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Preface

This volume is an outcome of the NSF-funded conference, “Rethinking the Preparation for Calculus,”

which took place in Washington, DC, in October 2001. Approximately 50 mathematicians were invited

to attend the conference, which was organized by Jack Narayan (SUNY Oswego), with support from

members of the steering committee: Steven Dunbar (University of Nebraska-Lincoln), Sheldon Gordon

(Farmingdale State University of New York), Christopher Hirsch (Western Michigan University), Jo Ann

Lutz (North Carolina School of Science and Mathematics) and myself, Nancy Baxter Hastings (Dickinson

College).

As the name of the conference implies, the purpose was to rethink the preparation for calculus. All of

us were aware, as Jack Narayan writes in his paper describing the conference, “in general, only a small

percentage of students who take precalculus courses ever go on to take calculus and many of them who

do are not particularly well-prepared for calculus and never complete the course.” As organizers of the

conference, we hoped to establish some principles for changing the precalculus offerings, provide guidance

to the mathematics community, and focus attention on the problems and needs in the area of precalculus.

In preparation for the conference, we invited participants to submit discussion papers organized around

the following themes: Precalculus Reform, Student Learning and Research, Changes in College Algebra,

Transition from High School to College, Needs of Other Disciplines, Technology, Implementation, and

Influencing the Mathematics Community. Our plan was to collect these papers in a proposed volume for

the MAA Notes Series. These papers provided a framework for the discussions that took place at the

conference and form the core of this volume.

Following the conference, it became apparent that our intention to focus on precalculus courses that

are not terminal—that is, to focus on courses that serve as a prerequisite for calculus—was too narrow.

We do need to rethink how we prepare students for calculus, but we also need to rethink the mathematical

experiences of students in courses below calculus. For the vast majority of college and university-level

students, the courses below calculus are the last mathematics courses that they take. These are the courses

that students need for use in other disciplines. These are the courses that supposedly prepare students to

be informed citizens. As a result, we expanded our vision to include courses in quantitative literacy and

college algebra, and we encouraged colleagues to contribute papers in these areas. And we changed the

name of the proposed volume. Actually we changed it several times from Rethinking the Preparation for

Calculus, to Rethinking the Road to Calculus, and finally to A Fresh Start for Collegiate Mathematics:

Rethinking the Courses below Calculus.

Although the papers in the volume are organized around the general themes that formed the basis

for discussion at the conference, we added a new section: “Ideas and Projects that Work.” A number of

people have rethought their precalculus and college algebra courses and have developed materials reflecting

those new visions. We invited some of them to write short papers describing their visions and how they

developed them into text materials for inclusion in this section. This new section was developed in response

to participants who attended the conference. Participants, who for the most part were members of the choir,

wanted specific suggestions about how to refocus traditional, computational-based courses. They wanted

to know what was being done, and they wanted to see examples. (Sounds like our students, doesn't it?!)

Although I have served as the primary editor, this was certainly not a one-person project. Whenever I

vii



viii A Fresh Start for Collegiate Mathematics

was perplexed by a particular situation or needed some help guiding a prospective author, Shelly Gordon

was always there to assist me. He was the idea man and the problem solver. He solicited additional authors

to help provide a balance to the volume and suggested the final catchy title. Flo Gordon solicited the short

papers for the section “Ideas and Projects that Work.” She worked closely with the authors, helping them

write informative descriptions of their projects, which express their enthusiasm for what they are doing

(without sounding too self-promotional) and include supportive examples. Jack Narayan kept us organized

and focused. Andrea Marsh (SUNY Oswego, class ‘04) made a first pass at converting the papers to

LaTex.

I would like to thank the members of the MAA Notes Committee, especially members of the review

team, Jack Bookman, Paul Fishback, Barbara Reynolds and Sharon Ross, for their helpful suggestions, for

their support and for their guidance. Because of their efforts, the papers are better written, more informative,

and organized in a more coherent fashion. As I mentioned earlier this was a dynamic project—the table

of contents kept changing. Papers were added. Papers were eliminated. Papers were moved around. The

review team received the papers in batches and never saw the complete picture until the very end. Yet,

they kept encouraging us.

Finally, I want to thank the most important people of all—the authors of the 49 papers that appear in

this volume. I really enjoyed working with you and getting to know you. I am proud of what you have

done and appreciate all your hard work. Together, we can provide improved learning experiences for our

students. Together, we can help things change. And we will.

Nancy Baxter Hastings, Editor

Dickinson College

baxter@dickinson.edu
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Introduction

The calculus renewal effort continues to have a significant impact on undergraduate mathematics education.

Today, most new editions of calculus texts, even so-called traditional ones, incorporate significant themes

and problems developed as part of the calculus reform movement. On the other hand, the mathematics

community has paid little attention to the courses that precede calculus, most notably precalculus and

college algebra. Moreover, only a small percentage of students who take precalculus ever go on to take

calculus, and many who do are not well prepared and never complete the next course. In response to these

concerns, the conference, Rethinking the Preparation For Calculus, was held in October, 2001. Since the

papers presented at the conference form the basis for this volume, the volume begins with an overview

of the conference co-authored by Jack Narayan, the principle organizer of the conference, and with the

text of the keynote address given by Lynn Steen. The twenty questions about precalculus that Lynn posed

guided many of the discussions at the conference. As you read about the conference in the initial papers

in this section and in the papers that follow, please keep in mind that the focus of the conference was

on precalculus courses that are not terminal—that is, on courses that prepare students to take calculus.

During the conference it became apparent that this focus was too narrow and consequently the focus of

this volume was extended to include the courses below calculus. Also please keep in mind that four years

have passed between the conference and publication of the volume.

The purpose of the conference was to rethink the preparation for calculus, with the following considerations:

(1) Students are having different mathematical experiences in high school. The routine use of graphing

calculators is standard, there is a greater emphasis on group work and collaborative learning, and there is

a growing emphasis on conceptual understanding and realistic problem solving, not just skill development.

(2) Calculus in college is placing different expectations on students, particularly an emphasis on conceptual

understanding and the use of technology. (3) New technologies provide a wider selection of tools for both

the teaching and learning of mathematics. (4) College algebra courses are in the process of changing. [The

intended outcomes of the conference included:] articulating principles for changing precalculus offerings and

providing guidance to the mathematical community.

The Conference: Rethinking the Preparation for Calculus

Jack Narayan and Darren Narayan

Approximately fifteen years ago, a workshop similar to this one took place at Tulane University where a

merry band of reformers sought to make calculus lean and lively. I had the opportunity to address that

workshop with a list of twenty questions for calculus reformers. Thus I thought it appropriate to take a

similar approach to this current workshop, to help launch your work by asking twenty questions about

precalculus.. . . Clearly precalculus (and its alter ego college algebra) is the single most common mathematics

course in undergraduate education. Data aside, it also appears to be the rock on which college students'

mathematics education most often founders. That dark secret is why we are all here.. . . To reflect on the

issues, to “rethink precalculus,” as this workshop intends, nothing can beat the journalist's simple questions,

[what, who, why, when, where, and how?]

Twenty Questions about Precalculus

Lynn Arthur Steen

1
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The Conference: Rethinking the Preparation for Calculus

Jack Narayan and Darren Narayan

State University of New York, Oswego Rochester Institute of Technology

Editor’s note: The papers presented at this conference form the basis for this volume. This article, which was

written shortly after the conference was held in October 2001, gives the rationale for the conference. For a more

up-to-date view on some of the issues discussed here, please see the article, “Where Do We Go from Here: Creating

a National Initiative to Refocus the Courses below Calculus,” by Sheldon Gordon, later in this volume.

Rationale for the conference

During the last decade, calculus renewal efforts occured at all levels of post-secondary institutions as

outgrowths of the Tulane Conference in 1987 and the subsequent national conference on Calculus for A

New Century, hosted by the National Academy of Sciences. An MAA special report, Assessing Calculus

Reform Efforts [1], estimated that “at least 150,000 students or 32% of all calculus enrollments in the

spring of 1994 were in reform courses.” Since 1994, several reform calculus texts have been among the

highest selling nationally, and the number of institutions utilizing one or more aspects of reform in their

calculus courses continues to rise. The calculus renewal movement continues to have a significant impact

on undergraduate mathematics education. Instructors have experimented with alternative teaching methods

that included the use of technology, collaborative learning, and out-of-class projects. These methods were

integrated into new curricula with an increased emphasis on conceptual understanding. Today, all new

editions of calculus texts, even so-called traditional ones, incorporate significant themes and problems

developed as part of the calculus renewal movement.

One major, although unanticipated, outcome of the calculus renewal effort is the development of com-

parable efforts to revise college algebra and developmental mathematics offerings. There have also been

several efforts to rethink precalculus courses, most notably those by Baxter Hastings, Connelly et al, and

Gordon, et al. However since the publication of the volume, Preparing for a New Calculus [2], the math-

ematics community has paid insufficient attention to courses that bridge precalculus courses with calculus

courses. The need to address this issue is essential since, as Lynn Steen points out, “Clearly precalculus

(and its alter ego college algebra) is the single most common mathematics course in undergraduate edu-

cation.” The enrollment data in the fall of 2000 supports Steen’s statement. In particular, the precalculus

enrollment then was twice the enrollment of calculus I at all types of institutions and four times the

enrollment of calculus I at two-year schools [12]. It is now time to renew a national dialogue on these

issues.

The Rethinking the Preparation for Calculus project focused on precalculus courses that are not

terminal—that is, those that are requirements for some type of calculus. All of us are aware, in general,

3
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that only a small percentage of students who take precalculus courses ever go on to take calculus and that

many of them who do are not particularly well-prepared for calculus and never complete the course. But

this has never been carefully documented. In a comprehensive study done at the University of Lincoln at

Nebraska, Steve Dunbar found just how small that percentage actually is [13]. As a result, large numbers

of students lose the opportunity to pursue mathematics or mathematics based disciplines. Mathematics

instructors can readily identify with the observation noted in [3]:

Students who were substantially underprepared reported more conceptual problems and feelings

of being overwhelmed in the early stages of their major. . . Not only did most of these students

abandon their ambition to continue with a S.M.E. (Science, Mathematics, and Engineering) major,

they also suffered emotional damage by attempting what proved an impossible task.

Several colleges and universities, for example, University of Michigan, University of Texas at El Paso,

and SUNY Farmingdale have recognized the need for rethinking the precalculus curriculum and have

implemented completely different approaches.

Furthermore, given the importance that two and four-year schools attach to the development of ar-

ticulation agreements among two and four-year schools, it is essential that there should be some serious

discussion on the topic in conjunction with any discussion of changing precalculus courses.

Overview of the conference

At the 2001 joint meetings in New Orleans, Jack Narayan discussed the idea of having an NSF-funded

conference focusing on the precalculus curriculum and was encouraged to develop a proposal. Shortly

thereafter a steering committee was formed consisting of Jack Narayan (chair), Steve Dunbar, Sheldon

Gordon, Nancy Baxter Hastings, Christopher Hirsch, and Jo Ann Lutz.

The committee proposed to organize a special invited conference to bring together mathematicians with

a deep interest in this topic. The purpose of the conference was to rethink the preparation for calculus,

with the following considerations:

1. Students are having different mathematical experiences in high school. The routine use of graphing

calculators is standard, there is a greater emphasis on group work and collaborative learning, and

there is a growing emphasis on conceptual understanding and realistic problem solving, not just skill

development.

2. Calculus in college is placing different expectations on students, particularly an emphasis on conceptual

understanding and the use of technology.

3. New technologies provide a wider selection of tools for both the teaching and learning of mathematics.

4. College algebra courses are in the process of changing.

The expected outcomes of the conference included:

� articulating some principles for changing precalculus offerings

� providing guidance to the mathematics community

� developing a cohesive effort among those individuals who have done groundbreaking work in this area
to make a larger impact on the mathematics community

� focusing attention on problems and needs in the precalculus area that will lead to new funding pro-
grams/opportunities from NSF and other funding agencies

� publication of the conference proceedings as a volume in the MAA Notes series
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The proposal for the conference was funded by the National Science Foundation (DUE 0136162)

and the Calculus Consortium for Higher Education (CCHE). In the fall of 2001, fifty-five mathematics

educators participated in the invited conference in Arlington, VA to rethink the preparation for calculus.

The major themes for the conference included:

� Transition from high school

� Changes in college algebra

� Precalculus reform projects

� Technology

� Implementation issues

� Research in student learning

� Influencing the mathematics community

Invited position papers for each theme were presented and discussed. Participants were then encour-

aged to help identify challenges and make recommendations. This MAA Notes volume represents the

contributions of many of the participants.

The discussions were based on a series of basic principles about precalculus courses that are stated

and addressed by Nancy Baxter Hastings and Sheldon Gordon (see [14], [15]):

� Precalculus courses serve two distinct student populations: the overwhelming majority for whom pre-
calculus is a terminal course and the relatively small minority for whom it is a gateway to higher

mathematics. The needs of both populations should be met.

� Precalculus courses need to prepare students for calculus both conceptually and algebraically. It is not
enough just to emphasize the development of manipulative skills; students need help to learn how to

understand and apply the basic calculus concepts. Very few students have the ability to develop those

conceptual connections on their own.

� Calculus is no longer the first mathematics course that is considered a prerequisite for courses in other
quantitative disciplines. Precalculus and college algebra are now prerequisites for (non-calculus-based)

courses in many fields. The mathematical needs of those fields are often not satisfied by standard,

algebra skills-oriented precalculus/college algebra courses.

� Students need to see an emphasis on mathematical modeling to learn how mathematics is connected to
the real world. The basic mathematical concepts and methods should be developed in contexts to help

the students transfer their learning outside the mathematics classroom.

� Precalculus courses should help students learn to use modern technology wisely and appropriately.

Moreover, current research into the learning process has much to tell us about how students acquire

fundamental precalculus (mathematical) concepts. Only a small minority of students learn mathematics the

way their professors did.

The original intent for the conference was to focus exclusively on precalculus courses that are intended

as the immediate precursors to calculus. However, the discussions at the conference almost immediately

demonstrated that it was impossible to separate such precalculus courses from all precursor courses,

especially college algebra. As a consequence, most of the comments in this article, as well as the current

volume in its entirety, reflect this broader vision.

The principal recommendation from the conference was to collect extensive data from many different

types of institutions to identify which students take precalculus (and college algebra) courses and why they
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take these courses. In addition, it was recommended that data be collected concerning the success rates in

these courses, which successor courses the students actually take, and how they do in successor courses.

The conference participants felt that such data is critical for convincing the mathematics community at

large that precalculus courses need to change, as well as to acquaint potential funding agencies of the

magnitude and implications of the problem. Moreover, the participants felt that any efforts to rethink

precalculus should involve high school mathematics teachers and faculty in client disciplines.

Some conclusions

The task facing the mathematics community is challenging. Although changes in the curriculum are

essential, the need to develop a process to improve learning and teaching, particularly at these introductory

levels, is greater. In many ways, the “teaching gap” is as readily evident in the higher education mathematics

curriculum as it is in the school system [4]. The authors observe that:

American teachers aren’t incompetent, but the methods they use are severely limited, and American

teaching has no system in place for getting better. It is teaching, not teachers that must be changed...

Teachers present definitions of terms and demonstrate procedures for solving specific problems.

Students are then asked to memorize the definitions and practice the procedures. In the United

States, the motto is “learning terms and practice procedures.”

Mathematics instruction in traditionally-taught courses appear to be locked in a cycle. Many incoming

college students are underprepared for calculus. College professors, despite good intentions of stressing

conceptual understanding and mathematical modeling, have often yielded to the teaching of procedures

because of time and syllabi constraints. As a result of this culture, the next generation of teachers adopts

similar teaching strategies. In turn, their students arrive at college expecting to be taught in the same way

they learned in high school. This cycle must be broken simultaneously at all levels. NCTM’s efforts to

encourage adoption of its Standards have made major gains at breaking the cycle at the school level, but

it must be addressed at the college level as well.

The conference on Rethinking the Preparation for Calculus attempted to lay the foundation for change

by reaching out to all constituents. This includes groups that have been instrumental in bringing about

comprehensive change in the secondary curriculum, change in the calculus curriculum, adoption of tech-

nology at all levels of mathematics instruction, and a more informed view of mathematics education among

college and university administrators. This collaborative effort will have a good chance of developing a

process upon which we can improve in time. The papers in this MAA Notes volume describe the problem,

begin the process of data collection, give examples of successful practices using mathematical modeling,

new technologies, alternative learning strategies, assessment of student learning, and outline possible next

steps.

On the positive side, mathematics educators, mathematical organizations, and politicians are beginning

to recognize the need to go beyond curriculum renewal and focus instead on developing plans to improve

learning and teaching. Recent publications provide the theoretical basis to develop a more efficient and

effective process for the improvement of learning (see [5], [6], [7], [8], [9], [10]).

The individuals who sparked the movement to revitalize the teaching of calculus stressed that calculus

should be “a pump, not a filter.” Taking precalculus should be a positive experience for all students, not

just the handful who pursue mathematically intensive fields. This requires rethinking precalculus. After

all, a pump is only as good as the motor that powers it.
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Twenty Questions about Precalculus

Lynn Arthur Steen

St. Olaf College

Editor’s note: This paper is the text of the keynote address given by Lynn Steen in October 2001 at the conference

Rethinking the Preparation for Calculus. (For an overview of the conference, please see the preceding paper in this

volume by Jack Narayan and Darren Narayan.)

Introduction

Approximately fifteen years ago a workshop similar to this one took place at Tulane University where a

merry band of reformers sought to make calculus lean and lively. I had the opportunity to address that

workshop with a list of twenty questions for calculus reformers. Thus I thought it appropriate to take a

similar approach to this current workshop, to help launch your work by asking twenty questions about

precalculus. (For comparison, I reproduce in Appendix A the questions that I put before the calculus

reformers at Tulane. There you will find not 20 but 28 questions, the extra eight being added to the

manuscript as a result of issues raised during the workshop. The full text with elaborations on each

question can be found in [3].)

At the time of the Tulane workshop I was President of the Mathematical Association of America, and in

that capacity had some degree of oversight responsibility for MAA’s many committees. Even as the Tulane

rebels were training their sights on calculus, I was well aware that then, as now, more college students

study precalculus than calculus. On several occasions I asked the CUPM subcommittee on the First Two

Years (later to be renamed CRAFTY—Calculus Reform and the First Two Years) whether in order to

fulfill the mission implied by their title they might be interested in looking at the mathematics course that

is the most common of all taken during students’ first two years in college, namely precalculus. Their

answer was consistently negative: precalculus, in their judgement, was an unfortunate leftover from high

school mathematics. Despite enrollment evidence, they said, college mathematics begins with calculus.

With this fifteen-year-old experience as backdrop, I checked current data to see what enrollments

look like now. Figure 1 offers a sobering portrait of undergraduate mathematics prepared by combining

recent data from two sources—the (forthcoming) quinquennial CBMS 2000 survey [2] and the annual

AMS survey [1]. (Enrollments included in this figure are predominantly in departments of mathematical

and statistical science. They do not count the many statistics, computer science, and applied mathematics

courses found outside departments of mathematics or statistics.) Clearly precalculus (and its alter ego

college algebra) is the single most common mathematics course in undergraduate education. Data aside, it

also appears to be the rock on which college students’ mathematics education most often founders. That

dark secret is why we are all here.

8
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Figure 1.

One can approach the challenges of precalculus from several perspectives. For example, a managerial

perspective would suggest a cycle of setting goals, developing strategies, implementing changes, assessing

outcomes, reflecting on results, and making adaptations. A journalist’s paradigm, in contrast, seeks insight

by asking questions: what, who, why, when, where, and how? To actually make changes that improve

student learning, the managerial paradigm is really the only effective option: set a goal, make some

changes, look at the results, and then regroup. But to reflect on the issues, to “rethink precalculus” as this

workshop intends, nothing can beat the journalist’s simple questions.

What?

What exactly is precalculus? Is it the same as college algebra? (In this analysis, I ignore whatever differ-

ences there may be between them.) Does precalculus have an intellectual core like geometry or calculus?

Does it have a center or a town square? Or is it more like a mathematical strip mall that just fills space

between high school and college?

What is the real goal of precalculus? Is it really to prepare students for calculus, or does it have other

purposes, either benign or sinister? Isn’t it also, de facto, a ubiquitous prerequisite for a wide range of

quantitatively-oriented college courses, a steady source of tuition revenue that reliably exceeds marginal

costs, and an accepted means of screening students for access to the economic rewards of higher education?

What effect does calculus have on the nature of the precalculus course? What differences are there in

preparation for reformed calculus, for traditional calculus, for mainstream calculus, or for non-mainstream

(business) calculus? Can a single course provide suitable preparation for all flavors of calculus? Can

precalculus possibly be made lean and lively?

Who?

Who takes precalculus? Is its clientele students who are reviewing (or relearning) what they once learned,

students who did not learn what they once studied, students who never had the opportunity to learn

precalculus topics, or students who declined the opportunity? In most courses, the answer is “all of the

above.” Can a single course really serve all these different students?

Who should take precalculus? Does precalculus serve well the quantitative needs of students preparing

for fields that do not require calculus? Does it offer any lasting benefit for students who never take any
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further mathematical or quantitative course? For that matter, does precalculus really benefit the students it

was created to serve—those who need calculus but are not ready for it?

Who should teach precalculus? University mathematicians? Teaching assistants or adjuncts? Experi-

enced secondary school teachers (who perhaps teach the very same course during the day to high school

students)? What about on-line tutorials? Is a Ph.D. in mathematics an appropriate credential for teaching

precalculus? Might mathematicians’ uncommon facility with elementary mathematics make them peculiarly

inappropriate as empathetic teachers of precalculus?

Who benefits from precalculus? Who loses? Does precalculus have disparate impact on at-risk popu-

lations? For whom, if anyone, does precalculus serve as a pump? For whom is it a filter? Some believe its

primary beneficiary is the budgets of mathematics departments for whom it serves as a cash cow. Maybe

it is just a means of shifting tuition income from a required large enrollment course to low enrollment

advanced electives—that is, from the mathematically weak to the mathematically strong.

Why?

Why is calculus so important for under-prepared undergraduates? Is preparing for calculus really a wise

use of college students’ time and energy? Might the siren call of calculus replace more important goals

for students who enter college unprepared for calculus? Shouldn’t more under-prepared undergraduates be

steered in other quantitative directions?

Why do students take precalculus? Is it to prepare for calculus, to meet the prerequisite of a particular

course or program of study, to fulfill a general education option, or to fulfill a graduation requirement?

Are any of these reasons defensible, or are they simply traditional?

Why is precalculus so often part of general education? Does precalculus advance students’ mathe-

matical or quantitative literacy? Does anyone believe that precalculus is the right mathematics course to

prepare students well for lives in the 21st century? Does it reveal important insights into the nature, power,

and beauty of mathematics? Can precalculus possibly serve two masters—calculus and culture?

Why should students take precalculus? Does precalculus have value for the majority of students who

take the course? Are its concepts and skills independently useful apart from their role in calculus? How

many ever use the skills they learn in precalculus? Is precalculus a sensible choice for the last mathematics

course a student ever takes?

Why do so many prospective elementary school teachers take precalculus? In the majority of depart-

ments, precalculus (or college algebra) is the second most common course taken by students preparing

for K–3 certification [2]. Does this make any sense? Does precalculus really provide teachers with deep

understanding of the mathematics they will be teaching?

When?

When should students take precalculus? Is there an optimal window for learning precalculus? Isn’t pre-

calculus taught and learned better in high school? Currently only about 25% of high school graduates

take precalculus in high school, even though over 60% enroll in some form of postsecondary education.

Shouldn’t higher education tell students and schools that it is more important for more students to finish

precalculus in high school than for more students to finish calculus?

Where?

Where do precalculus students come from?What have been their mathematical backgrounds?What are their

major programs of study or career interests? How many are returning after having interrupted their study
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of mathematics? How do students’ prior mathematical experiences influence their views of mathematics,

their confidence in their own abilities, and their likelihood of success with precalculus?

Where do precalculus students go? How many precalculus students eventually take calculus? (Answer:

Relatively few.) How many take other courses that utilize ideas from precalculus? (Answer: A few more.)

How many complete a year of calculus with good grades and incentive to continue their study of mathe-

matics? (Answer: Embarrassingly few.) For how many is precalculus the end of their study of and interest

in mathematics? (Answer: Far too many.)

How?

How should the changing role of mathematics influence the nature of precalculus? In the last two decades

mathematical practice has become increasingly algorithmic and digital. New applications range from ge-

nomics to cinema, from manufacturing to Wall Street. How, if at all, should the content of precalculus

reflect this expanded interface of mathematics with the rest of the world?

How do articulation agreements constrain precalculus? Are inter-institutional agreements on syllabi

and standards essential instruments of quality control? Or do tight curriculum specifications lead to cur-

ricular sclerosis? Are the transparency benefits of articulation agreements worth the cost of inflexibility

and stifled innovation? On balance, do students gain or lose from these protocols?

How well aligned is precalculus with common placement tests? Do commercial or homegrown place-

ment tests reflect the same level and type of performance expectations as a precalculus course? Do they

accurately place students into or out of precalculus? Are they fair to students?

How should technology influence precalculus? Is technology a means or an end? Is its role to help

students learn traditional mathematics, or is technology now so much part of the way mathematics is

practiced that it has itself become an important goal of instruction? Is the use of numerical, graphing, and

CAS systems a prerequisite to learning calculus?

How do you measure success? This may be the toughest question of all. Fewer than one in four

students, perhaps as few as one in ten, achieve the prima facie goal of precalculus: to succeed in calculus.

Without clarity about goals, it is impossible to gauge success. Without data on students’ future academic

careers, success is unknowable. And without external validation, precalculus may never improve.

Conclusion

These questions suggest an overwhelming agenda for a course of enormous importance, but a course that

is all but invisible to the mathematical community. I wonder how much has really changed in the last

fifteen years since CRAFTY’s predecessor declined to take up the challenge? Neither enrollment patterns,

course prerequisites, nor general education requirements have changed very much. Nor, I suspect, have

mathematicians’ attitudes about what constitutes appropriate college mathematics. Does the mathematical

profession now consider precalculus a challenge worth working on, or do they still see it as a peripheral

problem best ignored? Can any mathematician earn tenure by teaching or improving precalculus? (That’s

a rhetorical question.)

In addition to seeking answers to the twenty questions I have suggested, the merry band of reformers

assembled for this conference will need to think hard about where precalculus fits into the agenda of

mathematics, of science, and of our nation. Rethinking precalculus may lead to some surprising conclusions.
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Appendix A

Twenty Questions for Calculus Reformers

Lynn Arthur Steen, January, 1986 (From [3])

1. Should fewer students study calculus?

2. Is calculus an appropriate filter for the professions?

3. Will computer science dethrone calculus?

4. Do students really learn the major ideas of calculus?

5. Has calculus become a cookbook course?

6. Does calculus focus excessively on closed-form formulas?

7. Should calculus students learn to use or to imitate computers?

8. What new topics are essential for calculus in a computer age?

9. Which topics in calculus are no longer essential?

10. Do engineers still need the traditional calculus?

11. Should calculus be a laboratory course?

12. Is there any reason to teach high school calculus?

13. Why do U.S. students perform so poorly on international tests?

14. Is there any value to precalculus remedial programs?

15. Why do calculus books weigh so much?

16. Can one design a good calculus course from a survey?

17. Is calculus a good course to train the mind?

18. Can calculus courses convey cultural literacy?

19. Does calculus contribute to scientific literacy?

20. What will calculus be like in the year 2000?

Added after workshop discussion:

21. Do students ever read their calculus books?

22. Should precalculus be a prerequisite for calculus?

23. Is teaching calculus most like teaching a foreign language?

24. Should the student-faculty ratio for calculus be limited?

25. Do student evaluations favor calculation-based courses?

26. Are there enough qualified calculus teachers?

27. Who will be the calculus teachers in the year 2000?

28. Should calculus be taught only by experienced teachers?



Background

It is one thing to claim we have a problem and another thing to show we have a problem. Based on their

own experiences and observations, participants at the conference, Rethinking the Preparation for Calculus,

felt that the number of students who continue on to calculus from precalculus was small and their success

rate was low. However, they realized that in order to convince colleagues, administrators, state legislators,

funding agencies, and book publishers that changes need to be made, they needed data that clearly indicate

the extent of the problem. They also realized that much could be learned from the calculus renewal efforts.

The papers in this section by Mercedes McGowen and Steven Dunbar provide some preliminary data in

response to some important questions, while the papers by Deborah Hughes Hallett and Susan Ganter

summarize the lessons learned from the calculus initiative and discuss future directions.

Mercedes McGowen analyzes the enrollment in mathematics courses at two- and four-year colleges and

at universities over the past twenty years, and she describes the demographic profile of students at William

Rainey Harper College, “a two-year college whose mathematics course enrollment closely parallels enroll-

ment at two-year colleges nationally.” She examines the questions: “Who are the undergraduate students

who enroll in precalculus courses? What courses do students take after completing a precalculus course?”

In fall 2000, more than three million students attending two- and four-year colleges and universities were

enrolled in mathematics courses taught in departments of mathematics and mathematical sciences. Twenty-

two percent of these three million students (653,000) enrolled in precalculus courses—courses many had

completed previously in high school. As undergraduates, students often find themselves repeating their high

school courses, receiving no general education credit in college for these courses. Explanations given include:

(a) students didn't retain what they learned in high school; (b) the algebraic competencies and understandings

were insufficient foundation for success subsequently; (c) the college placement exam inappropriately placed

students. Whatever the reason(s), it appears that precalculus courses are yet another effective filter—not a

pump—for many students.

Who are the Students Who Take Precalculus?

Mercedes McGowen

Steven Dunbar describes the results of a comprehensive study he undertook over 20 consecutive

semesters at the University of Nebraska-Lincoln, where he sought partial answers to the questions: “What

mathematics courses (calculus and otherwise) will students take after completing courses supposedly in-

tending to prepare them for calculus? What mathematics courses have students studied before calculus

preparation courses and how recent is their knowledge?”

The conclusion to be drawn from this study is that at least at the University of Nebraska-Lincoln, a sizable

majority of the students in the precalculus course prepare to start calculus. The students from the precal-

culus course constitute a sizable fraction of the students taking calculus, although not a majority. A fairly

insignificant fraction of the students taking precalculus at the university ever take three semesters of calculus.

Another conclusion is that only a minority of students taking college algebra go on to start the three semester

sequence of calculus, although a considerable fraction do take the one semester business calculus course.

Enrollment Flow to and from Courses below Calculus

Steven R. Dunbar

13
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Deborah Hughes Hallett raises the question: “What has been the impact of [the calculus reform move-

ment]?” She describes the rationale for the movement and some of the subsequent changes in the way

calculus is taught. She discusses the impact of emerging technologies, the emphasis on conceptual under-

standing, the utilization of new pedagogies, and the increased cooperation with client disciplines.

In order to evaluate the impact of the calculus reform movement, we first need to recall its goals. Although

different people may phrase it differently, everyone involved agreed that they were trying to improve the

teaching of calculus. Some would say they wanted more student involvement; others would say they wanted

to take advantage of technology; others would say they wanted to emphasize problem solving and modeling.

Most would agree that they wanted to improve conceptual understanding.. . .What has been the impact of

this effort?

What Have We Learned from Calculus Reform?

Deborah Hughes Hallett

Susan Ganter asks: “Where have we been and where are we going with calculus and, more importantly,

the entire scope of introductory college mathematics?” Susan bases her observations in part on two studies

she conducted for the National Science Foundation in the late 1990s: one to determine the national impact

of the calculus reform movement since 1988, and a second to examine the subsequent NSF Institutional

Reform (IR) Program.

For better or worse, the ideas of calculus reform are deeply embedded in the conversations of the math-

ematics community. Technology, cooperative learning, student projects, applications—the elements of this

movement—have become a part of the vocabulary in mathematics departments across the country. Efforts

to change the nature of the calculus course at the undergraduate and secondary levels have sparked discus-

sion and controversy in ways as diverse as the actual changes. Such interactions range from “coffee pot

conversations” to university curriculum committee agendas to special sessions on undergraduate education

at regional and national conferences. . . . But what is the significance of these activities?

Calculus and Introductory College Mathematics

Susan L. Ganter
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Who are the Students Who Take Precalculus?

Mercedes A. McGowen

William Rainey Harper College

Introduction

This paper examines the questions: Who are the undergraduate students who enroll in precalculus courses?

What courses do students take after completing a precalculus course? These questions are addressed by

an analysis of enrollment in mathematics courses at two- and four-year colleges and at universities from

1980 to 2000, followed by a demographic profile of students at a Midwestern two-year college whose

mathematics course enrollment closely parallels enrollment at two-year colleges nationally [1].

What is ‘‘precalculus”?

As we begin the task of rethinking the precalculus curriculum, we first need to examine our assumptions

about precalculus. Do we, as well as members of our own departments, colleagues in other institutions,

and those teaching in the high schools mean the same thing when we characterize a course or courses as

“precalculus”? When colleagues are asked what “precalculus” is, they give the following responses:

� the courses before calculus (college algebra, trigonometry, and precalculus/elementary functions, and
modeling)

� a specific course that combines college algebra (including the topics of induction, theory of equations,
sequences, and series) and trigonometry

� 2nd year high school algebra and a brief introduction to trigonometry

� a high school algebra and trigonometry course for students in the accelerated track.

Answers to the question: What is “college algebra”? also vary. Some respond that it is a third algebra

course taken in high school—a one-semester course taken after algebra I and algebra II have been com-

pleted. Others believe it is the second year of high school algebra renamed because it is taken in college by

under-prepared undergraduates. As Humpty Dumpty pointed out to Alice in Through the Looking Glass:

“You see, it’s like a portmanteau—there are two meanings packed up into one word.” In this instance,

there are more than two meanings. Clarification of the terms “precalculus” and “college algebra” is needed

if we are to answer the questions: What is precalculus? Which students take precalculus? What courses

do they take after completing a precalculus course? In this paper, the term “precalculus” refers to those

courses intended to prepare students to take calculus: college algebra, trigonometry, the combined college

algebra/trigonometry course or a precalculus/elementary functions course.

15
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What mathematics courses do undergraduate students enroll in?

Sixty-eight percent of incoming freshman at four-year colleges and universities took four years of math-

ematics in high school in 1997. However, many who complete three or four years of “rigorous” high

school mathematics are unsuccessful in subsequent college-level mathematics courses [2, 3]. In fall 2000,

more than three million students attending two- and four-year colleges and universities were enrolled in

mathematics courses taught in departments of mathematics and mathematical sciences. Twenty-two percent

of these three million students (653,000) enrolled in precalculus courses—courses many had completed

previously in high school. As undergraduates, students often find themselves repeating their high school

courses, receiving no general education credit in college for these courses. Explanations given include: (a)

students didn’t retain what they learned in high school; (b) the algebraic competencies and understand-

ings were insufficient foundation for success subsequently; (c) the college placement exam inappropriately

placed students.

There are no national studies that provide answers to the questions:

� Who are the students who take precalculus as undergraduates?

� Why do they take precalculus?

� How appropriately is the present precalculus curriculum aligned with the needs of students who enroll
in these courses?

� What do other programs want students to know upon completion of precalculus courses?

� How many of the students who enroll in precalculus courses intend to enroll in calculus?

There is a growing consensus that the precalculus courses currently offered are not meeting the needs

of students who intend to major in mathematics or take math-intensive programs [4,5,6,7]. Many seriously

question whether the precalculus courses currently offered are the appropriate prerequisite for students

in non-mathematics intensive programs. They are interested in knowing how many students take a pre-

calculus class solely because the course is a required prerequisite for their particular program of study

which does not require any additional mathematics-intensive coursework. How many of the students who

take precalculus courses are successful in subsequent mathematics courses—assuming they take another

mathematics course—remains an open question (see Figure 1).

Data Source: CBMS Survey Fall 2000: Table A-1 and Table TYR.3.
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Figure 1. Total mathematics and statistics enrollment and remedial enrollment (in thousands)
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Mathematics course enrollment: 1980 –2000

Mathematics course enrollments taught in departments of mathematics at colleges and universities have

increased 23% since 1980. Most of that growth occurred at two-year colleges where mathematics enroll-

ment increased 45% during the past twenty years—four times the 11% increase at four-year colleges and

universities. In fall 2000, 41% of all undergraduates enrolled in mathematics courses attended two-year

colleges.

The growth in enrollment at two-year colleges has included increasing numbers of students who begin

college taking remedial courses—that is, arithmetic, introductory algebra, intermediate algebra, and geom-

etry. Enrollment in these courses has skyrocketed since 1980—increasing 73%—while overall mathematics

course enrollments at two-year colleges increased 45% between 1980 and 2000. In fall 2000, remedial

course enrollment constituted 12% of the total mathematics course enrollment at four-year colleges and

universities and 57% of total mathematics course enrollment at two-year colleges.

Non-remedial mathematics courses also experienced increased enrollment over the past twenty years

at four-year colleges and universities, as well as at two-year colleges. It is of interest to note in which

courses increases in enrollment occurred. Our particular interest is in the precalculus course enrollment.

Since preparation for calculus is the goal of precalculus and significant efforts have gone into reforming

both the curriculum and instructional approaches utilized in mainstream calculus courses, let us examine

the national calculus enrollment data and the effect of calculus curriculum initiatives on mathematics

enrollment during the past decade before turning our attention to the precalculus enrollment data.

The Tulane Conference in 1986 reaffirmed the importance of calculus in the curriculum [8]. The

primary outcome of the conference was the development of alternative curricular materials and instructional

strategies, with the goal of transforming calculus from a filter into a pump. Building on that initiative,

various changes have been introduced into the mainstream calculus curriculum during the past ten years.

At four-year colleges and universities:

� Use of graphing calculators in mainstream calculus I classes has grown from 3% in 1990 to 51% in

2000.

� Computer assignments were required in 9% of these classes in 1990. By 2000, 31% of the calculus I
classes included computer assignments.

� Group projects and writing assignments were regular features in 5% of these courses in 1990. Ten

years later, 27% of calculus I classes include writing assignments and 19% include group projects.

Two-year colleges have seen similar reform initiatives incorporated into the calculus I curriculum.

� Graphing calculators are now used in 78% of the classes and 35% include computer assignments.
� Twenty-seven percent of classes currently assign group projects and 31% include a writing component
[9].

What effect have the changes introduced into the calculus curriculum had on enrollment? Despite

ongoing efforts to transform calculus from a filter into a pump with implementation of various reform

initiatives during the past fourteen years—the actual number of students enrolled in mainstream calculus

courses declined more than 12% since 1985, the year before the Tulane Conference. Comparing the

percent of students enrolled in calculus of the total number enrolled in mathematics courses in 1980 with

the percent enrolled in calculus in 2000 reveals an even more discouraging story—the percent of students

enrolled in mainstream calculus courses also declined. In 1980, 405,000 students were enrolled in calculus

courses at four-year colleges and universities—24% of the total mathematics enrollment. As of fall 2000,

calculus enrollment had dropped to 352,000 students—19% of the overall fall 2000 mathematics course

enrollment. Mainstream calculus enrollment at two-year colleges also declined—from 8% of the total

mathematics enrollment in 1980 to 6% in 2000 (see Figure 2).
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Data Source: CBMS Statistical Abstract Table A-1 and Table TYR.3.
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Figure 2. Calculus enrollment compared to total mathematics enrollment (in thousands)

Calculus I enrollments have remained relatively constant since 1980 at 11% of the total number enrolled

in mathematics courses each year. Two-year college calculus I enrollment has also remained fairly constant,

ranging from 4% to 5% of the total mathematics enrollment over the past twenty years.

Non-mainstream calculus enrollment has shrunk since 1990, decreasing 29% from a high of 163,000 in

1990 to 115,000 in 2000. Two-year college non-mainstream calculus courses experienced an even greater

loss of enrollment. In 1990, two-year enrollment peaked at 34,000. Only 17,000 students were enrolled in

non-mainstream calculus courses—a 50% decrease (see Figure 3).

Given that the total number of undergraduates taking mathematics courses has increased 23%, while

mainstream and non-mainstream calculus enrollments declined—and the number of students in calculus I

remained relatively constant over the past twenty years—what mathematics courses are students taking?

The answer is: non-calculus based mathematics courses. As of fall 2000, the CBMS Survey data indicate

Data Source: CBMS Statistical Abstract Table A-1 and Table TYR.3.
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Figure 3. Enrollment in calculus vs. non-calculus based courses (in thousands)
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that enrollment in elementary statistics courses is approaching the calculus I enrollment at four-year colleges

and universities.

The enrollments in the non-calculus-based courses have continued to grow over the past twenty years:

� Elementary statistics courses enrollment increased 83%.
� Content course(s) enrollment for elementary teachers increased 55%.
� Liberal arts mathematics course enrollment increased 37%.
The growth in two-year college enrollment of the non-calculus based courses is even greater than that

in the four-year colleges and universities. Non-calculus-based elementary statistics course enrollment grew

by 164% and now exceeds enrollment in calculus I. The liberal arts and the math content courses for

elementary teachers enrollments have more than doubled during the past twenty years.

Precalculus enrollment: 1980 –2000

Since 1980, enrollment in the various precalculus courses increased 17% at four-year colleges and univer-

sities. During the past decade, enrollment increased in all precalculus courses except trigonometry, which

declined 11%. Since 1990, enrollment in the precalculus/elementary functions course increased 35%, more

than eight times the growth in enrollment in college algebra. Despite a much smaller increase of 4% growth

during the past ten years, college algebra enrollment is still double the precalculus/elementary functions

course enrollment. Combined college algebra/trigonometry course enrollment experienced a 6% increase

during this time.

Two-year college precalculus enrollment reveals a similar picture over the past ten years. College

algebra remains the course with the greatest enrollment, experiencing a 13% increase—more than three

times the increase in the course at four-year colleges and universities. The precalculus/elementary functions

course, like its counterpart at four-year colleges and universities, has had the greatest growth over the past

decade, with enrollment increasing 37%. Both trigonometry and the combined college algebra/trigonometry

enrollment at two-year colleges declined—23% in trigonometry and 11% in the combined course.

The increasing enrollment in the precalculus/elementary functions course could be interpreted as an

attempt to strengthen the preparation of students intending to take calculus by directing students who

plan to pursue a mathematics-intensive program into a more rigorous course—recognizing that the college

algebra course includes large numbers of students who are not intending to take calculus subsequently.

Data Source: CBMS Statistical Abstract Table A-1 and Table TYR.3.
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A comparison of enrollment for precalculus courses and calculus I over the past twenty years reveals

that the increasing precalculus enrollment has had little, if any, impact on the calculus I enrollment.

Between 1980 and 1990, total calculus enrollment exceeded the precalculus enrollment at four-year colleges

and universities. Since 1980, calculus enrollment has declined, precalculus enrollment has increased, and

commencing in 1995, the precalculus enrollment has exceeded the 4-year college and university calculus

enrollment.

A comparison of precalculus and calculus enrollment at two-year colleges documents an even sharper

contrast of growth in precalculus enrollment and the declining growth in calculus enrollment since 1995.

Data Source: CBMS Survey Fall 2000 Table A-1 and Table TYR.3.
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Figure 5. A comparison of precalculus and calculus enrollment (in thousands)

If we disaggregate the data by type of institution, we note that mainstream calculus enrollment exceeded

precalculus enrollment in 1995 and 2000 only at PhD granting institutions. At MA and BA institutions

and at two-year colleges, precalculus enrollment exceeded mainstream calculus enrollment, with the gap

between precalculus and calculus I enrollment widening over the past five years.

Data Source: CBMS Survey Fall 2000 Table A-1.
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Figure 6. Precalculus and calculus enrollment by type of institution (in thousands)
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A comparison of calculus I enrollment with precalculus enrollment in 1995 and 2000 shows that

precalculus enrollment exceeds calculus I enrollment at all types of institutions.

Data Source: CBMS Survey Fall 2000 Table A-1.
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Figure 7. Precalculus and calculus I enrollment by type of institution (in thousands)

Meeting the needs of our students: A two-year college profile

An examination of national enrollment data suggests that the present precalculus curriculum does not meet

the needs of many of the students enrolled in precalculus courses—those who enroll in precalculus courses

intending to take calculus, as well as those who take a precalculus class only because the course is a

required prerequisite for their program of study. It appears that large numbers of students do not have

learning experiences in precalculus courses that generate enthusiasm and lead to subsequent enrollment in

calculus I and a program of studies in mathematics or other math-intensive fields.

Aggregate data summarize various quantifiable factors and indicate trends. They do not tell the whole

story. Individual institutions also have stories to tell—stories that confirm the national profile and stories

that contradict or modify the national profile. We all know of institutions that have introduced new

curriculum materials and incorporated changes in their instructional strategies. We exchange stories of the

successes and failures of these efforts to transform the curriculum. Each story provides information that

can be utilized to make informed decisions and contributes to our understanding of who takes precalculus.

We now consider the story of one mid-western community college and the efforts of the mathematics

faculty at that institution to address some of the questions raised in this paper.

During spring 1998, the Department of Mathematical Sciences at William Rainey Harper College began

a large-scale project to improve the effectiveness of the mathematics curriculum. The goal was to assess,

revise, and restructure the curriculum to meet the needs of students for the 21st century and the needs

of the various disciplines served by the department. One of the first tasks was to collect demographic

information, enrollment data, and longitudinal data on student success in subsequent courses to determine

how well each course is presently meeting its goals and objectives. Harper College Foundation grants

provided funds for reassigned time for full-time faculty and stipends for adjunct-faculty members to work

on the project.

A demographic survey was administered twice in all mathematics courses—during spring 1999 (n D
2286) and fall 1999 (n D 1609) semesters. The survey responses indicate that:
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� Nearly 90% of students enrolled in mathematics courses plan to transfer to four-year colleges or

universities.

� The vast majority of students enrolled in mathematics courses are white, non-Hispanic (76%), with
Asian/Pacific islanders as the second largest ethnic group (13%), followed by Hispanics (8%), typical

of the overall college enrollment patterns.

� Seventy-one percent of students enrolled in mathematics courses at Harper were full-time students (12
credit hours or more) in the fall semester (63% were full-time during spring semester).

� The numbers of male and female students were approximately equal.
� Approximately 15% of Harper’s students were enrolled in math-intensive courses.
� More than 60% of all students were enrolled in mathematics courses that do not satisfy state undergrad-
uate general education requirements for graduation (remedial courses, college algebra, trigonometry).

Harper College course enrollment approximates the national enrollment pattern of two-year colleges.

Harper has a smaller percent of total mathematics enrollments in remedial mathematics and a larger percent

of students in calculus I than do two-year colleges nationally. Enrollment in elementary statistics course

increased 28% since 1998—well below the increase nationally (see Figure 8).

The precalculus enrollment constitutes 18–20% of Harper’s total mathematics enrollment, with the

percent of students who take mathematics courses at Harper enrolled in calculus I each of the past four

years ranging from 5% to 7%. The mainstream calculus enrollment at Harper was 9% of total enrollment

Data Source: CBMS Survey Fall 2000 Table TYR.3; Harper Institutional Research (2001).
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Figure 9. Precalculus, calculus and non-calculus based enrollment: 1998–2001 (actual)

(1998–2001)—one and one-half times the national average for two-year colleges. Students at Harper, like

their counterparts at other two- and four-year colleges and universities, enroll in college algebra in far

greater numbers than in calculus I. The number of students enrolled in college algebra over the past four

years was more than twice the number of students who took calculus I (see Figure 9).

Faculty most often cite students’ lack of knowledge of trigonometry and inability to interpret and

make sense of their responses as greater problems than the lack of algebraic skills, which are often quite

proficient. The data reveal that many calculus I students are not coming from precalculus course(s). Where

do the calculus I students come from? The department analyzed data on enrollment and success based on

method of placement, hoping to answer this question.

At Harper, three different methods of placement are used: a student’s ACT or SAT score; COMPASS

(a computer-generated placement test developed by ACT); or successful completion of the prerequisite

course at Harper (a grade of C or better). The COMPASS exam is the means by which most students

are placed into developmental courses. Successful completion of intermediate algebra is the prerequisite

Percent of Course by Method of Placement Success in Course by Method of Placement

Data Source: Harper Institutional Research (2001).
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Figure 10. Harper College: Percent of course by placement and success by placement
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Data Source: Harper Institutional Research (2001).
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Figure 11. Comparison of enrollment and success via method of placement 1998–2000

for students who enroll in the precalculus courses. College algebra and trigonometry are the prerequisites

for calculus I. The number of students who placed into calculus I via ACT/SAT score or COMPASS

exceeds the number who enter via Harper’s precalculus courses. Since 1998, 54% of all students enrolled

in precalculus courses also took the prerequisite course, intermediate algebra, at Harper.

Precalculus courses continue to be major stumbling blocks for many students at Harper. Nearly twenty-

nine hundred students enrolled in precalculus courses since 1998—yet only one-third of the 1,479 students

who successfully completed the precalculus course(s) enrolled in calculus I. The number of students who

placed into calculus I via ACT/SAT score and COMPASS equals the number who enter via Harper’s

precalculus courses (see Figure 10).

A student’s ACT (or SAT) score has been the most accurate predictor of success in precalculus,

calculus I, and courses that have college algebra as the prerequisite, i.e., finite mathematics and business

calculus, as well as the mathematics courses generally taken by liberal arts majors—elementary statistics

(non-calculus based), quantitative literacy, and the mathematics content courses for elementary teachers.

With all high school students in Illinois now required to take the ACT test, it is expected that placement

by ACT scores will become the primary method of placement in the precalculus course and in subsequent

courses that have a precalculus prerequisite (see Figure 11).

Conclusions

According to the 2000 U.S. Statistical Abstracts, more than one million bachelor’s degrees (1,164,792)

were awarded in 1996. One percent (13,143) of those degrees were in mathematics. The number of associate

degrees in mathematics was 0.1% of all associate degrees awarded that year (758 of 555,216). Based on

the CBMS Survey Fall 2000 data, mathematics enrollment in precalculus and calculus courses leading

to a degree in mathematics has not improved during the past fifteen years since the Tulane Conference.

Though there has been a noticeable increase in the number of joint degrees in mathematics and computer

science since 1995, the overall number of bachelor degrees granted through mathematics and statistics

departments in 1999–2000 decreased 7.5% in the past decade.

Increasing numbers of these students pay college tuition for courses that do not satisfy general edu-

cation graduation requirements—courses taken previously in high school. These courses move along at a

pace many students find impossible to maintain. Already over-taxed algebraic skills, combined with time

constraints due to unrealistic commitments of full-time enrollment (12 semester hours) and 20 or more

hours of outside employment per week on the part of many of these students doom them to yet another

unsuccessful mathematical experience.
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An analysis of enrollment trends of the past twenty years provide us with a “reality check” on various

assumptions and reveals the following:

� Calculus enrollment is declining, both in actual numbers and as a percentage of the total undergraduate
mathematics enrollment at the same time that mathematics enrollment overall is increasing.

� Courses that have experienced the greatest growth during the past decade are the non-calculus based
courses such as elementary statistics, mathematics for liberal arts (quantitative literacy), and mathe-

matics for elementary teachers.

� Even though enrollment in the precalculus/elementary functions course is growing at a much faster
rate, the vast majority of students take college algebra.

� The increasing precalculus enrollment has had little impact on calculus enrollment.
� Graphing calculators are now used in more than 50% of sections teaching calculus I but in less than

one-third of the developmental algebra sections.

Many factors need to be taken into consideration when analyzing the data presented in this paper. In

order to interpret the data meaningfully, one should also examine student behaviors in the context of the

classroom environment—taking into consideration the sequence and methods of instruction; the topics on

which emphasis is placed; students’ beliefs and attitudes; and the means by which conceptual knowledge

and skill competencies are assessed.

Prior factors such as students’ backgrounds, attitudes, cognitive preferences, and their mathematical

competencies also need to be considered. Many students’ prior experiences with mathematics have led

them to believe that mathematics is a collection of meaningless rules and procedures to be memorized

[10, 11]. Often, the focus has been on instruction that contributes to instrumental understanding—“rules

without reason” [12]. Interviews with students reveal their inadequate understanding of mathematics.

Recently, when asked to explain the difference between solving an equation and evaluating a function or

expression, a graduate student who works as an on-line tutor replied:

If a book asks you to evaluate x2 � 2x C 1, what they are asking for is a simplified version of this

polynomial, which would be .x � 1/2. Solving an equation or expression is actually plugging in a

particular value to come up with a solution.

For example:

f .x/ D x2 � 2x C 1: Solve for f .4/:

f .4/ D 42 � 2.4/ C 1 D 16 � 8 C 1 D 9:

Is this helping you feel a little bit better about the difference between the two?

The intended curriculum—the course content as outlined in the syllabus or based on the textbook—is

not necessarily the implemented curriculum—what is actually taught. The number of sections in the text

that students actually study, the sequence in which topics are studied, and the time spent investigating

various topics significantly impact the formation of students’ knowledge. Assessment choices—what is

assessed, the methods and artifacts of assessment—place an emphasis on certain aspects of the curriculum

at the expense of other parts of the curriculum.

How instructors incorporate technology and how students use the technology are factors that impact

student learning and their understanding of concepts. Incorporation of technology into a course changes

the nature of the learning process—the sequence of instruction as well as the skills students need to

learn. Students who are already having difficulties coping with learning new mathematical concepts and

procedures tend to view the graphing calculator as a tool they reject—it necessitates the learning of more

procedures, along with the mathematics they are already struggling to learn. These students elect not to

add to their cognitive burden—continuing to depend on rote-learned algorithms using pencil and paper as

their primary tools. Contrast the learning experiences of two students in the same class:
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Another process that was very helpful in understanding algebra (specifically factoring) was using a

graph to find the x-intercepts to find the zeros of an equation. This is a procedure I had never seen

before, but I was able to connect it to my prior knowledge. I found the graphing calculator very

useful to graph equations to find the number of solutions (finding zeros), and also to find equations

when they are unknown (using the graphing calculator as a data process machine). Student A.

I find the graphing calculator to be very confusing. I feel as if everything is thrown at me at once.

I have never used the graphing calculator before this class, and now I find it difficult to adapt to

using it. The only thing I can do without too much difficulty is put a table into the calculator. After

that I don’t know what to do. Student B.

We also need to take into account the impact on college calculus enrollment of the increasing number

of students who successfully complete Advanced Placement calculus courses in high school. In 1999,

127,744 students took the Calculus AB exam, with 64% of those who attempted the AB exam receiving

a grade of 3 or better. Forty percent received a grade of 4 or 5. The following year, 137,000 students

took the AB exam, with 63% receiving a grade of 3 or better. In 2001, the number of students taking the

Calculus AB exam increased to 146,771 students and 63% received a score of 3 or higher. The number

of students who took the AP BC exam also continues to increase. The number of students taking the BC

exam increased from 30,724 students in 1999 to 34,142 students in 2000, with more than 75% of these

students receiving a score of 3 or better. In 2001, 38,134 students took the Calculus BC exam, with 67%

of those students receiving a score of 3 or better [13].

If more and more students are taking Advanced Placement calculus in high school, it is reasonable to

assume that they are not taking precalculus or calculus I in college. What mathematics courses do these

students take as undergraduates? It is probable that many of the students enrolling in precalculus courses

as undergraduates are students for whom learning mathematics has not been easy. If this is true, what are

the implications for precalculus courses as preparation for advanced study of mathematics?

It is evident that much additional information is needed if we are to effect meaningful changes in the

precalculus curriculum. The precalculus data, like the calculus enrollment data, generate many questions

for which we do not have answers. We need answers to the questions:

� Who takes precalculus courses and for what reasons?
� Are students who take the precalculus course(s) successful in subsequent courses?
� Why do more students continue to enroll in college algebra than in all of other precalculus courses
combined?

� How many students take precalculus to satisfy required prerequisites for a program of study other than
mathematics?

� What do other programs of study expect students who complete precalculus to know?
� Why has the precalculus/elementary functions course—a course designed for students intending to
take calculus—experienced such large increases in enrollment while calculus I enrollment declined at

four-year colleges and universities and remained relatively constant at two-year colleges since 1990?

Perhaps, more importantly, as we seek answers to these questions, we need to determine why we are

attracting fewer and fewer students into our mathematics-intensive programs.
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Enrollment Flow to and from Courses Below Calculus

Steven R. Dunbar

University of Nebraska-Lincoln

The intent of the analysis

In rethinking the courses below calculus, two questions naturally arise:

� What mathematics courses (calculus and otherwise) will students take after completing courses sup-
posedly intending to prepare them for calculus?

� What mathematics courses have students studied before calculus and calculus preparation courses, and
how recent is their knowledge?

This report attempts to partially answer these two questions based on a study that tracked the actual en-

rollment of students in precalculus, calculus, and non-calculus based courses over 20 successive semesters,

from fall 1992 to spring 2002. This is a study of the enrollment flow of students on a microscopic level,

in that it tracks the enrollment of individual students at the University of Nebraska-Lincoln, a large mid-

western university. This study allows us to examine actual student behavior along with changes and trends

in that behavior over time. This is in contrast to national studies tracking the yearly number of students

enrolled in generically labeled groups of courses (e.g., precalculus which encompasses college algebra,

college algebra and trigonometry, precalculus, etc.) which gives a macroscopic view of trends in enroll-

ment. This is also an examination of the probable success of calculus preparation curricula which plan

student movement from course to successive course in sequential semesters in that the study examines

actual student behavior, which may vary from the ideal.

The data source

Each semester the registrar generates a “correction roster” for the Department of Mathematics and Statistics.

The correction roster lists the students enrolled in every course offered by the department as of the third

week of the semester. This roster represents the “true” beginning enrollments of courses, after the drop-

and-add period.

The correction roster has a line for each student enrolled in every mathematics or statistics course.

The line contains the following information: the course number, the section number, the credit hours, the

pass-no pass option, the student’s name, the unique student identification number, the student’s college of

enrollment, and the class-year (freshman, sophomore, junior, or senior by credit hours accumulated) of the

student.

The correction roster for a semester is large, about 4,000 to 6,500 lines. Altogether, there are well over

100,000 total lines of data to be sorted and analyzed, one for each of the students who took a mathematics

or statistics course in the decade being studied.

28
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The data source is authoritative since it comes from the registrar to generate information used early in

the semester for billing and later in the semester for assigning grades. Less officially, the information on

the correction roster always closely matches instructor class lists and in fact is called the correction roster

because it is used to correct informally maintained class lists. Thus, the information from the correction

roster can be trusted as an accurate representation of class enrollments at the time of generation. However,

the data analysis from the correction rosters has some limitations.

The analysis only counts students enrolled in the third week of the semester; it does not count students

who finish the course successfully with a passing grade. In fact, the data does not even count students who

finish the course because the correction roster analysis counts as enrolled students who later drop a course.

There are also a few students who change (with permission) from, for instance calculus to precalculus,

or from precalculus to algebra after the third week, although this number is probably insignificant on the

scale of all students considered.

The analysis does not count students who took the analyzed courses in summer sessions, typically

between 30 and 100 students each year. The analysis for the three years from fall 1992 to spring 1995

also does not count students enrolled in the night courses. Because of a change in the Student Information

System generating the correction roster, the analysis since fall 1995 does count students enrolled in a night

section of the analyzed courses. The number of students taking one of these courses in a night section is

30 or less in each semester. The analysis also does not count students who take or re-take a course outside

of the university, for example at a local community college, and then return to the university to take a

subsequent course. It is unknown what the number of such students is, but I expect it is low.

Occasionally, a few students will register simultaneously for a course and its prerequisite, such as

trigonometry and calculus during the same semester, even though this should be impossible under depart-

ment placement policies. This will appear in the analysis as some small number of students taking a course

and its prerequisites in the same semester.

The totals may involve some double-counting. For example, in the output analysis, the tables track

the number of students going from precalculus in a particular semester to calculus in some subsequent

semester. A possible double counting would occur, for example, when a student succeeds in precalculus,

takes calculus in the subsequent semester and fails, then retakes calculus again in the subsequent semester.

The output accounting counts such a student twice.

Because of these data limitations, I estimate the analysis gives totals that probably have “error bars” of

˙15 students at worst. Comparing the data from my “correction roster” analysis to another analysis per-

formed independently for another purpose by Professor Leo Chouinard using the math placement database

supports this estimate. For example, the correction roster analysis says that 129 students went from fall

1993 precalculus-calculus to spring 1994 calculus. The Math Placement database says that 141 students

went from fall 1993 precalculus to spring 1994 calculus. The “error bars” of the counting will affect the

percentages accordingly. For example, for the college algebra totals, the counting errors affect percentages

by ˙4% at worst.

I round percentages to the nearest integer percent. Probably the best use of the data is to indicate which

quartile or decile the percentages are in and use the quartiles to suggest appropriate policies.

Description of the courses

In the following analysis, I refer to courses by their title or educational intention, such as college algebra,

or precalculus. In the tables, I refer to courses by the University of Nebraska-Lincoln course number with

an abbreviated title. However, a course labeled as “precalculus” at one institution may be called “algebra

and trigonometry” elsewhere, and may be called by yet another name at another institution.

I describe each of the courses in Appendix A by course number, then course title, and then quote

directly from the course catalog description of the course. The course catalog descriptions have remained



30 Background

unchanged over the course of the study. Naturally, some of the course content has changed over the decade

studied, and so whenever the information is available I have listed the textbook used as an additional

indicator of the course content and level. Finally, the pedagogical format of each course is indicated.

While this may vary depending on individual instructor style, it gives a sense of the course. Together, the

characteristics described here indicate the degree to which the courses surveyed in this enrollment flow

analysis are similar to or different from analogous courses taught elsewhere.

See Figure 1 in Appendix B for a diagram of the prerequisite dependencies and typical flow between

courses.

The data analysis

Output analysis: Looking downstream

One could consider the group of students taking, say college algebra in fall 1996, and ask “How many of

these students will eventually (within eight or twelve semesters) take mainstream calculus I?” That is, one

can summarize this output analysis as being analogous to the conditional probability

Pr. to mainstream calculus I j in college algebra fall 1996 /:

Tables 1-6 in Appendix C summarize the answer to this specific question and other similar questions.

The base semesters selected for display are fall 1996, allowing eleven semesters for students to eventu-

ally take another math class, and fall 1998, allowing seven semesters for students to eventually take another

math class. I also examine the output from spring 1996 allowing eleven semesters for students to take

another math class. These are representative semesters with a long enough time-line to see whole college

careers. They provide the most up-to-date glimpse of the mathematical careers of the cohort of students

who entered in fall 1998 and could have graduated in the nominal four years of college, or as is sometimes

more typical now, the cohort of students who entered in fall of 1996 and could have graduated within

six years. The tables for students in a base math class in spring 1996 give a glimpse of the differences

between fall and spring math careers.

In each table, the entry in the first row and first column is the number of students enrolled in the base

or originating course as of the correction roster date, about the third week of classes, after the drop-and-add

period. The columns list the courses that students can ultimately take, including retaking the current base

course for unsuccessful students. The next rows, by successive semesters, list the number of students from

the base course enrolled in the destination course in that semester.

