got to be made well, because Deans, college Presidents and 
funding agencies are receiving special pleas from every corner. 
Their usual reply, quite understandably, is that everybody's got 
to share the dearth. 

Are our special pleas legitimate? An effort is underway to 
find out. As a follow up to the joint AMS/MAA/SIAM Committee on 
the Status of the Profession, there is now an MAA Planning 
Committee for a National Study of Resources for Collegiate 
Mathematics. Recently (September 1985) the MAA has received a 
grant from the Sloan Foundation for this Planning Committee to 
work up a proposal for a major study to be made by the National 
Research Council. If such an NRC study comes about, it may well 
be the equivalent of a David Report for undergraduate 
mathematics, with similar results — more attention and more 
money for undergraduate mathematics. Concurrently, the National 
Science Board (the board of trustees of NSF) is reviewing the 
wisdom of the current allocation of federal math funds into 
research and precollegiate education only. 

7) The use of mathematics in other disciplines is 
changing greatly. Mathematicians don't have a clear 
enough idea how. 

For instance, in my own institution, introductory physics is 
very different from when I took it. Simple examples are still 
done in closed form, but after that everything is done with 
(discrete) computer approximations and graphics. Similarly, 
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engineering students at Swarthmore solve linear systems, both 
algebraic and differential, with computers in their first 
engineering course. 

I'm sure that, at the research level, a physicist or an 
engineer can still use excellent competence at calculus 
techniques — and much more advanced analysis. (I am told, 
though, that even a lot of theoretical physics is now done on 
discrete models, models which sometimes do not have continuous 
models as their limiting case). However, if the needs for 
in-depth calculus are at an advanced level, then the in-depth 
treatment need not be included in the first calculus course as 
far as physics students are concerned. 

From the Williamstown conference on discrete math [8], at 
which representatives of other fields were present, I also know 
that at least some people in all the traditional client 
disciplines feel that a very different mathematics preparation 
would be fine. 

In short, I know just enough to know that I am eager to hear 
what the representatives of other disciplines at this conference 
have to say. 

Once we hear what they have to say, we still have the 
problem that not all applications can be included. Quoting again 
from [ 7 ] , "There is a whole tradition of expectations about what 
students will learn in their first two years of mathematics, 
a physics professor can assume that a student with 3 semesters of 
calculus knows Green's Theorem, but an economics professor cannot 
assume the student has even heard of Euler's Theorem on 
homogenous functions." 

These traditions no doubt made sense at one time — the 
applications chosen were the ones for which there was the most 
demand. But the relative demand may have changed without our 
knowing it. And with many more disciplines using mathematics, 
relative demand may be harder to assess. 

Let me suggest a rule for deciding what to include. It will 
sound innocuous enough, but it may be impracticable. If an item 
(theorem, technique, problem type, etc) is of considerable 
interest to just one discipline, exclude it from this first 
course and tell that discipline to teach the item itself; 
otherwise consider including it. 

What This Conference Should do 

Thinking up my answer to this question has been useful in 
getting me to focus my ideas. Perhaps a similar exercise will be 
useful for you. At any rate, if I could wave a magic wand and 
get this conference to do what I wanted, here is what it would 
be. 
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1) The conference should call for further study of 
whether mathematics teaching suffers more than other 
disciplines, but it should not waste time reciting 
our current woes. 

We've all heard our complaints about calculus, and so have 
the powers that be. As a conference, I don't think we will be in 
any position to provide the hard data needed to determine if our 
plight is different than other academic plights. At most we can 
help point out what data is needed. Thus, we can add momentum to 
the efforts toward such a study, but that's it. 

In some sense, calculus is the subject mathematicians love 
to hate. If it didn't exist, we would have to invent it, as an 
outlet for our need to kvetch. But while this is a great coffee 
room avocation, it doesn't make for a good conference. 

2) For the short run, this conference should call for 
projects which require only small amounts of money. 

It is necessary to think in terms of help we can reasonable 
expect to get. To say that class size ought to be cut in half is 
useless. No foundation in the world has the funds to underwrite 
that, even if the additional faculty could be found. (On the 
other hand, if a case can be made for a unique distress in 
mathematics, in the long run academic budgets might be moved to 
improve the classroom ratio.) Similarly, it's no use telling 
publishers to change their ways. They are hemmed in by market 
forces. We must show them that a new type of book will attract a 
market before we can expect them to help. 

The amounts of money likely to be forthcoming from private 
foundations are small, say, in the tens of thousands of dollars. 
What can be bought with that sort of money? The answer that 
occurs to me is faculty time — to try new versions of a course 
or new classroom techniques, to write experimental materials, to 
compile another report. We should try to think of other answers 
and make recommendations concerning the answers we like best. 

3) Don't start from scratch in our recommendations but 
build on work already done. 

Coffee room complainers have the luxury of ignoring or 
belittling what has been thought in the past. We do not. There 
is a long history of thought about calculus. For instance, are 
large classes really hurting calculus? It's easy to simply 
assume so, but in fact there have been a number of studies and 
the conclusions are mixed. The studies may in fact be flawed, 
but if so we have to indicate why and suggest what further study 
should be done. 

Similarly, if we make recommendations for the calculus 



8 2 TOWARD A LEAN A N D LIVELY CALCULUS 

syllabus (as I hope we will), it won't be as if this has never 
been done before. So far as I know, the most recent national 
effort on the calculus curriculum is in the Tucker report on the 
Mathematical Sciences [1]. Years earlier there was a CUPM report 
on calculus [ 2 ] . We should start, I think, with the Tucker 
report and see how we want to change or amplify things. 

4) In terms of the syllabus, think hard about what can 
be taken out. 

It's easy to talk about what should be covered in the 
calculus and isn't. (I plead guilty to doing a bit of this 
myself elsewhere in this paper). But this approach has led to 
our current large books. It's much harder to bite the bullet and 
throw things out. But that's what needs to be done — in great 
measure if the goal is to shorten the course, in considerable 
measure if the goal is simply to modernize it. To talk instead 
of "deemphasizing" this or that doesn't do the trick: as long as 
some topic has a toe in the door, it's impossible to make sense 
of it for the students without devoting a certain amount of time. 
Usiskin has written a very interesting article [10] on what not 
to teach in high school algebra and geometry. We need a similar 
effort for calculus. 

5) Think more in terms of competencies than in terms of 
theorems. 

This harks back to my remark that mathematicians talk about 
teaching to think but describe their teaching in terms of topics 
and theorems. This tendency can be counteracted in part by 
putting some emphasis on the competencies. For instance, I would 
like to see 

— learning how to write coherent problem solutions, 
including correct mathematical sentences 

as one of the competencies for a first calculus course. I would 
like to add 

— learning how to model a problem with calculus, and 

— how to apply algorithms to obtain approximate answers. 

I would like to downplay "how to compute the answer in closed 
form". 

6) Seek a clear idea of what other disciplines need 
from us. 

I'm looking forward to what the representatives of other 
disciplines at the conference will have to say. But I also know 
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we must probe deeply. Generally, people in other disciplines 
haven't had any reason to think deeply about how they really use 
mathematics in their teaching, and perhaps even in their 
research. Also, the representatives at our conference are 
necessarily few in number. What we glean from them must be 
viewed as part of a larger effort to keep in touch with other 
disciplines on educational matters — an effort in which the MAA 
has ongoing activities. 

7) Write a syllabus (or several) but make them for a 
course in mathematics, not just calculus. 

This harks back to Apostol's goal of teaching mathematics, 
and to my hope for a standard, integrated curriculum. To begin 
with, I hope the conference will decide whether it approves of 
the common curriculum idea or not. If it does, it should try to 
make its calculus course serve a more general purpose. For 
instance, probability is very important; some uses of calculus 
in probability ought to be introduced, even if the probability 
must be treated informally. And it shouldn't wait till the 
second volume. Similarly, given the increased interest in 
discrete mathematics, opportunities to mix the continuous and the 
discrete ought to be seized when they can. Thus there ought to 
be something on how power series are also generating functions, 
and partial fractions might be introduced there instead of (or in 
addition to) in methods of integration. 

I've reached the end of what I wanted to say. I wish I had 
a grand conclusion for you, but my paper just trails off. In 
doing do, perhaps it will remind us that the discussion of 
calculus is an endeavor which will never have an end. 
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P e t e r R e n z 

SUMMARY 

To focus on matters of content to the exclusion of matters of 

style and execution in proposing new curricula is to lose sight 

of the essentially evolutionary nature of the development of 

courses and course materials. Strong selective pressures work 

against large-scale changes in large eourses. These constraints 

are partly the result of inertia and of existing requirements 

outside of the mathematics curriculum, and they are partly 

economic in nature, affecting what will and what will not be 

economic to publish. This is a review of these limitations on 

curricular reform and the conclusion is that the success of 

such changes is more dependent on the style and execution of 

the materials produced than on the exact content of those 

materials. 

Reprinted with permission from New Directions in Two-Year College 
Mathematics; Donald J. Albers; Stephen B. Rodi; and Ann E. Watkins; 
Editors. Copyright 1985 by Springer-Verlag, 175 Fifth Avenue, New 
York, New York 10010. 
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STYLE VERSUS CONTENT ι 
Forces shaping the evolution of textbooks 

Peter L. Renz 
Division of Science, Bard College 
and W.H. Freeman and Company 

STYLE AND CONTENT 

What is it that makes a truly successful course or text? 

Is it more a matter of content or of the manner in which 

the material is presented? The answer depends upon one's 

objectives and one's point of view. On balance I say that 

style and manner of presentation are more important than 

content. In particular, the matter of discrete versus con-

tinuous mathematics seems a side issue. The main issue should 

"be how to achieve success in the classroom, and this issue 

depends upon the details of the teacher's interaction with 

his or her student. Where texts and courseware are concerned, 

success depends upon the ability of authors to reach out to 

students with apt and compelling arguments and with clear and 

evocative images. Success in education also depends upon 

students and teachers having clearly formulated goals, both 

overall and in detail, and ways to judge the level of success 

in achieving these goals. 

One might properly be alarmed or horrified by the content, or 

even the methods, of R.L. Moore's topology classes. One 

might even disapprove of the narrow focus that comes with the 

use of pure discovery-learning, but Moore's successes and 

those of his students are legendary. This, therefore, shows 

that style can triumph over content. I venture that there 

are no examples of the triumph of content over style. If 

the presentation is sufficiently bad, the students are lost. 
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The debate concerning whether discrete or continuous mathema-

tics should be central to the curriculum will simply pass 

away. Change will come by evolutionary forces. Those who 

heralded the discrete revolution will be enshrined as saints 

by some and cursed as devils by others. But the changes that 

are made will be the work of the foot soldiers, teachers in 

the trenches who are subject to unpleasantness and risk as 

they work up new course material or help purge the errors and 

infelicities of other's course notes. These teachers are my 

heroes, along with their striving and suffering students. 

The discrete revolution is being oversold. I raise three 

objections to it as a cure-all. First, the discrete/contin-

uous dichotomy is not as sharp as it is pictured. This is 

borne out by many sources, but I have been particularly im-

pressed by the depth and breadth of the arguments made in 

response to Anthony Ralston*s position piece to appear in the 

November 1984 issue of The College Mathematics Journal. The 

responses by James P. Crawford, Daniel J. Kleitman, Peter D. Lax, 

Saunders MacLane, Daniel H. Wagner, and R.L. Woodriff emphasize 

the central importance of the insights gained from continuous 

mathematics. Insights of great use even for the study of 

discrete systems. Such respondents as William F. Lucas and 

R.W. Hamming stressed the importance for modern applications 

of both discrete and continuous mathematics—and these respon-

dents are very strong proponents of discrete mathematics. 

Second, the importance of manner of presentation of the material 

has been largely pushed aside in the struggle over what is to 

be presented. My thoughts on this have been sharpened by seeing 

how clearly this issue has been set forth by the responses to 

Fred Roberts's position piece in the cited issue of The College 

Mathematics Journal on the role of discrete mathematics in 

the college curriculum. Of the six responses that I have 

seen in draft, four see the main issues in the introductory 

college mathematics curriculum as being pedogogical (style 

and manner of presentation) rather than content. I direct 

your attention to the responses by John Mason, Patrick V/. Thomp-

son, and William Ellis, Jr. 
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Third, until strong and successful models for these new dis-

crete mathematics courses are available, we do not even know 

exactly what is being proposed. The reason is that discrete 

mathematics is a very broad area and it is full of very diffi-

cult and demanding material (try to master Ramsey theory, for 

example). Until a practical course has been plotted through 

these seas, the proposal that this voyage be undertaken by 

large numbers of teachers is as irresponsible as it would have 

been to propose a general assault on the problem of sailing 

west from Europe to India before Columbus, Magellan, and others 

had led the way. 

For these reasons and for others set out below, I believe that 

we should put the noise of debate behind us and get on to the 

real business at handi making the experiments that will give 

us new courses for this new curriculum and make safe the 

voyage to this new land. 

My plea is for evolution not revolution for two reasons ι first, 

evolution is the way things actually happen and second, evol-

ution is a continuing process. Change is essential if mathe-

matics is to be a vital subject. 

DEVELOPING NEW COURSES 

The development of new courses from their conception is similar 

in some respects to the emergence of a new species. Ideas serve 

as a modifiable genetic code guiding the development of the 

course, but these ideas are not enough. There must be the 

proper local environment to allow realization of the idea, 

and, if anything is to come of this all, the idea and its 

realization must be able to catch on elsewhere. The proposal 

to restructure the college curriculum so that discrete mathe-

matics is taught early and calculus comes later is like propo-

sing to insert a new gene into the chromosomes controlling the 

cells of the curricular organism. I believe that a cautious 

approach should be taken to such experiments lest one produce 

monstrosities. 

Natural mutations yield many variant forms, but those that 
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represent substantial variations of large creatures naturally 

abort and never live to see the light of day. Successful 

variants begin small. Mammals first appeared as a few small 

creatures and through evolution, with its general tendency 

toward larger forms (Cope's rule) and greater diversity and 

specialization, gave us the full range of mammalian life that 

we see today. For creatures the size of elephants, we see 

little in the way of rapid change. (See McMahon and Bonner 

(1983) for the biology.) So it should be with curricular 

change. The"new mathematics' experiment illustrates the dis-

astrous potential of large scale, rapid, and radical change 

imposed from without. 

The wonderous diversity of life arises from selective pressures 

acting on random mutations. We may best understand the 

dominant types of texts and courses as rising from a similar 

evolution under competitive pressures. This viewpoint explains 

much, even though it ignores the distinction between the 

wholly random character of mutation in biology (prior to the 

invention of genetic engineering) and the purposive nature 

of curricular reform, and course and textbook planning. 

As an editor, it has been my task to anticipate curricular 

developments and to select or develop texts that will establish 

substantial positions in both existing and new markets. From 

the editor's point of view, it is clear that there are more 

sound, even exciting possibilities than there can be economic 

niches in the market. These possibilities, whether put forth 

in book proposals, class notes, comprehensive plans for curri-

cular reform, or in discussions, are just so many hopeful 

mutations whose potential is yet to be proved. This presumes 

that we know what success means in this context. For publish-

ers, success is a commercial matter—sales great enough to cover 

costs and give a pleasing return that can be used to finance 

new projects, provide increased compensation for employees 

and increased returns for investors, and meet all the other 

needs of a prosperous enterprise. What publishers seek is 

overall success-that is, success of the enterprise as a whole. 

This is by no means inconsistent with taking on high-risk 

projects of occasional projects primarily for the good of the 
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discipline and as a sign of the house's commitment in a given 

area. 

Academics and publishers often do not understand each other 

simply because they do not understand each other's goals or 

their separate conditions of life, including the constraints 

on achieving their separate goals. Here I will give the 

picture as seen by a publisher. I will focus on the numbers, 

because they are easy to understand and they are the main 

constraints affecting all publishers almost equally. Moreover, 

the numbers will show where the best opportunities for curri-

cular reform lie, insofar as realizing those opportunities 

depend on the publication of new course materials 

WHY LARGE TEXTS FOR LARGE MARKETS SHOW LITTLE VARIABILITY! 

THE EFFECTS OF SCALE 

Large technical texts with many diagrams are expensive projects 

even before the first copy is printed. Typesetting, art, page 

make-up, including allowances for all proof and corrections 

for a two color, 8 X 10 inch, standard calculus book of about 

1200 pages would cost about $228,000 in 1984. To these costs 

we add editorial expenses including reviewing, checking of 

answers and solutions, travel., grants to the author for 

manuscript preparation, and in-house editing and development. 

I estimate these at about $50,000. Finally, for a complete 

package one must add the cost of supplements (Solutions Manual, 

Student Study Guide, and so on), a small publishing program 

itself. These might run to $40,000. 

How does such a book look as a business proposition? The 

publisher must face the fact that competition, including the 

new and used book market, takes a very heavy toll on sales in 

the larger markets (annual decreases in sales usually exceed 

20$ and may exceed 30$). Furthermore, substantial sales for 

mainline books can seldom be sustained much beyond the fifth 

year after publication. Thus, a book that sells 10,000 copies 

in this sort of market in its best year might be expected to 

sell 30,000 to 40,000 copies altogether before it fades com-

pletely. Such sales would prove disastrous for the publisher. 

Here are the numbers for sales of 35,000 copies over 5 years 
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at a nominal list price of $40. 

Profit (loss) on sale of 35.000 copies of a calculus book 

Here I have allowed 50$ of net receipts for all operating 

costs under the assumption that all miscellaneous costs, 

including those representing the time value of money are ex-

pensed for the publishing house as a whole. This allowance 

is perhaps high, but it is close to actual costs, and it is not 

clear that this allowance could be reduced below 40# for the 

operations of any sizable publishing company. I have assumed 

that inflationary and interest effects generally cancel each 

other. The exact cost of the printing paper and binding depends 

on the lengths of the printing runs. With a run of 30,000 

copies the cost would be about $5.11 per copy, with a run of 

10,000 or under copy cost could rise above $6.50. 

For the publishing house to earn a profit of 10# of net before 

taxes (a modest rate) with this model, it needs to sell about 

60,000 copies. Again allowing 5 years for this would require 

selling 17,000 to 20,000 copies in the best year. This repre-

sents very substantial success. In the real world few books 

sell substantially above 20,000 copies in their best years. 

The publishing house does not move into a really comfortable 

position until sales of 30,000 to 50,000 copies are achieved 

in a calculus text's best years. However, success in the 

30,000 to 50,000 copies per year range allows important econ-

omies of scale. In particular, it floats a large operation 

(promotion, sales, etc.) and it positions a company well for 

revisions, which are generally less expensive (art can be re-

used, etc.) and more certain in pay-off. 

List price $40.00,.Net Price 

Net receipts 

Less printing, paper, and binding 

costs at $5·11 to $6.50 per book 

Less royalties at 16.5# of net 

Less operating overhead 

Less investment ....................... 

32.00 

$1,120,000 

$178,850 

$184,800 

$560,000 

$318,000 

$121,650 Net loss 
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Nevertheless, this analysis shows why in freshman calculus 

(500,000+ students per year) and other large markets competition 

produces uniformity. No publisher can afford to produce a 

full-scale calculus book that is so different or so specialized 

that it is not a serious contender for mainline courses. 

In recent times, no slim alternative book has swept the market 

or even taken as much as 5% of the market. But the costs of 

launching a full scale calculus book can't be comfortably borne 

by sales of less than 5# "to 10% of the market. While the 

upper end of this range, 10$, represents about the largest 

slice of the pie that one might look for today. The result 

is that calculus books tend to compete mostly through minor 

variations and improvements. The dominant books expand by 

spawning minor variants that act to cut down the profitability 

of the market and thus squeeze out competitors. Consider 

Swokowski's Alternate Edition. 

Here we see Hotelling's law of duopoly at work. Large compe-

titors compete by matching each other's products and going 

for the center of the market. Consider Ford and General Motors, 

Time and Newsweek. This is convergent evolution at work in an 

area where the economies of scale allow only a few variants to 

survive. The freshman calculus text is an elephant in the 

world of texts and the economy simply can't support very many 

types of elephants. Economic forces prevent substantial inno-

vations in courses of this size. 

CURRICULAR FORCES LEADING TO UNIFORMITY IN LARGE COURSES 

Large courses are taught by teams and the direction of such 

courses is determined by group choices. Committees work by 

averaging and tend to conservative decisions. Moreover, large 

courses in the sciences and mathematics usually have a strong 

service function, both for higher-level courses in the same 

discipline and for courses in other disciplines. The client 

departments for such students expect a uniform and dependable 

product, and these expectations strongly limit the possibilities 

for innovation or change. 

Redirection of the introductory curriculum requires agreement 
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on new standards. Until such standards prove themselves 

workable in the classroom and are found more effective for 

student's future work and for the client departments, prudent 

departments will not rush to institute new courses and prudent 

publishers will not rush to publish large or lavish books for 

such courses. Indeed, even mild deviations that are untested 

may be viewed with suspicion. 

COMMERCIALLY ATTRACTIVE INNOVATIONS 

Today's calculus book evolved from smaller ancestors by gradual 

additions and adaptations. If the present type did not exist 

for us to imitate, no author could or would invent it as an 

entirity and no publisher would invest in it. However, new 

types of texts are produced every year. Many are eliminated 

by market forces. The quite considerable costs and develop-

ment and publication are borne by the authors, their institu-1 

tions, and the publisher. As an editor, I have seen that many 

serious efforts are never pushed to completion by the authors 

while others are found by reviewers to be unsuitable for their 

intended markets and do not see the light of day. Sach of 

the following examples was innovative and commercially attrac-

tive. They run from small projects to immense ones, and they 

illustrate what qualities innovative projects must have if 

they are to be commercially acceptable. 

Smaller projects allow more attractive opportunities for inno-

vative publishing. For example, Loren Larson's ALGEBRA AND 

TRIGONOMETRY REFRESHER FOR CALCULUS STUDENTS was based on a 

successful supplement in use at the author's school. Neither 

the idea of a review book nor the concepts and skills to be 

reviewed (content) were novel, but the way in which the review 

was set out was compelling and the care in bringing it together 

let one see that this particular approach would work (style). 

This project was attractive in its existing form to reviewers 

at other schools. Furthermore, it made sense to print this 

informal book from author-supplied copy and typed in final 

form after the publisher's work on the art, design, and edit 1 

ings. The result was a project requiring an investment equal 

to about 0.05 times that of the standard calculus book described 

earlier. 
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To break even with this sort of small project, one need only 

sell 3,000 copies. The sales of this book have exceeded 

30,000 copies in five years and it has achived a percentage 

return on net beyond that which could ever be expected in a 

standard calculus book. 

Other examples of similar success of small projects based on 

successful texts in use at a local school, each of which meet 

a need not met by existing texts, are QUICK CALCULUS by Daniel 

Kleppher and Norman Ramsey (John Wiley and Sons) and OPERATIONS 

RESEARCH FOR IMMEDIATE APPLICATION! A QUICK AND DIRTY GUIDE 

by Robert E. Woolsey and Huntington S. Swanson (Harper and Row). 

I would argue that the success of these books is more a func-

tion of their style and execution than of their content. 

An innovative project of larger scale is David Moore's STATIS-

TICS 1 CONCEPTS AND CONTROVERSIES (W. H. Freeman and Company), 

again it was based on a successful course at the author's 

school and had proven attractive in manuscript form to those 

experimenting with new types of statistics courses elsewhere. 

This project represents an investment equal to about 0.10 

times that of our standard calculus book and requires sales 

of roughly 10,000 copies to break even. To achieve a 10% 

return on net with this sort of project sales of 20,000 copies 

are needed (roughly 0.33 times those required for our standard 

calculus text). The slow pay-off here is a result of holding 

the price down to allow supplemental use, a strategy that 

succeeded very well. Larger still and equally successful in 

its niche is the innovative statistics book by David Freedman, 

Robert Pisani, and Roger Purves (W. W. Norton). This text 

was developed and class tested over many years at the University 

of California at Berkeley. It is style and execution not con-

tent alone that has made these books successful. 

More pertinent to the discrete mathematics debate is MATHEMA-

TICAL STRUCTURES FOR COMPUTER SCIENCE by Judith Gersting (W.H. 

Freeman and Company). Again, this is a text that arose from 

an existing successful course at the author's school. Here 

the target was the ACM's proposed course on discrete mathema-

tics. The books cited earlier in this section were innovative 
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in their goals; this is not the case for Gersting. This course 

existed elsewhere, enrollments were rising, and the author 

was unsatisfied with the available texts. It was not a matter 

of what the available texts set out to do (content) but rather 

how they did it (style). Gersting's course notes were polished 

during more than three years of class testing before the book 

was published. Her class notes were extensively reviewed by 

other teachers to ensure that the local success could be 

repeated at other schools. The result is a text that requires 

an investment not much above 0.10 times that of our standard 

calculus book and that shows a profit of more than 10% of net 

receipts with sales of less than 10,000 copies. That is about 

0.16 times the sales required for equal profit from a calculus 

book. Moreover, sales of existing books indicated that con-

servatively one could expect to sell 5»000 copies per year 

if successful. Actual sales have been about twice this high. 

This project was pleasing in prospect and it has been rewarding 

in retrospect. This book's revisions will face a more compe-

titive market and give both author and publisher smaller slices 

of a much larger pie. 

W. H. Freeman and Company has published several books that set 

new patterns for what later came to be known as liberal arts 

mathematics ι books by Sherman Stein (1963), Harold Jacobs (19?0), 

and Bonnie Averbach and Orin Chein (1980). 

In each of these books, matters of content and style are in-

extricably bound together and each would have vanished without 

trace had it not been for the author's and publisher's superb 

execution. Each of these books was based on a successful work-

ing course and each stood the test of critical reviews before 

publication, two criteria that every innovative text should 

meet. Each has proved successful in the classrooms of many 

other teachers after publication. Each offered a fresh point 

of view and a clear alternative for adopters. Each seemed a 

sensible commercial gamble, although declining enrollments in 

liberal arts mathematics courses in recent years together with 

a proliferation of available texts have made this a difficult 

market in the 1980's. 
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Zach of these books requires a prepress investment roughly 

0.25 times that required for our standard calculus book. For 

the earlier books, those by Stein and Jacobs , I estimate 

that that investment would be fully recovered with the sale 

of 20,000 to 30,000 copies. For the most recent book, that 

by Averbach and Chein, the break even point for sales lies 

above 37»500 copies and had not yet been reached in 1984. 

Compared with a calculus book the investment is about a quarter 

and the sales requirement to break even is about half. This 

is an interesting sort of gamble. The profit as a portion of 

net receipts lies in the range of 10 to 15% for the fully 

mature older books. This relatively low rate of return comes 

from competitive forces. Long-term survival drives companies 

to offer the best product they can at a price low enough to 

keep the competition down. The spread between the marginal 

cost of printing, paper, and binding and gross receipts is 

smaller for books that have many competitors than it is for 

those that have few. This is one reason why more advanced 

books are more expensive} the relatively smaller size of the 

markets for advanced books is another. 

Large-scale innovative textbook publishing is so risky that 

it becomes attractive only when much of the costs are carried 

by others. The committment of the professional community and 

of the government to The New Mathematics and to Chem Study 

carried forward these two innovations. I cannot cite any 

figures for The New Mathematics, but I can cite some for the 

initial Chem Study materials published by W. H. Freeman and 

Company in 1965· The rate of return on net sales has been 

very modest but the net receipts over nineteen years have ex-

ceeded eight million dollars and the investment was low. This 

chemistry reform project was meticulously developed and backed 

by the full faith and credit of the community of chemists and 

the government. It was a success in the classroom and spawned 

a new generation of successful texts. 

The terms of the arrangement allowing W. H. Freeman and Company 

to bring out this material forbade the Company from revising 

the original Chem Study material and hence from using its posi-

tion to gain an unfair advantage once the new curriculum was 
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established. It seems likely that the greatest rewards in 

this area were reaped by other publishers who profited by 

following the path broken by Chem Study and made improvements 

on the prototype published by Freeman. 

NEW CURRICULAR MATERIAL AT THE DAWN OF THE AGE OF COMPUTERS 

While the debate on continuous versus discrete mathematics 

continues, computer technology is creating a new environment. 

Students flock to existing discrete mathematics courses at 

the sophomore/junior level. These courses are part of the 

recommended curriculum of the ACM and they meet, in part, real 

needs for computer science departments. How some of this 

material can be worked into other courses remains to be seen. 

I would hope that the portions of it that are calculus related 

(generating functions, expectations, formal expansions, analysis 

of certain algorithms, etc.) will show up with more emphasis 

in introductory calculus. 

Computer technology in the form of TEX, TROF, EQN, and other 

typesetting packages, combined with powerful word processing 

programs and graphics packages would enable departments to 

develop far more polished preliminary editions of experimental 

texts. This may allow new books to be produced at substantial 

savings. The result is likely to be an unprecedented flour-

ishing of innovative and experimental course materials. The 

disadvantage will be that this will increase the amount of 

course material to be sorted out by the marketplace. Normally, 

publisher plays an important role in sorting out projects and 

helping to improve them. As the means of production move more 

into the author's hands, this role will be reduced. 

The main issue is not whether or not there will be more dis-

crete mathematics in the curriculum, but how the detailed mat-

ters will be settled ι What discrete-related material will 

come to receive more emphasis in existing courses, how new 

discrete courses will come to be organized, and over all, how 

compelling'a mathematics curriculum can be devised and put 

into effect. The realization of any change is bound by econ-

omic constraints, some of which are outlined here. From my 

view it is style and execution that are of central importance 
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for, as an editor, my job is to find the best author and to 

help that author produce the best course materials. In this 

context the content is almost a given and the differences in 

execution ma the difference between success and disaster. 

Thus the details of style and execution are central for me, 

and I represent the editorial decision point. Whatever pro-

gram is devised must at some point pass editorial judgement 

of one sort or another. Here I give you an outline of the 

financial constraints on such judgements. 

The financial constraints are simply the conditions of life 

for publishers. How do publishers determine what projects 

are likely to meet their needs? I have given some of the 

criteria, but I have left out others that are obvious and 

extremely important. Is the project exciting? Is the concep-

tion and organization compelling? Is it clear to those within 

the company and to reviewers that the author has a real contri-

bution to make? Can the virtues of the product be made evident 

to your intended audience? The last is essential to achiev 

reasonable sales. We are dealing with course materials, and 

so it is natural for potential publishers and for potential 

adopters to ask for proof of success in the classroom. The 

questions in this area arei Has the material been class tested? 

Does it work? Does it appeal to other teachers? Finally we 

come to the economic questions ι Is there an existing or pro* 

spective market large enough to make the project economically 

feasible ι True, content is part of all of this evaluation, 

but success or failure of a book is not usually a matter of 

content—content is too obvious a matter. Success comes to 

authors with a gift for exposition, who can give the attention 

to detail that makes a book work for the author, the author's 

students, and for others. 

The computer age will bring us new ways to produce books and 

new ways to put together instructional materials (courseware). 

These developments bring the author closer to the role of com-

positor and allow the author to move into a realm previously 

the province of the publisher. This has the potential of 

greatly reducing the publisher's prepublication investment in 

new teaching material and thus allowing for less costly innova-



STYLE VERSUS CONTENT: 
FORCES SHAPING THE EVOLUTION OF TEXTBOOKS 9 9 

tion. This means that the real costs of creating and sorting 

out new materials will fall more on the authors (who will col-

lectively produce greater quantities of new materials for lim-

ited markets and as a result must, overall, earn a lower average 

return) and on the users (who will he confronted by a larger 

selection of less-carefully tested products). These develop-

ments seem inescapable consequences of present trends. 

As these new courses, texts, and other materials are developed, 

the content will largely be determined by the perception of 

student needs, but successful courses will always depend crit-

ically on the style and presentation of the teacher in the 

classroom and of the authors of the materials used. Success-

ful teaching is done in detail, not by choice of content and 

large-scale strategy. 
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S T E P S T O W A R D A R E T H I N K I N G O F T H E F O U N D A T I O N S A N D 

P U R P O S E S O F I N T R O D U C T O R Y C A L C U L U S 

Peter Renz 

The concepts and methods of calculus are as important as ever in our 
understanding of natural science and engineering. One must understand 
the derivative to work with Newton's laws and one must have a 
considerably deeper appreciation of the ideas of calculus to begin to work 
out the bending of beams and the flexing of structural shells. Beyond this, 
there are many intriguing and important problems before us today that are 
best initially thought of in terms of interacting continuous variables: the 
accumulation of pollutants in the ecosphere, the rise and Tall or the level or 
insulin or other medically active material in a patient's bloodstream, the 
modeling and predicting of the weather, to mention a few. The analysis of 
discrete processes and of algorithms is often carried out using continuous 
methods. I mention only the traditional methods of generating functions in 
discrete probability and recent results on the average efficiency of 
algorithms to find the zeros of polynomials and to solve linear 
programming problems. (For a survey of the latter, see Steve Smale 
119851.) 

How can this be true yet introductory calculus find itself embattled? The 
answer lies in a set of new realities mainly connected with the 
microelectronic revolution and the proliferation of calculators, computers, 
and information processing systems. These devices are finding their way 
into automobiles, banks, small businesses, private homes, and into our 
students' bookbags and lives. There are three main ways in which these 
new realities threaten the traditional calculus curriculum: first, they have 
led to the proposal that calculus be supplanted by discrete mathematics as 
a first course in the college curriculum; second, they lead to changes in the 
sorts of things that can and/or must be taught in calculus itself; third, these 
new circumstances seem to be associated with a decline in mastery of the 
traditional background and skills on which the existing calculus curriculum 
is based. Let us look at these one by one and then see what changes they 
suggest for calculus. 

DEMAND FOR COMPUTER-RELATED MATHEMATICS 

The opportunities related to computers and their applications are 
enormous and consequently students want to learn computer-related 
material as early as possible in their studies. This demand has led to the 
proposal that courses in discrete and algorithmic methods be developed as 
the standard first course in college mathematics, displacing calculus. The 
pros and cons of this have been argued extensively; see, for example, the 
Forums on discrete mathematics and the mathematics curriculum with 
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target articles by Anthony Ralston [1984] and Fred Roberts [1984]. The 
Ralston and Roberts pieces brought forth many persuasive and thoughtful 
defenses of the central role of calculus with suggestions on what needed to 
be done better in teaching the subject. I recommend particularly the 
responses of MacLane [1984], Kleitman [1984], Hamming [1984], Davis 
[1984], Thomspon [1984], and Guy [1984] and the rebuttals of Ralston and 
Roberts in The College Mathematics Journal. 

These proposals to replace calculus seemed to have been called forth 
primarily for the strong demand for computer-related courses and this is a 
reasonable demand that will grow stronger in the future. 

CHANGING TECHNOLOGY CHANGES WHAT CAN BE DONE 

Computers and calculators have affected the circumstances of introductory 
calculus in more subtle and complex ways. Essentially all calculus students 
have scientific calculators. These devices are necessary for working 
numerical problems in science or engineering courses. Calculators make it 
possible to obtain, with a few key strokes, answers that previously would 
have required a great deal of effort and possibly reference to awkward 
tables. They are the realization of the mythical function machines that 
were supposed to make the idea of a function concrete when I was an 
undergraduate. The best device my school could muster then was a 
square-root Frieden calculator that cost about $1200 in 1957 (about $4500 
in 1985 dollars). We have come a long way. That same school is now fully 
committed to computers in the curriculum, has made microcomputers 
available to all faculty members, and plans to create a campus-wide 
network with each undergraduate having his or her own machine. Each of 
its physics, biology, and mathematics departments already makes 
extensive use of computers. The broad availability of calculators and 
computers presents opportunities and difficulties for the teaching of 
calculus. The new opportunities come because operations that used to be 
difficult are now easy. Before calculators became almost universal, it 
would have been unreasonable to ask a student to use iterative methods 
to solve an equation to eight- or ten-decimal-places accuracy, but now this 
is a reasonable and rewarding assignment. Similarly, the process of 
graphing functions and understanding the relationships between a 
function, and its first and second derivatives and the geometry of the 
function's graph is transformed when your students can use 
computer-graphing programs. No longer need you restrict attention to a 
small collection of functions whose derivatives can be analyzed by simple 
algebraic means, and quite general functions can be considered. But these 
opportunities also provide challenges to the traditional calculus curriculum 
because they substitute new computationally intensive methods for older 
paper-and-pencil methods. If our students are to understand optimization 
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in a more computational way (look for zeros of f' by Newton's method and 
check the sign of f"), this implies changes in course content, in the manner 
that courses are taught, and in the sorts of exercises and tests that are 
given. These observations are based on my initial experiments using the 
Microcalc package (Flanders (1985)) in my classes. 

CHANGES IN STUDENT PREPAREDNESS 

Calculators and computers allow the automation of previously laborious 
numerical computations, and soon they may routinely deal with symbolic 
manipulations as well. Perhaps in part because of the lessening importance 
of calculating skills overall, my students today seem less willing and less 
able to follow what are essentially computational arguments compared to 
the students that I taught roughly ten or twenty years ago. As examples I 
give the standard calculations of the derivatives of χ to the nth power or 
for the sin(x) and cos(x). These may be based on the binomial expansion or 
the formula for factoring the difference of two nth powers [ for the 
derivatives of χ to the nth power] and on the trigonometric angle sum 
formulas [for sin(x) and cos(x)]. My students today are less familiar with 
these basic algebraic and trigonometric formulas than were my previous 
students. Furthermore, today's students also seem less concerned that they 
be shown a coherent derivation of the results of calculus. Their attitude is 
that so artfully portrayed by Wilhelm Busch in his cartoon "Firm Faith" 
reproduced in Figure 1. 

Teacher : " . . . and now I want to Professor: U n d nun wil l ieh 
prove this theorem. " Ihnen diesen Lehreatz je tz t aueh 

Pup i l : " W h y bother to prove it, beweisen." 
teacher? I take your word for it." Junge: „ W o z u beweisen, H e r r P r o -

fessor? Ich g laub ' es Ihnen s o . " 

Figure 1. 

From The Mischief Book by Wilhelm Busch, as translated by Abby Langdon Alger and published by R. 
Worthington in 1880, reproduced from Max and Moriiz, from the Pen of Wilhelm Busch, edited and 
annotated by H. Arthur Klein, Dover Publications, 1962. 
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They correctly infer that calculus itself must be correct because it seems to 
have worked well enough for generations of mathematicians, scientists, and 
engineers, and they see their problem as simply one of mastering the 
formulas of the subject and how to use them. A demonstration that 
reduces the problem of finding sin'(x) to using the addition formula for the 
sine and to working out sin'(0) and cos'(0) is not any help to a student who 
is not familiar with this addition formula. It is far easier for such a student 
to simply memorize sin'(x) = cos(x). Similar considerations undercut the 
effectiveness of many proofs traditional to introductory calculus. Consider 
the chain of reasoning that takes us from, say, completeness of the real 
numbers to a proof of the mean value theorem. This proof is an exercise in 
explaining what is geometrically obvious in terms of what is unfamiliar and 
perhaps almost incomprehensible for many students. 

What is needed are compelling ways to make the basic results of calculus 
directly obvious for such students. For example, the fact that |sin(a) -
sin(b)| is no larger than la - b| can be proved by a calculus argument, but 
isn't it more obvious to observe that, if two points lie at counter-clockwise 
distances a and b respectively along the circumference of the unit circle 
starting from point (1,0), then the distance between these two points must 
be no larger than la - b|, and hence the projections of these points onto the 
y-axis that given sin(a) and sin(b) must satisfy the relation thatlsin(a) -
sin(b)| is no larger than la - bl. A picture here is worth more than a 
thousand words. This sort of geometric argument showing why sine and 
cosine are continuous is more evident and persuasive than arguing by 
reducing the general problem of continuity to that at zero by using the 
angle sum formulas. 

It is not easy to see exactly how this change in level of preparation has 
come about. It is perhaps partly due to the fact that students have been 
taking less mathematics in high school, but the students who take calculus 
at Bard College, where I teach, have had the prerequisite high school 
courses: algebra I, geometry, and algebra II/trigonometry--although the 
course coverage for some may have been light in trigonometry. 
Nonetheless, my students are weak in the concepts and skills that one 
would expect to be common to such courses. Those skills are outlined by 
Joan R. Leitzel [19831 in her article which sketches the problem of the 
decline in mathematical skills of entering college students and suggests 
solutions, including more clearly defining what should be taught in high 
school. This lack of skills is reflected not only by classroom experience but 
also by the MAA's Calculus Readiness Test, on which only a third of our 
students entering calculus achieved scores at or above the minimum level 
other schools nationally considered acceptable for entry into calculus. The 
MAA's testing and placement program which we instituted at Bard in the 
fall of 1985 gave us the first systematic and quantitative view of the level 
of mathematical skills and knowledge of our students. It was very helpful 
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not only for those teaching mathematics but also for all those teaching 
quantitative courses or advising students. At a large school, such as Ohio 
State where Joan Leitrel teaches, it is possible and necessary to develop a 
system for placing students on separate tracks and for handling problems 
of remediation. Smaller schools will not be able to support as elaborate a 
system as Ohio State. At Bard we are at the opposite end of the scale, with 
about 750 students and with more of these inclinded to the humanities and 
arts than to science. We teach a functions/precalculus course once a year 
in the spring and typically enroll about thirty to forty students in 
introductory calculus in the fall. Student-scheduling constraints largely 
determine which calculus section students take, and the weak and strong 
students are mixed in each class. Under these circumstances, ideally small 
classes (about fifteen each) allow for individual attention to students but 
still leave one lecturing to a very mixed audience. 

Whatever the causes of these changes and whatever remedies are applied 
to strengthen high school mathematics, it seems almost certain that 
tomorrow's calculus students will be less facile with algebra and 
trigonometry than were the students for whom the traditional calculus 
course was designed. In partial compensation, powerful scientific 
calculators and microcomputers will be more common and students will 
have greater opportunity to observe how mathematical entities behave. 
For such students the natural logarithm and the common logarithm will be 
equally easy to deal with. These will simply be two functions that 
transform products into sums and have rather similar-looking smooth 
curves as graphs. Both are available at the touch of a calculator key. If 
those teaching calculus are lucky, their students will have seen logarithms 
used to scale light or earthquake intensities, star magnitudes, the loudness 
of sounds, or the concentration of hydrogen ions. If this comes to pass, it 
will be a reasonable compensation for a somewhat diminished standard of 
algebraic abilities. For today's and tomorrow's students, there is little need 
to prove that the natural logarithm function exists by defining that 
function as an integral, just as there is little need to prove today's students 
that the sine, cosine, and tangent functions can be defined and their 
properties rigorously developed starting from the definition of the arc 
tangent as an integral—a development that was given in detail in the 
calculus course that I took as a freshman. We may regard the existence of 
all of these functions as evident. Their properties may be learned most 
easily by observation and analogy rather than by elaborate proofs. 

More generally, we are at a time when machines are being used where 
paper and pencil and mental muscle used to do all the work. Paper and 
pencil and mental muscle will never become obsolete, just as arm muscles 
will never become obsolete. However, today we have no need for the 
well-muscled armies of laborers who dug ditches and laid tracks in the 
past. This work is largely done with the aid of machines now. This does 
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not mean that we do not need people who know how to wield a pick and 
shovel, just that we need for less of them. It is not clear exactly what the 
mathematical analog of obsolete pick-and-shovel work will be in the future 
but it already includes arithmetic involving large numbers of digits and all 
the work that used to be done by looking up logarithms or logarithmic 
trigonometric functions. In the future, as software like muMath or 
MACSYMA becomes generally available, it may include much more besides. 

THE PURPOSES OF INTRODUCTORY CALCULUS 

Calculus has been, is, and will continue to be a basic computational and 
conceptual tool for students studying the hard sciences and engineering. 
For most of these purposes a brief sketch of the subject and its methods 
suffices. Daniel Kleppner and Norman Ramsey [19651 wrote one such 
sketch, Quick Calculus, for freshman physics students at Harvard. Kleppner 
and Ramsey wrote their Quick Calculus because the Harvard mathematics 
department was teaching slow calculus— that is, a careful and rigorous 
introduction to the mathematical foundations of calculus, including the 
completeness of the real numbers, a rigorous treatment of limits, and so on. 
There is nothing wrong with such slow calculus courses. I took and 
profited from such a course as a freshman, and I have taught such courses. 
But I believe that for most students in the age of the calculator and 
computer, slow calculus is inappropriate and some form of quick calculus 
or something like a modernized and expanded version of Sylvanus P. 
Thompson's [19701 classic Calculus Made Easy is more to the point. I 
believe that this can be true even for students continuing in the 
mathematical sciences. This is not to downplay the importance of rigor and 
of careful definitions. We should be careful about what we do and how we 
do it, but there is no way that a year's course in introductory calculus could 
cover the usual range of techniques and applications and give the rigorous 
basis for all the techniques covered. Consider the difficulties of rigorously 
justifying implicit differentiation, for example, at this level. Slow calculus 
even has drawbacks for mathematics majors because it delays the 
introduction of powerful and useful methods until after a full theoretical 
justification for these methods can be given. Implicit differentiation is 
again a good example. Surely one wants this available early on. If we 
accept that the purpose of calculus should be turned toward applications 
within mathematics and computer science as well as in the sciences and 
engineering, we are still left with serious questions about what to teach. 
One view about teaching mathematics for applications is given by Robert 
Geroch: 

The . . . problem is that it takes a certain amount of effort to learn mathematics. 
Fortunately, two circumstances here intervene. First, the mathematics one needs for 
theoretical physics can often be mastered simply by making a sufficient effort. This 
activity is quite different from, and far more straightforward than, the originality 
and creativity needed in physics itself. Second, it seems to be the case in practice that 
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the mathematics one needs in physics is not of a highly sophisticated sort. One 
hardly ever uses elaborate theorems or long strings of definitions. Rather, what one 
almost always uses, in varous areas of mathematics, is the five or six basic 
definitions, some examples to give the definitions life, a few lemmas to relate various 
definitions to each other, and a couple of constructions. In short, what one needs 
from mathematics is a general idea of what areas of mathematics are available, and in 
each area, enough of the flavor of what is going on to feel comfortable. This broad 
and largely shallow coverage should in my view be the stuff of "mathematical 
physics." 

There is. of course, a second, more familiar role of mathematics in physics: that of 
solving specific physical problems which have already been formulated 
mathematically. This role encompasses such topics as special functions and solutions 
of differential equations. This second role has come to dominate the first in the 
traditional undergraduate and graduate curricula. My purpose, in part, is to argue 
for redressing the balance. 

Geroch [1985] , p. 2 

For Geroch, it is the general ideas and a few illustrative examples that give 
the needed sense of the subject. This view is too soft for most engineers. 
The proper balance between hard calculations and special functions and 
softer, general ideas will be difficult to judge and will vary with the 
situation and with the times. Whatever is taught will certainly be largely 
forgotten unless it is regularly used, so it is illusory for client engineering 
departments to imagine that if hyperbolic functions are taught in 
freshman calculus, then their students will have or should have a firm 
grasp of these functions when they may have call to use them as juniors. 
For this reason it seems desirable to lean in the direction Geroch suggests 
rather than to do much work with entities like confluent hypergeometric 
functions, for example, a topic that was covered in my sophomore calculus 
course and that I have not had call to use since and that is consequently 
largely lost to me. 

In this view the purposes of introductory calculus are to give the students 
an understanding of the main working ideas of the subject: 

* The notion of a function made as concrete as possible by practical 
examples and graphs. 

'The notion that quantities or functions can be effectively defined by 
successive approximations precisely when these approximations can be 
made as accurate as we please, at least in theory. The first eiample of this 
is the dreaded epsilon-delta defintion of limit. I prefer to think of this 
definition as concerned with practical estimation following Hamming (1966 
and 1968] rather than as a highly theoretical idea. Other examples include 
the definition of the definitie integral and the uses of power series, Taylor 
Series and the like. 

* The idea of the derivative as a rate of change again with concrete 
examples, graphs, and tangent lines to give substance to this idea. 
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'The first and second derivative as tools for determining the local behavior 
of a function as used in solving optimization problems initially in one and 
later in several variables. 

'Linearization as used in approximation as in approximating a function by 
its tangent and in Newton's Method for locating zeros. 

"Taylor Series for standard functions including sine, cosine, exp, 1/(1 -x), In, 
arctan, and Newton's bionomial series. These series are broadly useful and 
one can show that they converge to their functions by using direct 
arguments without needing to rely on Cauchy's criterion or completeness if 
you assume the functions that are being expanded exist. 

'An understanding of the sorts of problems in which one must recover f(x) 
given f'(i) and the applications of indefinte integration (or 
antidifferentiation) based on formuals for differentiation. The specific 
techniques to be covered are somewhat dependent on the students' needs 
and the degree to which this work can be mechanized, but the idea of the 
process and its usefulness and the knowledge that there are systematic 
ways to find integrals is essential. 

Ά unified understanding of definite integration as both a conceptual and 
computationally effective way to calculate arc lengths, areas, volumes, and 
other such quantities. 

'Sufficient examples and techniques to give life to these ideas and to 
enable students to use them in other courses. It is important not to give 
too much in these areas and to find ways to meet the needs of students 
going on to, say, engineering without rushing them through a large number 
of special methods none of which is actually mastered. I believe that this 
can be done by allowing much of the difficult and messy calculation to be 
done by machine, as is done in practice, while ensuring that the general 
methods and results are clearly and compeilingiy evident. 

These seem to be a bare minimum of ideas and techniques that should be 
included in the first year of calculus. What should be found in the third 
semester of calculus? Here the choices are less clear but the traditional 
subjects are: geometry and calculus in two and three dimensions including 
differentiation, optimization problems, integration, and some vector 
calculus. Some schools add a bit of differential equations to this. These are 
all fine topics but they do not form a coherent whole that can be easily 
taught to students who are not at ease with vectors and matrices. For this 
reason there was an effort supported by CUPM to interpose a linear algebra 
course between the first year's course in single variable and the traditional 
third semester course. This idea largely failed to catch on because of the 
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demands of client departments and the inertia of existing programs. 
Despite this it was a good idea and it seems essential to cut the present 
monolithic calculus course into pieces if we are to reform it simply because 
several small jobs are more managable than one immense one. The success 
of second year several-variable calculus books such as Vector Calculus by 
Marsden and Tromba (1981], which sells about nine thousand copies a 
year, shows the possibility of cutting up what has been monolithic. 
Moreover, from the point of view of course development, text writing, and 
publishing, the advantages of smaller scale efforts are obvious. See Renz 
[19851 for an editor and publisher's view on how new courses come into 
being and how new course materials are developed and published. Thus I 
restrict my comments to the content of the first year course here. 

Any rethinking of introductory calculus must begin with a sharp focus on a 
limited number of ideas and techniques in order to allow the possibility of 
significant change. The present course is full to overflowing and 
improvement cannot be made by addition. Experiments with new curricula 
must be undertaken with the clear understanding that the needs of client 
departments in the sciences and engineering must be met but also with the 
understanding (shared with those clients) that their students will not be 
needing or using all of the treasured topics of the past. The above is my 
current list of essential ideas to be covered. I do not expect it to be 
necessarily adopted by anyone but I would hope that it might lead others 
to draw up their own lists and to refine them after consultation and to 
create worthy alternatives to the present calculus courses. One thing that I 
have purposefully left out of the above is what might form the theoretical 
basis of such a calculus course and I turn to this question below. 

THE FOUNDATIONS OF INTRODUCTORY CALCULUS 

Calculus made a good deal of progress based on the somewhat loose ideas 
of Newton, Leibnitz, and their successors. According to Kline [19721, 
D'Alembert saw that Newton's ideas of prime and ultimate ratios were the 
right way to look at the derivative. It was not until Bolzano, Cauchy, 
Dirichlet, and Weierstrass began to try to put analysis on a firm foundation 
in the early- to mid- nineteenth century that our modern understanding of 
calculus began to emerge. I take this foundation to be our understanding 
of the real numbers as a complete ordered field containing the rational 
numbers and constructed by considering Dedekind cuts in or Cauchy 
sequences of rational numbers. To this we must add the set theoretic idea 
of a function that liberates use from the idea of functions as given by 
algebraic formulas and the rigorous defintions of limits, and of derivatives 
in terms of limits, and of integrals either as limits of Riemann sums or in 
terms of sups and infs. All of this is enough to prove things such as the 
existence of a real number that is the square root of two—a fact that was 
never in question for most students—and to show the existence and 
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differentiability of all the elementary transcendental functions. This, 
however, is ail part of a baby real variables course and is not an 
appropriate theoretical basis for introductory calculus courses. 

Every effort should be made to find less complex and subtle assumptions to 
underlie the methods of calculus taught in the introductory course. We are 
at liberty in our minds to chose starting points other than completeness or 
the fact that a continuous function on a closed interval attains its maximum 
and minimum on that interval (the standard assumption used to derive 
Rolle's theorem and then the mean value theorem). Why not simply 
assume as an axiom that the continuous image of a closed interval is a 
closed interval (giving the existence of maxima and minima and the 
intermediate value property for continous functions on closed intervals 
immediately) and why not simply assume the mean value theorem itself? 
Both of these are geometrically compelling facts whose derivations will be 
less persuasive than the pictures. This proceedure loses no rigor because 
what we assume is true is, in any case, actually true for the systems we 
will work with. All that is really lost is the chance to show a nice and 
managable proof in class. 

If we follow this line, we will look for a small number of geometrically or 
algebraically evident assumptions on which to base introductory calculus. 
This will mean going away from the arithmetization of calculus of Cauchy 
and Weierstrass and back to more geometric ideas—properties of continous 
and differentiable functions that are easily pictured, such as the 
intermediate value property and the mean value property for 
differentiable functions. The elementary transcendental functions can and 
should be assumed to exist and be differentiable, and their deriatives 
should be worked out as much as possible by direct calculation using their 
familiar properties [e.g., by showing that log'(x) = (I/x) log'(O)] and not by 
elaborate theoretical means. For example, it is possible to give a direct 
geometric argument that sin'(t) = cos(t) and cos'(t) = -sin(t) by considering 
the motion of the point P(t) = (cos (t), sin(t)) along the rim of the unit circle. 
If P(t) advances counter-clockwise as if carried by a wheel whose rim has a 
linear velocity of one unit per second, then the magnitude of the velocity of 
P(t) is 1 at all times and its direction is perpendicular to the radius from 
(0,0) to P(t). It is easy to see that the vertical velocity of P(t) is sin'(t) and 
that geometrically this must be cos(t), and so on. Aided by a physical 
model I found this derivation a great success with my students this year. 
This gives an idea of what I feel to be the proper foundation for 
introductory calculus. To actually work out such a solid yet more intuitive 
foundation, much careful and imaginative thinking will be needed. But this 
rethinking will not be enough to lead to successful reform of introductory 
calculus. What will be needed is many successful experiments. This is a 
point made in my paper (Renz [19851) on style versus content in courses 
and texts. 
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In the preliminary planning for this conference, 
the pasture fenced off for my grazing was "rigor versus 
intuition" and "the importance and necessity of 
applications in calculus instruction." There is plenty 
to feed on within those boundaries but one cannot 
resist being a curious herbivore and first nibbling a 
bit at the edge of other fields. 

Strong words called this conference into being: 
the teaching of calculus is in a state of disarray and 
near crisis at most American colleges and universities, 
the principal evidence being a failure rate of about 
50%. I guess I am not as pessimistic about the general 
state of affairs as that clarion call suggests I 
should be, though I agree that the failure rate is too 
high and that we could be doing a better job. 

We should not lose sight of the fact that many 
good things are going on in calculus instruction. To 
mention one which I think is often a scapegoat: text 
material. While calculus books have more topics than 
can be covered in three semesters and simultaneously 
weigh and cost too much, the good ones--and there are 
m a n y — a r e full of fine features. They carefully, 
clearly, and systematically lay out material. They are 
rich with examples and models. They strike a nice 
balance between the theoretical and the practical. 
They have a multitude of learning aides. They are 
colorful, interesting, and graphic. 

I have sad memories of the dull, monotonous, 
confusing, overly abstract text I used 25 years ago to 
study calculus. To make sure this was not some old 
nightmare with no basis in fact, I pulled that former 

1 1 6 
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text out again recently. We are in a land of milk and 
honey by comparison. No better selection of materials 
to use in teaching calculus has ever existed. 

The Sources of Trouble 

So what has caused all the problems in teaching 
calculus? This observer comes to the melancholy 
conclusion that an important part of the problem lay 
not with materials or with students but with the benign 
neglect of undergraduate instruction that has come to 
characterize too many mathematics departments and large 
universities in general. 

Yes, calculus enrollments are larger and with 
larger enrollments come an increased percentage of 
underprepared students. Yes, a wider range of students 
(e.g., business and social science majors) are taking 
calculus. Yes, over the last two decades our secondary 
schools have lowered expectations across the board for 
all students, but especially in mathematics, sending on 
to all colleges (not just community colleges like my 
own) increasing numbers of apparently bright young 
people who cannot spell, punctuate, factor, or solve a 
simple linear equation. Particularly in our school 
systems, we have become a society where form and 
appearance have come to dominate over content and 
substance. 

These are important trends in student preparation 
that have led to deterioration in many college courses, 
not just calculus. But these trends are just now 
starting to reverse themselves, as the nation comes to 
realize that it is producing a generation of certainly 
unsophisticated, and probably even illiterate, high 
school graduates. The other guy jjs starting to clean 
up his act. One only hopes the mess has not become too 
large to be unmanageable. 

Benign Neglect 

But we at the colleges and universities ought to 
be concentrating on cleaning up our act. At the same 
time that all those bad things were happening in high 
schools, we lived through two decades in which 
university faculties, mathematics and otherwise, 
increasingly disassociated themselves from 
undergraduate instruction, particularly from 
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instruction at the freshman-sophomore level. Teaching 
such courses became an onus to be shared in at the 
minimum level required to keep one's job. There were 
no important rewards for teaching them and many 
important rewards for directing one's time and energy 
elsewhere. 

Some of this re-direction of faculty involvement 
away from freshman-sophomore instruction is the result 
of administrations giving more weight to "research" in 
its promotion decisions. But part of it has been a 
somewhat solipsistic and selfish decision by 
mathematicians and mathematics departments to pursue 
their own thing. Sitting around in the afternoon with 
a group of 4 or 5 colleagues discussing subtle points 
of algebraic topology feels better, is more personally 
rewarding, and maybe even easier, than worrying and 
struggling about exposing 18 year olds for the first 
time to some of history's great ideas like limits and 
derivative. No wonder then that departments set up for 
themselves systems that miminize faculty hours in the 
classroom and in contact with students (like teaching 
one section of 120 rather than 3 sections of 4 0 ) , 
systems which enhance most everything else a faculty 
member does but diminishes the effectiveness of 
freshman-sophomore teaching. 

The intention of these remarks is not to indict 
but to explicitly recognize the state of affairs. That 
recognition must precede change and is the pre-
condition for change. Nothing we discuss at this 
conference will have any impact on calculus instruction 
unless there is (again as a pre-condition) a dramatic 
change in faculty involvement in undergraduate 
instruction. We must find ways of attracting to that 
enterprise large numbers of perceptive, articulate, 
energetic mathematicians who want to work with 
undergraduates (particularly freshmen and sophomores) 
and guide these young people at a critical juncture in 
their personal intellectual growth. Our departments 
deliberately have to choose faculty members for these 
skills, as systematically and deliberately set out on 
this enterprise as they have set out in the past two 
decades to build collections of complex analysts or 
group theorists. Freshmen and sophomores will not 
learn better, calculus instruction will not inprove, 
and the conclusions of this conference will not be 
efficacious if we continue to have in our classrooms at 
that level too high a proportion of people who do not 
want to be there and do not have the personal skills to 
deal with that kind of communication. 
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Real ism About Students 

Another pre-condition for the success of the 
recommendations of this conference or any other to 
improve calculus instruction is more realism about 
student preparation and student readiness to benefit 
from a calculus class. It was not always the case that 
students leaving high school and entering a 
professional program in science, engineering, or 
business would be expected to go immediately into a 
calculus course. In fact, proportionately, relatively 
few did. I went to an advanced placement high school 
with five years of mathematics and then on to a private 
liberal arts college as a mathematics major. I took a 
year-long, thorough course in college algebra, 
trigonometry and analytical geometry (including 
rotations and some spherical trig) before beginning 
calculus. That might have been a little overkill. But 
I was ready to think about calculus when I got there. 

Today, we expect students who at best have three 
years of high school mathematics of a less 
sophisticated nature than 25 years ago to go directly 
into a calculus course. These students simply are not 
intellectually ready for it. They do not have the 
skills in algebra and trigonometry. More importantly, 
they have not had enough exposure to develop the 
precise and refined mode of thinking required to deal 
with calculus. It is no wonder a young person who can 
barely recognize a common factor in a three-term 
polynomial is befuddled by the careful thinking 
required to understand the idea of limiting value of a 
function at a point or to understand why certain ratios 
are indeterminate and require l'Hopital's rule. 

Such students who do not go directly into calculus 
are labeled in some sense deficient or remedial. No 
student wants such a label, particularly if the student 
feels this will retard progress towards his chosen 
degree. To avoid it, students use every conceivable 
ruse to get into that calculus course — like someone 
angling into French IV who is at best ready for French 
II. We all know the consequences: either a high drop 
out rate in the course or an adjustment downward by the 
instructor in the course's orientation to meet the 
student's level. 
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Is there really any hope of significantly 
improving calculus instruction if we continue to 
admit—and even indirectly encourage students to seek 
admission—who are not ready for the course? By far 
the largest number of high school graduates have three 
or fewer years of mathematics. This likely will 
continue to be the case even after the implementation 
of new higher secondary school standards. Would it not 
be more consistent to make normal expectation for 
entering students a thorough pre-calculus course before 
attempting the heady and adult stuff of calculus? 
Should we not engage our colleagues in colleges of 
science, engineering and business in discussions about 
the realism of building degree plans which expect 
students to be placed in calculus first semester of 
freshman year? If we do not ask these questions, do we 
risk (no matter how perceptive the recommendation of 
this conference) perpetuating a revolving calculus door 
through which the brightest safely pass but large 
numbers of others are trapped because too much has been 
asked of them too soon? 

Human beings have a long developmental period, 
first in the womb and then in the family, before 
succeeding alone as adults. Human intellectual growth 
is also slow (though extraordinary by comparison to 
other mammals). Granted, the educational system in the 
U.S. develops mathematical skills less rapidly than 
possible, as the experience of students in Asia, the 
Middle East, and Europe demonstrates. Students are 
theoretically capable of being better prepared 
mathematically at age 18 than most U.S. students are. 
But, as a matter of fact, most U.S. students are not. 
And we build on sand if we attempt significant 
improvement in calculus instruction without recognizing 
this. 

The Importance of Intuition 

I now need to get back to my own pasture before 
the conference herdsmen discover me with my head over a 
neighbor's fence. Let's begin grazing back at home 
with some thoughts on intuition. 

To me, the matter is simple and clear: intuition 
always (or at least almost always) takes precedence 
over rigor. I will immediately add the disclaimer that 
I might argue differently for isolated, specialized 
sections of a calculus course, like an honors section 
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for mathematics majors. But such specialized sections 
are so rare as not to substantially alter my opinion. 
I also will add an additional disclaimer that intuition 
for me does not mean "easy" or "inaccurate" or 
"incomplete." Intuition is consistent with requiring 
high proficiency in complicated algebra, extensive 
knowledge of trigonometry, precision, and thoroughness 
in solutions. 

What I really mean by intuition is a transmission 
to the student (or an educing from the student, 
depending on your epistemology) of a sophisticated 
understanding of the basic concepts of calculus. The 
first calculus course should have as one of its major 
goals sending forth a student with a substantial 
comprehension of ideas like limit, derivative, 
integral, infinite process (both large and small), and 
with an accurate knowledge how these ideas are 
pertinent to the solution of a whole range of important 
problems. Understanding, not regurgitation, is the 
goal. 

I sometimes say to my students that I think I 
could teach Koko, the push-button, talking gorilla, the 
mechanics of the use of l'Hopital's rule, given enough 
time and effort. What I am not optimistic about are 
Koko's chances of understanding the nature of an 
indeterminate form. 