Tables 1 and 2 summarize the output from precalculus in fall 1996 and fall 1998 respectively. Table 3

summarizes the output for precalculus in spring 1996 to illustrate the differences between a fall cohort

and a spring cohort. Table 4 and Table 5 summarize the output for college algebra in fall 1996 and fall

1998. For comparison, Table 6 summarizes the output for college algebra in spring 1997.

Examining the data from all the semesters from fall 1992 to spring 2002, one can conclude the

precalculus course, which is intended as preparation for calculus, is generally succeeding in its mission.

First, considering the students who took the precalculus course in a fall semester, a large majority go on

to take calculus, but generally only one semester of calculus. Specifically,

� An average of 58% (with a high of 68% in fall 1996 to a low of 50% in fall 2000) of fall precalculus
students eventually take mainstream calculus I. The recent low of students eventually taking calculus

is probably due to the fact that they have not yet had enough time to take calculus and show up in the

accounting.

� An average of 50% (with a high of 55% in fall 1996 to a low of 44% in fall 2000) of fall precalculus
students immediately take mainstream calculus I in the succeeding semester.

� A minority of about 17% of fall precalculus students ever take the third semester of calculus.
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An average of 8% (from a high of 16% in fall 1992 to a low of 5% in fall 1998) of fall precalculus

students eventually retake precalculus. This compares favorably with a typical retake rate of 20% in most

other lower-division courses.

For comparison, the precalculus course in a spring semester is not as successful in its intended mission

of preparing students for calculus because more retake precalculus, a smaller percentage go on to take

calculus eventually, a smaller percentage go on to calculus immediately, and a smaller percentage still take

three semesters of calculus. Considered in the same order as for the fall semesters above, the comparative

statistics are:

� An average of 50% (with a high of 79% in spring 1997 to a low of 33% in spring 1998) of spring

precalculus students eventually take mainstream calculus I.

� An average of about 30% (with a high of 34% in spring 1997 to a low of 22% in spring 1998) of

spring precalculus students immediately take mainstream calculus I in the succeeding semester.

� A minority of about 12% of spring precalculus students ever take the third semester of calculus.
An average of 13% (with a high of 19% in spring 1999 to a low of 3% in spring 2000) of spring precalculus

students eventually retake precalculus.

The population of students taking precalculus has a different composition than the students taking

college algebra. Specifically for the fall semesters examined in this study:

1. An average of 5% of students in precalculus are enrolled in the College of Business Administration,

compared to an average of 25% of the students in college algebra.

2. An average of 15% of students in precalculus are enrolled in the College of Engineering, compared to

an average of less than 2% of the students in college algebra.

3. An average of 44% of students in precalculus are enrolled in the College of Arts and Sciences, compared

to an average of 20% of the students in college algebra.

Observe that half or more of the students in precalculus do get to a calculus course. However, students

taking the college algebra course are fragmented into many different succeeding courses. First, I will look

at the statistics for students who took college algebra during the fall semester. Students in college algebra

retake the course at a greater rate than do students in precalculus. Specifically, an average of 20% (with a

high of 22% in fall 1998 to a low of 18% in fall 1999) of fall college algebra students eventually retake

college algebra. An even lower rate of college algebra students immediately take trigonometry, the next

pre-requisite course before calculus. In fact, an average of 18% (with a high of 23% in fall 1999 to a

low of 13% in fall 2000) of fall college algebra students immediately take trigonometry in the succeeding

semester. Only a minority of college algebra students ever take any form of calculus, specifically:

� An average of 21% (with a high of 24% in fall 2001 to a low of 18% in fall 1993) of fall college

algebra students immediately take the business calculus course in the succeeding semester.

� An average of 11% (with a high of 16% in fall 1995 to a low of 7% in fall 2000) of fall college algebra
students eventually take the main sequence calculus I course. The recent low of students eventually

taking calculus is certainly due to the fact that they have not yet had enough time to take calculus and

show up in the accounting.

� Only an insignificant minority of about 1% of fall college algebra students ever take the third semester
of calculus.

Now let’s look at the students who took college algebra during spring semesters. In the measure of

retaking the course, these students are slightly more successful, since an average of 17% (with a high of

20% in spring 1996 to a low of 10% in spring 1998) of spring college algebra students eventually retake

Math 101. However, in the measure of taking successive courses, these students are less successful. For

instance, an average of about 11% (with a high of 15% in spring 1995 to a low of 7% in spring 2001) of

spring college algebra students immediately take trigonometry in the succeeding semester. Lower rates of

students in college algebra in the spring semesters take calculus in any form than their peers in the fall

semesters. In fact:
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� An average of 15% (with a high of 18% in spring 1997 to a low of 12% in spring 1994) of spring

college algebra students immediately take business calculus in the succeeding semester.

� An average of 7% (with a high of 12% in spring 1995 to a low of 5% in spring 1999) of spring college
algebra students eventually take mainstream calculus I.

� Only an insignificant minority of about 1% of spring college algebra students ever take the third

semester of calculus.

Another surprising conclusion of the study is that it is possible to find a few students who enrolled in

college algebra or precalculus in 1992 or 1993 and who are still taking some lower-division mathematics

classes as much as eight years later!

Input analysis: Looking upstream

Suppose one is teaching calculus. Then a reasonable question to ask about the class is “How many students

previously took a specific precalculus course and when?” One can briefly summarize this as the conditional

probability

Pr. from precalculus j in mainstream calculus I /

and so on. Tables 7 through 10 provide four examples of that data. The first table does the input analysis

for several courses from the fall semester of the 2001–2002 academic year with respect to our precalculus

course in previous semesters. The second table does the input analysis for spring semester of the 2001-2002

academic year. The two tables yield different input analyses since the students taking a course in the spring

semester are likelier to have had a prerequisite course at UN-L than students taking the same course in the

fall semester, who would likelier have had the prerequisite course from high school or a feeder institution.

The top of a column is a particular course number. The next line gives the total enrollment from the

correction roster of that course in the base semester. This provides the base enrollment, or if you will,

the denominator of the conditional probability. The next lines, in reverse chronological order of preceding

semesters, give the number of students coming from the prerequisite course (precalculus or college algebra)

in that semester. Next is the total number of students who have taken the prerequisite course in all the

preceding semesters. This is the numerator of the conditional probability. The conditional probability,

expressed as a percentage, is at the bottom of the column.

I have tables analogous to Tables 7 through 10 for each course in each semester. After summarizing

all the tables, some conclusions about input from precalculus to subsequent calculus courses appear. First,

considering fall semesters, one conclusion is that relatively few of the students in precalculus or any

level of calculus have previously been in a precalculus course. This is not surprising because in lower-

division mathematics courses in a fall semester many students are entering freshmen enrolling in their

first math course. Even for mainstream calculus II in the fall where students could have taken precalculus

in the previous fall, followed by calculus I in the previous spring, and finally calculus II in the fall, the

percentage only averages 12%, and it is always less than 22%. In this sense, the fall precalculus course is

not a precursor to calculus. Specifically:

� In a fall semester, an average of 6% (ranging from a high of 10% in fall 1995 to a low of 4% in fall
2001) of the students in precalculus previously took precalculus.

� In a fall semester, an average of 7% (ranging from a high of 11% in fall 1995 to a low of 4% in fall

1999) of the students in calculus I previously took precalculus.

� In a fall semester, an average of 12% (ranging from a high of 22% in fall 1995 to a low of 1% in fall
2001) of the students in calculus II previously took precalculus. These students likely took precalculus

in the fall semester of the year before, then took calculus I in the spring semester of the year before,

and ultimately enrolled in calculus II in the year examined.
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� In a fall semester, an average of 6% (ranging from a high of 10% in fall 1995 to a low of 4% in fall
2001) of the students in calculus III previously took precalculus.

The picture is somewhat different in spring semesters. A higher percentage of students from a prior

precalculus course are either retaking precalculus or taking calculus I. Nevertheless, the constituency of a

calculus II or calculus III course is not much different than in a fall semester. This indicates that students

in precalculus are taking one semester of calculus, but not much more. The detailed picture is that

� In a spring semester, an average of 32% (ranging from a high of 45% in spring 2001 to a low of 22%
in spring 1999) of the students in precalculus previously took precalculus.

� In a spring semester, an average of 37% (ranging from a high of 42% in spring 1995 to a low of 31%
in spring 2000) of the students in calculus I previously took precalculus.

� In a spring semester, an average of 7% (ranging from a high of 10% in spring 1997 to a low of 5% in
spring 2000) of the students in calculus II previously took precalculus.

� In a spring semester, an average of 11% (ranging from a high of 18% in spring 1996 to a low of 8%
in spring 2001) of the students in calculus III previously took precalculus.

Some different conclusions about input from college algebra and intermediate algebra to subsequent

courses appear from all of the input data in fall semesters. A large percentage of students in trigonometry

and business calculus classes have previously been in the college algebra and intermediate algebra courses.

I note that the percentages are large by comparison to some of the other input figures but still less than

half of the students in business calculus have previously been in college algebra. However, relatively few

of the students in any level of calculus have previously been in a college algebra course or intermediate

algebra course. The precise figures for various courses in a fall semester are:

� An average of 13% (ranging from a high of 16% in fall 1998 to a low of 10% in fall 2000) of the

students in college algebra previously took college algebra or intermediate algebra.

� An average of 59% (ranging from a high of 69% in fall 1996 to a low of 51% in fall 1999) of the

students in trigonometry previously took college algebra and intermediate algebra.

� An average of 43% (ranging from a high of 50% in fall 1995 to a low of 38% in fall 2000) of the

students in business calculus previously took college algebra and intermediate algebra.

� An average of 13% (ranging from a high of18% in fall 1996 to a low of 9% in fall 2000) of the

students in calculus I previously took college algebra and intermediate algebra.

� An average of 5% of the students in calculus II and calculus III previously took college algebra and

intermediate algebra.

The differences between spring and fall constituencies of some courses stand out when the data for

input into various courses from the algebra courses is summarized. A much higher percentage of students

are repeating college algebra having previously been in college algebra. The vast majority of students in

trigonometry and business calculus have taken an algebra course. Still a minority of students in any level

of mainstream calculus have taken college algebra. The precise numbers in a spring semester are:

� An average of 29% (ranging from a high of 34% in spring 1997 to a low of 24% in spring 1995) of
the students in college algebra previously took college algebra.

� An average of 87% (ranging from a high of 94% in spring 1997 to a low of 78% in spring 2000) of
the students in trigonometry previously took college algebra and intermediate algebra.

� An average of 77% (ranging from a high of 84% in spring 1996 to a low of 73% in spring 2000) of
the students in business calculus previously took college algebra and intermediate algebra.

� An average of 19% (ranging from a high of 24% in spring 1998 to a low of 17% in spring 1995) of
the students in calculus I previously took college algebra and intermediate algebra.

� An average of 5% of the students in calculus II and calculus III previously took college algebra and

intermediate algebra.
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Conclusions

The conclusion to be drawn from this study is that at least at the University of Nebraska-Lincoln, a

sizable majority of students in the precalculus course prepare to start calculus. The students from the

precalculus course constitute a sizable fraction of the students taking calculus, although not a majority. A

fairly insignificant fraction of the students taking precalculus at the university ever take three semesters of

calculus.

Another conclusion is that only a minority of students taking college algebra go on to start the three

semester sequence of calculus, although a considerable fraction do take the one semester business calculus

course. In the spring semester a vast majority of the students in trigonometry and the business calculus

course have taken the college algebra course at the university. Only an insignificant number of students

taking college algebra ever go on to complete three semesters of calculus. For comparison, an average of

22% of fall mainstream calculus I students go on to take three semesters of calculus.

Finally, it appears that many students do not take these calculus preparatory math classes and then

calculus in successive semesters. For example, an average of 29% of college algebra students eventually

take business calculus, but about a quarter to a third of those students do so at least one semester after

they have finished college algebra. Of the approximately 11% of college algebra students eventually taking

mainstream calculus, a little less than half take calculus in a semester later than they could have. While

an average of 58% of precalculus students eventually take mainstream calculus, about one-eighth do so

a semester or more after finishing precalculus. In fact, some students remain taking lower-division math

classes as much as 10 years after taking college algebra or precalculus.

Appendix A

Description of the courses

Math100A Intermediate Algebra “A review of the topics in a second-year high-school algebra class

taught at the college level. Topics include: real numbers, 1st and 2nd degree equations and inequalities,

linear systems, polynomials and rational functions, exponents and radicals. Hours earned in Math 100A

do not count toward degree requirements.”

Graduate TAs teach the course, typically in their second (or later) year. The class is three credit-hours,

with three contact hours, generally taught three days per week. Class sizes are at most 35 students. The

presentation style is generally lectures, with three or four hour exams, quizzes or graded homework, and

a common final exam. The textbook used recently is Intermediate Algebra, 6th Edition, by McKeague.

Math101 College Algebra “Real and complex numbers, exponents, factoring, linear and quadratic equa-

tions, absolute value, inequalities, functions, graphing, polynomial and rational functions, exponential

and logarithmic functions, analytic geometry, systems of equations.”

Graduate TAs teach the course, typically in their second (or later) year. The class is three credit-hours,

with three contact hours, generally taught three days per week. Class sizes are at most 35 students. The

presentation style is generally lectures, with three or four hour exams, quizzes or graded homework, and

a common final exam. The textbook used recently is College Algebra, Graphing and Data Analysis,

by Sullivan and Sullivan.
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Math102 Trigonometry “Trigonometric functions, identities, trigonometric equations, solution of trian-

gles, inverse trigonometric functions, graphs, logarithms, and exponential functions.”

Graduate TAs teach the course, typically in their second (or later) year. The class is two credit-hours,

with two contact hours, generally taught two days per week. Class sizes are at most 35 students. The

presentation style is generally lectures, with three or four hour exams, quizzes or graded homework,

and a common final exam. Since 1996, group projects consisting of an extended homework exercise are

part of the evaluation. The textbook used recently is Trigonometry and its Applications, by Goldstein.

Math103 College Algebra and Trigonometry “First and second degree equations and inequalities, ab-

solute value, functions, polynomial and rational functions, trigonometric functions and identities, laws

of sines and cosines, applications, polar coordinates, graphing, conic sections.”

Graduate TAs teach the course, typically in their third year (or later). The class is five credit-hours,

with five contact hours, generally taught five days per week. Class sizes are at most 35 students. The

presentation style is lectures with a mix of hands-on or in-class activities including worksheets, with

three or four hour exams, quizzes or graded homework, and a common final exam. Group projects

consisting of an extended homework exercise are also part of the course evaluation. The textbook used

recently is Functions Modeling Change: A Preparation for Calculus, by Connally, Hughes-Hallett,

Gleason, et al.

Math104 Calculus for Managerial and Social Sciences “Rudiments of differential and integral calculus

with applications to problems from business, economics, and social sciences.”

Faculty teach the course in large lectures with about 100-120 students. The class is three credit-hours,

with three contact hours, taught two or three days per week. The presentation style is generally lectures,

with three or four hour exams, quizzes or graded homework, and a common final exam. The textbook

used recently is Brief Calculus and its Applications, 2nd Edition, by Bernice.

Math106 Analytic Geometry and Calculus I “Functions of one variable, limits, differentiation, expo-

nential, trigonometric and inverse trigonometric functions, maximum-minimum, and basic integration

theory with some applications.”

The course has lecture sessions three days per week with a faculty lecturer in large lecture halls with

about 100-125 students. The presentation style is generally lecture with a mixture of hands-on or

calculator exercises. Small recitation sections of 25 students meet with a first-year teaching assistant

twice per week. The presentation is problem-solving, group work, some hands-on learning, with some

explanation. Instructors base grades on three hour exams, quizzes or graded homework, and a common

final exam. As well, group projects requiring writing and analysis are part of the evaluation. The

textbook used over the period of the study is Calculus, Single and Multivariable, 2nd Edition, by

Hughes-Hallett, Gleason, McCallum, et al.

Math107 Analytic Geometry and Calculus II “Integration theory, techniques of integration, applications

of definite integrals, basics of ordinary differential equations.”

The course has lecture sessions three days per week with a faculty lecturer in large lecture halls with

about 100-125 students. The presentation style is generally lecture with a mixture of hands-on or

calculator exercises. Small recitation sections of 25 students meet with a first-year teaching assistant

twice per week. The presentation is problem-solving, group work, some hands-on learning, with some

explanation. Instructors base grades on three hour exams, quizzes or graded homework, and a common

final exam. As well, group projects requiring writing and analysis also are part of the evaluation. The

textbook used over the period of the study is Calculus, Single and Multivariable, 2nd Edition, by

Hughes-Hallett, Gleason, McCallum, et al.
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Math200 Mathematics for Elementary School Teachers “Fundamental mathematical concepts basic to

the understanding of arithmetic.”

Faculty and some advanced graduate TAs teach the course. The class size is typically 30 or less. The

presentation style is a mixture of lecture and hands-on learning activities.

Math201 Geometry for Elementary School Teachers “Fundamental mathematical concepts basic to the

understanding of geometry.”

Faculty and some advanced graduate TAs teach the course. The class size is typically 30 or less. The

presentation style is a mixture of lecture and hands-on learning activities.

Math203 Contemporary Mathematics “Applications of quantitative reasoning and methods to problems

and decision making in management, statistics, and social choice. Topics include networks, critical

paths, linear programming, sampling, central tendency, inference, voting theory, power index, game

theory and fair division.”

Faculty and some advanced graduate TAs teach the course. The class size is typically 30 or less. The

presentation style is a mixture of lecture and hands-on learning activities, along with some videotape

presentations.

Math 208 Analytic Geometry and Calculus III “Vectors and surfaces, parametric equations and mo-

tion, functions of several variables, partial differentiation, maximum-minimum, Lagrange multipliers,

multiple integration, vector fields, path integrals, Green’s theorem and applications.”

Faculty teach the course. The class is four credit-hours, with four contact hours, generally taught four

days per week. Class sizes are at most 40 students. The presentation style is lectures with a mix of

hands-on or in-class activities, with three or four hour exams, quizzes or graded homework, and a

common final exam. Typically, group projects consisting of an extended homework exercise also are

part of the course evaluation. The textbook used over the period of the study is Calculus, Single and

Multivariable, 2nd Edition, by Hughes-Hallett, Gleason, McCallum, et al.

Stat 180 Elements of Statistics “Finite probability, random variables, probability distributions, statistical

inference, estimation, and testing of hypotheses.”

Faculty and some advanced graduate TAs teach the course. The class size is typically 40 or less.

The presentation style is a mixture of lecture and hands-on learning activities, with three or four hour

exams, quizzes or graded homework, and a common final exam. Typically, group projects consisting

of an extended homework exercise also are part of the course evaluation. The textbook used recently

is The Basic Principles of Statistics, 2nd Edition, by Moore.
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Appendix B

Diagram of course dependencies
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Precalculus
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Elementary
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Figure 1. Diagram of prerequisite dependencies and typical flow between courses.
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Appendix C

Tables

Prec Prec BCal CalI CalII CalIII MET GET LAM Stat

103 103 104 106 107 208 200 201 203 180

F96 233 0 0 0 0 0 0 0 0

S97 16 10 129 1 0 0 0 2 2

F97 7 1 18 33 4 0 0 2 9

S98 1 1 13 15 14 2 0 0 18

F98 3 1 6 4 7 0 0 1 3

S99 1 2 7 4 7 0 0 1 4

F99 1 0 2 3 4 0 1 1 4

S00 0 0 2 2 1 0 0 0 4

F00 1 0 2 1 2 0 0 1 0

S01 0 0 1 2 1 0 0 0 2

F01 0 0 1 0 0 0 0 0 1

S02 0 0 0 0 1 0 0 0 1

Table 1. The number of students in subsequent courses who took precalculus in fall 1996.

Prec Prec BCal CalI CalII CalIII MET GET LAM Stat

103 103 104 106 107 208 200 201 203 180

F98 198 0 0 0 0 0 0 0 0

S99 4 6 107 0 0 0 0 0 12

F99 2 4 15 25 2 0 0 0 13

S00 1 4 11 7 17 1 0 1 6

F00 2 2 2 2 4 0 0 3 3

S01 2 1 1 2 3 1 1 2 3

F01 0 0 2 1 0 0 1 0 3

S02 0 0 1 1 1 0 0 0 2

Table 2. The number of students in subsequent courses who took precalculus in fall 1998.
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Prec Prec BCal CalI CalII CalIII MET GET LAM Stat

103 103 104 106 107 208 200 201 203 180

S96 77 0 0 0 0 0 0 0 1

F96 6 3 22 2 0 0 0 1 3

S97 0 1 7 8 1 0 0 2 2

F97 2 1 2 2 2 0 0 1 1

S98 1 2 2 0 3 2 0 0 2

F98 0 1 1 0 0 1 1 1 1

S99 0 1 0 1 0 1 0 0 1

F99 0 0 0 0 1 0 2 0 1

S00 0 0 0 0 0 0 0 0 0

F00 0 0 0 0 0 0 0 0 0

S01 1 0 0 0 0 0 0 0 0

F01 0 0 1 0 0 0 0 0 0

S02 0 0 0 0 0 0 0 0 0

Table 3. The number of students in subsequent courses who took precalculus in spring 1996.

CA CA Trig Prec Bcal CalI CalII CalIII MET GET LAM Stat

101 101 102 103 104 106 107 208 200 201 203 180

F96 793 0 0 0 0 0 0 0 0 0 2

S97 106 139 0 161 13 0 0 0 0 7 20

F97 25 32 0 47 43 10 0 1 0 11 37

S98 18 21 0 21 20 14 2 0 0 7 25

F98 8 9 0 14 14 7 4 1 0 4 8

S99 5 4 0 14 5 5 6 1 0 9 13

F99 2 3 0 6 1 5 1 2 1 2 3

S00 3 4 0 2 1 0 1 0 0 2 6

F00 2 1 0 1 3 1 0 1 0 1 1

S01 1 2 0 0 0 0 0 0 1 2 3

F01 0 0 0 2 2 0 1 0 1 0 1

S02 0 2 0 1 2 1 0 0 0 1 1

Table 4. The number of students in subsequent courses who took college algebra in fall 1996.

CA CA Trig Prec Bcal CalI CalII CalIII MET GET LAM Stat

101 101 102 103 104 106 107 208 200 201 203 180

F98 784 0 0 0 0 0 0 0 0 0 3

S99 126 122 0 180 17 0 0 0 0 7 27

F99 20 31 0 68 39 8 2 1 0 19 32

S00 13 15 0 29 18 8 2 1 1 18 28

F00 3 9 0 14 9 5 4 3 0 11 8

S01 4 5 0 10 8 2 3 5 1 9 13

F01 2 4 0 4 7 2 1 4 1 4 5

S02 4 3 0 2 6 2 2 0 0 2 6

Table 5. The number of students in subsequent courses who took college algebra in fall 1998.
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CA CA Trig Prec Bcal CalI CalII CalIII MET GET LAM Stat

101 101 102 103 104 106 107 208 200 201 203 180

S96 665 1 0 0 0 0 0 0 0 1 1

F96 63 70 1 82 12 1 0 0 0 15 14

S97 33 33 0 50 13 3 0 1 0 11 21

F97 15 13 0 18 9 2 1 6 0 11 18

S98 7 10 0 14 9 2 0 2 0 8 7

F98 6 3 0 8 7 2 0 1 1 6 6

S99 4 3 0 11 3 3 0 0 1 5 4

F99 1 3 1 5 2 2 0 0 0 3 6

S00 2 4 0 4 2 1 0 0 0 2 1

F00 0 1 0 2 0 1 1 0 0 0 2

S01 1 1 0 1 0 0 2 0 0 0 2

F01 0 2 0 1 2 1 0 0 0 1 2

S02 0 0 0 1 2 0 1 0 0 0 1

Table 6. The number of students in subsequent courses who took college algebra in spring 1996.

Prec BCal CalI CalII CalIII MET GET LAM Stat

103 104 106 107 208 200 201 203 180

F01 215 519 730 364 280 71 52 353 506

S01 2 2 13 0 0 0 0 0 2

F00 4 6 25 15 0 0 0 1 16

S00 0 0 0 1 1 0 0 0 0

F99 1 0 7 2 4 0 0 0 4

S99 0 0 0 0 0 0 0 0 0

F98 0 0 2 1 0 0 1 0 3

S98 1 0 0 0 0 0 0 0 0

F97 0 0 0 0 2 0 1 0 1

S97 0 0 0 0 0 0 0 0 1

F96 0 0 1 0 0 0 0 0 1

S96 0 0 1 0 0 0 0 0 0

F95 0 0 0 1 0 0 0 0 0

S95 0 0 0 0 0 0 0 0 0

F94 0 0 2 0 0 0 0 0 0

S94 0 0 0 0 1 0 0 0 0

F93 0 0 0 0 0 0 0 0 0

S93 0 0 0 0 1 0 0 0 0

F92 0 0 0 0 1 0 0 0 0

Total 8 6 51 20 10 0 2 1 28

% 4% 1% 7% 1% 4% 0% 4% 0% 5%

Table 7. The input analysis from precalculus to courses in fall 2001.
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Prec BCal CalI CalII CalIII MET GET LAM Stat
103 104 106 107 208 200 201 203 180

S02 53 440 349 312 252 68 42 322 518
F01 20 10 95 0 0 0 0 2 8
S01 2 0 7 0 0 0 0 0 2
F00 0 3 8 6 12 1 1 0 5
S00 0 2 1 1 0 0 0 0 1
F99 1 2 3 2 3 0 0 2 4
S99 0 0 0 0 0 0 0 0 0
F98 0 0 1 1 1 0 0 0 2
S98 0 0 1 0 0 0 0 0 0
F97 0 0 4 0 0 0 1 0 1
S97 0 0 0 0 0 0 0 0 0
F96 0 0 0 0 1 0 0 0 1
S96 0 0 0 0 0 0 0 0 0
F95 0 0 0 0 2 1 1 0 0
S95 0 0 0 0 1 0 0 0 0
F94 0 0 0 0 1 0 0 0 0
S94 0 0 0 0 0 0 0 0 0
F93 0 0 0 0 0 0 0 0 0
S93 0 0 0 0 0 0 0 0 0
F92 0 0 0 0 0 0 0 0 0
Total 23 17 140 10 21 2 3 4 24
% 43% 4% 40% 3% 8% 3% 7% 12% 5%

Table 8. The input analysis from precalculus to courses in spring 2002.

CA Trig Prec BCal CalI CalII CalIII MET GET LAM Stat
101 102 103 104 106 107 208 200 201 203 180

F01 799 174 215 519 730 364 280 71 52 353 506
S01 58 39 1 82 8 1 2 2 1 20 25
F00 25 26 0 66 31 5 0 0 0 24 32
S00 8 8 0 17 7 4 1 2 2 6 10
F99 3 7 0 23 9 4 1 4 0 8 18
S99 2 5 0 3 3 2 2 1 1 4 5
F98 2 4 0 4 7 2 1 4 1 4 5
S98 3 3 0 1 2 1 0 1 2 2 4
F97 0 1 0 0 3 0 0 1 2 2 2
S97 1 1 0 1 2 0 0 0 1 0 2
F96 0 0 0 2 2 0 1 0 1 0 1
S96 0 2 0 1 2 1 0 0 0 1 2
F95 0 1 0 0 0 0 1 0 0 1 0
S95 0 1 0 0 1 0 0 0 0 0 0
F94 1 1 0 0 0 0 0 0 0 0 1
S94 1 0 0 0 0 0 0 0 0 0 0
F93 0 1 0 0 0 0 0 0 0 0 1
S93 0 2 0 1 0 0 0 0 0 0 0
F92 0 1 0 0 0 0 0 0 0 0 0
Total 104 103 1 201 77 20 9 15 11 72 108
% 13% 59% 0% 39% 11% 5% 2% 21% 21% 20% 21%

Table 9. The input analysis from college algebra to courses in fall 2001.
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CA Trig Prec BCal CalI CalII CalIII MET GET LAM Stat

101 102 103 104 106 107 208 200 201 203 180

S02 518 184 53 440 349 312 252 68 42 322 518

F01 96 102 0 191 15 0 0 0 0 20 27

S01 18 13 0 49 11 3 0 2 0 25 22

F00 6 16 0 42 18 8 3 1 0 18 30

S00 7 6 0 18 2 2 1 2 2 3 6

F99 4 6 0 12 9 2 1 0 2 9 8

S99 4 4 0 4 2 2 0 1 0 9 6

F98 4 3 0 2 6 2 2 0 0 2 6

S98 2 2 0 1 1 2 0 0 1 2 1

F97 0 2 0 0 1 0 0 0 1 5 3

S97 0 2 0 1 3 0 0 0 0 0 2

F96 0 2 0 1 2 1 0 0 0 1 1

S96 0 0 0 1 2 0 1 0 0 0 1

F95 0 1 0 0 1 1 0 0 0 1 0

S95 1 0 0 1 2 0 0 0 0 0 0

F94 1 0 0 0 1 0 0 0 0 0 0

S94 0 0 0 0 0 0 0 0 0 1 0

F93 0 0 0 0 0 0 0 0 0 2 1

S93 0 1 0 1 0 0 0 0 0 0 0

F92 0 0 0 0 0 0 0 0 0 0 0

Total 143 160 0 324 76 23 8 6 6 89 114

% 28% 87% 0% 74% 22% 7% 3% 8% 14% 28% 22%

Table 10. The input analysis from college algebra to courses in spring 2002.
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What Have We Learned from Calculus Reform?

The Road to Conceptual Understanding

Deborah Hughes Hallett

University of Arizona

Goals

In order to evaluate the impact of calculus reform, we first need to recall its goals. Although different people

may phrase it differently, everyone involved would agree that they were trying to improve the teaching

of calculus. Some would say they wanted more student involvement; others would say they wanted to

take advantage of technology; others would say they wanted to emphasize problem solving and modeling.

Most would agree that they wanted to improve conceptual understanding. What has been the impact of

this effort?

Background to calculus reform: Rationale for change

The teaching of calculus came under scrutiny in the 1980s for several reasons. One was concern over the

students’ apparent lack of understanding of the subject, especially when asked to use it in an unfamiliar

situation. Faculty outside mathematics frequently complained that students could not apply the concepts

they had been taught. In some instances, ideas were being used in other fields in ways that were sufficiently

different from the way they are used in mathematics that it was not surprising that students did not make

the connection. For example, the minimization of average cost was done symbolically in mathematics, if

at all, whereas it is usually done graphically in economics.

However, students also had difficulty recognizing mathematical ideas that were presented the same

way as in mathematics. A small difference in notation or the absence of familiar clues—such as “largest”

or “smallest” in an optimization problem—easily threw students off. This striking difficulty in transferring

knowledge between fields suggested that students’ understanding was not sufficiently robust.

In addition, many students came to college believing that mathematics centers on manipulative tech-

niques, rather than interpretation and understanding.1 These students spent little energy thinking about

where ideas came from or how they were used. Besides being a disappointment to faculty, these students

never saw the power of mathematics to unite disparate fields.

Materials used in the middle 1980s suggested that mathematicians were doing little to challenge

students’ views that equated mathematics to applying formulas. Exam questions were often of the form

1See, for example, Deborah Hughes Hallett “Are We Encouraging Our Students to Think Mathematically?” in How to Teach

Mathematics by Steven G. Kranz, 2nd edition, American Mathematical Society, 1999.
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“Use method X to do Y ”; problems in the text were usually to be done by the formula most recently

presented. Consequently students got little experience on choosing a method. Even the choice of variables

seldom needed thought. It was not uncommon for an entire set of exercises in a text to be written as

functions in terms of x, with at most a couple that involved t or � . Since an unfamiliar variable is a

real stumbling block to students and x is virtually never used outside mathematics, this lack of variety

significantly limited students’ ability to apply their mathematics.

Changes in the teaching of calculus

When efforts to improve the teaching of calculus started in the late 1980s, there was great variation amongst

the projects that were undertaken. Some were technology-driven, redesigning curriculum and pedagogy

using the power of the new computer tools—for example, Calculus&Mathematica, from the University of

Illinois, and Project CALC, from Duke. Others used no technology, but incorporated extended applications,

group work, and collaborative learning—for example, the New Mexico State Project. Over the next decade,

there was remarkable convergence among the projects. Effective components in one project were adapted

and incorporated by other projects—and eventually by mainstream authors. The most fundamental change

made by the new calculus texts in the 1990s was the introduction of many more nonstandard problems.

By the mid 1980s, before calculus reform got underway, such problems had been relegated to the end of

the exercise sets in the texts and were few enough in number that many students—and many instructors—

ignored them. Newer calculus texts have a much wider variety of problems, and fewer “template” problems

that can be solved by mimicking a worked example in the text.

Technology is incorporated in many current calculus courses. The Advanced Placement (AP) exam

taken by many high school students now requires a graphing calculator, as does the International Bac-

calaureate (IB). Most high school calculus courses, and hence most high school precalculus courses, are

taught with a graphing calculator. College courses are more varied. Some have not moved beyond the

memorization and multiple choice of the 1980s; others are now Web or computer based.

Although using technology in calculus is the most visible, and perhaps the most controversial, change

in the teaching of calculus, it is not the one that will have the most impact on student learning. Expecting

conceptual understanding on homework and exams is more important. Although faculty often spend more

time designing lectures than homework, most students learn more from homework than from lectures.

Changes in homework and exams have a larger effect on student learning than changing lecture content.

Requiring thinking is central to establishing the idea that mathematics is more than applying formulas.

To the surprise of faculty, students often described the new courses as being “more theoretical” than the

old. Although they are not using the word “theoretical” in the usual mathematical sense, from a student

perspective they are right. The new courses require more reasoning, justification, and explanation. Just

getting an answer is no longer enough.

Along with the increase in nonstandard problems and the use of technology, many new calculus courses

emphasize open-ended problems that require extensive writing, often in cooperative groups. In the early

1990s, several books of calculus labs were published; the IB now requires all students to submit a portfolio

as part of their final assessment.

Thus there is now both more variety in calculus courses and more emphasis on conceptual understand-

ing.

Cooperation with client disciplines

An unexpected side benefit of calculus reform has been increased cooperation between mathematics and

other fields, such as engineering, biology, physics, and economics. In their quest to learn how students used
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calculus, mathematicians talked to their colleagues in other departments, looked at their texts and exams,

and listened carefully to their needs. The result was some new texts that genuinely reflected the needs of the

sciences—for example, those from the University of Iowa and Iowa State—and much improved calculus

texts for the social sciences. Students take a subject more seriously—and learn it better—if faculty from

more than one field “conspire” (in the students’ words) to teach it to them.

However, more important than the improved texts was the good will generated by these conversa-

tions. Efforts to make the teaching of calculus more responsive to other fields led directly to the MAA’s

Curriculum Foundations Project. In this project, faculty from outside mathematics were invited to have

direct input into the current MAA curriculum review. Perhaps the most sobering aspect of the Curriculum

Foundation Project was how surprised and grateful the faculty from other fields were to be contacted. This

is an effort whose time was long overdue.

Impact of calculus reform

The most obvious measure of the impact of calculus reform is that the features initiated in the 1990s are now

commonplace in “traditional” courses. Some of the new features have been transformed—in some cases

their originators would say beyond recognition—but many have been adopted “as is” by standard textbooks.

There is a wider variety of problems than before, and the “Rule of Three”—Every topic should be presented

geometrically, numerically, and algebraically—which originated in calculus reform, has found its way into

a large number of calculus texts. The wider variety of problems and the use of multiple representations

(graphical, numerical, analytical, and verbal) make it harder for students simply to memorize template

problems—though still not impossible—and hence encourage conceptual understanding.

Most texts now allow the use of technology, although often as an add-on, to accommodate a variety of

faculty preferences. Open-ended problems and extended applications are found in many books, although

often as an add-on at the end of the chapter. Students are now expected to write more often in calculus

courses than they were in the 1980s, although seldom in university lecture courses with large enroll-

ments. However instructors who get their students to write report that writing both deepens conceptual

understanding and provides a window into their students’ thinking processes.

Summary

The impact of calculus reform has been substantial. In spite of objections—sometimes vociferous—to any

one particular aspect of the new courses (technology, conceptual, rather than formal, understanding), many

aspects of calculus reform are now so embedded in the mainstream that they are considered mainstream.

The changes that have had the most impact are not those that were originally considered to be the most

profound. For example, the topics covered have not been greatly impacted, in spite of the call for a“lean

and lively” curriculum. However, the pedagogy and types of problems solved have been impacted. During

the 1990s essentially every math department made some changes to their calculus courses. Some of these

changes have persisted, some have not, but all have made the teaching of calculus a subject of discussion

in many math departments where this was not the case previously.

In the long run, the largest impact of calculus reform is likely to be the creation of a community of

mathematicians who innovate and reflect on their teaching—and who do so in collaboration with faculty

in other disciplines and across institutional boundaries.

Acknowledgement: Parts of this paper are taken from “Calculus at the Start of the New Millenium,” by

Deborah Hughes Hallett, the Proceedings of the International Conference on Technology in Mathematics

Education, Beirut, Lebanon, July 2000.
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Calculus and Introductory College Mathematics:

Current Trends and Future Directions

Susan L. Ganter

Clemson University

Introduction

For better or worse, the ideas of calculus reform are deeply embedded in the conversations of the mathe-

matics community. Technology, cooperative learning, student projects, applications—the elements of this

movement—have become a part of the vocabulary in mathematics departments across the country. Efforts

to change the nature of the calculus course at the undergraduate and secondary levels have sparked discus-

sion and controversy in ways as diverse as the actual changes. Such interactions range from “coffee pot

conversations” to university curriculum committee agendas to special sessions on undergraduate education

at regional and national conferences. But what is the significance of these activities? Where have we been

and where are we going with calculus and, more importantly, the entire scope of introductory college

mathematics?

The observations to follow are based in part on two studies conducted for the National Science

Foundation (NSF) in the late 1990s: one to determine the national impact of the calculus reform movement

since 1988, and a second that examined the subsequent NSF Institutional Reform (IR) Program. The study

of calculus reform resulted in countless communications with the mathematics community and others

about the status of calculus, while the IR study examined the ability of institutions to integrate science

and mathematics across disciplinary boundaries and create an environment for learning that encourages

science literacy for all students at the undergraduate level. The outcomes from these studies (reported in

[1] and [2]) suggest the importance of considering the following series of questions:

1. What exactly have we learned about the teaching of introductory college mathematics?

2. What questions still need to be asked and answered, through carefully conducted research, to guide

future changes?

3. What do we now know about the interaction of the discipline of mathematics with other courses in the

sciences and beyond?

4. How can current knowledge about what students need to learn in introductory college mathematics—

and how they learn it—be applied in positive ways to the organization and delivery of these courses?

What have we learned about the teaching and learning of introductory college mathematics?

The report from the study of calculus reform [1] includes information from more than 300 studies and

writings about calculus reform over a ten-year period. Information for the report was collected to investigate
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what was learned about the effect of calculus reform on (1) student achievement and attitudes, (2) faculty

and the mathematics community, and (3) the general educational environment.

Both mathematicians and colleagues in other disciplines have stated the need for revision and renewal

in calculus that focuses on raising students’ conceptual understanding, problem-solving skills, analytical

and transference skills, while implementing new methods to reduce tedious calculations. Coordination with

other disciplines in science and engineering and interactions between different sectors of the mathematical

sciences community in the development of model curricula and prototypical instructional materials was

encouraged through funding initiatives by NSF and others. The movement has been described as an effort

to develop a vision for calculus that is challenging and stimulating, with the primary goal being to improve

the quality of calculus courses and the level of learning by students in these courses at all types of

institutions [1].

Calculus reform efforts have yielded mixed results in the areas of student achievement and student

attitudes. The varying outcomes at different institutions are certainly not surprising, given the wide range of

definitions of reform that have been implemented by each of the projects. Nonetheless, a number of elements

are in fact common to many of the projects, including the use of computer technology and applications

in the teaching of calculus. Many participants in the reform efforts also believe in the importance of

emphasizing a student-centered environment, including discovery learning and cooperative activities that

support a more conceptually-based course [1].

The existence of these common elements throughout the majority of the projects implies that the relative

success or failure of reform efforts is not necessarily dependent upon what is implemented, but rather

how, by whom, and in what setting. The consistent reactions of students from a wide variety of institutions

point to several key components in the success of a reform environment. For example, instructors must

communicate to students (and other faculty) the purpose of the changes being made in the calculus course.

This is perhaps not as easy as it seems, as the reasons for the change must be seen as relevant and

important to future success. It is unfortunate that many students believe mathematics is a static list of rules

and algorithms to be memorized, a barrier to be overcome before they can do so-called real problems in

other disciplines. Perhaps the most important role of reform efforts then is to challenge these beliefs and

help students to see the many uses of calculus, both within the discipline of mathematics and in a wide

range of problems from other disciplines. However, the means by which this can be communicated is not

at all clear and needs to be addressed by the mathematics community as a critical part of the reform efforts.

The level of personal attention available to students also greatly affects their attitude and level of

commitment in a calculus course. This is not a characteristic unique to reform courses, but one that has

been highlighted as a result of the foreign environment that a reform course introduces. Specifically, the

elements that define such a course are often ones that students have never experienced in mathematics

(or perhaps any other discipline) and therefore additional support is required as the students adjust their

learning styles. This is likely to be the reason that many of the projects report a dramatic shift in student

(and faculty) attitudes after they have experienced a couple of calculus courses using reform ideas.

One area of particular concern is the adamant opposition to reform of many students who have excelled

in the traditional environment. It is important that the reform efforts not cause these students to lose their

interest in mathematics, just as it is important that others be encouraged through the wider variety of

opportunities for success that reform courses offer. It is not necessarily the case that these two goals must

be in opposition. As with anyone who is opposed to change (including faculty), it is likely that these

students are simply reluctant to move from a learning environment in which they are successful to one

which is unfamiliar. Although this can be overcome with open communication and creative opportunities

that continue to challenge these students, it is certainly not something that can be deemed as unimportant

because “these students will succeed no matter what we do with them.” A primary goal of the reform

efforts is the creation of a course that makes calculus real and interesting for all students, including the

ones for whom the course has always been, as well as those for whom it has not.
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What questions still remain?

The first several years of the calculus reform movement were characterized by a whirlwind of ideas about

the organization of the course and the associated curriculum. Soon after came a dissemination phase,

where other institutions eager to participate and improve their own courses “jumped on the bandwagon.”

Throughout, skeptics of the changes—and even many of the “reformers” themselves—beganmore and more

to question the justification for these changes and the implications for faculty development, recruitment

of mathematics majors, and the place for mathematics within the undergraduate curriculum. Even though

many mathematicians conceded that change was necessary, they questioned the fact that the current changes

were being made without first carefully examining—as a community, rather than individually by project—

the overriding objectives and goals for students enrolled in introductory college mathematics courses.

Many claimed that the development of such goals is critical to the discipline of mathematics because these

introductory courses will in fact be the last formal mathematical training for a large majority of students.

Given these valid concerns, it is important that the mathematics community develop, research, and form

workable solutions for many difficult questions. One effort to address this issue [3] poses and discusses a

small subset of the questions prompted by the reform movement, including the following:

� What are the contributions that mathematics can—and should—make in the world of science, en-
gineering, and technology? How can we better nurture our relationships with colleagues in partner

disciplines?

� What mathematical skills and knowledge should an undergraduate student have after completing an
introductory college mathematics course?

� What has been learned about the cognitive processes involved in learning mathematics through the
extensive research conducted in this area during the past decade? How can we use this research to

better inform the development of introductory college mathematics courses?

� How does mathematics fit into the broader context of student learning; e.g., what are the life skills
that our students will need to succeed in the workplace?

� What is the appropriate role of technology in the teaching and learning of mathematics?
� How does an introductory college mathematics course contribute to the overall mathematics education
of our students? How can the changes made in these courses be used to improve other mathematics

courses?

� What is the appropriate role of colleges and universities in supporting curricular change? How can
administrators provide an environment that is conducive to change and enables faculty to develop the

necessary skills for supporting such change?

� What are the appropriate mechanisms by which the mathematics community can evaluate progress and
thereby better inform continuing change? What changes ultimately help students to better understand

mathematics and to have an appreciation for the importance of mathematics in our society?

Some of these questions will be discussed in the following sections.

What do we know about the interaction of introductory college mathematics with partner disciplines?

Mathematics can and should play an important role in the education of undergraduate students. Unfortu-

nately, students often do not see the connections between mathematics and their chosen disciplines; instead,

they leave mathematics courses with a set of skills that they are unable to apply in non-routine settings and

whose importance to their future careers is not appreciated. Indeed, the mathematics many students learn

often is not the most relevant to their chosen fields. For these reasons, faculty outside mathematics often

perceive the mathematics community as uninterested in the needs of non-mathematics majors, especially

those in entry level courses.
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The Mathematical Association of America (MAA) has gathered input from partner disciplines through

a series of eleven workshops held across the country from November 1999 to February 2001, followed

by a final summary conference in November 2001 (See theme 5 in this volume, [4] and [5]). Each

workshop produced a report summarizing its recommendations and conclusions. The reports were written

by representatives of the partner disciplines and directed to the mathematics community. The following

are some major recommendations from the partner disciplines — in the sciences and beyond — about the

learning that their students need to achieve in introductory college mathematics courses.

1. Emphasize conceptual understanding Mathematics courses in the first two years should focus on

understanding broad concepts and ideas. This emphasis should be used to assist students in the development

of precise, logical thinking, requiring them to reason deductively from a set of assumptions to a valid

conclusion. Proofs should be presented only when they enhance understanding — and even then at an

elementary level. When presented, the fundamental connection between proof and understanding must be

highlighted.

2. Emphasize problem-solving skills and mathematical modeling Introductory college mathematics

courses should develop the fundamental computational skills the partner disciplines require, but also

emphasize integrative skills; i.e., the ability to apply a variety of approaches to single problems, to apply

familiar techniques in novel settings, and to devise multi-stage approaches in complex situations. Students

should be expected to create, solve, and interpret mathematical models, including models from the partner

disciplines. Interpretations should include opportunities for students to describe their results in several

ways: analytically, graphically, numerically, and verbally.

3. Emphasize communication skills All courses (not just mathematics courses) should incorporate the

development of reading, writing, speaking, and listening skills. Such skills include the ability to explain

mathematical concepts and logical arguments in words. To develop these skills, they must be reinforced

continuously throughout the curriculum.

4. Strive for depth over breadth Mathematics departments should continue to offer calculus and linear

algebra in the first two years, but should make the curriculum more appropriate for the needs of the partner

disciplines. For example, emphasize two- and three-dimensional topics, and pay attention to units, scaling,

and dimensional analysis. Mathematicians should work with local colleagues from partner disciplines to

decide what topics can be omitted. The remaining topics can then be taught in more depth.

How can current knowledge be used to improve introductory collegiate mathematics courses?

The current information-based economy demands from citizens different skills than those of just 20 years

ago, ones that involve “the sophisticated use of elementary mathematics more often than elementary

applications of advanced mathematics” [6]. Individuals are required “to reason, to make sense of real-

world situations, and to make judgements grounded in data” [7]. Personal issues such as health, safety,

taxes, budgets, credit, and financial planning (just to name a few) force citizens to face decisions that

utilize quantitative information. It is difficult to function successfully without being able to interpret these

numbers in order to assess risks, to manage finances, and to make critical decisions [8]. Such skills,

broadly termed quantitative literacy (QL), are beginning to be recognized as critical to good citizenry in

a democracy of the 21st century—skills equal in importance to reading and writing.

However, QL is rarely an explicit goal of education—at any level, in any discipline. This is due in part

to the fact that a widespread need for QL has only recently been recognized, implying that the definition

of what it means to be quantitatively literate is still unclear. But the problem also is grounded in the

firmly established hierarchy within the mathematics curriculum, which implicitly states that if you are not

in the prescribed mathematics sequence leading to calculus, you are not succeeding in the mathematics
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game. And traditionally for students who have not fared well in this sequence in high school, this has

meant enrolling (or, more often than not, re-enrolling) in a college algebra course as their introduction to

college-level mathematics. How can we improve this situation?.

1. Promote the importance of quantitative literacy to educational and public policy leaders. The

civic responsibilities that imply a need for quantitative literacy need to be a high priority for education.

To encourage such a transformation, quantitative literacy must be visible to the public. Widespread im-

plementation will also imply the need to align quantitative literacy efforts with those of other educational

organizations and initiatives. Therefore, discussions among faculty from multiple disciplines need to be

initiated to determine the role of quantitative literacy in their discipline, in their courses, and in the goals

and requirements of their institutions [8].

2. Determine the appropriate expectations for quantitative literacy, especially in relation to differ-

ent levels of education. Mathematicians need to work with other educators to establish benchmarks for

quantitative literacy appropriate for graduates at the high school, two-year college, and four-year college

levels. Once established, these benchmarks will need to be supported with effective assessment of quanti-

tative literacy, including a web-based collection of class-tests, QL resources, tasks, and assessment items.

Existing large-scale tests also will need to be examined to determine the degree to which they do or do

not support QL goals [8].

3. Replace traditional college algebra courses with courses stressing problem-solving, mathematical

modeling, descriptive statistics, and applications in the appropriate technical areas. Students en-

rolled in college algebra usually leave these courses quantitatively illiterate and unable to apply any of the

techniques they have learned to problems of real significance. Therefore, mathematics courses that teach

them to think mathematically in context are critical to their continuing development as citizens [8]. College

mathematics curricula should provide alternative routes to advanced mathematics, while ensuring that each

student’s level of QL continues to develop throughout college. Such curricula will de-emphasize intri-

cate algebraic manipulation, provide non-calculus-based descriptive statistics and data analysis in the first

two years, and include non-calculus-based discrete mathematics and mathematical reasoning as alternative

introductory courses [4].

4. Use a variety of teaching methods, including team teaching and interdisciplinary courses. Since

different students have different learning styles, mathematics instructors should encourage the use of active

learning, including in-class problem-solving opportunities, class and group discussions, collaborative group

work, and out-of-class projects [4]. Team teaching and interdisciplinary courses also can be used to

model scholarly debate and cooperation; develop critical, process-oriented thinking; and provide different

perspectives to problem-solving—even within a subject. Students respond positively to team teaching—

the transitions between faculty add variety and emphasize relevance by connecting different disciplines

[2]. Team teaching also improves faculty to faculty mentoring and provides an informal peer review.

Appropriate technologies can be used to enhance all alternative teaching methods [4].

5. Emphasize the use of appropriate assessment. Mathematics departments need to establish mecha-

nisms for the development, review, and dissemination of effective instructional materials and techniques,

including collaborative efforts between mathematicians and partner disciplines that result in innovative

instructional materials. Institutional assessment of programmatic changes also should be encouraged [4].

Implications of the proposed changes

Changes such as those discussed here necessitate an overhaul of current institutional structures — the con-

version of a well-established educational system. Three critical components of affecting such institutional
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change are:

� Faculty rewards —Faculty are getting mixed signals from their administrators and are reluctant to

participate in curriculum development. Scholarship in teaching needs to be built into the promotion

and tenure guidelines.

� Change as a priority—Senior administrators need to provide the impetus and set the tone for change.

� Instructional resources —Limited resources are always a problem, especially for professional devel-
opment for faculty. But solutions exist, and departmental budgets need to be tied to renewing the

undergraduate curriculum [2].

1. Faculty rewards Institutions must be honest about their expectations of faculty members and ensure

that rewards match the stated requirements. There is concern that research-based tenure systems prevent

faculty who are particularly good at teaching and mentoring from being retained and promoted. The

challenge, however, is how to measure effectiveness when instructors promote learning through a diversity

of teaching styles.

The tenure system discourages non-tenured faculty from engaging in activities that would detract

from their own acquisition of tenure, including the development of non-traditional courses such as those

previously discussed. In addition, tenured faculty are often resistant to change for fear they will lose the

support of colleagues and administrators. Therefore, institutions need to provide incentives and rewards

for all faculty in the form of positive recognition, tenure, and promotion. Departments and colleges need to

have explicit conversations in order to agree on goals and establish priorities for the evaluation of teaching.

Finding a balance for innovation in education is difficult. However, faculty must not feel their careers are at

risk when experimenting with reform activities. Administrators must acknowledge and accept the potential

for failure in innovation.

2. Change as a priority Senior administrators must be involved early and often, with their enthusiasm

kindled by concrete examples of successes from faculty that provide credibility for the changes. In addition,

grass roots enthusiasm is essential—especially participation of young faculty who can continue the project

in the future. Staying power is critical—don’t give up. And, one very important lesson: there are many

research issues associated with such work; faculty need to be involved in the development of a solid

research base. Some implementation strategies include:

� consider and build from the core strength of your institution;

� as appropriate, collaborate with other institutions that have different core strengths;

� celebrate and build on past accomplishments;

� recognize that change involves stress, but this type of stress can motivate faculty and administrators to
work together in securing resources;

� get changes that promote QL on college agendas so that they receive attention;

� create a council of administrators, faculty, students, and business people to discuss curricular needs;

� re-examine the model for the relative importance placed on teaching, research, and service;

� build inter-institutional collaborative links for pedagogical as well as traditional research;

� foster the well-organized use of undergraduates to assist faculty; and

� encourage faculty to motivate other faculty, either through one-on-one mentoring, team teaching, or by
disseminating successful models [2].
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3. Instructional resources Faculty need significant support in order to implement QL (and other cur-

ricular changes) in their courses. Professional development opportunities that support these new roles for

faculty, housed within an infrastructure that can provide resources in quantitative literacy, need to be abun-

dant. Such resources might include case studies of innovative QL programs and best practices [8]. Faculty

development also requires resources for:

� release time from teaching duties,
� learning institutes and professional development workshops,
� cross-disciplinary experimentation, and
� development of new assessment instruments and mechanisms for evaluating effective teaching [2].

Ultimately, the creation of a structural home for quantitative literacy will be critical for widespread im-

plementation [8]. Departmental cultures need to change to support elements of QL, such as interdisciplinary

course development. Therefore, departments should work to function as cooperative units, rather than col-

lections of individuals, and support programs in which faculty that have experience with interdisciplinary

course development and other elements of QL mentor their colleagues [2].

Supporting QL in introductory college mathematics courses through networking

Experiences from curricular reforms in calculus and other disciplines reveal that a supportive network can

be used to promote buy-in by all affected individuals and groups [9]. Therefore, an important development

is the design and formation of the National Numeracy Network (NNN) to assist locales in which efforts

are underway to translate QL from aspiration into educational practice, to disseminate promising practices,

and to exchange information among existing and potential network sites. (Information about NNN, can be

found at www.math.dartmouth.edu/�nnn.)
Planned activities of the network include professional development experiences and opportunities to

learn about QL for educators and others and a Web site through which resources, information, and exchange

of ideas regarding QL will be made accessible to the broadest possible audience. Critical to NNN are local

projects and meetings that bring together schools, colleges, civic groups, the media, business, and industry.

Additional outreach efforts include research, reports, and publications that increase understanding of QL

and its significance in education, work, and private and civic life.

One part of NNN is a QL Resource Library that provides the opportunity for faculty to share ideas

by developing an extensive collection of QL materials across a variety of disciplines. The resource library

includes program descriptions, course syllabi, examinations, activities, laboratories, projects, readings,

publications, and examples of student work. Such a collection of materials is very important to the work

of NNN, serving as a resource for outreach efforts and as a means of teaching interested individuals and

organizations about QL. In addition, the QL Resource Library soon will include a database of individuals,

projects, and institutions involved in the development of QL curricula.

By focusing on different aspects of policy, practice, professional development, dissemination, and

assessment, the National Numeracy Network will provide a catalyst for quantitative literacy, especially in

grades 10 to 14. QL programs participating in the network already are working with organizations that can

directly influence a wider audience to create public pressure for QL. NNN institutions and organizations

are developing QL course materials and programs to share through professional development opportunities,

the QL Resource Library, and the QL Web site. [9]

Conclusions

It is certain that the next decade will bring more change in introductory college mathematics. These

changes will be tackled by a mathematics community that has experience with the issues, questions, and
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ideas presented here. We have come a long way in the development of an educational environment that is

conducive to positive change. The true success of these efforts will be measured by the fervor with which

the mathematics community and their colleagues in partner disciplines build upon these efforts and define

the appropriate place for mathematics in the undergraduate curriculum.

References

1. S. L. Ganter, Changing Calculus: A Report on Evaluation Efforts and National Impact from 1988 to 1998, MAA

Notes #56, Mathematical Association of America, Washington, DC, 2001.

2. S. L. Ganter and J. S. Kinder (Eds.), “Targeting Institutional Change: Quality Undergraduate Science Education for

All Students,” Targeting Curricular Change: Reform in Undergraduate Education in Science, Math, Engineering,

and Technology, American Association for Higher Education, Washington, DC, pages 1–27, 2000.

3. S. L. Ganter (Ed.), Calculus Renewal: Issues for Undergraduate Mathematics Education in the Next Decade,

Kluwer Academic/Plenum Publishers, New York, 2000.

4. S. L. Ganter and W. Barker, “A Collective Vision,” in S. L. Ganter and W. Barker (Eds.), A Collective Vision:

Voices of the Partner Disciplines, MAA Reports Series, Mathematical Association of America, Washington, DC,

2004.

5. S. L. Ganter and W. Barker (Eds.), A Collective Vision: Voices of the Partner Disciplines, MAA Reports Series,

Mathematical Association of America, Washington, DC, 2004.

6. G. Nelson, “Quantitative Literacy: A Science Literacy Perspective,” in B.L. Madison and L.A. Steen (Eds.),

Quantitative Literacy: Why Numeracy Matters for Schools and Colleges, National Council on Education and

the Disciplines, Princeton, NJ, 2003.

7. L. P. Rosen (with L. Weil and C. von Zastrow), “Quantitative Literacy in the Workplace: Making It a Reality,” in

B. L. Madison and L. A. Steen (Eds.), Quantitative Literacy: Why Numeracy Matters for Schools and Colleges,

National Council on Education and the Disciplines, Princeton, NJ, 2003.

8. L. A. Steen, Achieving Quantitative Literacy: An Urgent Challenge for Higher Education, MAA Notes #62,

Mathematical Association of America, Washington, DC, 2004.

9. S. L. Ganter, “Creating Networks as a Vehicle for Change,” in B. L. Madison and L. A. Steen (Eds.), Quantitative

Literacy: Why Numeracy Matters for Schools and Colleges, National Council on Education and the Disciplines,

Princeton, NJ, 2003.





Theme 1. New Visions for Introductory

Collegiate Mathematics

Courses below calculus face a number of challenges. They need to serve two populations: students who

plan to continue their study of mathematics and students who do not. They need to meet the mathematical

needs of today’s population of students (which is different from when many of us were in school). They

need to prepare students who do continue their study of mathematics to take a calculus course where

they are expected to think and understand and not just do computations. The six papers in this section

describe some of the major changes that are taking place in the courses below calculus and the challenges

that need to be met. Nancy Baxter Hastings, Sheldon Gordon and Bernard Madison discuss changes and

challenges at the precalculus level; Don Small and Scott Herriott discuss the state of college algebra; and

Janet Andersen discusses a new approach to quantitative literacy.

Nancy Baxter Hastings seeks to initiate a dialogue about some of the challenges confronting the

reform of precalculus. Nancy begins by claiming: “Introductory collegiate mathematics is in the midst of

a revolution.” She articulates some of the forces for change in introductory mathematics courses at the

collegiate level and how these concerns are being addressed. She goes on to describe the distinguishing

features of reform-based instructional materials and the pedagogical changes that the new materials have

fostered in the teaching and learning environment. Sheldon Gordon describes changes in the population of

students taking college-level mathematics, the impact of the growth of technology on teaching and learning,

changes in the mathematical needs of students and changes in pedagogy. Sheldon stresses the need for

conceptual understanding, arguing that today’s students need to be “prepared for calculus intellectually, not

just algebraically,” and they need to be able to grapple with realistic problems. Bernard Madison observes

that “preparation for calculus is the primary aim of grades 9–12 mathematics.” Like Sheldon, he argues

that this emphasis does not serve the current population of students well.

Don Small “presents a case for transforming traditional college algebra from a failed program attempting

to prepare students for calculus to one that enables students to address the needs of society, the workplace,

and the quantitative aspects of disciplines.” He describes some “characteristics of improved college algebra

programs, as well as the symbiotic relationship between a transformed college algebra and quantitative

literacy.” Scott Harriott describes several distinct models for a college algebra course, based on the content,

organization, and pedagogy of representative textbooks, and he contrasts these curricula with the traditional

college algebra course. He identifies some related issues of national and local educational policy.

Like the other authors in this section, Janet Andersen notes that a course designed to prepare students

for calculus is not necessarily well designed for students who need general education credit or need to

prepare to take courses outside the mathematics department. Janet describes the course she helped develop

at Hope College, Understanding Our Quantitative World, which was designed around the question: “What

skills and concepts are useful for informed citizens?”

When the calculus reform movement got under way in the late 1980s and early 1990s, the mathematics

teaching profession was energized and enthusiastic. . . . Changes in the course that feeds into calculus, pre-

calculus, have followed much more slowly. New reform-based precalculus books are being published (for
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example, see the texts in the section “Ideas and Projects that Work”), and there are pockets of change, but

there does not appear to be the wave of excitement that accompanied the changes in calculus. The good

news is that a national movement to refocus precalculus and other courses below calculus is now getting

under way. [This paper] articulates some challenges confronting the reform of precalculus and poses some

associated questions. Some questions have easy answers. Some are hard. Many are addressed in the papers

in this volume.

Refocusing Precalculus: Challenges and Questions

Nancy Baxter Hastings

Major changes have taken place in the mathematical education of students over the last decade. These

changes have come about for a variety of reasons, including the changing demographics of the students

taking college-level mathematics, the growth of technology and what it can provide for the teaching and

learning of mathematics, and the changing mathematical needs among the people who use mathematics. All

of these factors have major implications for what we teach, and how we teach it, both at the precalculus

level and in all other mathematics offerings.

Preparing Students for Calculus in the Twenty-First Century

Sheldon P. Gordon

Preparation for calculus has for several decades been a primary aim of grades 9–12 mathematics. Often

this preparation extends to grades 13 or 14. Consequently, calculus has taken on extreme importance and

extreme responsibility in US mathematics education. . . . This importance and responsibility are inflated and

serve neither calculus nor general education well. Neither students nor the general public see the value that

calculus delivers and very few people ever have any use for calculus techniques. The focus on preparation for

calculus has narrowed and hurried the mathematics curriculum leaving no time for appreciating or learning

to use the mathematics that is taught before calculus. And use of mathematics has become essential in

American life, requiring that the aims of grades 11–14 mathematics be broadened to include preparation for

life.

Preparing for Calculus and Preparing for Life

Bernard L. Madison

Traditional college algebra courses are not working. That was the strong consensus of the participants in a

recent Conference to Improve College Algebra, held at the U. S. Military Academy, February 7–10, 2002.

This conclusion was based on the courses’ outdated content, high FWD rates, and on the negative impact

these courses have on student perceptions of mathematics. The large number of students enrolled in college

algebra creates an urgency to transform these courses into ones that do work.