I deliberately choose l'Hopital's rule as an 
example since, every time I teach it, it strikes me as 
an especially good example of what intuitive, 
conceptual teaching is not. Every textbook states and 
proves the relevant theorems and give a plethora of 
examples of l'Hopital variants. I have yet to see one 
text which explains what "indeterminant" means. 
Students become masters of the mechanics of the process 
but have absolutely no understanding of the basic 
problem: that quantities apparently similar because 
they simultaneously grow large in the numerator and 
denominator may have ratios with very different 
behavior. Students cannot explain that "indeterminacy" 
is precisely a state in which knowledge about the 
(separate and independent) large growth in numerator 
and denominator does not by itself resolve what is 
happening to the ratio. Further information is 
required, which one can get from l'Hopital. 
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As an aside, I will note that this is an ideal 
topic with which to use the computer to produce 
insight. It takes two minutes to display three 
different ratios, each with numerator and denominator 
having infinite growth, but the ratios themselves 
either tending to zero or to some other finite limit or 
growing without bound. A single glance at these 
examples convinces students of the "intellectual point" 
of l'Hopital. Absent these examples, most students go 
through the section like Koko. 

There are many other places where intuition in the 
sense of conceptual understanding is the key. I will 
say more about this below when discussing applications. 
For now, I want to emphasize that I am talking about 
the frame of mind with which the instructor presents 
the course. Neither the simplistic presentation of 
calculus as a set of routine techniques (e.g., rules of 
differentiation) nor the rigorous development of 
theorem after theorem each in its full panoply of 
epsilons and deltas catches this "intuitive" spirit. 
The instructor has to be constantly asking "What is the 
underlying concept here?", "What is the problem being 
attacked?", "What is the generalization that carries 
over to other situations?" 

Student at the level of calculus do not make these 
connections and see these patterns for themselves. 
They have had very little opportunity to do so. They 
are only beginning to realize the possibility of such 
sophisticated thinking, in terms of both concept 
content, logic, and generalization. The duty of the 
instructor is to start the student on this road and 
give the student substantial guidance in the early part 
of the journey. 

One obvious corollary (at least for me) of leading 
the intuitive life in calculus is to be concrete, which 
also means to be visual. Use pictures of various kinds 
of discontinuities, show computer printouts of limits, 
display three-dimensional models of surfaces in space. 
Most of these activities can take place in just a few 
minutes in class, but they make a massive difference in 
generating understanding in neophytes. And they are 
just the sort of thing a hoarier mathematician, who has 
become accustomed to life in η-space where the rules of 
process are more important than the visual image, might 
forget about. 
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The scholastic philosophers argued nihil est in 
intellectu nisi prior in sensibus, nothing Ts in the 
intellect which is not first in the senses. 

An intuitive approach to calculus is not 
inconsistent with detailed and complicated examples. 
Intuitive does not mean trivial. The ideas that 
students are beginning to understand in this course are 
complex. As a result, many and complex examples and 
models will be needed to develop them. In fact, they 
are probably best developed by seeing them time after 
time in a cyclic process, not unlike the exposition 
most calculus textbooks now follow: first developing 
polynomial functions; then rational functions; then in 
turn logarithmic, exponential, trigonometric, inverse 
trigonometric, and hyperbolic functions. At each 
stage, one learns critical information about the new 
model as a tool to revealing facets of the keystone 
ideas that hold all of calculus together. 

Applications 

This brings me to the second half of my assigned 
pasture: applications. Applications are a critical 
part of teaching and learning calculus precisely 
because they constitute one of the best places both to 
expose and to reinforce intuitive conceptual 
understand ing. 

A real danger when research mathematicians teach 
calculus to freshman and sophomores is forward 
projection: the tendency for the mathematician to look 
ahead to the next generalization (the class of Riemann 
integrable functions as a precursor of Lebesque 
integration) rather than look back to the kind of 
concrete problems which gave rise to calculus in the 
first place and which are necessary for student 
understanding. Insistence on dealing with practical 
applications purposely woven into the course can offset 
that bias. 

The bias sometimes is so strong that almost no 
applications are done in the calculus course. The 
philosophy in some departments apparently is that the 
physicists and the engineers do applications in their 
courses; mathematicians only to "mathematics." The 
irony is that the physicists and the engineers "assume" 
the mathematicians have done the job. The losers are 
the students. 
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The key word is using applications in a calculus 
course is "purposeful." I suspect no one would attempt 
to teach the definite integral without proposing the 
question of finding the area "under" a curve. Why? 
Because that geometric model simultaneously motivates 
the consideration of definite integrals in the first 
place and constitutes a dramatic picture of how and why 
the sum is constructed as it is. Such a presentation 
gives insight to a new idea in a way a mere abstraction 
like "limit of a certain sum of products" never can. 

But, unfortunately, the spirit of that example 
generally is not carried systematically through the 
entire calculus course. The real principle underlying 
that first presentation of the definite integral in the 
ancient Greek one of learning about the irregular 
through the regular or of extending and adjusting the 
known to analyze and reveal the unknown. (For the 
Greeks, the area of a circle became the limiting case 
of inscribed regular polygons.) Those ancient 
principles, monumental steps in the historical 
development of problem solving and still valuable tools 
today, can be re-taught time after time in calculus, if 
the instructor elects to do so . 

One does not have to choose a multitude of 
examples using the integral to develop such a theme. 
One only needs to choose them shrewdly. And especially 
to present them in such a way as to elucidate the 
common underlying pattern. One of my favorites is 
water pressure on a submerged plate. This model has an 
intuitive appeal to students from almost all majors. 
It requires very little knowledge about physics. It is 
a marvelous example of mastering the forces on an 
irregualr shape (the plate) by partitioning into 
regular rectangular shapes. Finally, one cannot just 
"memorize" an integral formula to solve all such 
problems. The process needs to be understood since 
small modifications in the positioning of the plate can 
affect the exact form of the integrand. 

If one rule is to pick applications that enrich 
intuition and display basic processes, another rule is 
to use applications that weave their way throughout the 
course, allowing students to see each successive stage 
of generalization. Moments and centroids are one such. 
The topic begins with the simplicity of point masses in 
one dimension (idealized children sitting on a teeter-
totter) and concludes with three dimensional solids of 
irregular density. The story in-between is one of the 
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prettiest in calculus, as one proceeds successively and 
concomitantly from ordinary addition to triple 
integrals, from one dimension to three, and from 
homogeneous sheets to non-homogeneous solids. Teachers 
need to unpetal ideas to students through applications 
like this, as though unpetaling a rose, to reveal the 
more complex inner structure. An imageless poem is a 
failure; and even worse is a poem full of pointless or 
contradictory images. Applications are the imagery of 
calculus, which (if well selected and expressed) are as 
powerful a tool in revealing its message as metaphor is 
to the poet. 

In choosing and presenting applications, an 
instructor's emphasis needs to be on what is common, 
not what is different; what is central, not what is 
peripheral. 

I find students get lost in chapters on local 
extrema, like spelunkers who wander from cavern to 
cavern when the path out is simple and straight. So 
few books make the observation that there are only two 
underlying intuitive ideas when discussing extrema: 
increasing/decreasing and concavity. Each in its own 
way gives the necessary insight to resolve a critical 
point's status. The first derivative test is just a 
technical expression of the former and the second 
derivative test does the same for the latter. 
Everything else is the mechanics of organizing 
information or algebraic detail or exceptional cases. 
It is easy to follow a path in this maze, if one is 
allowed to see the real simplicity of the design. 

One criticism of calculus textbooks is that they 
grow too long because they contain too many 
applications. I partly agree and partly disagree. 
Individual applications are superfluous to the extent 
that they are addenda, mere appendages hanging between 
the covers so that the potential adopter can see his or 
her favorite word in the index. But the technique of 
using application to teach the subject is not 
superfluous. Authors might consider putting some 
applications in an appendix or in a supplemental 
pamphlet as a way of keeping the main development more 
coherent and still allowing users some topics to select 
cafeteria-style. I would also add that authors of 
calculus texts used primarily by business and social 
science majors have a particularly challenging task (in 
light of my comments) since at least to me the 
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applications in those areas always seem more artificial 
(if not sometimes juvenile), making them weak carriers 
of the main themes of calculus. 

Pruning the Calculus Course 

I began this paper by grazing a bit across my 
fence line. I will end it by doing the same. 

With increasing frequency, one hears that calculus 
courses need to be cut back to provide room in the 
curriculum for other mathematics courses. I agree that 
space has to be found for other topics, particularly 
from discrete mathematics and particularly for 
undergraduate majors in business, operations research, 
and computer science. But I want to caution against a 
hasty pruning of that giant oak called calculus. We 
may need more trees in the garden, alternate sequences 
of courses for students whose needs are different. But 
I am not sure we need radical surgery on the ones 
already there. 

For example, I would encourage computer science 
majors to take only two semesters of calculus (calculus 
in the plane), using the third semester to develop 
discrete topics. But I would want to see physicists 
and engineers go on to take a traditional third 
semester of multivariate calculus. 

Particularly pernicious, I think, are 
recommendations to remove almost all computations from 
calculus since (the argument goes) software packages 
are already available to do them. For example, let all 
definite integrals be computed by using numerical 
methods on a pre-programmed hand-held calculator. 

I am happy that slide rules have become extinct, 
one piece of technology replaced by a better one. I am 
not happy that neither children in grammar school nor 
clerks in department stores can no longer add. That is 
a dimunition of basic human understanding unexpectedly 
resulting from technology. A colleague of mine on 
temporary leave from a large governmental research 
laboratory tells of his associates who run to the 
computer to get approximate answers to simple first 
order linear differential equations that could be 
solved by separation of variables and simple straight-
forward integration. 
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In the rush to pre-packaged programs, we need to 
be careful not to toss out the baby with the bath 
water. In devoting two or three classes to methods of 
integration, one is doing far more than developing a 
mechanical skill. The real, perduring learning here is 
the analysis of patterns, the recognition of the 
structure of integrands, the ability to choose the 
proper tool (be it substitution or partial fractions) 
to attack the problem. The same analytical skill is 
exercised again when one chooses among a myriad of 
convergence tests to use on an infinite series. 

Let calculators work out trivial details, like the 
monotonous inversion of large size matrices. But let 
us not lop off important limbs on the calculus tree, 
topics which (if taught properly) play a special role 
in a student's intellectual growth. Once removed, it 
is difficult to find substitutes and certain skills 
will atrophy. Calculators need be used as assistants, 
not as replacements for analysis and thought. 

Another danger I see, again arising from a desire 
for a more compact calculus course to free up time 
elsewhere in the curriculum, is the production of pre-
packaged calculus sequences, a sort of highlights of 
calculus, like the highlights of art history in a one-
semester survey. I was once told that learning 
philosophy was like climbing a mountain. The same is 
true for calculus. One can be placed at the top by 
helicopter, look down and see various paths (including 
the most efficient one to the top), and appreciate the 
beauty of the landscape. But this tourist-eye view is 
far different from having to climb that mountain, 
correcting false turns as one goes, getting partial 
insights as you look back, and finally seeing a 
panaroma which has truly become part of the climber. 
However we improve the teaching of calculus, we need to 
leave both the time and the challenge for substantial 
individual climbing. Only that way does real 
intellectual growth take place. 
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One of the most important and difficult problems facing many college mathe-

matics departments today is the development of programs that enable students who 

have studied calculus in high school to continue their accelerated mathematics pro-

gram into college. It is important because most of the more promising and capable 

mathematics students in high school are in accelerated programs and it is difficult 

because of the wide diversity of precalculus and calculus programs. This paper will 

analyze and present recommendations on the articulation between high school and 

college calculus courses. Three areas are considered: 

Accelerated high school mathematics programs. 

Fifth year programs. 

College programs. 

I. Acce lerated H i g h School P r o g r a m s 

Accelerated mathematics programs beginning with algebra in the eighth grade 

are now well established and accepted in most school systems. The success of these 

programs in attracting the more mathematically capable students was documented 

in the 1981-82 testing that was done with the (twenty nation) "Second Interna-

tional Mathematics Study." The Summary Report [9] states, with reference to a 

comparison between precalculus and calculus students in the United States: 

129 
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We note furthermore that in every content area (sets and relations, number 
systems, algebra, geometry, elementary functions/calculus, probability and 
statistics, finite mathematics) the end of the year average achievement of 
the precalculus classes was less (and in many cases considerably less) than 
the beginning of the year achievement of the calculus students. 

The report continues: 

It is important to observe that the great majority of U.S. senior high school 

students in fourth and fifth year mathematics classes (that is, those in 

precalculus classes) had an average performance level that was at or below 

that of the lower 25 percent of the countries. The end-of-year performance 

of the students in the calculus classes was at or near the international 

means for the various content areas, with the exception of geometry. Here 

U.S. performance was below the international average. 

Thus the students in accelerated programs culminating in a calculus course per-

formed near the international mean level while their classmates in (non acceler-

ated) programs culminating in precalculus courses performed at or below the lower 

25 percent level in this international survey. 

II. F i f th Year P r o g r a m s 

The success of the accelerated programs in having students complete the stan-

dard four year college preparatory mathematics program by the end of the eleventh 

grade presents schools with both an opportunity and a challenge for fifth year pro-

grams. There are two acceptable options for a fifth year program: 

1. Offer college level mathematics courses that will continue the students' 

accelerated program and thus provide exemption from one or two semesters 

of college mathematics, 

2. Offer high school mathematics courses that will broaden and strengthen a 

student's background and understanding of precollege mathematics. 
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Not offering a fifth year course or offering a "watered-down" college level course 

with no expectation of students earning advanced placement or offering a course that 

just "samples" topics from a college course are not considered to be acceptable fifth 

year alternatives. 

A great deal of prestige is associated with offering calculus as a fifth year 

program. Communities, in general, often view the offering of calculus in their high 

school as an indication of a quality educational program. Parents, School Board 

officials, counselors, and school administrators often demonstrate a competitive type 

pride in their school's offering of calculus. This prestige factor can easily manifest 

itself in strong political pressure for a school to offer calculus without regard to the 

qualifications of teachers or students. It is important that this political pressure be 

resisted and that the choice of a fifth year program be made by the mathematics 

faculty of the local school and be made on the basis of the interest and qualifications 

of the mathematics faculty and the quality and number of available students. School 

officials should be encouraged to develop public awareness programs to spread the 

prestige and support for the calculus, to acceleration programs in general. This 

would help diffuse the political pressure as well as broaden school support within 

the community. 

If a school elects to offer a college level course, then the course should be based 

on a standard college course syllabus (e.g. The Advanced Placement syllabus for 

calculus). Furthermore, the evaluation of the course should be based primarily on 

the performance of its graduates in the next level calculus course. 
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High School Calculus 

There are many valid reasons why a fifth year program should include a calculus 

course. 

1. Calculus is generally recognized as the beginning course in a college math-

ematics program. 

2. There exists a (nationally accepted) syllabus. 

3. The Advanced Placement program offers a nationwide mechanism for ob-

taining advanced placement. 

4. There is usually strong community and school support for a calculus pro-

gram. 

A calculus course, however, should not be offered unless there are strong indi-

cations that the course will be successful. 

Successful Calculus Course 

The primary characteristics of a successful high school calculus course are: 

1. Qualified Instructor: A degree in mathematics that includes at least one 

course in advanced real analysis is strongly recommended for anyone teach-

ing calculus. 

2. A full year course based on the Advanced Placement syllabus. 

3. Use of a college text rather than a "watered-down" high school version. 

4. A course whose major goal is to prepare students for advanced placement 

and not merely to get students ready to repeat calculus. 
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5. Course evaluation is based primarily on the the performance of its gradu-

ates in the next higher level calculus course. 

6. Course enrollment is restricted to only qualified and interested students. 

7. There exists an alternative fifth year course that the less prepared or less 

interested students may elect. 

The bottom line of what makes a high school calculus course successful is 

no surprise to anyone. A qualified teacher with high but realistic expectations, 

using somewhat standard course objectives with students who are willing and able 

to learn, results in a successful transition at any level of our educational process. 

When any of the above ingredients are missing, problems appear. 

Unsuccess fu l Calculus Courses 

There are two types of calculus courses given in high schools that seem to have 

become widespread and that have an undesirable impact on students who later take 

calculus in college. One type is a one semester or partial year course that presents 

the highlights of calculus, including an intuitive look at the main concepts and a few 

applications, and makes no pretense about being a complete course in the subject. 

The motivation for offering a course of this kind is the misguided idea that it prepares 

students for a real course in college. However, such a preview course covers only 

the glory and thus takes the excitement of calculus away from the college course 

without adequately preparing students for the hard work and occasional drudgery 

needed to understand concepts and master technical skills. Professor Sherbert has 

commented: It is like showing a ten minute highlights film of a baseball game, 
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including the final score, and then forcing the viewer to watch the entire game from 

the beginning - with a quiz after each inning. Or, as one college placement director 

said, the short preview course only succeeds in taking the bloom off the rose. 

The other type of course is a year long, semi-serious, but watered down treat-

ment of calculus that does not deal in depth with the concepts, covers no proofs or 

rigorous derivations, and mostly stresses computation. The lack of high standards 

and emphasis on understanding, dangerously misleads students into thinking they 

know more than they really do. In this case, not only is the excitement taken away, 

but an unfounded feeling of subject mastery is fostered that can lead to serious 

problems in college calculus courses. Students can receive respectable grades in a 

course of this type, yet have only a slight chance of passing an Advanced Placement 

examination or a college administered proficiency examination. Those who place 

into second term calculus in college, will find themselves in heavy competition with 

better prepared classmates. Those who select (or are selected) to repeat first term 

calculus believe they know more than they do, and the motivation and willingness 

to learn the subject are lacking. 

III. Col lege P r o g r a m s 

In the decade between 1973 and 1982, the number of students studying calculus 

in high school grew at a rate of more than 10% annually. In 1982, 234,000 students 

passed a high school calculus course and 148,600 of them received a grade of B~ 

or higher [2]. Extrapolating these figures to 1985, clearly shows that more than a 

third of the 500,000 students who took their first college calculus course in 1985 had 
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previously received a grade of B~ or higher in a high school calculus course. Of the 

48,351 students who took a 1985 Advanced Placement examination in mathematics, 

17,494 received a score of 4 or 5 and 12,296 received a score of 3. 

Several studies ([3], [5], [6]) have been conducted on the performance in later 

courses by students who have received advanced placement (and possibly college 

credit) by virtue of their scores on Advanced Placement exams. The studies show 

that, overall, students earning a score of 4 or 5 on either the AB or BC Advanced 

Placement exam do as well or better than the students who have taken all their 

calculus in college. It is therefore strongly recommended that colleges recognize the 

validity of the Advanced Placement program by granting a one semester advanced 

placement with credit for students with a 4 or 5 score on the AB exam and a two 

semester advanced placement with credit 

There is no clear consensus concerning performance in subsequent calculus 

courses by students who have scored a 3 on an Advanced Placement examination. 

The treatment of these students is a very important articulation question since 

approximately one third of all students who take an Advanced Placement exami-

nation are in this group and many of them are quite mathematically capable. It 

is therefore recommended that students receiving a a 3 on an Advanced Placement 

examination be dealt with on a special basis in a manner that is appropriate for 

the institution involved. For example, several colleges offer such a student an op-

portunity to "upgrade" his or her score to an "equivalent 4" by doing sufficiently 

well on a Department of Mathematics placement examination. Some institutions 
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give such students one semester of advanced placement with credit for Calculus I 

upon successful completion of Calculus II. A third option is to give one semester 

of advanced placement with credit for Calculus I and provide a special section of 

Calculus II for such students. 

Other important articulation problems are associated with students who have 

studied calculus in high school, but have not attained advanced placement either 

through the Advanced Placement Calculus program or through effective college 

procedures. These students pose a serious and difficult challenge to college mathe-

matics departments, namely: How to place these students so that they can benefit 

from their accelerated high school program and not succumb to the negative and 

(academically) destructive attitude problems that often result when a student re-

peats a course in which success has already been experienced? There are three 

major factors to consider with respect to these students. 

1. Lack of uniformity of high school calculus courses. The wide diversity in 

the backgrounds of the students necessitates a large review component be 

included in their first college calculus course to guarantee the necessary 

foundation for future courses. 

2. The mistaken belief of many students that they really know the calculus 

when in fact, they do not. Thus they do not take studying seriously enough 

at the beginning of the course. When they realize their mistake (if they 

do), it is often too late. These students often become discouraged and 
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resentful as a result of their poor performance in college calculus, and 

believe that it is the college course that must be at fault. 

3. The Pecking Order syndrome. The better the student, the more upsetting 

are the understandable feelings of uncertainity about one's position relative 

to the others in the class. Although this is a common problem for all college 

freshman, it is compounded when the student appears to be repeating 

a course in which success had been achieved the preceding year. This 

promotes the feelings of anxiety and produces an accompanying set of 

excuses if the student does not do at least as well as in the previous year. 

The uncertainty of one's position relative to the rest of the class often 

manifests itself in the student not asking questions or discussing in (or out 

of) class for fear of appearing dumb. This is in marked contrast to the 

highly confident high school senior whose questions and discussions were 

major components in his or her learning process. 

The unpleasant fact is that the majority of students who have taken calculus 

in high school and have not clearly earned advanced placement do not fit in either 

the standard Calculus I or Calculus II course. The students do not have the level of 

mastery of Calculus I topics to be successful if placed in Calculus II and are often 

doomed by the attitude problems if placed in Calculus I. This is the Scylla and 

Charybdis of the articulation problem or, in modern parlance, it's the rock and hard 

place. 
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An additional factor to consider is the negative effect that a group of students 

who are repeating most of the content of calculus I has on the rest of the class as 

well as on the level of the instructor's presentations. 

What is needed are courses designed especially for students who have taken 

calculus in high school and have not scored a 4 or 5 on an Advanced Placement 

exam. These courses need to be designed so that they: 

1. acknowledge and build on the high school experiences of the students, 

2. provide necessary review opportunities to ensure an acceptable level of 

understanding of calculus I topics, and 

3. are clearly different from high school calculus courses (in order that 

students do not feel that they are essentially just repeating their high 

school course), 

An additional desirable boundary condition for these courses is that they result 

in the equivalent of a one course advanced placement. 

Altering the standard lecture format or rearranging content seem to be two 

promising approaches to developing courses that will satisfy the above criteria (E.g. 

Colby College has successfully developed a two semester course that integrates mul-

tivariable with single variable calculus [10]. This course satisfies the three conditions 

listed above as well as providing students with the equivalent of a one course ad-

vanced placement.) 

Colleges have an opportunity and responsibility to develop and foster commu-

nication with high schools. In particular, there are three areas that colleges should 
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Establish periodic (e.g. once a semester) articulation meetings where high 

school and college teachers meet and discuss expectations, requirements, 

and student performance. 

Develop a system for providing feedback to high school teachers on the 

performance of their students. This would aid the high school teachers in 

evaluating their courses. 

Develop, in conjunction with Regional or State Supervisors, enrichment 

programs in elementary calculus (and other fifth year courses) for high 

school teachers. These programs could be offered during the summer or 

during the school year. Institutes, short courses, mini courses, and Chau-

tauqua programs offer models for such programs. 

IV. R e c o m m e n d a t i o n s 

1. School administrators should develop a public awareness program with the 

objective of extending the support for fifth year calculus courses to accelerated 

programs including all of the fifth year options. 

2. A fifth year program should offer a student a choice of courses (not just calcu-

lus). 

3. The choice of fifth year programs should be made by the mathematics faculty 

on the basis of interest and qualifications of the faculty and the quality and 

number of the accelerated students. 
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4. If a fifth year course is a college course, then it should be treated as a college 

level course (text, syllabus, rigor). 

5. A college level fifth year course should be taught with the expectation that 

successful graduates (B~ or better) would not repeat the course in college. 

6. A fifth year program should provide a bail out option for the student who is 

not qualified or interested in continuing in an accelerated program. 

7. A mathematics degree that includes at least one course in advanced real anal-

ysis is strongly recommended for anyone teaching calculus. 

8. A high school calculus course should be a full year course based on the Ad-

vanced Placement syllabus. 

9. High school calculus students should take either the AB or BC Advanced Place-

ment exam. 
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10. The evaluation of a high school calculus course should be based primarily on 

the performance of its graduates in the next level calculus course. 

11. Only interested students who have successfully completed the standard four 

year college preparatory program in mathematics should be permitted to take 

a high school calculus course. 

12. Colleges should grant credit and advanced placement out of Calculus I for 

students with a 4 or 5 score on the AB exam and credit and placement out 

of Calculus II for students with a 4 or 5 score on the BC exam. Colleges 

should develop procedures for providing special treatment for students who 

have earned a score of 3 on an Advanced Placement examination. 

13. Colleges should individualize as much as possible the advising and placement 

of students who have taken calculus in high school. Placement test scores 

and personal interviews should be used in determining the placement of these 

students. 

14. Colleges should develop special courses in calculus for students who have been 

successful in accelerated programs and have clearly not earned advanced place-

ment. 

15. Colleges should develop communication channels with high schools: articula-

tion meetings, performance feedback, and instructional enrichment. 
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C o m p u t e r A l g e b r a S y s t e m s , Tools For Reforming Calculus Ins truc t ion 

by 
Donald B. Small and John M. Hosack 

Department of Mathematics 
Colby College, Waterville, Maine 04901 

I. In troduc t ion 

Computer Algebra Systems (CAS), which are becoming increasingly available, 

have the potential for significantly improving calculus instruction. A major effort on 

the part of many people to consider issues of pedagogy and content will be required 

to realize this potential. We hope that this paper contributes to that effort. 

The first portion of this paper provides a brief explanation of computer algebra 

systems. In the main section we describe four areas in which we feel the present 

instruction in calculus needs to be reformed and describe how the use of CAS could 

be a major tool in a reformulation. The final section contains responses to three 

commonly raised questions/objections concerning CAS. 

II. W h a t are C A S 

Computer Algebra Systems are computer systems for the exact solution of 

problems in symbolic form. This contrasts with the numerical analysis approach 

used in conventional computer languages such as FORTRAN or BASIC, where a 

numerical approximation is obtained. The ones of interest to us (MACSYMA [3], 

Maple [l], muMATH [4], REDUCE [6], SMP [5]) are interactive systems that allow 

the user to define an expression, apply an operation, and manipulate the output. 
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For example, if the user wishes to integrate 

f(x) = arcsin(x)/x 2 with respect to x, 

the user defines the expression (where " Λ " is exponentiation) 

f : = arcsin(x)/x " 2 

and applies the integration operator 

integrate (f,x) 

obtaining as output an indefinite integral, usually in two dimensional format: 

-log(2Vl - x 2 + 2) _ arcsin(s) 

\x\ χ 

The standard operations include the use of the system as an arbitrary precision desk 

calculator, algebraic simplification, calculus (differentiation, integration, power se-

ries), linear algebra, systems of equations, differential equations, etc. There are 

also utility programs for expression manipulation, such as editing expressions and 

extracting parts of expressions. The systems may also allow numerical procedures 

such as numerical integration or graphing. If a procedure is not provided, these 

systems include high-level programming capabilities to allow for user-written pro-

cedures as extensions to the system. However, it is important to understand that 

computer algebra systems do not require any programming on the part of the user 

for most applications. These systems are readily available to the "computer novice" 

with a 10 or 15 minute introduction starting with how to turn on the computer. 

In addition, many of thses systems have on-line help, so that almost no class time 

need be spent on the mechanics of using the system. 
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III. Areas for Improv ing Calculus Ins truct ion 

(1) Conceptual Understanding 

Too much of the time of mathematics undergraduates is spent carrying out rou-

tine algorithmic manipulations (which the students will not long remember). This 

is done at the expense of conceptual understanding of the material and an appreci-

ation of mathematical processes (e.g. problem solving approaches and development 

of algorithms). Today, the major emphasis in college mathematics instruction is 

placed on imparting specific mathematical facts and algorithms, rather than on un-

derstanding and the development of inquisitive attitudes, analytical abilities, and 

problem solving skills. Paul Halmos argues [2] 

The major part of every meaningful life is the solution of problems; a con-

siderable part of the professional life of technicians, engineers, scientists, 

etc., is the solution of mathematical problems. It is the duty of all teachers, 

and of teachers of mathematics in particular, to expose their students to 

problems much more than to facts. 

Since CAS are becoming widely available that can carry out most of the standard 

operations of calculus, we ask: Rather than emphasizing the blind carrying out of 

algorithms, which can be done better by CAS, how can CAS be used to enhance 

conceptual understanding and the development of analytical thinking skills? We 

offer five illustrations as a partial answer to this question, 

(a) Problem Solving Approaches 

Shifting the burden of computation to CAS makes time available for students 

to concentrate on how to approach a problem, to delineate subproblems, and to 

consider alternatives, rather than spending most of the time routinely following 
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one algorithm. For example, one can develop the basic approach toward problem 

solving outlined by the following questions: 

1. What do I need to know? 

2. What can I tell by inspection? 

3. What are the possibilities suggested by what I know? 

4. What should I do next? 

The value of this approach is difficult to appreciate when the algebra involved can 

be routinely done with pencil and paper. This is the case in sketching the graphs 

of rational functions when one is only concerned with polynomials of degree 2 or 

3, which is typical of most exercises. However, the value of this approach becomes 

clear to students when the algebra involved is too complicated to be done with 

pencil and paper. For example, sketching the graph of a rational function with 

polynomials of degree 8 or 13 or 20. 

(b) Increase in the Quantity and Variety of Exercises 

One of the tenets of mathematics instruction seems to be that the more exam-

ples students work or see worked, the better they understand the concepts involved. 

If this is in fact true, then CAS can be the answer to drill work (students get tired, 

computers do not). For example, in discussing Taylor series we could ask students 

to analyze ten or more functions during a homework assignment rather than just 

three or four. Furthermore we would not be limited to only considering the few 

standard functions. Using CAS, for example, we could ask students to find a poly-
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nomial that would approximate f(x) = e~x*cos(x) over the interval [-1,4] with an 

accuracy of 1 0 - 8 . 

(c) Use of Graphs to Analyze Functions 

We use the analysis of functions to learn how to sketch graphs, but we do 

not place very much emphasis on using graphs to help analyze functions. The 

graphing capabilities of CAS could be used to guide the analysis of a function. This 

could be particularly helpful in extrema problems of one or more variables. For 

example, a sketch of the fourth derivative might suggest a possible bound to use 

in the error expression of Simpson's rule. Other examples where sketches could be 

used to suggest or guide the analysis include showing the convergence or divergence 

of a sequence of partial sums or comparing two functions or solving an equation (a 

sketch could approximate a zero and then the bisection procedure could be used, 

with the computation carried out by the CAS, to obtain the desired accuracy). 

(d) Development of an Inquisitive and Experimental Attitude 

A major obstacle to developing an inquisitive approach in students is the large 

amount of (routine) computation that is usually involved in attempting to answer 

or even understand most questions. With CAS to carry out the computations, it 

is easy to follow up an exercise with a sequence of "What if ..." type questions in 

which some aspect of the original problem is changed and we want to know what 

effect the alteration has on the solution. For example, consider the level of class 

involvement and the "discovery setting" that an instructor could orchestrate in a 

classroom equipped with a microcomputer (with CAS) and a projector by altering 
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the integral / \ / l — x2dx. By removing or lessening the burden of computation, the 

instructor can better focus (in class) on developing a conjecturing and experimental 

approach on the part of students. CAS can make discovery learning a real possibility 

for many students. 

(e) Changing Students' Perception of What is Important in Mathematics 

Time spent on an activity is often viewed as an indication of the importance of 

that activity. Since students spend most of their "mathematics time" carrying out 

routine algorithmic manipulations, their tendency is to view mathematics as the 

memorization of formulas and "to do mathematics" is to compute. ("I can do the 

math, it's just the theorem that I don't understand.") A vicious cycle emerges, for 

trying harder to learn mathematics means putting more emphasis on computing and 

even less on understanding concepts. Relegating computation to CAS can free the 

student to think about what is going on, to anticipate the answer (type, form, size, 

etc.), and to conjecture. In this way, the student is more likely to become involved 

with conceptual understanding rather than just the details of computation. The use 

of CAS will not identify what is important in mathematics, but it will downgrade 

the importance of computation in the students' minds and provide the instructor 

with a better chance of convincing the student of what is important and what is 

not so important. 

(2) Approximation and Error Bound Analysis 

An important goal of a college mathematics program should be to prepare 

students to be able to apply their mathematical education to "real-life" problem 
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situations. The open-ended nature of most of these situations requires an analysis 

that depends on an approximation approach and error bound analysis. Preparation 

for this type of analysis belongs in our calculus courses. 

Approximation should be considered as the primary process throughout calcu-

lus. A two-to-one ratio of open-ended problems to closed-form problems is desirable. 

For example, twice as much time should be spent on numerical integration as closed 

form integration; twice as much time should be spent on approximating functions 

with polynomials as on convergence tests. Error bound analysis should be stressed 

throughout the calculus sequence. What is meant by "bounding a function" and 

"how to determine a bound for a function" are important considerations which 

should be stressed. However, primarily because of the algebra and differentiation 

involved, these topics receive only minor attention today in our courses. CAS can 

change this. For example, comparing and contrasting the error bound expressions 

associated with numerical integration (rectangular, trapezoidal, parabolic, Taylor 

series), or comparing rates of convergence are reasonable exercises for a calculus 

student having access to CAS. Emphasizing numerical integration presents a good 

application of polynomial approximation as well as providing students with the 

opportunity to use a variety of techniques to analyze error terms: symbolic compu-

tation of derivatives, graphing, and perhaps numerical approximations to estimate 

bounds. Using CAS as a tool to obtain derivatives, obtain Taylor polynomials, 

evaluate expressions, sketch graphs, etc., enables the student to become much more 
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deeply involved with approximation questions than if he or she had to rely on hand 

computation. 

(3) Exercises and Test Questions 

Most exercises and test questions consist of two parts: first analyzing the ques-

tion to determine what algorithm(s) to use and, secondly, carrying out the routine 

algorithmic manipulations. The first part, the analysis, is concerned with the under-

standing of concepts and is certainly the more valuable of the two parts. However, 

students spend far more time on the second part and thus consider the computa-

tional part to be the more important. 

Using CAS to do the computation, which they can do faster, more accurately, 

and tirelessly, the time spent on routine homework and tests could probably be 

reduced to one third of the present time spent. We propose that homework exercises 

and test questions be divided into three categories with approximately equal weight 

and time being allotted to each. 

(a) The traditional two part type of exercise with the computational part being 

done partially by CAS and partially by hand (e.g., to transform an expression to a 

more suitable form). 

(b) Construction of examples. Students are given a set of conditions and asked to 

construct an example satisfying the stated conditions or show why no such example 

can exist. Although CAS can be used to "check out" attempts, CAS cannot give the 

answer in the sense that they can in a traditional type of exercise. The exercise that 

asks for an example requires more creative thinking on the part of the student than 
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does the traditional exercise of type (a). Requiring students to become proficient in 

making up examples is an effective way to enhance conceptual understanding. For 

example, a student who constructs a rational function satisfying a set of asymptote 

and intercept requirements has demonstrated more understanding of the behavior 

of rational functions than if he or she had been given a rational function and asked 

to sketch its graph. 

(c) This category includes individual and small group projects, true-false questions, 

proofs, outside reading, reports, etc. 

It should be noted that time is made available for categories (b) and (c) by 

turning over most of the routine calculations to CAS. 

(4) Limitations Imposed by our Level of Algebraic Skills 

There are several ways in which our level of algebraic skills limits our under-

standing or treatment of calculus concepts. We consider a few examples in which 

the use of CAS can significantly lessen these algebraic limitations, 

(a) A commonly heard lament of calculus instructors concerns the student who 

"can't do the algebra and thus never gets to the calculus part of the problem". 

A large number of students have "successfully" completed the normal precalculus 

sequence of courses, but have not gained the facility to carry out algebraic manipula-

tions well enough to be successful in calculus. The resulting frustrations often cause 

a student to leave mathematics rather than encouraging a student to undertake the 

necessary remedial work in algebra. CAS can offer these students the opportunity 
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to comprehend and work with the concepts of calculus at a meaningful level. Fur-

thermore, their work with the calculus may provide the necessary motivation for 

them to remedy their algebraic deficiences. 

(b) Finding or approximating the zeros of a function is often a major subproblem 

in analysis. The difficulty in factoring a polynomial of degree greater than two 

imposes a severe limitation on both the type and "size" problem that is considered. 

For example, rational functions that we assign to be analyzed almost never involve 

polynomials of degree greater than three unless they are given in factored form. We 

seldom assign a problem such as finding the area enclosed by the graphs of f ( x ) = e I , 

g (x)=4-x 2 , and the positive axes because it is too difficult to determine where the 

graphs for f and g intersect, i.e., the zero of f-g. CAS can alter this situation. The 

capabilities of CAS for determining zeros combined with curve sketching and the 

bisection algorithm, can make finding zeros one of the most widely used techniques 

in calculus. 

(c) In numerical integration we usually "skimp" on applying Simpson's Rule because 

of the difficulty (in terms of time and algebra) involved in finding and bounding 

the fourth derivative. CAS can lesson this difficulty. Because of the algebra in-

volved we usually do not ask students to compute very many Riemann Sums or to 

experiment by considering different partitions or varying the points in the partition 

intervals where the function is evaluated. It would be easy to carry out these types 

of experimentation with CAS and in the process give students a hands on type 

experience. 
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f(x) = sin(ex + 4x3)log(cos(x) + 7) 

although we would expect the student to know how to do it "theoretically". CAS 

would allow the student to actually find the Taylor polynomial and work with it. 

IV. Quest ions a n d R e s p o n s e s 

Some commonly expressed concerns about CAS and our responses follow. 

(1) Question: Will using CAS result in a serious loss of computational skills? 

Response: No. Using CAS will produce changes in students' computational skills. 

For example, there will be a definite decrease in students ability to recall and imple-

ment standard algorithms (e.g. long division, factoring, differentiation, integration, 

etc.). Many view this reduction as a worthwhile trade off for improved understand-

ing of concepts. Also students' basic arithmetic-algebraic skills will improve as a 

result of an increased emphasis on approximation, constructing examples, analysis, 

and the increase in the number of exercises students work. 

(2) Question: Will freeing the student from hand computation result in a loss of 

confidence and sense of accomplishment? 

(d) In series, it is our difficulty in differentiating and doing the algebra that limits 

us to considering only a small number of standard functions, not the concepts them-

selves. For example, we would not expect a student to find the thirteenth degree 

Taylor polynomial for 
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Response: No. It is true that for most (mathematically) successful students compu-

tation has been a major source of building self confidence and a sense of accomplish-

ment. Enjoyment and success associated with computational skills have attracted 

many students to mathematics. It is probably also true that an equal number of 

students have been driven away from mathematics by their frustration with com-

putation. We expect the ability to work problems freed from (many) present day 

algebraic limitations and the encouragement to explore and experiment will provide 

confidence and a sense of accomplishment to the first group of students and be a 

godsend to the second. 

(3) Question: What equipment is needed and what is the availability of hardware 

and software for using CAS in calculus instruction? 

Response: There are several CAS available for time-sharing. A small class could use 

one of the large systems, such as MACSYMA, REDUCE, or SMP, which were de-

signed primarily for individual researchers and require substantial system resources. 

The Maple system is designed for use by medium sized classes of students on a time-

sharing system. For several years muMATH has been available for microcomputers, 

and similar systems are being introduced. At least some venders are interested in 

placing CAS on hand-held microcomputers, which will allow CAS to appear directly 

in the classroom. Until CAS on hand-held micros become generally available, a mi-

crocomputer and projector combination can be used to facilitate the instructor's in 

class presentation and student faculty exploration. 
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Twenty Questions f_Q_L Calculus Reformers 

by Lynn Arthur Steen 
St. Olaf College 
Northfield, Minnesota 

There is little doubt that calculus is the central subject in 

the mathematics curriculum. Every student with serious aspirations 

for a career in science, engineering, or business takes a crack at 

it. The mathematics curriculum of the high schools is focused on 

calculus as a target, and most mathematics-based courses in college 

use it as a common foundation. Each year about 500,000 students in 

the united States study calculus, about half the number who will 

eventually graduate from college. Calculus is big business with far 

reaching consequences for students, for colleges and universities, 

for the mathematical community, and for our nation. 

The occasion of a conference on the role of calculus brings to 

mind a host of questions that need to be addressed. In advance of 

the Tulane conference, I posed 20 questions that I hoped would help 

stimulate discussion of important issues. At the conference few 

questions were answered, but more were added. So these 20 questions 

have now grown to 28! 

1. Should fewer students study, calculus? Perhaps society would be 

better served if more students were introduced instead to 

statistics, matrix algebra, discrete mathematics, or computer 

science. Does the mystique of calculus as the unique gateway to 

mathematics obscure the comparable value of collateral subjects? 

2. is calculus an appropriate filter tsiL. ths. professions? The 
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majority of students who study calculus do so en route to 

careers in business, medicine, and law where calculus per se 

will almost never be required. Is calculus really the best 

means of assuring analytical skills for such students? 

3. WJLil computer science dethrone calculus? For the first three 

quarters of this century, calculus has been the gateway to all 

significant college-level mathematics. Now that computer 

scientists urge discrete mathematics rather than calculus for 

freshman-level study, students progressing through typical 

university science and engineering curricula can no longer be 

assumed to be literate in calculus. If knowledge of calculus is 

not assumed in advanced courses, will the motivation to study it 

remain strong? 

4 . UQ. students really lsaxn ths. major ideas ol calculus? 

Physicists employ calculus as the language of science; 

philosophers talk of it as the rosetta stone of the scientific 

age; historians see it as the culmination of a millenium of 

investigation. But all students usually see (and are examined 

on) are calculations of derivatives, integrals, differential 

equations, and series. Is this because the average U.S. 

calculus student is not intellectually ready to understand the 

central ideas of calculus? 

5 . Has calculus h££Qm& a cookbook cjuiLse.? In typical texts, 

exposition is subservient to template examples and carefully 

planned exercises. Routine exercises dominate tests, most being 

entirely within the capabilities of symbolic algebra programs. 
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Do students really learn the fundamental structure of calculus 

from courses dominated by calculation? 

6 . Does calculus focus excessively on. closed-form formulas? 

Calculus in action deals with functions as they a r e — f r o m 

laboratory instruments, from graphs, and from messy formulas. 

Calculus in courses deals with shadow functions—sterile, 

simple, artificial constructs designed to make the exercises 

work out well. Will students for whom the main clue to an error 

is a messy answer ever be able to make reliable use of 

mathematics in the real world? 

7. Should calculus students l£a_xn £o_ use. οχ £o_ imitate computers? 

Symbolic mathematics packages (MACSYMA, SMP, MAPLE, MUMATH, 

etc.) will soon be so widely available that algebraic work will 

be done as arithmetic is n o w — a t the push of a button. How soon 

will this change the way in which students use their homework 

time in a typical calculus course? 

8. What new tQPiCS axe essential f_Q_r_ calculus in a. computer age? 

Asymptotic analysis, spline calculations, numerical analysis, 

and scientific computation have changed the way calculus is used 

in the scientific and engineering communities. Should the 

content of university calculus reflect these changes? 

9 . Which topics in calculus are no. longer essential? Calculus is 

now over-filled, because topics are always added but rarely 

removed. Many topics remain only because of tradition or 

because they are useful for some advanced c o u r s e — n o t 
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necessarily because they are crucial to the course itself. Are 

integration techniques any more useful than the square root 

algorithm? 

10. Da engineers still need the traditional c a l c u l u s ? The 

perception, whether justified or not, that physics and 

engineering students must be taught the full "engineering 

calculus" in its traditional form impedes curricular reform now 

being demanded by computer scientists. Is it possible that 

even students in the physical sciences could benefit from a new 

blend of discrete and continuous mathematics in the first two 

years? 

11. Should, calculus b_e_ a. laboratory course? Computer graphics now 

make possible a visual presentation of many of the dynamic 

phenomena studied in calculus. This unprecedented capability 

suggests wonderful pedagogical possibilities. Can we afford to 

provide every calculus student with access to a powerful 

workstation for calculus learning? Can we afford not to? 

12. Is there any reason to. teach hish school calculus? About ten 

years ago MAA and NCTM adopted a joint statement urging high 

schools to refrain from offering calculus unless it can be 

taught at a university level—staffed by a qualified instructor, 

and enrolled by qualified and capable students. Despite this 

position paper, the majority of high school calculus courses are 

still thin introductions, inadequate to provide advanced 

placement into college courses. Shouldn't the only calculus 

taught in high school be university calculus? 
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13. Why d_o_ U.S. £tuj3jgn£s. perform s_o. poorly on. international iesis? 

On the 1982 International Mathematics Assessment, only 30% of 

U.S. high school calculus students could select the correct 

answer out of five choices for the integral of a linear function 

presented in graphical form. On the whole, the top 2% of our 

students performed only at the median of the top 10% of the 

students in other countries. On the Graduate Record 

Examination, which is largely based on advanced calculus, 

foreign-educated students average one standard deviation higher 

than U.S. educated students. Are U.S. students less able, or 

less well prepared? 

14. Is there any yalue LQ. precalculus remedial programs? Much of 

the effort in remedial work is devoted to repeating early parts 

of algebra that are needed for the study of calculus, a fantasy 

that is totally beyond the grasp of most students in these 

courses. Would exploratory data analysis or elementary 

programming be better for these students, even though it 

unhitches them from the calculus bandwagon? 

15. Why do calculus books weigh so much? The economics of 

publishing compels authors of calculus textbooks to add every 

topic that anyone might want so that no one can reject the book 

just because some particular item is omitted. The result is an 

encyclopaedic compendium of techniques, examples, exercises and 

problems that more resembles an overgrown workbook than an 

intellectually stimulating introduction to a magnificent 

subject. Would the health of calculus be improved if it were 
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put on a diet? 

16. £an one design a. good calculus course fxojj a. survey? Publishers 

now are fond of surveying calculus instructors to determine the 

precise blend of topics for their next calculus book. Responses 

to these surveys never represent a random selection, and are 

rarely informed by active users of calculus. Can this process 

possibly produce progress, or is it doomed to reflect the status 

quo? 

17. Xs c a l c u l u s a. good course £o_ LLAIH the. mind.? Many students take 

calculus not for its content but for its reputation of rigor: 

for many it is a modern equivalent of Latin or G r e e k — a means to 

train the mind. Professional schools repeatedly use calculus as 

a filter, to identify students who have the right stuff. Are 

these perceptions warranted by the results? 

18. Can c a l c u l u s courses convey cultural literacy? Calculus is one 

of the great intellectual achievements of mankind, with a 

distinguished history of theory and applications. Few texts and 

few teachers can communicate much of that cultural impact in a 

course crammed with techniques and theory. Do courses that fail 

to impart the cultural significance of calculus do justice to 

the aims of liberal education? 

19. D_£££ calculus contribute £o. scientific literacy? Since for the 

majority of educated citizens calculus is the climax of their 

mathematical studies, one might hope that it would leave them 

with a good appreciation of the role mathematics plays in 
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society. Is calculus really the best college mathematics course 

to prepare educated citizens to function thoughtfully in the 

world of the 21st century? 

20. what will calculus he like, in the year 2QQQ? The topical 

outline of calculus courses today is little changed from the 

early textbooks around 1700. Stability of fundamental ideas 

speaks to the enduring value of the subject. But the world for 

which we are preparing our students is profoundly different than 

it was three centuries ago. Will calculus be able to adapt to 

these differences? 

These were the original 20 questions, posed in advance to those 

who attended the conference. The ensuing discussion of the many 

papers produced more questions than answers, and led me to posit 

these additional queries: 

21. Εα students ever read their calculus books? The shape of 

university calculus is largely determined by massive mainstream 

calculus compendiums which students are required to purchase by 

virtue of university-wide adoption. But do students actually 

read these books? Don't most students learn instead by doing 

problems and by discussing mathematics with other students? 

Would these gargantuan books sell if they were not required? 

22. Should precalculus he a prerequisite fox calculus? Too often 

students enter calculus without having completed a thorough four 

year preparatory course of high school mathematics. The result 

is frustration, failure, and wasted time for both student and 
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teacher. Shouldn't placement standards be enforced so that only 

those who are proficient in precalculus would enroll in 

calculus? 

23. Is teaching calCUlUS mo_s_t like teaching a. foreign language? It 

used to be assumed by administrators and teachers alike that 

mathematics instruction required the same intensive one-on-one 

interaction that takes place in foreign language classes. Isn't 

this still true? Wouldn't more learning take place if calculus 

were taught like beginning intensive French? 

24. SJiojLld the. Student-faculty ratio fo_£ calculus J2£ limited? 

Calculus is taught in many different class structures, from 10 

students classes to 500-student lectures. There are examples 

of success and examples of failure at virtually all class sizes. 

But is there any alternative to regular, detailed feedback on 

student problem-solving efforts? Is there a minimum 

instructional effort, however it is packaged, that is necessary 

to insure success in teaching calculus? 

25. Q& Student evaluations fame calculation-based courses? The 

decline in student interest in mathematics roughly parallels the 

increasing standardization of calculus texts, course structures, 

and student evaluations—all in the direction of mimicry 

mathematics. Is it possible that student evaluations have 

become an evolutionary force favoring calculation-dominated 

courses? 

26. Axe there enough qualified calculus teachers? To maintain 
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quality of content and excitement of purpose, calculus teachers 

should be active users of the subject. But to insure good 

teaching, they must be interested in their students and 

dedicated to good pedagogy. Are there enough teachers who meet 

both standards? Are there any? 

27. Who Kill he the calculus teachers In the year 2QQQ? Increasing 

demand for mathematically trained persons coupled with a rising 

college population in the late 1990's will push demand for 

calculus to record levels. But retirements from post-war 

faculty will also be high, and supply of new faculty—recruited 

from the presently depleted classes of high school and college 

mathematics m a j o r s — w i l l be very low. Will calculus teaching be 

left to those without advanced training in mathematics—or 

perhaps to computers? 

28. Should calculus he taught only b_y_ experienced teachers? 

Consistent reports from different institutions suggest that 

calculus too often suffers from poor teaching: inexperienced 

and often inarticulate teachers, excessive failure rates, 

disillusioned client departments, counterproductive departmental 

policies all point to a climate of neglect in which the most 

teaching is done by those with the least experience. For the 

good of mathematics, and for the good of the nation, shouldn't 

we make sure that only the very best teachers teach calculus? 





W h a t ' s a l l t h e F u s s a b o u t ? 

by 
S . K . S t e i n , U n i v e r s i t y o f C a l i f o r n i a a t D a v i s 

T h e p r o p o s a l t o h o l d t h i s c o n f e r e n c e s a y s t h a t , " t h e t e a c h i n g o f 

c a l c u l u s i s i n a s t a t e o f d i s a r r a y and n e a r c r i s i s . . . [ w i t h a ] f a i l u r e r a t e 

o f n e a r l y h a l f a t m a n y c o l l e g e s a n d u n i v e r s i t i e s . " An a l a r m was sounded 

e a r l i e r by t h e J a n u a r y , 1 9 8 5 A M S / M A A j o i n t p a n e l , " C a l c u l u s i n s t r u c t i o n , 

c r u c i a l b u t a i l i n g " [ 1 ] . 

T h i s came as a s u r p r i s e t o me. Why i s t h e t e a c h i n g o n l y o f c a l c u l u s 

u n d e r s c r u t i n y ? A r e we d o i n g s u c h a w o n d e r f u l j o b w i t h d i s c r e t e 

m a t h e m a t i c s , l i n e a r a l g e b r a , d i f f e r e n t i a l e q u a t i o n s , c o m p l e x v a r i a b l e s , o r 

u p p e r d i v i s i o n a l g e b r a ? P e r p l e x e d , I a s k e d some o f my c o l l e a g u e s , good 

m a t h e m a t i c i a n s a n d f i n e t e a c h e r s a l l , " W h a t ' s y o u r i m p r e s s i o n o f t h e 

t e a c h i n g o f c a l c u l u s , h e r e and e l s e w h e r e ? " One p r o f e s s o r s u g g e s t e d t h a t we 

m i g h t d r o p a c o u p l e o f t o p i c s , maybe some i n t e g r a t i o n t e c h n i q u e s . A n o t h e r 

s a i d , we s h o u l d m e e t f i v e t i m e s a week i n s t e a d o f f o u r b u t he d o e s n ' t w a n t 

t o . F i n d i n g no s e n s e o f c a l a m i t y , I t a l k e d t o c o l l e a g u e s i n t h e p h y s i c s and 

e n g i n e e r i n g d e p a r t m e n t s . T h e y l i k e d w h a t we d o , b u t u r g e d us t o do more o f 

i t i n t h e f i r s t q u a r t e r , e s p e c i a l l y d i f f e r e n t i a l s , v e c t o r s , e l Q , S t o k e s 1 

t h e o r e m , and c e r t a i n d i f f e r e n t i a l e q u a t i o n s . 

T h e n I w e n t t o t h e p l a c e m e n t o f f i c e , w h i c h h e l p s u n d e r g r a d u a t e s o b t a i n 

s u m m e r i n t e r n s h i p s a n d s e n i o r s g e t j o b s . " W h a t h a v e y o u h e a r d a b o u t 

c a l c u l u s ? " T h e y w e r e n o t a w a r e t h a t c a l c u l u s i s i n d i s a r r a y and a i l i n g . I 

a s k e d w h a t e m p l o y e r s w e r e l o o k i n g f o r . T h e a n s w e r was c l e a r , " S t u d e n t s who 

c a n c o m m u n i c a t e o r a l l y a n d i n w r i t i n g , t h i n k , a r e n o t a f r a i d o f n u m b e r s , 

w i t h a l i t t l e t o u c h o f t h e c o m p u t e r . " S t i l l n o c o m p l a i n t a b o u t c a l c u l u s . 

I a s k e d my e n g i n e e r s o n - i n - l a w w h a t he l o o k s f o r when he r e c r u i t s . H i s 

a n s w e r : " P e o p l e w h o c a n d e a l w i t h q u e s t i o n s o n t h e i r o w n . " He s e e k s 

r e c o m m e n d a t i o n s f r o m a p r o f e s s o r who r e g u l a r l y a s s i g n s h i s c l a s s a f e w o p e n -

e n d e d p r o b l e m s . T h o u g h n o t h a r d i n t h e s e n s e t h a t t h e i r s o l u t i o n s r e q u i r e s 

t h e i n s i g h t o f a g e n i u s , t h e y a r e n o t d i r e c t l y r e l a t e d t o t h e d a y ' s l e s s o n . 

O n e y e a r n o t o n e o f t h e p r o f e s s o r ' s t h r e e h u n d r e d s t u d e n t s c o u l d s o l v e h i s 

167 
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p r o b l e m s . My s o n - i n - l a w d i d n o t b lame c a l c u l u s f o r t h i s t r a g e d y , t h o u g h i t 

was c l e a r t o me t h a t we do l i t t l e t o p r e v e n t i t . 

So I p i c k e d up a c a l c u l u s m a r k e t r e s e a r c h r e p o r t t h a t M c G r a w - H i l l h a d 

d o n e i n 1 9 8 1 , b a s e d o n a q u e s t i o n n a i r e s e n t t o m a t h e m a t i c s p r o f e s s o r s i n 

o v e r 200 c o l l e g e s and u n i v e r s i t i e s o f a l l s i z e s . A c c o r d i n g t o t h e p o l l , 83 

p e r c e n t o f t h e s t u d e n t s i n f i r s t s e m e s t e r c a l c u l u s c o m p l e t e t h e t h r e e -

s e m e s t e r s e q u e n c e . T h a t was r e a s s u r i n g . F u r t h e r m o r e , i f t h e r e was a 

f e e l i n g t h a t s o m e t h i n g was w r o n g i t s h o u l d s h o w u p i n t h e r e s p o n d e n t s ' 

comments on t h e t e x t s t h e y we re u s i n g . B u t o f t h e 2 2 7 r e p l i e s 1 7 0 j u d g e d 

t h e i r t e x t ' s c o m p l e t e n e s s t o be " g o o d " o r " e x c e l l e n t " a n d o n l y 4 7 c a l l e d i t 

" p o o r " o r " a d e q u a t e " . T h e y seemed q u i t e s a t i s f i e d w i t h " t o p i c s e q u e n c e a s 

w e l l " w i t h 1 7 3 o u t o f 2 2 7 c a l l i n g i t " g o o d " o r " e x c e l l e n t . " 

I n s p i t e o f t h e s e c a l m i n g n u m b e r s , I s t i l l f e l t t h a t t h e r e i s i n d e e d 

s o m e t h i n g i n d i s a r r a y i n c a l c u l u s t e a c h i n g , s o m e t h i n g a i l i n g . W h a t e v e r i t 

i s , we c a n ' t b lame t h e p u b l i s h e r s . The b o o k s t h e y o f f e r us r e s p o n d t o s u c h 

p o l l s ; t h e m a n u s c r i p t s a r e r e a d b y a p a n e l o f i n d e p e n d e n t , c o n s c i e n t i o u s 

r e v i e w e r s . We g e t t h e t e x t s we a s k f o r . T h e p r o b l e m l i e s w i t h u s . 

M a t h e m a t i c s , t h e o n l y d i s c i p l i n e w h e r e a l l t h e c a r d s can be l a i d on t h e 

t a b l e , and w h i c h t h e r e f o r e s h o u l d be t h e b e s t t a u g h t , i s o f t e n a m o n g t h e 

w o r s t t a u g h t s u b j e c t s . O n e r e a s o n i s t h a t we h a v e n ' t d e c i d e d w h a t we a r e 

t e a c h i n g . 

T h i s u n c e r t a i n t y i s v i s i b l e i n t h e d i s c u s s i o n , T h e I n t r o d u c t o r y 

M a t h e m a t i c s C u r r i c u l u m , p r e s e n t e d i n [ 1 ] . T h e r e we f i n d such s t a t e m e n t s a s , 

"We m u s t i n s t e a d t e a c h how t o c r e a t e m a t h e m a t i c s " ( R . W . H a m m i n g , p . 3 8 8 ) , 

" E v e n more e s s e n t i a l i s t h e c r e a t i o n o f c o u r s e s t h a t f o c u s o n c o n c e p t s . 

I d e a s and p r o b l e m s o l v i n g a r e t h e r e a l l y c r i t i c a l p a r t " ( R o b e r t D a v i s , 

p . 3 9 1 ) ; " O u r t e a c h i n g f a i l s t o p r o v i d e s t u d e n t s w i t h t h e j o y o f u s i n g 

m a t h e m a t i c s t o c o p e w i t h c h a l l e n g i n g p r o b l e m s " (Wade E l l i s , p . 3 9 3 ) ; " T h e 

ma in f a u l t o f t h e i n t r o d u c t o r y c u r r i c u l u m . . . i s an i s s u e o f p e d a g o g y a s much 

a s o f t h e c o n t e n t " ( P a t r i c k T h o m p s o n , p . 3 9 4 ) ; " C u r r i c u l u m c h a n g e must be 

a c c o m p a n i e d by s e v e r e q u e s t i o n s o f c u r r e n t t e a c h i n g m e t h o d s " ( J o h n M a s o n , p . 

3 9 5 ) . T h o u g h a p p e a r i n g as a s i d e s t o t h e m a i n d e b a t e , t h e y c a l l a t t e n t i o n t o 

w h a t I f e e l i s t h e c e n t r a l i s s u e . 
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B e f o r e we p r o p o s e t h e m e d i c i n e , we had b e t t e r a g r e e on t h e d i a g n o s i s . 

The d i a g n o s i s d e p e n d s o n w h a t we mean by " h e a l t h , " t h a t i s , w h a t we a r e 

t r y i n g t o a c c o m p l i s h i n our i n t r o d u c t o r y c o u r s e s . That may d e p e n d t o some 

e x t e n t on w h e t h e r t h e c o u r s e s e r v e s o t h e r m a j o r s o r o u r own. ( A c c o r d i n g t o 

t h e M c G r a w - H i l l p o l l , e n r o l l m e n t i n t h e b a s i c c a l c u l u s r u n s a b o u t 6 0 * 

p h y s i c a l s c i e n c e - e n g i n e e r i n g , 20 p e r c e n t l i f e s c i e n c e - b i o l o g y - e c o n o m i c s , 12 

p e r c e n t m a t h , a n d 8 p e r c e n t o t h e r s . ) I n l a r g e s c h o o l s t h e s e c o n d g r o u p 

o f t e n h a s i t s own c a l c u l u s s e q u e n c e ; a t D a v i s , w i t h i t s s t r o n g b i o l o g i c a l 

e m p h a s i s , more s t u d e n t s e n r o l l i n t h e s h o r t c a l c u l u s t h a n i n t h e e n g i n e e r i n g 

s e q u e n c e . So t h e m a i n c a l c u l u s s e q u e n c e we a r e t a l k i n g a b o u t s e r v e s 

s i m u l t a n e o u s l y e n g i n e e r s , p h y s i c i s t s , c o m p u t e r s c i e n t i s t s , and math m a j o r s . 

That i s a b o u n d a r y c o n d i t i o n t h a t any s o l u t i o n must s a t i s f y . But i t i s n o t 

a s r e s t r i c t i v e a s i t may a p p e a r , s i n c e t h e r e s e e m s t o be a c o n s e n s u s t h a t 

t h e s t u d e n t s i n t h e s e v a r i e d m a j o r s s h o u l d l e a r n t o w r i t e , r e a d , a n d t h i n k . 

The d e a n o f c o m p u t e r s c i e n t i s t s , E. W. D i j k s t r a , h a s w r i t t e n t h a t t h e most 

i m p o r t a n t r e q u i r e m e n t f o r a c o m p u t e r s c i e n t i s t i s m a s t e r y o f h i s n a t i v e 

t o n g u e . And my c o m p u t e t — s c i e n c e c o l l e a g u e s u r g e u s t o e x p e c t w e l l - w r i t t e n 

a n s w e r s and p r o o f s i n our s o p h o m o r e c o u r s e o n s e t s , r e l a t i o n s , f u n c t i o n s , 

and i n d u c t i o n . 

But what a b o u t c a l c u l u s , w h e r e t h e t e x t s h a v e s e t t l e d i n t o a f a i r l y 

u n i f o r m t a b l e o f c o n t e n t s ? T h e r e a r e a l w a y s a f e w s e c t i o n s t h a t t h e 

i n s t r u c t o r may d e l e t e , s u c h a s K e p l e r ' s l a w s o r L a g r a n g e m u l t i p l i e r s . B u t 

t h e i n s t r u c t o r c o u l d c o n s i d e r d e l e t i n g some more t o p i c s , s u c h a s some f o r m a l 

i n t e g r a t i o n t e c h n i q u e s o r e v e n r e l a t e d r a t e s . A u t h o r s h a v e l e s s c h o i c e , f o r 

i f t h e y o m i t s o m e o n e ' s f a v o r i t e t o p i c , t h e i r b o o k s w i l l n o t be a d o p t e d and 

s o o n w i l l be o u t o f p r i n t . A f t e r a l l , c a l c u l u s c o m m i t t e e s m e e t i n o r d e r t o 

r e j e c t b o o k s , much i n t h e same way t h a t c a n n e r i e s s o r t t o m a t o e s . L a b e l l i n g 

a s e c t i o n " o p t i o n a l " w i l l s u r e l y o f f e n d s o m e o n e who f e e l s h i s s t u d e n t s w i l l 

t h e n n o t t r e a t i t s e r i o u s l y i f h e c o v e r s i t . I t s e e m s t h a t a c a l c u l u s 

a u t h o r h a s t h e f r e e d o m t o make o n l y two d e c i s i o n s : W h e r e t o p u t a n a l y t i c 

g e o m e t r y a n d w h e t h e r t h e t i t l e s h o u l d be C a l c u l u s w i t h A n a l y t i c Geometry o r 

C a l c u l u s and A n a l y t i c G e o m e t r y . Thus t h e m a j o r r e v o l u t i o n i n c a l c u l u s t e x t s 

i n t h e l a s t d e c a d e h a s b e e n t h e i n t r o d u c t i o n o f a s e c o n d c o l o r . ( I n 

h i g h s c h o o l t e x t s , t h e n u m b e r o f c o l o r s h a s r e a c h e d f o u r . ) W h a t e v e r 

p r o p o s a l s t h i s c o n f e r e n c e may m a k e , I p r e d i c t c a l c u l u s w i l l b e g i n w i t h 
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f u n c t i o n s , l i m i t s , d e r i v a t i v e s , e x t r e m a , i n t e g r a l s , t h e f u n d a m e n t a l t h e o r e m , 

g o o n t o m o r e a p p l i c a t i o n s , s e r i e s , a n d t h e n r e a c h a t l e a s t p a r t i a l 

d e r i v a t i v e s and m u l t i p l e i n t e g r a l s . S t i l l , t h e r e a r e o p t i o n s , a n d p e r h a p s 

t h i s c o n f e r e n c e w i l l e n c o u r a g e p u b l i s h e r s and p r o f e s s o r s t o be more f l e x i b l e 

when d e v e l o p i n g a t a b l e o f c o n t e n t s o r a c o u r s e s y l l a b u s . 