College Algebra: A Course in Crisis

Don Small

The traditional college algebra curriculum seems to assume that the course is a preparation for calculus.

But surveys at many institutions have shown that only a minority of college algebra students go on to take

calculus of any kind, and only a small fraction of those attempt a full-year calculus sequence. Thus, in recent

years, some textbook authors have developed alternative curricula that address the future mathematical needs

of the soft-sciences students.

Changes in College Algebra

Scott R. Herriott

The primary need for many students is to become quantitative literate citizens who are capable of interpreting

and using information presented quantitatively. . . . In constructing and teaching a course designed to improve

quantitative literacy, it is crucial that the goals and objectives be targeted at what students will most likely

encounter outside of academia. That is, what skills and concepts are useful for informed citizens? For many

mathematicians, this is a brand-new (and somewhat radical) idea.

One Approach to Quantitative Literacy: Understanding Our Quantitative World

Janet Andersen
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Refocusing Precalculus: Challenges and Questions

Nancy Baxter Hastings

Dickinson College

Introduction

With this paper, I hope to initiate a dialogue about some of the challenges confronting refocusing pre-

calculus. The paper articulates some of the forces for change in introductory mathematics courses at the

collegiate level and how these concerns are being addressed. It describes the distinguishing features of

alternative instructional materials and the pedagogical changes that the new materials have fostered in

the teaching and learning environment. Many of these changes have been implemented in calculus; in

fact, even the so-called traditional books reflect many of these new directions. Precalculus, however, lags

behind.

What is the problem?

Introductory collegiate mathematics is in the midst of a revolution. Forces for change include:

� a national concern about the lack of quantitative literacy among exiting college students [9, 11, 12, 13]
� the need for improved education of prospective teachers to reflect the recommendations of the NCTM
Standards and to allow prospective teachers to teach both the new subject matter and use the methods

suggested [1, 8]

� the recognition that many introductory mathematics courses have failed to be appealing or accessible
to vast numbers of students entering colleges and universities—especially women and minorities

� the concern that those teaching introductory mathematics do not take advantage of recent research
findings in mathematics and science education [2, 3, 4, 6]

� the concern that many courses do not make effective use of technology [7, 10, 14]

In addition, new fields of interest in mathematics and new mathematical techniques used in allied

disciplines have led educators to examine the content of introductory mathematics courses [5].

What is being done?

In response to these concerns, new instructionalmaterials and new teaching approaches are being developed.

For example, please see the texts described later in this volume in the section “Ideas and Projects that

Work.”
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Characteristics of alternative instructional materials

In general, alternative curricular materials cover fewer topics, and the topics that are covered are intro-

duced with more depth. Instead of introducing concepts strictly from a symbolic point of view, concepts

are introduced from multiple viewpoints: verbal, graphical, numerical and symbolic. The new materials

emphasize conceptual understanding and de-emphasize complicated pencil-and-paper manipulations.

Alternative materials typically use real-world applications to motivate mathematical ideas and to help

students understand the relationship between these ideas and the world around them. Students model real-

world data and use data analysis to determine the accuracy of the mathematical models. The integration of

applications provides answers to questions students frequently ask: “Why do I need to know this?” “What

good is this?”

The new instructional materials use projects to help deepen students’ understanding of mathematical

concepts and to emphasize inquiry. When undertaking a project, not only do students need to make decisions

about how to solve the given problem, they also need to ask themselves: “What assumptions do I need

to make?” “What issues do I need to pursue?” “What if . . . ?” In the process, students also develop their

communication and writing skills.

Finally, alternative materials use technology to empower students to explore mathematical concepts,

make conjectures and experiment, and tackle complex problems. Technology is also used to help students

to form mental images associated with abstract mathematical ideas—for example, to form a mental image

associated with the process of a function or with the end-run behavior of a function.

Changes in pedagogy

Alternative texts differ from traditional texts not only in content, but also in how they are used by both the

instructor and the student. They help to foster changes in both the teaching and the learning environments.

Traditional mathematics books are written for instructors, not for students. Since being a good teacher

is often equated to being a good lecturer, an instructor uses a traditional text to develop carefully honed

lectures, which closely follow the text. The instructor’s role in a lecture-driven setting is to tell students—

in a clear and logical way—everything they are expected to know and to present examples of problems

they are expected to be able to do—particularly on an exam. While the instructor lectures, students take

copious notes, but occasionally their minds wander. When strong students stop paying attention, or “skip

listen,” they fall into I’ll-just-have-to-figure-this-out-later mode, but when less able students skip listen,

many decide that the material is hopelessly confusing and quit in frustration.

Homework in a traditional lecture-based class consists of mimicking examples students see in class or

find in their book. Students study in isolation and compete with one another for grades. Students fear that

discussing a problem might be viewed as plagiarism and helping each other might be detrimental to their

own grades.

Alternative instructional materials, on the other hand, require students to read, write and talk about

mathematical ideas. The materials are written for students to read. Moreover, as students explore new

concepts, they think about mathematical ideas and make connections on their own, thereby developing a

sense of ownership of new concepts.

The new materials foster interactive teaching formats, in which traditional lectures are replaced by mini-

presentations, classroom discussions, and students working collaboratively. In this learning environment,

students are actively involved in the learning process. The instructor becomes the guide or intellectual

manager, mingling with the students as they work, posing probing questions, and encouraging students

to share ideas with their peers and to listen carefully to what their peers have to say. The emphasis in

the classroom shifts from the instructor teaching to the students learning. Students become responsible for

learning and instructors become responsible for helping them learn how to learn.
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The alternative materials seek to help students become confident, competent and creative problem

solvers, rather than to help them learn problem-solving algorithms by rote. They seek to help students to

utilize new ideas as well as to understand them. They seek to help students develop their mathematical

communication skills. And maybe most importantly, they seek to make learning mathematics a more

enjoyable experience.

A dozen challenges, plus one, confronting refocusing precalculus

As we said in the introduction, many of the changes described above have been implemented in the

instructional materials for calculus. When the calculus reform movement got under way in the late 1980s

and early 1990s, the mathematics teaching profession was energized and enthusiastic. Colleagues were

excited about designing new materials and exploring ways to utilize emerging technologies, including both

computer algebra systems and graphing calculators.

Changes in the course that feeds into calculus, precalculus, have followed much more slowly. New

reform-based precalculus books are being published, and there are pockets of change, but there does not

appear to be the wave of excitement that accompanied the changes in calculus. The good news is that a

national movement to refocus precalculus and other courses below calculus is now getting under way.

The remainder of this paper articulates some challenges confronting the reform of precalculus and

poses some associated questions. Some questions have easy answers. Some are hard. Many are addressed

in the papers in this volume.

1. Serving two student populations: students for whom precalculus is a gateway course and those for

whom it is a terminal course. Two possibly conflicting goals of precalculus are (1) to prepare students

to continue their study of mathematics (as well as other quantitative disciplines) and (2) to provide students,

especially those who choose not to continue, with a meaningful and positive learning experience.

Challenge: We need to identify and meet the very different needs of students for whom precalculus

is a gateway to studying higher level mathematics and those for whom it is a terminal course.

Questions: Is it possible to meet the needs of both of these groups of students in the same course?

If it is not, should we teach to the majority, for whom precalculus is the last math course they will

ever take, or to the minority who plan to continue on? One possibility is to offer different courses

for the various groups of students. But how would we place students in the appropriate course?

2. Serving two (other) student populations: high school students and post-secondary students. At

the high school level, precalculus is often a capstone course for relatively strong students, whereas at the

college level it is a low-level course for underprepared students.

Challenge:We need to develop materials that meet the needs of both high school and post-secondary

students, including non-traditional students who return to college after ten, twenty, or even thirty

years.

Questions: Is this feasible? Are the needs of high school and post-secondary students the same? Can

the same materials be used effectively with both groups? Should separate materials be developed?

3. Positioning students to understand calculus. Since the term “precalculus” means “before calculus,”

it is reasonable to assume that one of the primary objectives of a precalculus course is to prepare students

for calculus. Many traditional precalculus courses, however, simply reteach algebra and trigonometry.

Moreover, by emphasizing symbolic manipulation, traditional courses help solidify students’ misconception

that the goal of mathematics is to use memorized routines to get the answers in the back of the book.
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Students do not see any new mathematics in traditional courses, they are not exposed to thinking about

mathematical ideas and they do not know what to expect in calculus. As a result, students don’t understand

why the course is called “precalculus,” and when they take calculus, they find a huge disconnect between

their precalculus and calculus courses. Consequently, many are lost from the start.

Challenge: Precalculus needs to position students to understand fundamental calculus concepts by

providing them with a conceptual understanding of basic ideas, such as the limiting behavior of a

function, the rate of change of a function, and the accumulation of quantities—without mentioning

the terms limit, derivative, or definite integral.

Question: How can precalculus provide students with a firm basis for understanding fundamental

concepts they will encounter in calculus?

4. Preparing students to do calculus. The previous challenge claims that students need to understand

what calculus is. However, students also need to be prepared to do calculus. There needs to be a balance.

Too often we hear calculus students say: “I understand calculus. I just can’t do it.” In other words,

they (think they) understand what a limit is or what a derivative is, but they don’t have the necessary

computational tools for evaluating a limit or finding the zeros of a derivative. As a result, many students

become totally dependent on technology (see Challenge #8).

Challenge: Precalculus not only needs to position students to understand calculus concepts, but it

also needs to equip students with the tools needed to do calculus.

Questions: What algebraic, geometric and trigonometric concepts do students need to acquire

in order to do calculus? How do we test whether or not students have the appropriate skills

before entering calculus? How do we help students succeed in calculus, especially when they have

deficiencies and have already taken precalculus? Is an integrated precalculus/calculus I course,

which provides a just-in-time review of precalculus concepts, an effective alternative?

5. Preparing students to use precalculus in other disciplines and in life. For many students, precal-

culus is a terminal course, not because they don’t like mathematics or didn’t do well in the course, but

because the course fulfills either the quantitative requirement for graduation or the mathematics require-

ment for their major. Students need to be able to transfer what they learn in these courses to the world

outside the precalculus classroom. They need to feel that what they have learned is connected to their lives

either because it interests them or because they feel that the concepts and skills they acquire will be useful

in achieving their academic and career goals.

Challenge: Precalculus needs to prepare students not only to continue their study of mathematics,

but also to use precalculus in other disciplines and in their lives beyond the classroom. Students

need to understand why the ideas they are learning are important.

Questions: How can we help students feel that what they learn in precalculus is connected to their

lives? How can applications be used to achieve this need? How can precalculus courses position

students to succeed in what is to come, even if what is to come is not in another mathematics

course? And in the long run, how can we prepare students to use mathematics in ways that we

cannot foresee today?

6. Increasing students’ self-esteem and helping them to develop confidence to do mathematics.

Many students feel anxious about mathematics, especially if they are faced with an unfamiliar situation.

Students can acquire self-esteem and develop confidence in their own abilities through peer support and as

a result of achieving (even small) successes. This will not happen if they are simply mimicking problems

in the book.
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Challenge: We need to develop curricular materials and design learning environments that help

increase students’ self-esteem and help students develop confidence that they can do mathematics

on their own.

Questions: What types of learning environments help students feel confident about taking risks,

asking questions, and sharing ideas? What types of instructional activities help students think about

mathematical ideas, explore new concepts, and tackle unfamiliar problems on their own? How can

we help students develop a can-do attitude?

7. Making the study of precalculus an enjoyable experience. Closely related to the previous two

challenges is the fact that many students claim that they “hate math.” It is just not their thing. They don’t

enjoy taking mathematics courses. They spend most of their time uncertain about why they are doing

what they are doing and questioning why they need to do it anyway. They feel inept and are unable to

utilize what they have learned in other courses. On the other hand, something about math turns us (as

mathematicians) on. We talk animatedly. We scribble on napkins. We enthusiastically share our results.

Challenge: We need to develop curricular materials and design learning environments that make

taking precalculus a positive learning experience for students.

Questions:How do we help our students share the excitement that we feel when we see a connection

between things that we know or when we discover something new? And how can we do this,

realizing that our students’ interests, abilities, and inclinations may be quite different from ours?

8. Balancing the use of technology and the use of pencil and paper. Technology is a powerful tool,

and students quickly—frequently, too quickly—turn to it for help. However, in order to be able to interpret

the responses provided by technology and determine whether or not the responses are reasonable, students

need to know how to perform basic computations, do basic algebraic manipulations, and graph basic

functions by hand. And they need to know when to use these skills and when to turn to technology for

assistance.

Challenge: In addition to ensuring that students have acquired the basic computational, algebraic

and graphing skills necessary to do calculus (see challenge #4), precalculus should help students

learn to use technology wisely and appropriately.

Questions:What is the appropriate balance between the use of technology and the use of pencil and

paper? How can alternative precalculus courses help students to think through a situation before

turning to technology? How can we articulate questions so that students are not tempted to use

technology as a crutch?

9. Using the outcomes of research in mathematics education. The results of research about how

students acquire mathematical ideas can help us develop effective curricular materials. [3, 4, 6]

Challenge: Research pertaining to how students acquire fundamental precalculus concepts needs

to be undertaken. The results of this research should guide the development and refinement of

curricular materials.

Questions: How do those who are developing curricular materials forge working relationships with

colleagues who are undertaking research in mathematics education? What types of research might

someone who is developing materials conduct? What types of data should they collect? What types

of questions should they ask? How should they analyze the results?

10. Evaluating alternative courses. The research described in Challenge #9 concerning how students

learn is part of the formative component of the evaluation process, since the results are used to direct the

development or revision of instructional materials. Other important parts of the formative component are
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analyzing student learning gains and measuring changes in student attitudes. The summative component

of the evaluation process involves analyzing how well the new course or program meets its goals.

Challenge: Evaluation needs to be viewed as an essential part of the development process. All

curriculum development projects should have clearly defined sets of objectives for the course and

learning goals for the student, and they should have ways of measuring whether or not these goals

are attained.

Questions: Again, what types of tools might we use to evaluate reform-based courses? What type of

data do we want to collect? How can we compare students in a traditionally taught course to students

in a course with a new focus? What instructional materials should be classified as alternative or

refocused? What data has been collected that supports their effectiveness? For example, have the

new materials helped increase the retention rate in precalculus courses where they are used? Have

they had an impact on the continuation rate into calculus? Can students apply what they learn in

other courses and in the client disciplines? Do students feel that what they learn is useful? Do

students feel confident about tackling new problems? Are students able to tackle new problems?

Did students enjoy the course? And so on.

11. Drumming up interest in precalculus at the post-secondary level. Related to the observation that

precalculus serves both the secondary and post-secondary student populations (see Challenge #2) is the

fact that many college and university instructors view precalculus as a low-level course and the students

as being mathematically disposable.

Challenge:We need to help colleagues to recognize the importance of precalculus in the curriculum

and to help them change their attitudes not only about teaching precalculus, but also about the

students who take precalculus.

Question: How? (See Challenge #13.)

12. Disseminating alternative pedagogical approaches and curricular materials. As we mentioned

earlier, the work of refocusing precalculus has already begun. In response to the calculus reform movement,

innovative new application-driven precalculus texts have been developed that integrate precalculus and data

analysis concepts and utilize hands-on, inquiry-based pedagogical approaches.

Challenge: We need to help spread the word about the existence and effectiveness of these new

approaches and the rationale for change.

Question: How do we get the word out?

13. Defining the problem and convincing colleagues and administrators that changes need to be

made. The calculus reform movement was bolstered by the fact that, in the late 1980s, fifty-percent of

the students who took calculus failed. Clearly change was necessary.

Challenge: We need to challenge our tradition-bound colleagues to rethink both what they teach

in precalculus and the way they teach it. We need to challenge our administrators to support these

efforts. But first of all, we need to convince our colleagues and administrators that change is

necessary.

Questions: How do we clearly state what the problem is? How do we spread the word that there

is a problem? How do we put forth simple, convincing arguments, supported by data, that change

is necessary?

Summary

Refocusing precalculus is a formidable task. The student audience needs to be identified (see Challenges

#1 and 2). The intended outcomes for students and the goals for precalculus need to be defined (see
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Challenges #3-7). New instructional materials need to be developed and evaluated (see Challenges #8-10).

A comprehensive dissemination program needs to be launched (see Challenges #11 and 12). And, most

importantly, the current state of precalculus needs to be articulated, and administrators and colleagues need

to join the movement (see Challenge #13).
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Preparing Students for Calculus in the Twenty-First Century

Sheldon P. Gordon

Farmingdale State University of New York

Major changes have taken place in the mathematical education of students over the last decade. These

changes have come about for a variety of reasons, including:

(1) the changing demographics of the students taking college-level mathematics,

(2) the growth of technology and what it can provide for the teaching and learning of mathematics,

(3) the changing mathematical needs among the people who use mathematics.

All of these factors have major implications for what we teach, and how we teach it, both at the

precalculus level and in all other mathematics offerings.

The student population

We first look at the changes in the student population. Table 8.1 shows total collegiate enrollments, in

millions, in various years since 1955 and indicates how dramatic this demographic change has been—an

almost six-fold increase in forty years.

Year 1955 1965 1970 1975 1980 1985 1990 1995 2000

Enrollment (in millions) 2.66 5.92 8.58 11.19 12.10 12.25 13.82 14.95 15.31

Table 1. Source: Statistical Abstracts of the U.S., Digest of Educational Statistics

In recent years, it has become commonplace to read and hear the media describe any situation involving

rapid growth as exponential, whether or not that is an appropriate model. Using the regression features

available on all graphing calculators and spreadsheets, we find that the exponential regression function

associated with this data is C.t/ D 3:418.1:0358/t , where t D 0 corresponds to the year 1950. The base,

or growth factor, of 1:0358 indicates that collegiate enrollment has been growing at an annual rate of about

3.6% over this time period. The associated correlation coefficient, r D 0:9089, indicates a high degree of

correlation. This function is shown in Figure 1 superimposed over the data points. We see that it is not a

particularly good fit because of the concave down pattern in the data compared to the concave up growth

pattern of the exponential function.

The pattern in the data actually suggests a power function of the form y D Atp , with 0 < p < 1 as a

more appropriate choice. Again using the regression features of a calculator, we find that a power function

that fits this data well is D.t/ D 0:7719t0:7859, where t D 0 also corresponds to the year 1950. This

64
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Figure 1. Exponential Model for Enrollment

function is shown in Figure 2 and we see that it is a much better match to the data than the exponential

function in Figure 1. The corresponding correlation coefficient, r D 0:9906, indicates a very high level of

correlation.
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Figure 2. Power Function Model for Enrollment

The data in Table 8.2 shows the enrollment, in millions, in collegiate mathematics offerings (excluding

statistics and computer science courses) since 1960.

Year 1960 1965 1970 1975 1980 1985 1990 1995 2000

Math Enrollment (in millions) 0.80 1.33 1.76 2.09 2.45 2.52 2.86 2.86 2.89

Table 2. Source: 2000 CBMS Study: Undergraduate Programs in the Mathematical Sciences

The concave down pattern in the data certainly suggests a power function model; we find that N.t/ D
0:1509t0:7898, where t is the number of years since 1950. The associated correlation coefficient is r D
0:9752. This power function for total mathematics enrollment, with power p D 0:7898, is growing slightly

more rapidly than the power function for total collegiate enrollment where p D 0:7859. So, roughly the

same proportion of students is taking mathematics courses, which can be interpreted as both good and bad

news to the profession. However, if we just look at the two most recent entries from Tables 8.1 and 8.2,

overall college enrollment is up 2.4% from 1995 to 2000, while math enrollment is up only 1%. So the

short term trend is not a healthy situation for mathematics.

For comparison, the corresponding exponential regression function for this data is M.t/ D 0:8573 �
.1:029/t , where t D 0 corresponds to 1950. The growth factor 1:029 indicates an annual growth rate of

about 2.9%. The corresponding correlation coefficient is r D 0:9031. Both the power function (solid) and

the exponential function (dashed) are shown in Figure 3 and it is clear that the power function is a better

fit to the pattern in the data.

Based on the two exponential models, we see that the growth in mathematics enrollment has proceeded

considerably less rapidly (2.9%) than the growth in the overall college enrollment (3.6%). It is interesting

to note that we come to the same conclusion about which process has grown faster; this is not always the

case and often will depend on the model chosen.
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Actually, the flattening in the data seen in the 1980–85 period (from t D 30 to t D 35) and again

from 1990 to 2000 (from t D 40 to t D 50) suggests that a better fit might be achieved using a quartic

polynomial. From a more sophisticated point of view, we should expect that this would be a much better

fit because quartics are a five-parameter family of functions, while exponential and power functions are

two-parameter families. The additional three parameters provide three extra degrees of freedom and so

should lead to a significantly better fit to the data.

Next, Table 8.3 shows the total U.S. population, in millions, since 1950.

Year 1950 1960 1970 1980 1990 2000

Population 150.7 179.3 203.3 226.5 248.7 281.4

Table 3.

The associated exponential regression function for the U.S. population is P.t/ D 85:38e0:012t D
85:38.1:0121/t , where t is the number of years since 1900. The growth factor 1:0121 indicates that the

U.S. population has been growing at an annual rate of about 1:21% over the time period from 1950 to

2000. This is considerably slower than the rate of growth of either the entire college-level enrollment or

the mathematics enrollment. The correlation coefficient r D 0:9897 indicates a very high level of positive

correlation and, from the graph in Figure 4, we see that the exponential fit is quite good.
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Figure 4.

There are several significant implications of the above information. Fifty, and even 30 years ago (when

most of the current mathematics faculty were in school), the students coming to college represented a very

small portion of the total U.S. population. From a traditional mathematical perspective, they were an elite

group who had mastered a high level of proficiency in traditional high school mathematics, particularly

algebraic manipulation. They entered college reasonably well prepared for the standard freshman course

in calculus, which tended to have a strong algebraic focus.
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More recently, as the cadre of college-bound students has increased dramatically, they can no longer

be viewed as an elite group. Certainly, a comparable percentage of today’s students are as good as the elite

of the past, but these students likely attend the elite colleges. And, both today’s elite students and the next

tier of students have increasingly taken more sophisticated mathematics courses in high school. In 2004,

about 225,000 students took the AP calculus exam; reportedly, about twice as many took AP calculus in

high school, but did not take the AP exam. In addition, many other high school students took non-AP

calculus—often polynomial calculus, though a growing number take International Baccalaureate courses

and dual enrollment courses to get college credit for calculus at a local college. Together, this is greater

than the number of students who take college calculus. Consequently, today’s elite students are rarely seen

in first year college calculus, let alone in precalculus or courses further down the collegiate mathematics

sequence.

Furthermore, the number of students taking AP calculus has been increasing by about 8% for each

of the last few years. This is considerably higher than the 2.9% rate of increase in college mathematics

enrollment based on the exponential model. The implications of this fact are that collegiate calculus

enrollments are not likely to increase much at all; if anything, they may continue the slight decline that has

been observed over the last decade or so, as reported in the CBMS studies [1]. Consequently, we should

expect, if anything, an increase in the proportion of students taking courses below the level of calculus in

the foreseeable future.

Moreover, let’s look at mathematics enrollments from a somewhat broader perspective. According to

the 2000 Statistical Abstracts of the United States, 1,164,792 bachelor’s degrees were awarded in 1996. Of

these, only 13,143, or slightly over 1%, were in the mathematical sciences (which includes a large number

in mathematics education). In the same year, 758 associate’s degrees were awarded in mathematics out of

a national total of 555,216 associate’s degrees, which is on the order of one tenth of one percent. While we

in the mathematics profession have a preoccupation with calculus in particular and the mathematics major

in general, these offerings are only small potatoes at most colleges and universities. And by focusing on

having these courses serve the needs of math majors, we tend to do a huge disservice to the mathematical

needs of the overwhelming majority of the students we face.

Finally, an examination of the data in the CBMS survey [1] and other studies of mathematics enroll-

ments in both high school and college show a dramatic drop-off from one year to the next and one course

to the next. Historically, about 50% of the mathematics audience is lost each year in high school. The

efforts of NCTM over the last decade to keep students enrolled in mathematics longer has improved these

figures dramatically from algebra I to algebra II; the drop-off rate is now only about 15%. However, the

50% drop-off figure also applies to each semester in college. As several physicists have put it, “the half-life

of math students is one semester.” In an increasingly quantitative society, this should not be acceptable.

Technology and its implications for mathematics education

The student population that the majority of colleges face today consists predominantly of students who

increasingly have not mastered traditional high school mathematics. In turn, ever greater proportions of

students are being placed in remedial tracks designed to develop all the traditional algebraic skills that

once were necessary for a traditional calculus course.

But, freshman calculus courses have been undergoing significant change in the last decade as a result

of the calculus renewal movement. These reform calculus courses seek to achieve:

� a balance among graphical, numerical, and algebraic approaches (the Rule of Three),
� an emphasis on conceptual understanding rather than rote manipulation, and
� a focus on realistic applications from the point of view of mathematical modeling, often through an
early introduction to differential equations.
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Much of this is possible because of the availability of sophisticated technology, most commonly graph-

ing calculators, although some schools make heavy use of computer software such as Derive, Maple or

Mathematica with CAS (Computer Algebra System) capabilities. An analysis of the status of this movement

is in [2] and [3]. A discussion of the challenges to be met in the forthcoming decade is in [4].

Technology has not stood still since the advent of the graphing calculator. The first generation of

graphing calculators, such as the TI-81 and the TI-85, essentially provided the tools to implement the

graphical aspect of the Rule of Three. The second generation, such as the TI-82, the TI-83, and the TI-86

and similar models from other manufacturers, provided additional tools to implement the numerical aspect

through the use of lists, tables, and spreadsheet-like features. The newest generation, such as the TI-89

and the Casio CFX-9970G, now complete the triad by providing the CAS capability to perform algebraic

operations such as FACTOR, EXPAND, SIMPLIFY, SOLVE, DIFFERENTIATE, and INTEGRATE at the

push of a button. They can solve, in a fraction of a second, any purely manipulative problem that we would

ever have expected our very best students to do. When CAS capability was available only on a computer,

it could perhaps be ignored as being too inconvenient to require of all students, except possibly in some

advanced courses with limited enrollment. But, given the availability and reasonable prices of these new

hand-held tools, we must face the challenge of rethinking the content, as well as the long-term value to the

students, of any mathematics course that continues to place the development of traditional manipulative

skills as its raison d’être.

But, if the students in college-level math courses are using sophisticated technology to assist in learning

and doing mathematics, the practitioners who actually apply mathematics in all quantitative fields are

utilizing technology that is at least as powerful as what we have available in the classroom. And this trend

will undoubtedly expand as the capabilities of technology grow and the array of problems encountered

outside the classroom expands in their level of sophistication and complexity.

In reality, any routine operation that people use repeatedly has already been programmed. It therefore

makes little sense to offer mathematics courses that focus primarily on making students into imperfect

organic clones of a $150 graphing calculator with CAS capabilities! The students will never win the

competition — they will never be as fast or as accurate as the machine. Instead, we should be focusing

on the intellectual and applied aspects of the mathematics that the machines cannot do.

The challenge we face is to find a reasonable balance between the use of technology and the level of

algebraic skill development that is essential for utilizing the technology wisely.

Changes in the mathematical needs of students

In a number of presentations—for instance, at the conference Confronting the Core Curriculum, which took

place at West Point in 1994—Henry Pollak has made a strong issue of the changes that have taken place

over the last half century in mathematics that is used in practice. Fifty years ago, virtually every problem

was continuous and deterministic. Problems with a discrete or stochastic component were almost non-

existent. Basically, algebraic methods and differential equations with closed form solutions ruled! Today,

the tables have turned 180ı — virtually every problem that arises is inherently discrete (in large part

because of the digital age in which we live) and virtually every problem has some probabilistic component

(there is always some uncertainty). But the mathematics curriculum, especially its first few years, has not

changed appreciably to reflect the needs of the people who now use the mathematics.

The question we need to consider is: What should be the focus of mathematics education, especially

at the precalculus level? I believe that the mathematical discussion at the beginning of this article is a

large part of the answer. Very few people today, let alone in the future, will need to factor anything as

complicated as x8 � y8. However, virtually any educated individual will need the ability:

1. to examine a set of data and recognize a behavioral pattern in it,

2. to assess how well a given functional model matches the data,
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3. to recognize the limitations (often due to uncertainty) in the model,

4. to use the model to draw appropriate conclusions, and

5. to answer appropriate questions about the phenomenon being studied.

In turn, this process requires

� A deep understanding of the function concept, function notation, and the meaning of variable.
� A knowledge of different families of functions, including being able to distinguish between the different
families graphically, numerically and algebraically.

� A knowledge of the behavior of the different families of functions depending on one or more parameters.
� The ability to select the appropriate tool, be it pencil-and-paper, graphing calculators, spreadsheets, or
CAS system, to solve the equations that arise from using the models.

� The ability to interpret the mathematical results and to communicate these ideas to others.

All of these principles underlie the MAA’s CUPM Curriculum Guide 2004 [5], the NCTM Standards

[6] and the AMATYC Crossroads Standards [7]. More extensive discussions of reform efforts in the

courses that precede calculus are in [8], [9], and [10].

Let’s see what these ideas mean in the context of precalculus courses and preparing students, not

only for calculus, but also for courses in all other quantitative disciplines. Perhaps the best way to see

this is from the perspective of some of our critics—the faculty in other disciplines who express recurring

complaints about what mathematical skills and knowledge students bring with them to those other courses

and the students themselves who vote with their feet to abandon mathematics in such relentless numbers.

In the past, the first mathematics course that appeared on the “radar screens” of the traditional quanti-

tative disciplines (physics, chemistry, and engineering) was calculus. The introductory courses they offered

were all calculus-based and so any course below calculus did not directly serve any of their needs. At

most schools, these departments, especially physics and chemistry, now offer non-calculus-based versions

of their introductory courses to much larger audiences than those who take the calculus-based courses. As

a result, what students bring from precalculus and college algebra courses—and what they don’t bring—is

now a growing concern to the faculty in these other disciplines.

What then do students need to succeed in courses in other fields? They certainly need to know what

a variable is, so that they can understand and use the formulas that arise. They need to know several

fundamental classes of functions, most notably linear, exponential, logarithmic, and power functions.

(Other than projectile motion, there are relatively few problems that lead to polynomials; can you think of

any? Other than inverse proportions and inverse square laws, there are virtually no problems that lead to

rational functions.)

Certainly, these are topics in standard precalculus and college algebra courses, but they tend to get

buried in a much more extensive array of techniques for factoring polynomials and producing graphs of

every possible type of rational function. Is this really necessary? Not for the other disciplines. What about

for calculus? Let’s see where our years-long development of rational expressions and rational functions

ends up. In order to find closed-form solutions for a handful of differential equations, such as the logistic

equation y 0 D ay � by2, one usually applies the method of partial fractions. (Ironically, there are simple

ways to avoid the use of partial fractions altogether using a clever substitution to transform the logistic

differential equation into a simpler one that can be integrated easily without partial fractions; one can also

utilize a CAS, if desired.)

But, to prepare for this, there is a heavy emphasis in traditional calculus II courses on integration

using partial fractions—often all four exhaustive (and exhausting) cases. To prepare for this, calculus I

courses often devote an inordinate amount of time to differentiating rational functions. To prepare for

that, precalculus courses emphasize the behavior of all manner of rational functions and their graphs and

occasionally even partial fraction decompositions. To prepare for that, college algebra courses emphasize
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the algebraic operations of adding, subtracting, multiplying, dividing, and reducing complex fractional

expressions. Each of these is a hard algebraic technique that “separates the men from the boys”. Is it any

wonder that we see a 50% drop-off in mathematics enrollment with each subsequent course?

Is this what we want to do? If the techniques were so vital for success in subsequent courses (as

was certainly true in the past) and if it was not possible to introduce what is needed on a timely basis in

those subsequent courses to the small fraction of students who really need it, then a case can be made to

include those topics. But these skills are no longer that important. Modern differential equations courses

typically depend on computer software, including CAS systems to generate closed-form solutions, so that

the qualitative behavior of solutions and their dependence on initial conditions has become a far more

important aspect of those courses. Similarly, there is now a strong emphasis on mathematical modeling

to demonstrate the power of differential equations to provide understanding of a wide variety of natural

processes.

The reality is that our students will rarely, if ever, have to integrate those terrible differential equations

by hand. So, do they really need all that algebraic preparation? And, if they don’t need all of it, what else

can and should we do with the resulting available time in all our courses from developmental algebra up

through calculus?

The need for conceptual understanding

One of the most common complaints from faculty in other disciplines is that students do not know

how to find the equation of a line. That is something we certainly teach, repeatedly, in every course in the

curriculum. Just open any standard textbook from elementary algebra to precalculus and there are hundreds

of problems that read: Find the equation of the line through the points .1; 4/ and .5; 12/. What more could

the physicists, chemists, biologists, economists, etc. want?

Well, the problems that arise in their courses tend not to have just one digit, positive integers, for a

start. The slope typically does not work out to be a one-digit integer or a simple fraction such as 1/2 or

1/3 at the worst. And, much more importantly, the faculty in the other disciplines tend not to give the

students two simple points and tell them just to create the equation. They expect their students to make a

connection between the mathematics and the context, so that the equation and its component terms provide

insight into the situation. They also expect their students to use the equation to answer questions about the

context. Shouldn’t their students be able to do that based on what we teach them in traditional courses?

In a recent article by F.S. Gordon [11], the answer to that last question turns out to be a resounding

No! As one part of an extensive study comparing student performance, success rates, and attitudes based

on the type of precalculus course—reform with a modeling emphasis or traditional with an algebraic

emphasis—the department posed a series of common questions of a purely algebraic nature on final exams

for both precalculus groups. One of these common questions had a contextual flavor. The students were

given values for the enrollment at a college in two different years and were asked to find the equation of

the linear function through those points and to give an interpretation of the meaning of the slope of the

line in the context. In both groups, virtually every student could calculate the slope and find the equation

of the line. In the reform group, virtually every student could give a meaningful interpretation to the slope.

But in the traditional group, only about one-third could give a meaningful interpretation! A third left that

part of the question out altogether; a large number simply restated the formula for the slope in words—the

change in y over the change in x—but did not interpret the value or the context.

As the author put it, “unless explicit attention is devoted to emphasizing the conceptual understanding

of what the slope means, the majority of students are not able to create viable interpretations on their own.

And, without that understanding, they are likely not able to apply the mathematics to realistic situations.”

She goes on to address the broader implications of this finding. “If students are unable to make their

own connections with a concept as simple as that of the slope of a line (which they have undoubtedly
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encountered in previous mathematics courses), it is unlikely that they will be able to create meaningful

interpretations and connections on their own for more sophisticated mathematical concepts.”

We, and faculty in other disciplines, expect students to understand the significance of the base (growth or

decay factor) in an exponential function. We expect them to comprehend what the parameters in a sinusoidal

function tell about the phenomenon being modeled. We expect them to understand the significance of the

derivative of a function and the significance of a definite integral. But, if students cannot create the

connection between the slope of a line and its meaning in a context, it is clear that we should not expect

them to create comparable connections of more sophisticated ideas on their own. It is our job to help them

make those connections by emphasizing the meaning of the concepts, not just emphasizing the formulas

to be memorized and applied by rote.

One of the main themes of the calculus reform movement is an increased emphasis on conceptual

understanding of the fundamental mathematical ideas and methods, not just a focus on the development

of manipulative skills. (Remember the old adage: You take calculus to learn algebra.) This same principle

of stressing conceptual understanding must be applied in the courses below calculus as well. If nothing

else, we want the students to be prepared for calculus intellectually, not just algebraically. If they have not

developed the ability to understandmathematical concepts and to value the importance of that understanding

before walking into a calculus class, they are not prepared for a modern course in calculus. Nor are they

prepared for any associated quantitative course in any other discipline that uses calculus or precalculus or

college algebra ideas.

In order to accomplish this, it is necessary to emphasize the importance of the concepts and this requires

putting heavy emphasis on conceptual problems, as opposed to primarily computational problems. And

this emphasis must be put both in homework assignments and on exams. Homework problems should not

be only repetitions of worked examples in the text that serve as templates. Exam problems should not be

only further repetitions of what the students have previously seen. When a final exam is just a compilation

of problems from class tests with the numbers changed, and when the class tests are just a compilation of

weekly quizzes, students are not being educated. They are being trained in the same way that Roy Rogers

trained Trigger to answer such mathematical questions as: How much is 2 plus 3? The horse answered by

tapping his hoof on command.

We owe it to our students to do much more for them—not just for calculus or for other courses, but to

function effectively in a rapidly changing society where the one thing they can and should expect is more

change over the course of their careers. Simply put, no one will pay our students $30,000 or more a year

if all they can do is reproduce solutions to problems memorized in high school and college mathematics

classes!

The need for realistic problems

Reform calculus courses also usually include more realistic, and hence more sophisticated, problems and

applications than routine problems that tend to be highly artificial. This theme should also be carried over

to college algebra and precalculus courses. Traditional algebra applications such as “Ann is 8 years older

than Billy and in 5 years she will be twice what he was 4 years ago” are not in the least realistic. There

is no way to pose such a problem without knowing the ages in advance, which makes the entire problem

totally artificial.

But what then constitutes a realistic problem? Just as two points determine a line, two points also

determine an exponential function or a power function; three points determine a quadratic function; and

so forth. In any realistic context, one can find two data points—just open a newspaper, a magazine, a

textbook in any other quantitative field, or a copy of the Statistical Abstracts of the U.S. or search the

Web. Presuming that the process being studied follows a linear or an exponential or a power function

pattern, ask the students to find the equation of that function and use the resulting equation to answer
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some predictive questions in context.

All the algebra that anyone could want, and then some, is imbedded in solving those questions. Because

the functions are based on real values, not artificially concocted one-digit integer values, the parameters

are almost certain to be unpleasant decimal values, so there is plenty of opportunity to practice one’s

skills. But that practice is done in a hopefully interesting context. We are not asking the students to solve

equations for the sake of practice, but to answer questions that they can see make sense to ask. That

makes an incredible difference in terms of convincing the students that they are learning something that

is potentially valuable to them.

For instance, we created the exponential function P.t/ D 85:38.1:0121/t to model the growth of the

U.S. population, where t is the number of years since 1900. We could ask questions such as: Predict

the U.S. population in 2005 using this model, or when will the U.S. population reach 350 million? The

latter requires solving the equation 85:38.1:0121/t D 350, a rather more daunting request than solving

something like 5.2x/ D 80, but it is far more interesting and useful. Similarly, we created the power

function D.t/ D 0:7345t0:8053 to model the growth in total college enrollment since t D 0 in 1950. We

could then ask: Predict college enrollment in 2010, or when will there be 20 million people enrolled in

college? The latter requires solving the equation 0:7345t0:8053 D 20, which again is considerably more

complicated, as well as considerably more meaningful, than the traditional type of problem such as solving

3x4 D 48.

The trigonometric functions can likewise be introduced using realistic situations. They serve as our

primary mathematical models for periodic phenomena. For example, students can be asked to construct a

sinusoidal function to model the temperature in a house where the furnace comes on when the temperature

drops to 66ıF and turns off when the temperature reaches 70ıF, a cycle that repeats every 20 minutes.
One possible result is

T D 68 C 2 sin
� �

10
t
�

assuming that there is no phase shift.

As another example, students can be asked to model a person’s blood pressure over time given readings

of 120 over 80 and a pulse rate of 70. Again, each of these situations provides a wonderful opportunity to

ask questions in context that go well beyond asking students to graph y D 3 sin4x or solving 6 sin2x D 3

in terms of both the level of interest and the level of algebraic manipulation involved.

Furthermore, every such realistic problem carries with it the opportunity to reinforce the fundamental

mathematical concepts—the meaning of the slope of a line or the growth or decay rate of an exponential

function or the vertical shift, amplitude, period, and frequency of a sinusoidal function, etc. It also gives

an opportunity to discuss domain and range issues repeatedly—how far can you reasonably extrapolate

from the data points? What are the limitations of the model?

Alternatively, when we assign a page full of exercises asking the students to solve a collection of 50

or 100 equations that all look the same with the numbers changed, we send a very different message. In

reality, only a handful of the students ever bother to do more than a small number of these problems.

Other topics that should be emphasized

Another very common complaint from the other disciplines is that students do not have any understanding

of or facility with exponents and logarithms. In partial response to this, the calculus reform projects have

placed considerably more emphasis on exponential and logarithmic functions. They are no longer relegated

to a chapter at the beginning of calculus II, but have been brought up front as some of the fundamental

functions of mathematics. The same kind of emphasis is required in the courses preparatory to calculus,

not just to prepare the students for the subsequent calculus experience, but perhaps even more importantly

because these functions are so vital in all quantitative disciplines today.
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In that regard, the treatment of these functions in college algebra and precalculus should not be just one

stand-alone chapter and the functions never reappear. Instead, exponential functions and their properties,

just like linear functions and their properties, should arise repeatedly in many different contexts throughout

the course. If we want students to develop an appreciation for certain ideas, we have to give more emphasis

to those concepts; if every topic or type of function receives equal attention, students do not learn what is

important and, at best, make their own decisions of what they should learn for the long haul.

Furthermore, in the other disciplines, the various mathematical functions typically arise in the context

of finding an appropriate function to model sets of data, just as they arose in the introduction to this

article. There is a reason that these curve-fitting techniques are incorporated into all graphing calculators

and spreadsheets such as Excel—they are the standard tools of today’s practitioners, both in class and on

the job. But, as I tried to demonstrate in the analysis of the various data sets earlier, it is not as simple

a matter as just pushing a button to get an answer. Some very deep levels of understanding are essential.

One has to know the behavioral characteristics of each family of function in order to make an intelligent

selection of possible functions to use as models. There are some critical difficulties that can arise that

are domain issues for these functions. For instance, the routines used by calculators and by spreadsheets

to fit exponential, power, and logarithmic functions to data involve transformations of the data to plot

logy versus x, or log x versus y, or logy versus log x. (The first two are semi-log plots; the third is a

log-log plot.) But, if any of the data entries is zero or negative, the logarithms are not defined. The error

messages the systems give are not exactly self-explanatory; the person who pushes the button has to know

the mathematics to understand the message and to know how to avoid the problems—say by performing

a vertical or a horizontal shift in the data and then reversing the shift after the analysis is done.

These techniques and ideas are ideal ones to incorporate into college algebra and precalculus classes

for a variety of reasons. First, they give the opportunity to reinforce the important characteristics about

each family of function, so that the students see the ideas coming back again. Second, the students see

how these functions arise in practical settings, which is a great motivation for topics that otherwise tend

not to appear all that useful. Third, this gives us the opportunity to ask interesting, predictive questions in

the contexts of the data, so that the students have even more occasions to practice their skills solving the

resulting equations. Fourth, the students are being prepared for the specific kinds of applications that will

arise in their other courses; in turn, this increases their level of appreciation for the mathematics course.

That may not sound terribly important, but in the long run, it makes our courses far more important to the

students. Instead of dropping out of mathematics, they are encouraged to continue to subsequent courses.

What can be removed

Clearly, there are many new topics and methods that I believe should be included in courses at this level.

To do so, we have to find time. This means eliminating something.

Back when I studied trigonometry, we were all expected to know three fundamental laws: the Law of

Sines, the Law of Cosines, and the Law of Tangents. These were not just theorems or formulas; they were

universal laws! I’ve been asking mathematicians for the last several years about the Law of Tangents.

So far, only one or two actually know it; a small percentage recall that there ever was such a law; and

the overwhelming majority never heard of it. It is not that this law was repealed or that triangles stopped

obeying it. The reality is that many topics, some of marginal significance, others that once were considered

extremely important (otherwise the Law of Tangents would not have been called a law), have been removed

from the curriculum in the past with seemingly minimal long-term impact.

We face the same decisions today. Some topics in the present syllabus have to be relinquished to make

room for newer, more important topics. Over the last half century, as has been pointed out, the focus of

mathematics in practice has changed dramatically and an incredible body of new mathematical ideas and

techniques has been developed. In turn, we owe it to our students to at least acquaint them with some of
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these concepts—matrix algebra, probabilistic reasoning via simulation, recursion and difference equations,

etc.—early in their mathematical experiences. Part of the need is to provide the students with a broader

view of what mathematics is all about; more importantly, these are important mathematical techniques they

will need for their other courses.

For example, in the 1930s, linear algebra was a graduate course; it gradually worked its way down to a

junior-senior offering, then to a sophomore-level course, and today matrix methods and their applications

are standard topics in modern high school mathematics. Once, the entire focus of algebra up through

calculus was to prepare students for a traditional course in differential equations where they saw, for

the first time, the power of the mathematics to create mathematical models and to formulate closed-form

solutions. Today, the focus in most other disciplines is on difference equations instead of differential

equations—they are conceptually easier, they are simpler to set up, and they are much easier to solve,

numerically and graphically, with modern technology.

What then can be relinquished from precalculus and college algebra courses? I have already suggested

downplaying the emphasis on extensive treatments of rational expressions and rational functions at all

levels of the curriculum. Several other topics I would suggest eliminating are things like Descartes’ rule

of signs, the rational root theorem, and synthetic division. For a long time, when finding the roots of

polynomials was a major undertaking, these were valuable tools of the mathematician and the practitioner.

Today, many students have calculators with a FACTOR button. Every student has at his or her fingertips

a calculator with a numerical root-finding routine built in, not to mention the ability to zoom in repeatedly

either on the graph or in a table of values associated with any polynomial. Locating the real roots of a

polynomial is no longer a challenge; it should not be a major emphasis in our courses. But understanding

what the roots are and knowing how to use them intelligently is certainly still a critically important aspect

of these courses.

In a similar vein, we have six trigonometric functions because, in the pre-technology centuries, it was

much simpler to have tables available of all six possible ratios of the sides in right triangles to minimize

hand computation. Today, computational issues are irrelevant. So, what valuable role do the secant, the

cosecant, and the cotangent play? There are very few realistic problems that involve any of these functions

and each of these problems can be solved quite easily by using only the sine, the cosine, and the tangent,

along with several “new” identities:

1 C tan2 x D
1

cos2 x

and
d.tanx/

dx
D

1

cos2 x
:

The Harvard calculus course, for instance, totally avoids the use of cotangent, secant, and cosecant

without any loss; there is therefore little reason to bedevil students with them in precalculus and trigonom-

etry courses. They take up an inordinate amount of time for virtually no gain. In fact, a number of other

nations, including Russia, France, and Israel, apparently never mention these three functions in any of

their mathematics courses and the mathematicians and scientists they produce never seem particularly

handicapped by this loss.

Changes in pedagogy

So far, I have focused primarily on content issues. But giving any course incorporating the philosophies

mentioned above necessitates some significant changes in pedagogy.

Let’s first look at the dynamics when non-routine problems are assigned for homework. With purely

algebraic manipulation problems, there is a clear correct answer. If a student raises his or her hand

to question such a problem, it is almost always possible for an experienced instructor to glance at the
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problem and immediately anticipate the algebraic error that the student has made. One can just write out

the solution on the board, point out the usual algebraic pitfall, and presume that the problem is finished.

This is not the case with conceptual problems. There may be an entire spectrum of possible, legitimate

answers. There may be a variety of reasons that the student couldn’t do the problem: a lack of understanding

of what is being asked, some basic misinterpretations of fundamental ideas that are essential to the problem,

or perhaps just thinking much too deeply into the situation. For example, I am reminded of one problem

I gave on a test in calculus: A cylindrical tank develops a leak at the bottom and the rate at which the

liquid in the tank escapes is proportional to the height of liquid. Sketch a graph of the height of liquid

as a function of time. (Note that the assumption of the rate being proportional to the height is inaccurate.)

Most of the students were able to solve this with little difficulty, but one student objected to the solution

everyone else had—they had all assumed, as had I, that the tank was standing on end. He claimed, rightly,

that no such tank would ever be so positioned; it would always be lying on its side, making the problem

far, far more difficult. Incidentally, the graph he had drawn was correct for his interpretation.

As another example, a homework problem that I like to give very early in college algebra and precalculus

involves a formula for the number of calories in a peanut butter sandwich: C D 150 C 6P , where C is

the number of calories associated with P grams of peanut butter. I ask the students, among other things, to

devise reasonable values for the domain and range of this function. The level of debate often grows quite

heated as they come to grips with what domain and range really mean in a practical context. But these

concepts take on a life of their own in the students’ minds. It is no longer just a matter of looking for and

avoiding places where you divide by zero or take the square root of a negative number!

When students are asked to do non-routine homework problems, the instructor must expect to devote

considerably more class time to going over many of those problems than would be necessary if the emphasis

is purely algebraic. The students have to be encouraged to ask questions—questions about the homework

and questions about the concepts and methods being presented. The instructor has to be prepared for very

different interpretations on the part of the students. This can lead to a very different classroom atmosphere,

one where the instructor does less lecturing and the students assume a more active role in the learning

process.

For instance, I recall one incident in college algebra when I was leading the class to compile a list

of characteristics of cubic functions—how the number of turning points and the number of inflection

points relate to the degree, the significance of the real and complex roots, etc. One student, who had an

exceptionally poor opinion of her mathematical ability (a high school drop-out who had done miserably

in all her previous algebra-oriented math courses) raised her hand to ask, somewhat tentatively: “Is it true

that every cubic is centered at its point of inflection?” I asked her to explain what she had in mind, so the

rest of the class could see what she was getting at. With her eyes half-closed as she envisioned the idea

and with her hands moving in the air, she added: “Well, if you start at the inflection point and move in

both directions, don’t you trace out the identical path both ways?” This, from a student whose previous

math teachers felt had no talent for mathematics!

There are some very different ways in which mathematical ability and talent can manifest itself.

Traditionally, most of us have assessed students’ ability purely on the basis of how quickly and accurately

they could manipulate symbols. From that point of view, the best student any of us could ever have is a

TI-89 calculator, as I said before. But mathematical ability means much more than that. At the professional

level, we consider creativity and insight as the hallmarks of a good mathematician. The identical assessment

should be placed on our students and we should provide them the opportunity to, and an environment in

which they can, demonstrate those qualities.

Non-routine conceptual and realistic problems can also provide the opportunity to have the students

work together in small groups using collaborative learning. Again, this changes the classroom dynamic

considerably. For example, when developing the practical meaning of the parameters in a sinusoidal

function, I hand out a set of data on historic high temperatures in Dallas every two weeks over the course
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of a year and ask the students to create a sinusoidal function based on the data. There have been occasions

when I would assign this problem to groups of three or four students some 20 minutes before the end of

class. Twenty-five or 30 minutes later, I would have to leave for another class while the students were

all still sitting there, oblivious to the time, arguing over the problem and how to turn the numbers into

amplitudes, vertical shifts, and phase shifts!

The fascinating thing about this project is that there are several different strategies that the students

can develop for estimating the various parameters. One of the most memorable lines by a student in a

written report based on this problem was: “The next quantity to be determined is the frequency. This was

deceptively simple.” How often does a student in a precalculus course describe the frequency of a sine

function as “deceptively simple,” particularly when the value he obtains for the frequency is .0172 (which

is 2�=365)?

I also recommend assigning individual or small group projects related to the mathematical content

of a course. For example, I assign a project requiring students to find a set of data of interest to them

and perform a complete analysis of it—finding the best linear, exponential, and power function to fit the

data, and asking and answering pertinent questions (i.e., predictions) based on the context. Each student

is required to write a formal project report. For instance, during a recent semester, a sample of the topics

studied by the students in one of my precalculus classes included:

� The number of sexual harassment cases filed as a function of time.
� The likelihood of car crashes as a function of blood alcohol level.
� The growth of the prison population as a function of time.
� The time of high tide at a beach as a function of the day of the month.
� The amount of solid waste generated per person as a function of time.
� The time for water to come to a boil as a function of the volume of water.
� The size of the human cranium over time during the last three million years.
� The results of a serial dilution experiment in biology lab.
� The growth in the Dow-Jones average as a function of time.
� The Gini Index measuring the spread of rich versus poor in the population over time.
� The number of immigrants who entered the U.S. over time.
� The mean annual income as a function of the level of education.

In the process of writing such reports, the students must decide which variable is independent and

which is dependent. They must come to grips with the practical meaning of domain and range as the

limitations inherent in the model they are creating; again, it is not just avoiding division by zero, but

rather a high level of mathematical judgment as they connect the mathematics to the real world. They

must understand the practical meaning of the slope of a line, not just think of it as a ratio of the number

of boxes in two directions. They must interpret the growth or decay rate of an exponential function in

context.

Moreover, several of these data sets arose from topics the students encountered in other courses they

were taking, particularly in the laboratory sciences. I cannot overstate the value to the students of seeing

the direct link between the mathematical methods they were learning in their precalculus class and the

use of these methods in their other courses. Even for those who found their data in a magazine article or

a reference book, the ability to apply the mathematics to a topic of personal interest gave each student a

feeling of ownership. And, once they have taken ownership that way, the battle to convince them that the

mathematics is valuable, and worth working at, has been won.

Furthermore, one of the common themes that runs through the curricula discussions in all the quantita-

tive disciplines is the need for students to develop writing and communication skills. Most of our courses
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are primarily service courses and we can help support this need in other fields by including a writing

and communication component in our offerings. Other departments will certainly appreciate it. But more

importantly, it also provides the opportunity for those students with strong verbal ability (and possibly

relatively weak algebraic ability) to apply their forte to our subject. It also helps improve the writing skills

of those who are weak in that area. (You may also want to find out what kind of support your school

provides in the area of writing and direct some students to a writing lab, if they need help.)

Also, when students write about mathematics, it helps them develop a firmer grasp on the mathematical

concepts and applications. At the same time, when they do not have a firm grasp on the ideas, this

comes through loud and clear in a written report and allows the instructor to identify areas where the

students are missing a concept or misinterpreting an idea. For instance, I recall one student in calculus

II who consistently misused the word “interval” in a report; he clearly had no idea what an interval was,

mathematically, and there was no way that I could possibly have observed that gap from tests.

Most importantly, though, the use of written project assignments or even the occasional written response

to a homework or test problem makes the students internalize the meaning of the mathematics by having

them create the verbal connections between the mathematics and their own understanding of it.
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Preparing for Calculus and Preparing for Life

Bernard L. Madison

University of Arkansas

Introduction

Every teacher has been confronted with the question, “Where will I use this?” Very often in school

and introductory college mathematics, the answer is, “In calculus.” In fact, preparation for calculus has

for several decades been a primary aim of grades 9–12 mathematics. Often this preparation extends to

grades 13 or 14. Consequently, calculus has taken on extreme importance and extreme responsibility in

US mathematics education. I will argue here that this importance and responsibility are inflated and serve

neither calculus nor general education well. Neither students nor the general public see the value that

calculus delivers and very few people ever have any use for calculus techniques. The focus on preparation

for calculus has narrowed and hurried the mathematics curriculum leaving no time for appreciating or

learning to use the mathematics that is taught before calculus. And use of mathematics has become

essential in American life, requiring that the aims of grades11-14 mathematics be broadened to include

preparation for life.

Calculus: An important role

Calculus is an enormously impressive body of knowledge, a major human intellectual achievement. Devel-

oped about 300 years ago, advances in science and engineering due to calculus are endless. The ideas of

calculus have been expanded into the major area of mathematical research, analysis, and research results

have proven useful in many fields, both within mathematics and in science and engineering. Calculus

concepts — limit, derivative, integral, and approximation — are important in many areas of human ac-

tivity, well beyond those of scientists and engineers. Interpretations of these concepts in terms of rates

of change and accumulations of changing quantities are fundamental quantitative ideas that every person

should know.

The power of calculus and its extensions are usually not apparent until one studies beyond the three-

semester college calculus sequence. That sequence introduces the ideas of limit, derivative, integral, and

approximation, first in one dimension and then in multiple dimensions in the third semester. Most of the

time in this sequence is devoted to the methods of derivatives and integrals, and those methods are used

almost exclusively in further study of mathematics, science or engineering. Consequently, full value of

college calculus is realized by few except scientists and engineers, a group that constitutes less than 20%

[9] of the baccalaureate degree recipients in US higher education. Understanding the concepts of calculus

and how they are applicable to the world — needed by a broader population — is not accomplished by

most calculus sequences, so the major general education value of calculus is missed. The proper role of

78
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the current calculus sequence is for educating future scientists and engineers. A proper role for calculus

in general education requires courses based on concepts and their uses rather than on methodology.

Quantitative literacy: Need and responsibility

Over the past two decades, computers have transformed public discourse by generating piles of data and

myriad analyses of these data. Ordinary citizens must deal with numbers and data every day. News media,

advertisements, and government reports are filled with graphs and charts explaining medical reports,

environmental issues, economic forecasts, educational results, and consumer protection. Most jobs use

numbers and numerical tools. Investing, insurance, and taxes are immersed in data and rates of change.

Political debates, laws, and court decisions abound in probabilistic decision making. Polling has become

an influential and continuous activity. As has been said, the third R is no longer arithmetic. Understanding

numbers and quantitative reasoning is a requirement for productive workers, responsible citizens, and

discerning consumers. (See [4], [5], [10], [11], and [12].)

The term “quantitative literacy” (QL for short) is used to describe the quantitative reasoning capabilities

required of citizens in today’s information age. The demands of QL required in the information age have

increased the need for postsecondary education in the US. Consequently, colleges and universities have a

responsibility to see that levels of QL continue to rise as students move toward undergraduate degrees. This

responsibility falls on all disciplines, but most heavily on mathematics and statistics. Mathematics is the

only subject other than English that is required and tested in every grade K–10, and the geometry, algebra,

trigonometry, and calculus (GATC) sequence contains some of the highest enrollment courses in all of

school and college. Such a privileged place in the curriculum carries a heavy responsibility for general

education, especially now that appropriate general education includes a high level of QL. Unfortunately,

the GATC sequence is dominated by algebraic methodology in preparation for traditional calculus, and

especially for traditional calculus that may be taught without using technology. Since QL is the ability

to reason mathematically and quantitatively in contexts that arise in everyday activities, then the need

for teaching mathematics in context seems clear. Contextual mathematics is rare in the GATC sequence.

Examples of applications are often overly simplistic and contrived. There is little immediate relevance to

students’ everyday lives.

Currently, evidence points to low levels of QL, even among college graduates. In addition to many

anecdotes, national and international surveys and examinations show low levels of QL among US adults.

For example, in the 1992 National Adult Literacy Survey, more than half of college graduates placed at or

below the literacy level partially characterized by being able to determine correct change using information

on a menu but not being able to determine shipping and total costs on an order form for items in a

catalog. Such persons will have many gaps in understanding quantitative issues that now confront citizens

in everyday activities. Carnevale and Desrochers (see [11]) point to dangers of the current situation from

both the workforce and citizenship views. First, from the workforce view, “we appear to have too many

people who do not have enough basic mathematical literacy to make a decent living and many more people

taking calculus than will ever actually use it on the job.” Second, a more ominous warning, the “wall

of ignorance between those who are mathematically and scientifically literate and those who aren’t can

threaten democratic cultures.”

Because QL is a critical new challenge to US education, the National Council on Education and

the Disciplines (NCED) at the Woodrow Wilson Foundation has initiated a national effort to improve

QL education. The NCED effort has published Mathematics and Democracy: The Case for Quantitative

Literacy [10] and commissioned several essays on various aspects of QL. This provided background for a

national forum, Quantitative Literacy: Why Numeracy Matters for Schools and Colleges, at the National

Academy of Sciences in December 2001. The commissioned papers, the proceedings of the forum, and

recommendations for strengthened QL education are contained in two publications, [11] and [12].
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Calculus: Domination and disappointment

The influence of calculus reaches down into the school curriculum and strongly affects mathematics as early

as grades 8 and 9. Calculus has become the crowning achievement of successful school mathematics and

the gateway in college to advanced study of science and mathematics. Courses in school and college carry

the telling label of “precalculus,” and the subtitle of the American Mathematical Association of Two-

Year Colleges’ Crossroads in Mathematics is “Standards for Introductory College Mathematics Before

Calculus,” [1]. Calculus is a destination benchmark and dominates mathematics in grades 11–14.

Enrollment patterns in college mathematics are very revealing about the lack of effectiveness and

efficiency of grades 11–14 mathematics. In fall 2000 there were approximately 2.9 million enrollments [3]

in two-year and four-year college mathematics courses. About one million were in remedial mathematics;

about 1.1 million were in introductory college mathematics; 700,000 were in calculus-level courses; and

100,000 were in advanced mathematics courses. Since a similar pattern of enrollment has persisted for

about two decades, one infers that about one of four students in college mathematics will ever get to

any course in calculus, and about one in thirty will study mathematics beyond calculus. The 700,000

calculus-level enrollments include about 130,000 in what is referred to as “non-mainstream” calculus,

mostly one-semester courses serving business majors. Excluding the 100,000 advanced enrollments and

deducting the 130,000 “non-mainstream” enrollments leaves less than 600,000 of 2.8 million or about one

in five in the “mainstream.” Obviously, the main stream of college mathematics is not this “mainstream.”

The huge pool of students is in remedial and introductory courses, and most of this pool will never get to

calculus of any kind. The largest pool — about 1.6 million, or more than half the total — is in courses

whose content is mostly algebra.

This enrollment pattern indicates that the major purpose of college mathematics should be for general

education of the three of four students, rather than preparation for calculus for the one of four. Unfortunately,

courses dominated by algebra methods are not good general education courses.

The other revealing characteristic of college mathematics is the overlap in content with high school

mathematics. The content of remedial mathematics courses is contained in school mathematics, as is most

of the content of introductory college mathematics courses. Further, about half of US high schools offer

courses in calculus. So about 60% of the enrollments in four-year college mathematics courses and 80% of

those in two-year colleges are in courses whose content is covered in high school. If one includes the first

course in calculus, the 60% becomes 77% and the 80% becomes 87%. There is little evidence that this

repetition leads to enhanced understanding or better algebra skills. Quite to the contrary, the low success

rates in college indicate that the repetition is counterproductive. Much of this repetition can be attributed

to students not being able to demonstrate facility with algebra methods on college placement examinations.

Because many college mathematics faculty believe such facility is necessary for entry into more advanced

college mathematics, the students are enrolled in courses in algebra

Inefficiency and duplication are bad enough, but they are probably not the most negative effects of

introductory college mathematics. Partly for efficiency, techniques of algebra and trigonometry have been

gathered together into these courses. The logic of these techniques and their usefulness are not apparent

to most students. Consequently, the material is uninspiring, and student interest is low. Success rates are

low – often 50% or less – and many students develop antipathy toward mathematics. Calculus catches

much of this distaste because “use in calculus” is often given as the justification for the unpopular content.

Students who fall out and never get to calculus have fragmented algebra skills that they will likely never

want to or be able to use. Students who do get to calculus will find more methodology and likely not

realize the value of the power of calculus. Thus, calculus, which has been held responsible for years of

preparatory study, often is either blamed by failing students for their failures or seen as a disappointment

for not living up to its advanced billing.