T h e f u n d a m e n t a l q u e s t i o n i s n o t , " S h o u l d d i s c r e t e m a t h e m a t i c s p r e c e d e 

c a l c u l u s , f o l l o w i t , be w o v e n i n t o i t , o r be s e p a r a t e a n d s i m u l t a n e o u s . " 

T h e q u e s t i o n s h o u l d b e , " W h a t a r e we t r y i n g t o do i n c a l c u l u s and d i s c r e t e 

m a t h e m a t i c c o u r s e s o t h e r t h a n c o v e r s o m e d e f i n i t i o n s , f a c t s , a n d 

a l g o r i t h m s ? " I f t h e a n s w e r i s " n o t h i n g " , t h e n we make no b a s i c c h a n g e s . I f 

we a l s o w a n t t h e s t u d e n t t o l e a r n t o " t h i n k " ( t h i s i s now c a l l e d ' p r o b l e m 

s o l v i n g ' a n d ' h e u r i s t i c s ' ) a n d t o w r i t e , t h e n we s h o u l d a c t a c c o r d i n g l y . 

T h e l a s t t h i n g we s h o u l d do i s a s k f o r t e x t s t h a t m i x d i s c r e t e m a t h e m a t i c s 

a n d c a l c u l u s , f o r i n v a r i a b l y , when two s u b j e c t s a r e p u t b e t w e e n t h e c o v e r s 

o f one book e i t h e r t h e b o o k g rows u n a c c e p t a b l y l a r g e o r o n e o f t h e t w o i s 

s a c r i f i c e d t o t h e o t h e r , o r b o t h a r e s h o r t c h a n g e d . W i t n e s s t h e f a t e o f 

a n a l y t i c g e o m e t r y i n o u r c a l c u l u s b o o k s o r o f b o t h a l g e b r a a n d i t s 

a p p l i c a t i o n s i n o u r a p p l i e d a l g e b r a b o o k s . 

My own p r o p o s a l s may a p p e a r m i l d . I n d e e d , t h e f i r s t o n e i s , b u t t h e 

s e c o n d c o u l d e n c o u r a g e a c h a n g e i n e m p h a s i s . 

T h e f i r s t i s s p e c i f i c , and c o n c e r n s c a l c u l u s a n d d i s c r e t e m a t h e m a t i c s . 

I s u g g e s t t h a t a d i s c r e t e c o u r s e o f a q u a r t e r o r s e m e s t e r be a v a i l a b l e t o 

f r e s h m a n ( i f t h a t i s s u c c e s s f u l , t h e n l a t e r i t c o u l d be e x t e n d e d ) . I t c o u l d 

be t a k e n s i m u l t a n e o u s l y w i t h b e g i n n i n g c a l c u l u s , o r a l o n e , o r , i n t h e c a s e 

o f n o n - e n g i n e e r i n g s t u d e n t s , w i t h t h e c a l c u l u s d e l a y e d . S u c h a c o u r s e 

c o u l d h e l p d e v e l o p m a t u r i t y a n d t h u s p r e p a r e s t u d e n t s f o r c a l c u l u s . I t 

c o u l d , i n c i d e n t a l l y , w e e d o u t t h o s e who a r e n o t r e a d y t o g o o n . ( A l l 

c a m p u s e s o f t h e U n i v e r s i t y o f C a l i f o r n i a a l r e a d y r e q u i r e p a s s i n g an exam on 

h i g h s c h o o l a l g e b r a and t r i g f o r e n t r y t o c a l c u l u s . ) I t w o u l d a l s o b r o a d e n 

t h e s t u d e n t ' s m a t h e m a t i c a l p e r s p e c t i v e e a r l i e r . 

My s e c o n d s u g g e s t i o n a p p l i e s t o o u r c u r r i c u l u m i n g e n e r a l a n d i s a 

r e s p o n s e t o w h a t I s e e as t h e d i s a r r a y and t h e a i l m e n t . I m p l e m e n t i n g t h i s 
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s u g g e s t i o n d o e s n o t r e q u i r e new c o u r s e s , n o r r a d i c a l l y new t e x t s . H o w e v e r , 

i f e n o u g h o f us a c t on t h i s s u g g e s t i o n , we may p r o v i d e t h e quorum t o s u p p o r t 

c e r t a i n c h a n g e s i n t h e t e x t s . 

I t t o o i s m o d e s t , f o r I f i n d t h a t p r o p o s a l s f o r a b r u p t m a j o r r e f o r m 

t e n d t o be c a r r i e d o u t i n f o r m b u t n o t i n s u b s t a n c e , o r v i e w e d as s o m e t h i n g 

f o r someone e l s e t o i m p l e m e n t . 

My s u g g e s t i o n i s r o o t e d i n my d e f i n i t i o n s o f t h e w o r d s " c u r r i c u l u m " and 

" s y l l a b u s . " U s u a l l y , " c u r r i c u l u m " d e s c r i b e s t h e c o u r s e s o f f e r e d a n d 

" s y l l a b u s " l i s t s t h e t o p i c s i n a c o u r s e . B o t h " c u r r i c u l u m " a n d " s y l l a b u s " 

c a l l a t t e n t i o n t o t h e m a t e r i a l t r e a t e d . T h e y do n o t r e f e r t o t h e way i t i s 

t r e a t e d and c e r t a i n l y t h e y do n o t m e n t i o n w h a t s h o u l d be o u r m a i n g o a l : t o 

d e v e l o p t h e s t u d e n t ' s a b i l i t y t o r e a d , a n a l y z e , w r i t e , a n d s p e a k . We e a s i l y 

l o s e s i g h t o f t h i s o b j e c t i v e , f o r f a c t s t e n d t o d i s p l a c e p r o c e s s . We s e e 

t h i s b i a s b o t h i n t h e c l a s s r o o m a n d i n t e x t s . I h o p e t h a t t h e r e f o r m 

s u g g e s t e d b y t h i s c o n f e r e n c e g i v e s p r o c e s s a t l e a s t e q u a l b i l l i n g w i t h 

c o n t e n t . And I hope t h a t a u t h o r s m a i n t a i n a s i m i l a r p e r s p e c t i v e a s t h e y t r y 

t o i m p l e m e n t o u r r e c o m m e n d a t i o n s . 

My s u g g e s t i o n i s o n l y a m o d e s t s t e p t o w a r d r e s c u e i n g p r o c e s s f r o m 

s u b s e r v i e n c e t o c o n t e n t . 

I p r o p o s e t h a t i n w h a t e v e r c o u r s e we t e a c h we i n c l u d e a s i g n i f i c a n t 

number o f w h a t m i g h t be c a l l e d " o p e n - e n d e d " o r " e x p l o r a t o r y p r o b l e m s . " 

T n o u g h n o t r o u t i n e , t h e y s h o u l d n o t be d i f f i c u l t i n t h e s e n s e o f a P u t n a m 

p r o b l e m . I m e a n t h a t w h e n a s t u d e n t s e e s t h e s o l u t i o n , h e w i l l s a y " I 

s h o u l d h a v e g o t t e n i t . " T h e s e p r o b l e m s s h o u l d e n c o u r a g e e x p e r i m e n t a t i o n and 

i n d e p e n d e n t w o r k . T h e a n s w e r s h o u l d r e q u i r e t h e s t u d e n t t o w r i t e c o h e r e n t 

s e n t e n c e s . T h a t m e a n s t h a t t h e i n s t r u c t o r o r some o t h e r q u a l i f i e d p e r s o n 

s h o u l d r e a d a n d e v a l u a t e w h a t i s t u r n e d i n . He s h o u l d d e m a n d s u i t a b l e 

r e v i s i o n . T h e s o l u t i o n s h o u l d n o t be i n t h e s o l u t i o n s m a n u a l ; i t s h o u l d n o t 

be c l o s e l y t i e d t o t h e p a r t i c u l a r s e c t i o n i n t h e b o o k t h a t i s b e i n g c o v e r e d 

i n c l a s s . T h e a s s i g n m e n t s h o u l d n o t be d u e t h e n e x t d a y , s o t h a t t h e 

s t u d e n t w i l l h a v e t i m e t o m u l l i t o v e r . 
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Some examples will bring this proposal down to earth. To demonstrate 

my neutrality on the relative merits of calculus and discrete mathematics, I 

will choose some examples from both disciplines. I begin with examples that 

parallel the standard calculus. 

2 
Example 1 . Let f(x) = ax + b be a polynomial of degree 2 . Is there 

a polynomial g of degree 3 such that the two compositions, fog and 

gof, are equal? 

Remarks. If the students have trouble, then you might suggest that 

they look at a specific f ( x ) . Little in their earlier education has 

suggested such a bold step. The computations involve nothing more than 

cubing a quadratic or squaring a cubic. The algebra is not mysterious and 

the final result is both elegant and surprising. Moreover, the student 

should be urged to write the solution with more than a string of equations. 

We have a right to expect an introduction and a conclusion. We should 

demand that a sentence begins with capital letter and ends with a period. 

The left margin should be straighter than the right margin. The student may 

complain that such request are inappropriate in a math course. But that 

same student may one day be writing software manuals and internal memoranda. 

For us to demand less is to shortchange our students. 

Example 2 . Are there continuous functions f such that 

f(x +y) = f(x) + f(y) for all real numbers χ and y? 

Remark. The student may or may not come up with some examples. You 

may have to steer him out of a rut. If he finds f(x) = kx, you might then 

ask, "Are there more?" (In a discrete course, the domain could be Ζ 

instead of R.) Of course one could also ask for solutions of 

f(xy) = f(x) f(y). 

Such exercises are usually delayed until the junior year, but they are 

appropriate during the lower division courses as well. Perhaps we could 

delete a few topics from the standard curriculum, whether calculus or 

discrete mathematics, lowering the pressure so students would have more time 

for this type of problem. 
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E x a m p l e 3· L e t R be a b o u n d e d p l a n e c o n v e x s e t . I s t h e r e a c h o r d 

t h a t b i s e c t s i t s . a r e a ? 

R e m a r k s . F o r us t h i s i s a t r i v i a l e x e r c i s e i n t h e i n t e r m e d i a t e v a l u e 

t h e o r e m , b u t m o s t s t u d e n t s w i l l n e e d h e l p . T h e y c a n n o t t u r n b a c k a c o u p l e 

o f p a g e s f o r t h e e x a m p l e t h a t ' s j u s t l i k e t h i s e x e r c i s e . A f t e r t h i s p r o b l e m 

i s s o l v e d o n e m i g h t a s k w h e t h e r t h e r e i s a c h o r d t h a t b i s e c t s t h e a r e a and 

t h e p e r i m e t e r a t t h e same t i m e . 

y 
E x a m p l e 4 . W h a t h a p p e n s t o χ w h e n χ a n d y a r e n e a r 0 b u t 

p o s i t i v e ? 

E x a m p l e 5. W h i c h p o l y n o m i a l s o f d e g r e e a t m o s t 3 h a v e i n f l e c t i o n 

p o i n t s ? 

R e m a r k . M u c h i s l o s t i n a m o r e c o n v e n t i o n a l w o r d i n g , s u c h a s , " S h o w 

t h a t e v e r y p o l y n o m i a l o f d e g r e e 3 h a s a n i n f l e c t i o n p o i n t . " O n e m i g h t 

t h e n a s k a b o u t p o l y n o m i a l s o f d e g r e e 5. 

E x a m p l e 6 . L e t f be an i n c r e a s i n g p o s i t i v e f u n c t i o n on t h e i n t e r v a l 

[ 0 , 1 ] . W h a t , i f a n y t h i n g , c a n we s a y a b o u t t h e c e n t r o i d o f t h e r e g i o n R 

u n d e r t h e g r a p h o f f and a b o v e [ 0 , 1 ] ? 

R e m a r k . A v a r i a n t i s t o d e m a n d t h a t f a l s o be d i f f e r e n t i a b l e and 

c o n c a v e d o w n a n d a s k a b o u t t h e c e n t r o i d o f i t s g r a p h . O r we c o u l d a s k 

w h e t h e r t h e r e i s a n y r e l a t i o n b e t w e e n t h e c e n t r o i d o f R a n d t h e c e n t r o i d 

o f t h e s o l i d o f r e v o l u t i o n o b t a i n e d b y r e v o l v i n g R a r o u n d t h e χ a x i s . 

E x a m p l e 7 · L e t R be a b o u n d e d p l a n e c o n v e x s e t a n d P q a p o i n t i n 

R . Assume t h a t e a c h c h o r d o f R t h r o u g h Ρ h a s l e n g t h a t mos t a . W h a t 
? ° 

c a n be s a i d a b o u t t h e a r e a o f R : 

R e m a r k . T h i s q u e s t i o n u l t i m a t e l y t a k e s t h e s t u d e n t b a c k t o t h e f o r m u l a 

f o r a r e a i n p o l a r c o o r d i n a t e s a n d e x t r e m a p r o b l e m s . F o r a d i s c u s s i o n o f 

t h i s e x a m p l e see [ 2 ] . 
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Now f o r some i l l u s t r a t i o n s i n d i s c r e t e m a t h e m a t i c s . 

E x a m p l e 8 . Y o u c o u l d c o m p u t e w i t h f i v e m u l t i p l i c a t i o n s b y 
6 6 2 ^ 2 

w r i t i n g χ = x ( x ( x ( x ( x x ) ) ) ) . B u t y o u c o u l d a l s o w r i t e χ = ( χ x " ) x , w h i c h 

r e q u i r e s o n l y t h r e e d i s t i n c t m u l t i p l i c a t i o n s . ( A s s u m e t h a t o n c e a 

m u l t i p l i c a t i o n i s d o n e , t h e r e s u l t r e m a i n s a v a i l a b l e . ) I n v e s t i g a t e t h e 

s m a l l e s t number o f m u l t i p l i c a t i o n s n e e d e d t o compu te x n . 

R e m a r k . T h e e x a c t f o r m u l a i s n o t k n o w n , t h o u g h e v e n t u a l l y s t u d e n t s can 

s h o w , w i t h t h e a i d o f an i n d u c t i o n , t h a t t h e number i s a t l e a s t l o g , , n a n d 

e q u a l s l o g ^ n when η i s a power o f 2. 

E x a m p l e 9 . I n w h i c h l i n e a r g r a p h s c a n we f i n d a p a t h t h a t p a s s e s 

t h r o u g h e a c h edge e x a c t l y once? 

R e m a r k . T h i s i s u s u a l l y g i v e n i n t h e " t h e o r e m a n d p r o o f " f o r m , b u t I 

t h i n k i t f a r m o r e i n s t r u c t i v e f o r t h e s t u d e n t s t o d i s c o v e r t h e r e s u l t 

t h e m s e l v e s . When I h a v e r a i s e d t h e q u e s t i o n i n a l i b e r a l a r t s c l a s s , i t 

i s n ' t l o n g b e f o r e s t u d e n t s o b s e r v e t h a t t h e v e r t i c e s o f odd d e g r e e g i v e 

t r o u b l e a n d f i n d t h e n e c e s s a r y c o n d i t i o n q u i c k l y . O f c o u r s e , s u f f i c i e n c y i s 

h a r d e r t o d e m o n s t r a t e . 

E x a m p l e 1 0 . L e t f be a p e r m u t a t i o n o r a f i n i t e s e t . I s t h e r e 

n e c e s s a r i l y a p o s i t i v e i n t e g e r k s u c h t h a t f i s t h e i d e n t i t y f u n c t i o n 

o f t h a t s e t ? 

R e m a r k . T h e a p p r o a c h may d e p e n d on w h e t h e r t h i s i s g i v e n b e f o r e o r 

a f t e r t h e c y c l e d e c o m p o s i t i o n o f a p e r m u t a t i o n . I n t h e f i r s t c a s e t h e 

s t u d e n t w i l l be m o r e l i k e l y t o e x p e r i m e n t . T h a t m e a n s c h o o s i n g some 

s p e c i f i c s e t s and f u n c t i o n s , a g a i n a t r a u m a t i c e x p e r i e n c e f o r s t u d e n t s n o t 

used t o s u c h f r e e d o m and r e s p o n s i b i l i t y . 

E x a m p l e 1 1 . I n a f i n i t e g r a p h i s t h e r e a n y t h i n g t h a t one can s a y a b o u t 

t h e number o f v e r t i c e s o f e v e n d e g r e e o r a b o u t t h e number o f v e r t i c e s o f odd 

d e g r e e ? 
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Remark. This exercise usually appears as a theorem. Too often we ask 

a question and then answer it before the student has had a chance to live 

with the question. By answering our own questions we turn the students into 

spectators, putting a barrier between them and the material. The temptation 

to do this is usually irresistable and is often justified by the "need to 

cover the syllabus." But what if the syllabus includes "teach students how 

to explore, to make conjectures, to write clearly"? 

Example 12. Is there any relation between the number of vertices and 

the number of edges in a finite tree? 

Remark. The comments on Example 11 apply to this example as well. In 

both cases we can ask the students to prove their conjectures. There are 

several ways to justify both, including induction. These therefore serve as 

legitimate induction problems. The sooner we reduce the number of 
2 2 2 

traditional induction problems like, "Show by induction that 1 +2 + ... ç = 

n(n + 1 ) (2n + 1 )/6", the better. In a realistic induction problem, the student 

should propose the statement to be proved. (Recall Example 8.) 

The next exercise gives students far more trouble than might be 

expected, both in carrying out their experiments and in explaining their 

conclusions. 

13. The function of f: A + Â induces functions F: P(A) ->• P(B) and 

G: P(B) •* P(A). For which f is 

(a) F one-to-one? 

(b) F onto? 

(c) G one-to-one? 

(d) G onto? 

More examples discussed from a slightly different perspective are to be 

found in [2], but it is not hard to make up your own. Some can be derived 
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from the statements of theorems. In some only an e x p l o r a t i o n and a 

conjecture are to be expected. In some a complete argument would be in 

order. 

It may be easier to offer individual guidance and feedback in a smaller 

class than in a large one, but the organizational challenge in a large class 

should be negotiable. Though we might prefer to think our task done when we 

give a clear lecture, we may have to acknowledge that giving good feedback 

is equally important. Grading homework and examinations, which usually 

just offers the student the guidance of a number, is hardly adequate 

feedback. I suspect we, charmed by the clarity of our lectures, could go 

through an entire semester and never see a single page of a student's work. 

(I confess that this has happened with me.) It therefore may be necessary 

to give some time to see what the students write. It may be advisable to 

sacrifice content to achieve other goals. 

My proposal is simply an attempt to respond to the concerns expressed 

by Hamming, Davis, Ellis, Thompson, and Mason that I cited. I want us to 

consider the goals of our teaching. Do they go beyond transmitting content? 

If not, we should say so in our catalogs and encourage others to introduce 

"problem-solving" courses to compensate for the narrowness of our mission. 

If we want our students to be able to think on their own and to express 

their thoughts, we should give them a chance, even in the introductory 

curriculum, whether calculus or discrete mathematics, even in service 

courses,even if we propose only two or three open-ended problems in a 

semester. If enough of us urge publishers to include an ample supply of 

such problems, with variations and s o l u t i o n s discussed only in the 

instructor's manual, they will comply. But we don't need to wait for them. 
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I. Introduction 

In speaking for the physical science community I need to 

preface this position paper with several background comments. As 

an experimental physicist I have a definite bias toward the 

intuitive understanding of mathematics as applied to the physical 

sciences. During my thirty years at Georgia Tech in both 

professorial and administrative roles I have probably been 

sheltered from some of the seeming problems facing the teaching 

of introductory calculus at other institutions. This sheltered 

existence could possibly be of use in the current workshop. 

Early in my career as a faculty member and as an academic 

administrator, I learned quickly that dictating course content or 

teaching approaches to faculty within physics was a uselesss 

waste of time and if you tried to impose standards on other 

disciplines you quickly learned how fragile "Humpty -Dumpty"is! 

179 
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This workshop and this paper will deal in a lot of rhetoric never 

to find the light of general acceptance, but if reasonable 

concerns can be delineated the possibility of multiple solutions 

will exist to be formatted to individual situations. 

II. Impact of Department Evolution on Service Courses. 

Let me start with some observations from my experience in the 

discipline of physics which I think has a rather close 

correspondence to the apparent problems in introductory 

mathematics instruction. In the instance that a physics 

department at an institution is without a degree program or has a 

degree program with a limited number of majors, the department 

tends to be dependent on its service role. The faculty is 

usually small and much of the faculty dialogue is across 

discipline lines. The number of majors expands, a graduate 

program is added, faculty become more involved in research. The 

faculty dialogue becomes more in-grown and the concerns are 

shifted from the service role to preparing physics majors for 

graduate school. The content of the introductory courses is 

changed. Items such as fluids, kinetic theory of matter, 

statics, introductory thermodynamics and other such items are 

eliminated to provide the proper background for the orderly 

progression of the physics major through the discipline and to an 
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adequate preparation for graduate school. After a number of 

iterations at Georgia Tech, we found that we had an excellent 

undergraduate program for preparation of physics majors for 

graduate school, but we had a significant number of majors going 

directly into industrial positions with a bachelor's degree. As 

we did not create separate courses for our service load, many 

students received a rather sterile picture of an exciting 

discipline. A few attempts were made to accommodate the majors 

interested in a terminal B.S. degree within the existing program. 

Any major modification was not possible and the only alternative 

was to construct a second degree program. The birth of a program 

in applied physics resulted but no changes were made in the 

introductory courses. A number of disciplines feel that we could 

be of better service to the non-physics majors by offering a 

separate course sequence designed for engineers and other science 

disciplines. Having failed in convincing the majority of physics 

faulty we now find a number of disciplines employing physicists 

and teaching the elements of quantum mechanics and other such 

topics. I think you will find similar evolutions of other 

disciplines including mathematics. Is this type of evolution and 

end result good or bad? The eyes of the beholder must make the 

comparison and the decision. 
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III. The Role of Empiricism in Faculty Attitude 

In the situation previously described, the faculty are 

relatively happy with teaching the introductory courses as they 

understand the objectives and have controlled their 

implementation. The courses are frequently revised and some 

thought is given to more effective pedagogy. Physics has a 

significant difference from mathematics in that it is an 

empirical science and can not stray too far afield from 

observations; thus the connectivity to engineering and the other 

sciences is always present. More empiricism is becoming present 

in mathematics with the computer being used as an experimental 

tool to gain insight into solutions of non-linear equations. The 

title "applied mathematician" is accepted by many and scorned by 

others. Whereas the theoretical physicist is dependent on the 

observations of the experimentalist, the "pure" mathematician ha 

no such dependence. A schism can develop between faculty members 

and honest differences of opinion can have impact on the 

introductory curriculum. 

Another factor impacting faculty attitude in many 

institutions has been the assessment criteria for adequate 

credentials within institutions of higher education. We have 

gone to the opposite extreme of the secondary schools in which 
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the motivation to teach and the knowledge of how to teach 

replaces scholarship in the subject matter to the 

college-university extreme that a PhD in subject matter and 

demonstrated scholarship in the field transcends the ability or 

motivation for effective communication in the classroom. 

Frequently one observes a misplaced scholar in a junior college 

environment unable or unwilling to effectively communicate in the 

environment of an introductory course although the scholar might 

contribute in an industrial or graduate school environment. The 

need for credentials and accountability of performance need to be 

reconciled. 

As mentioned earlier the rhetoric of this workshop will not 

result in changes in the existing system nor in the attitudes of 

current faculty. The need is to understand the present status 

and suggest alternative paths rather than carry on an evangelic 

revival. 

My premise is that departments of mathematics dominated by 

"applied mathematics" are not having the same reaction to the 

apparent inadequacy of introductory calculus instruction as those 

departments dominated by "pure" mathematics. The presence of the 

geometrical interpretation of calculus with frequent reference to 

applications does remove sterility from the subject as taught as 

a service to other disciplines. Many faculties do not have 
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sufficient depth to provide this type of insight at the 

introductory level and even less interest in developing 

pedagogical materials. In addition some departments of 

mathematics have a "critical raass'Of faculty for scholarship 

research into some area of pure mathematics and a distortion of 

this "critical mass" for service teaching is not necessarily 

wise. 

IV. Content and the Intuitive Approach. 

Of equal importance to content in the introductory calculus is 

the geometrical and intuitive feeling for mathematics. In an 

article (1) published in 1971 entitled "Mathematics for 

Physicists: A Report on the National Study of Mathematics 

Requirements for Scientists and Engineers" by G.H. Miller, a 

survey of 929 physicists indicated that a great majority prefer a 

mathematics course which is approximately 50% theory and 50% 

applications. Now applications in themselves can be handled 

without spending time in developing an intuitive feeling for 

calculus. However the application of calculus to the empirical 

sciences implies the finite limitations imposed by the act of 

measurement and hence never achieving the infintesimal limits of 

the purist. Ε. Leonard Jossem (2) in a 1964 paper entitled 

"Undergraduate Curricula in Physics: A Report on the Princeton 

Conference on Curriculum S" makes the following statement. 
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"The other aspect concerns the problem of 

obtaining an optimum balance among the 

various elements which must go into an 

intellectually vigorous program; in 

particular, the balance between the 

elements of synthesis and insight into 

physical situations on the one hand and 

sophisticated mathematical analysis on the 

other. The dangers of serious imbalance were 

pointed out in connection with curriculum R. 

In the experience of many of the conferees, 

R curricula in which the main emphasis has 

been placed on very formal, detailed, mathe-

matically rigorous analysis tend to stullify 

the imagination and to produce a degree of 

intellectual rigor mortis even in very good 

students." 

The physical scientist needs the facility to handle sophisticated 

mathematical analysis and abstract thought but with a constant 

realization that the correctness of the mathematics does not 

imply the correctness of the physical model to which the 

mathematics has been applied. 
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The meaning of slope and curvature and their relation to the 

first and second derivative are important. The location of 

maxima, minima and inflection points are also important, and the 

physical scientist must have sufficient drill to be able to look 

at a graph and tell immediately the sign of the first and second 

derivatives as well as estimate the magnitudes without resorting 

to computers. In a similar vein the area under a curve must have 

an intuitive relation to integration. Infinite series are 

frequently used to approximate analytical functions. Some 

knowledge of convergence as well as truncation errors are needed 

on an intuitive basis prior to releasing the power of a computer 

to grind away and produce nonsense. 

Every faculty member in a discipline served by mathematics will 

have a unique perspective as to the essential content of the 

introductory calculus sequence. In 1963 the recommendations of 

the Second Ann Arbor Conference (3) for physics majors includes: 

"Vector analysis,including gradient,divergence, 

curl, Laplacian, together with their physical 

significance. Line and surface integrals, Gauss 

and Stokes theorems. Vectors in Cartesian, 

cylindrical, and spherical polar coordinates. 

Some knowledge of existence of other orthogonal 

systems and of physical applications of matrices 

and tensors." 
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A year later the report (4) of the Princeton Conference on a more 

general curriculum, the phrases "Develop vectors and calculus as 

needed" and "Develop accessory math as needed" are used. Rather 

infrequently do physical scientists encounter Fourier series and 

Fourier transforms in mathematics prior to their use in course 

work within their discipline. The topic is not unique and as 

another example very few universities have all of their 

statistics courses taught by the mathematics faculty. The 

content of the introductory calculus courses should not be 

determined by faculty outside mathematics. The development of 

mathematical maturity, satisfaction of prerequisite topics for 

more advanced mathematics, and development of intuitive or 

geometrical understanding are the important factors. 

What about the role of the computer in the introductory calculus? 

Many of my colleagues feel that the utilization of the computer 

needs to be very carefully controlled in the introductory 

courses. Physical science departments frequently use computer 

simulations to replace laboratory experience. This use to the 

exclusion of laboratory measurement is far more dangerous to the 

scientist than anything the mathematician could do in the 

introductory calculus sequence. In the same vein the use of 

computer simulations in the introductory calculus sequence with 

the intent to provide the intuitive insight to mathematics should 

be avoided. A computer laboratory experience in which the student 
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is first confronted with a graph to analyze by hand followed by 

computer analysis would be an appropriate use which would 

reinforce the intuitive approach and give understanding to the 

value of the computer in non-analytical situations. 

Computer assisted instruction does require a few comments. As 

with most service courses, introductory calculus is not going to 

cover the specific content requirements of all disciplines 

dependent on the calculus sequence. Computer assisted 

instruction can provide a valuable adjunct to the textbook for 

modular self paced instruction of students with a requirement to 

learn a mathematical technique or concept outside the classroom. 

For example the curl or divergence of a vector quantity may not 

be covered adequately for a student in physical science or 

engineering. The development of a library of modular topics to 

enrich and broaden the content of introductory calculus is 

desirable and could be available in a central library, branch 

library, mathematics laboratory, learning center or combination 

of the above. The introductory sequence must provide the 

mathematical maturity and confidence to insure a reasonable 

degree of success by students needing to supplement the content 

of the introductory course. Students in the introductory 

sequence should be assigned a topic from the modular material to 

monitor the system, provide feedback, and to give added 

confidence. 
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V. Introductory Calculus-Quo Vadis? 

Professor Douglas has set the tone for this workshop in a very 

simple and pragmatic manner. In a letter he states, "My aim in 

running this conference is practical, that is, I'm less 

interested in 'what is best' than I am in 'what is possible 1." 

One can contend that the best is always possible, but the 

meaning and context are obvious. From the point of view of 

physical science I would like to address four different but 

interconnected topics addressing a possible approach to the 

perceived need for more rapid evolution of introductory calculus 

education. 

1. Extended Faculty. 

Assuming that there is some value to the influence of "applied 

mathematicians" to the content development and instructional 

philosophy in introductory calculus, a method needs to be devised 

to provide this influence without distortion of the existing 

mathematics faculties and in the face of shortages caused by the 

demands of industry and other related disciplines. 

In urban environments the selective use of industrial 

mathematicians as instructors in the introductory calculus can be 

helpful; however, part time instructors are band-aids and do not 
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have the continuity or motivation to address the illness. A more 

effective approach is to develop a cadre of "intoductory applied 

mathematicians" from other disciplines on the campus such as 

engineering and physical sciences. This cadre should have part 

of their time assigned to the mathematics department to work with 

selected faculty in mathematics in both teaching and the 

development of curriculum materials. The assignment must be 

mutually acceptable at all levels and should be of a finite 

length with clearly described objectives so as not to threaten 

existing boundaries and reward structures. The cross breeding is 

already present in many disciplines. Chemists and biologists are 

present in physics departments, mathematicians and physicists are 

found in electrical engineering,nuclear engineering, and 

mechanical engineering. Many disciplines are found in 

departments of computer engineering and computer science. 

Mathematics has remained relatively pure. 

2. Content and Pedagogical Approach 

As might be expected from the prior discourse, a concern is 

expressed not so much for the detailed content of the 

introductory calculus as for demonstrating the excitement of 

applications and the geometrical interpretation of the calculus. 

Two quotations are of some relavance. Prof. Jossem (2) refers to 

a quotation from an address by J. C. Maxwell (5) to the British 

Association in 1870: 
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"For the sake of persons of these different 

types, scientific truth should be presented 

in different forms, and should be regarded as 

equally scientific, whether it appears in the 

robust form and the vivid coloring of a physical 

illustration, or in the tenuity and paleness of 

a symbolical expression." 

The physical scientist would argue that a similar statement can 

be made for presenting introductory calculus. Note that both the 

pure mathematics approach and the applications supplement are 

necessary. A danger does exist in stressing applications and 

intuitive understanding to the exclusion of the beauty of 

mathematical logic. In a recent interview reported in the 

August, 1985 issue of "Optical Engineering Reports", (6) Dr. H. 

John Caulfield, a well known optical scientist responded to the 

following question: "What were the basic understandings that the 

holography community had that you didn't that made it easy for 

them to understand holography at that time?" Dr. Caulfield's 

response was: 

"In the early holography days it was the 

Fourier transform analysis of all the work. 

Strangely enough, no one told us that when 

we were doing quantum mechanics, we were 

really doing Fourier analysis. So, I had to 

go back and relearn a lot of mathematics. Now 
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it turns out that the mathematics could quite 

possibly have been stated in other ways, but 

it was stated the way it was because holography 

grew out of, in turn, the interferometry club 

of years before, as well as the earlier 

electronics signal processing community. " 

Thus mathematical techniques taught by physical scientists for a 

particular application have the danger of not being recognized 

for the breadth of their applicability. The content of the 

introductory calculus must be the decision of the mathematics 

faculty as they recognize the logical development of the 

discipline. Honest dialogue with other disciplines including the 

physical scientists should be part of the decision process. 

Regarding textbooks several observations can be made. First, 

textbooks invariably have too much material and the question 

becomes which material should be eliminated. The best approach 

is to seek unanimous approval of topics to be included. The 

extended faculty should be used in this decision process. 

Secondly, the best introductory texts are frequently written by 

faculty with more interest in teaching than in research. The 

Feynman lectures and the Berkeley series are not widely used 

introductory physics texts. Although the publishing community 

has resisted modular textbook material, a greater pressure is 

developing for this approach and much recommends modular material 

as a way to initiate textbook writing as well as enrichment 

material for classes. 
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3. Computation 

Introductory calculus should not be turned into a course on 

computer programming but the use of the computer as a tool for 

computation of problems not lending themselves to solutions in 

closed form should be demonstrated. Care needs to exercised that 

the student not lose sight of the forest for the trees. The area 

of computer assisted instruction for both drill and self paced 

modular instruction is encouraged. 

4. Dialogue 

The importance of continuing dialogue between the mathematics 

faculty must be stressed. Even though very few suggestions from 

outside are adopted, the exercise is worth the effort. Many 

times the ordering of the content of the introductory calculus 

can relieve faculty in other disciplines of having to introduce 

mathematical concepts. The result can be an educational delivery 

system which is much more efficient. 

(1) G.H. Miller, Amer.J.Phys.39,1006 (1971). 

(2) E.L.Jossem, Amer. J. Phys.32,491 (1964). 

(3) Committee of Second Ann Arbor Conference,Amer. J. Phys.3 0,339 

(1962). 
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(4) "Scientific Papers of J.C.Maxwell"(Cambridge University 

Press, Cambridge, England,1890),Vol. 2, p. 220. 

(5) R. Feinberg,Optical Engineering Reports,No. 20, August 1985. 
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METHODS AND STRUCTURE OF TEACHING CALCULUS EFFECTIVELY 

INFORMATION AEOUT TWO-YEAR COLLEGES 

To increase the r e a d e r s awareness of two-year c o l l e g e s and the 
c h a l l e n g e s f a c i n g them some p e r t i n e n t i n f o r m a t i o n w i l l be prov ided 
the r e a d e r . The i n f o r m a t i o n was prov ided by A. David A l l e n of the 
American Physics Teachers A s s o c i a t i o n . 

1) Two-year c o l l e g e s go by three d i f f e r e n t names: 
Community Co l l eges 
Jun i or Col 1eges 
Techn i cal Col 1eges 

2) There are about 1,221 of them. The t o t a l en ro l lment is 
abou t 9 m i 11 i on. 

3> They employ about 250 ,000 teachers of which 143,000 are 
p a r t - t i m e r s . 

4) Most were s t a r t e d in the 1950 ·s and <£G's. 

5) They c a t e r most o f f e n t o : 
f i r s t g e n e r a t i o n s t u d e n t s , 
minor 11 i e s , 
lower income, 
s tudents w i t h lower high school g r a d e s , 
females <52'A of the e n r o l l m e n t s . ' , 
o lder s tudents (average age is 28; ' , 

6,1 Of a l l a d u l t Amer icans, BY. w i l l take a course in a two-
year c o l l e g e t h i s y e a r . 

?) Of a l l s tuden ts e n r o l l e d in American higher e d u c a t i o n , 
33/. are e n r o l l e d in a two-year c o l l e g e . 

S> Of a l l m i n o r i t i e s t h a t are e n r o l l e d in American higher 
e d u c a t i o n , 65'/. of them are e n r o l l e d in a two-year 
c o l l e g e . 

9) Most two-year c o l l e g e s tudents have a s p i r a t i o n s fo r a 
BS or a BA degree . 

10) Two-year c o l l e g e s have major problems w i t h r e t e n t i o n and 
a h i gh at t r i 11 on r a t e . 

11> In the 1 9 8 0 ' s , the f a c u l t y of two-year c o l l e g e s i s : 
aging r a p i d l y (average age i s i n c r e a s i n g ) , 
g e n e r a l l y l a c k i n g i n d u s t r i a l e x p e r e i n c e , 
and are teach ing o r i e n t e d . 

12) Occupat ional area degrees represen t 62'/. of a l l degrees 
c o n f e r r e d . 
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13) A r t i c u l a t i o n and t r a n s f e r of c o u r s e s to - four-year 
i n s t i t u t i o n s i s a maj or p r o b l e m . 

14) Most t w o - y e a r c o l l e g e s do no t have e x i t or competency 
exams. 

15) Most s t u d e n t s r e q u i r e r e m e d i a t i o n i n : 
s c ι e n c e <30%). 
math (35/.) , 
Engl ιsh <28%). 

16) Many c a t e r t o r u r a l s t u d e n t s . 

17,' The s i z e of two-yea r c o l l e g e s shows a wide d i v e r s i t y : 
Idaho h a s o n l y 2 , 
M i r g i η ι a h a s 21 , 
whi1e C a l i f o r η i a h a s 105 . 

18) F u l i - t i m e e n r o l l m e n t s v a r y -from a low of 125 t o abou t 
2 2 , 0 0 0 . 

19) F i f t e e n p e r c e n t of the f a c u l t i e s h o l d d o c t o r a t e s wh ι i e 
in c n e m i s t r y 40/. have r e a c h e d t h i s l e v e l . 

20,· F i f t y - f i v e p e r c e n t of a l l e n t e r i n g s t u d e n t s who beg in 
c o l l e g e , s t a r t a t a tw o- yea r c o l l e g e . 

21) Of a l l b a c c a l a u r e a t e d e g r e e s awarded in C a l i f o r n i a in 
the 1982-83 academic y e a r : 

21% of the u n i v e r s i t y sys tem g r a d u a t e s \2\ , 328) 
had a t t e n d e d a two-yea r c o l l e g e . 

50% of the s t a t e sys tem g r a d u a t e s <42 ,959) had 
a t t e n d e d a two-yea r c o l l e g e . 

22) M i n o r i t i e s a ccoun t fo r 20% of two-year c o l l e g e 
e n r o l 1 men t s : 

43% of a l l Black c o l l e g e s t u d e n t s , 
54% of a l l H i s p a n i c s t u d e n t s , 
43% of a l l As ian s t u d e n t s . 

INFORMATION ABOUT RICKS COLEGE 

To u n d e r s t a n d the i n s t i t u t i o n where my t e a c h i n g methods a r e 
u s e d , the f o l l o w i n g i n f o r m a t i o n i s f u r n i s h e d . R i c k s C o l l e g e i s 
l o c a t e d in s o u t h e a s t I d a h o . The o o p u i a t i o n of Rexburg i s about 
13,000 and the c o l l e g e h a s an e n r o l l m e n t of 6 ,500 f u l l - t i m e s t u d e n t s . 

The c o l l e g e i s the l a r g e s t p r i v a t e two-yea r c o l l e g e in the 
c o u n t r y . I t i s owned and o p e r a t e d by The Church of J e s u s - C h r i s t of 
L a t t e r - D a y S a i n t s (.Mormons). S t u d e n t s come t o R i c k s from e v e r y s t a t e 
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in the n a t i o n and u s u a l l y abou t 35 -foreign c o u n t r i e s a r e r e p r e s e n t e d 
by s t u d e n t s . The campus c o v e r s 255 a c r e s w i t h 46 b u i l d i n g s . 

The c o l l e g e h a s an " o p e n - d o o r " p o l i c y and o f f e r s an A s s o c i a t e in 
A r t s & L e t t e r s and A s s o c i a t e Degree in 35 s p e c i a l i z e d d i s c i p l i n e s . 
The c o l l e g e h a s a number of o n e - t w o - a n d - t h r e e year t e c h n i c a l p rog rams 
in a v a r i e t y o-f f i e l d s . 

A STATEMENT OF BASIC PHILOSOPHY 

"He who h a s a c c e s s t o the - fountain does not go to the wa te r 
p o t . " — Leonardo Da Vinc i 

The method b e i n g p r e s e n t e d in t h i s pape r i s p r e d i c a t e d on the 
p r emi se s e t -forth in the above q u o t a t i o n . The u n d e r l y i n g p r i n c i p l e 
i n v o l v e s the p h i l o s o p h y t h a t e v e r y s t u d e n t need? t o become 
r e s p o n s i b l e fo r h i s or her own e d u c a t i o n and needs to be g u i d e d t o 
d i s c o v e r how t o r e a c h the f o u n t a i n for him or h e r s e l f . 

Edgar Dale i s q u o t e d a s s a y i n g " L i f e i s no t a h u n d r e d - y a r d 
d a s h , i t ' s a l o n g - d i s t a n c e r a c e . I t ' s a r a c e a g a i n s t s l o t h , 
i g n o r a n c e , a p a t h y , the w i l l i n g n e s s to t ake t h i n g s a s t hey a r e and 
l e a v e them t h a t way. But if we a r e to t ake t h i n g s w i t h g r a t i t u d e 
i n s t e a d of for g r a n t e d , we must spend some of our t ime c o n t e m p l a t i n g 
where we a r e and where we a r e g o i n g - or d r i f t i n g . " 

T h i s c o n f e r e n c e / w o r k s h o p p r e s e n t s a l l of u s w i t h t he o p p o r t u n i t y 
to q u i t " d r i f t i n g " and t o spend a c o n c e n t r a t e d e f f o r t t o c o n t e m p l a t e 
e x a c t l y where we a r e in c a l c u l u s e d u c a t i o n and where we want i t t o 
g o . 

BASIC ELEMENTS OF THE PROGRAM 

PURPOSE: 

To Improve The T e a c h i n g & L e a r n i n g S i t u a t i o n in the Class room 

Every c o n c e p t t a u g h t h a s a s t a t e d p u r p o s e so t h a t the s t u d e n t 
knows e x a c t l y why t h e y need t o know the i nf ormat i on . T h i s prov ides-
m o t i v a t i o n fo r the s t u d e n t t o pay a t t e n t i o n t o what i s t o f o l l o w . 

I t h a s seemed t h a t much of what we do in a t y p i c a l c a l c u l u s 
c l a s s r o o m can be c h a r a c t e r i z e d a s a Τ - Τ - Τ c y c l e : Teach - T e s t -
T e r m i n a t e . The way of a p p r o a c h i n g i n s t r u c t i o n p r e s e n t e d in t h i s 



CONFERENCE TO DEVELOP ALTERNATIVE CURRICULA A N D 
TEACHING METHODS FOR CALCULUS AT THE COLLEGE LEVEL 199 

paper a t t e m p t s t o change t o a t o u r c y c l e method of i n s t r u c t i o n : C -
Ε - Τ - Ε. T h i s r e p r e s e n t e e C a p t u r e - Expand - Teach - E v a l u a t e . 
T h i s p r o c e s s h a s seemed t o i n c r e a s e a s t u d e n t ' s commitment , a t t i t u d e , 
s k i i i and knowledge of m a t h e m a t i c s . 

CENTRAL MESSAGE: 

The main c o n c e p t s or p r i n c i p l e s a r e c l e a r l y d e f i n e d so t h a t the 
s t u d e n t c l e a r l y knows which p o i n t s a r e or major impor t ance and which 
have l e s s e r v a l u e . Every s t u d e n t h a s e x p e r i e n c e d s t u d y i n g " t h e 
wrong" t h i n g s t o r a t e s t . U s u a l l y t h i s i s b e c a u s e the i n s t r u c t o r h a s 
no t made i t c l e a r j u s t what i s meat and what i s c h a f f . 

The A d v a n t a g e s A r e : 

S t u d e n t s Are Taught How To: 

* Organ i ze the m a t e r i a l b e t t e r ; 
* R e t a i η i t 1onge r ; 

* Expand on the c o n c e p t s of t he c l a s s ; 
* Teach o t h e r s ; 

* E v a l u a t e what t hey have l e a r n e d . 

T e a c h e r s Tend T o : 

* Teach fewer c o n c e p t s t h e m s e l v e s ; 
* R e o r g a n i z e m a t e r i a l ; 

* Be more p l e a s e d w i t h t he s t u d e n t s i n t e r e s t in t he c o u r s e ; 
* F ind t h e y a r e s p e n d i n g l e s s o f f i c e t ime h e l p i n g s t u d e n t s . 

The C e n t r a l Messages f o r t h i s pape r a r e p r e s e n t e d on the nex t 
p a g e s . 

1. Every Pe r son I s Both A T e a c h e r And A L e a r n e r . 

The Three Pe r son P r o b l e m . 

The r e a s o n t h i s i s c a l l e d a problem i s b e c a u s e i t i s s o m e t h i n g 
which h a s t o be s o l v e d . How do you g e t the t h r e e - w a y i n t e r a c t i o n 
between a t e a c h e r , s t u d e n t and o t h e r s g o i n g e f f e c t i v e l y ? 

T h i s l e a r n e r / t e a c h e r framework i s v i t a l t o improve the four 
fundamenta l e x p e r i e n c e s of the F o u r - F o l d and the communica t ion of 
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t h e i r e s s e n t i a l i n f o r m a t i o n . T h i s w i l l be expanded on l a t e r in t h i s 
p a p e r . 

2 . We Improve Our L i t e In Four A r e a s . 

Knowledge. 

Sk i 1 1 s . 

A t t i t u d e s 

Commi t m e n t . 

3 . There Are Four Fundamental E x p e r i e n c e s A s s o c i a t e d With 
T e a c h i n g And L e a r n i n g . 

CAPTURE 

Cap tu re - - a c q u i r i n g s i g n i f i c a n t i n f o r m a t i o n from any 
s o u r c e . 

Often much of what we do in a c a l c u l u s c l a s s can De e x p r e s s e d by 
u s i n g a C n a r l e s D ickens q u o t e . Here D ickens i s d e s c r i b i n g Tnomas 
G r a d g r i n d in Μ Chaok im C h i 1 d · s Schoo1 room. 

"He seemed a k ind of cannon loaded t o the 
muzzle w i t h f a c t s and p r e p a r e d to blow them c l e a n 
out of the r e g i o n s of c h i l d h o o d a t one d i s c h a r g e . 
He seemed a g a l v a n i z i n g a p p a r a t u s too c h a r g e d w i t h 
a gr im mechan ica l s u b s t i t u t e fo r the t e n d e r young 
i m a g i n a t i o n s t h a t were to be s to rmed away." 

Dur ing a Cap tu re e x p e r i e n c e a t e a c h e r l e c t u r e s in wha tever s t y l e 
i s most c o m f o r t a b l e fo r t h a t i n d i v i d u a l . Some of the me thods u s e d by 
d i f f e r e n t i n d i v i d u a l s t o r e i n f o r c e c a p t u r e i n c l u d e s u c h t h i n g s a s : 

# Having the s t u d e n t t ake n o t e s in o u t l i n e form. Sometimes the 
s t u d e n t i s r e q u i r e d t o show t h e s e n o t e s to a group l e a d e r (.steward.' 1 

t o r e c e i v e p o i n t s and in some c l a s s e s t o r e c e i v e a copy of the 
l e c t u r e n o t e s p r o v i d e d by the i n s t r u c t o r . These n o t e s p r o v i d e a way 
for tne s t u d e n t t o check the a c c u r a c y of t h e i r own n o t e t a k i n g . 

Η Some i n s t r u c t o r s have had the s t u d e n t f i l l out a form ( s e e 
a t t a c h m e n t s ; t o d e m o n s t r a t e t h a t the m a t e r i a l has been c a p t u r e d . 

to The s t u d e n t s a r e u s u a l l y a sked t o do w h a t e v e r p r o D l e m s have 
been a s s i g n e d by the i n s t r u c t o r b e f o r e the nex t c l a s s m e e t i n g . 

EXPAND 

Expand — add , i n t e g r a t e or a p p l y i n f o r m a t i o n by y o u r s e l f . 
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Expans ion e x p e r i e n c e s a r e where a t e a c h e r a l l o w s a s t u d e n t t o 
expand , r e s t a t e , d i s a g r e e , r e s e a r c h the l i t e r a t u r e , -find o t h e r 
examples or a p p l i c a t i o n s no t c o v e r e d in c l a s s , or w h a t e v e r i t t a k e s 
•for t he s t u d e n t t o p e r s o n a l i z e and i n t e r n a l i z e t h e c o n c e p t s p r e s e n t e d 
in the c a p t u r e e x p e r i e n c e . 

One i n s t r u c t o r s e t s up h i s e x p a n s i o n e x p e r i e n c e s in the 
t o l l o w i ng way: 

# S t u d e n t s might spend the f i r s t 15 m i n u t e s of the c lass-
answer ing q u e s t i o n s a b o u t the homework a s s i g n m e n t . 

The nex t 10 m i n u t e s migh t be d e v o t e d t o a s k i n g q u e s t i o n s of 
the s t u d e n t s t o t e s t t h e i r c a p t u r i n g of the c o n c e p t s of the p r e v i o u s 
l e s s o n . 

# The l a s t 25 m i n u t e s of c l a s s might be g iven for s t u d e n t s to 
work on some e x p a n s i o n e x p e r i e n c e s , e i t h e r i n d i v i d u a l l y or in a group 
exper i e n c e . 

Some t e a c h e r s have found i t b e n e f i c i a l t o use a form t o r e c o r d 
t he e x p a n s i o n s an i n d i v i d u a l migh t make. A copy of one used by an 
i n s t r u c t o r ·•=. p r o v i d e d w i t h t h i s p a p e r . 

These e x p a n s i o n i d e a s migh t be from p e r s o n a l e x p e r i e n c e s or 
m a t e r i a l from the t e x t b o o k or from r e s o u r c e b o o k s . 

TEACH OTHERS 

Teach — d i s c u s s or s h a r e the i n f o r m a t i o n l e a r n e d w i t h o t h e r s 
t o b e n e f i t bo th p e r s o n s . 

Everyone h a s p r o b a b l y h e a r d t h e e x p r e s s i o n "The t e a c h e r a lways 
l e a r n s more than the s t u d e n t . " Try to imagine how d i f f e r e n t your 
a t t i t u d e t o w a r d s your comprehens ion of t h i s pape r would be if I were 
t o t e l l you t h a t tomorrow you were t o t e a c h the m a t e r i a l c o n t a i n e d 
h e r e i n t o someone e l s e ? Do you t h i n k you would make a g r e a t e r e f f o r t 
t o m a s t e r the m a t e r i a l ? From my e x p e r i e n c e I have c o n c l u d e d t h a t 
t h i s i s e x a c t l y what h a p p e n s t o a s t u d e n t when they a r e f a c e d w i t h 
h a v i n g to t e a c h the m a t e r i a l t o someone e l s e . 

T e a c h i n g e x p e r i e n c e s may be o n e - o n - o n e or t e a c h i n g in smal l 
g r o u p s . The g r o u p s t e a c h i n g a r e u s u a l l y informal in n a t u r e . The 
s t u d e n t s h e l p each o t h e r l e a r n c o n c e p t s or how t o s o l v e p r o b l e m s 
p e r t a i n i n g t o the c o n c e p t s . H e r e , bo th the t e a c h e r and l e a r n e r 
b e n e f i t from the e x p e r i e n c e . 

Ano the r t e a c h i n g e x p e r i e n c e i s o f t e n p r o v i d e d by h a v i n g s t u d e n t s 
do p r o b l e m s on the b o a r d . They migh t e x p l a i n the s o l u t i o n to a 
problem to the e n t i r e c l a s s or somet imes a s many s t u d e n t s a s can be 



202 TOWARD A LEAN A N D LIVELY CALCULUS 

c o n v i e n t l y accommaded a t the b o a r d s a r e a sked t o work p r o b l e m s 
s i m u l t a n e o u s l y . The s t u d e n t s s i t i n g a t t h e i r d e s k s a r e e n c o u r a g e d to 
ask a n e a r b y "boa rd s t u d e n t " -for c l a r i f i c a t i o n or e x p l a n a t i o n of 
p o i n t s not c l e a r l y u n d e r s t o o d . 

At f i r s t many s t u d e n t s d r e a d t h i s type of e x p o s u r e , but a f t e r a 
s h o r t p e r i o d of t i m e , most s t u d e n t s r e g a r d t h i s a s one of t he most 
b e n e f i c i a l p a r t s of the c l a s s . 

EVALUATE 

E v a l u a t e — t o improve l i f e - l o n g l e a r n i n g . 

"I f ee ) l i k e a d r o p l e t of s p r a y p r o u d l y p o i s e d for a moment on 
the c r e s t of a wave u n d e r t a k i n g to a n a l y z e the s e a . " — Wil l 
D u r r a n t . 

E v a l u a t i o n can be in t r a d i t i o n a l f o r m s . The homework can be 
c o r r e c t e d and g r a d e d , t e s t s can be g i v e n , n o t e s can be awarded p o i n t s 
and q u i z e s can be a d m i n i s t e r e d . 

4 . E x p e r i e n c e s Can Be E x p r e s s e d In Four C a t e g o r i e s . 

PURPOSE — A c l e a r s t a t e m e n t of what the l e s s o n w i l l a c c o m p l i s h 

CENTRAL MESSAGES — A r o s t e r of the most i m p o r t a n t c o n c e p t s in 
the l e s s o n . 

VALIDATIONS AND APPLICATIONS — J u s t i f i c a t i o n and a p p l i c a t i o n s 
of the p u r p o s e and c e n t r a l 
me s s a g e s . 

VALUES - - A s t a t e m e n t of how the l e a r n i n g of the i n f o r m a t i o n 
b e n e f i t s the l e a r n e r . 

FOUR-FOLD SUMMARY 

Cap t u r e Expand Teach Ε v a l u a t e 
Purpose 
C e n t r a l Messages 
Val i d . & Appli c . 
V a l u e s 

Val ι da t i ons 

I ) San J o s e S t a t e U n i v e r s i t y w i t h Dr . W a l t e r Gong. 
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Dr. Gong who was the d e v e l o p e r of most of the c o n c e p t s of the 
t o u r - - t o l d has t a u g h t h i s p h y s i c a l s c i e n c e c l a s s e s a t San J o s e S t a t e 
U n i v e r s i t y t o r s e v e r a l y e a r s w i t h t h i s me thod . His s t u d e n t s 
c o n s i s t e n t l y s c o r e d s i g n i f i c a n t l y b e t t e r than two o t h e r i n s t r u c t o r s 
t e a c h i n g in a t r a d i t i o n T-T-T c y c l e . 

To d e m o n s t r a t e h i s c o n f i d e n c e in the method he took 30 s t u d e n t s 
wno were i d e n t i f i e d as most l i k e l y t o f a i l b a s e d on t h e i r p r e v i o u s 
e d u c a t i o n a l e x p e r i e n c e and t e s t s c o r e s . They were e n r o l l e d in one of 
h i s b e g i n n i n g b i o l o g y s e c t i o n s . Only one s t u d e n t s c o r e d below a Ε 
from t h i s g r o u p . 

w'nen i t was s u g g e s t e d t h a t t h i s d i f f e r e n c e might be t o the 
n a t u r e of h i s e v a l u a t i o n s y s t e m , he had h i s s t u d e n t s t ake the f i n a l 
exams p r e p a r e d by the o t h e r two i n s t r u c t o r s for t h e i r c l a s s e s . 
Gong ' s s t u d e n t s d i d s i g n i f i c a n t l y b e t t e r on the t e s t s than the o t h e r 
i n s t r u c t o r ' s s t u d e n t s d i d . 

2) S a b a t a s s o Foods in S a n t a Ann C a l i f o r n i a 

The p r e s i d e n t of S a b a t a s s o Foods e x p l a i n e d t o me h i s fo rmula fo r 
the s u c c e s s f u l t r a i n i n g of h i s s a l e s s t a f f . While h e a r i n g h i s 
t e c h n i q u e 1 was s t r u c k r a t h e r f o r c e f u l l y by how much i t r e s e m b l e d 
t h i s f o u r - f o l d p r o c e s s , 

in t he C a p t u r e p h a s e , a p r o s p e c t i v e s a l e s m a n was r e q u i r e d t o 
work in the b a k e r y , p r o c e s s i n g p l a n t , w a r e h o u s e , o f f i c e and then go 
w i t h an e x p e r i e n c e d sa l e sman a s an o b s e r v e r . T h i s was done so t h a t 
the sa l e sman would have an comple t e u n d e r s t a n d i n g of the o p e r a t i o n of 
the b u s i n e s s . 

Under Expand 1 c o u l d e a s i l y p l a c e Mr.. S a b a t a s s o ' s i n s t r u c t i o n t o 
the s a l e sman t h a t he must l e a r n h i s own s a l e s a p p r o a c h . He was t o 
mod i fy , c h a n g e , p e r s o n a l i z e , e x p a n d , e t c . the s a l e s app roach he had 
w ι t η e s s e d w i t h the e x p e r i e n c e s a l e sman. He h ad to f i n d some t h i n g 
which was h i s so t h a t he would be a b l e to i d e n t i f y w i t h i t . 

The Teach p a r t came when the sa l e sman had to p r e s e n t h i s s a l e s 
Di t ch to the p r e s i d e n t of the company. Here he was s u b j e c t e d t o 
m o s t , if no t a l l , of the most common o b j e c t i o n s a p r o s p e c t i v e buyer 
might have fo r not buy ing the p r o d u c t . He was put t h rough h i s p a c e s , 
t e s t e d , and t r i e d by the p r e s i d e n t b e f o r e he was a l l o w e d t o oo out on 
a cal 1 . 

E v a l u a t e came i n t o p l a y when he would have h i s r e g u l a r i t y 
s c h e d u l e d m e e t i n g w i t h the p r e s i d e n t . He would have to a ccoun t a t 
t h i s t ime fo r h i s p r o g r e s s , pe r fo rmance and s a l e s . 

T h i s company grew in 20 y e a r s from a one man o p e r a t i o n U i r . Lou 
S a b a t a s s o ) t o one employ ing h u n d r e d s of p e o p l e in s e v e r a l s t a t e s and 
h a v i n g an annual s a l e s of about 30 m i l l i o n d o l l a r s a y e a r . 

3) E s s e n t i a l s of E d u c a t i o n 
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The l e a d e r s of s e v e r a l pro+ 'ess i onal o r g a n i z a t i o n s r e a c h e d the 
c o n c l u s i o n t h a t S o c i e t y must r e a f f i r m the v a l u e o+ a b a l a n c e d 
e d u c a t i o n in 1978 . The N a t i o n a l Counci l of T e a c h e r s of M a t h e m a t i c s 
and the N a t i o n a l S c i e n c e T e a c h e r s A s s o c i a t i o n were p a r t of t h i s 
g r o u p . They c i r c u l a t e d a s t a t e m e n t on the e s s e n t i a l s of e d u c a t i o n 
among a number of p r o f e s s i o n a l a s s o c i a t i o n s whose g o v e r n i n g b o a r d s 
e n d o r s e d the s t a t e m e n t and u r g e d t h a t i t be c a l l e d t o immediate 
a t t e n t i o n of the e n t i r e e d u c a t i o n community , or p o l i c y make r s and of 
t he p u b l i c a t 1 a r g e . 

The s t a t e m e n t embodied the c o l l e c t i v e conce rn of the e n d o r s i n g 
a s s o c i a t i o n s . I t e x p r e s s e d t h e i r c a l l fo r a renewed commitment t o a 
more comple t e and more f u l f i l l i n g e d u c a t i o n fo r a l l . 

From t h i s s t a t e m e n t one would f i n d , "The independence of skι 1s 
and c o n t e n t i s the c e n t r a l c o n c e p t of t he e s s e n t i a l s of e d u c a t i o n . 
S k i l l s and a b i l i t i e s do no t grow in i s o l a t i o n from c o n t e n t . In a l l 
s u b j e c t s , s t u d e n t s d e v e l o p s k i l l s in u s i n g l a n g u a g e s and o t h e r symbol 
s y s t e m s ; they d e v e l o p the a b i l i t y t o r e a s o n ; t hey u n d e r g o e x p e r i e n c e s 
t h a t l e a d t o emo t iona l and s o c i a l m a t u r i t y . S t u d e n t s m a s t e r t h e s e 
s k i l l s and a b i l i t i e s a b o u t s c i e n c e and m a t h e m a t i c s , h i s t o r y and the 
s o c i a l s c i e n c e s , the a r t s and o t h e r a s p e c t s of our i n t e l l e c t u a l , 
s o c a l and c u l t u r a l h e r i t a g e . 

"More s p e c i f i c a l l y , the e s s e n t i a l s of e d u c a t i o n i n c l u d e the 
a b i l i t y t o use l a n g u a g e , t o t h i n k , and t o communicate 
e f f e c t j vel y . . . . t o a c q u i r e t he c a p a c i t y t o meet u n e x p e c t e d c h a l l e n g e s ; 
t o make informed v a l u e j u d g e m e n t s ; t o r e c o g n i z e and t o use o n e ' s f u l l 
l e a r n i n g p o t e n t i a l ; and t o p r e p a r e t o go on l e a r n i n g fo r a l i f e t i m e . " 

I t seems t o t h i s a u t h o r t h a t t he e l e m e n t s of t he F o u r - F o l d meet 
the c r i t e r a s e t - f o r t h in t h i s document . 

4) Brigham Young U n i v e r s i t y 

BYU e x p e r i m e n t e d w i t h t he F o u r - F o l d method of l e a r n i n g m a t e r i a l 
th rough a forum e x p e r i e n c e . A group of f reshman p s y c h o l o g y m a j o r s 
were i n s t r u c t e d in the CETE p r o c e d u r e and a c o n t r o l group of g r a d u a t e 
p h y s c h o l o g y s t u d e n t s were l e f t t o t h e i r own d e v i c e s t o c a p t u r e t he 
m a t e r i a l p r e s e n t e d in a once a week l e c t u r e . 

At the end of the s e m e s t e r when the two g r o u p s were t e s t e d on 
the l e c t u r e s , the f reshman s t u d e n t s showed a s i g n i f i c a n t l y h i g h e r 
mean s c o r e than the g r a d u a t e s t u d e n t s . 

In a n o t h e r e x p e r i m e n t , Grant H a r r i s o n , p r o f e s s o r of 
i n s t r u c t i o n a l s c i e n c e a t BYU who was t r a i n e d in t he CETE approach 
t r i e d i t on 12 f i r s t g r a d e c l a s s r o o m s of the A l p i n e School D i s t r i c t 
in the form of a p i l o t r e a d i n g p r o g r a m . 