Some college curricula — business and premedical, for examples — benefit from the GATC sequence

because it filters out students and presumably selects those most likely to succeed. Mathematics and other
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college faculty recognize that mathematics is used as a filter, sometimes legitimately for acquiring necessary

skills, but sometimes simply as a selection mechanism. Wide recognition of this use of mathematics as a

fine filter strongly affects student and public attitudes toward mathematics, and makes it socially acceptable

to be ignorant of mathematics. Now that ignorance of mathematics is incompatible with QL and that QL is

essential for responsible living, it is no longer acceptable, social or otherwise, to be ignorant of mathematics.

Therefore it is unacceptable to use critical education in mathematics as a filter. Higher levels of success

in mathematics courses are required.

Calculus in high school

About a half-century ago, when the Advanced Placement (AP) Program of the College Board was describing

its AP mathematics course, calculus was chosen as the topic. The belief was that the GAT part of the

GATC sequence normally would be covered by the end of high school and the C would be the entry

point for college. Even though AP calculus has grown to about 200,000 examinations now and about

half of US high schools offer courses in calculus, algebra rather than calculus remains the dominant first

college mathematics course. Nonetheless, calculus, the badge of achievement in high school mathematics,

contributes to narrower and more hurried high school mathematics. Some believe that hurrying through GAT

shortchanges both students’ preparation for calculus and general education. Others believe that calculus

in high school, including AP calculus, is not good preparation for subsequent college calculus courses.

Comprehensive evidence to support these beliefs will be difficult to find, partly because the students in

high school calculus are stronger students sifted out in high school in much the same way as students

in calculus-level courses in college are sifted out by the GATC sequence. Various studies (e.g., [7])

have shown that successful AP calculus students do fare well in subsequent calculus courses in college,

confirming the alignment of AP calculus standards and content with those of college calculus. Calculus

in high school results from a compression of the GATC sequence which normally reaches into college, so

criticism of high school calculus’ effect on general education is also a criticism of college mathematics

because that’s what the high schools are emulating.

AP calculus enrollments are only a fraction of the calculus in high school. The annual 200,000 AP

calculus examinations represent less than two-thirds of enrollments in courses labeled AP, and there are

other calculus courses that are not labeled AP. Some of these courses are yearlong surveys of calculus

techniques while others are partial year highlights courses. The Mathematical Association of America, [6]

and [2], the National Council of Teachers of Mathematics [2], and the National Research Council [8] have

recommended against such courses. Survey and highlights courses are not likely to contribute significantly

to QL or to be good preparation for more rigorous college calculus courses.

If colleges were to provide gateways to advanced mathematics other than the engineering and science

calculus sequence, then high schools and AP could also respond with alternatives. AP statistics, first

offered in 1997, is an example of the AP Program creating a course not firmly entrenched in colleges.

The phenomenal success of AP statistics (approximately 50,000 examinations in 2002) reflects the need

for a more diversified offering of mathematical sciences courses at the transition from school to college.

Modeling courses have several attractive features to consider: contextual use of mathematics; connections

to other disciplines; and making connections among the strands of school mathematics.

Some directions for improvements

� The controversy over appropriate use of technology in calculus and in preparation for calculus needs
to be resolved. Use of technology promises possibilities of relief from manipulation skills, better

conceptual understanding, and more attention to authentic problems. Calculators and computers are

ever-present in the world of students, including their school mathematics, yet there is not a clear

consensus position among college mathematics faculty or departments.
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� Many of the algebra and trigonometry methods that are used in calculus need to be incorporated into
the calculus course and taught – or at least refreshed – when they are needed in the course. If the

major justification for an algebra or trigonometry topic or method is its use in calculus, then it should

be learned as part of that course rather than part of a course where the majority of students are not

headed for calculus.

� High school mathematics should be faithful to balanced attention to the strands of number and oper-
ations, measurement, geometry, data analysis and probability, and algebra. Only if the standards are

met in the broader curriculum should school mathematics venture into teaching calculus, and then that

should be at the college level.

� Introductory college mathematics should emphasize the use of mathematics to solve realistic problems.
In so doing, more algebra and trigonometry can be learned and the power of technology in promoting

this learning can be realized. Wherever feasible, courses should open possibilities for study of additional

mathematics and statistics.
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College Algebra: A Course in Crisis
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Introduction

This paper presents a case for transforming traditional college algebra from a failed program attempting to

prepare students for calculus to one that enables students to address the needs of society, the workplace, and

the quantitative aspects of disciplines. Characteristics of improved college algebra programs are described

as well as the symbiotic relationship between a transformed college algebra and quantitative literacy.

Traditional college algebra

Traditional college algebra courses are not working [3]. That was the strong consensus of the participants

in the Conference to Improve College Algebra, held at the U. S. Military Academy, February 7–10, 2002.

This conclusion was based on the courses’ outdated content, high FWD rates, and on the negative impact

these courses have on student perceptions of mathematics. The large number of students enrolled in College

Algebra creates an urgency to transform these courses into ones that do work.

Number of Students

College algebra has the largest enrollment (approximately 400,000 in fall 2000) of any college credit-

bearing mathematics course [2]. (Another approximately 100,000 students are enrolled in combined college

algebra/trigonometry courses.) This enrollment is approximately equal to the combined enrollment in all

mainstream calculus courses, having increased from 73% in 1980. Precalculus has the second largest

enrollment, which is about half that of college algebra. Almost all students are required to pass one of

these courses, or a higher level mathematics course, as part of college distribution or major requirements.

Some states, such as Texas and Louisiana, have legislated that students must pass a mathematics course

at or above the level of college algebra before they are permitted to enter their third year of college. Thus

college algebra and precalculus form the gateway to college mathematics for the large majority of students.

The combined enrollments in college algebra and precalculus increased 59% since 1980, while the

enrollment in calculus I has remained relatively stable. This calls into question the traditional role of

college algebra as a preparatory course for calculus. Commenting on this situation, Mercedes McGowen in

her paper, “Redefining the First College-level Mathematics Course,” which she presented at the Conference

to Improve College Algebra, said:
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A comparison of enrollments for all precalculus courses—particularly college algebra—with cal-

culus I over the past twenty years indicates that the increasing enrollment in these courses has

had little, if any, impact on the calculus I enrollments. There is a broad sense that the traditional

college algebra course is not the appropriate course—particularly for those not going on in the hard

sciences. In fact, it appears that large numbers of students do not have learning experiences in the

college algebra courses which generate enthusiasm or enrollments in calculus I and a subsequent

program of studies in mathematics or other math-intensive fields.

What then should be the role or roles of college algebra? If it is to be a stepping stone into calculus,

then the traditional course must change as presently 10% or less of its students successfully complete

calculus I. If college algebra is to be a service course in terms of satisfying distribution requirements, then

it must change to emphasize applications across the disciplines. If it is to be a mathematics appreciation

course, then it must change to emphasize student involvement in problem solving and discovery.

Content

The traditional content—factoring linear and quadratic polynomials, radicals, partial fractions, absolute

values, inequalities, systems of equations, and so on—has its origins in the 1950s era when college algebra

came into the curriculum as a capstone course for high school mathematics. This was long before the

advent of graphing calculators or computer algebra systems and thus development of (hand) manipulation

skills of algorithmic procedures was important for students going on to calculus. This thinking along

with that era’s emphasis on drill and symbol manipulation continues to shape traditional courses. Today,

however, these courses are not successful in launching students into a standard calculus track. The largest

cohort (approximately one-third) of students passing college algebra go into schools of business. However

their need for elementary data analysis, modeling real-world problems, using technology, gaining small-

group experience, and developing communication skills are not addressed in traditional college algebra

courses. In spite of containing numerous exercises involving exponential functions, the traditional courses

do not prepare social or life science majors to model growth situations or economic majors to model the

multiplier effects of increased spending. Nor does the traditional content address citizenship or workplace

needs such as the ability to interpret data, construct a budget, design a schedule, plan a multifaceted event,

understand round off, or optimize a procedure. In the view of Arnold Packer, Chair of the SCANS 2000

Center at Johns Hopkins University’s Institute for Policy Studies, “Interpreting data is more important than

manipulation of algebraic skills that can be computerized.”

FWD rates

The percentage of students who receive a grade of F or D or who withdraw from the course—are unac-

ceptably high. Several studies place the FWD rate in the 40–60% range, although there are several schools

in which this rate is considerably higher. In particular, one large urban community college system has a

withdrawl rate of 50%. There are many contributing factors to the FWD rate—high school preparation,

placement, content, attitude, pace of the course, pedagogy, out of school commitments, etc [1]. However,

the fact remains that several alternative college algebra programs, which focus on real-world problem solv-

ing, have lowered the FWD rate by 15–25 percentage points. Students in these programs are drawn from

the same pool and were subject to the same placement procedures as students in the traditional programs.

Attitudes

Negative attitudes, generated by high FWD rates, abstract content, and low expectations are pervasive

among both faculty and students in traditional college algebra courses. These attitudes create additional
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barriers to the majority of students struggling to complete a course in which they see little relevance. Chris

Arney, Dean of Science and Mathematics at St. Rose College, said:

Traditional College Algebra is a boring, archaic, torturous course that does not help students solve

problems or become better citizens. It turns off students and discourages them from seeking more

mathematics learning.

Possibly more devastating is the fact that these attitudes influence life-long views of mathematics as College

Algebra is the terminal mathematics course for the majority of students.

The urgency for creating alternative college algebra courses is heightened by the tremendous loss in

student potential resulting from the traditional programs. Because of its gateway position in undergraduate

programs, traditional college algebra courses block the academic opportunities and plans of approximately

200,000 students per semester. As educators, we can not accept this cost.

Vision for improved college algebra programs

The vision espoused at the Conference to Improve College Algebra was to create programs that empower

all students to become competent and confident problem solvers. These real-world problem-based programs

address the quantitative needs of other disciplines as well as those for citizenship and the workplace. The

problem solving is to be understood in the sense of modeling as illustrated in the following diagram.

Real Situation

Mathematical Model

Analysis

Mathematical Results

Model Construction

(assumptions)

Interpretation

Figure 1.

The symbol manipulation type exercise that characterizes traditional courses only involves the right-

hand side of the Modeling Process diagram. An example is to ask the student to factor the polynomial,

x2�x�2. The polynomial is the Mathematical Model and the factors, x�2 and xC1, are the Mathematical

Result. This example is typical of the traditional program in that the model is provided and only the results

are sought. In contrast, problem solving in an improved college algebra program begins and ends within

a real-world setting. Students are expected to first create a mathematical model. This often involves a

communication skill of transforming a written or verbal description into a mathematical description. The

results are then obtained, often by means of technology. The final stage is to interpret the results in light

of the real-world setting. This may result in modifying the model to obtain a more realistic result and/or

“what-iffing” in order to gain a deeper understanding of the situation. The interpretation stage encourages

conceptual abstraction that facilitates transferability to other (mathematically) similar situations. The soda

can problem provides a nice illustration.

Soda can problem Determine the dimensions of a 12 fluid ounce (355 ml) aluminum soda can in

the shape of a closed cylinder that minimizes the amount of aluminum in the can. Use the following

mathematical model:

Assume that the thickness of the aluminum is uniform, say one unit.

Let r be the radius of the can measured in centimeters.
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Let h be the height of the can measured in centimeters.

Conversion factor: 1 ml D 1 cm3

Objective function: minimize amount of aluminum,

a.r; h/ D 2�rh C 2�r2

subject to the constraint equation: 355 D �r2h.

Expressing h in terms of r in the constraint equation and then substituting for h in the objective

function yields an aluminum function in terms of r W alum.r/ D 710
r

C �r2.

We see from Figure 2, that the aluminum function achieves a minimum value when r � 3:84 cm and

thus h � 7:66 cm. Interpretation of these results suggests the height of the can should be approximately

equal to its width. Although this makes sense mathematically, it does not reflect the general shape of a

commercial soda can. This calls for a rethinking of the model, starting with the assumption. An examination

of a soda can suggest that the top and bottom are thicker than the sides. (Students are encouraged to go

to a physics lab to measure the thicknesses of a commercial soda can.) Reworking the model with the

assumption that the ends are twice as thick as the side yields a minimum for r D 3:05 cm and h D 12:1 cm.

This is a reasonable approximation to the dimensions of a commercial soda can. Reflecting on the problem,

students are asked to identify similar situations requiring the optimization of an objective function subject

to constraints.

The exercise problem characteristic of traditional college algebra courses is contrasted with the mod-

eling problem characteristic of improved college algebra courses as follows:

1. The exercise problem emphasizes algebraic manipulation while the modeling problem emphasizes

conceptual understanding and realistic applications.

2. The exercise problem emphasizes solving in isolation while the modeling problem emphasizes solving

in context.

3. The exercise problem lends itself to drill work while the modeling problem lends itself to inquiry.

4. The exercise problem remains in isolation while the modeling problem leads to conceptual abstraction

and transferability.

Improved college algebra courses incorporate strong communication components—reading, writing,

presenting, and listening. For instance, an objective of these courses is for students to be able to draw

informed opinions from a news article containing data. The use of technology to enhance conceptual

understanding as well as for computing is another strong component of these courses. For example, in the

soda can problem, the value of the radius that minimizes the amount of aluminum was determined from the

plot of the aluminum function. The pedagogy associated with improved college algebra courses recognizes
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that student experiences in constructing their own understanding are more important than coverage of

topics. Thus lecturing is restricted to a minimum in order to maximize opportunities to engage students in

activities and small group projects.

The major characteristics of an improved college algebra program include:

� Real-world problem-based: Introduce a topic through a real-world problem and then develop the math-
ematics necessary to solve the problem. Example: Schedule a multi-faceted process.

� Modeling: Transform a real-world problem into a mathematical construct by using power and expo-
nential functions, systems of equations, graphs, and difference equations. Place primary emphasis on

creation of a model and on interpretation of the results. Example: Model the stopping time versus

speed data presented in a driver’s manual by plotting the data and fitting a curve to the plot. The

curve defines a stopping time function. Interpret how well this stopping time function models reality

at small speeds. Revise the model, if necessary, to account for zero stopping time at zero speed. Use

the resulting (revised) function to predict stopping times for speeds not given by the data. Revise the

model to account for different road surfaces.

� Elementary data analysis: Display data, extract information from data, and extract knowledge from the
information. Example: Nutrition labels on soda cans provide an example for extracting information

from data. The label on a 12-ounce Adirondack Ginger Ale can lists 55 mg of sodium representing 2%

of the recommended daily value based on a 2,000 calorie per day diet. In comparison the label on a

5.5-ounce Welch’s Orange Juice can lists 15 mg of sodium representing 1% of the recommended daily

value. What information concerning the recommended daily value of sodium can be extracted from

this data?

� Communication: Emphasize communication skills as needed in society and the workplace as well as in
academia—reading, writing, presenting, and listening. Example: Students learn how to read, understand,

and critique news articles that include quantitative information and to make informed decisions based

on the articles.

� Small group projects involving inquiry and inference: Provide experiences empowering students to
become exploratory learners. Example: Analyze the soda preference of students by conducting a survey

and comparing the results with data from the school’s dining hall or a local fast food restaurant.

� Appropriate use of technology: Use technology to enhance conceptual understanding, visualization,
and inquiry, as well as for computation. Example: Explore a model for paying off a credit card debt

by changing the monthly payment, interest rate, size of debt, and so on. Plot the results to visually

compare the different scenarios.

� Student-centered rather than instructor-centered pedagogy: Place the focus on student learning rather
than on covering content. For example, maximize hands-on activities and minimize lecturing.

What you test is what you get—WYTIWYG or rather—what you test is what students focus on—

WYTIWSFO. What does this say about assessment in real-world problem based courses designed to

help students become competent and confident problem solvers? How can the seven aspects listed as

characteristic of improved college algebra courses be assessed? These are very difficult questions to answer

and answering them may be the biggest barrier to making curricular change. We can assign students to

write an essay, but then how do we grade it? Do we grade grammar, spelling, number of words, and

so on, or grade just on meaning? Do we feel competent to do this? Traditionally mathematics courses

have addressed problem solving by focusing on well-defined, well-structured problems. However, many

problems that arise in society or the workplace are ill defined and ill structured. For example, what are

the three best predictors of success in college?

Traditional testing is not an adequate means of assessing student performance in an improved col-

lege algebra course. Traditional methods are teacher-centered in the sense of minimizing grading time,
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maximizing coverage, and focusing on well-defined, well-constructed skill type questions. In contrast,

student-centered assessment needs to focus on process as well as results. It involves more subjectivity,

more creativity, and more grading time than do the present traditional methods.

Collaboration with faculty in other disciplines and with representatives from the workplace is important

to the improvement of college algebra and in on-going assessments of the programs. This collaboration is

particularly important in the development or transformation of a course in order to ensure that content will

align with student interests and needs. In addition, the collaboration establishes bridges to other disciplines

that enhance opportunities for strengthening quantitative literacy throughout the academic program.

The past five years have seen the rise of a national movement to improve college algebra. This is

evidenced by the large increase in the number of sessions at professional meetings devoted to improving

college algebra and the number of college algebra workshops and conferences such as the Conference to

Improve College Algebra held at West Point in 2002. The growth in the number of elementary modeling

courses being offered as alternatives to college algebra as well as texts being written for improved college

algebra courses are other indications of this national movement. Four samples of such texts are listed in

the references [5]. An overview of each of these texts, by the author, appears later in this volume.

Improved college algebra: A base for quantitative literacy programs

Improved college algebra courses provide the focus, content, and interdisciplinary aspects on which to es-

tablish college-wide quantitative literacy programs. Lynn Steen describes “quantitative literacy,” sometimes

called “numeracy,” as the quantitative reasoning capabilities required of citizens in today’s information age

[4]. Extended experience in problem solving in the modeling sense provides these quantitative reasoning

capabilities. Thus a quantitative literacy program involves a two-step process.

1. Students understand the problem-solving process of transforming a problem situation into a mathemat-

ical description (model), solving, and then interpreting the results; and students develop confidence in

their ability to apply this modeling process.

2. Students gain extensive practice in problem solving in a variety of situations.

With the emphasis on modeling, communication, and appropriate use of technology, improved college

algebra courses provide the ideal opportunity for students to address the first step. Development of student

self-confidence is facilitated by applying the problem-solving process in a variety of settings under the

mentoring environment of a first year course. The second step, practice, needs to be addressed by all faculty

so that students continue to hone their problem solving skills and strengthen their self-confidence as they

progress through their academic careers. The interdisciplinary collaboration associated with improved

college algebra courses facilitates this joint approach to developing students’ quantitative capabilities.

An emphasis on quantitative literacy throughout the curriculum adds meaning and purpose to college

algebra courses. In particular, attention to problem solving in the modeling sense throughout the curriculum

serves as a laboratory for college algebra and thus extends these courses into programs. Thus the symbiotic

relationship between college algebra and quantitative literacy is to the betterment of both programs.

Summary

As the primary college gateway course for thousands of students, college algebra has a great potential as a

service course to address the quantitative needs of society, the workplace, and other disciplines. However

traditional college algebra, based on a 1950s curriculum as part of the preparation sequence for calculus,

does not fulfill this potential. To do so, college algebra needs to be transformed by refocusing both the

content and pedagogy in order to develop competent and confident problem-solvers. The content needs to be

real-world problem-based, to emphasize problem solving in the modeling sense, and to include elementary
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data analysis. Student-centered pedagogy involving development of communication skills, appropriate use

of technology, and small group activities and projects should be designed to create student confidence and

positive experiences. Student-centered rather than instructor-centered assessment procedures need to be

developed.

The gateway function of college algebra means that transformed or improved courses provide a basis

on which to develop a college-wide quantitative literacy program. The interdisciplinary collaboration that

is important to the development and ongoing assessment of an improved college algebra course provides

opportunities to link problem solving to the quantitative needs of other disciplines. In this sense, these

disciplines provide laboratory experiences for college algebra students. Interdisciplinary collaboration is

essential to realize the potential of the symbiotic relationship between college algebra and quantitative

literacy programs.

Improved college algebra courses better serve the approximately 90% of students who do not enter into

math-intensive programs as well as providing a more effective preparation for those going on to calculus I

than do the traditional algorithmic type courses. Several improved college algebra courses have shown that

FWD rates can be significantly lowered and positive student attitudes obtained. More importantly these

courses have demonstrated, in a variety of schools, ways in which college algebra can be transformed from

extracting an unacceptable cost to providing a valuable asset in educational programs.
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Introduction

The high rate of students’ failure in the college algebra course could be a problem originating in admissions

policies, placement activities, curriculum design, or instruction. This paper focuses on the curriculum as

a partial solution to this problem, in light of the needs of the types of students who tend to enroll in the

course.

The traditional college algebra curriculum seems to assume that the course is a preparation for calculus.

However, surveys at many institutions have shown that only a minority of college algebra students go on

to take calculus of any kind, and only a small fraction of those attempt a full-year calculus sequence.

In the mid-1990’s, the National Science Foundation sponsored a colloquium to examine the nature and

purpose of the college algebra course [17,18], and in recent years, some textbook authors have developed

alternative curricula that address the future mathematical needs of the soft-sciences students. This paper

contrasts these new curricula with the traditional college algebra course and identifies the related issues

of national and local educational policy.

The DWF problem

The 1997 MAA panel discussion on college algebra reform had one participant who was certainly an

unusual guest at such meetings. He was a university president, and not himself a mathematician. Raymond

Hicks, of Grambling State University, told the audience of his administration’s concern about the high

failure rate of college algebra students. It is not only bad public relations for the math department, he

reminded the attendees, but it is demoralizing to the students.

The college algebra course has a reputation nationally for failing an unusually high percentage of

students. The percentage of students who earn D, W or F grades—the DWF rate—may be 40–50%

on average across colleges, and some institutions report that it is as high as 90%. A study conducted

for a two-year institution in Georgia found DWF rates of only 25–31% for the freshman courses in

English composition, psychology and government. The DWF rate was 47% among the 4,400 students

in the mathematical modeling course that takes the place of college algebra there, despite the fact that

the distributions of mathematical requirements implied by the majors declared by students in these four

freshman courses were nearly identical.

In business and industry, a product defect rate of 40–50% would quickly cause some vice-president to

lose his or her job, but the DWF problem of the college algebra course has persisted in American higher

90
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education. As President Hicks told his audience at the MAA meetings, this problem demands a solution.

In reality, the problem is likely to have its origin in more than one stage of the educational process. It

could be a problem of placement, especially at institutions that do not use placement tests.

But it can also be a problem at schools that use either high-school exit exams or standardized college

placement tests that do not mesh well, either with the high school curriculum or with the college’s

curriculum. Furthermore, many students want to get out of the requirement to take college algebra, so

there can be a problem at schools whose computer systems cannot enforce prerequisites or block prohibited

requests to change a registration. The placement issue is more serious at schools whose admission is open or

nearly so. An open admissions policy can promote a general attitude among the faculty and administration

that all students deserve the right to try, but that not many are really suited to succeed. Thus, the institution’s

faculty may pretend that failure is the fault of the student.

The DWF problem may also have its origin in curriculum design. Some college algebra courses are

designed as a preparation for calculus on the assumption that most, if not all, students will need to take

calculus for their majors. At such an institution, if the course is attended by students headed toward majors

that do not require calculus, there will probably be a higher failure rate among the students in the less

mathematically intensive majors. Another two-year college in Georgia found this in a study of the DWF

rate among students of various majors who were taking college algebra. The overall DWF rate was 49%

among more than 2,300 students. The largest groups of majors (business, education, and undeclared) had

DWF rates very close to this average. But the 108 majors in communication arts had a DWF rate of 59%.

There were smaller groups in other majors, such as sports management, English, building construction,

interior design, hotel administration, sociology, child development, and recreation, where students had

DWF rates in excess of 60%.

Even a well-designed curriculum suited to the composition of the class can be poorly implemented

by the instructor, so instruction is one possible cause, especially at schools that hire current or former

high school teachers as college algebra instructors. The college algebra course should not be just a louder

version of high school algebra [22]. It is significant that in the study of the two-year college students in

Georgia, the group of students in the college algebra class that had far and away the lowest DWF rate

(17%) was that of high school students taking the course for college credit. The typical student takes

college algebra in college precisely because he or she did poorly in algebra II in high school. Typically

across the U.S., this student will be motivated by examples from business, health sciences, social sciences,

and education, but less so by examples from the sciences or the contrived examples from personal life that

tend to appear in high school texts.

As a footnote to the problem of instruction, we should remind ourselves that assessment is a closely

related issue. If our examinations do not mesh with the course’s content, its type of applications, and its

level of abstraction, then students may still appear to do poorly.

In summary, placement is probably a major contributor to the problem, but its solution centers greatly

on an institution coming to grips with its own mission and defining its responsibility to students. We

may hope that instruction is not the core of the problem, though faculty development certainly deserves

attention at all institutions. In this paper, we focus on the curriculum as the center of attention in reforming

or renewing the college algebra course. The basic principle of curriculum design is that the curiculum

should be suited to the needs of the student, so we now consider the types of students who take college

algebra.

Who takes college algebra?

Dunbar and Herriott [10] cite data on the intended majors of college algebra students at the University of

Nebraska at Lincoln and at ten colleges and universities in Illinois. It is not unusual for an institution to

have 40% of its college algebra students headed toward a business major, and at urban locations it may
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be over 50%. Students from the life and allied health sciences tend to comprise 20% of the class, and

those in the social sciences about 15%. Education and humanities majors may be another 10%, and the

remaining 10–15% will be planning a major in the sciences, math, engineering, or computer science.

Thus, the vast majority of students in college algebra are headed toward the managerial, social or

life/health sciences. It is the mathematics needed in these subjects and the needs of these students that

should guide the curriculum for college algebra.

Curricular models for college algebra

The curricula, taught under the name college algebra, can be dramatically different at different institutions,

yet overall there is a fairly consistent pattern in the type of student who takes the course. Many of the

students have not fared well in prior mathematics courses and have a fear of mathematics.

In this section, we consider several distinct models for a college algebra course, as expressed in the

content, organization, and pedagogy of textbooks. In doing so, we will see an emphasis on the extreme

examples of each type. Certainly, there are curricular models that mix elements of these, but characterizing

the extremes helps us understand the choices that the curriculum designers have made.

The sine qua non of a college algebra course is the solution of equations, as one would expect of

a field in which the fundamental theorem concerns the existence of a solution to an important class of

equations. However, this still leaves much room for the achievement of other mathematical and educational

objectives, as these examples show.

Traditional college algebra

Purpose and clientele The traditional college algebra textbook covers the key concepts of high school

algebra in the context of studying functions and their graphs. This context and the selection of functional

forms and other topics for coverage is designed to prepare the student for calculus. Indeed, the preparation

for calculus may well be a guiding feature of this curriculum. As Sobel and Lerner [26] point out in their

introduction to the instructor’s annotated edition: “Since calculus is a subject numerous students study after

this course, special emphasis is given to the preparation for the study of calculus. Thus, one of the major

objectives of this book is to help the student make a comfortable transition from elementary mathematics

to calculus[italics in original].” The text by Sullivan and Sullivan does not make that assumption [28, p.

xii], but its content still reflects a preparation for calculus.

Other examples of textbooks along this model are Larson and Hostetler [19], Lial, Hornsby and

Schneider [20], Ruud and Shell [24], Bittinger et al. [3], Cohen [5], Dugopolski [9], and Stewart, Redlin

and Watson [27].

Content The course covers the analysis of linear, polynomial, exponential and logarithmic, radical, and

rational functions through the study of their graphs and the algebraic methods of solving their corresponding

equations. Systems of equations are solved by matrix inversion. Systems of linear inequalities are studied

as a context for linear programming problems, which are solved by the graphical method. Sequences are

covered near the end of the course as a way to introduce the concept of limit. The text often includes a

unit on conic sections, and it may include a chapter on elementary probability theory.

The solution of polynomial equations is based on the method of factorization. The study of rational

expressions frequently includes partial fraction decomposition, which is necessary in calculus for the

integration of rational expressions. The complex number system is likely to be discussed in the context

of solving polynomial equations. Systems of linear equations are solved first by substitution and then by

matrix methods.
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Organization The first thing a student sees when opening the textbook, on the inside cover, is a page or

two of equations in small type with lots of exponents and parentheses. In addition to serving as a handy

reference, this probably brings back memories of the student’s high school algebra experience. Those

memories are reinforced in the first chapter, which as often as not, is given the demeaning label Chapter

R rather than Chapter 1, where the student receives a quick review of the properties of the real number

system, exponential notation, operations on polynomials, factorization of polynomials, rational and radical

equations, and perhaps complex numbers as a way to get started in the course.

The first substantive part of the text is usually a pair of chapters dealing with functions and graphs

and with linear and nonlinear equations, in either order. Following those in fairly consistent order are

chapters on polynomial and rational functions, exponential functions, systems of equations and matrices,

conic sections, sequences and series, and sometimes finishing with permutations and combinations or

probability.

Pedagogy Applications may appear in the text to motivate the student’s interest, but the vast majority

of the homework exercises concern symbolic manipulation, not the formulation of an equation. Thus,

problem-solving and critical thinking skills are not emphasized, nor are communication skills.

The applications tend to be drawn from the hard sciences or geometry rather than the soft sciences.

Interdisciplinary applications are limited, and applications tend to be shallow and quick. One textbook listed

a problem concerning the sum of the digits in the year that the transcontinental railroad was completed as

an application in the field of “transportation.”

The curriculum teaches students to work with functions under their numerical, graphical and symbolic

representations, the Rule of Three, but it does not emphasize the verbal representation of functional

relationships nor the process of modeling functions from written descriptions.

Pedagogy tends to emphasize the traditional lecture and makes little use of technology.

College algebra with trigonometry

This curriculum is the traditional college algebra course together with the study of trigonometric functions

(cf. Aufman, Barker, Nation, [2]). Many textbooks teach precisely this curriculum under the title “precal-

culus.” Including the trig, this course is clearly designed as a preparation for calculus. Its review of high

school algebra and of the traditional college algebra’s functions and graphs is accelerated in order to fit

in the trigonometry.

At the University of Nebraska at Lincoln, the stated prerequisite for calculus I is either trigonometry or

college algebra and trigonometry. In contrast, the prerequisite to the one-term calculus for the managerial

and social sciences is college algebra. Not surprisingly, an unpublished study of mathematics enrollments at

UNL found that of all the students who enrolled in college algebra and trigonometry in 1993-94, 59% took

calculus I within the next five semesters. Only 5% of the students in the college algebra and trigonometry

course took the soft calculus course for business and the social sciences. These data show that college

algebra with trigonometry is genuinely pre-calculus.

Models of reformed college algebra

Purpose and clientele Efforts at reforming the college algebra course in the last 5–10 years have the

same spirit as the earlier movement to reform the teaching of calculus. As with the calculus movement the

following hold for the college algebra movement:

� The DWF rates indicate a serious problem. They show that the course is not fulfilling an educational
purpose.

� The course has been used as a filter, when it should be used as a pump.
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A tenet of the reform movement is that the course should be designed to serve the needs of the students

who take it, so mathematics faculty must understand which other departments in their university or in their

transfer schools expect the students to have taken this course. And they must understand specifically which

aspects of college algebra are used in the various majors that require it.

College algebra is frequently required of students who major in business, the social sciences, biology

and health sciences, and education. Many state licensing boards require nurses to take college algebra.

The students who take algebra at college typically did poorly in the subject in high school, or as adults

have not seen the subject for many years, and the content and organization of the reformed college algebra

curriculum is designed for these students.

Content The curricular themes of college algebra reform are expressed well in the AMATYC Crossroads

standard [6]. The main goals for intellectual development concern transferable problem-solving skills such

as exploration, modeling, inductive and deductive reasoning, and tenacity as well as technical skills of a

general nature including communication and the use of technology. In content, the theme of reform is that

problem solving is the heart of doing mathematics and that students gain the power to solve meaningful

problems through in-depth study of specific mathematical topics. But depth does not necessarily refer to

theoretical depth, such as study of the complex number system along with quadratic equations. It can mean

an extensive exposure to a range of applications of a single functional form, so the student learns to see

the pattern that identifies a linear relationship, an exponential relationship, and so on.

The orientation toward meaningful applications is a key theme in the content of the reformed curricu-

lum. In the Algebra Initiative Colloquium, Davis [8] commented, “One could argue that no concept of

algebra should be taught unless it can be motivated by a problem that is likely to be part of the students’

experience in the near future.” Many topics in the traditional curriculum would have difficulty passing this

test.

The concept of function is essential to modeling relationships among real-world phenomena. Reform

emphasizes the Rule of Four—understanding functions verbally, numerically, graphically, and symbolically—

along with the ability to transform functional relationships from one representation to another, which is

the essence of mathematical modeling. However, it is possible to define a function contextually, as a

relationship between variables x and y, rather than abstractly as a rule of transformation f .

The emphasis on ideas in context, rather than ideas in the abstract, seems to characterize the main

efforts at reform. In the Algebra Initiative Colloquium, Artin [1] commented:

For an undergraduate course, the most important thing the students should come out with is a

familiarity with some examples—some basic structures on which they can build their understanding.

That is more important than theory.

We should be ruthless in asking: ‘Is it important for the average student in the class to learn this

material?’ If not, throw it out.

Given that the average community college student is 27 years old, Pollack [22] had a particularly

salient observation, “An algebra experience centered around the usefulness of the subject may succeed

where previous attempts at rote learning did not, especially with an older student.”

Davis, Artin and Pollack all reinforce the notion that the design of the college algebra curriculum

should reflect a keen understanding of who the students are and what their needs are. In the reformed

curriculum, each topic is evaluated according to its usefulness to the student and for the transferable skills

that their study provides.

Organization When opening the textbook of a reformed course, on the inside cover the student sees a

page or two listing the areas of application of the material covered in the book, not a mass of equations in

small type with exponents and parentheses. This sends a signal to the student that the textbook will have

practical value.
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From the reformed perspective, the traditional textbook’s initial Chapter R (named without even the

dignity of a chapter number) that covers equations, exponents, factoring, rational and radical expressions,

and complex numbers as a review is a sure formula to instill mathematics shock in the typical college

algebra student. In contrast, the first part of the reformed curriculum recognizes that the college algebra

student may have been out of school for a while or did poorly with algebra in the last encounter. The initial

reformed chapter covers linear functions through the study of linear equations and their graphs, in various

forms corresponding to the various natural language descriptions of linear relationships. Significantly,

systems of linear equations and inequalities follows this immediately. Linear systems are likely to be solved

by substitution and Gaussian elimination but not by matrix methods. Matrix algebra, in the reformed view,

belongs in a linear algebra course.

Following the study of linear functions, the reformed curriculum treats exponential functions, not

polynomials. There are several reasons for this organization of the curriculum, centering on the ease of

transition from linear to exponential functions. These functions each have two parameters, one of which

is the vertical intercept. They each describe growth or decline, though in different ways. And the solution

of an exponential equation by logarithms results in a linear equation that the student knows how to solve.

Exponential equations may be studied in depth through applications of the various forms (standard, base two

and natural base) that correspond to the various natural language descriptions of exponential relationships.

Variations on the exponential theme may include vertical shifts (Newton’s model of heating and cooling)

and the reciprocal of that, the logistic function.

Following the study of exponential relationships comes polynomial functions, with emphasis on the

quadratic. Complex numbers are typically introduced in a limited manner. Factorization is treated as a

property of the polynomial, but not given much emphasis as a solution procedure for polynomial equations.

The curriculum may emphasize the formulation of quadratic equations from real-world descriptions or from

graphs or tables of data. The solution of the equation by the quadratic formula is treated as a useful, generic

technique.

Sequences, arithmetic and geometric, may appear optionally in the curriculum through the study of the

general first-order difference equation, which subsumes linear and exponential functions defined over the

whole numbers and thereby helps integrate the curriculum [12, 14, 25].

Pedagogy The reformed curriculum of college algebra tends to treat the formulation of an equation as

an intellectual skill no less important than the solution of the equation. That is a significant departure

from the traditional curriculum. Faculty schooled in the traditional curriculum probably reply, “That’s not

algebra. Algebra is about the solution of equations.” True enough, but the purpose of the curriculum is to

do more than teach algebraic manipulations. The AMATYC Crossroads standard describes a broad range

of intellectual skills that should be developed in the subcalculus curriculum. The solution of equations

is only one step in the more general objective of problem solving. Kenschaft [15] reports the experience

of a mathematics alum who wrote in a survey, “Business is one ‘word problem’ after another.” The task

of taking a verbal representation and formulating it symbolically is an intellectual skill of high order and

one that students will need in their careers. But it is harder to teach than the manipulation of algebraic

expressions.

A consistent pedagogical theme in the reformed courses is this transformation of one representation into

another. Transforming a verbal, numerical, graphical or symbolic representation of a relationship between

variables into one of the other forms is the essence of mathematical modeling. Some curricula, such as

Herriott [13] place relatively more emphasis on the verbal-to-symbolic transformation, reading a description

and writing an equation. Others such as Gordon, et al. [12], Kime and Clark [16], and Crauder, Evans

and Noell [7] and Small [25] give special attention to the numerical-to-symbolic transformation, fitting

equations to data (see papers by the authors, later in this volume, for overviews of these texts). Rockswold,

Hornsby and Lial [23] introduce this idea in their adaptation of a traditional curricular organization.
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The mere use of technology does not tend to distinguish a reformed course from the traditional cur-

riculum, because even traditional courses are using graphing calculators. But the reformed courses tend to

use technology, including spreadsheet software, more intensively with applications.

Does reformed college algebra still prepare students for calculus? It is often said, “Student’s don’t

fail at the calculus. They fail at the algebra.” It is a reasonable guess that about 10% of the college algebra

students nationally will go on to attempt the first semester of a year-long calculus sequence, and about 35%

will take a one-semester course in calculus for the social, managerial and life sciences [10]. The qualities

that students need to succeed in either of these courses are an understanding of functions and graphs,

the ability to solve equations, and confidence in their ability to learn math. The reformed curricula tend

to give a thorough graphical treatment of functions, including a discussion of end behavior and turning

points. They give plenty of practice in solving equations. And their content and organization are designed

to encourage the student’s confidence in the ability to work with abstractions. It is a reasonable guess that

such students will be equally prepared to succeed in a calculus course that emphasizes applications in the

soft sciences. But students who attempt the full-year calculus sequence will need trigonometry, which is

not usually in the reformed algebra curriculum.

College algebra as a general education course

In states such as Texas, Louisiana, and Georgia, college algebra or a near substitute is required of all

students as general education. There may not be a single curricular design that serves well the future

needs of the English and fine arts majors and those in the managerial, social and life/health sciences.

Thus, adaptations of the college algebra curriculum to suit a general education objective tend to be radical

departures from the traditional curriculum.

Small [25] developed his Contemporary College Algebra explicitly for those institutions where the

college algebra course has the broader objective of developing quantitative literacy (see paper later in this

volume for an overview of this text). Topics in his curriculum include the display and interpretation of

data, linear equations and inequalities, and linear programming (graphical). Functions are studied in all

four representations, and modifications of a collection of elementary functions (linear, exponential, power,

quadratic) are obtained using shifts and rescalings and using the algebra of functions. Through case studies

of applied problems students learn the skill of modeling, and they develop confidence as problem solvers

in meaningful situations. Technology enhances the study of data and graphs, and small group work and

written assignments develop communication skills. As one example, the distance it takes a vehicle to stop

from various initial speeds is presented first as data in a table from a state driving manual. Students plot the

data and fit a curve to the data plot. The resulting function is used to extend the data in the driver’s manual.

Small group projects can be an important element of the pedagogy. These projects involve an inquiry

aspect that involves students in real life activities such as pricing materials in a store, writing a business

letter, interviewing a bank official, conducting a survey, and searching the Internet. Projects conclude with

a written report that involves group reflections. The business world places a high priority on group work,

so these projects develop students’ readiness for the workplace.

At other institutions, the general education curriculum includes a wider range of subjects studied less

deeply including the real number system, graphing and solving linear equations, geometric calculations,

elementary probability and statistics, and consumer mathematics.

Local and national policy issues

The preceding survey of changes in the curriculum raises several issues that mathematics faculty must

resolve at each college and university, and it poses a few questions that should be considered in national

policy making.
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Algebra as mathematicians know it vs. algebra as graduates use it

It should be easy to argue that the content of the fundamental theorem in any branch of mathematics belongs

in the college-level curriculum of the subject. This would suggest that the study of polynomials should get

main billing in the course, and indeed it does in the traditional curriculum. But algebra as mathematicians

know it is not necessarily the algebra that college graduates (of all majors) will need and that they should

learn in college. It is very difficult for a devoted mathematician to abandon the most beautiful ideas of

his or her field and teach what some perceive to be a watered-down curriculum to students from across

campus. That is why topics such as partial-fraction decompositions, complex numbers, the algebra of

functions, and inverse matrices find their way into the textbooks and why words such as group and field

can slip from the lips of the faculty teaching this course. The desire to share the extraordinary beauty of

higher mathematics comes from deep in the heart of the mathematician.

That is why it takes some work to keep a focus on the goal of helping the student up the next step

of their own career path. Examples—applications—may indeed be more important than theory. It may be

more important for the student to come out of the course knowing how to fit verbal descriptions to a

variety of forms of the linear equation. It may be more important to have a good facility with exponential

functions than a knowledge of polynomials. It may be more important to understand a multivariate linear

function than to understand a univariate rational expression.

Every mathematics department should develop a clear sense of which academic departments they are

serving through the course, which topics their students will need to understand, and what mathematical

skills students will need.

Admission and placement vs. instruction and assessment

If it has been used deliberately as a filter, then it may be timely to reconsider the assumptions of that policy,

especially at public institutions. Restrictive admissions policies may be politically difficult for some state

institutions to defend, and failing grades may seem to be a more objective way to discriminate between

those students who deserve higher education and those who do not. But the implicit contract that an

open admissions policy creates between the student and the institution is much more ambiguous than the

restricted admissions policy of an institution that defines its clientele clearly, admits according to standards

appropriate to that clientele, and allocates resources to whatever educational functions are necessary to

support the success of admitted students. An ambiguous, implicit contract could become the focal point

of complaints by dissatisfied parents and students.

The remarks of the former president of Grambling State University to the MAA community in 1997,

paraphrased at the beginning of this paper, suggest that there may be a declining tolerance for high DWF

rates. In this age of consumer activism, is it far-fetched to imagine that a group of parents or flunk-outs

would organize a class-action lawsuit against a public university for recovery of the tuition they paid—plus

damages? How would an academic institution, or a mathematics department chair, explain to a judge the

reasons for the DWF rate at their institution?

Science policy and precalculus vs. subcalculus mathematics

If less than a majority of college algebra students go on to take calculus of any kind, then it seems more

appropriate to refer to this curriculum as subcalculus rather than precalculus.

Should the NSF support subcalculus mathematics education? Only a minority of college algebra

students typically go on to take a semester of calculus, but this does not imply that the reformed college

algebra course is terminal mathematics, nor that it should lose its significance in the preparation of a

scientifically literate citizenry. A majority of the college algebra students will major in subjects that
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require the study of statistics—business, psychology, the life and health sciences, some social sciences,

and even some education programs. Statistics is required in these majors because it is fundamental to

understanding phenomena in nature and evaluating the claims of scientific theories.

The American system of higher education should cultivate a scientifically literate electorate as well as

scientifically literate policy makers at all levels of government. These people are rarely hard science majors

and are far more likely to have been college algebra students than calculus students. Data collected by the

U.S. Department of Education show that only 10% of the college graduates in 1997–98 had hard-science

specializations [4], yet around 800,000 students take college algebra each year [21].

The specialization of college algebra for different majors

Large universities may run 20 or 30 sections of college algebra each year. This presents an opportunity,

at the least, to specialize various sections of the course for different majors and at the extreme to create

different courses that focus on the needs of different types of students. Monmouth University in New

Jersey did just that in 2000–01 [11]. Their single course had a large number of education majors, and

many other students were taking it to fulfill a general education requirement, along with the usual mix of

students in business and the social and natural sciences. The math department split the course into four

distinct curricula:

� Mathematical modeling for the social sciences took about 250 students, leading to statistics for most
students and to quantitative analysis for business for some.

� Mathematical modeling for the biological sciences split off about 60 students and leads to statistics.
� Foundations of elementary math took nearly 100 education majors and was terminal.
� College algebra remained as a calculus-preparatory course for majors in the hard sciences and computer
science and enrolled about 50 students.

The courses with 50–60 students seemed to be about as small as they could be and still allow enough

sections that students would have some flexibility for scheduling. The social sciences course and the

biological sciences course had to be made interchangeable as prerequisites to their respective majors,

because students tended to switch majors between these fields. However, the course for education majors

was not interchangeable with those.

Staffing is an issue to consider when subdividing the college algebra course. At Monmouth, the full-

time mathematics faculty found it quite interesting to teach the applications of math in the social and

biological sciences. Monmouth uses many adjuncts, so the ones with applied math backgrounds were

selected for the specialized courses. One point of concern was how well the specialized courses would

be taught by adjuncts who were also full-time high school teachers, as they may not be as comfortable

with applications drawn from college-level majors and may have taught in the traditional manner for many

years.

Conclusions

Change in college algebra must become a priority of the mathematics community. The high DWF rate of

college algebra, as compared to other courses taken by large numbers of freshmen, is—or should be—an

embarrassment to the chairs of mathematics departments.

The basic premise of contemporary changes in college algebra is that the curriculum should be guided

by the future mathematical needs of the students. Research on the intended majors of college algebra

students suggests that the vast majority are headed toward business or the life/health or social sciences.

Most college registrars can give a mathematics department chair a report showing the distribution of
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students’ intended majors in the college algebra course, so this type of market research is not difficult to

obtain.

However, a curriculum oriented toward the soft-science student is decidedly different from the tradi-

tional college algebra course. The higher-order thinking skills required by the soft-science students are

developed by formulating algebraic models of relationships between variables, not by performing clever

manipulations of algebraic expressions. A review of textbooks in the soft sciences will show that the

mathematical functions used by students in those fields are predominantly linear and exponential, not

polynomial.

It is difficult for any mathematician to restrain the desire to share with students the extraordinary

beauty at the depth of algebra. For many, it is almost painful to give short shrift to the fundamental

theorem of the field in a college-level course. However, in our efforts at curriculum and instruction in

college algebra, we must attend first to the needs of our students and reserve for the mathematics majors

our unbridled enthusiasm for higher mathematics. Our goal in college algebra should be to develop the

students’ confidence in their ability to work with mathematical concepts and expressions. A curriculum

oriented toward the needs of the students’ future majors is more likely to inspire their interest and active

participation than any other. With such a curriculum, college algebra can be a pump rather than a filter.

Acknowledgements: I am grateful for the contributions of Della Bell, Bonnie Gold, and Donald Small to

this article.

References

1. Artin, Michael, “Algebra at the College Level,” in The Algebra Initiative Colloquium, Volume 2, C. Lacampagne,

W. Blair and J. Kaput (eds.). U.S. Government Printing Office document SE 056 573, Washington, DC, 1995,

p. 72.

2. Aufman, Richard N., Vernon C. Barker, and Richard D. Nation, College Algebra and Trigonometry, Houghton-

Mifflin, Boston, 1997.

3. Bittinger, Marvin L., Judith A. Beecher, David Ellenbogen, and Judith A. Penna, College Algebra: Graphs and

Models, Addison-Wesley, Reading, MA, 1997.

4. Chronicle of Higher Education, “Earned Degrees Conferred, 1997–98,”

http://chronicle.com/weekly/almanac/2001/nation/0102501.htm, Oct. 1, 2001.

5. Cohen, David, College Algebra, 4th edition, West, Minneapolis, 1996.

6. Cohen, Don (ed.), Crossroads in Mathematics: Standards for Introductory College Mathematics before Calculus,

American Mathematical Association of Two-Year Colleges, Memphis, TN, 1995.

7. Crauder, Bruce, Benny Evans, and Alan Noell, Functions and Change: A Modeling Alternative to College

Algebra, 2nd edition, Houghton-Mifflin, Boston, 2003.

8. Davis, Paul, 1995. “Algebra, Jobs and Motivation,” in C. Lacampagne, W. Blair and J. Kaput (eds.) The Algebra

Initiative Colloquium, Volume 2, Office of Educational Research and Development, Washington, DC, p. 150.

9. Dugopolski, Mark, College Algebra, Addison-Wesley, Reading, MA, 1995.

10. Dunbar, Steven R. and Scott R. Herriott, “Renewing the College Algebra Course: Toward a Curriculum Suited

to the Future Mathematical Needs of the College Algebra Student,” unpublished manuscript, 2001.

11. Gold, Bonnie, “An Alternative to the One-Size-Fits-All Precalculus/College Algebra Course,” in this volume.

12. Gordon, Sheldon P., Florence Gordon, Alan C. Tucker, and Martha J. Siegel, Functioning in the Real World,

2nd edition, Addison-Wesley, Reading, MA, 2004.



100 Theme 1. New Visions for Introductory Collegiate Mathematics

13. Herriott, Scott R., College Algebra Through Functions and Models, Brooks-Cole, Pacific Grove, CA, 2005.

14. Kalman, Dan, Elementary Mathematical Models, Mathematical Association of America, Washington, DC, 1997.

15. Kenschaft, Patricia C., “455 mathematics majors: What have they done since?” College Mathematics Journal

31 (2000), pp. 193–196.

16. Kime, Linda A., Judy Clark, and Beverly Michaels, Explorations in College Algebra, 3rd edition, Wiley, New

York, 2005.

17. Lacampagne, Carole B., William Blair, and Jim Kaput (eds.), The Algebra Initiative Colloquium, Volume 1,

U.S. Government Printing Office document SE 056 572, Washington, DC, 1995.

18. Lacampagne, Carole B., William Blair, and Jim Kaput (eds.), The Algebra Initiative Colloquium, Volume 2,

U.S. Government Printing Office document SE 056 573, Washington, DC, 1995.

19. Larson, Roland E., and Robert P. Hostetler, College Algebra, 4th edition, Houghton Mifflin, Boston, 1997.

20. Lial, Margaret L., E. John Hornsby, Jr., and David I. Schneider, College Algebra, 7th edition, Addison-Wesley,

Reading, MA, 1997.

21. Loftsgaarden, Don O., Donald C. Rung, and Ann E. Watkins, Statistical Abstract of Undergraduate Programs

in the Mathematical Sciences in the United States: Fall 1995 CBMS Survey, Mathematical Association of

America, 1997.

22. Pollack, Henry, “Algebra and the Technical Workforce,” in C. Lacampagne, W. Blair and J. Kaput (eds.) The

Algebra Initiative Colloquium. Volume 1, Office of Educational Research and Development, Washington, DC,

1995, p. 89.

23. Rockswold, Gary K., John Hornsby, and Margaret L. Lial, College Algebra Through Modeling and Visualization,

Addison-Wesley, Reading, MA, 1999.

24. Ruud, Warren L. and Terry L. Shell, College Algebra, Worth Publishers, New York, 1997.

25. Small, Donald, Contemporary College Algebra, 5th edition, Wiley, New York, 2004.

26. Sobel, Max A. and Norbert Lerner (1995),College Algebra, 4th edition, Annotated Instructor’s Edition, Prentice-

Hall, Englewood Cliffs, NJ, page v.

27. Stewart, James, Lothar Redlin, and Saleem Watson, College Algebra, 2nd edition, Brooks-Cole, Pacific Grove,

CA, 1996.

28. Sullivan, Michael and Michael Sullivan III, College Algebra Enhanced with Graphing Utilities, Prentice-Hall,

Upper Saddle River, NJ, 1996.



12

One Approach to Quantitative Literacy:

Understanding our Quantitative World

Janet Andersen

Hope College

Overview and philosophy of the course

The calculus reform movement sparked numerous conversations about pedagogy and curricula on cam-

puses throughout the country. However, it is only recently that the national conversation has spread to

courses below calculus. These include courses that potentially lead to calculus, such as college algebra and

precalculus, as well as courses that students take primarily to fulfill general education requirements. Part

of the confusion is that many courses serve one purpose in theory yet serve another purpose in practice. For

example, many topics in college algebra and precalculus textbooks are included because they are necessary

background for standard topics in differential or integral calculus. Yet the percentage of students enrolled

in college algebra or precalculus courses who eventually take two semesters of calculus is quite small.

So, in practice, college algebra and precalculus are primarily serving as general education courses or as

preparation for courses outside of mathematics. However, a course designed for one purpose (preparation

for calculus) is not necessarily well designed for another purpose (general education credit or preparation

for courses outside of mathematics). One response to this situation is the creation of additional mathematics

courses and implementation of effective advising procedures so that students take the mathematics course

that is most appropriate for their needs.

The primary need for many students is to become quantitative literate citizens who are capable of

interpreting and using information presented quantitatively. As stated on page 2 in the book Mathematics

and Democracy: The Case for Quantitative Literacy, “Quantitatively literate citizens need to know more

than formulas and equations. They need a predisposition to look at the world through mathematical eyes, to

see the benefits (and risks) of thinking quantitatively about commonplace issues, and to approach complex

problems with confidence in the value of careful reasoning.”

In constructing and teaching a course designed to improve quantitative literacy, it is crucial that

the goals and objectives be targeted at what students will most likely encounter outside of academia.

For many mathematicians, this is a brand-new (and somewhat radical) idea. Typically, every course in

the mathematics curriculum is designed to prepare students to take another course whether it is another

mathematics course or a course in another discipline. Yet, many students do not take another course in

mathematics and therefore have been drilled and tested on skills and concepts that they often will never

use or encounter in the future. There are many students who take a particular mathematics course because

it is a cognate for their major, such as social science majors taking statistics. In these cases, it is important

101
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that the mathematics department engage in ongoing conversations with the other departments to ensure

that the mathematical preparation adequately addresses their needs. However, there are many students who

are in majors that do not require a particular mathematics course, or who are undecided about a major

when they enroll in a mathematics course. These students are typically taking a mathematics course to

fulfill a general education requirement and this is likely to be the last mathematics course they will take.

Once the pattern of assuming that mathematics courses should fit the needs of both general education and

preparation for future mathematics courses is broken, we are left with two basic approaches for general

education mathematics courses:

� What skills and concepts are useful for informed citizens?
� What great ideas of mathematics should all educated people know?

Note that these questions do not imply the same approaches to the answer. The great ideas of math-

ematics such as chaos theory, graph theory, the concept of infinity, and so on, are not the same as the

skills and concepts needed to correctly interpret quantitative information found in common media such as

Newsweek and The New York Times. While it would be affirming if the general populace recognized that

fuzzy math is an actual branch of research mathematics rather than a glib slogan used during a political

campaign, it would be more affirming if the general populace was able to correctly interpret commonly

encountered statistical and graphical information. This is not to say that all general education mathematics

courses should be focused on the idea of “What skills and concepts are useful for informed citizens?”

There is certainly a strong and valid argument for giving non-mathematicians a glimpse of the beauty and

creativity of mathematics and developing a sense of math appreciation. The appeal of this approach is

demonstrated by the popularity of textbooks such as The Heart of Mathematics (Burger and Starbird) and

the intersection of art and mathematics in areas such as Escher’s paintings, the movie A Beautiful Mind,

and the Broadway play The Proof. However, we cannot ignore the need to improve the quantitative literacy

of the general American populace.

There are several projects that have concentrated on helping students to correctly interpret and un-

derstand commonly encountered quantitative information. For All Practical Purposes (COMAP) shows

students new mathematics, such as voting theory, while demonstrating that mathematics can be used to

interpret and inform life outside of academics. Essentials of Using and Understanding Mathematics: A

Quantitative Reasoning Approach (Bennett and Briggs) focuses on how to interpret mathematical infor-

mation commonly found in the media. How Do You Know? Using Math to Make Decisions (Hirst) is a

workbook covering four modules (trigonometry and measurement, finance, statistics and linear program-

ming) recognized with the Innovative Programs Using Technology (INPUT) award. Many statistics and

finite mathematics courses devote considerable time to helping students interpret statistical or financial

information that they will find useful as informed citizens. The National Council on Education and the Dis-

ciplines at the Woodrow Wilson Foundation has designated Quantitative Literacy as one of its four major

emphases in literacy. Information can be found at http://www.Woodrow.org/nced/quantitative literacy.html.

The National Science Foundation funded several “Mathematics Across the Curriculum” projects, many of

which addressed the needs of quantitative literacy (e.g., Dartmouth College and the University of Nevada

at Reno).

At Hope College, we looked at several of these projects. However, we wanted something that forced stu-

dents to actively engage in discussing mathematics and was connected to targeted general education science

courses. We applied for and received partial support from the National Science Foundation (DUE 9652784),

to develop a mathematics course designed around the question “What skills and concepts are useful for

informed citizens?” Mathematics in Public Discourse was first piloted in spring 1998 with one section and

quickly became a popular mathematics option at Hope College with approximately 270 students (out of a

student body of 3,000) enrolled every subsequent year. Thus, about 35–40% of all students at Hope take

this course.
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Understanding Our QuantitativeWorld is intended for students who do not have a specific mathematics

course requirement (such as statistics or calculus) for their major. In practice, this means that the main

audience for this course is humanities and fine arts majors. Most of the students in the course have taken

two to four years of mathematics in high school and no other mathematics course in college. However, the

knowledge base and skills base of the students varies widely from students who have taken a high school

calculus course to students who cannot correctly solve simple algebraic equations or combine fractions.

Almost all of the students enrolled in the course dislike mathematics at the beginning of the course.

The goals of the course are for students:

� to realize that mathematics is a useful tool for interpreting information;
� to see mathematics as a way of viewing the world that goes far beyond memorizing formulas; and
� to become comfortable using and interpreting mathematics so that they will voluntarily use it as a tool
outside of academics.

The course is structured so that there is little lecturing. Rather, students are assigned readings from

the text materials developed under the NSF grant. They read the material and answer a series of questions

(some of which are computational and some of which require interpretation and written explanation) before

the material is covered in class. The rationale for having students read the materials is to emphasize the

importance of being a self-learner. For that same reason, the group activities are taken from public resources

such as newspapers, magazines, and the World Wide Web. This demonstrates to students that they can use

mathematics as a tool in interpreting the world they encounter. The course is organized so that students

do group activities approximately 75% of the class time with the other 25% devoted to clarification and

summary of the material, review, and exams. Students are required to have a TI-83 graphing calculator.

The readings cover the following topics (see [1]):

Functions. Four representations of functions (symbolic, graphical, tabular, and verbal) are emphasized.

Specialized vocabulary (such as domain and range) is introduced. Examples include the stock market,

population of the U.S., and the cost of internet services. Group activities include cell phone rates and

credit card bills.

Graphical representations of functions. Correct interpretation of graphical information is emphasized,

particularly with regards to shape and labels. The concepts of increasing/decreasing and concavity are

introduced. Instruction on using the calculator to construct graphs is included. Group activities focus on

analyzing a variety of graphs from magazines, newspaper, and non-mathematical textbooks.

Applications of graphs. The connections between and the meaning of the graphs of f .x/, f .x C a/,

f .x/ C a, f .ax/, and af .x/ is emphasized. This is introduced via the context of a motion detector graph

of time versus distance. Group activities include working with a motion detector and converting baby

weight charts from English units to metric units.

Displaying data. The emphasis in this section is on visual display of data. Histograms, scatterplots, and

xy-trend line graphs are included. Students receive instruction on using the calculator to graph data in

each of these formats. Group activities include looking at arm span versus height and data given from the

American Film Association on best movies.

Describing data. Concepts underlying one variable statistics are emphasized. This includes ideas of center

(i.e. median and mean) and ideas of spread (i.e., standard deviation and quartiles). The emphasis is on

the difference between the median and the mean, particularly with skewed data. Normal distributions are

also introduced. Instruction on using the calculator to compute one-variable statistics is included. Group

activities include salary versus winning percentage of basketball teams and looking at house prices.

Multivariable functions and contour diagrams. Commonly occurring multivariable functions (such as

computing the payment on a car loan) and commonly occurring contour maps (such as weather and
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topological maps) are emphasized. Treating a multivariable function as a single variable function by

holding all but one input constant is also included. This allows the students to connect some of the ideas

in this section with those encountered earlier in the text. Group activities include a contour map of Mount

Rainer and looking at car loans.

Linear functions. The emphasis is on translating a situation with a constant rate of change into the mathe-

matical concept of a line. There is also an emphasis on the concept that only two pieces of information—a

starting point and a rate of change—are necessary to determine a line. This section ends by showing that

proportional changes (such as unit conversions) can be thought of as linear functions. Group activities

include working with a motion detector and looking at an electric bill.

Regression and correlation. Students are introduced to the concept of using regression analysis to de-

termine if two variables exhibit a linear relationship. Calculator instructions are included. Other types of

regression (e.g. exponential) are introduced in later sections. Group activities include Olympic race data

and atmospheric carbon dioxide data.

Exponential functions. The concept of an exponential function is introduced via the idea of doubling.

Exponential functions are contrasted with linear functions. In particular, the idea of a constant rate of

change versus a constant growth factor is emphasized. This section also explores vertical and horizontal

shifts of exponential functions, connecting with the ideas introduced in the section on applications of

graphs. Group activities include a cooling experiment and looking at prices of DVDs.

Logarithmic functions. Logarithms are emphasized as functions that compute the magnitude of a number.

Only base 10 logarithms are used. Properties of logarithms and using logarithms to solve simple exponen-

tial equations are included. Group activities include sound decibels and verifying Bedford’s law on the

occurrence of numbers in print.

Periodic functions. Periodic functions are introduced as a way of modeling cyclic behavior. The behavior

of a clock and a swing are used to motivate the concepts. Sine and cosine are defined only in terms of

the circular definitions. The concepts of amplitude and period are related to the ideas of shifting functions

introduced earlier in the text. Group activities include an experiment with sound waves and looking at the

seasonal change in the hours of daylight.

Power functions. Power functions are the last type of function covered in the text and are introduced

graphically. Behavior of polynomials with even and odd positive integer exponents is contrasted. Positive

rational exponents are also included. Group activities include Kepler’s law of planetary motion and looking

at the wingspan of birds.

Probability. The basic concepts of counting and determining simple probabilities are introduced. Systemic

ways of listing (or counting) all possible outcomes are emphasized. Multi-stage experiments and expected

value are included. Group activities include codes for garage door openers and roulette.

Random samples. This section explores how to set up a random sample and why this is desirable. The

concepts of variability, bias, and confidence intervals are included. Group activities include looking at

phone-in surveys and simulating a capture-recapture experiment.

Each of these readings is a single unit on the topic. The goal is to give students an intuitive sense of

the mathematical concept so they can adequately interpret (rather than necessarily create) mathematics. In

addition to the readings, we have also written four to eight group activities for each section, of which we

typically assign two to four.

Even though the course was designed with the premise that this is the last mathematics course a student

will take, we have found that this course functions equally well as an introduction to other courses. In fact,

about half of the students enrolled in Understanding Our Quantitative World take additional mathematics
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courses. Understanding Our Quantitative World has always been a pre- or co-requisite for two of our

general education science courses, Populations in a Changing Environment and The Atmosphere and

Environmental Change. Students in these science courses see and use many of the mathematical skills

repeated in another context. This is in response to the recommendation by the MAA that quantitative

literacy should occur throughout the curriculum and not be isolated to one or two mathematics courses.

In fact, these two general education science courses hold students accountable for more mathematics

than do the introductory courses for the biology or geology major. This is due to extensive conversations

among faculty in biology, geology and mathematics. Knowing exactly what mathematics is covered in the

Understanding Our Quantitative World course, plus knowing the topics covered in the science course and

ways that mathematics occurred naturally in these contexts, enabled us to create courses whose content fit

together. Some of the topics, such as multivariable functions and the emphasis on the behavior of various

types of functions, were included because they would be applied in the science courses. Several of the

group activities developed for the math course, such as the capture-recapture experiment and looking at

levels of carbon dioxide in the atmosphere, appear again in the science courses. This spiral approach of

having students see similar material in multiple courses and contexts increases the expertise and comfort

with which students successfully use and interpret mathematics.

Another unexpected benefit of this course is that it also functions as a precursor to our calculus with

review sequence. [Note: Calculus with Review is a year-long sequence that incorporates precalculus topics

just in time while covering slightly more calculus than is typically found in the first semester calculus

course.] One option for students at Hope College enrolled in the elementary education program is to

complete a mathematics minor for elementary teaching. For this minor, we require students to master

mathematical content up to differential calculus, in addition to taking courses designed for elementary

teachers. While we have some students with strong mathematical skills enrolled in this minor, we also

have several with weaker mathematical backgrounds. For these students, we have found that having them

take Understanding Our Quantitative World followed by Calculus with Review I & II works well. Part of

the reason for this is that it builds on the spiral approach to content that has been shown to be effective in

K–12 mathematics curriculum design. (See, for example, the paper by Rebecca Walker, in this volume, and

the evaluation of the Core Plus mathematics project, http://www.wmich.edu/cpmp/evaluation.html.) Most

of our students have seen at least some material on functions in high school, even if their understanding

of these concepts is weak and flawed. They then see functions in the Mathematics in Public Discourse

class included in a context and discussed in a group setting with their peers. By connecting the mathe-

matical concepts to topics taken from common sources such as newspapers, magazines, and the internet,

students gain an intuitive understanding of the type of behavior described by various types of functions.

Functions and their properties are also covered in the Calculus with Review courses, this time in a more

mathematical, algebraic context. Notice that this is different from the college-algebra-leads-to-precalculus-

leads-to-calculus approach because the students are seeing the topics presented differently in the courses

and in a context that automatically addresses the question of why do we need to know this? In Under-

standing Our Quantitative World, students see that the mathematics allows them to interpret information

they will encounter in their lives as citizens. The emphasis is on developing an intuitive understanding and

interpretive ability. In the Calculus with Review I & II courses, students see that the same mathematics is

necessary for understanding the calculus. This time, the emphasis is on algebraic manipulation and com-

putation. Seeing the material in multiple contexts and courses leads to better understanding and retention

of the material.

Sample section: Periodic functions

One of the topics covered in Understanding Our Quantitative World (our general education course) is

periodic functions, a topic found in all precalculus courses. Yet our approach to this topic is different
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from the traditional precalculus approach. Our goal is for students to be critical consumers of mathematics

(rather than primarily creators of mathematics). While we want students to become facile with formulas, we

consider it more important that students can appropriately analyze and interpret quantitative information.

Therefore, our approach is for students to develop an intuitive understanding of what a periodic function

is, what type of behavior it describes, and how to interpret information given in the context of periodic

functions. The focus is on the word “periodic”–we only allude to the connection to the triangular definitions

in a footnote.

Each section starts with a paragraph giving some motivation for the topic, describing the content of

the section and relating it to previous sections in the text. Periodic functions are motivated by considering

the cyclic behavior of daily temperatures (over the year), the position of the second hand on a clock, and

the position of a child on a swing.

Periodic functions are introduced as functions whose outputs repeat at regular intervals. The first

examples are graphical. The definition of period is given early in the text. The text describes how to

determine if a function is periodic and if so, to determine the period. Function notation is used. Some

examples connect the students to the definition of a function given at the beginning of the text. After this

introduction to the concept of periodic functions, the section develops the circular definitions of sine and

cosine by looking at the behavior of a six inch second-hand on a clock. First, the vertical position of the

hand (from the center of the clock) is graphed over the course of two minutes. Next, the horizontal position

of the hand is graphed. Why these are periodic functions as well as the similarities and differences of the

two graphs are stressed. Figures 1 and 2, taken from the text, illustrate this approach.
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Figure 1. A graphical representation of the vertical position function
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Figure 2. A graphical representation of the horizontal position function

The section goes on to define amplitude, period, the sine function, and the cosine function. The expla-

nations are rooted in two examples: the clock example and a swing example introduced when explaining

amplitude and period. Both of these are familiar examples that help students relate the mathematical

concepts to their own experience. The emphasis throughout the section is on a graphical understanding.

A similar approach to introducing periodic functions is certainly feasible in a precalculus or a trigonom-

etry course. Giving students familiar examples and beginning with a graphical understanding helps students

understand the concept of periodic functions in a way that is not feasible when we restrict our teaching to

mathematical symbols. In a precalculus or trigonometry course, it is necessary to also include significant

practice in using and interpreting the symbolic forms of these functions. But only emphasizing the sym-
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bolic forms (the traditional approach to precalculus) is likely to produce students who blindly memorize

formulas, but have little to no understanding of the mathematical concepts.

Students in our general education course are expected to read the section and complete the reading

questions BEFORE coming to class. This approach, while at first uncomfortable for many students, helps

combat the common misconception that mathematics is something that is only understandable to the experts.

It is empowering when students realize that they do have the capability to read and understand mathematics

when it is presented in a familiar context. Reading questions include both computational and conceptual

questions. For example, in the section on periodic functions, students are asked to contrast the difference

in behavior between exponential and periodic behavior, to determine if a graph does or does not represent

a periodic function, and to find simple periodic models for representing the motion of a child in a swing

or a seat on a Ferris wheel.

Students typically do 15 to 20 reading questions per section. About half of the questions ask students

to write sentences in response to questions such as “explain why this is true,” “give an example,” “what

would happen if.” The other questions ask students to perform a mathematical computation in the context

of a graph, a table, a physical description, or mathematical symbols. The approach in our general education

course differs from a precalculus course by putting a greater emphasis on writing and a reduced emphasis

on symbolic manipulations.

When students come to class, the instructor summarizes the section and emphasizes the major points.

The instructor also spends time answering homework questions and clearing up misconceptions. Having

students work on group projects takes the remainder of the class time and typically all of the following

class period. The group projects involve longer applications. Two to four group assignments are typically

assigned per section. One of our group activities is Sound. In this activity, students first look at sound

waves produced by tuning forks. They are then led to derive the relationship between the period of the

sound wave and the frequency of the note. Next, they produce unknown notes by blowing across a bottle

and are asked, by looking at the sound wave, to figure out what note was produced. Finally, we bring in

musical instruments and/or ask students to sing to see what happens.

This group assignment is appealing to most students. It allows them to make connections between

mathematics and music—two areas that many students assume are unrelated. There are always musically

talented students in the class who enjoy showing off their expertise. One of the instructors brings in his

keyboard to demonstrate the graphs produced with playing chords and other combinations of multiple notes.

This group assignment relies on technology. We have purchased a classroom set of CBLs (Calculator Based

Laboratories) and microphone probes. Students use their TI-83 calculators to collect the data and draw the

graphs. The necessary software for the TI-83 is a program called Sound provided on the TI-83 website.

Other group activities for the unit on periodic functions include Biorhythms, Daylight, and Current.

The biorhythm activity gives students a generic formula for computing physical, emotional, and intellectual

biorhythms. They have to modify these formulas using their birth date and graph them for the following

two weeks. This is, again, an activity that is appealing to most students who enjoy seeing when they are

supposed to peak in the next two weeks. The daylight activity gives students a chart of times the sun

rose and set in a nearby city every ten days for a year. They use this data to create a graph of hours of

daylight versus day of the year. Using the graph, they are asked questions such as “which day had the

most daylight,” “when is the amount of daylight changing the most rapidly,” “how does this correspond to

your experience of the seasons.” The current activity uses the CBL and a light intensity probe. Students

measure the light intensity of a fluorescent light bulb (over a short time period). Students are astounded

to see that the light they thought was steady is actually alternating.

These activities are adaptable to a precalculus course. When we use them in precalculus, we typically

add more questions asking students to compute or use a symbolic formula. The advantage of such activities

is that they help students understand that mathematics has a variety of applications and is prevalent

throughout their world.
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Evaluation

We have solicited information from students regarding Mathematics in Public Discourse through pre- and

post-attitude surveys, course evaluations, and focus groups conducted with students at least one year after

completing the course. We have found that Understanding Our QuantitativeWorld is having a slow, positive

influence on student attitudes towards mathematics. In contrast, when general education students are placed

in traditional mathematics course (such as college algebra or precalculus), attitudes towards mathematics

are often noticeably more negative at the end of the course. Typical student comments regarding the course

include:

I liked that we applied it to real life, so it sort of felt like there was at least a purpose to learning

the stuff.

I liked learning how to keep an open eye for misleading information, biased data, and manipulative

statistics.

I liked to see the many different ways math is viewed in today’s society.

This class was great! I think that I learned more in this short semester than I ever did in any high

school courses.

The focus groups found that, even a year or more after taking the course, students could still recall

particular activities and at least a vague understanding of its connections with the mathematics. The course

did seem to have a long-term effect on student perceptions of the usefulness of mathematics.

The biggest difficulty with the course is attendance. The heavy reliance on group activities makes it

problematic when students are absent. To address this, we have created an attendance policy that helps

students realize the direct connection between coming to class and doing well. We call this attendance

policy our “C– guarantee.” In the syllabus and on the first day of class, we announce to students that

anyone who attends every class session and completes all of the homework, will be guaranteed a grade of

C– or higher regardless of test scores. We find that this is a policy that rarely needs to be implemented

since it is unusual that students who are attending class and completing assignments fail to pass the

exams. However, having such a policy gives some students, particularly those that have been unsuccessful

in previous mathematics courses, a clear means to success.

We have found that about 40% of the students who take this course also take an additional mathematics

course. Most of the time this is a statistics course. This course is also taken by several pre-service elementary

teachers (in addition to the mathematics course for elementary teachers) to strengthen their mathematical

background and experience a different form of pedagogy in a mathematics classroom

The course works best when there is a clear match between the objectives of the course and the reasons

that students have for taking the course. When students are taking a course that is likely to be their last

formal mathematical experience, the best option may be a course focused on issues of quantitative literacy

and attitude rather than a course that is pre to a subject they may never study.
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Theme 2. The Transition from

High School to College

At the collegiate level, precalculus is frequently categorized as a “remedial course” and too often it is a

terminal mathematics course for students who enter college not prepared to take calculus. On the other

hand, at the high school level, precalculus seeks to prepare the best and the brightest to study calculus. In

both cases, enrollments are at record levels. Not only are the audiences different, at the high school level, as

a result of implementation of the Curriculum and Evaluation Standards, published by the National Council

of Teachers of Mathematics (NCTM), the way precalculus is taught and what is taught is changing. In

this section Zalman Usiskin, an invited speaker at the conference Rethinking the Preparation for Calculus,

gives an overview of what is happening in the high schools and comments about the transition from high

school to college. Daniel Teague discusses precalculus reform at the high school level, and Eric Robinson

and John Maceli give a perspective on the Standards vision as it relates to the preparation of school

students, particularly secondary students, for calculus.

Zalman Usiskin observes that enrollments in college preparatory courses are at historically high levels,

enrollments of high school students in calculus, whether advanced placement or not, are also at record

levels, and on all long-term national measures of performance, mean scores have increased steadily over

the past twenty years. Yet, in colleges enrollments in remedial courses are also at record levels and the

number of mathematics majors has declined. Using data from the National Assessment of Educational

Progress, SAT and ACT college entrance exams, and the Advanced Placement program of the College

Board, Zalman discusses and analyzes these phenomena and offers some recommendations for action.

I have been asked to present a “high school overview” with some comments about the transition from high

school to college. I am interpreting the first part of this mission to mean an overview of the mathematics

curriculum in schools, instruction in classrooms, and performance among students today in the United

States. . . . Any overview is an oversimplification. The word “precalculus” itself can refer either to the

student’s mathematical experience before taking a calculus course, or to the specific concepts felt to be

prerequisites for calculus. Students, teachers, the mathematics curriculum itself, the broader school context,

and the surrounding community vary widely. Furthermore, we lack some important data that might help us

to understand what is going on. In particular, we lack data on what works and what does not. But we do

have some trend data and some specifics that may help inform discussion of these issues.

High School Overview and the Transition to College

Zalman Usiskin

Daniel Teague, who is on the faculty at the North Carolina School of Science and Mathematics, observes

that in many secondary schools precalculus reform has preceded calculus reform. Daniel shares some of

his insights from 15 years of teaching a reformed precalculus course, focusing on two issues: “Successful

students in a reformed precalculus curriculum will have new attitudes and abilities that can be utilized

successfully in the teaching of calculus, and reformed precalculus curricula can play an important role in

preparing students for the rigor of theoretical mathematics.” Daniel notes that “both of these issues have

implications in the way the mathematical community views and accepts precalculus reform.” He observes
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that the transition from high school precalculus to post-secondary calculus is difficult for many reasons,

but one important reason is that the post-secondary teacher doesn’t know the skills, understandings, and

expectations of their new students.

If you try to teach my students with the mistaken belief that they know the mathematics I knew at their age,

you will miss a great opportunity. My students know more mathematics than I did, but it is not the same

mathematics; and I believe they know it differently. They have a different vision of mathematics that would

be helpful in learning calculus if it were tapped.

Precalculus Reform: A High School Perspective

Daniel J. Teague

Eric Robinson and John Maceli describe “changes in the school mathematics curriculum that would

or could result from full implementation of a NCTM Standards vision, concentrating on changes that

affect the preparation of school students for calculus.” They consider the questions: “Should the primary

driver of the K–12 curriculum, especially in the upper grades, be preparation for calculus? Don’t we just

need to examine the topic differences that there are in Standards-based school mathematics programs in

order to understand the changes in students’ preparation for calculus? How does the content in Standards-

based school mathematics education lay a foundation for calculus? What other things influence students’

preparation for calculus?”

It is fair to say that as of this writing most mathematics programs in our nation’s schools are neither completely

traditional (in the sense of what was typical in the early 1980s) nor completely Standards-based (in terms

of the changes suggested in the NCTM documents). Massive change does not occur quickly. Even if it did,

there has been barely enough time since the publication of the visionary 1989 documents mentioned above

for students to be entering calculus courses with a complete K–12 Standards-based education. Nonetheless,

our major task here is to describe changes in the school mathematics curriculum that would or could result

from full implementation of a Standards vision, concentrating on changes that affect the preparation of

school students for calculus. To that end we will structure this article by asking questions and then providing

answers with a Standards-based K–12 point of view.

The Influence of Current Efforts to Improve School Mathematics on the Preparation for Calculus

Eric Robinson and John Maceli
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High School Overview and the Transition to College

Zalman Usiskin

The University of Chicago

Editor’s note: This paper is the text of an invited address given by Zalman Usiskin, in October 2001, at the

conference Rethinking the Preparation for Calculus. (Please see the paper about the conference, by Jack Narayan

and Darren Narayan, in the introduction to this volume.)

Introduction

I have been asked to present a “high school overview” with some comments about the transition from high

school to college. I am interpreting the first part of this mission to mean an overview of the mathematics

curriculum in schools, instruction in classrooms, and performance among students today in the United

States. Six years ago at the conference “Preparing for a New Calculus” I concentrated mainly on the

curricular changes moving into grades 7–12 [13] and could only begin to speculate on the implications

of those changes. Now we have some rather consistent information about changes that have occurred in

student exposure to and learning of mathematics.

Any overview is an oversimplification. The word “precalculus” itself can refer either to the student’s

mathematical experience before taking a calculus course, or to the specific concepts felt to be prerequisites

for calculus. Students, teachers, the mathematics curriculum itself, the broader school context, and the

surrounding community vary widely. Furthermore, we lack some important data that might help us to

understand what is going on. In particular, we lack data on what works and what does not. But we do

have some trend data and some specifics that may help inform discussion of these issues.

Trend data on student performance

A major source of trend data on student performance in mathematics is from the National Assessment

of Educational Progress (NAEP). Two performance trends are currently being maintained. The first, the

long-term trend, also known as the longitudinal study, involves random samples of students age 9, 13,

and 17 and is administered separately from the other mathematics assessments of NAEP. The trend dates

from 1973, and since 1978 the test has used exactly the same items. On this assessment, students are not

allowed to use calculators, and the items tested are those considered important in 1973 (such as paper-and-

pencil computation skills, direct application of measurement formulas in geometric settings, and the use of

mathematics in daily-living skills involving time and money). On these tests, performance of 9-year-olds

increased significantly between 1973 and 1996, by perhaps a grade level. The increase was monotone

with a particular jump between 1986 and 1990. Performance of 13-year-olds also increased significantly
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from 1973 to 1996, by perhaps a half grade. In slight contrast, performance of 17-year-olds was steady

through the 1990s, a little higher than in the 1970s and 1980s, but not significantly higher [2, p. 54].

These data can be interpreted as showing that, on the average, the basic arithmetic skills of students have

not decreased in the past quarter century.

Why would the greater increases at lower grades on the NAEP not be reflected at higher grades four

years later? It could be that the test, being a test of rather basic skills, is not sensitive to the mathematics

students encounter at the higher grades. Or it could be that middle schools are not taking advantage of

the increased knowledge of younger students, and high schools are not taking advantage of the increased

knowledge of their entering students.

A second trend, the short-term trend, is part of the regular National Assessment administered to 4th

graders, 8th graders, and 12th graders in 1990, 1992, 1996, and 2000. The short-term trend was begun to

determine possible effects of the NCTM Curriculum and Evaluation Standards [9]. Calculators (4-function

at grade 4, scientific at grades 8 and 12) are allowed on some sections of the test and are distributed to

students who take the test. As with the long-term trend, the short-term trend indicates greater increases at

lower grades than at higher grades. Grade 4 mean scores increased steadily through the 1990s, from 213

in 1990 to 228 in 2000. The gain of 15 scaled points by 4th graders is almost matched by a similar steady

gain of 12 points, from 263 to 275, by 8th graders in the same decade. At 12th grade, the performance is

also generally positive. Although the mean scaled score of 12th graders decreased from 304 to 301 from

1996 to 2000, both scores are significantly higher than the mean score of 294 in the year 1990 [1, p. 24].

The positive directions of these trends agree with trends on the two quite different college entrance

tests that are widely taken in the U.S., the SATs and the ACTs. Mean scores on the mathematics portion

of the SAT-I, the basic SAT test taken by about 1.3 million seniors, increased from 501 in 1990 to 514

for last year’s senior class [3]. Mean scores on the ACT test, taken by over one million seniors in 2000,

increased from 19.9 to 20.7 in the same period [17, p. 267]. Unlike the NAEP tests, students taking the

SAT and ACT do not constitute random samples of U.S. 12th graders. However, the number of students

taking the ACT test has increased 30% since 1990, which normally would lead to a lower mean score as

it did for the SAT in the 1960s, when there was a similar increase in numbers of students taking the test

[16]. Thus the increase in mean scores on the ACT can be considered as an underestimate of an actual

increase in mathematics performance by a population comparable with that of 1990.

Variability within the United States

When I speak of the extraordinary variability in our country, I do not mean the obvious variability that

must exist among individual students. Nor do I mean differences between special schools such as the North

Carolina School of Science and Mathematics and typical public schools. I am referring to the variability

among larger jurisdictions such as cities and states.

The performance of 8th grade students on the NAEP provides one example of this variability. (I focus

here on 8th grade scores because there are no state scores collected for 12th graders.) In 2000, mean state

scores for 8th graders ranged from 254 for Mississippi to 283 for North Dakota and Ohio. (Minnesota and

a few other states had higher mean scores, but they did not meet all the sampling guidelines, so I am not

referring to them.) Of course, as the jurisdiction gets smaller, the variability of mean scores grows. For

instance, the mean 8th grade score in Washington, DC is 234.

Some items on the NAEP are given at more than one grade level so that the NAEP scaled scores for

different grades can be reasonably viewed as being on the same scale. That means that the typical 8th

grader in Washington, DC is at about the same level in mathematics as the typical 4th grader in the rest of

the country. The historical difference of 80 points between the grade 4 and grade 12 means comes to about

10 points a year. This suggests that the typical student in North Dakota is 3 years ahead of the typical

student in Mississippi at 8th grade.
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These differences have major implications for policy decisions. A “one-size fits all” policy decision for

the nation is easy to defend with arguments of democracy and equal opportunity for all, but even stretch

socks have their limitations. Grouping mathematics students by prior performance exists in most schools

despite many stories of improper and biased allocation of students to groups, and despite cogent arguments

against grouping. And mathematics teachers favor grouping even in an individual school. In a write-in

response to a question in the November 1998 NCTM Mathematics Education Dialogues (reported in the

April 1999 issue of that newsletter) regarding when it might be appropriate to group, only 22 mathematics

teachers out of 360 preferred no grouping of students at any time in grades K–12.

Differences in performance through the U.S. are reflected in startling differences of graduation rates. In

some public schools, virtually 100% of students expect to go to college, while in others fewer than half the

students graduate. However, precise graduation rates are a matter of debate. Because of student mobility,

because some students take more than 4 years to graduate, because some students never enroll in 9th grade

and so are lost from the system, and because of the questionable equivalence of the GED to any high

school diploma, estimates of graduation rates in the U.S. vary depending on how the rate is calculated.

One set of data, collected by the National Center for Education Statistics, compares the number of high

school graduates as a percentage of 9th grade enrollment 4 years earlier. With this definition, graduation

rates for entire states in 1997–98 ranged from 53% in South Carolina to 89% in North Dakota [17, p.

265]. In some cities fewer than half the students graduate from high school with their age cohort. My own

city of Chicago is one of these. Using this definition, the graduation rate for the entire nation in 1998 was

68%, a decline from 73% 10 years earlier.

A second set of data, collected annually by the U.S. Census Bureau, results from asking adults how

far they have gone in school. The data for 20–24 year-olds may be taken as a reasonably current measure

of high school graduation rates. This percent in 2000 was 85.5%, compared to 84.1% in 1990. For adults

age 25–54 in 2000, 88% reported having finished high school and about 29% reported having a bachelor’s

degree, and these percents are relatively constant within that entire age range. These percents have been

steadily increasing at least since 1940 [12].

Where fewer students graduate from high school, fewer go on to college. And where fewer go on to

college, it is more difficult to teach a college-preparatory curriculum. Consequently, these differences in

student graduation rates have major implications for the high school mathematics teacher and the high

school mathematics curriculum.

Specifically, calculus plays completely different roles in the schools near the two endpoints of the

range of college-intending students. Schools in which almost all students go to college are likely to have

advanced placement calculus courses and high percents of students taking precalculus or calculus courses

by the time they graduate. Calculus is perceived by students and teachers as a first-year college subject that

is important for a diverse collection of fields of study and that might be appropriate for any well-prepared

student. But in schools in which small numbers of students graduate from high school, calculus is rarely

taught and enrollments in precalculus courses are low. Calculus is viewed as a course well beyond high

school, seldom taken even by college freshmen, a mysterious course that is hard and taken only by those

particularly interested in mathematics or science.

Another circumstance that affects student views towards calculus is that more than a quarter (364,000

out of 1.3 million who took the SAT) of students who are going to college this year are first generation

college students [3]. These students are likely to view calculus as more arcane than other students whose

parents went to college and know many people who studied calculus there.

Curriculum

What courses do students take in high school? The high school student typically takes four major subjects.

Most four-year high schools recommend four years of English, three years of mathematics, three years
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of science, three years of social studies, and three or four years of a foreign language. This totals 16–17

major classes, and students who wish to get into the better colleges and universities usually take 4 years

of mathematics, science, and languages; consequently they either take 5 major subjects most years or go

to summer school. Students are also encouraged to participate in sports or other activities, such as band.

Furthermore, more than two-thirds of students taking the NAEP 12th grade test reported having a part-time

job, 56% reported working more than 10 hours a week, and 27% reported working more than 20 hours

a week. Even ignoring family, a social life, and the world in general, many things vie for the time and

attention of a typical high school student.

It is quite difficult to determine what mathematics U.S. students are taking in high school. NAEP

questionnaires have historically asked students for the highest mathematics course taken. From this we can

roughly determine the percents of students who have enrolled in each high school mathematics course.

These percents have been rising steadily for 30 years [various NAEP reports cited in 5, p. 15]. From the

reports of the 12th graders in 1996, 92% had taken or were enrolled in first-year algebra, 79% geometry,

63% a second year of algebra, and 13% precalculus or calculus. The datum on precalculus or calculus

enrollments disagrees with TIMSS data for enrollments collected a year earlier in which 22% of 12th-grade

students were classified as taking or having taken precalculus or calculus [8, p. 19].

On the 2000 NAEP, the course-taking question was changed from prior years. Students were asked

to identify the course they had taken in each of grades 8 through 12. From their responses, 94% report

taking a year of algebra, 88% report taking a year of geometry, and 80% report taking a second year

of algebra. That last statistic seems quite high to me, and I wonder if some students are not reporting a

second year of first-year algebra as if it were what we might call “advanced algebra.” Responding to the

same question, 37% reported taking precalculus, 18% reported taking calculus, and 18% reported taking a

course in statistics [1, p. 169]. Examining individual student responses, NAEP evaluators found that 50%

of students reported taking either trigonometry, precalculus, statistics, discrete mathematics, or calculus

before or during 12th grade.

These percentages gathered from the NAEP seem high, but they are not as high as those found from

reports of students taking the SAT. The SAT asks students to report how many years of high school

mathematics they have taken, but some students take courses over two years and others start high school

mathematics well before high school. SAT-takers are not a random sample of college-intending students

since weaker students often do not take them, and in non-SAT states only the best students take the SAT.

But SAT data can indicate whether the NAEP data are on track. Last year, 24% of seniors taking the SAT

reported taking calculus before graduation, and 45% reported taking precalculus. These numbers are up

from 19% for calculus and 32% for precalculus ten years ago.

The most reliable data come from various studies of transcripts done by the U.S. Department of

Education. These data tend to support these high percents. Table 13.1 shows that 10.7% of students

in 1982 took mathematics beyond a second year of algebra and trigonometry, while 27.0% took such

mathematics in 1998, almost triple the number.

The cluster of statistics on enrollments may be rife with overestimates but yields a robust conclusion:

students are taking more mathematics now than they did ten years ago and far more than they did twenty

years ago.

What content is covered in these high school mathematics courses? To answer this question, it helps

to distinguish the traditional high school mathematics curriculum from others. The traditional high school

mathematics curriculum emphasizes algebra and functions, de-emphasizes Euclidean geometry except as an

important vehicle for learning about proof, and ignores statistics almost completely. From pre-algebra in the

middle school through second-year algebra, much time is spent having students do algebraic manipulations

of the type that are used in calculus, such as solving linear and quadratic equations and systems, and

factoring and performing operations on polynomials. Functions are introduced starting in the second year

of algebra and are a main focus of study through the remainder of the precalculus experience. Almost



13. High School Overview and the Transition to College 115

Level I Level II Level III

Year alg/trig, trig, precalculus calculus

stat, anal. geom. Intro to anal. anal.geom./calc

1982 15.5 4.8 5.9

1987 12.9 9.0 7.6

1990 12.9 10.4 7.2

1992 16.4 10.9 10.7

1994 16.3 11.6 10.2

1998 14.4 15.2 11.8

Source: National Center for Education Statistics, The Condition of Education

2000, pp. 66, 157, 216.

Table 1. Coursetaking in Advanced Mathematics (from various transcript studies)

all the content of the traditional high school mathematics curriculum is designed to prepare students for

calculus.

Not only are greater percents of students taking geometry and second-year algebra than ever before but

also these percents may be greater than the percent that will go on to college. The increased enrollments in

these courses have an obvious effect on what teachers feel their students can successfully learn. Teachers

can adjust either by easing the course somewhat or by broadening its content to be of interest, or they can

keep the course the same and fail a significant number of students. Most teachers adjust the course, even

if only slightly. So I believe less time is being spent on complicated algebraic manipulations involving

rational expressions or radicals than used to be the case, even though this material is in the texts from which

they teach. This also may be due to the influence of the NCTM Curriculum and Evaluation Standards [9].

The newer curricula, those that follow the guidelines of the NCTM Standards [9, 10] are clearly

influenced by these increased enrollments. They are designed not only to prepare students for any of the

first mathematics courses students might take in college—calculus, statistics, computer science, or finite

mathematics—but also to appeal to students who may not continue their education. They give significant

attention to mathematical modeling and statistics, de-emphasize the proof aspect of Euclidean geometry

while concentrating on properties of measures, and discuss algorithms and discrete functions. They tend to

downplay abstract work with polynomials, rational expressions, and radicals (e.g., see Core-Plus [4] and

IMP [7]).

I have written elsewhere of the many similarities between the roles that calculus plays in the college

curriculum and the roles that algebra plays in the high school curriculum [14]. Then perhaps it is not

surprising that a common rhetoric is found in both discussions of calculus reform and reform of the high

school curriculum. Broadening the mathematics experience by using real-world data and modeling, utilizing

the latest technology, involving students more in their own learning, and downplaying manipulative aspects

and proof are some of the commonalities. Accordingly, the same tension that exists at the college level

between traditional and reform calculus exists at the high school level between traditional and newer

curricula.

It would be nice to know the percent of students who are encountering the various curricula available

to them, but these data are not systematically collected by any agency and are considered confidential by

publishers. I estimate that at least 70% of students in the country are in a traditional curriculum. Probably

a higher percent of the stronger (honors) students are in a traditional curriculum. These students are now

regularly taking first-year algebra in 8th grade. The report of the NAEP 12th graders in 2000 that 29%

had taken first-year algebra before 9th grade is in reasonable agreement with earlier reports of 20–26%.

If a significant percent of students are in the NSF-sponsored integrated curricula, it is not being captured

by NAEP data. On the NAEP, fewer than 5% of students reported using an integrated or sequential
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curriculum in any year. This percent seems too low to me; perhaps we need a better descriptor than

“integrated” or “sequential” (the New York state term) for these curricula. There are hybrids of old and

new, like the University of Chicago School Mathematics Project (UCSMP) curriculum and some other

materials, that have much of the spirit of the NCTM Standards while keeping the traditional course names

and sequence. I think that about 20% of students encounter such hybrids, sometimes because their teachers

supplement what is in one set of materials with what is in another set. Most teachers would like to teach

everything, old and new, but there is not time. We and all other curriculum developers are constantly being

asked what can be omitted in our books without hurting the student.

Calculators are used in all curricula. On the 2000 NAEP, 69% of 12th graders reported using a calculator

every day, while only 10% reported never or hardly ever using a calculator [1, p. 159]. My recollection

from other studies is that at least 50% of 12th grade students are using graphing calculators. On the NAEP,

mean scores of students increased significantly with frequency of calculator use. Twelfth-grade students

who reported using a calculator every day had a mean score of 309; those who never or hardly ever used a

calculator had a mean score of 279. No causal connection can be inferred because when there is a choice,

teachers are more inclined to allow better students to use calculators. The data do seem to indicate that,

on the whole, calculator use did not harm students on the NAEP.

Advanced placement calculus

To segue from this overview into a discussion of the transition from high school to college, it seems

appropriate to offer some data about the most visible college program in high school, the Advanced

Placement (AP) program of the College Board. The AP calculus course has a significant impact on the

mathematics programs of many high schools. It provides a road map to teachers indicating what their

students should know to be prepared for calculus as well as providing a destination for the top students in

a school. In 1999, 127,744 students took the AB Calculus exam (covering about 2/3 of a typical year-long

calculus) and 30,724 took the BC Calculus exam (covering a full-year course), totaling about 5% of the

graduating seniors in the country. This number constitutes about a 10% increase from 1998 and a 29%

increase since 1995. Of those who took the AB test, 64% scored 3 or higher (considered a satisfactory

score). On the BC test, 79% scored 3 or higher [3].

Calculus remains the course of choice in the mathematical sciences for those taking AP exams. In

1999, the AP exam in statistics was taken by 25,240 students, and 18,837 students took one of the two

AP exams in computer science.

Above it was noted that 18% of all 12th graders on last year’s NAEP and 24% of SAT-takers last year

reported being enrolled in a calculus course. This suggests that only about one in three students enrolled

in calculus in high school went on to take the AP exam. (An article in USA Today [6] uses the same

estimate.) The majority seem to be taking the course in high school in order to show colleges that they are

taking difficult courses and to increase their chances of getting a high grade in college calculus. That is, if

they ever get to calculus. The data collected 15 years ago by Waits and Demana [15] may still apply today.

They found that only about 28% of the 1721 freshmen who entered Ohio State University in 1986 with

five or more years of college-preparatory mathematics were ready for calculus. For Ohio State, readiness

for calculus was determined by a placement test that had “remained essentially unchanged for the past

twenty-five years” [15, p. 11].

Calculus in high school?—Yes.

Data like that collected by Waits and Demana [15] are often used by college mathematics departments to

discourage students from studying calculus before college. The argument is that the teaching of calculus

in high schools is poor, often done by individuals unqualified to teach the subject, and results in students
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learning concepts in wrong ways. I do not understand the argument for two reasons. First, the environment

in which calculus is taught is far better in high schools than in colleges. The teachers care about teaching

and have often taught the course for many years. They know their students personally, having seen many

of them in their courses in prior years, and they care about them. The teachers are typically the best-

qualified mathematically and among the most experienced and able teachers in the school. Also, the

students know and help each other in a familiar and comfortable setting. Second, when the same argument

is (in my opinion, wrongly) offered to discourage the teaching of algebra before high school, it is found

to be riddled with holes. Students need to have studied some algebra before high school in order to be

successful in the typical high school algebra course. There is simply too much material to digest to expect

a student to progress from never having worked with variables to the study of linear systems, quadratic

equations, radicals, and rational expressions in a single year. To meet this problem, traditional textbooks

now introduce significant amounts of algebra in the course preceding algebra. Likewise, some of the NSF

curricula handle this problem by spreading introductory algebra over two or three years. Perhaps the most

significant reason that calculus is so difficult for many students is that we try to teach it from scratch in

a single year.

Technology has blurred the traditional boundaries between algebra and calculus. For instance, problems

of maxima and minima can be solved by successive approximations to values of functions. Graphs of

functions can be examined to estimate points of inflection and radii of curvature. Values of integrals can

be estimated by entering a function into a graphing calculator and giving it appropriate commands. This

makes some concepts and problems of calculus quite accessible well before formal treatments of these

ideas are given.

Likely the best approach to an area of mathematics (such as calculus, algebra, functions, geometry,

statistics, etc.) is to develop its concepts over many years. Then, when the time has come, that area should

be studied in some detail. With this approach, all of the ideas that were introduced separately over preceding

years can be studied in detail, reintroduced in a more formal manner, and seen as related to each other

logically.

For calculus, this means students should encounter multiple times the topics of inequality, distance

and areas on the coordinate plane, area, rate and rate of change, infinity, sequence, function, limit, max-

min problems, and summation as part of their experiences with algebra, geometry, functions, statistics,

and discrete mathematics. It also suggests that students have at least one introduction to derivatives and

integrals. This is done in the UCSMP curriculum [11]. However, because calculus is not the only area of

college-level mathematics for which students need some background, we found that this approach requires

an extra year between second-year algebra and calculus devoted not only to these precalculus concepts but

also to statistics and discrete mathematics.

Unfortunately, the push to get students to calculus is so strong that, except for the one-year geometry

course, most schools ignore mathematics that is not viewed as precalculus. I believe that K–8 curricula

should be designed so that algebra is taken by most students in 8th grade not because it makes it possible

for them to take a calculus course in high school, but because it provides an extra year to prepare them for

calculus and the other mathematics they are likely to encounter in college. Likewise, in an optimal calculus

experience students should revisit some algebra, geometry, probability, and statistics from earlier years,

and also be introduced to concepts of differential equations, complex variables, and algebraic structures

that they might encounter in later years. College students’ lack of exposure to the latter topics in early

undergraduate mathematics courses is surely one of the reasons they have difficulty with them in later

undergraduate mathematics.

So, who should take calculus in high school? Either those students whose K–6 experience is solid

enough to prepare them to begin concentrated study of algebra in 7th grade, or those students who have

studied the equivalent of an algebra course in 8th grade and are willing to put in the extra work in grades

9–11 needed to ensure success in their calculus experience in 12th grade.
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Teachers and tests

If average performance is going up, and if students are taking more courses, why do students throughout

the nation perform so poorly on college placement tests? Many factors may contribute. As had to be the

case with Ohio State’s 25-year-old test in 1986, placement tests often ignore much of the newer content

and many of the newer ways of teaching that high school teachers are trying to incorporate: working

with a variety of representations of functions, including graphical and tabular approaches, modeling and

otherwise dealing with data; and using the technology of calculators and computers as a helpful tool in

solving problems. There exist no review classes for placement tests as there do for the SAT and ACT.

Often there are no sample exams nor a detailed syllabus given to students from which to study. High school

teachers cannot prepare their students for a particular exam because their students go on to a variety of

institutions. And these placement tests are often taken under conditions that are far from optimal. They

are given to students who may be away from home for the first time, who may have just had a medical

exam or come from long waits for ID cards, and who may have stayed up late the night before talking to

other freshmen in their dorms.

Still, the large numbers of students taking remedial (pre-precalculus) courses suggest that many students

do not know enough of the mathematics they need even for precalculus courses. How can this be, given

that mean mathematics scores have risen? At the same time that the percent of the population going on

to college has increased, college mathematics requirements have themselves increased. Some institutions

require a certain competence in mathematics of all their students, and almost all institutions have seen

mathematics requirements increase in fields such as psychology, business, the biological sciences, and the

social sciences where requirements were once minimal. Students are taking these exams who, in previous

decades, would not have had to take them or would not have attended college.

Most high school mathematics teachers realize that many of their students will study statistics and

computer science in college, and that many will enter the health professions (currently the most popular

major reported by students taking the SAT) or become business majors. All these areas require calculus,

but not necessarily a mathematician’s calculus. Students are well aware that computers and calculators

are universally available outside the classroom, but that tests may not allow them to use this technology.

Faced with a diverse group of students coming in who will be going out to a diverse set of institutions

or to various workplace settings, high school mathematics departments and their teachers are faced with

difficult decisions regarding what curricula and technology to use.

These decisions are made more difficult because the various high-stakes external tests have quite

different goals. The SAT and ACT college entrance exams are themselves quite different from each other,

but both are used as a criterion for college admission. Each of these also differs dramatically from the

college placement tests given to students after they have been accepted by an institution. In turn, all

these tests differ from the increasing number of state tests now being given to determine how a school is

performing relative to other schools in the state, and which in a few places are being used to judge teacher

performance or to determine whether a student can graduate.

Each of these tests has its own idiosyncrasies, content, and technology requirements. The SATs and

ACTs allow graphing calculators. Many college placement tests disallow all calculators. Some college

placement tests emphasize symbolic manipulation; others don’t. Few touch upon statistics or geometry.

Parts or all of these tests may conflict with the high school teacher’s or the school mathematics department’s

own tests over the curriculum they are using, tests employed to determine student grades. Yet the teacher

is under pressure to ensure that students perform well on all of these tests. Thus the high school teacher is

beleaguered, faced with pressures from professional organizations and from a variety of testing agencies

to get students to perform at high levels with and without calculators, on traditional content and newer

content. They are expected to do this with a large population of students whose parents never studied the

courses and thus have no idea why they are needed.
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Calculus in college and the mathematics major

That a course or set of courses is entitled “precalculus” is a sign of the importance of calculus itself.

High school and college mathematics faculties both tend to view calculus as the first college course in

mathematics. But, for students, calculus is very much the culmination of five or more years of study. For

their entire high school experience, and for any precalculus courses they take in college, much of what

they study is justified by “You will need this for calculus.” Many students believe that when they study

calculus, they will finally learn what mathematics is all about, how mathematics explains the universe,

and how to solve all sorts of problems.

This is too high a burden to place on any single course. Traditional calculus may have mathematical

sanctity, but it rarely yields the epiphany students hope for. Students may have unreasonable expectations

for their calculus course, but for most students, calculus does not bring even a small measure of power;

it is just another mathematics course. I recognize that the reform calculus movement is motivated in part

by a desire to attack this problem, but I wish to take the argument beyond calculus. This may be pushing

the envelope since I have been asked to speak about precalculus, but one cannot examine preparation for

calculus without examining all of the roles of calculus itself.

We need to examine why the number of mathematics majors in the country is declining even though

high schools are turning out record numbers of students who have been successful in calculus. Calculus has

lost its role as the first course for mathematics majors and cannot have that role for students who take it in

high school. College mathematics departments need a broad-based post-calculus course for committed and

potential mathematics majors to induce them into majoring in the mathematical sciences. Such a course

should not assume that all smart people believe mathematics is beautiful, important, and useful, or that all

mathematics majors become either teachers or research mathematicians. Discussions about mathematics

should be part of the course’s agenda.

Summary

Data from the National Assessment of Educational Progress and from SAT and ACT college entrance

examinations establish that high school students know more mathematics than their counterparts at any

time in the past 30 years. This is likely due to a significant increase in enrollments in college-preparatory

mathematics and in calculus by high school students. For students formerly at the lower end of the perfor-

mance range, these increases in enrollments have been encouraged by recommendations of “mathematics

for all” from organizations like NCTM and the existence of reform curricula with a broader agenda than

the preparation for calculus. Because we do not have data on classroom use of materials, we do not know

whether or not the raising of performance is due to the influence of the NCTM Standards and these reform

curricula. However, the use of calculator technology does not seem to have hurt performance and may

have enhanced it.

Despite this rather uniformly positive picture, the number of students in remedial (pre-precalculus)

courses in colleges is at record levels. While some of this enrollment increase is due to the increasing

mathematics requirements for college students, some of this enrollment increase is likely played by mis-

matches between the mathematics taught in high school and the mathematics tested on college placement

exams, reflecting differences between the content of precalculus mathematics taught in high school and

taught in colleges. In particular, high school courses tend to place less emphasis on paper-and-pencil ma-

nipulative algebraic skills than their college counterparts, and high school courses influenced by reform

efforts cover a broader range of content than the standard prerequisites for calculus.

For many students, the college mathematics placement test carries with it extraordinarily high stakes.

It can keep a student from calculus for one or two years, thereby greatly influencing the majors possible to

the student. Yet these tests receive little publicity and are accountable to no one. A national effort involving

all the mathematical sciences is needed to bring these tests in line with high school curricula and teaching
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practices so that they can reward, rather than penalize, today’s students for the wider range of knowledge

and techniques which they bring to their overall study of mathematics.

At the same time, we need to encourage, rather than discourage, the teaching of calculus concepts

before college, for we should apply what we have learned about successful approaches to algebra to the

teaching of calculus. We also need to examine the role that calculus has played in the decisions of students

to become mathematics majors, and possibly create post-calculus courses that will serve to encourage more

students to study more college mathematics.
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Precalculus Reform: A High School Perspective

Daniel J. Teague

The North Carolina School of Science and Mathematics

In many secondary schools, precalculus reform has preceded calculus reform. Consequently, those of us in

the high schools have considerable experience with the capabilities of successful precalculus students in

a reformed curriculum and their performance the next year in calculus. From a personal perspective, two

important issues are brought forward for consideration.

� Successful students in a reformed precalculus curriculum will have new attitudes and abilities that can
be utilized successfully in the teaching of calculus.

� Reformed precalculus curricula can play an important role in preparing students for the rigor of theo-
retical mathematics.

Both of these issues have implications in the way the mathematical community views and accepts

precalculus reform.

Introduction

At the post-secondary level, precalculus reform is a consequence of successful calculus reform. To the

extent that calculus reform has been successful at a university, the modifications in the content and pedagogy

of calculus argue for similar modifications in the preparatory precalculus course. However, at the high

school level, and particularly at the North Carolina School of Science and Mathematics (NCSSM) where

I teach, precalculus reform came first and has been the center of our curriculum for over a decade.

NCSSM opened in 1980 as the nation’s first public boarding school for academically talented 11th

and 12th grade students who show promise of exceptional development and/or special interest in science

and mathematics. The approximately 585 juniors and seniors attending the public high school live in six

residence halls on the Durham campus.

The mathematics department at NCSSM first revised its precalculus curriculum in 1986. As a conse-

quence of this reversal in order, we have a lot of experience with the consequences of precalculus reform,

particularly as it relates to success in calculus.

At the high school level, mathematics education reform has focused on the vast majority of students

who are not preparing for calculus. The National Science Foundation has funded five major projects

that restructure all of secondary mathematics, including precalculus. The web address for each project is

presented in the appendix.

After reviewing many of these revisions in the structure and content of secondary mathematics, Tom

Berger and Harvey Keynes in their article Everybody Counts/Everybody Else [2], expressed concern that

121
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students who will be our future mathematicians and engineers may not be sufficiently well prepared by the

reformed curricula for those vocations. Can a reformed precalculus course prepare students for a career

as a “professional user of mathematics”? In this paper, I will give some background on my department’s

movement into precalculus reform and present a personal view of its effects on the teaching of calculus.

Precalculus reform at NCSSM

All of the students taking precalculus at NCSSM are in preparation for calculus, and most aspire to

careers in mathematically intensive professions. Since its first graduating class of 140 students in 1982,

approximately 75% of the school’s graduates have gone on to earn university degrees in mathematics,

engineering, science, or computer science.

The core courses of the mathematics program, precalculus and calculus, are taken by 80% of the

student body. Because we offer a modeling approach to learning mathematics, students are able to engage

in the creative aspects of mathematics early in their mathematical development. The creative aspects

of problem-solving engender a concomitant task commitment which, in turn, enhances and encourages

greater creativity. Working in groups on investigative problems, the students also learn how to develop

convincing arguments to support their conjectures as they defend their ideas with other members of their

work group. During these investigations, students leave behind the role of “lesson-learner and exercise-

doer,” as described by Renzulli [4], to become creative producers of knowledge. This is the context within

which I will address the issues of influencing the mathematics community.

Calculus reform at NCSSM

Students who have consistently engaged in creating mathematical solutions to challenging and intriguing

problems have a very different view of mathematics than those fed an unrelenting diet of computations

and formulas. Once we began teaching our reformed precalculus course, both students and faculty quickly

became dissatisfied with the standard Advanced Placement Calculus course we offered. In precalculus, we

had given students a voice; we were interested in their solutions, not just whether they could mimic our

solution. By returning to an algorithmic calculus course, we had taken their voice away, and they rightfully

resented it. In precalculus, we had also presented a vision of mathematics as a creative, investigative

and challenging subject, where careful, reflective thought was prized above quick memory. Our calculus

reform was forced on us by this dissatisfaction with the difference between our precalculus and calculus

instruction.

Our experiences over the last 15 years suggest that a mathematics program based on challenging,

open-ended problems, mathematical modeling in groups, using mathematical techniques and procedures in

new and varied contexts, and activity-based lessons can give students a dramatic head start in mathematics.

Influencing the mathematics community

What insight does our 15 years of teaching a reformed precalculus course give us in influencing the

university mathematics community as it begins to contemplate the necessity of precalculus reform? What

aspect or result of a new precalculus course will make the mathematical community take note of the

changes and support this effort? One simple answer is to deliver mathematically capable students to

university calculus classes. So an essential question is, what makes a student ready for calculus? What

mathematical skills are necessary to be ready for calculus and what habits of mind are sufficient? What

role do the students’ beliefs about mathematics and themselves as mathematicians play?
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The transition from high school precalculus to post-secondary calculus is difficult for many reasons,

but one important reason is that the post-secondary teacher doesn’t know the skills, understandings, and

expectations of their new students. If you try to teach my students with the mistaken belief that they

know the mathematics I knew at their age, you will miss a great opportunity. My students know more

mathematics than I did, but it is not the same mathematics; and I believe they know it differently. They

have a different vision of mathematics that would be helpful in learning calculus if it were tapped. One

example will illustrate some of the capabilities of my students that I did not have entering calculus.

The CO2 Concentration Problem

In this problem, we will fit a combination model to the data from the Mauna Loa observatory

describing the amount of CO2 in the atmosphere as a function of time. A portion of the data is

given below:

Year Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Avg

1968 322.3 322.9 323.6 324.7 325.3 325.2 323.9 321.8 320.0 319.9 320.0 322.4 322.8

1969 323.6 324.2 325.3 326.3 327.0 326.2 325.4 323.2 321.9 321.3 322.3 323.7 324.2

1970 324.6 325.6 326.6 327.8 327.8 327.5 326.3 324.7 323.1 323.1 324.0 325.1 325.5

1971 326.1 326.6 327.2 327.9 329.2 328.8 327.5 325.7 323.6 323.8 325.1 326.3 326.5

1972 326.9 327.8 328.0 329.9 330.3 329.2 328.1 326.4 325.9 325.3 326.6 327.7 327.6

The actual table includes both the monthly concentration and the average for each year from 1958-

1989. A graph of the full data set has the basic shape shown below. Find a model to describe the

concentration of CO2:
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Students use the year and average CO2 to fit an exponential model by first performing a vertical

translation of around 300 ppm, then do a semi-log re-expression. The data is classically exponential,

with a model similar to this:

F.t/ D 1:65e0:03923t C 299:5:

By subtracting the exponential model from the data to generate a trigonometric residual plot, the

monthly fluctuations can be modeled. Using the maximal and minimal values from this residual

graph, and the fact that the period is one year, the monthly variations can be modeled by the

function
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Putting these two functions together creates a very accurate model for the data

C.t/ D F.t/ C S.t/ D 1:656e0:03923t C 3:5 sin

�
2�

�
t �

1

24

��
C 299:

The CO2 concentration can be modeled surprisingly well with this model, a simple sum of two

standard functions from precalculus.

Students can now give interpretations of the various parameters in the model and what they say

about the increase in CO2 concentration. (Modified from [1])

What is of value in these abilities to a teacher of calculus? The technical ability required in the problem,

the knowledge of data analysis and transformations of functions, the willingness to think through the

problem, to see the pieces in the whole, and to use known techniques in new combinations are all valuable.

Why, exactly, is a student versed only in simplifying expressions like
p

abc3 3
p

a4bc2 D ac2 6
p

a5b5c; as

I was, better prepared to understand the concepts of calculus than the student who can develop a model

for CO2 concentration? And if it is true that they are, is it something inherent in the subject matter of

calculus, the way we teach calculus, or what we expect to see when we test students in calculus that makes

it so?

Often, students’ experiences in mathematics classrooms convince them that being talented in mathe-

matics means being able to give the expected answer quickly and with little thought. Their experiences in

mathematics have convinced them that creative responses are counter-productive and just slow the class

down. Mathematical creativity takes time. Creative students must be willing to persevere when the ideas

do not come easily, to stay with the problem, to refine their solutions and improve upon their less creative

work. Students must be working on problems that are sufficiently rich to allow for extended work on

them and sufficiently interesting and engaging that they are willing to give the problems their time and

intellectual energy.

The reformed precalculus courses seek proficiencies in both symbolic manipulation, which is essential

for the performance of calculus, and modeling, which is important for understanding the nature of and

applicability of calculus. The issue is the balance between these aspects of calculus readiness. I believe

we all agree that all of only one is a bad idea.

My students are not me, your students are not you

I think about my preparation in mathematics and how it differs from my students’ preparation. I have

created a Venn diagram of the knowledge and understandings I believe I had when I began calculus and

those I believe my students have when they begin calculus. The comparison is, of course, unfair, since

what I knew is hampered by my memory (although it is interesting to see the residue of my high school

mathematics career) while what my students know is inflated by optimism. Nevertheless, the comparison

is striking. What would your diagram look like?

When you look at these overlapping ellipses, what do you see? If you look at what used to be in the

knowledge set but is now missing, you will be disappointed. Look at what they can’t do that I could. How

can they be sucessful in a mathematics related field if they can’t do X as well as I could? (Of course,

some Xs are more important than others.)

If you look at what was never in my knowledge set but is in my students’, you will be pleased. Look at

what they can do that I could never have attempted. OK, they can’t do X, but they can run circles around

me on Y and Z. (And some Ys and Zs are more important than some Xs.)

If your school’s placement test in mathematics contains only questions from the Xs, you will believe

the students are poorly prepared and you will teach accordingly. More importantly, you will never know
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What I Knew

What They Know

simulation

modeling
solving equations

problem posing

data analysis

graphing by transformation

problem solving

geometric series
investigation

iteration

statistics

local and
global behavior

sense-making

numerical approximation

exponential growth

communication

simplifying expressions

exact solutions

some proof

derivations

functions

algebraic manipulations

directrix

Cramer’s Rule
sets

calculate with logs

complex fractions

synthetic division

combinations and permutations

graphing by point plotting

DeMoivre’s Theorem

Descartes’ Rule of Signs

changing indices

eccentricity

what abilities they truly have if you don’t give them problems that allow them to show you what they can

do. You will never know about Y and Z and, consequently, you will not be able to take advantage of these

abilities in teaching them mathematics.

One essential aspect of influencing the mathematics community is to explain clearly what new capa-

bilities and habits of mind students from a reformed course are expected to have. What do they know that

we didn’t know? If they don’t have what you want, do they have something you can use, and perhaps use

even more successfully than the algebraic skills of old? I think my students are better prepared for calculus

than I was because they understand the geometry of functions much better than I did, and they have come

to expect mathematics to make sense—and further, they expect to understand it. This expectation is an

important, but seldom mentioned aspect of understanding the importance of proof.

Proof and sense-making

The purpose of proof and deductive argument should be made clear to students preparing for significant

utilization of mathematics. Ken Ross, in the “Second Report of the MAA Task Force on the NCTM

Standards” said, “It should be emphasized that the foundation of mathematics is reasoning. While science

verifies through observation, mathematics verifies through logical reasoning... If reasoning ability is not

developed in the student, then mathematics simply becomes a matter of following a set of procedures and

mimicking examples without thought as to why they make sense” [5]. The AMS Association Resource

Group, chaired by Roger Howe added, “The most important thing to emphasize about mathematical

reasoning is that it exists—more, that it is the heart of the subject, that mathematics is a coherent subject,

and that mathematical reasoning is what makes it so. ... Mathematics should simply be taught as a subject

where things make sense and where you can figure out why they are the way they are.” [3]

Can a reformed precalculus course support this view of mathematics as sense-making and simultane-

ously encourage the students to develop convincing arguments and proof? Based on our experience with

a reformed precalculus at NCSSM, the answer is yes.

All of my high school friends and I believed mathematics was a list of things to do, each with an

appropriate technique. I was considered good at mathematics because my list was longer than most. I

thought a proof was another part of the list. I don’t believe my students have the same misunderstanding

of the nature of mathematics that I did.

Students have not been historically, nor are they now, focused on proof in the precalculus course. It is

primarily a development of the elementary functions and their rules of operations. Proof in precalculus is
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primarily proof by derivation. Students derive results like the sum of a geometric series, the law of cosines,

sum and difference formulas for sine and cosine, and the rules of logarithms. Most of these comprise a

rewriting of expressions via algebraic manipulation. The level of manipulation taught in the course is often

geared to being able to accomplish these derivations successfully.

It seems to me the first requirement of proof in mathematics is an expectation on the student’s part

that the mathematics should make sense and be supportable by argument. Do you expect it to make sense?

This is the first requirement of understanding a proof. A proof is an effort at sense-making.

Looking at precalculus as a way of making sense of the world around you by modeling natural activities

with the elementary functions sets the stage for proof as sense-making in a way that the formal, and often

sterile, proof-based geometry course could never do, particularly when the focus of the proofs was on the

format.

I received an e-mail from a student now in a PhD program in electrical engineering at Michigan saying,

in part,

Math Modeling occasionally makes a big difference in terms of understanding how to pose problems

as well as contributing to that nebulous thing called “mathematical maturity” that is important for

developing proofs and devising other mathematical tricks.

This is common sentiment from students as they move into a rigorous treatment of mathematics. Seeing

mathematics as a body of knowledge, with connections and an underlying structure, rather than as a string

of techniques is an excellent way to develop the meaning of and need for proof. There is often a sense

that theory and modeling are mutually exclusive approaches to teaching mathematics. The mathematics

department at NCSSM believes that they can coexist happily in the same classroom and that each supports

the other.

Conclusion

Precalculus reform is just getting underway at the post-secondary level. The experience of high schools

teaching from a variety of non-traditional precalculus texts can be very useful to university mathematics

departments as they contemplate changes in their precalculus programs. Two-year colleges have also made

significant recommendations for changes in the approach to teaching precalculus as a preparation for

calculus. Communication among these groups can provide important insight as the process continues. Our

experience with students in calculus suggests that successful students in a reformed Precalculus course have

the essential skills for success in calculus. They also have an understanding of the nature of mathematics

and a vision of mathematics as sense-making that, if fully utilized, can be very useful in the teaching of

calculus.
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Appendix
The five NSF curriculum projects with a description of the project taken from the included web address

are described below:

1. Application Reform in Secondary Education(ARISE): Mathematics: Modeling Our World (Southwest-

ern Educational Publishing)

Mathematics: Modeling Our World is founded on the principle that mathematics is a necessary tool

for understanding the physical and social worlds in which we live. This is not the same as saying that

mathematics can be applied. Rather, important questions about the “real world” come first and serve to

motivate the development of the mathematics. Thus the contextual questions “drive” the mathematics.

As students discover a variety of ways to solve a problem, they not only learn mathematics and content

in other curriculum areas, but they also learn how to reason mathematically, organize and analyze data,

make predictions, prepare and present reports, and revise their predictions based on new information.

Using technology and group work, students explore situations that offer a wide variety of mathematics

concepts. Mathematical modeling is a central focus of the curriculum. In the modeling process, they

identify key features of the context being studied, build a simple model, test it against various criteria,

and modify the model in an effort to improve its description of the real content.

For more information, go to: http://www.comap.com/highschool/projects/arise.html

2. Core-Plus Mathematics Project (CPMP): Contemporary Mathematics in Context (Everyday Learning

Corporation)

Contemporary Mathematics in Context is a four-year curriculum that replaces the traditional Algebra-

Geometry-Advanced Algebra/Trigonometry-Precalculus sequence. Each course features interwoven

strands of algebra and function, statistics and probability, geometry and trigonometry, and discrete

mathematics. The first three courses in the series provide a common core of broadly useful mathe-

matics for all students. They were developed to prepare students for success in college, in careers,

and in daily life in contemporary society. Course 4 continues the preparation of students for college

mathematics. It formalizes and extends important mathematical ideas drawn from all four strands, with

a focus on the mathematics needed to be successful in college mathematics and statistics courses.

For more information, go to: http://www.wmich.edu/˜coreplus/

3. Interactive Mathematics Project (IMP): Interactive Mathematics Program (Key Curriculum Press)

The Interactive Mathematics Program (IMP) has created a four-year program of problem-based mathe-

matics that replaces the traditional Algebra I-Geometry-Algebra II/Trigonometry-Precalculus sequence

and that is designed to exemplify the curriculum reform called for in the Curriculum and Evaluation

Standards of the National Council of Teachers of Mathematics (NCTM). The IMP curriculum integrates

traditional material with additional topics recommended by the NCTM Standards, such as statistics,

probability, curve fitting, and matrix algebra. IMP units are generally structured around a complex

central problem. Although each unit has a specific mathematical focus, other topics are brought in as

needed to solve the central problem, rather than narrowly restricting the mathematical content. Ideas

that are developed in one unit are usually revisited and deepened in one or more later units.

For more information, go to: http://www.mathimp.org/

4. Math Connections Project: MATH Connections: A Secondary Mathematics Core Curriculum Initiative

(It’s About Time Publishing)

MATH Connections is a unified approach that blends traditional mathematical topics around a common

thematic thread. Using the NCTM Standards as a guideline, MATH Connections blends algebra,
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geometry, probability, statistics, trigonometry and discrete mathematics into a meaningful package

that is interesting and accessible to all students. The text materials are designed to provide students

with mathematical experiences that excite their curiosity, stimulate their imagination and challenge

their skills. All the while, our primary concern is the conceptual development of the learner while

focusing on these goals: mathematics as problem solving, mathematics as communication, mathematics

as reasoning, and mathematics as making connections.

For more information, go to: http://www.mathconnections.com/

5. Systematic Initiative for Montana Mathematics and Science Project (SIMMS): Integrated Mathematics:

A Modeling Approach Using Technology (Pearson Custom Publishing)

An integrated mathematics program consists of topics chosen from a wide variety of mathematical

fields. It emphasizes the relationships among topics within mathematics as well as between mathematics

and other disciplines. SIMMS IM materials are designed to replace all currently offered secondary

mathematics courses, with the possible exception of Advanced Placement Calculus, and build on

recent middle school reform initiatives. SIMMS IM modules were written by high school mathematics

teachers.

For more information, go to: http://www.montana.edu/˜wwwsimms/
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Introduction

In this paper, we will describe some of the changes in K–12 education that affect the mathematical

preparation of students entering colleges and universities and who pursue a study of mathematics that

includes calculus. Although ideas and research can be traced back further, we will take the year 1989 as

a starting point, when two significant publications appeared that served as catalysts for many individuals

engaged in efforts to improve school mathematics education. They are: Everybody Counts: A Report to the

Nation on the Future of Mathematics Education [14], published by the Mathematical Sciences Education

Board (MSEB), the Curriculum and Evaluation Standards for School Mathematics [10], published by

the National Council of Teachers of Mathematics (NCTM). Some other influential publications followed

including: Reshaping School Mathematics [15], from MSEB in 1991, Professional Standards for Teaching

Mathematics [11], from NCTM in 1991, and Assessment Standards for School Mathematics [9], from

NCTM in 1995. A planned update that also combined the three aforementioned NCTM documents into a

single NCTM publication appeared in the spring of 2000 and is titled Principles and Standards for School

Mathematics (PSSM) [12].

In general vision, the documents mentioned above are largely consistent with each other1 and serve

curriculum developers, teacher educators, policy makers and others with a general vision of school mathe-

matics education as well as a challenge to make that vision a reality. This collection of documents should

provide the interested reader with many details of that vision and rationale for the suggested changes in

school mathematics that are not mentioned here. See [1], [8], and [13], also. For brevity in this article, the

terms Standards and Standards-based refers to the common vision set forth in these documents, particularly

as described in the documents from NCTM.2 The term “traditional mathematics program” will refer to

school curricula that predominated in schools prior to 1989.

The Standards vision suggests changes in every aspect of the school mathematics classroom in terms

of content, pedagogy, student expectations, the use of technology, and student assessment. Because the

suggested changes were so comprehensive, beginning in the early 1990s, the National Science Foundation

funded a number of comprehensive multi-year curriculum projects at each of the elementary, middle and

1The update of the original three NCTM Standards documents, the PSSM, differs from its predecessors in some aspects but

not in overall vision.
2See also [19].
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secondary school levels intended to make the Standards vision a reality. These projects are listed in the

appendix of this paper. Each project was developed over at least five years with input from practicing

schoolteachers, mathematicians, teacher educators, and educational researchers. Each of these curricula

realized the Standards vision in a somewhat different way. While there are other curricula commercially

available that embody aspects of the Standards vision, this group of curricula is most familiar to the

authors of this paper. In particular, the secondary curricula in the collection serve as a basis for many of

the examples, comments, and conclusions below.