Quo t ing from h i s r e p o r t "The program i s d e s i g n e d fo r use by the 
s t u d e n t s ' r e g u l a r t e a c h e r and works on a companion s t u d y c o n c e p t . 
Each s t u d e n t i n t e r a c t s w i t h a n o t h e r s t u d e n t . " 

" . . . T h e c h i l d r e n a r e e c s t a t i c w i t h the idea of b e i n g a t e a c h e r 
t o one a n o t h e r . I t g i v e s them a s e n s e of p r i d e . . . M o s t r e a d i n g 
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programs do not have a f eedback s y s t e m . With t h i s program c h i l d r e n 
l e a r n more r a p i d l y b e c a u s e t h e y a r e a c c o u n t a b l e t o t h e i r p a r e n t s . " 

5) R i c k s Col 1ege 

When my s t u d e n t s were a sked to r a t e the c o u r s e and i n s t r u c t o r 
f o l l o w i n g i n s t r u c t i o n in a math c l a s s u s i n g the F o u r / F o l d Framework, 
the f o l l o w i n g r e s u l t s were o b t a i n e d : 

PRE F/F POST F/F 

O v e r a l l r a t i n g of 2 . 6 3 . 0 
i n s t r u c t o r and c o u r s e 

I n t e r e s t in c o u r s e 2 . 5 2 . 8 

Ci a s s he i ped me gai η 

new knowledge , s k i l l s , 2 . 6 2 . 9 
or a b i 1 i t y 

Ν = 49 Ν = 70 
1 Sec t i on 2 Sec t i ons 

S e a l e : 

Excel l e n t = 3 
Adequa te = 2 
L e s s than 

a d e q u a t e = 1 

Some S t u d e n t Comments: 

"Through t h i s c o u r s e I ' v g a i n e d a b e t t e r u n d e r s t a n d i n g and 
knowledge in the a r e a of m a t h e m a t i c s . A l s o u s i n g t h i s f o u r - f o l d 
method h a s h e l p e d a l o t in my u n d e r s t a n d i n g and remember ing the 
c o n c e p t s t a u g h t . " 

"The most s i g n i f i c a n t c o n c e p t was t h a t g r a d e s a r e no t the most 
i m p o r t a n t t h i n g in l i f e , b u t r a t h e r j u s t l e a r n i n g and b e i n g a b l e t o 
t e a c h o t h e r s . By l e a r n i n g and b e i n g i n t e r e s t e d in t he s u b j e c t I do 
b e t t e r in my c l a s s e s . " 

"The f o u r - f o l d h a s been t e r r i f i c . I t h a s been r e a l l y h e l p f u l in 
making us expand on our l e s s o n s . I know when I d o , I l e a r n so much 
more . The re have been t i m e s when I j u s t wish I c o u l d s i t and l e a r n 
and l e a r n abou t a s u b j e c t . The e x p a n s i o n i s a p e r f e c t way t o do 
t h i s . " 

"I t h i n k the most i m p o r t a n t t h i n g I l e a r n e d i s t h a t i t s e a s i e r 
and b e t t e r t o l e a r n if you know t h e ' p u r p o s e ' and ' v a l u e ' of what you 
a r e l e a r n i n g . I t c r e a t e s more i n t e r e s t and you a r e no t j u s t d o i g 
t h i n g s j u s t b e c a u s e t h a t the way i t s d o n e . " 



206 TOWARD A LEAN A N D LIVELY CALCULUS 

" I t has h e l p e d me by g i v i n g me a way to o r g a n i z e the n o t e s of 
what a t e a c h e r s a y s . " 

Typ i c a 1 1 y C a l c u l u s c 1 a s s e s a t R i c k s C o l l e g e e x p e r i e n c e a 
d r o p - o u t r a t e of from 10-15% which i s o-ften b e t t e r than many o t h e r 
d e p a r t m e n t s on campus. 

An in s e r v i c e workshop c o n d u c t e d in 1 9 8 1 . 

At the end o-f a week long i n s e r v i c e workshop h e l d t o r 
i n s t r u c t o r s f rom Br i gh am You ηg Un i ν e r s i t γ, Pr ov ο ; BYU - Hawa i i ; and 
R icks C o l l e g e t o t e a c h t h i s method the -fol lowing comments came -from 
the e v a l u a t i o n s h e e t g iven a t the end o-f the -f if th day : 

"The i n f o r m a t i o n does not t h r e a t e n the o t h e r good t h i n g s I am 
a l r e a d y d o i n g , and i s a d a p t a b l e t o my own n e e d s . " 

"The i d e a s have g r e a t f l e x i b i l i t y for home, s c h o o l , church and 
my own p e r s o n a l l e a r n i n g . " 

"Brought new commi t tment , d e s i r e and a p l a n to c a r e f u l l y examine 
my whole pe r fo rmance in T/L p r o c e s s . " 

"The examples and e m p h a s i s g iven to e x p a n s i o n and t e a c h i n g by 
s t u d e n t s c o u p l e d wi th the idea of group s t u d y w i l l he lp me s h a r e my 
p u r p o s e s and v a l u e s w i t h my s t u d e n t s . " 

"Our r e a l c h a l l e n g e i s t o h e l p a l l s t u d e n t s r e a c h 100% c a p t u r e . 
Hopefυ 11y t h i s workshop w i l l h e l p me to do t h i s . " 

"The i n f o r m a t i o n from Gong d i g n i f i e s the s t u d e n t and t r e a t s him 
a s an i n t e l l i g e n t l e a r n e r , r e s p o n s i b l e fo r a g r e a t e r r o l e in the T/L 
p r o c e s s . ; ' 

"I have r e a l i z e d anew the need fo r a p p l i c a t i o n . " 

"The t h r e e pe r son model of Gong a g r e e s w i t h o t h e r c a r e f u l l y 
p r e p a r e d mode l s p a r t i c u l a r l y S c o u t i n g MOL m o a e 1 . " 

" C l a r i t y of method and p r e s e n t a t i o n and the c o n s p i c u o u s absence 
of p e d a n t i c j a r gon was r e f r e s h i n g . " 

6) 5 . Ν . Pos 11e t hwa i t a t Purdue Un i ν e r s i ty 

W r i t i n g in the J a n u a r y 1984 e d i t i o n of E n g i n e e r i n g E d u c a t i o n Dr. 
P o s t i e t h w a i t s t a t e s t h a t Dick S t e w a r t of the Purdue P lacement Cen te r 
c i t e s t h r e e major c h a r a c t e r i s t i c s t h a t emp loye r s a r e c o n c e r n e d a b o u t : 

* That employees a r e a b l e to t ake an a s s i g n m e n t and 
g e t the j o b done 

* Tha t t he - / a r e a b l e to w r i t e a s u c c i n c t r e p o r t 
* That they a r e a b l e to make an o r a l p r e s e n t a t i o n to the 

boss or a c o m m i t t e e . 
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To a c c o m p l i s h t h i s he h a s d e v e l o p e d an a u d i o - t u t o r i a l sys t em 
which employes the -framework b e i n g d i s c u s s e d in t h i s p a p e r . He on ly 
l e c t u r e s fo r a h a l f - h o u r a s h i s b e l i e f i s t h a t c o n t e n t d e l i v e r e d 
d u r i n g the l a s t h a l f hour of a s e s s i o n was u s u a l l y not i n c l u d e d in a 
s u t d e n t ' s summary of the l e c t u r e . He c i t e d a s t u d y where a 
p r o g r e s s i v e d e c r e a s e in the i n c l u s i o n of c o n t e n t was n o t e d a s the 
l e n g t h of the p r e s e n t a t i o n i n c r e a s e d . We b e l i e v e s t h a t w i t h such a 
s t e e p l y d e c l i n i n g c u r v e , p r o b a b l y l i t t l e of the c o n t e n t in t he l a s t 
20 m i n u t e s was a b s o r b e d by the s t u d e n t s . 

W i t h t h i s i η f or ma t i on h ι s c ou r se con s i s t s of t h r e e el erne ηt s : 
The l e c t u r e ( " b r o a d e n t h e i r p e r s p e c t i v e " ) , t he smal l group s e s s i o n 
("you r e a l l y l e a r n a s u b j e c t when you t e a c h it".» and i n d i v i d u a l s t u d y 
("a s i t u a t i o n t h a t e x c i t e s s t u d e n t i n t e l l e c t " ) . 

App 1 i c a t i on s 

Can be a p p l i e d t o a l l f i e l d s of t e a c h i n g and l e a r n i n g . 

'-.'al ue 

* S t u d e n t s l e a r n more and r e t a i n i t l o n g e r . 

* S t u d e n t s become more v e r b a l and d e m o n s t r a t e more c o n f i d e n c e . 

* They t end t o be more h e l p f u l t o p e e r s and t ake an i n t e r e s t 
in how they a r e d o i n g . 

* A s t u d e n t t e n d s t o work h a r d e r than t hey would have 
o t h e r w i s e . 

* S t u d e n t s l e a r n how t o l e a r n . 

IIS SUMMARY 

» The re a r e fundamenta l e x p e r i e n c e s n e c e s s a r y fo r change or 
p r o g r e s s in l i f e . 

ϋ Every p e r s o n i s bo th a l e a r n e r and a t e a c h e r in four-
fundamenta l a r e a s (commitment , a t t i t u d e s , s k i l l s , and knowledge) 
u s i n g four fundamenta l e x p e r i e n c e s . 

The fou r fundamenta l e x p e r i e n c e s a r e : C a p t u r e , Expand, Teach 
and E v a l u a t e . 
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# A l l t h rough l e a r n i n g i n c l u d e s t h e s e four a c t i v i t i e s . 
U n d e r s t a n d i n g t h e s e l e a d s t o g r e a t e r commitment and the l e a r n i n g 
cu rve seems to i n c r e a s e r a t h e r than d e c r e a s e a f t e r a c l a s s i s o v e r . 

The Knowledge s t r u c t u r e fo r o r g a n i z i n g m a t e r i a l i s in four 
c a t e g o r i e s : Purpose which i s m o t i v a t i o n , q u e s t i o n s or p r o b l e m s ; 
C e n t r a ! Messages which a r e main i d e a s , t h e s i s s t a t e m e n t , t he most 
i m p o r t a n t c o n c e p t s ; V a l i d a t i o n s and A p p 1 i c a t i o n s or v e r i f i c a t i o n , 
p r o o f , u s e s ; and V a l u e s which d e m o n s t r a t e b e n e f i t s , b l e s s i n g s , w o r t h . 

The L/T framework i n v o l v i n g t h r e e p e r s o n s w i l l improve the 
four fundamenta l e x p e r i e n c e s and the communica t ion of t h e i r e s s e n t i a l 
i η format i on . 

" I n s t e a d of t a k i n g p o s s e s s i o n of m a n ' s freedom thou d i d ' s t 
i n c r e a s e i t and burden the s p i r i t u a l kingdom of mankind w i t h i t s 
s u f f e r i n g s f o r e v e r . Thou d i d s ' t d e s i r e m a n ' s f r e e love t h a t he 
s h o u l d f o l l o w thee f r e e l y e n t i c e d and taken c a p t i v e by t h e e . In 
p l a c e of the r i g i d a n c i e n t law man must h e r e - a f t e r w i t h f r e e h e a r t 
d e c i d e fo r h i m s e l f what i s good and what i s e v i l h a v i n g o n l y thy 
image b e f o r e him a s h i s g u i d e . But d i d ' s t thou not know he would a t 
l a s t r e j e c t even thy image and thy t r u t h if he i s we ighed down w i t h 
the f e a r f u l burden of f r e e c h o i c e ? . . . We have c o r r e c t e d thy work 
and founded i t upon m i r a c l e , m y s t e r y , and a u t h o r i t y and man r e j o i c e d 
t h a t t hey were a g a i n l e d l i k e sheep and t h a t the t e r r i b l e g i f t t h a t 
had b r o u g h t them such s u f f e r i n g was a t l a s t l i f t e d from t h e i r 
h e a r t s . " — Dos toevsk i from the Grand Inqu i s i t o r . 
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T O P I C : " "" " " " " COURSFT 
T E A C H E R : D A T E : 

C. TEACHING OTHERS FOR T H E I R B E N E F I T 
Summarize you r teach ing exper ience by answering the 4 - F o l d quest ions below. 

S i t u a t i o n : Who d id you teach o r d iscuss you r ideas wi th? 
Fo r how long? Descr ibe the s i t u a t i o n . 

1 . PURPOSE. What improvements were you t r y i n g to achieve? 

2. C E N i R A L MESSAGE. O f a l l your cho i ces , what main exper iences d id you choose to 
help ach ieve the des i red improvements? 

What i n fo rmat ion d id you choose to teach o r discuss? Check one or more: 
Purposes Cent ra l Message(s) V a l i d a t i o n s / A p p l i c a t i o n s Values 
Present in d e t a i l the most s i g n i f i c a n t i n fo rmat ion you t a u g h t . 

3. VAL IDAT IONS AND A P P L I C A T I O N S . What were the observed improvements (o r lack 
o f improvements) in y o u r s e l f and /o r o t h e r ( s ) ? 

How could you apply any o f the above in fo rmat ion to b e n e f i t o the r s i t u a t i o n s ? 

4 . V A L U E S . How wor thw i le was t h i s "Teach ing Others Fo r T h e i r B e n e f i t Expe r ience?" 
Check one : super io r e x c e l l e n t average poor How could you 
improve i t s value? 
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A - r r o L D γλοΜΕλολΚ ι_ζ..-.Κί\iiNG/ ι c.-.Chi,'(U NAME 

T O P I C : COURSE 
T E A C H E S ! D A T E : ' 

A . CAPTURING INFORMATION 
Wr i te concise and complete answers to the 4 - F o l d quest ions below. 

( )T. PURPOSE: Did the teacher inc lude h i s / h e r purposes ( i . e . , g o a l s , m o t i v a t i o n s , 
needs, quest ions to be answered, e t c . ? ) YES NO' I f y e s , s t a t e them b r i e f l y . 

( ) 2 . CENTRAL MESSAGE: Did the teacher propose s i g n i f i c a n t p r o p o s i t i o n s , p r i n c i p l e s , 
p rocedures , e t c . , f o r ach iev ing the purposes? YES NO I f y e s , conc i se l y 
w r i t e the cent ra l message being proposed. 

( ) 3 . VAL IDATIONS AND A P P L I C A T I O N S : Were v a l i d a t i o n s and a p p l i c a t i o n s ( i . e . , evidences 
a u t h o r i t i e s , examples, laws , personal exper iences , e t c . ) c i t e d to support o r to 
not support the cen t ra l message? YES NO I f y e s , l i s t them and exp la in the 
impor tant ones. 

( ) 4 . V A L U E S : D id the teacher s t a t e o r show n i s / h e r / p e r s c n a l va lues ( o r f e e l i n g s , 
cho ices , v i ews , e t c . ) about the in fo rmat ion presented o r r e l a t e d issues? 
YES NO I f y e s , summarize the values i n d i c a t e d . 
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TCPiC: COURSE: 
TEACHERT -~~ DATE: 

. 8. EXPANDING THE INFORMATION 
Report how you expanded your learning for your own purposes and values. 

1. Check one or more of the following to indicate how you expanded the captured 
4-Fold knowledge structure. 

a. I added new information to the 4-Fold. 
b. I applied the 4-Fold information to different situations and problems. 
c. I integrated, or synthesized, other knowledge to the 4-Fold. 
d. Other . 

2. Check one or more of the parts of the 4-Fold that you expanded: 
Purposes Central Message Validations/Applications Values 

3. Write one or more significant paragraphs to describe the extent of your expansion. 

More Questions for Expansion. Ask two questions you would like to know more about 
or discuss with someone. 

Question #1: 

Question #2: 
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PRACTICING FOR LONG-TERM CAPTURE 

1 

The Recall Process 

How long did you practice the recall of the information 
captured in the 4-Fold Framework? minutes. 

How correct, complete and concise was your recall? 
Check one: excellent average poor no practice 

What do you need to do to improve your recall process? 
Check one: organize rehearse use recall OK 
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INTRODUCTION 

My present contact with the problems under discussion is that in 

teaching a first year graduate course in Biomathematics I find in my classes 

a goodly number of Biology majors (in addition to some Mathematics majors, 

some Statistics majors, of course Biomathematics majors, and even some 

Chemical Engineers). Among these Biology majors there are some who have 

taken extra Mathematics courses during their undergraduate years, as well 

as some who have not. 

In earlier years, I have taught an experimental course in introductory 

mathematics to a somewhat select group of undergraduate Biology students. 

This course included, in addition to much of the traditional calculus material, 

topics such as difference equations and a little bit of linear algebra, and 

emphasized the concept of mappings as unifying thread throughout the course. 

Some students who took part in that experiment, reminisced years later that they 

had discovered the beauty of mathematics in that course; others, I think, found 

it a bit hard going. I also taught calculus in a Summer Institute at the 

Uninversity of Michigan to a group of research biologists who, at a more mature age, 

wanted to learn more mathematics. In that summer institute I used my own notes and 

the book by S. Lang (1964). Several participants related that after the course they 
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felt entirely comfortable with Lang's book and enjoyed referring to it later. 

In these courses I did not emphasize applications as much as the simplicity 

and essential unity of the fundamental ideas involved in the structure of calculus: 

mapping, composite mapping, linear mapping, local approximation of nonlinear 

mappings by linear ones. It must be noted that computing had not made its 

big splash yet when I taught these courses. 

Finally, I was a member of the Panel on Mathematics in the Life Sciences 

of the CUPM. 

Now to come to the matter at hand: before discussing the calculus course, 

the instruction, I want to cast a long glance at the students, the instructed. 

I will do so in three parts: 

a) Where do the students come from? their pre-college years. 

b) Where are the students when they take the course? their college 

environment. 

c) Where are they going? their future needs. 

PRE-COLLEGE BACKGROUND OF THE STUDENTS 

No longer does one have to fight an up-hill battle to convince people 

that many students of high school age are tremendously short-changed as to 

their intellectual training, including mathematics. Nor is this typical for 

just the future biology students. Two consequences of the situation are 

relevant to our present discussion, however, and the second one of these ĵ s 

peculiar to biologists. 

a") Because of the existence of some exceptional high schools, including 

some private prep schools, which do perform outstandingly, and because of 

some schools doing a middling job, many colleges are faced with a wide 

range in preparedness of the biology freshmen that present themselves for 

their two bits of mathematical training; the width of this range is enhanced 

by the second circumstance: 
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β) All too many high school counselors tell a student who is weak in 

mathematics, but professes an interest in "science", to go to biology, "since 

you will not need much math there". 

THE COLLEGE ENVIRONMENT OF THE STUDENTS 

Several of the boundary conditions under which calculus, or any topic in 

mathematics for that matter, is taught to biology students, are not under the 

control of the mathematics department; at least, such is the case at many 

schools. It might be useful to contemplate what (if any) changes in this 

respect would be feasible in view of campus politics; it might also be useful 

to find out what differences there are in this respect between schools. I am 

referring to such circumstances as the following: 

i) The above-mentioned variety in preparedness on the one hand necessitates 

remedial courses for the weak, on the other hand opens the possibility for 

stronger courses for the strong. On both scores we may run into controls 

exerted by the biology departments: , 

ii) The major department usually decides which courses shall be counted 

toward fulfillment of graduation requirements. At my University we are in a 

relatively good situation: The Biological Sciences do not count "Algebra 

and Trigonometry" toward graduation. However, the Undergraduate Catalog 

shows that the Psychology department allows "Algebra and Trig" to be so 

counted, and that the Sociology department lists it as a regular part of 

the curriculum. I would not be surprised if there are schools where the 

Biological Sciences have a similar policy. Let me add that my Undergraduate 

Catalog also shows that Psychology does not require any calculus to be 

taken (just 2 math courses) , and that Sociology lists the first semester 
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of a 2-semester calculus package as its second (and final) math requirement. 

However, Sociology also requires an introductory Statistics and an introductory 

Computer course, while Psychology even has two Statistics courses and one 

Computer course. As for my Biological Sciences departments: the catalog lists 

2 calculus courses designed for the softer sciences plus one course to be 

chosen from Statistics, Computer Science, or Mathematics (subject to approval) , 

or the three-semester calculus sequence for engineers. It is here that on my 

campus (and undoubtedly many other campuses) we run into another control 

exercised from outside the Mathematics department. 

iii) The student's biological advisors routinely argue strongly that 

even the well-prepared student shall not take the more rigorous calculus 

sequence. They present such action to the student as an unnecessary risk: 

"You don't need it; you risk getting a lower grade, and see what that will do 

to your record". Several of these students are pre-med: one reference to 

low grades is enough to dissuade them. A teacher I know prevailed in the 

face of such opposition, upon a mathematically strong biology student in her soft 

calculus class to switch to a hard calculus class. Wouldn't you know it : he 

hit a lousy teacher and hard grader (there are such!) . I am sure that his 

example will be quoted by many biology advisors for years to come. So much 

for the opportunity for well-prepared biology students to take stronger 

calculus (or math) courses. 

iv) The biology students rarely see an application of calculus in their 

indergraduate biology courses. Some statistics, yes, but hardly any calculus. 

It is easy and perhaps a bit cheap to blame this on the biology professors. 

There are, in fact, at least two reasons for this fact which both stem from 

the nature of biology and are virtually uncontrollable by either biologists 

or mathematicians. One: the primary task of the biology curriculum must be 
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to initiate the students into characteristically biological concepts, the 

biological way of thinking, and (obviously) a number of basic results 

(mostly obtained by experimental methods) , as well as into a number of 

basic laboratory techniques. In view of the large number of fields of inquiry 

within biology, many with very specialized conceptual structures, this is a 

huge task indeed. None of this work will gain much from mathematical intervention: 

calculus played hardly any role in the development of these concepts and to 

use calculus secondarily in their exposition or in the exploration of their 

immediate consequences will often be genuinely impossible (e.g., think of 

such fields as anatomy or taxonomy with their many category-type concepts) 

or, at best, look like a somewhat artificial device to make some idea in 

calculus more palatable, rather than elucidate new (to the students) and 

tricky ideas in biology. Although mathematical methods have now entered some 

of the more mature areas of research in biology (e.g., genetics, ecology, 

(neuro-)physiology and biophysics), this research level of biology is much 

more apt to be encountered in graduate studies then in undergraduate training. 

Two: whenever mathematical methods have been usefully applied toward the 

solution of biological problems, they have rarely been derived from plain 

calculus: most such applications are either non-calculus (dimensional analysis, 

graphical methods, inequalities, difference equations, pre-calculus probability, 

linear programming, linear algebra) or post-calculus (ordinary differential 

equations, partial differential equations, functional differential equations, 

post-calculus probability) . The most prominent exception to this trend 

seems to stem from those optimization problems that can be formulated as the 

determination of the extremum of a function of one or more variables. Such 

optimization problems, however, do not occupy center stage in the under-

graduate biology curriculum. For examples of applications of the above-

listed areas in mathematics the reader is referred to such books as Gold (1977), 

Marcus-Roberts and Thompson (1983), Noble (1967), Bender (1978), where 
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further references can be found. liven an elementary textbook 

such as Batschelet (1976), which has some realistic examples in several of 

its chapters, has pretty lame examples in its calculus-related chapters. 

In the present context it would be of obvious interest to learn from 

biology faculty which biological problems they might be interested in seeing 

treated mathematically during their undergraduate curriculum. To whet your 

appetite, let me give you one such list that came up during a project at 

NCSU in which some people in our Biomathematics Program and some people of 

the Biology faculty were exploring ways of injecting some mathematics into 

the introductory biology course. The biologists said they would be interested 

in self-supporting 10-15 minute modules in each of the following topics: 

a) Enzymatic reactions ; basic enzyme kinetics 

(3) Cellular respiration ; product quantity as related to 

availability of reactants and rates of reaction 

γ) Photosynthesis ; limiting factors ; and C^ carbon 

fixation 

δ) Transmission of nerve impulse ; resting and action potential 

ε) Countercurrent flow mechanism ; loop of Henle in human kidney 

ζ) Blood circulation : blood pressure, stroke volume of the 

heart, diameter of blood vessels, distensibility of arteries 

n) Ecology : growth curves, carrying capacity, life tables. 

I am not sure that one can do justice to any of these topics in the short 

time indicated or, for that matter, in an introductory course. But as an 

indication of what biologists might be interested in gaining from mathematical 

methods, I think this list has great interest; and I think we should solicit 

more such lists from more biologists in various places. Before leaving the 

topic of calculus applications in biology courses I want to make two remarks 

regarding the topics in the list: 
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1) The preparation of these topics for mathematical discussion will 

require more than just labeling certain quantities by χ , y , and 

ζ and plunking down an equation to be solved : a real modeling 

effort must be made where biological or biochemical concepts are 

exhibited first, and where it is then discussed how to represent 

mathematically which of their features. 

2) The derivation of the properties of the resulting mathematical 

models for these biological situations will require a lot more 

than simple calculus. 

v) One might hope that the biology students might see some applications 

of calculus in the physics or chemistry courses they are required to take. 

But alas! On many campuses the biologists take non-calculus (or very-little-

calculus) versions of these courses. At NCSU the Math prerequisite for their 

year in Physics is Algebra and Trigonometry o_r Finite math, and the textbooks 

in the listed Chemistry courses go to great lengths indeed to avoid any use 

of calculus whatsoever. In fact, on my campus the first two chemistry courses 

that chemistry majors take, avoid the use of calculus. 

vi) Another potential contact between biology students and calculus, 

viz., the introductory statistics course, does not usually work out either: 

these courses are traditionally light on the calculus, in fact, light on the 

use of any mathematical formulae, and they are now developing in the direction 

of including the teaching of the use of statistical computer packages. The 

same is true for possible courses in the simulation of biological systems: 

canned programs, written in some simulation language are the order of the 

day in such cours.es. 
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THE POSTGRADUATE LIFE OF THE STUDENTS 

The last question we want to consider with respect to the students is 

this one: which fields of mathematics could they run into when they are in 

graduate school and when they wind up doing research? 

One thing we may be sure of is that they will be applying some elementary 

statistical methods, mostly because those are needed to analyze their 

experimental data, but sometimes simply in order to have their papers accepted 

by this or that biological journal: many editors insist on the use of 

statistical methods, even when (unbeknownst to them) such are not really 

needed. 

If their research calls for complicated experiments where many variables 

are being measured and where the goal is to find out how these variables depend 

on several influencing factors, then they will probably need multivariate 

statistical methods, possibly nonlinear methods; so they will have to reach 

for much more sophisticated methods. Thus they need some additional training 

in statistics, in order that they can talk more fruitfully to statistical 

consultants, or be more efficient in choosing which part of what statistical 

computer package will answer their needs: part of their training has to consist 

in learning how to do this. One aspect of all of this that should worry 

us here and now, is the fact that this statistical software has not only 

statistical content, but also some (numerical) mathematical content. For 

instance, in any least squares method there are matrices to be inverted. These 

matrices are not always well-conditioned. For a long time the most popular 

method among statisticians for matrix inversion has been the Uoolittle method, 

since it had been worked out so that it gave a lot of extra statistical 

information while the inversion process was going on. However, the Doolittle 
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method is one of the methods that are numerically least stable. The question 

thus arises: is a particular piece of statistical software safe to use for 

a particular concrete problem? Does this problem harbour a problem matrix? 

Can this matrix be inverted safely by any method? by the method used in this 

particular computer package? This little example illustrates a major headache 

of the so-called computer age: 

Is it possible (and if so, how?) to train students to be critical 

of canned programs, so that they know what kind of pitfalls to expect 

and may be better able to find out if a given program might .serve them 

well, or whether they should look for help if the results are unsatisfactory, 

or how to choose another program? 

Nor is this problem restricted to statistical packages. Kahan (1972) , 

pp. 1227-1229, relates what he himself calls a 'horror story', according to 

which a candidate for a Ph.D. degree in aeronautical engineering did not 

see his new model for improved wing lift confirmed by the computer output 

from his new equations: 

in single precision (as it turned out) because at that time IBM's 

single precision logarithm subroutine was flawed, 

in double precision (as it turned out) because the double precision 

subtraction hardware on their particular IBM model lacked a guard 

bit; he got around this deficiency by a clever programming trick. 

This story is an example where the blacksmith's iron deserves all the blame 

the blacksmith is willing to heap on it. The obvious problem is: how does the 

user know when to believe the computer and when not? How does he know when 

to blame the program and when the machine? These problems are aggravated 

when the errors are in the hardware or in proprietary software. Nonetheless, 

the above Ph.D. candidate was lucky in that he chose to go to W. Kahan for 
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help and in that W. Kahan just happened to work on some related problems 

(I.e.) so that it did not take him too long before he started uncovering 

the weak spots in the situation. 

Beyond their need for statistical savvy and a certain type of computing 

knowledge there is little that can be said about general mathematical needs 

of biologists. Especially when a person specializes in Biomathematics, 

in Theoretical/Mathematical Ecology, in the physiology of organ systems such 

as heart, lungs, kidney, brain, nervous system, or in Insect Pest Management, 

or in models for crop growth, individual plant growth, or photosynthesis, 

there are very few types of mathematics that one would want to guarantee that 

person will never get involved with. Certainly numerical simulation will 

hit him sooner or later, but among the more traditional fields in mathematics 

chances are excellent that there will be contact with systems of (nonlinear) 

difference and differential equations (ordinary and partial) , various 

concepts of stability, reaction-diffusion models (as an entry into spatio-

temporal phenomena) , stochastic versions of any of the above, systems with 

more than one time scale (for bio-chemical dynamics, for theories that 

connect ecology and evolution, or ecology and physiology) , techniques 

borrowed from engineering (chemical, electrical, mechanical) , artificial 

intelligence, to name just a few. 

SOME THOUGHTS ABOUT UNDERGRADUATE MATHEMATICS FOR BIOLOGISTS 

Obviously, a few undergraduate mathematics courses cannot prepare 

anybody (including biologists) to cope with all these areas. Indeed, nobody 

who is going to use mathematics for much of his professional life has the right 

to expect being equipped forever by a little bit of undergraduate work. 

Mathematics majors take a lot more mathematics before their bachelor's degree, 

and they are far from finished when they receive that degree. What might 



POSITION PAPER ON THE ROLE OF CALCULUS 
IN THE EDUCATION ON STUDENTS IN THE BIOLOGICAL SCIENCES 223 

perhaps be feasible is to give the biology students a framework that they 

will not have to unlearn later, but instead can build on. For instance, 

geometric and qualitative phase plane methods are much more important for 

their introduction to ODE's than are mechanical tricks for the integration 

of special types; the intuitive feel for how the solutions go from initial 

value at t to current value at t is more important than games played 

with integration constants. Similarly they should not be taught things they 

will never use (e.g., centers of gravity, moments of simply shaped objects) , 

nor things that will turn them off from mathematics (they will despise 

"applied" problems such as "Suppose a population grows according to the 

formula X r = 1000 + 500(1 - 2 ")") Memorization of a large number of 

derivatives and indefinite integrals will not do them nearly as much good 

as the actual derivation (not necessarily a rigorous proof, but an argument 

that illustrates the concepts) of a few well-chosen examples. Use of 

graphical methods is strongly recommended. 

It is hard to propose a list of topics to include. A list might easily 

become too long. But certain themes reverberate through much of the mathematics 

that one encounters in the biological research literature. The following 

are worthy candidates. 

Computer problems : error analysis,floating point numbers, calculator 

math, etc. ; do not put a'blind trust' in your computer! ; 

conflict between increasing round-off and decreasing discretization 

errors. 

Continuous vs. discrete models : some parallel development of 

difference and differential, sum and integral calculus. 

Different behavior of solutions to certain differential equations 
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and "similar" difference equations. (l have had two personal 

encounters, separated by many years, with mathematical biologists 

that were not aware that asymptotic stability is not necessarily 

preserved when one discretizes an ODE) . 

Basic features of linear mappings, linear algebra, composite of linear 

mappings, local approximation of nonlinear objects by linear ones. 

Basic concepts like mapping, inverse (not necessarily unique) , 

composite ; many mathematical models are of form L χ = a , 

"Fredholm alternative" for system of linear equations. 

Rate of change (e.g. Feynman's vol. 1 of lect. on physics, pp. 8-3, 8-4 

derivative, linear local approximation, mathematical examples to 

practice the concept ; higher order local approximation (Taylor) . 

Obviously I doubt the wisdom of separating calculus and calculator, or even 

calculus and computer. Who is to do the programming instruction I do not 

know. I do think the mathematics department should teach a sound dose of 

error analysis, e.g., some of the stuff that has recently appeared in the 

Monthly on "calculator math" . 
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Engineers often lament the fact that mathematics courses are so 

ineffective in teaching engineers how to use mathematics. Similar statements 

appear in a book to be published soon. 

"Mathematicians and consumers of mathematics (such as engineers) seem to 

disagree as to what mathematics actually is. To a mathematician, it is 

important to distinguish between rigor and intuition. To an engineer, 

intuitive thinking, geometric reasoning and physical deductions are all 

valid if they illuminate a problem, and a formal proof is often 

unnecessary or counterproductive. 