It is fair to say that as of this writing, most mathematics programs in our nation’s schools are neither

completely traditional (in the sense of what was typical in the early 1980s) nor completely Standards-based

(in terms of the changes suggested in the above documents). Massive change does not occur quickly. Even if

it did, there has been barely enough time since the publication of the visionary 1989 documents mentioned

above for students to be entering calculus courses with a complete K–12 Standards-based education.

Nonetheless, our major task here is to describe changes in the school mathematics curriculum that would

or could result from full implementation of a Standards vision, concentrating on changes that affect the

preparation of school students for calculus. To that end we will structure this article by asking questions

and then providing answers with a Standards-based K–12 point of view.

Should the primary driver of the K–12 curriculum, especially in the upper grades, be preparation

for calculus?

There is an argument that traditional school mathematics programs function in a way that the answer to the

above question would be yes—especially if calculus is seen as the first college-level mathematics course.

The scheme is something like the following: all students take at least two years of high school mathematics

(usually algebra followed by geometry) and then enter courses designed to culminate in calculus (usually

algebra II followed by precalculus). For those accelerated students who begin algebra in the eighth grade,

there is “room” before graduation to take an AP calculus course. (There is increasing movement in some

states to shift the study of algebra into the eighth grade for all students.3 Presumably, then, the study

of calculus would be accessible for all who succeeded in the calculus track.) Students move along this

calculus track for as long as they can—or until they lose interest and are not required to take any more

school mathematics. Students who don’t succeed at some point along the way in the calculus track are

deemed less capable. They either quit taking mathematics courses or are tracked into other mathematics

courses that are seen as less difficult and that do not have calculus as the ultimate goal. Many parents,

administrators, and possibly some readers of this article, see success in the study of school mathematics

as synonymous with success in the calculus track.

However, even when students received passing grades, there is a body of evidence suggesting that,

in reality, students in traditional mathematics programs were not being well prepared for calculus. See

for example results from the Third International Mathematics and Science Study (TIMSS) begun in 1995

that suggest that even our best students rated poorly when compared with their international counterparts,

[20], [7]. Studies such as these suggest that U.S. students have trouble retaining mathematical knowledge.

Indeed, we repeat some of the same material at the same level over and over again in multiple grades.

These same studies show our students have difficulty with multi-step and non-routine problems where they

have to synthesize knowledge. That is, they have trouble transferring knowledge to new situations.

There are other indicators that suggest we need to look at the effectiveness of a college or university

precalculus course if the goal is to prepare students to do well in calculus. In a study by Ruddock [16],

significantly fewer students (about 20% fewer) at the University of Texas at Austin achieved a grade of

3According to Zalman Usiskin, the idea of shifting algebra into the eighth grade in the U.S. originated over fifty years ago.

The influence of calculus (including its placement as a first college course and later as an AP option in some high schools) is

one among several factors involved in this shift—but an important one.
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B or better in both calculus I and calculus II if they preceded their study of calculus with a university

precalculus course, than if they began their collegiate study of mathematics with calculus I. With regard

to the effectiveness of prerequisite courses, see [17], also.

If the goal of traditional school mathematics programs was to prepare students for calculus and the

college remedial classes follow suit, the set of statistics mentioned in this volume by Bernie Madison (see

“Preparing for Calculus and Preparing for Life”) and Shelly Gordon (see “Preparing Students for Calculus

in the Twenty-First Century”) should also be noted here. Slightly over one-third of all college students

enrolled in two- and four-year college mathematics courses in the fall of 2000 were enrolled in “remedial”

courses. Moreover, only a small fraction of students enrolled in even a single term of calculus. Here, then,

students register failure of the goal by “voting with their feet” not to complete the goal.

The point is that while the goal of a traditional school mathematics program may have been to prepare

students for calculus, the effect has been to miss the mark. Rightly, the Standards vision takes a fresh look

at what students should know and be able to do as a result of completing a K–12 mathematics program

in the twenty-first century. In particular, the aim of the Standards is not just to do the same things better.

Rather, the Standards vision is broader than just preparing students for calculus.

In fact, preparing a subset of students for calculus is only one of several important and more explicit

goals of the Standards vision. In addition to preparing students for further work in mathematics at the

collegiate level, the time in school devoted to the study of mathematics in a Standards-based program

also focuses on preparing mathematically literate citizens, preparing students for the mathematical needs

of the workplace,4 preparing students for the mathematical needs of other disciplines even at the school

level, and helping students become independent mathematical learners. Helping students understand the

beauty and power of mathematics and its role in our culture and society is also an objective. We want to

emphasize that each of these goals applies to all students.

A school mathematics program whose major driver is preparation for calculus does not automatically

meet these other goals. So, whatever the tradition or motivation was in the past, we conclude that the

current answer to the question phrased above should be no. For example, college-bound math majors

also need to be quantitatively literate and have mathematical tools beyond those usually associated with

calculus. Furthermore, rather than filtering students at a young age, Standards-based mathematics programs

appropriately strive to maintain access to high quality mathematics programs for all students throughout

their school experience.

It should be mentioned that several of the above goals are reflected in many of the initiatives underway at

the introductory college level. These initiatives include rethinking of college algebra, providing quantitative

literacy, and determining core mathematics requirements for all students. While it is admirable that some

colleges and universities are making the effort to design and implement courses that allow students different

course options to meet some of the goals listed above, it is a mistake to view courses whose supporting

goals are other than preparing mathematical science majors as less important and terminal. Minimally, if

separate undergraduate courses address separate goals listed above, it is a mistake to provide no reasonable

pathways from these courses to calculus or to other points of entry into mathematics major. For example,

developing courses that precede or parallel calculus courses and stress mathematical modeling, the use of

technology, and data analysis are important for today’s students—both non-math majors and math majors.

Students completing such courses both in high school and in college often have developed many abilities

such as geometric understanding, problem-solving ability, ability to recognize mathematical patterns, and so

forth—and perseverance that will serve them in successfully completing many of today’s calculus courses.

4According to many sources, the mathematical needs of students in the 21st century workforce go beyond basic computational

skills and include being able to recognize the mathematical aspects of situations, being able to apply mathematical concepts in

non-routine settings and in complex problems, being able to handle problems that are open-ended or not well-formulated, being

able to interpret both qualitative and quantitative data, being able to transform information into multiple representations, and

being comfortable using technology. One such recently published source is Manufacturing in the 21st Century: A View of the

Future; 2001 Conference Proceedings APICS-The Educational Society for Resource Management. See also [20].
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In particular, these abilities were sought after in the calculus reform of the early 1990s.

The high school programs mentioned in the appendix address the goals mentioned above in the same
set of courses rather than in different tracks. We feel that this would be a good tactic for undergraduate

mathematics programs as well.

That's all well and good. But, don't we just need to examine the topic differences that there are

in Standards-based school mathematics programs in order to understand the changes in students'

preparation for calculus?

In a word, no. Schoolwork in mathematics prior to a calculus course affects preparation for calculus in
ways beyond the list of topics studied. In part, as a result of the goals mentioned above, students coming

to colleges and universities from Standards-based mathematics programs will view the mathematics they
study differently.

To begin with, students will expect the study of mathematical topics to have intrinsic value as it

is encountered|rather than just study topics because they will be useful later. At least in the curricula

mentioned in the appendix, the mathematics that students study is usually developed within a context. In

this way students see the relevance of the mathematics to a particular problem or situation upon which

they are working and where mathematical insight and inquiry are primary goals.

The following example illustrates this point. In the Mathematics Modeling Our World (MMOW),
secondary school mathematics curriculum students are presented with a problem or situation that serves as

a reason and a context for the development of mathematical topics. The example is taken from \Wildlife,"

which is Unit 5 in the first year of the curriculum.5

Example 1 The problem below serves as the basis of Unit 5, \Wildlife," in the curriculum Mathematics:
Modeling Our World. It appears in Year 1 of that curriculum [5, Year 1, p. 505] and serves as the context
for developing a number of mathematical topics and focuses on several steps in the mathematical modeling

process. In particular, the questions below begin the process of establishing assumptions and mathematizing

the situation. Year 1 usually corresponds to ninth grade. (Reprinted with permission.)

Bullwinkle Returns

Adirondack State Park is a six-million-acre wilderness area in upstate New York. Prior to 1980, the last

moose recorded in the park had been shot in 1861. After 1980, however, some moose were again seen there.

In 1988, it was estimated that between fifteen and twenty were in the park. In 1993, new estimates put the

number at 25 to 30 moose. The New York State Environmental Conservation Department (ECD) conducted

a survey at that time to determine what policies the public favored. A majority of the people surveyed

favored a \gradual increase in the moose population as the animals migrate from nearby New England states

and Canada and an expansion of their numbers through natural reproduction." Conservationists suggested

moving 100 moose into the park over a three-year period. The ECD determined that such a plan would cost

$1.3 million dollars.

Put yourself in the position of commissioner of the ECD, and suppose that you must make a recommendation

to the governor about this situation.

Consider:

1. Pose a specific question concerning these data to which you would like an answer.

2. What additional information do you need in order to answer your question?

The MMOW curriculum emphasizes mathematical modeling. In different units of the curriculum,

students address one or more of the steps in the modeling process: identifying key features of the problem
or situation; building a simple mathematical model; exploring the model and deriving mathematical
conclusions; testing the conclusions against various criteria or data; revising the model if necessary.

5The examples in this paper are excerpted and reformatted versions of material contained in published student materials. We

refer the reader to the published texts for more complete information regarding how students encounter these examples.
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The initial questions posed in Example 1 begin the process of identifying assumptions, key questions,

and useful data. Central questions here include: under certain conditions, can one describe how the moose

population will grow? How big will the moose population get?

Here is an excerpt from an activity in the unit “Wildlife.” Part of the activity looks at different repre-

sentations for certain models of population growth. These include recursive, closed form, and parametric

representations. In this excerpt from the activity, students encounter simulation as a tool in the modeling

process.

Example 2 This is the third student activity in the unit “Wildlife” [5, Year 1, pp. 528–530]. (Reprinted

with permission.)

In this activity you learn to use simulation in what-if situations. In addition, you examine how modelers can

compare models that use different (but related) variables.

1. Consider the pencil-pricing model that you first examined in Lesson 1. Recall that the first pencil cost

25¢, but each additional pencil cost only 17¢. This is an additive model, described recursively as cnext D
ccurrentC 17, cinitial D 25. Note here that the explanatory variable is the number of pencils and that the initial

value corresponds to 1 pencil, not to 0, as is frequently the case. For now, though, pretend that you know

neither this equation or the corresponding closed-form equation. Here are some ways you might simulate

this situation to gain some understanding if you had never seen it before.

a) Physical. Get several pencils and a lot of change. If these are not readily available, make substitutes. For

example, strips of paper could be pencils and smaller squares of paper could be coins. Then act out the

assumptions — the cost rules — for various numbers of pencils. Be systematic.

Start with one, then two, and so on. Record the relationship between pencils and price in an organized manner,

and then look for patterns. For this situation (pencil and price), what are the strengths and weaknesses of

this method? For what kinds of situations might this kind of hands-on simulation be more useful?

b) Calculator. Home screen iteration is a good way to simulate simple models. For the pencil situation, enter

the initial price (25). Note that with this method you need to keep track of certain things in your head. Units

is one of them, so remember cents. What else must you track mentally? now enter the formula ANS+17

on the home screen. Repeated pressing of the ENTER key produces a sequence of numbers. What do these

numbers represent? Record your results, and compare them to those you obtained in part (a).

c) Computer. One of the best tools for simulating recursive models is a computer spreadsheet. Open your

spreadsheet. Set up a table with column headings “Pencils” and “Total Cost” in cells A1 and B1, respectively.

In the next cell of the Pencils column (A2), enter the number 1. In the adjacent cell (B2), under the heading

total Cost, enter 25 (or 0.25, if you prefer to work in dollars instead of cents). This sets the initial conditions.

In the second cell of the Pencils column (A3), enter the formula to add 1 to the previous number; for many

spreadsheet programs a formula such as =A2+1 or +A2+1 does the job. In the adjacent Total Costs cell

(B3), enter the formula to add 17 to the previous number, such as =B2+17. Then extend these last two

formulas down a few lines. Compare the results of your spreadsheet to those from the previous two methods.

Comment on strengths and weaknesses of this method.

d) Replying on only a simulation (or two), determine the cost of 25 pencils if the store changed its prices

so that the first pencil still cost 25¢, but each additional pencil cost only 13¢. That is, find c.25/.

e) Relying again on only a simulation model (or two), determine c.78/ if the store changes its prices so that

the first pencil costs 27¢ and each additional pencil costs 17.

f) Still relying on only a simulation model (or two), determine the cost of each additional pencil if c.1/ D 23

(cents) and the store owner wants c.50 to be $6.60.

g) The store owner now wants to price pens in a similar fashion. Relying only on a simulation model (or

two), determine the cost of the first pen and the (lower) cost of each additional pen if the store owner wants

c.50/ to be $19.75.

h) Comment on the usefulness of the various types of simulations for investigating variations of the original

setting.
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During the unit, which takes several weeks to complete, students will develop several mathemati-

cal models of population growth. Students will extend their knowledge of recursive functions. They will

apply their knowledge of additive models in recursive representations (for example, models of the form

pnC1 D pn C C ) and their linear closed form representations as well as make connections to other

topics they have previously encountered (such as parametric equations). They will develop the idea of a

multiplicative recursive model (for example, models of the form pnC1 D apn ) and develop its closed

form representation (exponential function) using functional notation. They will develop the laws of ex-

ponents. They will compare additive (linear) models with multiplicative (exponential) models graphically,

algebraically (recursively and with closed form) and with tables. They will compare how the “control

numbers” a and b affect the graphs of f .x/ D ax C b and f .x/ D abx .a; b > 0/. They will be able

to fit both linear and exponential functions to two data points. They will study exponential growth and

decay together with the concepts of constant growth rate, relative growth rate, and growth factor. They

will further their understanding of probabilistic modeling and simulation. Technology is used to study

long-term behavior of these models.

In Example 1, the contextual situation for development of the mathematics is a real-world problem.

Mathematical modeling is a key feature of many of the secondary curricula mentioned in the appendix.

Now, a real-world context certainly is one way to effectively eliminate the student question “when will

I ever use this?” But, the value of contextual development extends beyond beneficial real-world settings

and it is false to characterize Standards-based contextual development as merely emphasis on real-world

applications of mathematics. Contextual settings may be fanciful or abstract6 as well as real. (More is

said about contexts below.) The point of a context is to set up an environment that is both meaningful for

students and where students see (mathematical) inquiry worth pursuing. That is, the “when” in the student

question mentioned above in this paragraph can mean “is this ever relevant or interesting?”

In the next example, the context for mathematical development was not chosen because of its real-

world usefulness. It has both real world and fanciful components. Yet, evaluation information from the

field indicates that high school students find the problem interesting and the solution worth pursuing.

The mathematical basis of the context was adopted from one of Ross Honsberger’s “Mathematical Gems”

[6, pp. 43–53]. The problem forms the basis of Unit 2 in the third year of the Interactive Mathematics

Program (IMP). The unit is titled “Orchard Hideout.” A paraphrase of the unit problem is:

How long after an orchard is planted will the trunks of the trees be so thick that someone standing at the

center of a circular orchard cannot see outside the orchard? That is, how long before the center of the orchard

becomes an “orchard hideout”?

Example 3 The unit problem paraphrased below is from “Orchard Hideout,” Unit 2 in Year 3 (usually

eleventh grade) of the Interactive Mathematics Program [4, Year 3, pp. 60–66]. The unit problem sets

the context for developing a combination of mathematical topics from a variety of areas. (Reprinted with

permission.)

The particulars that are given include the size and layout of the orchard:

Madie and Clyde bought a lot in the shape of a circle. They planted their first row of trees along an east-west

line through the center of the circle. The trees were equally spaced, except that they left out the tree that

would have been located at the exact center of the circle. There were 50 trees to the east of the center and

50 to the west. The trees at the ends of this east-west row were exactly on the boundary of their property.

Then they planted a north-south line of trees through the center, using the same spacing as before and

omitting the tree at the center. Again, there were 50 trees to the north of the center and 50 trees to the south.

And, again, the trees at the ends of this north-south row were exactly on the boundary of their property.

6In many cases in the curricula mentioned in the appendix, when an abstract context is used it has been derived from a more

concrete situation. This is one way in which students may begin to see the value of abstraction.
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They used each of the trees in their north-south row as the center of an east-west row, filling in the orchard

with rows of trees. They always used the same distance between trees in every row.

The first activity is for students to make a model of the situation. The second activity is for students

to begin to determine what questions need to be asked and to list some assumptions that need to be made.

Assumptions made include that the trees in the orchard were all the same size when planted, they all

grow at equal rates, the trunks of the trees are perfect right circular cylinders, and it is the trunks that

will block the lines of sight (for sure) rather than the branches, etc. In some classes, students have begun

to understand the situation by physically modeling the setup for a smaller orchard using the students

themselves as trees standing on intersections of grid lines determined by floor tiles. The mathematical

model that eventually is built is a two-dimensional representation of the situation with circles to represent

the trees centered at each of the lattice points under consideration. The problem then becomes determining

a last line of sight from the center of the “orchard” to a point outside the orchard as the circles grow in

size. Background knowledge for work on this problem includes an understanding of geometric similarity,

right triangle trigonometry in terms of the sine and cosine, and the Pythagorean theorem. In the unit, the

mathematics developed encompasses a study of circles (including formulas for the circumference and area

of circles as well as the concept of tangent lines), perpendicular lines, coordinate geometry including the

distance formula between two points, the distance from a point to a line, the coordinate midpoint formula

for a line segment, equations for circles, completing the square, geometric proof (synthetic and coordinate),

a statement and its converse, and if and only if statements. This unit requires between two and three weeks

to complete.

Although the geometry examples from “Orchard Hideout” may seem unusual to include in a paper on

precalculus, our point is that there is more happening mathematically than the development of the content

itself. We reiterate our point that the students coming to calculus from a Standards-based background

will expect to be given more reason to study a mathematical topic than “it will be needed later or for

the next course.” In this sense, a mathematics course in precalculus that includes primarily bare concepts,

technicalities, and computational techniques simply because they will be needed in the next course—that

is, calculus—is outmoded.

There is more to point out. In “Wildlife” and “Orchard Hideout,” contextual development of mathe-

matical ideas is different from the usual application of mathematical concepts and techniques. Contexts

serve as environments in which mathematics naturally arises and then can be developed. These problems

are of a substantial nature. A solution (or several solutions) takes several weeks of study and development.

Furthermore, a context is used not only as motivation for studying the mathematics, but also to provide

a setting and framework that helps students understand and relate concepts.7 By contrast, often in tradi-

tional school programs, applications usually follow the development of mathematical concepts. Moreover,

applications are usually comparatively short.

Another result of using the real-world or fanciful contextual development of topics is that students

are often presented with a concrete problem or situation first—and generalize the mathematics from this

particular situation. Thus, such a contextualized approach often results in moving from the concrete to

the abstract, or from the specific to the general, rather than the other way around from general theory to

specific application.

Perhaps most important, mathematics is fundamentally about inquiry and insight, wonder and explana-

tion, and questioning and making sense. In describing the work of mathematicians, one of the first things

the authors of this article would say is that mathematicians answer questions.8 We believe that when

most mathematicians talk about doing mathematics, they are usually referring to a process that is much

broader than doing a calculation or providing the technical, logical details in the proof of a result. This

7We will not delve deeply into the learning theory aspects of contextual development here as it is a digression.
8In contrast, the general public would probably say first that mathematicians do computations.
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Figure 1. The mathematical reasoning process requires much more than the technical detail in formal proof writing.

Mathematical processing includes more than reasoning; it involves wonder, creativity, intuition and imagination

among other things. The reason that “implementing an algorithm. . . ” is put on the edge of the circle is that sometimes

implementing algorithms requires reasoning, such as when choosing what formulas or algorithms are appropriate

or helpful. However, sometimes this is not reasoning, such as in cases where one is given a formula and asked to

compute results using certain values of the variables.

mathematical processing can include one or all of the following activities: exploring examples; searching

for patterns; drawing analogies; utilizing intuition; using inductive reasoning; constructing mathematical

models; posing problem; abstracting and/or generalizing properties; constructing and testing conjectures;

justifying special cases; and finally, providing a deductive, general argument, possibly with additional

assumptions or axioms, in order to obtain a mathematical result. Furthermore, most certainly, wonder,

imagination and creativity play a role. (See Figure 1.)

Getting a feel for a mathematical situation and developing insight are extremely important parts of the

process. Standard communication of a finished mathematical result in a theorem/proof format is intended

to be an efficient method of communication. In some cases, however, if taken by itself, a proof can

obscure many of the underlying aspects of the reasoning process or fail to contribute to mathematical

understanding.9

Here are a couple of additional activities from “Orchard Hideout.” By the time students reach this

point in the curriculum, they will be expected to justify any conclusions. How many characteristics of

reasoning listed above do you think should evidence themselves as students work through the problems?

How is “Equally Wet” related to “Garden Path”? How is “Garden Path” related to a solution of the central

problem? What familiar geometric theorems should surface in these activities?

Example 4 This activity is an example of a POW (problem of the week). It appears on page 6 in the

“Orchard Hideout” unit [4, Year 3, pp. 69–70]. Students are expected to work on this individually for

several days, outside of class and write up their results as indicated at the end of the example.

9As an example, a straight inductive proof that 1 C 2 C � � � C n D n.n C 1/=2, where n is a positive integer, verifies that

the formula works. But, a classic proof of this formula, often attributed to Gauss, which adds the first n integers twice and then

recombines terms to add n C 1 a total of n times (thus showing that 2.1 C � � � C n/ D .n C 1/n/, provides more insight into the

derivation of the formula than the inductive proof. As a second example: other than for insight, why would Gauss have provided

at least five proofs of the quadratic reciprocity law?
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Equally Wet

1. Two delicate flowers were planted in a garden. The gardener, Leslie, has a sprinkler that sprays water

around in a circle. The closer a flower is to the sprinkler, the more water it gets.

To be sure that her flowers each get the same amount of water, Leslie needs to place the sprinkler where it

will be the same distance from each of the flowers.

What are her choices about where to put the sprinkler? Describe all the possibilities. (Reminder: The flowers

are already in place, and Leslie needs to adjust the position of the sprinkler relative to the flowers.)

2. Now suppose Leslie plants three flowers and wants to know if it will still be possible to place the sprinkler

the same distance from all three.

a. Determine which arrangements of the flowers (if any) will make this possible and which (if any) will

make it impossible. (As in Question 1, Leslie will be looking for a place to put the sprinkler after the flowers

have already been planted.)

b. For those arrangements for which it will be possible, describe how Leslie can find the correct location

(or locations) for the sprinkler.

3. What about four flowers? Five flowers? Generalize as much as you can.

You POW is to explain as fully as possible, for various cases, where Leslie can put the sprinkler in order to

give the flowers the same amount of water. Homework 2: Only Two Flowers gets you started with the first

question of the POW.

Write-up

1. Problem Statement: State the problem in mathematical language without reference to the context. That is,

describe the problem in geometric terms without talking about flowers or sprinklers.

2. Process

3. Solution

4. Evaluation

5. Self-assessment

Example 5 This is an in-class activity from “Orchard Hideout” [4, Year 3, p. 84] that follows the POW

mentioned in Example 4. It would be expected that students would have completed Example 4 and most

likely one or more students would have presented solutions in class. Again, students would be expected

to supply reasoned justification for conclusions. (Reprinted with permission.)

Down the Garden Path

Leslie (The gardener in POW 2: Equally Wet) has decided to plant only two flowers. She has placed them

in her two favorite spots in the garden.

Now she has another problem. She wants to make a straight-line path through her garden, with one flower

on each side of the path.

Leslie has decided that the two flowers should be the same distance from the path. That way, people walking

along the path will see them both equally well (although they may pass by the two flowers at different points

along the path).

1. How can Leslie design a path that is equidistant from each flower? Write down simple, step-by-step

instructions for her.

2. Is your path the only one possible? Describe all possible straight-line paths that are equidistant from each

flower.

A true search for proof usually requires exploration, creativity, cultivated intuition, and good judgement.

Students in Standards-based mathematics programs will have explicit experience with these sense-making
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aspects of mathematical understanding, including what constitutes mathematical proof and the role of logic

in mathematical certainty.10

There are several ways the Standards-based curricula emphasize the inquiry and sense-making activity

of mathematics. An obvious way to promote mathematics as inquiry is text format and lesson structure.

Students should be asked many questions—implicitly or explicitly. The types of questions and problems

students encounter are extremely important. We quote Howard Eves [3, p. ix].

There is a distinction between what may be called a problem and what may be considered an

exercise. The latter serves to drill a student in some technique or procedure, and requires little, if

any, original thought. . . In contrast,. . . a problem, if it is a good one for its level, should require

thought on the part of the student. The student must devise strategic attacks, some of which may fail,

others of which may partially or completely carry him through. . . To be suitable, a problem must

be such that the student cannot solve it immediately. . . It is impossible to overstate the importance

of problems in mathematics. It is by means of problems that mathematics develops.

Students need to be asked questions and encounter problems that require synthesis of prior knowledge

and where the mathematics needed to solve them is not obvious in advance. They need to solve non-routine

problems (that is, problems that are not closely related to problems already studied). They need to meet

questions and problems that require the refinement of mathematical ideas, extension of concepts, and the

development of additional mathematics. The unit problems in Examples 1 and 3 fit in the last category.

The types of questions and problems just referred to are usually subsumed under the general heading of

“problem-solving.” (Problem Solving is one of the standards mentioned in the PSSM.) The point here

is that students need to be asked questions and solve problems that get beyond the regular routine of

requiring them to simply apply the last mathematical topic or technique studied to solve a problem. They

need experience with a wide array of mathematical problems as they actually occur. (Competency with

routine applications does not necessarily imply competency with non-routine problems or problems that

require synthesis.) In order to promote mathematics as a sense-making activity students repeatedly need to

be expected to justify, demonstrate, explain, show, confirm, defend, support, and so on. Such words may

be included explicitly in text or implied in the program.

In the Standards vision, the level of sophistication and degree of justification required of students

increases as students progress through the grades. Moreover, the reasoning activities as outlined in Figure

1 that are required of students as well as the types of problems mentioned above permeate a Standards-based

mathematics curriculum. Such activities are not confined to particular topics (like geometry, for instance).

The majority of student reasoning will be done in informal ways.11 The use of the term informal, here,

means that the reasoning need not conform to a specific format, such as a two-column proof. It does not

imply a lack of soundness of argument or explanation. Upon completion of a school mathematics program,

it would be expected that students would know the difference between an assertion (conjecture), statistical

support (or support offered by a few examples) and deductive certainty. In addition, they should be able

to develop and evaluate some mathematical arguments and proofs as well as select and use various types

10Logical deduction associated with mathematical proof can be used as a tool for exploration as well as verification. For

instance, suppose I seek to determine if a given conclusion follows from a certain hypothesis. One strategy may be to see what

I can (easily) prove with the given hypothesis and then look for how these results are related, if at all, to what I want to prove.

This is often a good strategy when attempting to prove geometric theorems. However, students may not explicitly identify and

experience this aspect of logical deduction at the K–12 level.
11In the era preceding the Standards, many schools emphasized techniques such as two-column proof formats and propositional

logic proofs using truth tables. The intent was to make the logic more transparent and the thinking easier. But, the effect of this

approach appears to have been different. Too much concentration on the form early on may lead students away from a desire

for real insight into a mathematical problem—a desire that helps provide direction in thinking. Instead of mathematical proof

becoming a useful tool to solve a meaningful question or add to mathematical understanding, for many students, it appears to

have become, at best, a detached, confusing, and haphazard activity.
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Figure 2. In the outside world, mathematics is often described as a body of knowledge, a collection of skills and

procedures, a language, etc. While all of these are aspects of mathematics, each derives from the fact that at its core,

mathematics is fundamentally a way of thinking about and explaining certain phenomena.

of reasoning and methods of proof. For further detail, consult the PSSM, particularly the standard on

Reasoning and Proof.

What is important to note here, both in terms of student background and student expectations is that,

as a result of well-implemented Standards-based curriculum, students should see mathematics (and its

usefulness) as something beyond a collection of skills, procedures, definitions, and facts. They should see

mathematics as both content and process—activity requiring both the utilization of content and reasoning

skills. To give a bit more detail in the term “process” as used here, both the 1989 Curriculum and Evaluation

Standards and the 2000 Principles and Standards for School Mathematics have standards relating to

content and process. In particular, in the PSSM, there are five process standards that should permeate

the K–12 mathematics curriculum: Problem Solving, Reasoning and Proof, Communication, Connections

(both between mathematical ideas and between mathematics and other areas), and Representation.

The authors see mathematical thinking, explaining, and communicating as central to the discipline. In

current efforts to improve mathematics education, we maintain that having a major emphasis on student

activity that involves the process of doing mathematics is a key shift from traditional approaches. (See

Figure 2.)

We already have referred to the first two “process” standards in PSSM (Problem Solving and Reasoning

and Proof) in our discussion. The Communication Standard refers to the ability of students to organize and

consolidate their mathematical thinking as well as coherently and precisely express it. They also need to be

able to analyze the mathematical thinking and strategies of others. The Connections Standard emphasizes

the need for students to make connections between mathematical ideas as well as to utilize mathematical

ideas and thinking in contexts and applications outside mathematics itself. The Representation Standard

emphasizes the need for students to be able to create (model), select, apply, and translate among mathemat-

ical representations to solve problems. This refers to visual (graphical, geometric, diagrammatic, and so

forth), symbolic (including, among other things, both recursive and closed form algebraic representations),

tabular, and verbal (written) representations. Evidence of the process standards should be apparent even

in the few activities that we have chosen to include in this paper.

To return to the question: should we just consider the variation in topics between new and old pre-

calculus courses? No. Mathematics is more than just topics. We have argued here that mathematical

processing—as broadly defined above—should be considered with regard to student preparation as they

enter calculus.12 We also assert that this type of inquiry based “mathematical processing” should be a

central part of any further study of mathematics.

12The process standards not only support the inquiry basis of mathematics, they also provide means to address learning

deficiencies that many U.S. students have. These deficiencies include the lack of long-term memory of the mathematical topics

studied and the inability to transfer knowledge to new settings.



140 Theme 2. The Transition from High School to College

If students believe that mathematics is fundamentally about inquiry, students should be ready to learn

new concepts and techniques as they need them—and learn them relatively quickly. The downside, if there

is a downside, is that students will expect some setting in which they see intrinsic value in learning new

material. In addition, if students believe and have encountered work emphasizing that mathematics is about

understanding, if students have had experience discussing and communicating about and with mathematical

ideas, then they are better positioned to learn some mathematics independently. As mentioned above, this

is one of the goals suggested in the Standards.

Furthermore, an approach that focuses attention on mathematics as a sense-making activity is consistent

with the reason that calculus is one of the greatest inventions of the human mind. The theory and techniques

of calculus epitomize the essence of Figures 1 and 2. From a mathematical perspective, the marvel is not

just the techniques in themselves, but that the conceptualizations of limit, Riemann sums, the derivative,

the integral, etc. can be connected in such a way that a whole collection of computational techniques can

be derived. Wouldn’t it be wonderful if students felt this incredible accomplishment instead of feeling the

purpose of the course was only to equip them with the collection of computational techniques that they

could utilize when asked to do so?

In summary, students who have completed a Standards-based program such as those mentioned in the

appendix should come to college with a new set of abilities and expectations as a result of attention to the

process standards. At a minimum, the students should:

� Have a view of mathematics that contains an approach to inquiry methods and strategies
� Be competent and confident problem-solvers
� Have a willingness to tackle and persist with complex problems
� Have experience discussing and expressing mathematical ideas (in words and symbols)

Content also is important and there is a sequential nature to the development of mathematical

content. How does the content in Standards-based school mathematics education lay a foundation

for calculus?

In the United States we do not have a national school mathematics curriculum. What is taught in each

grade differs from state to state, sometimes from school district to school district within a state, sometimes

from school to school within a district and sometimes from classroom to classroom within a school.13 The

situation is the same at the college level! Focusing just on introductory calculus, at present there is not

just one calculus course or sequence that students are likely to take in college; there are many different

possibilities nationally and often within the same institution. As a first calculus course there is traditional

college calculus, several types of reform calculus, business calculus, honors calculus, etc. Even the same

course, such as traditional calculus, varies in course content institution by institution. We will not digress

here to debate the issue of a national curriculum at any level. We simply mention that the right to such

local decision-making with regard to curriculum, on both sides of this coin, is often fiercely maintained.

This state of affairs defines a portion of the terrain to be navigated by any curriculum reform and makes

perfect articulation between pre-calculus courses at the school level and calculus in college extraordinarily

difficult if not impossible to achieve on a large scale.

The Standards vision does not detail what specific topics should be taught at each grade level. It does

not propose to be a national curriculum. This vision, which sets professional guidelines and goals, lies

in-between isolated local decision-making about curriculum and a national curriculum. However, there is

guidance on content within the grade bands. In addition to the five Process Standards mentioned above,

the PSSM contains five Content Standards for the grade bands Pre-K–2; 3–5; 6–8; and 9–12. The Content

13There are some groups that are working on the problem. For example, at this writing, the organization Achieve has a draft

document outlining what it suggests (all) mathematics students should have by the end of 8th grade. This does not imply national

consensus, however.
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Standards detail five content areas to be addressed at each of these grade bands. They are: Number and

Operations, Algebra, Geometry, Measurement, and Data Analysis.14

We do not intend to summarize the PSSM content areas in this paper. We strongly refer the reader to

that document for a detailed discussion of specific content. However, at this point we will offer a brief

look at a small part of one content standard as an example. Under the 9–12 Algebra Content Standard it

is stated “all students should. . . understand and compare the properties of classes of functions, including

exponential, polynomial, rational, logarithmic, and periodic functions” [12, p. 296]. Example 6 (following

pages) is one of the activities from year three of Contemporary Mathematics in Context (CMiC) that

illustrates the type of activity students might do in the process of addressing this expectation.

The Content Standards suggest a reorganization and alteration of the content of school mathematics.

Traditionally, in most states, data analysis received little or no attention for calculus-bound students.15

Now, there is significant inclusion of content in this area throughout the pre-K–12 curriculum. Secondly,

since each of the five aforementioned content areas are addressed at each grade band, it is clear that a

Standards-based curriculum is sequenced very differently from the very familiar algebra, geometry, algebra

II, precalculus curriculum that still predominates the national landscape in high school. An intentional effect

of the Standards-based approach is to move away from the tendency to isolate topics. Rather, the approach

is an attempt to unify content. This harmonizes with the Connections Standard. It also serves as a method

to enable students to utilize prior knowledge in new contexts—as topics are revisited at deeper levels in

later courses.

Curriculum programs that include content from more than one content area within the same year are

often referred to as “integrated” programs. Several curriculum programs, including those mentioned in

the appendix, actually mix content areas within the same unit of study. The “Wildlife” unit is usually

encountered in ninth grade. The content includes material from algebra (laws of exponents), precalculus

(functions, particularly linear and exponential), discrete mathematics (recursive relations) and probability.

“Orchard Hideout,” typically encountered in the third year of high school, includes content from geometry,

trigonometry, algebra, and coordinate geometry (precalculus).

Because a vast number of mathematical problems involve more than one content area naturally—

including many of those that require mathematical modeling—an integrated approach to curriculum extends

the variety of problems students can work on and widens the possibilities for sequencing course material.16

Actually, several aspects of the Standards vision suggest consideration of different sequencing and differ-

ent choices of mathematical topics. In the curricula we have listed in the appendix a content-organizing

principle might be large problems, (this is one of the themes in IMP), the process of mathematical mod-

eling (MMOW), the incorporation of technology (SIMMS), and/or other principles. (For example, CMiC

organized the material, in part, based on consideration of the question: “what if this course were the last

mathematics course a student would take?” In this respect, CMiC was partially responding to the state-

ment mentioned in Everybody Counts that indicated that students were leaving the study of mathematics

at exponential rates as soon as the study was not required [14, p. 6].

We will give brief mention of a few of the topics that are probably in the background of students with

a Standards-based education that are relevant to the preparation for calculus and that may not be in the

background of more traditionally educated students. We use the word probably because, as we mentioned

above, we do not have a national curriculum in this country. Even looking at textbook topics does not

necessarily provide a perfect match to what students study. However, students most certainly will have a

significant understanding of the concept of function. They will be able to move among representations of

14The 1989 Curriculum and Evaluation Standards from NCTM included content standards on Discrete Mathematics for grades

9–12. In the updated PSSM, discrete mathematics is distributed across the other content standards and across grades pre-K–12.
15Although students may elect to take an AP Statistics course—an option that is offered in an increasing number of schools

nationwide.
16The curricula mentioned in the appendix each offer a different coherent approach to the order, and sometimes year, in which

material is presented.



142 Theme 2. The Transition from High School to College

Example 6 This activity appears in Unit 6 “Families of Functions” in Year 3 (usually eleventh grade)

of the Contemporary Mathematics in Context secondary school curriculum [2, Year 3, pp. 431–433]. In

this activity students organize information about function types they have studied. The term “NOW-NEXT

equation” refers to a recursive relationship. (Reprinted with permission.)
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functions in terms of graphs, tables and symbolic representations. This understanding extends to recursively-

defined sequences. (Students may or may not have seen a formal definition of a function as, for example,

a set of ordered pairs with certain properties. Similarly, they may or may not have seen a formal definition

of domain and range.) They will have studied several families of functions including, but not necessarily

limited to, linear functions, quadratic functions, power functions, exponential functions, logarithmic func-

tions, and periodic functions (especially the sine, cosine, and tangent). They will have some experience

with more general polynomials and rational functions. They will have made comparisons between families

and within families. For many of these families they will be able to describe what certain parameters do.

See Example 6 above. Moreover, given a function y D f .x/, students will understand how to symbolize

vertical and horizontal translations of this function. They will have had experience with curve fitting (for

example, linear and exponential regression and possibly other fits involving quadratic functions, power

functions, or general polynomials). They will have had experience arithmetically combining and composing

functions. They will understand the concept of the inverse of a function. They will have had experience

with functions of more than one variable. They will have had extensive experience creating and interpreting

algebraic expressions including relations with several variables. They will have used matrices in a variety

of settings including their use in solving systems of linear equations and geometric transformations of the

plane (and possibly 3-space). They will have experience with the usual Cartesian coordinatization of 2-

and 3-space (and possibly polar and spherical coordinates as well). They will have studied the distance

formula (at least in 2-space). They will probably have had some study of position vectors and/or parametric

equations. In statistics, they will have studied normal (and possibly other) distributions and will understand

how the area under the curve is related to probability.

There are other differences that bear mention. Prior to a course that might be labeled precalculus,

students will have studied trigonometry in terms of right triangles and in relation to points on the unit

circle in the plane. Students will probably have concentrated on the sine, cosine, and tangent functions. They

will have derived some of the more elementary identities such as sin.�x/ D � sin.x/; cos.�x/ D cos.x/;

sin2.x/ C cos2.x/ D 1; cos.�=2 � x/ D sin.x/; etc. They will probably have studied the Law of Sines

and the Law of Cosines. They will understand radian measure and probably have had some exposure to

the concept of inverse functions for the (restricted) sine, cosine, and tangent. They may not have spent a

significant amount of time deriving other trigonometric identities.17 For example, they may or may not have

studied the trigonometric identities relating to the sum or difference of angles. Students will probably have

studied the equation for a circle. They may or may not have studied the other conic sections. However,

they will have studied a parabola in the sense that it is the name given to the graph of a quadratic function.

Symbolic fluency is a goal of the PSSM vision. (See [12, pp. 301–302], for example.) However, there

may be less experience in students’ background in simplifying intricate algebraic expressions. So, for

example, while students should be able to convert an expanded quadratic expression to vertex form by

completing the square, expand the factored product of two binomials, or apply the laws of exponents to

simplify x6y10=.x2y/, they may or may not have had significant experience with simplifying expressions

such as .2x2 C 5x C 2/2.6y C 3/=.x C 2/3.2y C 1/ by hand.

The description of content changes above is not intended to be complete, but rather an indication of

some shifts in content described in detail in PSSM and realized in the curricula listed in the appendix. For

more information on these curricula, we suggest you look at the descriptions of content or sample lessons

at the following web sites:

� high school: http://www.ithaca.edu/compass:

� middle school: http://www.showmecenter.missouri.edu:

� elementary school: http://www.arccenter.comap.com:
17The breadth of coverage of trigonometric identities varies among the secondary school curricula mentioned in the appendix.



15. The Influence of Current Efforts to Improve School Mathematics on the Preparation for Calculus 145

It is important to realize that traditional content that receives less emphasis (or that is not included) in

Standards-based curricula is not necessarily considered to have significantly lesser value. There is a great

deal of accessible mathematics worth inclusion into the school mathematics curriculum. Furthermore, the

U.S. penchant for including so many topics in curricula has been roundly criticized by some of the TIMSS

researchers, [18] and [7] for example. Clearly, one must make choices. The Standards’ working groups

made such choices in light of the multiple goals mentioned at the beginning of this paper, among other

things. Choices lead to both the content strands (Content Standards) and general topics within the strands.

The richness of mathematics makes the goal of helping students become independent mathematical learners

even more important.

It is suitable at this point to think about another organizing principle often used, tacitly if not explicitly,

in more traditional content organizing schemes. This is the principle that a topic should be included in

the curriculum just because it becomes “developmentally appropriate” to include it. The principle often

appears in terms of a criticism. (For example, “that curriculum is a bad one. They don’t do the quadratic

formula until eleventh grade.”) While the authors of this article agree that no mathematical topic should be

introduced before students can comprehend its meaning and significance, we also feel it does no a priori

harm to encounter some topics at a time beyond the instant the topic can be grasped by the learner. Faced

with the evidence of poor retention of skills and knowledge that exists, it seems to make sense that we

move the study of some topics closer to the point at which students will use them.

In fact, we suggest that it might be acceptable to move some topics out of the curriculum preceding

calculus and defer them until the point that students will actually use them in a significant way. This par-

allels the way much mathematics enters the curriculum in some of our client disciplines. Discussions with

engineering faculty indicate that they do not object to, nor shy away from, teaching relevant mathematics

in engineering classes. For instance, one faculty member teaching nano-technology to juniors indicated

that he often taught topics from data analysis and partial differential equations when they were needed.

As a second example, when students are studying circuits, they learn something about complex numbers

in their engineering class. In these examples, students may or may not have encountered the mathematical

topics in prior mathematics courses. Regardless of that fact, a perusal of engineering texts suggests that

mathematics topics are taught as new rather than review, that is, without assuming prior knowledge. Let

us ignore the particular mathematical topics in these examples, but refer to the practice of studying some

mathematical topics at a point where they will be of significant and immediate use as the engineering

model. Let’s give an example of how this model might be employed to alter precalculus content. The

identity sin.x C y/ D sin.x/ cos.y/ C sin.y/ cos.x/ is useful in calculus. It is usually studied in some

course prior to calculus in a section labeled “trigonometric identities.” Typically, however, one of the first

times this identity is used in a serious way is during a derivation of the derivative for the sine function from

the definition of the derivative. Suppose we move the study of this trigonometric identity into the calculus

course at the point in the curriculum where the derivative of the sine function is examined. Furthermore,

let us suppose that students have some ability to read and understand mathematics by the time they reach

this point in calculus. That is, let us assume that the “independent learning” goal of the Standards had

been realized to some degree. Under such circumstances, we suggest that it is possible that students would

have a better understanding of this identity by reading about it themselves at a point where it is relevant.

We suggest further that this alternative approach not only reinforces student responsibility for learning, it

directly addresses the issue of poor retention of knowledge as well.18 Furthermore, if we can be freed from

the assumption that teachers need to explain all new material to their students, this new sequencing need

not sacrifice significant class time.

Here, we are suggesting that precalculus need not be a gatekeeper course in the sense that the course

ensures that students have all the non-calculus mathematical content knowledge needed and useful in the

18The identity sin.x C y/ D sin.x/ cos.y/ C sin.y/ cos.x/ has other uses, particularly in physics. However, our placement in

first semester calculus should precede its typical usage in the physics curriculum.
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study of calculus. Giving up old assumptions and embracing new curriculum design principles may be

hard—partially because it requires us to give up some cultural traditions. However, as mentioned before,

current data on knowledge retention of students begs us to rethink the sequencing of material!

Let’s go a step further in re-conceptualization. As an exchange it makes sense to move some of the

ideas of calculus into the pre-calculus curriculum. Indeed, curricula designed for all students with attention

to the Standards vision include some of the big themes in calculus. Students in these curricula will have

encountered the idea of a rate of change in several contexts. They will have seen linear models where

the coefficient of x can be interpreted as a rate of change. They will have studied exponential growth

in terms of rate of change. They will have had experience approximating rates of change from graphical

and numerical data. School students will probably have had experience with recursive relations such as

pnC1 D pn C C and pnC1 D rpn and discussed them from the point of view of incremental change.

They should understand what it means to say that the “rate of inflation is increasing.” They will have

considered the idea of optimization from a non-calculus point of view. They may have had some exposure

to approximating irregular planar area. They will probably have had experience deducing some information

about velocity from a graph of distance as a function of time.

In some cases, students may have studied other concepts or topics found in calculus. For example, in

IMP and possibly SIMMS19 students are informally introduced to the concepts of instantaneous rate of

change and limit. In MATH Connections students study the volume of solids of revolution using Cava-

lieri’s Principle, among other things. In MMOW, students study ideas relating to numerical integration.

We note that many of these ideas presented in these paragraphs on content are consonant with ideas that

have emerged with reform efforts focused on courses in the first two years of undergraduate mathemat-

ics education including calculus, college algebra, and precalculus. (See other papers in this volume, for

example.)

What other things influence students’ preparation for calculus?

Certainly the way students interact with the discipline matters. That is how students acquire mathematical

processing abilities as well as how the skills and knowledge inherent in the discipline sets up expectations

and, in that way, affects preparation for calculus.

This leads us to talk briefly about pedagogy. If we want students to have some proficiency in mathe-

matics as a method of inquiry as well as a collection of skills and a body of knowledge, it stands to reason

that students should be involved in inquiry activities. If we want to facilitate the ability of students to think

mathematically, communicate their mathematical ideas coherently and with clarity, we are defining math-

ematics, in part, as an activity. Students in Standards-based programs are very likely to have experienced

pedagogical strategies that involve collaborative or cooperative groups (from pairs to the entire class) as

well as lecture and individual learning formats.

But, it is not the particular pedagogical strategies that we want to discuss here. Rather, it is the set of

student expectations that accrue. In future courses, students with Standards-based backgrounds will expect

to be able to spend time sharing their ideas, having an opportunity to ask and discuss questions and having

an opportunity to struggle with ideas in a way that initial mistakes or false starts are expected, rather than

a sign of incompetence. It seems reasonable to expect, and there is some evidence to bear this out, that

students who transition from a Standards-based mathematics program to mathematics courses where the

major focus is learning definitions and practicing procedures soon become bored and leave mathematics.

We don’t claim that there is enough evidence to verify this assertion. But, the authors have witnessed

cases where some of the (potentially) best undergraduate mathematics students leave (traditionally taught)

mathematics for more “hands-on” majors where they could get more “involved” or “creative.” This is a

sad reflection on our discipline.

19The SIMMS curriculum allows for different choices of content as several places in the curriculum. So the above statement

assumes units on limits and the derivative were selected as part of the curriculum.



15. The Influence of Current Efforts to Improve School Mathematics on the Preparation for Calculus 147

We have saved one of the most obvious characteristics of current change at every level of mathematics

education for last. One of the six principles in the PSSM is a statement about technology. Specifically,

the Technology Principle states that “Technology is essential in teaching and learning mathematics; it

influences the mathematics that is taught and enhances student’s learning” [12, p. 11]. Students about

to enter calculus who have been educated with at least secondary school Standards-based programs will

have used technology frequently in their study of mathematics. The most common technology in use

in school mathematics classrooms is the graphing calculator, although other technology (spreadsheets,

geometric drawing utility, and so forth) also appear. Students may be used to having this technology

available as needed (or wanted). Students will have used technology in all the content areas. Among its

uses in Standards-based programs, technology provides ways to do tedious calculations, so that students can

concentrate on higher level aspects of problems (for example, actually multiplying matrices or computing

the standard deviation from data). It also assists in problem solving (for example, by providing a medium

for exploration and collection of data for conjectures as in the exploration of long-term behavior of a

recurrence relation or the effect of a parameter change in a quadratic function). Technology also provides

ways to do simulations.

But, our objective is not to debate the use of technology or even discuss all of its uses. Rather, our

objective is to point out that being able to use technology as a tool in the study of mathematics is an

expectation that students bring to the study of calculus and to other college-level courses. We believe this

to be true of a large segment of the school student population whether or not they are enrolled in a fully

implemented Standards-based school mathematics program.

In conclusion, we have attempted to describe and give a perspective on the Standards vision as it relates

to the preparation of school students, particularly secondary students, for calculus. Furthermore, we feel

some of the ideas we have mentioned might help us improve mathematics education at the undergraduate

level. We realize that making transitions in education is not easy and certainly not a one-step process. Many

issues are involved. However, from our experience, the largest issue in transitioning from more traditional

school mathematics to college calculus is not content knowledge. It is the inability or unwillingness of

students to think and their lack of understanding of mathematics as a sense-making activity. We feel that

the Standards vision has set us on a course to correct this.
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Appendix
NSF-funded Multi-year Standards-based Instructional Development Materials

The following list includes the published name of each curriculum, a project name in parentheses that may

be familiar to some, development location, beginning list of developers, and publisher.

1. Elementary instructional development projects

� Everyday Mathematics, (EM or UCSMP elementary), University of Chicago School Mathematics

Project, Max Bell, et al., SRA/McGraw-Hill.

� Investigations in Data, Number and Space, TERC, Susan Jo Russell, et al., Scott Foresman.
� Math Trailblazers; A Mathematical Journey Using Science and Language Arts, (TIMS), IMS Project
University of Illinois at Chicago, Phillip Wagreich, et al., Kendall/Hunt.

2. Middle School instructional materials projects

� Connected Mathematics, (CMP), Michigan State University, Glenda Lappan, et al., Prentice Hall.
� Mathematics in Context, (MiC), National Center for Research in Mathematical Sciences, University
of Wisconsin-Madison, Thomas A. Romberg, et al., Holt, Reinhart & Winston.

� MathScape, (STM), EDC, Glenn Kleiman, et al., Glencoe/McGraw-Hill.
� Math Thematics, (STEM), Montana State University, Rick Billstein and Jim Williamson, McDougal
Littell.

3. Secondary School instructional materials development projects

� Mathematics: Modeling Our World, (ARISE), COMAP, Inc., Sol Garfunkel, et al., W.H. Freeman.
� Contemporary Mathematics in Context: A Unified Approach, (CPMP or Core-Plus), Arthur F. Cox-
ford, et al., Glencoe/McGraw-Hill.

� Interactive Mathematics Program, (IMP), San Francisco State University, Dan Fendel, et al., Key
Curriculum Press.

� MATH Connections, A Secondary Mathematics Core Curriculum, (MATH Connections), CBIA,

William P. Berlinghoff, et. al., IT’s ABOUT TIME, Inc.

� Integrated Mathematics: A Modeling Approach Using Technology, (SIMMS), Montana Council of
Teachers of Mathematics and the Systemic Initiative for Montana Mathematics and Science; Montana

State University, Johnny Lott, et al., Kendall Hunt.





Theme 3. The Needs of Other Disciplines

As Deborah Hughes Hallett observes in her paper, “What Have We Learned from the Calculus Reform

Movement?” (which appears earlier in this volume): “In the long run, the largest impact of calculus reform

is likely to be the creation of a community of mathematicians who innovate and reflect on their teaching—

and who do so in collaboration with faculty in other disciplines and across institutional boundaries.” One

of the challenges confronting refocusing the courses below calculus is for mathematicians to understand

and to respond to the needs of partner disciplines. The three papers in this section address this challenge.

Bill Barker and Susan Ganter summarize the outcomes of the Curriculum Foundations Project, which held

a series of eleven disciplinary workshops that focused on the needs of the partner disciplines during the

first two years of undergraduate instruction. Rich West notes that as a result of a new curriculum, which

was introduced in 1990, the senior leadership at West Point strived to find a balance between teaching

students concepts and helping them master skills. He describes the compromise that resulted after many

discussions with their partner disciplines. Allan Rossman observes that many calculus reform projects

emphasize applications, which in turn often involve genuine data. He argues that the use of real data is an

important aspect of refocusing precalculus.

Bill Barker and Susan Ganter describe the portions of the Curriculum Foundations Project that are

most relevant to college algebra and precalculus. They note, “The recommendations of the Curriculum

Foundation Conference are very much in keeping with the philosophy and principles of the conference

Rethinking the Preparation for Calculus.” In particular, the participants were aware of the obvious mis-

match between a curriculum designed to prepare students for calculus and the reality that very few of

these students subsequently enroll in calculus. Consequently the participants made the following recom-

mendation (which is echoed in many of the papers in this volume): “Replace traditional college algebra

with a course stressing problem solving, mathematical modeling, descriptive statistics, and applications in

the appropriate technical areas. De-emphasize intricate algebraic manipulation.”

It is clear that major changes are needed in the teaching of precalculus courses. It is also clear—and

fortunate—that there is an able and talented group of mathematicians who are committed to the huge task of

designing appropriate new courses, and convincing the mathematics community of the need for such changes.

Finally, it is clear from the Curriculum Foundations Project that the partner disciplines will enthusiastically

support these changes. Mathematicians need to continue to involve colleagues from these disciplines as we

take action. They can provide much information to enrich the courses, they have a major stake in the success

of our ventures, and they can provide a great deal of political muscle. And a lot of political muscle will be

needed to move the mountains before us.

Fundamental Mathematics: Voices of the Partner Disciplines

William Barker and Susan L. Ganter

In 1990 West Point adopted a new curriculum that changed the mathematics courses that all students

must take during the first two years. Rich West describes how, as a result of the new curriculum, the

senior leadership at West Point were “torn between teaching students to understand and use the tools

of mathematics in solving real-world problems as opposed to mastering the skills (usually precalculus)

that they had already learned.” He describes the compromise that resulted after many discussions with
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their partner disciplines: the partners would concur on the needed skills, and the mathematics faculty

would ensure that these essential skills were either internalized or memorized. The resulting accountability

mechanism was a series of fundamental skills tests given throughout the first two years.

Changes in student mathematical capabilities can be reliably and relatively uniformly achieved, if these

changes become institutional requirements that are monitored while providing strong support systems for

students. Further, changes in mathematical curriculum or requirements for student preparation must be made

in consultation with client disciplines.

Skills Vs. Concepts at West Point

Rich West

Allan Rossman notes that many calculus reform projects emphasize applications, which in turn often

involve genuine data, and he observes that the use of real data is an important aspect of refocusing

precalculus. He demonstrates that statistics can provide a rich application area in which students can study

interesting examples of functional behavior and justifies why data analysis should be an integral part of

precalculus.

Data analysis can play an important role in enhancing students’ learning experiences in precalculus. Genuine

data often provide motivation and interest for students, and they reveal that concepts of precalculus do

have application to analyzing data from a variety of disciplines as well as from everyday life. Beyond its

usefulness for teaching precalculus ideas, data analysis also provides the opportunity for students to discover

and explore some important statistical principles with which all educated citizens should be comfortable.

Integrating Data Analysis into Precalculus Courses

Allan J. Rossman
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Fundamental Mathematics:

Voices of the Partner Disciplines

William Barker and Susan L. Ganter

Bowdoin College Clemson University

The Curriculum Foundations Project

Given the impact of mathematics instruction on the sciences and quantitative social sciences—especially

instruction during the first two years—there is a need for significant input from these partner disciplines

when revising the undergraduate mathematics curriculum. The committee Curriculum Renewal Across the

First Two Years (CRAFTY), a subcommittee of the MAA Committee on the Undergraduate Program in

Mathematics (CUPM), has gathered such input through the Curriculum Foundations Project. The primary

component of the Curriculum Foundations Project has been a series of eleven disciplinary workshops held

across the country from November 1999 to February 2001 (see Figure 1).

Each Curriculum Foundations workshop consisted of 20–35 participants, the majority chosen from the

discipline under consideration, the remainder chosen from mathematics. Each workshop produced a report

Physics and Computer Science

Interdisciplinary Mathematics, Physics, Engineering

Engineering

Health-related Life Sciences

Technical Mathematics

Statistics

Business, Finance and Economics

Mathematics Education

Biology and Chemistry

Mathematics Preparation for the Major

Bowdoin College, Maine, October, 1999

( )
United States Military Academy, West Point, November, 1999

Clemson University, May, 2000

Virginia Commonwealth University, May, 2000

(at two sites)
Los Angeles Pierce College, California, October, 2000
J. Sargeant Reynolds Community College, Virginia, October, 2000

Grinnell College, October, 2000

University of Arizona, October, 2000

Michigan State University, November, 2000

Macalester College, November, 2000

Mathematical Sciences Research Institute, February, 2001

Figure 1. MAA Curriculum Foundations Workshops

153



154 Theme 3. The Needs of Other Disciplines

addressing a series of questions formulated by CRAFTY.1 The same core set of questions was provided

at each workshop, the purpose of which was to learn the needs of the featured discipline relative to the

initial two years of undergraduate study in mathematics.

In November 2001, invited representatives from each disciplinary workshop gathered at the U.S.

Military Academy in West Point, NY for the final Curriculum Foundations Conference. The discussions

resulted in A Collective Vision, a set of commonly shared recommendations for the first two years of

undergraduate mathematics instruction [1].

The individual reports and the Collective Vision recommendations have been published and will be

widely circulated within both the specific disciplines and the mathematics community. The disciplinary

reports and the Collective Vision are currently being used by CUPM to inform the preparation of the MAA

Curriculum Guide 2004 [2], a set of recommendations for the mathematics community on the undergraduate

curriculum that will focus on desired student outcomes. However, the workshop reports and the Collective

Vision have value independent of the MAA Curriculum Guide 2004, since they serve as resources for

multi-disciplinary discussions at individual institutions.

Workshop participants from the partner disciplines were extremely grateful—and surprised—to be

invited by mathematicians to state their views about the mathematics curriculum. That their opinions

are considered important and will be taken seriously in the development of the MAA Curriculum Guide

2004 only added to their enthusiasm for the project, as well as their interest in continuing and expanding

conversations with the mathematics community.

The Curriculum Foundations Project and precalculus instruction

The Curriculum Foundations workshops focused on the needs of the partner disciplines for all mathematics

experiences in the first two years of undergraduate instruction. Though many of the workshop participants

focused primarily on calculus, and many others centered on college algebra and basic data analysis, few

singled out precalculus by name. As others have observed, precalculus is an invisible course acknowledged

only indirectly through its supporting role for calculus.

However, most of the recommendations from A Collective Vision have a universality that applies to

all undergraduate mathematics instruction, including precalculus. Moreover, the recommendations are very

much in keeping with the philosophy and principles of the conference Rethinking the Preparation for

Calculus, held October 2001 in Arlington, VA. This is very encouraging and provides evidence that the

partner disciplines are allies in the struggle to reformulate the content and pedagogy of the foundational

mathematics courses such as college algebra and precalculus.

The following sections discuss the portions of A Collective Vision that are most relevant to instruction

in college algebra and precalculus.

Conceptual understanding and problem solving

Rethinking Precalculus assumes a collection of basic principles about precalculus courses. One is that such

a course needs “...to prepare students for calculus both conceptually and algebraically. It is not enough just

to emphasize developing manipulative skills; students need help to develop the conceptual skills needed to

understand and apply the basic calculus concepts” [3]. Colleagues in the partner disciplines most strongly

support this principle, as illustrated in A Collective Vision:

1Individual workshop reports also can be obtained electronically at

http://academic.bowdoin.edu/faculty/B/barker/dissemination/Curriculum Foundations/
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Emphasize conceptual understanding

� Focus on understanding broad concepts and ideas in all mathematics courses during the first two years.
� Emphasize development of precise, logical thinking. Require students to reason deductively from a set
of assumptions to a valid conclusion.

� Present proofs when they enhance understanding. The fundamental connection between proof and
understanding must be highlighted.

Strive for depth over breadth

� Explore locally what topics can be omitted and teach the remaining topics in more depth.
There is a common belief among mathematicians that the users of mathematics (engineers, economists,

etc.) care primarily about computational and manipulative skills, that we mathematicians are forced to cram

our courses full of algorithms and calculations to keep them happy. Perhaps the most encouraging discovery

from the Curriculum Foundations Project is that this stereotype is largely false. Though there are certainly

individuals from the partner disciplines who hold the more strict algorithmic view of mathematics, the

disciplinary representatives at the Curriculum Foundations workshops were unanimous in their emphasis

on the overriding need to develop in students a conceptual understanding of the basic mathematical ideas

and methods. They felt that topics can and should be eliminated to achieve this depth of understanding.

For example, most workshop reports emphasize that the conceptual ideas of derivatives and integrals

are critically important, while specific techniques of calculation are secondary. Time can be gained for

teaching such conceptual underpinnings by focusing only on calculations using the most basic functions

(e.g., exponential, polynomial, and trigonometric functions) and eliminating more tedious calculations that

students will not likely remember anyway.

The partner disciplines also value the precise, logical thinking that is an integral part of mathematics.

In general, they do not share the mathematician’s unconditional love of formal proof, but logical arguments

and deduction are acceptable if they enhance understanding of the underlying concepts. However, colleagues

in the partner disciplines are skeptical about early collegiate mathematics instruction that is inappropriately

tilted in the direction of formal proof. They believe that this emphasis is confusing to students at this level

and negatively affects their ability to understand and apply mathematics. Mathematicians also should be

skeptical about such curricular design.

Emphasize problem-solving skills

� Develop fundamental computational skills, but emphasize integrative skills: the ability to apply a
variety of approaches to a single problem, to apply familiar techniques in novel settings, and to devise

multi-stage approaches in complex situations.

Fundamental computational skills are important and must be developed in students. However, col-

leagues in the partner disciplines are well aware that applying mathematics to unfamiliar problems requires

far more than computational skills. Mathematics courses must include more sophisticated problem-solving

experiences than ones in which students simply look in the book for a problem of the same type and

change the numbers.

Modeling and Applications

Another basic principle for precalculus mathematics as outlined in Rethinking Precalculus is the need

for students “...to see an emphasis on mathematical modeling to learn how mathematics is connected to

the real world. The basic mathematical concepts and methods should be developed in contexts to help

the students transfer their learning outside the mathematics classroom” [3]. Support for this principle is

illustrated in A Collective Vision as follows:
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Emphasizing Mathematical Modeling

� Expect students to create, solve, and interpret mathematical models.
� Provide opportunities for students to describe their results in several ways: analytically, graphically,
numerically, and verbally.

� Use models from the partner disciplines so that students can see mathematics in context.

The importance ascribed to mathematical modeling by every disciplinary group in every workshop

was quite striking—and is one of the strong recommendations of the Curriculum Foundations Project. The

addition of mathematical modeling to precalculus courses will be enthusiastically supported by the partner

disciplines.

In fact, workshop participants were so excited by the use of real models in mathematics courses

that they volunteered to help with the development of such models. The support for interdisciplinary

cooperation with mathematics departments was so strong in all the workshops that mathematicians at

individual institutions should be encouraged to seek out such support, as it is likely to exist on their own

campuses. Here are the recommendations from A Collective Vision:

Improve Interdisciplinary Cooperation

� Seek projects from the partner disciplines.
� Encourage interdisciplinary guest lecturing.
� Increase team teaching opportunities.
� Seek ways to overcome the transfer problem from mathematics courses to courses in other disciplines.

The transfer problem refers to the difficulty students have recognizing when a problem in a non-

mathematics discipline is related to material studied in mathematics courses—let alone remembering the

techniques that can be used to solve the problem. Colleagues in the partner disciplines believe that exposing

students in mathematics courses to some of the discipline-specific contexts for various mathematical topics

will have a positive effect on the transfer problem.

Communication

Another theme that ran through nearly every disciplinary workshop was the importance of students being

able to communicate mathematical and quantitative ideas. Here is the relevant portion of A Collective

Vision:

Emphasize communication skills

� Incorporate development of reading, writing, speaking, and listening skills into courses.

� Require students to explain mathematical concepts and logical arguments in words. Require them to
explain the meaning—the hows and whys—of their results.

The importance of communication skills was emphasized time and again in the workshops. Though

there are many successful examples of writing and speaking in the mathematics classroom, there is still a

need for more universal implementation of these activities. It is viewed by many as hard, time-consuming,

and foreign to our training as mathematicians—and rightly so. However, these skills are critical to students

and, therefore, all faculty have a responsibility for incorporating these skills in the classroom—even if it is

hard, time-consuming, or foreign. Such activities can take the form of written lab assignments, technical

reports, group projects, professional presentations in class, short essays on exams, and the like.
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Technology

Rethinking Precalculus states that, “Precalculus courses should help students learn to use modern technol-

ogy wisely and appropriately” [3]. Workshop participants expressed the same sentiment in more detail:

Emphasize the use of appropriate technology

� Stress choosing tools appropriate to the desired task: mental calculation, paper and pencil calculation,
and technology-based calculation.

� Stress intelligent and careful interpretation of results obtained from the use of technology.

� Be aware of the preferred tools of the partner disciplines. Spreadsheets are often preferred.

Colleagues in other disciplines do not need to be convinced of the importance of technology in math-

ematics instruction: they know how critical technology is to their own fields, and hence how important

it is for students to master appropriate technological tools. And, they are well aware of the importance

of choosing the right tool for each problem-solving activity and learning how to properly interpret the

results obtained using technology. Blind, unquestioning belief in the results obtained from a calculator or

computer can be disastrous. None of this is surprising.

However, a more surprising discovery was that spreadsheets are the technology of choice for a large

number of the partner disciplines. Although the workshop reports purposely stopped short of recommend-

ing spreadsheets as the primary technology in mathematics instruction, their widespread use is relevant

to the technology choices made in precalculus. A related observation was the unimportance of graphing

calculators—very few workshop participants reported their use in disciplinary courses. If graphing calcu-

lators are chosen as the technology for a course, it must be understood that this is done for pedagogical

reasons, not to support uses in other disciplines.

Instructional techniques

As stated in Rethinking Precalculus, there is a need to base effective pedagogy on educational research:

“Current research into the learning process has much to tell us about how students acquire fundamental

precalculus (mathematical) concepts. Only a small minority of students learn mathematics the way we did”

[3]. While educational research was not cited directly, colleagues in the partner disciplines recognize the

need for alternatives to traditional, non-interactive lecture courses. In their words,

Use a variety of teaching methods

� Different students have different learning styles. In particular, encourage the use of active learning,
such as

– in-class problem-solving,

– discussion,

– collaborative group work, and

– out-of-class projects.

Given that many students who enroll in precalculus courses have had difficulty with mathematics in

the past, it would seem that they may be the students most in need of innovative, active learning and

teaching techniques.
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Student assessment

The important relationship between assessment and student learning was discussed extensively in the

workshops; i.e., how and what you assess directly affects how and what students learn. Because assessment

can be difficult, time-consuming, and tedious, instructors often put less thought and effort into this aspect of

course design. This is unfortunate, since effective assessment is necessary for effective learning. Workshop

participants focused on this issue as follows:

Emphasize the use of appropriate assessment

� Employ a variety of assessment strategies to measure achievement of course objectives (problem-
solving, conceptual understanding, algorithmic skills).

� Use conceptual questions on examinations, not just questions that a calculator could solve.
� WYTIWYG: “What you test is what you get.”
� Encourage institutional assessment of the effectiveness of programmatic changes.
WYTIWYG became almost a mantra at the final Curriculum Foundations Conference because of the

importance ascribed to it. It was also instructive to see the emphasis placed on the use of conceptual

questions on examinations as opposed to algorithmic computations. It underscores the importance assigned

to the development of conceptual understanding by colleagues in the partner disciplines.

Whither college algebra?

Rethinking Precalculus states as an obvious principle the need for precalculus courses (and, by extension,

college algebra courses) to be changed to meet the needs of the current student population. “Precalculus

courses serve two distinct student populations: The overwhelming majority for whom precalculus is a

terminal course and the relatively small minority for whom it is a gateway to higher mathematics. We need

to identify and meet the needs of both populations” [3]. It is expected that the MAA Curriculum Guide

2004 will recommend the reorganization of college algebra/precalculus courses into new configurations

better designed to meet the needs of various student populations. Similar ideas were put forth in many

of the disciplinary workshop reports, although the group assembled for the final Curriculum Foundations

Conference did not choose to make such a recommendation. However, aware of the obvious mismatch

between a curriculum designed to prepare students for calculus and the reality that very few of these

students subsequently enroll in calculus, the Curriculum Foundations Conference participants recommended

the following:

Replace traditional College Algebra with a course stressing problem-solving, mathematical modeling,

descriptive statistics, and applications in the appropriate technical areas. De-emphasize intricate algebraic

manipulation.

Conclusion

It is clear that major changes are needed in the teaching of precalculus courses. It is also clear—and

fortunate—that there is an able and talented group of mathematicians who are committed to the huge

task of designing appropriate new courses, and convincing the mathematics community of the need for

such changes. Finally, it is clear from the Curriculum Foundations Project that the partner disciplines will

enthusiastically support these changes. Mathematicians need to continue to involve colleagues from these

disciplines as we take action. They can provide much information to enrich the courses, they have a major

stake in the success of our ventures, and they can provide a great deal of political muscle. And a lot of

political muscle will be needed to move the mountains before us.
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Skills versus Concepts at West Point

Rich West

Francis Marion University

Introduction

In 1990 West Point adopted a bold, new curriculum that changed the mathematics courses that all students

must take during the first two years. The senior leadership at West Point has always struggled with the

issue of emphasis: skills or concepts. With the new curriculum, we were torn between teaching students

to understand and use the tools of mathematics in solving real-world problems as opposed to mastering

the skills (usually precalculus) that they had already learned. After many discussions with our partner

disciplines, we came up with a compromise: the partners would concur on the needed skills, and the

mathematics faculty would ensure that these essential skills were either internalized or memorized. The

resulting accountability mechanism was a series of fundamental skills tests given throughout the first two

years. Based on placement tests and observations of students’ work done in class, the precalculus skills on

entry to West Point are usually disappointing and at different levels. So, in consultation with our partner

disciplines, the department of mathematics established and published for students and faculty the minimal

math skills standards. To hold the students accountable, they must achieve an 80% or better on a gateway

exam before being allowed to move on to the second course in the mathematics program, a prerequisite

for physics and all of the engineering courses. Because of the involvement of many different faculty,

this program has now been in place for ten years. It is not perfect, but it allows the faculty to focus on

mathematical modeling and concepts that our students need, places responsibility for review on the students,

and informs our partner disciplines while they embrace our move to reform. In short, this West Point case

study makes two broad conclusions. Changes in student mathematical capabilities can be reliably and

relatively uniformly achieved, if these changes become institutional requirements that are monitored while

providing strong support systems for students. Further, changes in mathematical curriculum or requirements

for student preparation must be made in consultation with client disciplines.

Perspective

At West Point, all students are required to take four sequential semester-long mathematics courses during

the first two years. This mathematics program, in conjunction with a semester of computer science, a year

of chemistry during freshman year, and a year of physics during sophomore year, forms the basis for a

required five-course engineering minor taken during junior and senior years. All students must take, or

validate from previous success, each of these courses. These requirements have been in effect since 1988.

160
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In 1990, the mathematics department, with the concurrence of all departments at West Point, imple-

mented a bold, new curriculum for their four courses during the first two years. Briefly, the four courses are:

discrete dynamical systems and introduction to calculus, calculus I (which finishes differential calculus,

covers integral calculus, and introduces differential equations through systems of differential equations),

calculus II (which covers most of multivariate calculus and vector calculus), and probability and statistics.

A good college preparation background is required for entrance into West Point. Math SATs average about

650 each year. High school courses must include intermediate algebra and trigonometry and/or precalculus.

Typically, about fifty percent of an entry class has taken some form of calculus in high school or college.

Although precalculus topics are covered in the first course, all students must take this first course because

of the heavy emphasis on mathematical modeling. In addition, there is a small precalculus program that

involves about sixty students each year. This will be discussed more later.

Need

The mathematics and chemistry faculty at West Point that teach freshman courses were always disappointed

with students’ entry-level skills. If not corrected early in the four-year sequence, these deficiencies could

have negative impacts later in a student’s college education. In fact, the reform courses started in 1990

were put in place essentially because most of the mathematics, science and engineering faculty were

disappointed in the mathematics preparation of the students in junior and senior level courses. In this new

curriculum, calculator and computer technology were used to compress the desired mathematics coverage

and in many cases compensated, or covered up, for these poor skills. Further, we sought to gain more

efficency and enhancement in coverage by designing a four-course integrated program rather than four

sequential courses. So, while we were expanding coverage to get at concepts, poor skills may have slipped

by. In support of our reform ideas, mathematics reform across the nation provided better teaching ideas

and legitimacy in dealing with other disciplines. But still the lack of skills, which our colleagues from

other disciplines expected, remained a problem.

In the past at West Point, several programs to help fix this need for ”remediation” had been implemented

and discarded. Usually we felt that time spent specifically on skills was time taken away from problem-

solving, a more fruitful goal. Almost all mathematics taught at West Point is presented in some form of

application from science, engineering, or future mathematical fields. Our approach has always been to

show students that skills are necessary to solve the contextual problems of the courses and disciplines

they will see in their futures. This did not change in the reform curriculum, and we felt initially that the

precalculus content of the first course would address this need for review. It did somewhat; however, the

modeling was so new to all the students that the weaknesses seemed to become worse rather than better.

As a result, we decided that while skills were necessary, remediation would be a student responsibility,

and in 1992 we implemented a new skills program.

Solution

Our idea was to define and publish clear, achievable standards and then hold the students accountable

until they meet or surpass these standards. To help prepare students to meet these standards, we used

a programmed text that we had developed long ago and the “Are You Ready for Calculus?” software

developed at the University of Arizona. To determine if students met the established standards, we used

ideas from the gateway exams implemented at Duke University and at the University of Arizona. To better

relate these ideas to West Point and its sequential curriculum, I must first describe the precalculus program.

As I said before, for years the mathematics faculty had been disappointed in the retained skills of the

incoming freshmen. Each year during the summer (freshmen come to stay at West Point in early July), the

department of mathematics administered placement tests. The purpose of one of the tests was to identify
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the group of students who had the weakest algebra and trigonometric skills. These students were placed

into a special precalculus course to help them obtain the skills they needed for calculus. This made sense

before the reform, because the first course was calculus. As a result, these students were one semester

behind in their mathematics, physics, and engineering courses, but they usually made up this deficit during

their junior or senior years. For years the program was considered successful, because it graduated students

at the same rate as the regular students.

Before implementing a program of gateway exams, the sequence of tests and decision points was

presented to and approved by a committee of all of the mathematics, science and engineering heads (called

the MSE Committee). They in turn set up a subcommittee with representatives from mathematics, physics,

chemistry, and two of the engineering departments. This committee met for over a semester to hammer out

the standards for fundamental skills on entry. Once approved by the MSE Committee, the standards were

published for the mathematics, science, and engineering faculty and the students. These written standards

are now mailed to all students once they are accepted at West Point (usually by March or April). At the

same time, students are asked if they would like a floppy disk with the “Are you Ready for Calculus?”

software mailed to them. Notice that the responsibility for review is put on the student.

The gateway exam

We decided to use this placement test as an opportunity to administer our first gateway exam. Since each

student is required to pass the gateway exam at the 80% level at least once during the first semester,

this placement exam could be used as an opportunity to achieve this 80%. There were 25 multiple-choice

questions and students were given 45 minutes to complete the test. Those that did the poorest became

candidates for our precalculus course. A member of the mathematics faculty who sits on the Admissions

Committee subsequently reviewed their admissions records. A list of candidates was prepared and the

department head, who also sits on the Admissions Committee, would decide on those who would be

placed in this precalculus course.

All other students started in discrete dynamical systems. Their corrected exams were returned to them

on the first day of classes. General questions on this exam were covered in class, but specific questions

were gone over one-on-one with their instructor. The students had a week to prepare for their first college

exam with content similar to their corrected summer tests.

Subsequently, throughout the semester, the gateway exam was administered at least four times. So

the students had a total of five opportunities to achieve the required 80%. Originally, in implementing

this program of tests, we allowed students who passed to be exempt from the other exams. However, for

motivation and because of the sequential design of curriculum, we found it necessary to include these exam

grades in their course grade. Therefore, all students were required to take all five tests. Good students who

do well are rewarded. If a student passed discrete dynamical systems and still failed to pass the gateway,

then, subject to the assessment of his or her instructor and the department head, the student became a

candidate for the precalculus course in the second semester.

The standards

The mathematics department each year reviews the standards before they are published. In addition, a

committee, with representatives from mathematics, physics, chemistry, and all the engineering departments,

reviewed these standards in detail in 1996 and again in 1998. The program has evolved some as I will

relate later in Lessons Learned, but in spirit it remains intact and is still being executed. Appended to this

article are the published “Required Mathematical Skills for Entering Cadets.” These are excerpted from the

“Core Mathematics at USMA” pamphlet published in 1998. In general terms, they consist of basic algebra,

basic trigonometry, graphs of lines and basic nonlinear functions, basic functions, and perimeter, area and



17. Skills versus Concepts at West Point 163

volume formulas. These are the skills that we and other disciplines see as important from a precalculus

curriculum. The pamphlet is published each year and a copy is presented, orally and in writing, to each

new faculty member in the mathematics, science and engineering departments.

Fundamental skills exams

At the same time that the mathematics department was developing the precalculus skills standards and

working through the gateway exam procedures, we saw an opportunity to set the skills standards for the

whole four-course program. As a result, the same mathematics, science, and engineering subcommittee

that established the gateway standards articulated skills for the entire mathematics program. Since these

standards are not a focus of this article or the conference it supports, they are not included. However,

the process of establishing the standards with our partner disciplines, and establishing a timeline by when

students should have internalized these skills, have raised awareness of students and faculty, especially those

in other disciplines, about responsibilities and expectations. Each of the three subsequent core mathematics

courses has at least one fundamental skills exam as their form of accountability. In addition, at the beginning

of physics and some of the engineering science courses (usually junior year), instructors use these math

skills tests to assess their students’ retention and communicate the minimum math skills needed throughout

their course(s).

Lessons learned

As I mentioned above, initially, we scheduledmakeup gateway exams for the students who had not achieved

80%. We learned that freshman were not likely to take on a protracted study program in preparation for

these exams. As a result, since that first year we have included these exams and grades as a part of the

discrete dynamical systems course and required all students to take them. This rewards the good students

and identifies those who are weak in skills, achieving the 80% only once in the semester (usually after

five attempts).

Further, after ten years of executing this exam, our numbers have been fairly consistent. Out of entering

classes of approximately 1,000 to 1,200, forty to fifty students have been selected for the first semester

precalculus course and ten to eighteen have been selected for the second semester precalculus course.

The graduation rates of these students have actually been better than those who follow the regular course

sequence. We use the gateway exam as part of the final exam for both precalculus courses. As a result,

students who fail the final exam and the course are usually separated from the Academy.

As the client disciplines embrace and take advantage of our reformed program, the skill standards

have changed somewhat over ten years due mostly to input from these MSE disciplines. Thus, the exams

are adjusted to the standards. Likewise, the precalculus course is no longer just preparing students for

calculus I, but for an intergrated four-course program with mathematical modeling and conceptual under-

standing required throughout. Thus, the precalculus course has changed to better integrate it into the core

mathematics program.

Implications

The reform of the core mathematics curriculum that was initiated in 1990 took a lot of salesmanship

to our partner disciplines. The mathematics department had to make sure that it met the end objectives

of the core mathematics program for all of our partner disciplines. The keys to success of this major

change, besides inspired leadership, were the involvement of the entire faculty in developing the reform

and communication with our partner disciplines. The biggest obstacle to change, besides change itself,

was fixing the disappointment that got us into the reform in the first place. As it turned out for the partner
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disciplines, this disappointment was in the area of what we in the mathematics department call skills. So as

we involved the partner disciplines in developing the standards for skills and articulated our programs for

accountability through gateway exams and the series of fundamental skills exams, we were minimizing their

greatest fear. They were afraid that a concept-based curriculum would reduce the algebra and trigonometry

skills. Once involved in the process of development, they supported the implementation of accountability

and were pleased with the other benefits of the concept-based curriculum, such as mathematical modeling

and aggressive, flexible problem solving.

Further, as technology improves and evolves toward a handheld computer algebra system such as the

TI-89, which West Point students have been issued for two years now, the standards for skills will evolve

and may become less important to our partner disciplines. In the meantime, our communal review and

setting of standards has become a great success and a good compromise of skills versus concepts.

Conclusions

Discussions continue at West Point about the give and take in a compressed curriculum. As long as these

discussions involve the desires of our partner disciplines that we service with the core mathematics program,

a happy medium between skills and concepts can be achieved. The gateway exam used to account for

precalculus skills has been a good compromise and an effective catalyst for change. One overflow benefit

has been that most mathematics courses at West Point and all mathematics courses that I teach utilize a

gateway exam early in the course to establish the skills needed for success in the course being taught.

Note: The author was a member of the faculty at West Point from 1989 to 1999.
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Appendix

Required mathematical skills for entering cadets

Cadets enter the US Military Academy with different backgrounds of study in mathematics. To successfully

begin work in their math/science/engineering (MSE) courses at USMA, incoming cadets must arrive with

the knowledge of certain mathematical skills and concepts. The MSE Committee identified the items

below as those fundamental skills and concepts that all entering cadets must possess. These skills are

tested soon after each cadet arrives at USMA; therefore, all entering cadets are encouraged to evaluate

their mathematics skills and to work at remediating any deficiencies before arriving at USMA.

During Cadet Basic Training, the Department of Mathematical Sciences administers a gateway test to

assess these fundamental skills. The math dept administers other gateway tests to all fourth class cadets

during the first semester in MA103 (Discrete Dynamical Systems and Introduction to Calculus). Cadets

are given opportunities for self-remediation during the first semester through self-paced text and diskettes.

Failure to pass at least one gateway test at mastery level (i.e., greater than 80%) may require remediation

in MA101 (Precalculus) during the second semester instead of moving directly into MA104 (calculus).

Those cadets in MA101 who do not demonstrate proficency in the fundamental mathematics skills by the

end of the fourth class year may be separated from USMA.

Almost any high school algebra book is a suitable reference for these fundamental mathematics skills; a

DOS-based disk tutorial is also available (3:500 format) by writing to the Department of Mathematical Sci-
ence, US Military Academy, West Point, NY 10996, or by calling the Department at (845)938-4603/5673.
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Note: All calculations must be done without the use of technology (i.e., calculator) unless otherwise stated.

1. Algebra and Real Numbers

a. Manipulate and reason with symbols in algebra.

b. Understand the relationship between velocity, distance, and time. (On a 40-mile car trip to Middle-

town, NY, you drive the first twenty miles at 40 mph and the last twenty miles at 60 mph. What is

your average speed during the trip to Middletown?)

c. Be familiar with the following important algebraic properties of the real number system: identity,

associativity, commutivity, inverse, and distributivity.

d. Express numbers using scientific notation. (Express 0:004312 in scientific notation.)

2. Integer and Rational Exponents

Manipulate algebraic expressions containing integer and rational exponents. (Simplify 4� 3
2 � 27� 2

3 .)

3. Radicals

a. Express an algebraic expression in rational exponent form. (e.g., Transform 1
p

x C 2.)

b. Convert between radical and rational exponent form. (Simplify a2b
p

90b7a6.)

4. Algebraic Expressions

a. Be able to add, subtract, multiply, and divide algebraic expressions. (Find the remainder when

x3 � 7x2 C 9x is divided by x � 2.)

b. Simplify algebraic expressions. (Expand and simplify .x � 3/.x � 2/.x � 1/.)

5. Factoring / Prime Numbers

a. Write a number as the product of factors. (Write 42 as the product of prime factors.)

b. Solve for the roots of a polynomial by factoring. (Find the roots of x2 � 5x C 6 D 0 by factoring.)

6. Linear Equations, with Inequalities and Absolute Values

a. Solve two simultaneous linear equations by graphing and by backsubstitution. (By graphing estimate

the point of intersection of the lines 2x C 3y D 7 and �x C y D 4. Verify your result using

backsubstitution.)

b. Solve linear inequalities graphically and algebraically. (Given 5.3 � x/ > 2.3 � 2x/, solve for x.)

c. Solve linear equations with absolute values. (Solve jx � 4j � 3 for x.)

7. Polynomials and Rational Inequalities

a. Solve simple polynomial inequalities. (Solve x2 C 3x C 6 > x � 4.)

b. Solve simple rational inequalities. (Solve x�3
xC1

< 2.)

8. Quadratic Equations

Memorize and apply the quadratic formula to find real and complex roots. (Find the roots of 3x2 C
2x D �1.)
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9. Graphs: Basic Tools

a. Graph equations and inequalities. (Provide a sketch of the function 3x2 � 2x C 7 for 1 < x < 5.)

b. Properly label a graph (axes, intercepts, asymptotes, and roots).

10. Straight Lines

a. Find the slope of a line given a line or an equation of a line. (Find the slope of the line 4x �3y D 8.)

b. Determine the equation of a line. (Find the equation of a straight line with slope �1=3 passing

through the point .2; 1/.)

c. Graph a line. (Graph the line 5y � x D 3.)

d. Find the equation of a line that is parallel or perpendicular to a given line. (What is the slope of the

line parallel to the line 2y � 3x D 7?)

11. Functions

a. Identify the independent and the dependent variable of a function.

b. Determine the domain and range of a function. (Find the domain of the real-valued function g.x/ D
1=.x2 � 2/.

c. Evaluate a function at a point. (Given f .x/ D 1=.x2 C x � 6/, find f .3:14/.)

d. Be able to evaluate composite functions. (Given h.r/ D 3r2 and g.s/ D 2s, find h.aC2/�g.2a/.)

12. Systems involving Quadratic Equations

Solve a system in two variables by backsubstitition. (Given y D 3 � x2 and y D 3 � 2x, solve for

x.)

13. Trigonometric Functions

a. Define each of the six trigonometric functions (sin.�/, cos.�/, tan.�/, cot.�/, sec.�/, csc.�/) in

terms of the sides of a right triangle. (For example, cos.�/ D x=r where x is the adjacent side and

r is the hypotenuse.)

b. Define each of the six trigonometric functions in terms of sine and cosine. (For example, tan.�/ D
sin.�/= cos.�/.)

c. Memorize and use the 30/60/90 and 45/45/90 degree reference triangles. (Given � D 2�=3 radians D
120 degrees, determine cot.�/, sec.�/, and sin.�/.)

d. Understand the relation between degrees and radians. (For example, 2� radians D 360 degrees)

e. Know and apply the trigonometric identity sin2.�/Ccos2.�/ D 1. (Express
�
1 � 1

csc.�/

�2
Ccos2.�/

only in terms of the sin.�/).

14. Graphs of the Trigonometric Functions

a. Know the domain and ranges for the sine, cosine, and tangent functions.

b. Graph the sine, cosine, and tangent functions.

15. Logarithmic and Exponential Functions

a. Memorize and apply the fact that the logarithmic function y D loga x, a > 0, a ¤ 1, is the inverse

of the function y D ax—that is, loga x D y , ay D x. (Evaluate log3 27.)
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b. Memorize the properties of the logarithmic and exponential functions; use them to simplify logarith-

mic expressions. (Express as a single logarithm: 0:5 log10 x � log10 y.)

c. Solve simple logarithmic and exponential equations. (Solve the equation 3xC4 D 4.)

16. Analytic Geometry

a. Memorize and apply the distance formula between two points. (Find the distance between the two

points A.1; 2/ and B.�5; �3/.)

b. Memorize and apply the circumference and area formulas for circles, triangles, and rectangles. (For

example, if you double the radius of a circle, what happens to its circumference?)

c. Memorize and apply the surface and volume formulas for cylinders and rectangular solids, and be

able to apply the surface and volume formula for a sphere.

d. Apply the fact that corresponding sides of similar triangles are proportional. (A rectangle with base

x and height 5 is inscribed in an isosceles triangle with base 10 and height 20. Determine x.)

e. Memorize the Pythagorean Theorem and be able to apply it to simple geometric problems. (Given a

rectangle that is 4 ft by 7 ft determine the length of the diagonal.)

Algebra

1. x2 C bx C c D 0 x D �b˙
p

b2�4ac
2a

2. ab � ac D abCc

3. .ab/c D abc 4. ab

ac D ab�c

5. y D logb x ) x D by 6. logb bx D blogb x D x

7. logb xa D a logb x 8. logb ac D logb a C logb c

9. logb
a
c

D logb a � logb c 10. logb a D logc a

logc b

Analytic Geometry

Rectangle: Area D lw PerimeterD 2l C 2w

Circle: Area D �r2 CircumferenceD 2�r

Rectangular Solid: Volume D lwh Surface Area D 2lw C 2lh C 2hw

Cylinder: Volume D �r2l Surface Area D 2�r2 C 2�r l

Sphere: Volume D 4
3
�r3 Surface Area D 4�r2

Distance between two points .x1; y1/ and .x2; y2/ is d D
p

.x1 � x2/2 C .y1 � y2/2

Trigonometry

With reference to the right triangle:

r
y

x

q

2� radians D 360 degrees

sin � D y
r

cos � D x
r

tan � D y
x

tan � D sin�
cos �

x2 C y2 D r2 sin2 � C cos2 � D 1

cot � D 1
tan�

sec � D 1
cos�

csc � D 1
sin�
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Relationships

DistanceD average rate � time
Corresponding sides of similar triangles are proportional

Properties of Functions

f x x( ) = cos( )

f x( )

x
p 2p

–2

–1

1

2

0

f x x( ) = sin( )

f x( )

x
p 2p

–2

–1

1

2

0

f x x( ) = tan( )f x( )

x
p

–p

0

asymptote

f x mx b( ) = +
f x( )

x

x

f x( )

asymptote

f x e( ) = x

(0, 1)

f x( )

f x e( ) = –x

asymptote

(0, 1)

x

f x( )

f x x( ) = ln ( )

(1,0)

x

asymptote
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Integrating Data Analysis into Precalculus Courses

Allan J. Rossman

California Polytechnic State University

Introduction

The statistics education reform movement of the past fifteen years has emphasized genuine data, conceptual

understanding, and active learning (see [3] and [9] for overviews). These features have also been hallmarks

of calculus reform efforts, although the use of genuine data is naturally more prevalent in statistics courses

than in calculus, for statistics has data analysis at its very core. Yet many calculus reform projects emphasize

applications, which in turn often involve genuine data.

The articles in this volume reveal that these features, including the use of real data, are prominent

in the call for rethinking precalculus courses as well. Indeed, Gordon uses college enrollment data to

support his argument that students should analyze real data in preparation for calculus [6]. Examples of

precalculus books that feature genuine data prominently include Gordon et al.’s Functioning in the Real

World: A Precalculus Experience [7], Connally et al.’s Functions Modeling Change: A Preparation for

Calculus [4], and Swanson et al.’s Precalculus: A Study of Functions and Their Applications [14]. All

three of these texts present many examples of real data for students to analyze.

Data analysis plays an even larger role in an earlier book: Barrett et al’s Contemporary Precalculus:

Functions, Data Analysis, and Matrices, written by faculty of the North Carolina School for Science and

Mathematics and aimed for a high school audience [2]. This book introduces data analysis in its very first

chapter, while the central concept of function waits until the second chapter to make its appearance. A

later chapter is fully devoted to data analysis, and real data pervade most of the book. The second edition

of the book goes so far as to include interval estimates for predictions made from data-based models.

The predominant use of data in these books involves fitting functions to model data. This skill is

especially important to the many client disciplines in the social and natural sciences where data abound.

For these disciplines, one of the primary goals of a precalculus course is to help their students to understand

principles and acquire skills of data analysis. This interest in data analysis is a consistent theme in the

Curriculum Foundations reports from partner disciplines [5].

In the first section below I argue that data can play an even more central role by helping students learn

fundamental ideas of precalculus, particularly the crucial concept of function. Moreover, I suggest that

statistics provides a rich application area in which students can study interesting examples of functional

behavior. Then in the following section, I return to the issue of modeling data with functions by proposing

a series of data analysis principles to be taught in precalculus. Finally, I conclude the article by considering

the role of precalculus in general education and the importance of data analysis for educated citizenship.
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Using data to study functions

The concept of function is the most important and foundational idea in precalculus. Real data can not

only help to motivate students to study functions, but can also help them to develop their understanding

of what a function is and how functions behave.

Example 1: Scrabble Names

In this activity, students are asked to count how many letters are in their last name and then to determine

how many Scrabble points are in their last name (by summing the point values of the letters according

to the board game Scrabble). Students record this data for themselves and for their classmates. Then they

consider whether the data they have just gathered constitute a function. They should realize that the number

of letters is a function of the name, and the number of Scrabble points is also a function of the name.

Students also gain practice applying the notions of domain and range to these functions, which may seem

unusual to them since the domain is not numerical. This unusual aspect may help to deepen students’

understanding of function as a process assigning a unique output to each input. Students also consider

the question of whether a function has an inverse, and they find that neither function does because two

different names can have the same number of letters or the same number of Scrabble points.

Perhaps more importantly, students are then asked questions that lead them to observe that number of

points is not a function of number of letters, because two names with the same number of letters can have

different numbers of points. Students are asked to produce a graph (scatterplot) of Scrabble points versus

letters for the students in their class. Figure 1 presents these data for a sample of nine individuals. From

this graph students can use the vertical line test to recognize further that number of points is not a function

of number of letters.

Students continue with this example by calculating a new function: ratio of points to letters. They are

asked whether this is a function of name or of points or of letters, and they should recognize that it is a

function of name, but not of the other two. An instructor may also want to introduce the idea of a function

of two variables with this activity. Students are also asked to identify the name that produces the largest

ratio and whether that name necessarily has the most points or the most letters. Thus, some ideas and skills

of working with ratios find their way into this activity.

Rather than stop there with the precalculus ideas, students can then explore more statistical aspects

of these data, such as whether names with more letters tend to have more points than those with fewer

letters. They respond in the affirmative, and then they are asked to identify a pair of names such that the

one with more points has fewer letters. This part of the activity aims to introduce students to the important

idea that statistical association between variables is not a deterministic rule, but rather reflects a tendency.

letters

p
o
in

ts

10

15

20

5 6 7 8 9 10 11

Figure 1. Scrabble points versus letters for a sample of nine individuals
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Figure 2. Cumulative and yearly AIDS cases (from Kaiser Family Foundation report)

While this statistical issue is not the focus of the activity, it would seem a shame not to delve into this

aspect a bit since the earlier parts of the activity lead students’ curiosity in this direction.

The next example moves from the fundamental question of “what is a function?” to considering

properties involving the behavior of functions.

Example 2: AIDS Epidemic

For the twentieth anniversary of the AIDS epidemic, the Kaiser Family Foundation issued a report in 2001

that included data on cumulative numbers of AIDS cases and of AIDS deaths over the years (www.kff.org).

Data on cumulative numbers of AIDS cases, as presented in the report, appear in the left graph of Figure 2.

These data provide opportunities for students to investigate properties of functions. First, they observe

that the function is increasing since it records cumulative cases. Second, with a little prodding, they notice

that the concavity changes around 1993 or so, indicating that the rate of increase slows down. Students

then are asked how to calculate the number of AIDS cases per year rather than on a cumulative basis,

which leads them to discover and calculate the difference function. The right graph in Figure 2 displays

this difference function and therefore the yearly number of AIDS cases. Students then investigate how the

difference function relates to the original function. They find that the difference function increases where

the original function is concave up, that it reaches its maximum where the concavity changes, and that it

decreases where the original function is concave down.

The next example asks students to apply their knowledge of power functions and illustrates that the

discipline of statistics can provide interesting applications of functions.

Example 3: Margin-of-Error

One of the most important statistical concepts for educated citizens to understand is margin-of-error.

Random variation leads survey results to vary from sample to sample, and the margin-of-error provides an

indication of how much the sample result may deviate from the truth about the whole population. This is

certainly not a precalculus concept, but it can be used to give students practice with the precalculus idea of

a power function. Students are presented with the information in Table 18.1 on a survey’s margin-of-error

for several different sample sizes:

sample size 250 500 750 1000 1250 1500

margin-of-error .063 .045 .037 .032 .028 .026

Table 1. Margin-of-error as a function of sample size
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Figure 3. Margin-of-error as a power function of sample size

Students are asked to graph these margins-of-error as a function of sample size and then to find a power

function that describes the relationship between sample size and margin-of-error. They should recognize

that the decreasing function requires a negative power, and some trial-and-error should lead them to the

negative one-half power (that is, margin of error D 1=
p
sample size) as the correct relationship, as shown

in Figure 3. Students can go on to exercise their knowledge of exponents to address questions such as

whether doubling the sample size of a survey serves to cut the margin-of-error in half.

The thrust of this example is not that students must learn statistics in their precalculus course. Rather,

the point is that like physics and economics (to cite but two examples), statistics can provide applications

in which students can enhance their study of functions. Just as learning some economics from supply-and-

demand examples and some physics from distance-and-velocity examples is a fortuitous side benefit, so

too is having students learn some statistics along the way.

The next example shifts from the concept of function to illustrating how data can motivate students

to study the apparently mundane topic of properties of logarithms. It also serves as an example of using

probability as an application area.

Example 4: Benford’s Model for Leading Digits

Benford’s model asserts that the leading digits of values for many variables follow a distribution predicted

by the function p.k/ D log.1 C 1=k/. [The leading digit of a quantity is the first non-zero digit when

reading from left-to-right.] This model has been used for detecting fraud in the accounting industry by

identifying tax returns and other accounting documents where the leading digits fail to follow this model [8].

Students are presented with data summarized in Table 18.2, which reports the frequencies of leading

digits in the populations of the 125 counties of Pennsylvania and California, as reported in The 2000 World

Almanac and Book of Facts:

digit 1 2 3 4 5 6 7 8 9

freq. 38 17 21 16 8 8 6 6 5

Table 2. Frequencies of leading digits in 125 county populations

Students investigate how well Benford’s model fits this data by calculating log.1C1=k/ and comparing

those probabilities to the relative frequencies in the data. They also use the property that the sum of the

logs is equal to the log of a product in order to show that Benford’s probabilities sum to 1. Students are

then asked to find their own set of data, collect the leading digits, and analyze how well Benford’s model

applies to their data.
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Data analysis principles for precalculus

The most prevalent use of data in precalculus books and courses is to illustrate fitting functional models to

data. I suggest that while using data for this purpose, precalculus teachers should also seize the opportunity

to acquaint students with sound principles of data analysis. In this section I present two examples of fitting

functional models to data, both adapted from [10], and provide a list of data analysis principles along the

way.

Example 5: Airfares

Students examine sample data on the cheapest airfare to fly to a destination and the distance to that

destination, as reported by a local newspaper for flights from Baltimore, displayed in Figure 4.

One obvious fact that students recognize immediately is that a line will not fit this data exactly. This is

in contrast to simpler examples that they may have seen, for example finding a line between two points or

representing distance traveled as a linear function of time for a given (constant) speed. In fact, no simple

function will model this airfare data perfectly. While this point is obvious, it suggests a first principle:

Variability is fundamental. It is important for students to recognize that real data vary, so no functional

model will provide an exact fit.

Students then fit a line to the data by eye and calculate its equation. They notice that their line differs

from other students’ lines, and they realize that some criterion is necessary for deciding which line “best”

summarizes the relationship. This leads to a discussion of the least squares criterion and to a second

principle: Understand that least squares is just one criterion for selecting a best-fit line. By applying this

criterion to their hand-drawn line, students encounter an interesting and unusual function: sum of squared

residuals (vertical deviations between the points and the line) as a function of the line drawn. Students

can also work with other techniques for drawing lines. For example, Barrett et al. [2] has students work

with the median-median technique starting with chapter one and does not introduce least squares lines

until chapter five.

Students then investigate the impact of extreme observations on the least squares line: they change

the airfare for the furthest city and find that it affects the line substantially, while changing the airfare

for a city with a moderate distance has much less effect. The principle here is: Recognize the potential

influence of individual observations. This is largely a consequence of the squaring of residuals with the

least squares criterion, and the result is that a single observation could have undue influence on the line

and cause it to poorly represent the pattern in the majority of the points.

Students are also asked to make predictions about airfares to other cities, based on their distances. The

farthest destination represented in the data is 1500 miles away, but some of these predictions requested

of students include cities much farther away. Students are asked to realize a fourth principle: Be wary of
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Figure 4. Airfare versus distance for a sample of twelve destinations
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extrapolating the model beyond the domain of the sample data. This admonition also cautions students

against interpreting the intercept of the line, for a distance of zero miles naturally lies outside the domain

of the sample data.

Remembering the theme that variability is fundamental, students should also be taught not to regard

predictions based on a model too precisely. Predictions should include not only a point estimate but also

an interval to indicate the accuracy of the prediction. The principle to follow is: Provide information about

accuracy to accompany predictions. The second edition of Barrett et al. [2] accomplishes this by asking

students to construct prediction bounds that are two times the standard deviation of the residuals away

from the line. For example, the least squares line predicts $171.31 for a flight to a destination 750 miles

away. The standard deviation of the residuals is 36.07, so a prediction interval for the cost of that flight

would extend from $99.17 to $233.45, providing an indication of the accuracy of the prediction.

Example 6: Televisions and Life Expectancy

The left graph of Figure 5 reveals the life expectancy for a sample of 22 countries versus the number of

people per television set in those countries.

Students first note that there is a fairly strong negative association between the two variables. They

are then asked whether this association means that sending televisions to countries with many people per

television will cause their inhabitants to live longer. Students recognize the absurdity of this claim, and in

the process they discover one of the most important principles of data analysis: An observed association

between two variables does not imply a cause-and-effect relationship between them. This is a statistical

point and certainly not part of the standard precalculus curriculum, but it is imperative for students to

understand this principle whenever they are studying relationships between variables.

Students are then asked if the association between these variables can be modeled with a linear function,

and the scatterplot clearly reveals that it can not. Another obvious, but probably the most important,

principle of data analysis is: Always look at a graph of the data first. Doing so can help to prevent

fitting inappropriate models to data, and it can also reveal unusual cases such as potentially influential

observations. A classic illustration of this importance was provided by Anscombe [1], who devised four

bivariate data sets with identical summary statistics, and therefore identical least squares lines, but with

very different graphs so that the linear model is appropriate only in one of the four cases. Figure 6 displays

the Anscombe data and their least squares lines.

Students are asked to examine transformations of the variables “people per television” and “life ex-

pectancy” that could linearize the relationship. It turns out that a logarithmic transformation on the “people

per television” variable makes the relationship quite linear, as shown in the right graph of Figure 5. In this

li
fe

 e
x
p
ec

ta
n
cy

people per TV

80

70

60

50

40

0 100 200 0 1 2

40

50

60

70

80

li
fe

 e
x
p
ec

ta
n
cy

log(people per TV)

Figure 5. Life expectancy vs. people per television for a sample of 22 countries
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Figure 6. Anscombe data with identical least squares lines: y D 3 C :5x

manner students experience another data analysis principle: Use re-expression of variables to try to make

relationships linear. After students fit a linear model for predicting life expectancy from this transformed

variable, they practice their algebraic skills by making predictions based on this transformed model and

re-writing the transformed linear model as a logarithmic one. Students are also asked a series of questions

leading them to realize that the slope coefficient of the transformed model .�13:3/ indicates that the pre-

dicted change in life expectancy is a decline of 13:3 years for a tenfold increase in the country’s number

of people per television set.

Students are also asked to examine residual plots (graphs of residuals versus x-values) for both the

original and the transformed data. These plots can reveal departures from linearity that may be hard to see

in the original scatterplot. The principle here is: Analyze residual plots to assess how well the functional

model fits the data. Barrett et al. [2] emphasizes residual plots from the very first chapter, and Gordon et

al. [7] also pays considerable attention to them.

In both the airfare and life expectancy examples, students use technology to calculate the correlation

coefficient between the variables and also R2, the proportion of variability in the y-variable explained

by the model with the x-variable. They are cautioned about the principle: Correlation and R2 can be

misleading about whether a model is appropriate. For example, the correlation between the airfares and

distances is 0:795, while the correlation between life expectancy and people per television (untransformed)

is �0:804. These are very similar in absolute value, but the graphs reveal that the linear model is a

reasonable one for the airfare data but not at all for the life expectancy data. This point is also reinforced

by the Anscombe data, where all four datasets have the same correlation despite very different appearances.

A very large value of R2 does not necessarily mean that the model fits well, and R2 should not be used

as the sole basis for comparing different models. Residual plots are more effective for assessing model fit

and for selecting among competing models.
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A top-ten list results from re-stating these principles of data analysis that can be taught as students use

functions to model data in precalculus:

1. Variability is fundamental.

2. Understand that least squares is just one criterion for selecting a best-fit line.

3. Recognize the potential influence of individual observations.

4. Be wary of extrapolating the model beyond the domain of the sample data.

5. Provide information about accuracy to accompany predictions.

6. An observed association between two variables does not imply a cause-and-effect relationship between

them.

7. Always look at a graph of the data first.

8. Use re-expression of variables to try to make relationships linear.

9. Analyze residual plots to assess how well the functional model fits the data.

10. Correlation and R2 can be misleading about whether a model is appropriate.

Data analysis in precalculus for general education

In his “Twenty Questions About Precalculus” appearing in this volume, Steen [13] poses many questions

about the student audience for precalculus, which often includes students satisfying a general education

requirement and who never take another mathematics or quantitative course. I believe that integrating data

analysis throughout precalculus is even more important for these students than for those who go on to

take calculus. Our contemporary world is awash in data; all citizens encounter data in their everyday lives.

The need to make sense of data has become an important aspect of informed citizenship. Several calls for

developing students’ quantitative literacy, including Steen [11] and Steen [12], recognize the central role

that data analysis plays in the effort. Considering the large role that precalculus plays in general education

at many institutions, this concern provides further justification for including data analysis.

Conclusion

Data analysis can play an important role in enhancing students’ learning experiences in precalculus. Genuine

data often provide motivation and interest for students, and they reveal that concepts of precalculus do

have application to analyzing data from a variety of disciplines as well as from everyday life. Beyond

its usefulness for teaching precalculus ideas, data analysis also provides the opportunity for students to

discover and explore some important statistical principles with which all educated citizens should be

comfortable.
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Theme 4. Student Learning and Research

One line of questioning that was repeatedly voiced at the conference Rethinking the Preparation for

Calculus revolved around determining what works and what doesn't work. Participants asked: “How can

we determine whether or not new pedagogical approaches or new curricular materials are effective? How

can we measure the impact of a new approach on student learning?” In order to convince colleagues to

adopt new pedagogies and instructional materials, we not only need data to show that there is a problem,

we also need to measure the effectiveness of alternative approaches. In this section, Florence Gordon looks

at the results of a study that compared student performance, success, retention, and attitudes in a reform

version of precalculus and in a traditional version of the same course. Rebecca Walker reports on the

experiences of college students who prepared to continue their study of mathematics in a reformed high

school environment.

Florence Gordon reports that in the fall of 1999, when some mathematics faculty at NYIT decided to

teach a reform version of precalculus, several other faculty members objected to the change. As a result,

the department decided to compare the performances of students in two traditional and two reform sections

of precalculus.

For the last decade, the reform of mathematics education at the college level has been accompanied by the

so-called “math wars.” One dimension of this struggle has involved calls to prove that non-traditional courses

are at least as effective as the courses they are designed to replace. From one point of view, this is certainly

a reasonable request, especially as all of higher education faces pressures for accountability. From another

point of view, I am not aware that anyone has ever been asked to prove anything about the effectiveness

of the traditional courses. . . . In this article, we look at the results of a comprehensive, multifaceted study

comparing student performance, success, retention, and attitudes in a reform version of precalculus to that

in a traditional version of the same course. Another component of the study involved student performance,

success, and retention in the follow-up calculus course based on the type of precalculus experience the

students had. . . .

At the start of our experience at NYIT, some faculty expressed concern that the reform/modeling approach

in precalculus would inflict irreparable damage to the students. In retrospect it is the traditional precalculus

course that harms the students.

Assessing What Students Learn: Reform versus Traditional Precalculus and Follow-up Calculus

Florence S. Gordon

Based on the research she did for her doctoral thesis, Rebecca Walker reports on “the views of

mathematics held by students who completed the four years of school mathematics using the Core-Plus

Mathematics Project (CPMP).” She also reports on “case studies of the first semester college mathematics

experiences of six of these students, with particular attention to the transition from this reform curriculum

into college mathematics.”

A variety of questions arise while trying to rethink college precalculus. How will students react to a reform

precalculus experience? Can a reformed precalculus experience help students develop a broader and more

realistic perspective of mathematics? How successful will students be in calculus if they have a different

type of preparation? Can a different learning environment promote deeper mathematical understanding? Is it
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possible to create a classroom environment where students expect the mathematics to make sense and where

they will struggle with complex problems? None of these questions is easy to answer but it is possible to

begin to answer them by looking at the experiences of students who have prepared for college mathematics

in a reformed environment.

Student Voices and the Transition from Reform High School Mathematics to College Mathematics

Rebecca Walker
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Assessing What Students Learn:

Reform versus Traditional Precalculus and Follow-up

Calculus

Florence S. Gordon

New York Institute of Technology

Introduction

For the last decade, the reform of mathematics education at the college level has been accompanied by

the so-called “math wars.” One dimension of this struggle has involved calls to prove that non-traditional

courses are at least as effective as the courses they are designed to replace. From one point of view, this

is certainly a reasonable request, especially as all of higher education faces pressures for accountability.

From another point of view, I am not aware that anyone has ever been asked to prove anything about the

effectiveness of the traditional courses. Most studies looking at the impact of a nontraditional approach to

student learning have focused on the developmental mathematics/college algebra level and at the calculus

level. For instance, Baxter et al [1] compared student performance in traditional versus reform calculus

and the students’ performance in subsequent science and engineering courses.

In this article, we look at the results of a comprehensive, multifaceted study, which we undertook in fall

1999, that compared student performance, success, retention, and attitudes in a reform version of precalculus

to that in a traditional version of the same course. Another component of the study involved student

performance, success, and retention in the follow-up calculus course based on the type of precalculus

experience the students had.

Background

The precalculus offering at New York Institute of Technology (NYIT) is the standard college algebra and

trigonometry course stressing traditional drill-and-skill techniques presumed to be necessary for calculus.

Graphing calculators are used to augment the usual algebraic topics. For the science and engineering majors,

this course has been followed by a reform calculus sequence based on the Harvard calculus materials [2].

In the fall of 1999, some faculty from the mathematics department decided to teach a reform version of

precalculus based on mathematical modeling with an approach that emphasized conceptual understanding.

Several other faculty members objected to this change, believing that such a course would inflict irreparable

damage on the students in terms of their perceived weaknesses in algebraic manipulation. To resolve this

issue, the department decided to offer two sections of the course in the traditional, algebra-oriented way

and two sections using the reform/modeling approach and then to compare the results between the two
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groups. Four experienced faculty members, all of whom are considered excellent instructors, taught the

four sections.

The students had no idea when they registered for precalculus that some of the sections would be

reform/modeling and others traditional. Thus, their choice of section was basically random. Moreover,

during the first week of the semester, the students in the reform/modeling sections were told that the

classes were going to be very different from the traditional approach. These students were given the option

of transferring to one of the traditional sections, but not one of them opted out.

While the core topics covered in both precalculus groups were the same (linear, polynomial, ratio-

nal, exponential, logarithmic, and trigonometric functions), the emphasis, content, and sequence of topics

were quite different. The traditional course, based on [3], was mainly lecture-based and stressed routine

algebraic manipulations to improve student skills. The reform/modeling course, based on [4], stressed

conceptual understanding of the mathematical ideas, problem-solving, and realistic applications. In the

reform/modeling course, the algebraic manipulations arose only in the context of problem solving, not as

long lists of drill-and-skill exercises. Students learned by applying the mathematical ideas and methods to

real-world data, some of which they personally obtained on subjects of interest to them.

At the time, NYIT was a member of the NSF-supported Long Island Consortium for Interconnected

Learning (LICIL) project, which was intended to foster greater interaction between mathematics and all

other quantitative disciplines. With support from LICIL, a multifaceted assessment study was conducted

by two external evaluators. One evaluator, who was responsible for LICIL’s overall project evaluation,

conducted an attitudinal study [5], and another evaluator was brought in specifically to assess the differences

between the two groups in precalculus and in the succeeding calculus course [6].

The main components of the evaluation study included:

1. Comparison of placement test scores prior to the start of the precalculus course.

2. Comparison of student performance on a series of common problems on the final exams administered

to the two precalculus groups.

3. Comparison of student attitudes in the two precalculus groups.

4. Comparison of student performance on weekly quizzes in the follow-up calculus course based on the

type of precalculus experience the students had.

5. Comparison of student performance on class tests in the follow-up calculus course.

6. Comparison of student performance on the final exam in the follow-up calculus course.

7. Comparison of student retention and success rates in the follow-up calculus course.

Student backgrounds prior to precalculus

A department-generated placement test, which has been used for many years to assess algebraic proficiency,

was administered to all students before the start of classes. On the basis of this test, students were admitted

to the one-semester precalculus course or were directed either to a developmental course or to a slower

two-semester algebra/trigonometry course.

For the 64 students who placed into precalculus, 37 were in the reform/modeling sections and 27

were in the traditional sections. The students in the reform/modeling sections scored a mean of 12.47 on

the placement test with a standard deviation of 3.93. In comparison, those in the traditional precalculus

sections scored a mean of 13.58, with a standard deviation of 3.36 (see Figure 1).

The standard deviations for both groups were very similar, indicating that there was very little variation

in the placement test scores of both groups. To determine if the two mean scores were significantly

different, a means/ANOVA t -test was conducted and the results indicate that, while the students in the

traditional classes had better placement scores, the two means were statistically not significantly different:

p-valueD 0:2512, F -ratio D 1:3426.
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Figure 1.

Assessing student performance in precalculus

To comply with the departmental request for a comparison of student performance, all four faculty members

teaching the course agreed to include ten common questions on the final examinations for both precalculus

groups. These questions were primarily manipulative in nature. Note that the content of all of these

questions was agreed to by the four faculty members who were confident that their students could handle

the problems with relative ease.

The ten common questions were worth a total of 66 points. Students in the reform/modeling sections

scored a mean of 49.69 with a standard deviation of 9.32, while those in the traditional sections scored a

mean of 43.63 with a standard deviation of 12.03. A means/ANOVA t -test indicated that the two means

were significantly different (p-valueD 0:0266, F -ratio D 5:1572). Thus, the two groups differed in their

performance on the common, algebraic manipulation questions on the final examinations with the students

in the reform/modeling sections out-performing those in the traditional sections. (See Figure 2.)

This result is particularly striking when one considers that the students in the reform/modeling sections

started with weaker algebraic skills on average (as measured by the lower mean scores on the placement

exam), took a course that did not explicitly emphasize such skills, and ultimately outscored their peers on

questions involving precisely those kinds of skills.

We can only speculate about the reasons for this. In a typical traditional course, the students are

assigned many practice problems of the same type; the problems look indistinguishable and appear no

different from problems that they’ve seen in previous math courses. Many students likely do not bother to

work at many of the problems; they feel they’ve done them before. These students tend to equate familiarity

with mastery. There is nothing in long assignments of routine problems that captures the students’ interest.

Students in the reform/modeling sections were assigned primarily non-routine problems that did not

resemble those they had seen before. The realistic contexts made the mathematics more interesting to the

students; they cared about the answers. The algebraic manipulations were hidden in the contexts. The

students were expected to create functions and use them to answer questions about the quantity being

studied. The actual equations that arose were often much more complicated than those in a traditional

course, because the numbers were realistic rather than being artificially contrived to make the answers

work out evenly. In this environment, we conjecture that the students did more homework of a more

Mean Total Scores on Common Problems

Traditional

Reform
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Figure 2.
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challenging nature. The relatively routine algebra and trigonometry problems on the final exam were then

not difficult for them.

In addition to the total score on the ten common questions, the evaluator also analyzed student perfor-

mance on each of the questions individually. To determine whether significant differences exist between

the scores earned by the reform/modeling group and the traditional group on these questions, he used a

MANOVA model. The students from the reform/modeling classes out-performed the students from the

traditional group in seven of the ten questions. Table 1 summarizes the results and Figure 3 provides a

visual display, where the bar on the left represents the results of the students from the reform/modeling

sections for each question. The evaluator found that the differences were statistically significant for three

of the ten questions (#1, #4, and #5).

The three questions where there were significant differences, and discussions regarding each of them,

are as follows:

Question #1 Brookville College enrolled 2546 students in 1996 and 2702 students in 1998. Assume that

enrollment follows a linear growth pattern.

(a) Write a linear equation that gives the enrollment in terms of the year t (let t D 0 represent 1996).

(b) If the trend continues, what will the enrollment be in the year 2016?

(c) What is the slope of the line you found in part (a)?

(d) Explain, using an English sentence, the meaning of the slope here.

(e) If the trend continues, when will the enrollment reach 3500 students?

Out of a total of 10 points, the students in the reform/modeling sections scored a mean of 9.14 with

standard deviation of 1.38, while the students in the traditional sections scored a mean of 6.33 with

Reform/modeling Traditional

Item Mean Std. Dev. Mean Std. Dev. F Ratio p-value

Q1 9.14 1.38 6.33 3.71 17.8202 0.0001

Q2 10.13 3.58 11.09 2.87 1.3156 0.2558

Q3 2.50 1.66 2.91 1.23 1.1639 0.2848

Q4 1.00 0.97 1.81 0.56 15.2715 0.0002

Q5 7.20 1.77 4.44 2.69 24.4292 0.0001

Q6 3.23 0.97 2.70 1.23 3.6470 0.0608

Q7 3.46 0.98 3.22 1.05 0.8597 0.3574

Q8 4.15 1.03 3.63 1.66 2.3867 0.1275

Q9 2.80 2.21 2.37 1.92 0.6484 0.4237

Q10 6.08 2.64 5.11 3.04 1.8510 0.1786

Table 1.

0

2

4

6

8

10

12

Comparison of Mean Scores on Common Final Exam Questions

Common Problem Number

M
e
a
n
 S

c
o
re

 E
a
rn

e
d

1 2 3 4 5 6 7 8 9 10

Figure 3.



19. Assessing What Students Learn 185

standard deviation 3.71. A means/ANOVA t -test indicates that the two means were significantly different

(p-value D 0:0001, F -ratio D 17:8202).

Question #4 Given h.x/ D 4.x2 � 17/15, find two functionsf .x/ and g.x/ such that h.x/ D f .g.x//.

Out of a total of 2 points, the students in the reform/modeling sections scored a mean of 1 with standard

deviation of 0:97, while the students in the traditional sections scored a mean of 1:81with standard deviation

0:56. A means/ANOVA t -test indicates that the two means were significantly different (p-value D 0:0002,

F -ratio D 15:2715).

Question #5 (reform/modeling sections) The population of Peru was 24 million in 1995 and has been

growing at an annual rate of 2.1%.

(a) Write a function for the population P.t/ after t years. (Let t D 0 represent 1995.)

(b) According to this model, what will the population be in the year 2000?

(c) Use any method to determine when the population will reach 30 million.

Question #5 (traditional sections) You deposit $8500 in a bank paying 4.25% interest.

(a) Write an expression for your balance B.t/ after t years.

(b) What will your balance be after 30 years?

(c) Use any method to determine when your balance will equal $15,000.

The reason for these two different, though mathematically equivalent, problems is that the instructors in

the traditional sections believed that their students would be more comfortable with the more standard

money growth context that they had emphasized in class than with the population growth context.

Out of a total of 8 points, the students in the reform/modeling sections scored a mean of 7:2 with

standard deviation of 1:77, while the students in the traditional sections scored a mean of 4:44 with

standard deviation 2:69. A means/ANOVA t -test indicates that the two means are significantly different

(p-value D 0:0001, F -ratio D 24:4292).

The most noticeable difference in the two groups is revealed by a comparison of the responses to part

(d) of Question #1, which asked the students to interpret the meaning of the slope of the line. The complete

set of responses appears in [7].

In summary, 35 of the 37 students in the reform/modeling sections gave a meaningful response, an

indication of their understanding of the significance of the slope of a line. A typical response was: “This

means that for every year the number of students increases by 78.” The remaining two students wrote an

appropriate statement for the meaning of slope, but calculated the slope as 4t=4y.

In comparison, nine of the 27 students in the traditional sections were able to provide a meaningful

response indicating an understanding of what the slope represents. Five left that portion of the question

blank and three simply rephrased the algebraic formula 4y=4x for the slope in words. The remaining 10

students wrote statements that made no sense, including:

� The point in which the # of students is increasing.
� The slope in this equation means the students enrolled in 1996. Y D MX C B.

� The slope is the average amount of years it takes to get 156 more students enrolled in the school.
� Since it is positive it increases.
� Its how many times a year it increases.

Note that Question #1 was worth a total of 10 points on both final exams. Part (d), which asks for the

interpretation of the slope, was worth only 2 points and so represents only a fraction of the difference in the

overall mean scores (9:14 versus 6:33) between the two groups. Those students who had trouble interpreting

the slope also had trouble using the equation of the line to answer the predictive questions posed.
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It is interesting that the ability of both groups to calculate the slope of a line was comparable. However,

any graphing calculator and many commonly available software packages, such as Excel, can do that also.

What should be more valuable to our students is the ability to understand what the slope means in context,

whether that context arises in one of their other courses in mathematics or courses in one of the quantitative

disciplines or eventually on the job.

These results suggest that, unless explicit attention is devoted to emphasizing conceptual understanding

of what the slope means, a majority of students are not able to create meaningful interpretations on their

own. Lacking conceptual understanding, they are not able to apply the mathematics to realistic situations

in new contexts or in other courses.

Many of us have heard complaints from colleagues in other disciplines about students who appear not

to have learned key mathematical ideas and techniques, such as finding or using the equation of a line. In

most other disciplines, linear functions do not arise in the form usually taught in a traditional course: Find

the equation of the line through the points .1; 3/ and .5; 11/. Instead, one typically faces a collection of

data relating two quantities that follow a roughly linear pattern and has to find and use the (regression)

line that best fits the data. If students have such difficulty just giving meaning to the slope of a line, it is

no wonder that they are unable to connect what they learn about lines and linear functions in their math

classes to what they are expected to do in their other courses.

Moreover, if students are unable to make their own connections with an elementary concept like the

slope of a line (which they have encountered previously), it is unlikely that they will be able to create

meaningful interpretations and connections on their own for more sophisticated mathematical concepts,

such as: What is the significance of the base (growth or decay factor) in an exponential function? What

is the meaning of the power in a power function? What do the parameters in a realistic sinusoidal model

tell about the phenomenon being modeled? What is the significance of the factors of a polynomial? What

is the significance of the derivative of a function? What is the significance of a definite integral?

On the basis of this study, it is clear that we cannot simply concentrate on teaching mathematical

techniques and skills. It is at least as important to stress conceptual understanding and the meaning of the

mathematics. This can be accomplished by using realistic, contextual examples and problems that force

students to think, not just to manipulate symbols. If we fail to do this, we are not adequately preparing

them for successive mathematics courses, for courses in other disciplines, and for using mathematics on

the job and throughout their lives.

Assessing student attitudes in precalculus

A student attitudinal survey was also conducted in precalculus the same semester by LICIL’s external

evaluator [5]. In this study, instructors A and B taught the traditional course; instructors C and D taught

the reform/modeling course. All four instructors incorporated the use of graphing calculators. A set of

20 attitudinal questions was administered on the first day of class (pre-survey) and again on the last day

of the semester (post–survey). These questions were designed to investigate the extent to which student

attitudes changed as a result of each course. The questions covered several general areas. In analyzing the

data, the evaluator combined the Strongly Agree and Agree responses, as well as the Strongly Disagree

and Disagree responses.

One group of questions dealt with whether mathematics is an active, open-ended, discovery-oriented

process or a passive, closed-ended, memory-based procedure. The results are shown as percentages of

positive responses (percentage of students who Strongly Agree/Agree that mathematics is an active, open-

ended discovery-oriented process) in Table 2. The pre-course responses were clustered close to the mean,

with a range of only 4.5 and a standard deviation of 1.9, so that the four groups were comparable at the

outset. The post-course responses, however, had a greater spread, with a range of 25 and a standard deviation

of 12.1. Group C showed an increased level of positive attitudes and experiences toward mathematics,
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Pre Post Change

Traditional A 57.3% 47.2% �10:1

Traditional B 56.0% 41.7% �14:3

Reform C 58.0% 66.7% C8:7

Reform D 60.5% 63.2% C2:7

Table 2.

group D showed a slight increase, while both traditional Groups A and B indicated substantially more

negative attitudes and experiences toward mathematics.

The second group of questions dealt with the usefulness of mathematics and whether the students

viewed it as connected to situations beyond math courses. Some of the survey items were:

� This course helped me to understand how to apply math to real world problems.
� In this course, I learned ways of thinking that are useful in situations outside of math.
� This course showed that math is useful in many non-math courses.
� This course made connections across disciplines.