"Most calculus texts claim to be intuitive, informal, and even friendly, 

and in fact one can find many worked-out examples, as well as some 

geometric and physical reasoning. However, the dominant feature of these 

books is formalism. Definitions and theorems are stated precisely, and 

many results are proved at a level of rigor that is acceptable to a 

working mathematician. We admit to a twinge of embarrassment in arguing 

that this is bad. However, our calculus students have ranged from close 

to the best to be found anywhere, to far from the worst, and it seems 

entirely clear to us that most students are not ready for an abstract 

presentation, and they simply will not learn the formalism. The better 

students will succeed in reading around the abstractions, so that the 

textbook at least become useful as a source of examples." 
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The authors of this statement are Robert and Carol Ash. Robert was 

educated as an electrical engineer and he taught EE before transferring to the 

Mathematics Department. The book titled "The Calculus Tutoring Book," will be 

published late in 1985 by IEEE Press. 

Traditional publishers of books on calculus maintain a priesthood of 

advisers who would never let such a book pass. But a friendly reception by 

electrical engineers is assured. Where will it be used? For universities 

with an engineering-oriented mathematics department, the book might well be 

used as the class textbook. Failing this, it can be used for supplementary 

reading for both calculus classes and for courses in engineering. 

Based on their twenty years of teaching experience, the authors write: 

"Our approach uses informal language and emphasizes geometric and 

physical reasoning. The style is similar to that used in applied courses, 

and for this reason students find the presentation very congenial. They do 

not regard calculus as a strange subject outside their normal experience." 

Here, in the words of the authors, is a more detailed discussion of the 

philosophy and style of the Calculus Tutoring Book -

We teach in the Mathematics Department at a Big Ten School with a large 

and selective engineering college. In many math courses, such as calculus, 

differential equations and linear algebra, the majority of students are in 

engineering but the instructors, consciously or unconsciously, present the 

subject as if the entire audience were planning a career in pure 

mathematics. When we started teaching engineering mathematics, we too stated 
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careful definitions and proved theorems. But we found that our formal 

mathematical language which was intended to prevent misunderstanding had 

precisely the opposite effect. It obscured ideas that students would 

otherwise find straight forward. For example the formalism 

f(x,y,y') = 0 

disguises the simple idea of an equation involving x, a function y and its 

2 4 2 
derivative y", such as 3x + 2x y = 5y' or y' = χ y. We also found that 

typically after proving a theorem, we would be asked, "Why is it really 

true?." Even the few who followed every line of a proof simply were not 

convinced by it. Disaster was avoided only because students learned to 

politely ignore our proofs and definitions in class and we learned to 

diplomatically avoid them in making up exams. The net result was that our 

courses were much less than they could have been since the intellectual level 

is not determined by what we self-righteously do at the blackboard but by what 

we actually get students to be able to do as a result. 

Changing our style 

Ά mathematician views a proof as a logical progression from a set of 

hypotheses to a conclusion using definitions, axioms and rules of inference. 

Physical and geometric reasoning, possibly with the help of diagrams or 

intuition, is a useful aid but is not acceptable as a legal part of the 

argument. On the other hand, a physicist or engineer regards the underlying 

physics, geometry and intuition as the core of the problem. Mathematics is 

useful as an aid to the understanding, but it may be stretched and otherwise 

manipulated, in ways that a professional mathematician would find 

unacceptable, if this leads to a sharper insight into the physical situation. 
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We believe that the physical and geometric way of thinking is more 

valuable when seeing a particular subject for the first time, even if the 

student eventually becomes a mathematics major. Mathematics does not come 

into existence fully developed with theorems and proofs. It arises from 

imagination and intuition aided by physical and geometric reasoning. Students 

should be taught in a style that reflects the creation of mathematics and not 

in style that would satisfy a professional mathematician tidying things up 

years after the fact. It is more important to learn how to formulate and 

solve interesting problems than to learn the techniques of writing formal 

proofs. 

Over the years our teaching approach has evolved until we now use 

relatively informal language, and stress underlying physical and geometric 

ideas. We give explanations for the ideas and procedures of engineering 

mathematics, but they are not necessarily in a form suitable for publication 

in professional mathematical literature. Instead, they reflect how we 

ourselves actually think. For example, we remember the theorems of calculus 

not because we have seen them proved formally but because each says something 

about slope or area or velocity, etc. that seems reasonable. We try to 

explain why a result is "really" true and give students a way of thinking so 

that they can learn to decide on their own what is true. Students now leave 

our courses with their initial reserve of good will and self-confidence 

intact. We feel that those who take later courses in pure mathematics are 

better served by this earlier experience than they would have been by a 

premature exposure to formalism. Those who continue in a standard engineering 
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program are also better served since in their own fields, they must apply 

mathematics (using geometric and physical reasoning) and not construct proofs 

to meet the standards of professional mathematicians. One of our students 

approved of our approach because "she taught in English, not in Mathematics". 

The Calculus Tutoring Book 

We have written a calculus text (The Calculus Tutoring Book, IEEE Press, 

1985) using our approach. We'd like to give a few instances of how it differs 

from traditional texts. 

The chain rule for derivatives states that -

(1) dy ^ dy_ du 

dx du dx 

We see why it is true, as follows: If say dy/du = 3 and du/dx = 2, then 

y is changing three times as fast as u, while, in turn, u is changing twice as 

fast as x. So all in all, y is changing six times as fast as x, i.e., dy/dx 

is the product of dy/du and du/dx, as stated in (1). 

In a typical text, first the theorem is stated precisely: 

Let y = f(u) and u = g(x) where the derivative of g exists at χ 

ο 
and the derivative of f exists at g(x). Then the composition f g is 

differentiable at x, and (1) holds. 
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Then a proof is given, along the following lines: 

Suppose χ changes by Δχ. Then u changes by Au. Furthermore 

(2) Au = ΛΑ Λχ 
Δ χ 

so as Δχ ->·0, the factor AU / ΔΧ in (2) approaches the 

number du/dx and the entire product, namely Au, approaches 0. 

Now consider 

-AX = _4X _Au 
Δ χ Au Δ χ 

Allow Δχ (hence tsi) to approach 0 in (3) to obtain the chain 

rule in (1). But a technical difficulty arises because 

although it is assumed that Δχ / 0, it is entirely 

possible for Au to be 0, in which case, (3) contains an 

illegal division by 0. 

At this point, some authors push on to give a complete proof, and others 

stop after at least noting the difficulty. In any event, very little has been 

revealed about why the chain rule is valid. Although abstract mathematicians 

tend to dismiss our version of the proof as "imprecise" or "sloppy," it is in 

fact consistent with the way mathematics is actually used in basic physics and 

engineering courses, and therefore much more appropriate for the beginning 

student than the formal version. 
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As another example, consider L'Hospital's rule which says that if 

(4) lim 
f (x) 

g(x) 
χ -*• a 

is of the form 0/0 then we try to find the limit by switching to -

(5) lim 
f (x) 

g'(x) 
χ • -»• a 

Most texts prove the rule using the Extended Mean Value Theorem which in turn 

is proved using the Mean Value Theorem which in turn is proved using Rolle's 

Theorem which in turn is proved using an Extreme Value Theorem whose proof 

ironically is widely admitted to be beyond the scope of any calculus text. 

Again, this approach yields little insight. It does not even explain why the 

form 0/0 is referred to as indeterminate and requires a special procedure. 

Our approach is to begin with some numerical instances of the limit form 

0/0 such as those in Tables 1-3. In each case, the numerator and denominator 

approach 0 but they do so at different rates and, therefore, produce different 

limits. In Table 1, the fraction has limit 0 (the numerator approaches 0 much 

more rapidly than the denominator); in Table 2, the fraction has limit 2; in 

Table 3 (where the denominator approaches 0 much faster than the numerator) 

the fraction has limit 0 0 . By comparison, any problem say of the form 3/0+ 

has the answer 0 0 no matter how fast the numerator approaches 3 and the 
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Table 1 

numerator ,_\ «01 .001 .0001 .. . 

denominator 1 1/2 1/3" 1/4 ... 

Table 2 

numerator 2/3 2^4 2/S 2/S . . . 

denominator 1/3 1/4 1/5 1/6 ... 

Table 3 

numerator 1/2 1/3 1/4 1/5 ... 

denominator .1 .01 .001 .0001 ... 

denominator approaches 0 from the right. When two problems of the same form 

can have two different answers, we call the form indeterminate. The form 0/0 

is indeterminate (the answer depends on the particular numerator and 

denominator) while the form 3/0+ is not indeterminate (all such problems have 

the answer °° ). 

Now that 0/0 has been singled out as special, we can outline the 

intuitive idea behind L'Hospital's rule. Corresponding to a numerator and a 

denominator both approaching 0, think of two runners at a starting line (the 

zero mark). At that moment, the ratio of their positions is the arithmetic 

impossibility 0/0. But as they move, the ratio of their positions near the 

starting line, where they began "even with each other" depends on how fast 

they move. For example, if the first runner is going twice as fast as the 

second and they cross a zero line together, then very near that line, the 

first runner is twice as far from the line as the second. So it makes sense 
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to replace the ratio of positions f(x)/g(x) in (4) by the ratio of velocities 

f'(x)/g'(x). 

Sensible calculus meets Mr. Ugh 

When the first draft of The Calculus Tutoring Book was subjected to the 

standard publishing process, we were reviewed by a group of abstract 

mathematicians. They objected strenuously, even to minor simplifications in 

_ CO χ 

notation such as e =0 as an abbreviation for lim e =0 · Our informal 

arguments were grudgingly tolerated but only under the condition that we 

provide appendices with complete legal proofs. One reviewer expressed his 

opinions by decorating our manuscript with "ugh" whenever he was displeased. 

Another actually commented that "the students must be given the facts [meaning 

theorums and proofs] even if they can't understand them". We agreed to write 

appendices but as the process continued, the appendices got longer and longer 

until our original idea of writing an informal version of calculus was 

engulfed by clouds of abstraction. At this point, we realized that there was 

no way to satisfy the reviewers, and that the publication of the book would 

have to be unorthodox. We are grateful for the friendly reception we have 

received from the IEEE. We hope that students will find the text useful and 

that it will be a step in the direction of more appropriate teaching of 

mathematics. 



236 TOWARD A LEAN AND LIVELY CALCULUS 

APPENDIX 

From the Ivory Tower 

G e r a l d R . P e t e r s o n 
E d i t o r 

I E E E - A S E E N E W S L E T T E R 

S p r i n g i s s u e , 1985 

For the f irst , time in many i s sues we 
are missing Mac Van Valkenburg's Curriculum 
Trends column. Mac underwent major heart 
surgery in January. Last we heard, he ' s 
doing f ine . but not yet up to producing a 
column for t h i s i s sue . I know a l l h i s many 
friends wish him a speedy recovery, end we 
look forward to the return of h i s informa-
t i v e and thought-provoking column in the 
next i s s u e . 

In several recent columns, Mac has 
commented on the deplorable s t a t e of in -
struct ion in c o l l e g e - l e v e l mathematics, 
with special reference to the fac t that 
most math teachers at the c o l l e g e l eve l 
seem to be e i ther unwill ing or unable to 
teach math in a way that makes i t relevant 
or meaningful to anyone except professional 
mathematicians. His comments d e f i n i t e l y 
struck a chord with me. The math depart-
ment here at Arizona i s probably more coop-

era t ive than many — they per iod ica l ly I S K 
representat ives from engineering to serve 
on calculus t e x t - s e l e c t i o n committees. But 
i t i s only a ceremonial courtesy. We 
f a i t h f u l l y review several dozen candidates, 
picking out those that seem to make some 
e f for t to r e l a t e mathematics to the real 
world, but our choices are invariably 
rejected as being "not s u f f i c i e n t l y rigor-
ous." Well, t h i s w i l l come as no news to 
most of you, but I am sorry to report that 
t h i s deplorable s t a t e of a f f a i r s seems to 
be extending into the high schools . 

My daughter i s a senior in high school 
t h i s year and took College Algebra las t 
f a l l . Some of you may object that t h i s 
i s n ' t quite f a i r s ince i t i s "college" 
algebra, but the fac t ia that i t i s rou-
t i n e l y taught in high school and i s , 
indeed, an entrance requirement for most 
engineering programs. The text was a stan-

dard co l l ege algebra t e x t , by a well-known 
author of c o l l e g e - l e v e l math books, whose 
name many of you would recognize. In t h i s 
book, you w i l l find the following 
de f in i t i on : 

If S i s a re la t ion : 
. ! 

S « (Cx.y)I<y,x)£ S ) . 

Many of you took your PhD. minor in 
math, so you're experts — what does that 
mean? I t ' s the de f in i t ion of an inverse 
function. I t can be stated in plain En-
g l i s h . If y i s a function of x, the 
inverse i s obtained by replacing y with χ 
and χ with y wherever they occur. But does 
the book ever say that? Need you ask? 
Well, whatever you may think of the value 
of exposing the student to mathematical 
formality, the most ser ious f a u l t , in my 
view, i s that the author never g ives the 
s l i g h t e s t hint as to why t h i s inverse func-
tion might be of i n t e r e s t to anyone. He 
oreaents i t . with just the formality I have 
indicated above, g ives α few problems for 
the teacher to ass ign, and goes r ight on, 
never mentioning i t again. 

Well, maybe t h a t ' s an i so la ted horri-
ble example. Or i s i t ? My daughter's 
boyfriend i s taking College Algebra t h i s 
spring. He has α d i f ferent t e x t . (There's 
another nasty habit the high schools seem 
to be picking up from us, changing t e x t s 
every time the instructor changes.) Since 
the other text was so poor, we might hope 

for an improvement. Suppose I t e l l you 
that , given the polynomials: 

4 x a , 15x i y , and 36xv Z , 

the l e a s t common multiple i s ΙβΟχ"3 y 2 . 
Does that mean anything to you? Given a 
s e t of polynomials, the l eas t common multi-
ple i s simply the smal lest polynomial into 
which a l l divide evenly. Fine, but does 
the author ever say that? Need you ask? 
He never def ines i t , just g ives a very 
complicated procedure for computing i t . one 
that took me about 15 minutes to figure 
out , given the above polynomials and the 
answer. Maybe I'm just dumb, but again the 
biggest problem i s that the author never 
g ives the s l i g h t e s t hint as to why anybody 
In his r ight mind (that excludes mathemati-
c ians) should have the s l i g n t e a t in teres t 
in a l e a s t common mult iple . 

I find t h i s very discouraging. I have 
had the notion (probably naive) that high 
school math teachers might ac tua l ly be 
interested in teaching math. After a l l . 
they don't have to publish any incompre-
hensible research papers to keep their 
jobs . Maybe they f igure they should use-
books l i k e t h i s to prepare students for the 
horrors of what they w i l l face in co l lege 
math c l a s s e s . But I wonder how many stu-
dents they turn off to mathematics before 
they even get to c o l l e g e . What can be done 
about i t? If you have kids in high school, 
you might check into what i s going on in 
the ir math c l a s s e s and perhaps offer a 
suggestion or two i f you think usefui 
changes could be made. 
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Introduction 

Although numerical computing has been available for over twenty years, it 

has so far hardly affected the shape or content of the mainstream college 

calculus course. The advent of powerful computer algebra systems (such as 

SMP, MACSYMA, and MAPLE) will be harder to ignore. Symbolic manipulation 

programs (hereafter, "smp's") have two important new features: first, they 

handle nearly every routine calculus operation—symbolic algebra, formal 

differentiation and integration, expansion in power series, numerical 

computations (as of Riemann sums), and graph sketching; and second, they do 

all of this without programming. By assuming some of the burden of 

manipulation, smp's can help students see the richer ideas beyond. In 

particular, by making possible a better balance between discrete and 

continuous viewpoints, explicit and implicit functions, and exact and 

approximate methods, smp's can help broaden calculus's scope and show more of 

its power. 

Calculus as it is taught 

Which problems can smp's help to solve? What is wrong with courses as 

they are? Are the ideas of calculus outmoded, unimportant, useless, or 

uncompetitive with discrete mathematics? 

Before complaining about how calculus is taught, one must affirm that 

even limited to the elementary functions, "exact" calculus is a beautiful, 

coherent set of ideas that is adequate to solve many classical problems. The 



238 TOWARD A LEAN A N D LIVELY CALCULUS 

main ideas of calculus are as important now as they have ever been. If not 

more so—the rise of discrete mathematics should boost calculus, not kill it. 

Analysis of algorithms, for example, offers genuine applications of calculus 

that deserve to appear in calculus courses alongside classical problems from 

physics. Such applications demonstrate the power of calculus beyond its 

traditional borders, and they illustrate what should be one of the main themes 

of both calculus and discrete mathematics: the interplay of discrete and 

continuous ideas. Discrete mathematics will generate new demand for calculus, 

but not for the standard compendium of closed-form techniques applied to 

elementary functions. Discrete mathematics students need to understand such 

basic calculus ideas as limits, rates of change, and qualitative growth 

behavior. 

Calculus' most serious problem is that its good, old, important ideas 

have given wav to techniques, some of which are indeed outmoded, unimportant, 

and uncompetitive with discrete mathematics. In olden days students began 

calculus with good technical preparation (especially in algebra). They could 

see beyond the formal operations to the questions those techniques address and 

the ideas they illustrate. Now most students calculate poorly, and calculus 

has become by default a course in calculation. Formal differentiation, 

methods of antidifferentiation, limit computations, and convergence testing— 

usually applied to explicit algebraic objects—take most of the class time and 

appear most dependably on assignments and tests. Some techniques are entirely 

routine and some are not, but all amount to performing circumscribed tasks in 

explicitly prescribed ways. In an essay [3] on mathematical maturity, Lynn 

Steen accuses calculus of "programming people to serve as moderately 

sophisticated computers." Instead of learning to create, verify, and analyze 

algorithms, calculus students learn to perform them. 
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Undue emphasis on techniques leads to another problem: calculus courses 

focus too narrowly on closed-form methods applied to elementary functions. 

The standard formal techniques apply most conveniently to explicit algebraic 

combinations of elementary functions, but relying too much on these examples 

obscures the ideas they illustrate. In effect, it turns calculus into 

algebra. Students often mistake the chain rule, for example, for an algebraic 

rather than a functional equation. We foster this misunderstanding by relying 

too much on elementary functions: applied only to them, the chain rule looks 

like a prescription to do some algebra. We could force students to encounter 

the idea of the chain rule (and many other ideas in calculus, for that matter) 

by routinely considering other-than-elementary functions: functions given 

graphically, implicitly, recursively, by tables, or in "black box" form. Such 

functions sometimes appear in calculus as examples (usually pathological!), 

but rarely in exercises or as objects of study in their own right. 

Ironically, most of the functions students will see in more advanced work are 

to some extent inexplicit; explicit algebraic functions then arise mainly as 

idealized examples. 

Calculus chooses its techniques, like its functions, too narrowly. 

Compared with "exact" or "closed-form" methods, approximate, numerical, 

iterative, and recursive techniques get much too little attention. Numerical 

integration, for instance, is in the book, but usually segregated in an 

"optional" section. Numerical solution of equations may not be treated at 

ail. Taylor series, which should motivate studying power series at all, too 

often follow a long, gruelling ordeal with convergence tests. By then, 

students don't consider Taylor series a reward for anything. 

Because closed-form methods fail with so many innocuous-looking problems 

2 
(minimize χ - sin(x) on [0,1]), exercises and applications are carefully 
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contrived, and they show it. Arc-length integral problems are especially 

ludicrous: they can almost never be computed in closed form. An excellent 

opportunity to use numerical integration where it is needed is usually wasted. 

In the calculus text I use, numerical integration is still four chapters away. 

Having learned only exact techniques, students naturally conclude that 

calculus solves only artificial problems, and they doubt their own ability to 

use it. If exact and approximate methods were treated together in calculus, 

students could solve more problems, and more interesting ones, with less 

data-censoring. They would better appreciate calculus's versatility. Host 

important, they would see in action that crucial relationship between 

"discrete" and "continuous" which so usefully undermines the belief that 

calculus is algebra. 

As with its functions and its techniques, the range of calculus 

applications is too narrow. Simple physical applications are convenient 

because they often lead to elementary functions and exact techniques. 

Modeling other phenomena may require discrete methods and lead to more 

interesting mathematics. Problems of finance, for example, look difficult for 

traditional calculus because their variables tend to be implicit functions of 

each other. Equations relating the variables, which are often polynomials of 

high degree, need to be solved numerically. When this can be done, such 

problems become elementary applications of (polynomial 1) calculus. 

Computational complexity is one of many important examples that come from the 

theory of algorithms and computer science. Unfortunately, few texts even 

mention the big-oh formalism. 

Discrete and approximate viewpoints have been slighted, but for an 

excusable reason: studying other-than-closed-form methods honestly in 

calculus requires considerable numerical and algebraic manipulation. The work 
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required is mostly tedious and meticulous but straightforward, and often 

beside the main point. (In other words, precisely the sort of work that ought 

to be left to a machine. Fortunately, that is now possible.) Consider, for 

example, Simpson's rule for approximating a definite integral. To compute the 

approximation at all is tedious and distracting unless the integrand is simple 

and the number of subdivisions small. Any computer or programmable calculator 

will do the numerical work, but the problem of estimating the error remains. 

The standard error formula involves maximizing the absolute value of the 

fourth derivative of the integrand over the interval of integration. For any 

but the simplest integrands, doing this "by hand" is time-consuming or 

impractical. For simple integrands, the task is artificial: such integrals 

may as well be evaluated in closed form. As the example session in the 

appendix shows, a powerful smp makes the problem routine. 

What to do. and how smp* s can help 

Some of the impetus for rethinking calculus courses stems from new 

interest in discrete mathematics. For the last two years, St. Olaf's 

mathematics department, under a grant from the Sloan Foundation, has devoted 

much effort to introducing a popular and apparently successful discrete 

mathematics course at the freshman-sophomore level. One of our most difficult 

problems was making room in the curriculum for the new course. After many 

discussions, we rejected the alternative of shortening calculus as likely to 

lead even further toward a sterile collection of techniques. We disagreed on 

the relative merits of discrete and continuous mathematics, but we agreed that 

the connection between the two is worth making, for the sake of both. Fox 

calculus, this entails (in the long run) 

— more emphasis on theory, but supported by much more varied exercises 
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and examples 

— a unified treatment of exact and approximate methods 

— some coverage of error estimates (not necessarily rigorous) 

— attention to qualitative behavior of functions and classes of 

functions (e.g., polynomial vs. exponential growth, big-oh) 

— explicit study of algorithms; calculus applied to generate, compare, 

and analyze them. 

Incorporating such ideas into calculus courses does more than pack another 

worthwhile topic into an already crowded syllabus. It offers a truer picture 

and a deeper understanding of the calculus itself. 

The most important goal of these reforms is to rescue the ideas of 

calculus from its techniques. The most important idea to be rescued is the 

relation between discrete and continuous. Doing only the traditional 

computational exercises with an smp is worse than useless, because it simply 

transfers the technique from human to machine. But used creatively, smp's 

can allow new kinds of examples and exercises that let students go beyond 

routine manipulations of elementary functions to the ideas they are supposed 

to illustrate. With smp's, for instance, students can work through concrete 

cases of general theorems. For Taylor's theorem, this could mean computing, 

graphing, and tabulating values of several Taylor polynomials, and observing 

that the errors are as claimed. For the chain rule, students could 

investigate the graphical meaning for many pairs of functions, or look at 

difference quotients for composites of functions specified only in "black box" 

form. (It is easy to hide a function's definition in an smp's bowels.) The 

fundamental theorem, to choose a uniquely important example, says that two 

apparently different things are the same. The point is lost when every 

example integrand is antidifferentiable in closed form. But if values of the 



COMPUTER SYMBOLIC MANIPULATION IN ELEMENTARY CALCULUS 243 

area-under-the-graph function can be computed numerically, tabulated, and 

graphed, for many integrands, the real idea of the theorem is hard to miss. 

With flexible graphics, students can see that differentiable functions look 

linear at small scale, quickly (if dirtily) estimate extrema, roots, and 

integrals, and get a general feeling for a problem before deciding whether and 

how to attack it in earnest. Smp's encourage experiments, conjectures, and 

other active work with mathematical ideas. They don't prove theorems, but 

they can help students learn that theorems answer questions that students are 

capable of asking. 

The advantage of smp's in calculus teaching is that they remove the 

computational obstacles to giving the discrete viewpoint its due. With this 

done, students can be weaned from elementary functions, exact methods, and 

exclusively physical applications, and started on a more varied and 

substantial diet. With its intellectual content restored, calculus can serve 

its dual purpose as a flexible tool and an introduction to mathematical 

thinking. 

Calculus and numerical computing: some history 

Smp's have exciting future prospects, but the lesson from history is 

discouraging. In the computer revolution, calculus has been a Tory. 

Computers appeared in calculus in the early sixties, as soon as hardware 

and software improvements (BASIC, especially) made the idea remotely 

practical. Rationales for computing in calculus were issued from time to time 

by the Panel on the Impact of Computing on Mathematics Courses, an MAA 

subcommittee. In 1972 the Panel cited these benefits: more emphasis on 

algorithms; better motivation of approximation ideas; more realistic 

mathematical modeling; and better understanding of the process of problem-
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solving. Numerical computing was also supposed to generate student involvement 

and provide numerical illustrations of calculus ideas (such as convergence). 

The most ambitious efforts to combine calculus with computing produced a 

few revisionist textbooks. The book of P. Lax, S. Burstein, and A. Lax [2], 

published in 1976, is an elegant example. Computing, numerical ideas, physical 

applications, and calculus theory inform and illustrate each other in this 

witty and iconoclastic treatment. Unfortunately, none of these comparatively 

difficult texts seems to be widely used. 

Less radical efforts to introduce numerical computing into otherwise 

traditional calculus courses were commoner. In the late sixties and early 

seventies a spate of "computer supplements" to standard calculus courses 

appeared. These were generally collections of BASIC (sometimes FORTRAN) 

programming exercises. Typical programs compute Riemann sums or estimate 

derivatives numerically. One of the most interesting is Richard Hamming's 

Calculus and the Computer Revolution [1], published in 1968. Along with 

programming exercises, the book contains an eloquent discussion of the 

relation between computing and mathematics. Because Hamming emphasizes non-

numerical algorithms and views the computer as a symbol-processing machine, 

his book still has a modern flavor. 

Whatever its benefits may be, numerical computing has scarcely affected 

mainstream calculus teaching. In 1975, for example, a joint committee of the 

AMS and MAA issued a long report on various efforts to include computing in 

calculus, but also wondering (inconclusively) why there were so few. Computer 

lab courses associated to calculus do exist, and new textbooks contain 

calculator exercises and BASIC programs, but calculus itself has not 

assimilated the computing point of view. Calculus courses are still 

overwhelmingly closed-form techniques applied to explicit algebraic functions. 
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Why did numerical computer calculus fail to penetrate mainstream 

calculus? Why should smp's fare any better? The main obstacle for numerical 

computation was probably programming: even with BASIC, computer calculus was 

too much computing and too little calculus. The time and effort needed to 

program even simple calculus tasks was out of proportion to their value for 

learning calculus. At worst, students might find themselves without the 

mathematical sophistication to write the programs that would help them acquire 

the sophistication they didn't have. 

Though they do much more, smp's handle traditional numerical calculations 

adequately for the purposes of a calculus student. What is important is that 

they do so interactively and without the distraction of programming. For 

example, the commands 

Trapezoid[Cos[x 2],x,0,1,10] 
Simpson[Cos[x 2],x,0,1,10] 
Midpoint[Cos[x 2],x,0,1,10] 

are ali that a student using the smp SMP at St. Olaf College needs to compute 

the trapezoid rule, Simpson's rule, and midpoint rule numerical approximations 

to the integral in question. (See also the Appendix.) Output from any of the 

commands is always available to use elsewhere. Syntax must be learned, but 

not programming. All of the benefits claimed for numerical computing (not to 

mention the special possibilities of symbolic computing) are as valid as 

ever—with smp's, they can be realized. 

Conclusion 

Freshman calculus, like any other profitable business and giant 

bureaucracy, will not change overnight, whatever the logic of change may be. 

But if smp's find their way into calculus, they will certainly change it. 

Using smp's only for computational problems is foolish: it could cheat 
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students out of that modicum of algebraic intuition that only practice can 

develop. Using smp's should not deny the value of formal manipulation, but 

help put it in its place, and buy time for better things. 

Calculus is largely the interplay of discrete and continuous ideas. 

Smp's let us combine discrete and continuous ideas in a unified treatment that 

can deepen student's understanding of both. 
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Appendix 

Example Calculus Problems with SMP 

A TRANSCENDENTAL EXERCISE 

1 

(Discuss J sin(x) exp(—x^) dx) 

0 

#I[1]:: g[$x]::Sin[$x] Εχρ[-$ΧΛ2] (define g) 

2 

#0[1]: ' Sin[$x] Exp [-"fx ] 

#I[2]:: g[x] 

2 

#0[2]: Exp[- χ ] Sin[x] 

#I[3]:: Int[g[x],{x,0,l}] 

2 #0[3]: Int[Exp[- χ ] Sin[x],{χ,Ο,Ι}] (closed form integration fails) 

#I[4]:: <'numint (load a homemade numerical integrator) 

#I[5]:: Simpson[g[χ],χ,Ο,1,4] (Simpson's rule, 4 subdivisions) 

Exp[-1] Sintl] + 4Exp[-9/16] Sin[3/4] + 2Exp[-l/4] Sin[l/2] 

+ 4Exp[-l/16] Sin[l/4] 
#0[5J: 

12 

#I[6]:: N[%] (decimal form of previous line) 

#0[6]: 0.29496 

(Estimate the error in the approximation) 

#I[7]:: error:(b-a )A5 D4MAS/(180 πλ4) (standard error formula for Simpson's 

rule, η subdivisions, on [a,b]) 

5 

D4MAX (-a + b) 

#0[7]: 

4 

180 η 

(Maximixe the fourth derivative of g(x) on [ 0 , 1 ] ) 

#I[8]:: D[g[x],(x,4)J 

2 2 2 2 
#0[8]: 25Exp[- χ ] Sin[x] + 56x Cos[x] Exp[- χ ] - 72 χ Exp[- χ ] Sin[x] 
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3 2 4 2 
- 32 χ Cos[x] Exp[- χ ] + 16 χ Exp[- χ ] Sin[x] 

#I[9]:: Grephtli.x.O.l] (low resolution mode) 

#0[9]: 

20 ********** 

**** ***** 

*** *** 
*** *** 

** * 
** ** 
* *** 

10 ** ** 

** ·* 
* ** 

** ** 
* ** 

** *.* 
* ** 

** 
*** 

** 

#1110]:: D[g[x],{x,5}] 

2 2 
#O[10]: 81Cos[x] Exp[- χ ] - 250x Exp[- χ ] Sin[x] + ... 

#I[11]:: Sol[%=0.x] 

#0[11]:: Sol[%=0,x] (equation can't be solved algebraically) 

#I[12]:: <'nekton (load a homemade numerical solver) 

#I[13]:: Newton[%,x, .4, .0005] ("seed" = 0 . 4 , tolerance = .0005) 

zeroth estimate is 0.4 

estimate number 1 is 0.40636356 
#0[14]: 0.406364 

#I[16]:: S[D[g[x],{x,4}],x->.4063 (substitute critical number into function) 

2 

#0[16]: 22.736Cos[0.406] Exp[- 0.406 ] + etc. 

#I[17]:: N[%] 

#0(17]: 20.5887 (This is the desired extreme) 

#I[18]:: S[error,{D4MAX->21,a->0,b->l,n->4}] (substitute for parameters) 

#0[18]: 7/15360 
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#I[19]:: N[%] 

#0[19]: 4.55729* -4 (estimate .29496 accurate to three decimal places) 

(Estimate integral using Taylor polynomial) 

#I[20J:: Ps[g[x],x,0,7j 

3 5 7 

7 χ 27 χ 1303 χ 
#0[20] : χ + 

6 40 5040 

#I[21]:: Int[%,(x.0,1)] 

#0[21]: 11633/40320 (closed form integration works easily) 

#I[23]:: N[%] 

#0[23]: 0.288517 (Compare with Simpson's estimate = .2947) 
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