The corresponding percentage of positive responses for the four groups are shown in Table 3. The

responses for the pre-course survey are again clustered, although not as closely as in the previous area,

with a range 13:5 and a standard deviation of 6:1. Post-course results are scattered even more widely than

in the first area, with a range of 62:3 and a standard deviation of 28:3. The combined pre/post means

for the two reform/modeling classes moved from 55:4 to 53:2, while the combined pre/post means for the

traditional classes fell from 58:75 to 9:25.

Pre Post Change

Traditional A 65.5% 6.0% �59:5

Traditional B 52.0% 12.5% �39:5

Reform C 57.5% 68.3% C10:8

Reform D 53.3% 38.0% �15:3

Table 3.

Based on the responses to these two general areas, the evaluator concluded that students appear to

respond much more positively to the reform/modeling approach than to the traditional approach. He hy-

pothesized that perhaps differences in the student populations or in the instructors might account for the

differences. Based on responses to other items, however, the evaluator rejected these hypotheses.

A third group of questions dealt with the importance of technology in learning mathematics. The results

are shown in Table 4. The evaluator noted that the average for group C was the lowest in the pre-course

survey, but increased to a 100% positive rating, while the percent of positive response of the other three

groups all declined.

Pre Post Change

Traditional A 78% 67% �11

Traditional B 87% 70% �17

Reform C 76% 100% C24

Reform D 88% 79% �9

Table 4.
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The follow-up study in calculus

In the spring of 2000, a follow-up study was conducted on student performance and retention in the

calculus I course for science and engineering majors based on whether the students had taken a traditional

or the reform/modeling precalculus course. There were two sections of the calculus course taught by the

same professor, and each section included students with both types of precalculus background. The course

was based on the Harvard text [2].

Not all students who take precalculus at NYIT are required to take calculus I. Some take a business

calculus course or an architecture calculus course. The precalculus course is a required, but terminal, course

in certain majors, including physical therapy, occupational therapy, nursing, and communication arts. Some

students do not immediately go on to take calculus I the semester after having completed precalculus.

The end result was that 13 of the 37 students (or 35%) who passed the reform/modeling precalculus

course during fall 1999 started calculus I during spring 2000; five of the 27 students (or 18.5%) who

passed the traditional precalculus course during fall 1999 started calculus I during spring 2000. In total,

there were 52 students enrolled in the two sections of calculus I. Thirteen of them had a reform/modeling

precalculus background while 39 had a traditional precalculus background. However, only five of those

39 students had passed traditional precalculus during fall 1999. The remaining 34 students had passed

the prerequisite precalculus course in a variety of ways; some were transfer students, some had taken a

traditional precalculus course during an earlier semester, some had taken traditional precalculus in high

school, and some had completed a two-semester traditional precalculus track.

During the calculus study, the external evaluator compared students’ performance on quizzes, class tests

and the final examination, as well as student success rates, retention rates, and persistence in the course.

Since only 13 students from the fall 1999 reform/modeling precalculus classes and only five students from

the fall 1999 traditional precalculus classes enrolled in calculus I in spring 2000, the evaluator compared

the 13 students with the reform/modeling background to all 39 students who had a traditional background

(the full traditional group). In this article, we include the evaluator’s analysis [6] for the full traditional

group, along with accompanying graphs and tables. Wherever appropriate, we also add parenthetically the

comparable performance of the subgroup of the five students who took the traditional precalculus course

during fall 1999.

Assessing student performance and persistence on quizzes in calculus

As can be seen in Figure 4, the reform/modeling group consistently outperformed the full traditional group

on all seven quizzes during the semester. (Note that the identical outcomes occurred when comparing the

reform/modeling group to the subgroup of five students who came from the traditional background in fall

1999.) The quizzes on which the students with the traditional background scored closest to the students from

the reform/modeling approach are the quizzes that were primarily algebraic in content (quizzes 4 and 6).
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(a)

(b)

Figure 5. (a) Persistence on quizzes: (reform/modeling) and (b) Persistence on quizzes (traditional)

A closer examination of the quiz data reveals a striking pattern in terms of student persistence in

calculus depending on the students’ precalculus background. Figure 5a diagrams which students with the

reform/modeling background took each of the seven quizzes in calculus. Each row represents an individual

student and each column represents a particular quiz (#1 through #7). Each darkened box represents a

quiz that a student took and each blank box represents a missed quiz. Similarly, Figure 5b illustrates the

same information for the full group of students with a traditional background. Only one student with the

reform/modeling background stopped attending calculus. It is evident that the persistence levels among the

students with a traditional background were considerably lower and that a large component of this group

gave up on calculus and stopped attending.

Student retention can also be seen in the graph in Figure 6 showing the percentages of students from

the two groups taking each of the seven quizzes. The percentage of students with the reform/modeling

background who took each of the seven quizzes was consistently higher than the percentage of students

with a traditional background. (This was true for the full traditional group as well as for the subgroup.)

The comparison of student performance on the last few quizzes is distorted by the disproportionate

number of students with a traditional background who stopped attending calculus. Since they were al-
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ready doing poorly, their scores on the later quizzes, had they persisted, would undoubtedly have lowered

the average for their group. That is, the lowest performing students were effectively removed from the

traditional group when they stopped attending (both full group and subgroup), but the lowest performing

students from the reform/modeling group completed the entire course. Had all these students persisted to

the end of the semester, there would almost certainly have been an even wider discrepancy in the averages

between the two groups.

Assessing student performance on class tests in calculus

Student performance on each of the three class tests in calculus was also compared. On the first class test,

the full group of students coming from a traditional approach had a mean grade of 64:36 with a standard

deviation of 19:23. (The mean grade of the subgroup was 59:0 with a standard deviation of 15:32.) In

comparison, the students coming from the reform/modeling sections had a mean of 90:62 with a standard

deviation of 8:96. See Figure 7. When the difference of means of the two groups is analyzed statistically,

the associated t -value is t D 4:71 and the associated p-value is p D 0:0000257, so the difference between

the groups is statistically significant.
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The results on the second and third class tests in calculus demonstrate similar, though not as dramatic,

patterns. On the second test, the full group of students coming from a traditional approach scored a mean

grade of 59:58 with a standard deviation of 21:82. (The mean grade of the subgroup was 40:25 with a

standard deviation of 7:15.) The students coming from the reform/modeling sections scored a mean grade

of 77:42 with a standard deviation of 14:26. The resulting difference of means test gives t D 2:61 and

p D 0:01249. The difference is statistically significant.

On the third class test, the students with a traditional background scored a mean grade of 62:3 with a

standard deviation of 17:31. (The mean grade of the subgroup was 48:5 with a standard deviation of 16:5.)

The students with the reform/modeling background scored a mean grade of 76:1 with a standard deviation

of 18:13. The t -value for this difference of means is t D 2:20 and the associated p-value is p D 0:035.

The difference is statistically significant.

From Figure 7, it appears that the results for the two groups are converging. Again, this is probably

misleading because of the considerably higher percentage of students with a traditional background who

gave up and stopped attending the course.

Assessing student performance on the final exam in calculus

On the final exam in calculus, the full group of students coming from a traditional approach scored a

mean grade of 55:8 with a standard deviation of 23:09. (The mean grade of the subgroup was 11:5 with a

standard deviation of 6:5.) In comparison, the students coming from the reform/modeling sections scored
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a mean grade of 69.8 with a standard deviation of 26:21. The resulting difference of means test gives

t D 1:64 and p D 0:1.

Note that 12 of the 13 students, or 92.3%, from the reform/modeling background who started the

calculus course completed the course and took the final exam. In comparison, 24 of the 39 students, or

61.5%, of the full group who started the course took the final exam. (In the subgroup, three of the five

students took the final exam.)

Finally, 10 of the 13 students from the reform/modeling background who started the course received

passing grades in calculus, for a success rate of 76.9%. In comparison, 16 of the 39 students in the full group

with a traditional background who started the course received passing grades in calculus, for a success rate

of 41.0%. See Figure 8. (None of the five students in the subgroup passed calculus.) When the difference

in proportions is analyzed, the associated z-value is z D 2:24 and the associated p-value is p D 0:025.

Thus, the difference in the proportion of students who passed the course is statistically significant. (The

corresponding values for the subgroup are z D 2.94 and p D 0.003, so again the difference in proportions

is statistically significant.)

Discussion of results

The issue of student persistence and retention in calculus is perhaps the most critical factor for an institution

such as ours. To summarize, only one of the 13 students from the reform/modeling background stopped

attending the course, no other student from this group missed a single test or the final exam and, in fact,

only two of the other students missed any quizzes. On the other hand, over 40% of the students from the

traditional background stopped attending; six of them did not take the first test, eight of them did not take

the second test, 16 did not take the third test, and almost half missed more than one quiz.

I can only speculate about the reasons for this. There is no doubt that the students with the re-

form/modeling background in precalculus were better prepared to handle the intellectual demands of a

reform calculus course. They were comfortable with the need to understand the meaning of the mathe-

matical concepts, not just to manipulate symbols by rote. They were used to non-routine problems, both

conceptual and realistic, that required them to think and understand.

In contrast, many students coming from a traditional skills-focused precalculus experience may have

brought with them higher levels of manipulative skills (even though the precalculus portion of this study

suggests otherwise). But, they evidently were not prepared for a balanced emphasis on conceptual under-

standing, realistic applications, and algebraic manipulation.

As mentioned earlier, at the start of our experience at NYIT, some faculty expressed concern that the

reform/modeling approach in precalculus would inflict irreparable damage to the students. In retrospect, it

appears that it is the traditional precalculus course that harms the students.
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Introduction

A variety of questions arise while trying to rethink college precalculus. How will students react to a reform

precalculus experience? Can a reformed precalculus experience help students develop a broader and more

realistic perspective of mathematics? How successful will students be in calculus if they have a different

type of preparation? Can a different learning environment promote deeper mathematical understanding? Is

it possible to create a classroom environment where students expect the mathematics to make sense and

where they will struggle with complex problems?

None of these questions is easy to answer, but it is possible to begin to answer them by looking at

the experiences of students who have prepared for college mathematics in a reformed environment. Over

the past ten years, a growing number of high school students have prepared for college mathematics by

studying high school mathematics in a reform environment. The changes in high school mathematics came

about in response to poor national and international test results [1–3] and the National Council of Teachers

of Mathematics (NCTM) Standards documents [4, 5]. Beginning in 1992, the National Science Foundation

(NSF) funded the development of several school mathematics curricula that would be in line with the vision

of mathematics laid out in the NCTM documents. The curricula developed as a result of this funding are

changing what is happening in many mathematics classrooms across the United States. One of the NSF

curricula for grades 9–12 was developed by the Core-Plus Mathematics Project (CPMP) [6].

Students who study the CPMP four-year high school curriculum learn mathematics by first constructing

mathematical meaning out of problem situations and then looking more formally at the mathematics

involved. They work in situations and problem settings that were developed with the intent that students

personally construct mathematical concepts and methods and make them their own. They study algebra

from a modeling and functions perspective, and also study geometry, statistics and probability, and discrete

mathematics each year. While learning mathematics using the CPMP curriculum, students are encouraged

to value their informal knowledge and intuition and to try to link them to formal mathematical concepts.

The objective is that, in addition to finding solutions to problems, students should be able to understand

and to explain what they are doing. Thus, mathematics becomes a practice, something that they do, as well

as a body of knowledge [7]. Through this learning process it is hoped that students develop, not only a

specific knowledge, but also mathematical ways of thinking or habits of mind [8]. (For more information

on the CPMP mathematics curriculum see [9].)

This paper first reports on a study of the views of mathematics held by students who completed four

years of school mathematics, during the late 1990s, using the CPMP curriculum. Through the use of

193
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a Likert-scale survey, the Conceptions of Mathematics Inventory (CMI) developed by Grouws, Howald,

and Colangelo [10], this study categorized students’ conceptions of what it means to learn, know, and do

mathematics before encountering college mathematics and again after one semester of college mathematics.

In addition, this paper reports on case studies of the first semester college mathematics experiences of

six of these students, with particular attention to the transition from this reform curriculum into college

mathematics. In particular, the case studies document describes the students’ transitions in terms of place-

ment testing, in-class experiences, out-of-class experiences, and college mathematics performance. Finally,

each student’s overall reflections about his or her preparation for and experiences in college mathematics

is reported.

Design of the study

Students from eight high schools (five in Michigan, one each in Alaska, California, and Georgia) that were

a part of the field test of the CPMP curriculum completed the CMI survey near the end of their senior

year of high school and again after one semester of college mathematics. Whole classes of high school

students (n D 256) completing the fourth year of the CPMP curriculum participated in the initial survey.

All of the teachers of these students had been provided curriculum-specific professional development and

ongoing support while implementing the CPMP curriculum and were aware of the goals of the curriculum.

However, the success of the implementation varied from one school to another, and even within schools,

depending on the classroom teacher. Two hundred fifty-six students completed the CMI at school during

May of their senior year of high school and then were asked to complete it again in January after their first

semester of college. One hundred thirty-two of the initial 256 students returned the follow-up survey after

completing one semester of college. Of these 132 students, 38 of them did not complete the survey because

they had not taken a mathematics course during their first semester of college. Two additional surveys

could not be included in the pre- and post-testing because the students had not adequately completed the

first administration of the CMI. This resulted in 92 students who completed both administrations of the

CMI and were included in the analysis of the pre- and post-CMI data. The CMI data was analyzed by

considering measures of center and measures of spread. Two-tailed paired t-tests were used to determine

whether or not the mean responses in each dimension changed between May and January.

The case study participants were chosen from among volunteers in the classrooms that were surveyed.

They came from five different high schools and attended one of two large midwestern universities. Each

student was recommended by his or her high school mathematics teacher. These recommendations were

based upon three criteria: the student being responsible enough to complete the entire set of five interviews,

the student being articulate enough to explain what he or she is thinking, and the student enrolling in either

precalculus or calculus during the first semester of college. Data for the case studies was collected from

a variety of sources: two interviews and three problem-solving sessions with each student (conducted by

the author), review of student work on tests and quizzes, classroom observation, and instructor interviews.

The interviews occurred in August before the students went to college and in January after completing

the first semester of college mathematics. The problem-solving sessions were evenly spaced throughout

the semester and involved students in think-aloud problem-solving sessions where they solved problems

similar to those they were working on in their classes. All interviews and problem-solving sessions were

transcribed and coded for analysis. Classroom observations and instructor interviews were used to help

determine the type of college mathematics classroom environment that each case-study student was in.

Analysis of student beliefs and conceptions of mathematics

The Conceptions of Mathematics Inventory (CMI) was used to measure students’ conceptions of mathe-

matics [10]. The CMI is a 56 item, 6-point Likert-scale instrument, with response choices of strongly dis-

agree, disagree, slightly disagree, slightly agree, agree, and strongly agree to the statements. The inventory
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Composition of Mathematical Knowledge

Knowledge as concepts, principles and generalizations vs. Knowledge as facts, formulas and algorithms

Structure of Mathematical Knowledge

Mathematics as a coherent system vs. Mathematics as a collection of isolated pieces

Status of Mathematical Knowledge

Mathematics as a dynamic field vs. Mathematics as a static entity

Doing Mathematics

Mathematics as sense-making vs. Mathematics as results

Validating Ideas in Mathematics

Logical thought vs. Outside authority

Learning Mathematics

Learning as constructing and understanding vs. Learning as memorizing intact knowledge

Usefulness of Mathematics

Mathematics as a useful endeavor vs. Mathematics as a school subject with little

value in everyday life or future work

Figure 1.

measures students’ conceptions in seven different dimensions: Composition of Mathematical Knowledge,

Structure of Mathematical Knowledge, Status of Mathematical Knowledge, Doing Mathematics, Validating

Ideas in Mathematics, Learning Mathematics, and the Usefulness of Mathematics. The conceptions in each

dimension are measured on a continuum with respect to two poles. The dimensions and their associated

poles are provided in Figure 1.

The conceptions in each dimension are assessed using eight statements. Of the eight statements, four

are written to reflect one pole and four to reflect the other pole. For the purposes of this study, the pole in

the first column of Figure 1 will be referred to as the positive pole.

In order to facilitate interpretation of the results, the responses to all statements were scored so that a

mean score of six indicates complete agreement with the positive pole in each dimension. The positively

worded statements were scored from 6 for strongly agree to 1 for strongly disagree and the negatively

worded statements were scored 1 for strongly agree to 6 for strongly disagree.

After this coding had been completed, the mean score for each student in each dimensionwas calculated.

This mean is referred to as the dimension rating for the student in that dimension. Box plots showing the

dimension ratings for the participants in May and in January are given in Figure 2.

Jan Usefulness
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Jan Learning
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May Doing
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May Composition
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Figure 2.
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N May May Jan Jan p-

Mean SD Mean SD value

Composition of Mathematical Knowledge 92 3.8900 .5361 3.7745 .5394 .048

Structure of Mathematical Knowledge 92 4.6671 .5388 4.6943 .5046 .643

Status of Mathematical Knowledge 92 4.3356 .5541 4.2228 .6424 .093

Doing Mathematics 92 4.5666 .4894 4.6128 .5055 .394

Validating Ideas in Mathematics 92 4.2649 .5475 4.2500 .5962 .802

Learning Mathematics 92 4.2106 .5024 4.0870 .5456 .060

Usefulness of Mathematics 92 5.1889 .6873 4.8832 .8977 .000

Table 1.

The box plots indicate that the median dimension ratings were above 4.0 for all dimensions except the

Composition of Mathematical Knowledge. This indicates that in general these students viewed mathematics

as being a useful, coherent, and dynamic system of concepts and ideas, where learning is accomplished

by sense-making and can be validated through logical thought. At both times the conceptions regarding

the usefulness of mathematics were stronger than any other conception. The plots further indicate that the

changes in conceptions between May and January were not large.

To further explore the stability of these conceptions, the May and January scores of the 93 students who

adequately completed both CMI administrations were analyzed. The sample mean scores were analyzed

using paired t -tests to determine whether or not the mean response in each dimension changed between

the first and second completion of the CMI.

Table 1 gives the means and standard deviations for the May and January survey results and the

p-values for the paired t -test.

There were two dimensions for which the changes in the individual conceptions were significant: Com-

position of Mathematical Knowledge and Usefulness of Mathematics. The conception that mathematical

knowledge is composed of concepts, principles and generalizations decreased in strength. After a semester

of college mathematics, students believed that facts, formulas, and algorithms played a greater role in

mathematics than at the end of high school. It should be noted, however, that there was still a majority

that believed that mathematics was more about concepts, principles, and generalizations than about facts,

formulas, and algorithms.

After a semester of college mathematics, students’ conceptions of the usefulness of mathematics had

also decreased. They moved toward seeing mathematics as a school subject with little value in everyday

life or work.

The change in the ratings for the learning mathematics dimension approached significance (p D :06),

which indicates that the students’ conceptions did change some in this dimension. After one semester of

college mathematics, these students believed that memorization of intact knowledge played a larger role in

learning mathematics than they did at the end of high school. It should be noted that, at both times, their

conception averages were slightly more toward the positive pole of learning as constructing understanding.

Without further research, it is not clear why these students’ beliefs changed as they did. However,

based upon responses to a brief survey about the college mathematics classes that the 92 students were

enrolled in and the information gathered through the case studies, it is possible to make some conjectures.

Most of the students reported that the majority of the class time in their college mathematics classes was

spent taking notes while the instructor lectured to them about the new material. They were given sample

problems and were expected to be able to work similar problems. There was very little discussion or

interaction during the class sessions. It also may have been the case that explanations were not valued

in the student work that was assessed. This combination of things may have led students to believe that

learning how to do mathematics (learning the algorithms) was more important than knowing why they



20. Student Voices and the Transition from Reform High School Mathematics to College Mathematics 197

were doing it (learning the reasoning behind what they were doing.) This may help explain the changes

in the composition of mathematical knowledge and the learning mathematics dimensions.

One hypothesis about why the student beliefs about the usefulness of mathematics changed is also

based upon the brief course descriptions provided by the students. These students were enrolled in college

mathematics classes that did not seem to develop the mathematics out of contextualized situations. In fact,

many of the students indicated that they did very few problems that were in a context at all. This could

make it hard for students to identify how the mathematics that they were studying could be used outside

of the mathematics classroom and lead to a decrease in the usefulness of mathematics dimension.

These results should be considered in light of the fact that students’ conceptions about what mathematics

is, what it means to do mathematics, and how one goes about learning mathematics all influence how

students approach mathematical situations and what they take away with them from such situations [10–

13]. Learning mathematics in this reform environment helped students to develop conceptions that should

support a deeper learning of mathematics, a better disposition toward problem-solving, and the development

of more autonomous learners of mathematics. If students were to go into calculus with these beliefs about

the nature of mathematics, and what it means to do and learn mathematics, it might make it easier to get

students to truly engage in mathematics at the calculus level and beyond.

Transition to college mathematics

The paper will now discuss how the six case-study students navigated the transition from a reform high

school curriculum through the first semester of college mathematics. Although the six case study students

each had different collegiate experiences, it is helpful to step back and look in general at their experiences

and try to assess what went smoothly for them, what did not go smoothly for them, and what, if any

adjustments they made along the way. Sometimes their experiences were similar enough that they are

considered as a whole. At other times it is important to split them into two groups of three students each:

the students who attended Southern University (Ann, Cathy, and Rita) and those who attended the Northern

University (Randy, Sally, and Ted). (Both student and university names have been changed to conceal their

identities.) This separation is necessary because the students at Southern University experienced a reform

calculus curriculum, using the Harvard calculus materials [14] that included a variety of teaching and

assessment methods and those at Northern University learned mathematics through a traditional curriculum,

using either Calculus by Thomas and Finney [15] or Precalculus by Bittinger, Beecher, Ellenbogen, and

Penna [16] with traditional teaching and assessment methods. When considering the stories of these six

students, it is important to remember that they all were recommended for this study by their classroom

teachers and that they all had been successful in their high school mathematics classes. (For more detailed

information about these six students, see [17].)

College mathematics placement

The first experience that many students have with college mathematics is the placement test that determines

which mathematics course to take. One student, Ted, did not have to take a placement test because his

ACT score allowed him to enroll directly in calculus I at Northern University. The other five students all

completed the placement test for their respective universities. The three students at Southern University

all placed into and enrolled in calculus I. The remaining two Northern University students, Randy and

Sally, placed into and enrolled in precalculus. The placement process went smoothly for all five students.

The only complaint was that the tests were given during the summer after the students had been away

from mathematics long enough to be out of practice with the details necessary for completing some of the

problems that were on the test. Once the students began attending their college mathematics classes they
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encountered a variety of classroom expectations, some that were different from those with which they had

become familiar during high school.

Experiences in the classroom

Because the in-class mathematics experiences of the students who attended Northern University differed

from those who attended Southern University, each group of students is discussed separately.

Northern University

All three students at Northern University were in classes where the primary means of delivering new

mathematics was through instructor lectures. None of these students found this to be a difficult way of

learning mathematics. They all indicated that they had taken non-mathematics classes during high school

for which lecture was the primary teaching method and so they were all able to adjust easily to that

pedagogy.

In their college courses, the general approach to developing mathematics was also different from what

they had experienced in high school. In high school, these students had developed mathematical concepts

out of contextual situations and then considered the formal mathematics. The opposite was true in their

college mathematics classes. They first were taught the necessary skills and then, in some cases, considered

applications of those skills. Ted indicated that math had not been difficult for him in high school and so

working in groups and developing the mathematics out of contexts worked for him there. But he thought

that at college, because the material was more difficult, he learned better by not focusing so much on

the applications and by doing lots of problems. In the final interview, when asked about how working in

contexts might have influenced his high school learning he said:

Sometimes I was kind of agitated, because you go through like all this writing down and it’s really

not cut and dry what you actually did. When I go and do the problems over and over again, I can

go back and see where I’m really going wrong. With numbers that are on the paper. It’s not just

explanations about why you got something.

Ted did not feel he needed to supply explanations because he believed that if he could do the problems

correctly, then he understood the mathematics.

My conversations with Sally focused on what she did to construct her understanding of the mathematics.

She mentioned that, during high school, when she was working through a problem that the mathematics

just “snuck up on her” as she worked. But in college “it was faster and just like do it, do it, do it, and

then if you don’t understand then you are lost.” Despite this statement about either understanding it or

not, Sally indicated that she thought it was easier to just be shown how to do the math rather than trying

to develop it on her own. In the last interview she said:

In high school they wanted us to go try this before they taught it. Which I mean, it makes sense

for some people if they are going to actually try it and think about what they already learned. But

I think when you have a lot of other classes going on and you look at it once and you go, well I

don’t know how to do that, and you put it away. So I mean this semester was easier, like, thinking

wise: Because I just wrote down my notes and followed along, instead of having to go out and

figure it out myself.

Throughout the semester, Sally indicated that, in general, she only did as much as she needed to in

order to do well in her classes.

Randy identified the differences between his high school math classes and his college math class as

follows: “The differences, a faster pace. This class is faster paced, more amount of work. We learned a
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lot, we learned more. The other classes were story-problem based, this is just straight math.” Although he

could identify the difference in the two approaches to mathematics, he did not have an opinion on which

one worked better for him. He was able to be highly successful in both settings.

Another change for the students at Northern University was the limited, if any, use of calculators in

their college classes. In their high schools, graphing calculators were tools that were used to help students

understand the mathematics they were learning and to solve problems. Technology was not used at all in

Ted’s calculus class and he was not allowed to use a calculator on any of his tests. This did not bother

Ted at all and did not seem to affect his overall performance. During the last interview, Ted said the

following in response to questions about not using a calculator: “I prefer not to use it. I can use it, but I

just know that it will slow me down and you get lazy at times. I like to do long multiplication in my head

if I can. Just think it through.” This belief that using a calculator makes you lazy came up several times

during conversations with Ted. It may be this belief that made the transition into a class that did not allow

calculator use go as smoothly as it did for Ted.

In the precalculus class that Randy and Sally took, a graphics calculator was required, but was not

fully integrated into the curriculum for the course. The professor would use the calculator to help motivate

solution methods, but most of the time would require that the students know how to solve the problem

symbolically. He encouraged them to use the graphical and numeric capabilities of their calculators to

check their solutions. This resulted in some frustration for Sally, but did not bother Randy. Sally knew

that she could often find the correct solution using her calculator, but was not able to solve the problem

symbolically. She did not understand why she needed to know both methods; after all, she could get the

answer. Randy had no problem with not being able to rely on calculator solution methods and did make

good use of the calculator to verify his work.

In addition to three large lecture sessions each week, Randy and Sally experienced two recitation

sections. Similar to their high school classes, they were expected to work in groups during the recitation

period and they did so up to a point. They both worked primarily with one other person. In the last interview

Randy and Sally provided the following descriptions of their work in groups during the recitation periods.

Randy: Me and three other people. We worked [the problems] pretty separately, but me and one

girl in particular, worked a little closer. Like through the problems, we would make sure we were

both on the same track. Then we all compared our answers once we were done basically.

Sally: I would just work with a partner and we did the workbook assignments. And we never had

enough time. We always were like scrambling to get the workbooks done. Because it seemed like

there were a lot of problems for the 20 minutes that they gave us. If we didn’t get something we

asked the other groups that were sitting around us. And then we would end up just copying to get

it done, because we wanted our points. Maybe it would have been different if I could have stayed

or if we just had more time to work on the workbook. I would have tried to understand better.

Although both Randy and Sally were working with other people in their recitation sessions, by both their

descriptions and my observations, it seemed as though neither of them was really working collaboratively

with the other students. They were primarily working independently and verifying their answers at the end.

There did not seem to be much discussion about solution procedures.

Southern University

The three students who attended Southern University did not experience transition difficulties related to

what happened in their mathematics classrooms. They were all enrolled in reform calculus classes. For

these students, the day-to-day routine and expectations of the classroom were not very different from

what they had experienced in high school. The mathematics was almost always tied to some context and

interpretation of the context was integral to the class. They were expected to learn why they were doing
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things in addition to how to do them. It was expected that the students had already studied the appropriate

material, through reading text material and completing some related exercises, so the primary purpose

of the class time was to further develop understanding through working problems. The instructors spent

varying amounts of time at the beginning of each class providing a short lecture or explanation of the

material. Thus the amount of time students actually spent working on problems varied from one section

to another: Cathy spent the least amount, Rita was in the middle, and Ann spent the most. During the

class meeting times, all three of the instructors expected that students would actively participate in class

by working problems with other students. Students were also expected to understand concepts behind the

problems. They needed to know in what settings and in what ways the concepts might be used. Most of

the time it was not sufficient for students to provide only an answer to a problem. They were expected to

provide a complete solution and to explain their reasoning.

At the beginning of the semester, Rita and Cathy were pleased with their classes and thought that class

time was helpful to them. This changed for Rita after one month. After the first test, on which she did

quite well, Rita indicated that she sometimes skipped class because she didn’t always find it very helpful.

She said that it wasn’t that helpful because the professor just went over the section in the book and she felt

that she could do that on her own and in less time. However, she did not do nearly as well on the second

test and so after the second test she resumed regular class attendance. Rita felt like she could determine

if she understood the material and she did not think it was very helpful to have someone telling her the

mathematics that she needed to know.

From the beginning of the semester, Ann thought her instructor should do more explaining and fewer

problems. During each of our problem-solving sessions, Ann said something about how she wished her

instructor would explain more about the mathematics behind what they were doing and why they were

doing it and go through step by step. It is hard to know exactly what Ann wanted and she was not able to

clearly explain it. Based upon my class observations, the instructor tried hard to get the students to think

about what they were doing, why they were doing it, and what mathematical concepts they were using.

Rather than just telling the students what to do, he tried to get the students to talk about the concepts

and how they might be able to use them to accomplish the task at hand. Although the instructor was not

standing at the board explaining to the students each mathematical concept and how it could be used, there

certainly was an emphasis on developing conceptual knowledge rather than solely on getting the problems

done. But it was clear that Ann did not feel she was understanding what she needed to. In an effort to get

the explanation that she wanted, Ann went to the tutor lab. She indicated that she found the assistance she

received there to be somewhat helpful to her.

During the final interview, in order to help these students think about what, if anything, about the

transition was hard for them and to get them to reflect on the semester, I asked them what their instructor

could have done differently to help them learn calculus. Rita and Cathy talked about working problems

and going through explanations.

Rita: Well I would say maybe just do more problems. But I think that’s just for me. When I see

examples I can like use those, but he did a lot of problems. I wish he did more. . . Yeah, it (working

on problems in class) was helpful; because it was just like doing group work again, more group

work. But it was better because he was there to guide you through it.

Cathy: Can I compare it to the class I am in now [Calculus II]? I think I’m learning a lot more in

the class that I’m in now, like getting better in terms of he’s, I mean, he’ll lecture for a little bit.

It’ll be like sample problems in class and he’ll explain in like general stuff and we’ll take notes

on it. But he’ll also have people go up to the board and spend a lot of time in class and they’ll

put their answers to the homework problems on the board. And he’ll go through it and he’s really

picky about things, which in one way is bad but in another way is really good, because it forces

you to remember to put those things down to remember what to do. And I think that’s helping me
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a lot. It also helps me to see how other people think, and I could have done it that way, instead of

straight by the book. That seems to be helping me more.

Both of the above comments imply that these students wanted to get more explanations about why and

what they should be doing. Although each of these participants had suggestions about how her calculus

class could have been more helpful, neither of them complained much about how things were going during

the semester.

Ann felt differently about what would have helped her be more successful. As previously stated, she

felt that her instructor was doing too many problems and not enough explaining. In the final interview she

said:

I think instead of doing all those problems in class spending a little more time going over the

sections instead of the problems. Like teaching the concepts once and showing how to apply it in

problems. ’Cause I think once you understand the concept, no matter what problem you do, it will

be easier to do any problem if you have a stronger grasp of what the concept is about. It’s easier

when somebody’s showing you how to do it and you’re doing it with them step-by-step, like while

they’re teaching you. You don’t teach the whole concept in like one example, you should do it

step-by-step so it’s easier, it’s broken down.

This statement indicates that Ann would have liked her professor to show her step-by-step how to do

things and in that process carefully explain each step. Since it was not clear to me what Ann meant by

understanding or learning the concept, I asked her. Her reply was:

Like learning the integral and derivatives, like learning how to do a certain problem. Understanding

what the problems are asking you, I guess that is what I mean. I don’t know myself. . . I think it is

important to know what the derivative is telling you, but at the same time you have to understand

the basic rules in order to solve it.

From this statement, it seems that Ann wants to know something about what the big picture is and

why she would do each step. However, in the problem-solving sessions that we had, she rarely was able to

provide reasoning and rather seemed focused on getting to the correct solution. Whether this was because

she did not really believe that understanding the concepts and knowing why was important or whether she

was just too far behind in the class was not clear. In terms of what happened in class, the transition to

college mathematics was probably more difficult for Ann than for any of the other case-study participants.

This may have been due to the fact that quite early in the semester Ann got fairly far behind because of

extenuating circumstances and spent most of the semester trying to catch up. As a result, she was frustrated

that she did not understand the mathematics being taught in class.

Experiences outside of the classroom

What regularly happens in the classroom is only part of a student’s experience with college mathematics.

Another large part of a college mathematics class is the work students are expected to do outside of class,

which includes their work on assignments, other daily preparation for class, and preparation for tests. All

of the students indicated that they needed to work much harder and spend more time studying for their

mathematics classes at college than they did in high school. They also all said that the pace of the class

was much faster than they had experienced in high school; they were responsible for learning much more

material in a given time. These challenges seemed to be more about the transition from high school to

college in general than they were about the transition from a reform high school mathematics program

to college mathematics. The manner in which students confronted the need to learn more, and to learn it

faster, and other issues that are related to the work students did outside of the classroom will be discussed

in this section. The expectations placed on students at the two universities differ enough that separate

consideration is again given to the students based upon the university they attended.
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Northern University

The students at Northern University were all told that they should read the upcoming section of the text

before going to class. This expectation was not present during high school because the CPMP textbooks

do not contain material designed to be read by students outside of the class. However, despite the explicit

directions, none of the three students read their textbook on a regular basis. For the first two-thirds of the

semester, Sally said that she only used the book to get the homework problems and to copy the things from

the green boxes when studying for a test. Randy also primarily used the book for the homework problems.

Both of these students indicated that they did read the book when they were studying trigonometry,

especially trigonometric identities. They used the book more at this time because they were having a hard

time with the material and believed that they could solve some of their confusion by reading the text. Ted

said that he used the examples in his book to help him decide what he needed to do to get the homework

done properly. Despite not following the recommended process, the approach to textbook use adopted by

each of these students did not cause any difficulty.

Although these students did not spend much time outside of class reading their textbook, they did

spend time on their daily homework assignments and were concerned about the correctness of their work.

Unlike high school, homework was not collected in the precalculus class. This did not bother Sally or Ted

and they both completed their assignments on a regular basis. Some of their motivation for this was the

opportunity to ask questions about the homework problems during recitation and that, approximately once

a week, they had either a test or a quiz. If either of them had fallen behind in their work, it would have

been reflected in their quiz and test grades.

Homework assignments were collected weekly in Ted’s calculus class. Despite this, he did not complete

his homework assignments as regularly as did Randy and Sally. He said that he often did not work on his

calculus assignments until the night before they were due. He believed that as long as he was able to do

the work and solve the problems on the test, he was “ok.” Thus, he did the work when it was convenient

for him, not as daily preparation for class. His homework grades were satisfactory and so it appears that

this did not cause a transition problem for him.

A third area of work outside of class is preparation for tests. Ted had to prepare much more for tests

in college than he needed to in high school. He indicated that in high school he just looked over “stuff” to

make sure that he knew it. He also said that in college he spent much more time actually working problems

in preparation for tests. Part of the reason for this difference is that his college instructor provided specific

review problems to complete and that had not been the case in high school. Although the review sheet

contained a wider variety of problems than were on the test, it contained problems that were similar, most

often in form and content, to all problems on the test. He worked on the review sheets by himself and

asked friends who were in calculus II for help when he couldn’t get the correct answer. He also indicated

that he looked back over his completed homework assignments. To complete the review sheet for the final

exam, Ted said that he worked with a group of people. But this was the only time that he mentioned

working with other people in any extended fashion.

Sally and Randy also were given suggested problems to complete as review for each test. Sally did

not mention working the review problems in preparation for tests. Instead she went through her notes and

made a review sheet of important facts and algorithms that she wasn’t sure of. She also looked through

the book to see what was in the boxes. Sally indicated that this was helpful to her because the more times

she wrote something down, the more likely she was to remember it. In studying for the final exam she

just made sure that she knew how to do the problems that were on her previous tests. This was different

from what Sally had done during high school. She was able to use her notes and her textbook on all tests

in her high school mathematics classes and so felt that she did not need to study anything. In college,

she felt as though she had to memorize more because she was not allowed any references. While this was

an adjustment that Sally had to make, it did not seem to present a big hurdle as she made the necessary

changes without complaint and did well in the class.
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Randy did not work the review problems for the first two tests. However, after not doing as well as

he wanted to on the second test, he decided that he needed to work all the review problems in preparation

for the remaining tests. But that was the only preparation he did for these tests. Randy reviewed his old

tests in preparation for the final. He indicated that he did not do anything different in studying for tests in

college than he had done in high school.

In college, both Sally and Ted needed to adopt new ways of studying for tests. However, this did

not cause any problems for either one of them. All three of these students were able to adequately adjust

to different expectations regarding what they should do outside of the classroom. These students had no

difficulties with this part of the transition.

Southern University

The calculus classes at Southern University were structured such that students were expected to read each

section and to work some basic problems before going to class. The instructors assumed that students had

at least some familiarity with the topics for the day and that the goal during class was to help the students

deepen their understanding of the mathematics. Although this was different from high school, all three of

these students recognized these expectations, and at the beginning of the semester, they seemed to have

been diligent about getting the reading done before going to class. However, as the semester progressed,

none of them regularly got the reading done in advance. They all indicated that they eventually did read

the book, but not always on time. They further indicated that this resulted in some frustration during class

sessions. Because they had not read the section, they were not able to follow along as well during class.

The reason they provided for not getting the reading done before class was that they gave other tasks more

priority and ran out of time. Although the expectation that they read the textbook before each class period

was a change from high school, none of these students felt that the expectations were unreasonable.

Besides reading the book, these students were expected to complete group homework assignments.

Each instructor assigned students to groups and groups were changed at least once during the semester.

The homework assignments consisted of four to six relatively difficult problems to be completed by the

group as a whole. The paper that was turned in was supposed to include complete solutions with detailed

explanations about the mathematical reasoning used. The first few assignments seemed to be completed

by each group as a whole, but after that it was more common for the groups to split up the problems

and then come together to write up the assignment. The amount of discussion that occurred during this

write-up time seemed to vary greatly.

These students all talked favorably about the group-homework experience. Additionally, they all felt

that it was a better experience when the group worked together on the problems, rather than splitting them

up and just coming together to write them up. Representative comments from Rita and Ann include:

Rita: Group homework helped a lot. Group homework was really hard, it was very difficult. I don’t

think I’d be able to do it on my own. I could see how other people figured stuff out and that helped

me in the way I could figure stuff out. That helped a lot.

Ann: Well like in my other group we did almost all the problems together, but it seems that in this

group that everybody just does one of the problems and goes over it with everyone the night before

we do the homework. Actually, even the night before we usually don’t even meet because we just

go over it in class before we hand it in. So it’s not as productive as it was with my first group.

Because now we just do the problems, and like if I have a problem and I don’t know how to do

it, I’ll just go to the math lab and they will help me. But I don’t understand the other problems

because I never got to do them with the whole group.

All three students saw the group homework as very much like the in-class group work they had done

during high school. First, they indicated that it provided an opportunity to talk with other students about
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mathematics and to see how others were solving problems. They also indicated that the expectations about

how solutions were to be written were very similar to what they had experienced during high school.

They further indicated that the idea of carefully explaining oneself in mathematical situations was foreign

to many of their classmates. They felt they were much better at this than other students in their groups

and thus were able to serve as resources for their groups. The transition to group homework was not a

transition for these students.

These students did not indicate that they did anything differently while studying for tests at college

than they had done in high school. As a part of the course packet that students purchased at the beginning

of calculus I, each student received a copy of all tests and the final for the previous two semesters of

calculus I at Southern University. All of the students worked these problems as part of their preparation

for each test and for the final exam. Cathy and Rita said the following about studying for tests:

Cathy: I went over a lot of like older things and stuff to see what I got wrong and like try to work

through them and figure out how to do them the right way. Like I said I did a lot of review problems

and just tried to make sure that I knew the basic process of how to do all kinds of problems.

Rita: I knew I was ready because I did the previous exam. I did them and I understood them all.

Like a lot of it was like explain it in no more than two sentences. And so I actually did it using the

proper terms and correct grammar and everything. It makes sense, and I knew I was right because

they’re also doing it in a big group and I would explain it to them why I was right and they’re

like, oh yeah, I remember that from class. Or if I was wrong they would explain it to me what I

was doing wrong. And then I understood.

For these students there did not seem to be any transition issues related to preparation for tests.

College mathematics performance

One final portion of the transition that these students experienced, is the formal assessment that they

encountered in their mathematics courses. As in high school, all of the tests or exams that these students

completed in college were composed primarily of problems for which they were asked to show their

solutions. There were portions of the precalculus final exam at Northern University and the calculus

midterm exams and final at Southern University that did not allow for partial credit, but in general, all

of the students were expected to provide their reasoning and were given partial credit for what they did

correctly.

The majority of each student’s final grade was determined by his or her grades on tests given during

the semester and a final exam. The students at Southern University had two tests and a final exam. They

were required to have a graphing calculator and were allowed one note card with reference material. All

three students did well on the first test. On the second test, Ann and Rita experienced major decreases in

their test scores, while Cathy’s score only decreased by a small amount. The scores on the final exam were

somewhere between those of the first two tests. The final grades for these three students were: Rita, B-;

Cathy, C+; and Ann, D+. In the final interview in January, I asked them how they felt about their grades.

They all indicated that they did not do as well as they hoped that they would and gave the following

reasons:

Rita: I just didn’t have enough time because I had to write a lot of papers last semester. Because

we went section by section, I figured I’ll just put it off one more day and I’ll just have two sections

to read. It’s no big deal. And so I guess in a way I really got behind and so I wouldn’t do it, I’d

be like, well, I mean it doesn’t take that long to read the section and do the problems. So I figured

I’d just do it the next day or the next day and never got around to it. But like in high school it was

way different. If you didn’t do it, it was okay; you’d do it the next day.



20. Student Voices and the Transition from Reform High School Mathematics to College Mathematics 205

Cathy: (in response to what she would do differently) I guess that I really need to keep up with

the reading before I go to class. Because a few times I waited to learn things in class and it didn’t

make much sense as when I’d read it before. Doing extra problems, not just the ones that were

assigned. I guess taking the initiative and asking other people questions instead of relying on them

to explain things to other people that didn’t understand them. Asking questions in class.

Ann: I think a lot of it has to do with taking it first semester, like in college, and stuff like that,

just adjusting. I think I can do better. I was not happy with the grade, but I’d been pretty much

behind for a while, and I couldn’t catch up in enough time to be able to master the stuff to get a

better grade... The material was difficult, but yet it was attainable to understand. You could get to

understand it after a while. It was pretty fast, the pace of the class, but I think a lot of it had to do

with being behind.

It is interesting to note that in all of the above comments each student could identify what she might

have done differently and did not blame anyone but herself for the grades she received.

The students at Northern University were all pleased with their course grades. The grades they received

were: Ted, A; Randy, A; and Sally, B. Sally and Randy had six tests during the semester and a final

exam. Except for the second test, which covered polynomial and rational functions, Randy’s grades were

consistently about 90%. Randy did not have any difficulty with the course and actually said that it was

easy for him. Sally’s test scores were in the 80s except for the test on trigonometric identities, on which

she received a grade in the 50s.

Ted had three tests and a final exam in calculus. His scores consistently increased throughout the

semester from the first test grade of 74 to a final exam grade of 98. Because of the class policy that

students would not receive a final grade lower than their grade on the final exam, Ted got an A in calculus

I. He was pleased with his grade and did not have any comments about the tests or his overall performance.

Students’ final reflections on their preparation

Each preceding section has separately considered a different portion of the transition to college mathematics

for these six students. In an effort to get the students to reflect holistically on their experiences, I asked

them to evaluate their overall preparation and to indicate if they would recommend CPMP mathematics

to other students. Ted and Randy said they would not recommend CPMP; Cathy and Ann were not sure;

and Rita and Sally said yes.

Ted’s response reflects several of his beliefs. He believes that facts, formulas, and algorithms are very

important in mathematics. He further believes that hard work is the best way to learn.

Ted: I would not recommend it. I don’t think it gives you enough skills, really intellectual ones. It

doesn’t really test your mind at all. You can get by real easily by just doing the homework. You

don’t have to apply yourself. I know that I didn’t do much work, 15 minutes, or so. You can do it

in 10 minutes before you go to class.

His other big concern about having used the CPMP curriculum was that he didn’t take calculus I in

high school and could not go directly to calculus II. Ted’s not taking calculus I in high school probably

had more to do with his being in a very small school (limited number of course offerings and one track

for all students) than it did with his learning mathematics using the CPMP curriculum. He finished our

conversation with the following statement, “I guess I don’t have very many complaints. I’m going into

calc II here in college, so I guess I could just see myself being one semester ahead of where I am now.”

Randy’s reason for not recommending CPMP was that he thought it might make the transition to

college harder for some students and that he didn’t get through calculus in high school.
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Randy: In terms of going to college, what you learned in the traditional math track is better geared

towards how they teach in college. The way they teach integrated, if you are not understanding it,

and getting it there, it’s a lot harder to come to college and do it. It’s taught differently.

He then added:

I think I learned what I needed to learn. I think that most people that don’t do well in integrated

wouldn’t do well in the other track either. So I don’t think it was all that bad, really. I learned a

lot more than I thought I learned. I’d still have rather been in the other one. I wish I could have

gotten through precalc and calc in high school.

However, Randy had not taken an algebra class in eighth grade and so it is unlikely that he would

have taken calculus in high school had he been in the traditional math track. In the end, Randy was not

unhappy with his preparation, but still held some belief that the traditional track would have been better

for him. He was not able to really be specific about why he felt that way.

Cathy and Ann were not sure about whether or not they would recommend CPMP to other students.

They both said that the reasoning and problem-solving skills that they learned in CPMP were very valuable

to them, but they weren’t sure that those skills were the most important for college. What they really wanted

was a combination of both CPMP mathematics and a traditional curriculum.

Cathy: I wish there was something in between. Because like they’re (students in CPMP) getting

like how to think about it in a good way. I think in Core-Plus you learn how to think about things.

In the other courses, I think they are more. I don’t want to say mathematical knowledge because

that’s too general, but you are learning more like concrete problems like tons of different kinds

of algebra problems, geometry, more than I think we did in Core-Plus. I just wish I had gotten a

stronger foundation through the other path of mathematics, but kept the same way of thinking from

CPMP. It just seems like, I don’t think one is more important, but I just think like in terms of what

people expect you to be able to apply is more of the other path, that’s just what I’ve come across

so far.

Cathy somehow wanted a curriculum in which she learned both the thinking that was in the CPMP

and the algebraic skills that she felt she had not fully developed. She was clear that she didn’t want to

give up one for the other but wasn’t sure how one could do both because this might be too much material.

Ann also said that she learned to think in CPMP. She said that she didn’t have to worry about skills

because she had taken skill-oriented summer courses in algebra and geometry. She thought that students

need skills to get a good grade in college and thinking just because it was important. When I asked her

what about CPMP was important she said, “Like the whole process of learning math. I don’t know how

to explain it, but like the way I was able to go step-by-step in learning something.” Whether Ann would

recommend CPMP seemed to depend on what your goals are: If you wanted good grades in college, take

the traditional; if you want to really understand mathematics, take CPMP.

Rita and Sally had no reservations about recommending CPMP to other students. Rita felt that the

focus on sense making and understanding that she developed during high school was extremely valuable

to her.

Rita: I would tell them to stick with Core-Plus. I would say that Core-Plus had helped me a lot.

Just with being able to explain. Like Core-Plus is all about the student understanding the concept.

Whereas in calculus it’s not about that. What I mean to say is in calculus they expect you to

understand without making you understand. In Core-Plus the teacher makes you understand. And I

think that Core-Plus has helped me a lot in the sense of like I can, not only can I look at a problem

and understand, or look at a concept, for example not only do I understand, like what I am doing,

I understand why I’m doing that specific thing.
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Sally on the other hand, was not able to talk about the mathematics that she learned in high school.

She said that she would recommend CPMP because she really liked her math classes. She liked working

in groups and felt she had learned what she needed to know. She wanted to tell students in CPMP that

they wouldn’t “always get to use notes and their book on everything, so just have good study skills and

don’t get behind in your work.” Sally’s recommendation fits her very well. She wants to enjoy life and

doesn’t want to work too hard. The social part of the CPMP classroom appealed to her and since she had

done well in college, she was pleased with her high school mathematics experiences.

Summary

These case studies allow for an initial look at the transition from a reform high school mathematics

curriculum to college mathematics. They also provide an opportunity to begin to identify issues that might

arise between a reform precalculus class and future mathematics courses. Based upon the reports of the

participants and my observations, none of them had any real problems making the transition from this

reform high school curriculum to college mathematics. All of the students had to make small adjustments,

but they were aware of what they had to do and made necessary adjustments without difficulty. The

only concern voiced by several students was the need for more algebraic skills. This came out in our

conversations about what they thought would help make the transition easier for future students. The

biggest potential for a transition problem was in the calculus class at Northern University. However,

because Ted’s conceptions about mathematics were similar to those that were present in the course, he did

not have difficulty with the transition.

The case-study analysis provides evidence that students who study mathematics using the NCTM

Standards-based CPMP high school mathematics curriculum can make the transition to college mathemat-

ics without difficulty. In fact, the beliefs that they develop during high school about the importance of

communication and the value of reasoning and justifying makes part of the transition go quite smoothly

for them. They are accustomed to working through problems on their own, and so when they confront

the need to learn mathematics without the teacher having already explained it to them, they are able to do

so. They also are able to explain their thinking to their peers and instructors. This supports the research

findings [18-22] that students who learn mathematics in active, sense-making ways tend to be better able

to think mathematically and will try to make sense out of new situations.

Limitations of the study and possibilities for further research

The research described here has several limitations. As in all studies that depend on mailed surveys the

response rate must be taken into consideration. Although over 50% of the students returned the second

CMI, it is not known why the others chose not to return the survey. Thus the picture drawn about the

students’ conceptions of mathematics is necessarily incomplete.

As with any survey data, what the students were thinking when responding to the CMI was not

known. It is possible that students interpreted statements in ways other than intended when the inventory

was written. This limitation is always present when gathering data that does not involve conversations

with the participants.

Also, the case study students were not chosen randomly. Rather, they were all students who had been

successful in high school mathematics and were considered by their teachers to be good students. The very

fact that they were competent and responsible young people may have been enough for them to adjust to

the new situations with relative ease.

This study provides an initial assessment of the conceptions held by students who have completed

four years of high school mathematics using a reform curriculum and how those conceptions impact
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a student’s college mathematics experiences. Further research is needed to more deeply understand the

complex relationships that exist among curricula, pedagogy, and the conceptions that students develop

and how those conceptions influence students’ actions in mathematical situations. Further research might

consider the following:

1. This research did not take into account the precise manner in which the Core-Plus Mathematics Project

curriculum was implemented. Studies involving students from classrooms where a reform curriculum

was well implemented would provide information about how a reform curricula can influence student

conceptions of mathematics.

2. This research suggests that conceptions in the seven dimensions identified by the CMI were not

independent. The degree to which conceptions in one dimensions are correlated with conceptions

in another dimension was not explored. Studies that investigate how conceptions in the different

dimensions correlate with each other would be helpful in building a more complete picture of student

conceptions of mathematics.

3. Because there is not previous research about the conceptions of mathematics held by students upon

graduation from high school, it is not possible to determine exactly how the conceptions of the students

in this study would differ from those of students who completed a more traditional curriculum. Studies

that allow for comparisons of conceptions between students using different curricula and/or pedagogy

would be helpful in determining the impact of curriculum and/or pedagogy on student conceptions of

mathematics.

4. As an increasing number of students at all levels are learning mathematics using reform curricula and

varied teaching methods, it is important to continue investigating how these changes affect both the

attitudes of students towards mathematics and the amount of mathematics that students are learning.

References

1. Dossey, J.A., I.V.S. Mullis, M.M. Lindquist, and D.L. Chambers, The Mathematics Report Card: Are we

Measuring up?, Educational Testing Service, Princeton, NJ, 1988.

2. Crosswhite, F.J., J.A. Dossey, J.O. Swafford, C.C. McKnight, and T.J. Cooney, Second International Mathe-

matics Survey: Summary Report for the United States, National Center for Educational Statistics, Washington,

DC, 1985.

3. National Research Council, Everybody Counts, National Academy Press, Washington, DC, 1989.

4. NCTM, Curriculum and Evaluation for School Mathematics, NCTM, Reston, VA, 1989.

5. NCTM, Professional Standards for Teaching Mathematics, NCTM, Reston, VA, 1991.

6. Coxford, A.E., J.T. Fey, C.R. Hirsch, H.L. Schoen, G. Burrill, E.W. Hart, A.E. Watkins, M.J. Messenger, and

B. Ritsema, Contemporary Mathematics in Context, Everyday Learning, Chicago, IL, 1997.

7. Hirsch, C.R., A.F. Coxford, J.T. Fey, and H.L Schoen, “Teaching Sensible Mathematics in Sense-making ways

with the CPMP,” Mathematics Teacher, vol. 88, 1995, pp. 694–700.

8. Cuoco, A., E.P. Goldenberg, and J. Mark, “Habits of mind: An Organizing Principle for Mathematics Curricula,”

The Journal of Mathematical Behavior, vol. 15, pp. 375–402, 1996.

9. Schoen, H.L. and C.R. Hirsch, “Responding to calls for change in High School Mathematics: Implications for

Collegiate Mathematics,” American Mathematical Monthly, Vol. 110, 2003, pp. 109–123.

10. Grouws, D., C. Howald, and N.Colangelo, “Student Conceptions of Mathematics: A Comparison of Mathe-

matically Talented Students and Typical High School Algebra Students,” presented at American Educational

Research Association, New York, 1996.



20. Student Voices and the Transition from Reform High School Mathematics to College Mathematics 209

11. Schoenfeld, A.H., Mathematical Problem-Solving, Academic Press, Inc, Orlando, FL, 1985.

12. Oaks, A., “The Effects of the Interaction of Conception of Mathematics and Affective Constructs on College

Students in Remedial Mathematics,” University of Rochester, 1987, p. 468.

13. Silver, E.A., “Research on Teaching Mathematical Problem-Solving: Some Underrepresented Themes and

Needed Directions,” in Teaching and Learning Mathematical Problem-Solving: Multiple Research Perspec-

tives, E.A. Silver, (Ed.), Lawrence Erlbaum, Hillsdale, NJ, 1985, pp. 247–266.

14. Hughes-Hallett, D., A. Gleason, D. Flath, P.F. Lock, S. Gordon, D. Lomen, D. Lovelock, W. McCallum, D.

Quinney, B. Osgood, A. Pasquale, J. Tecosky-Feldman, J. Thrash, K. Thrash, and T. Tucker, Calculus, Second

ed., John Wiley & Sons, Inc, New York, 1998.

15. Thomas, G. B. and R. L. Finney, Calculus and Analytic Geometry, 9th Edition ed., Addison-Wesley Publishing

Company, Reading, MA, 1996.

16. Bittinger, M.L., J.A. Beecher, D. Ellenbogen, and J.A. Penna, Precalculus: Graphs and Models, Addison Wesley

Longman, Inc, Reading, MA, 1997.

17. Walker, R.K., “Students Conceptions of Mathematics and the Transistion from a Standards-Based Reform Cur-

riculum to College Mathematics,” unpublished dissertation, Department of Mathematics and Statistics, Western

Michigan University, Kalamazoo, MI, 1999.

18. Schoen, H.L., C. R. Hirsch, and S.W. Ziebarth, “An Emerging Profile of the Mathematical Achievement of

Students in the Core-Plus Mathematics Project,” presented at Annual Meeting of the American Educational

Research Association, San Diego, 1998.

19. Silver, E. and M. K. Stein, “The QUASAR Project: The ‘Revolution of the Possible’ inMathematics Instructional

Reform in Urban Middle Schools,” Urban Education, vol. 30, pp. 476–521, 1996.

20. Lampert, M., “Knowing, Doing, and Teaching Multiplication,” Cognition and Instruction, vol. 3, pp. 305–342,

1987.

21. Lampert, M., “When the Problem is not the Question and the Solution is not the Answer: Mathematical Knowing

and Teaching,” American Educational Research Journal, vol. 27, pp. 29–63, 1990.

22. Boaler, J., “Open and Closed Mathematics: Student Experiences and Understandings,” Journal for Research in

Mathematics Education, vol. 29, pp. 41–62, 1998.





Theme 5. Implementation

In the six papers in this section, we learn from the experience of others who have implemented changes

at their institutions, who have developed new curricular materials and designed new courses, or who are

utilizing emerging technologies. We also revisit the impact of education reform on the transition from

high school to college and the appropriate placement of students. In particular, Robert Megginson offers

some suggestions for successfully implementing a new curriculum from the faculty standpoint, while Judy

Ackerman offers suggestions from an administrator’s standpoint. In support of Zalman Usiskin’s earlier

claims about the importance of placement, Sheldon Gordon argues that implementing new pedagogies and

new curricula necessitates rethinking the way students are placed into college courses. Lawrence Moore

and David Smith discuss the impact of technology on the way students learn. Al Cuoco describes designing

new instructional materials that are based on students’ “habits of mind,” instead of being topic driven.

Many participants at the conference, Rethinking the Preparation for Calculus, felt that the problem with

college algebra and precalculus is that they are trying to serve too many audiences. Bonnie Gold describes

how at her institution, they solved the one-course-does-not-fit-all situation by dividing their college algebra

course into several different courses “each with a clear mission and a separate clientele.”

The University of Michigan at Ann Arbor initiated some major curricular revisions in its precalculus and

introductory calculus courses in the early 1990s. . . . The changeover from more traditional to reformed courses

in the first-year program required an intensive and, at times, exhausting effort, but actually went remarkably

smoothly considering the size of the undertaking and the controversies that reform efforts elsewhere have

sometimes faced. We did encounter a number of practical and political issues along the way that had to be

dealt with to assure a successful transition, some of which we anticipated and others which caused us to

scramble a bit when they arose. The purpose of this paper is to describe some of those issues and provide

suggestions for handling them.

Some Political and Practical Issues in Implementing Reform

Robert E. Megginson

It is easier to effect change in precalculus courses if the dean is on board than without the dean. The dean

can be an ally when faculty recognize the need for change, or the dean can be the instigator when the

mathematics department resists change. Be prepared to educate your dean about the issue and make sure

that you understand the current state of affairs with respect to students in precalculus at your college. In

this way there is a chance that you can make an effective case for how a reformed precalculus course will

improve things for students.

Implementing Curricular Change in Precalculus: A Dean’s Perspective

Judy E. Ackerman

In large measure, the problems with mathematical transitions are due to the rapidly growing reform move-

ments in mathematics education at both the secondary level and the college level. NCTM’s efforts to promote

a school curriculum based on their Standards documents are bearing fruit around the country. Instead of the

relatively uniform secondary curriculum that most of us went through, many schools across the country have

implemented a variety of reform curricula that provide students with very different content and very different

teaching and learning environments.. . . The smooth transition from school to college mathematics is breaking
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down. . . . However, the transition problems involve considerably more than differences between school and

college mathematics offerings. Perhaps the most significant, yet often overlooked, aspect of transition is the

issue of placement—the interface between the two.

The Need to Rethink Placement in Mathematics

Sheldon. P. Gordon

Students with notebook computers connected to a campus backbone by wireless cards are increasingly

common. Extensive use of communication technology such as NetMeeting is less common but should be the

norm in a couple of years. And, if this were an interactive, online article, we could provide a live link to

video of students working through our module. If our scenario is an accurate glimpse of the future—and we

believe this future is almost upon us—what are the issues for student learning? . . . Technology is changing

the way students approach learning. Increasingly, they will conceive of their work in terms of interactive

learning materials, computer algebra systems, spreadsheets, and Web-based cooperation—with occasional

use of pencil and paper. Learning how to learn in this environment is as important as learning about the

mathematics itself.

Changing Technology Implies Changing Pedagogy

Lawrence C. Moore and David A. Smith

Some very useful “modes of thought” in mathematics are given short shrift in high schools (and especially

in precalculus courses): hardly showing up at all are reasoning about algorithms, combinatorial thinking, and

using the linearity of certain maps on the plane. Furthermore, even for students who go on to calculus and

advanced mathematics, the emphasis on traditional precalculus skills and methods is misplaced. Calculus

instructors have long complained that the real stumbling blocks for their students are the hard ideas in the

subject: notions like limit, approximation, convergence, and error estimation. Organizing curricula around

these mathematical habits of mind provides an alternative to topic-driven design.

Preparing for Calculus and Beyond: Some Curricular Design Issues

Al Cuoco

A cornerstone of the American democracy is that all children should be given equal opportunity. As a

result, the standard school mathematics track leads to calculus. While this may be a reasonable policy at the

school level, by the time students arrive at college, they have become unequal in many ways. Some have

been stimulated by their school mathematics, while others have been crippled by their early mathematical

experiences. Some have a clear interest in a mathematically intensive discipline, while others are clearly

focused on the humanities, business or social sciences and others are still undecided. One size no longer fits

all (if it ever did), in college mathematics courses.

Alternatives to the One-Size-Fits-All Precalculus/College Algebra Course

Bonnie Gold
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Some Political and Practical

Issues in Implementing Reform

Robert E. Megginson

Mathematical Sciences Research Institute

The University of Michigan at Ann Arbor initiated some major curricular revisions in its precalculus

and introductory calculus course in the early 1990s with which the author has been closely involved as

a member of the Michigan mathematics faculty. A number of political and practical issues had to be

addressed to help assure the success of the efforts. The purpose of this paper is to describe some of those

issues and provide suggestions for dealing with them when they arise in other implementations.

Introduction

In the fall semester of 2001, about 3000 students enrolled in the three courses considered to be part of the

University of Michigan’s first-year mathematics program, namely, differential calculus, integral calculus,

and Michigan’s one precalculus course. About 700 of those students were in precalculus, most of whom

were taking the course specifically to get ready for courses in calculus for which placement information

indicated they were not yet fully prepared. All three of these introductory courses are taught by methods

commonly called “reformed” featuring the appropriate use of technology, texts [1], [3] that support the

pedagogical emphasis in the courses, and various forms of cooperative learning and other teaching methods

not based exclusively on lecture to take advantage of different student learning styles.

These curricular reforms, in essentially their current shapes, have been in place since 1992 in the case

of calculus and 1993 for precalculus, with the precalculus reform following hard on the heels of that

for calculus so students would not experience a sudden change in the look and feel of the courses when

passing from precalculus to the first calculus course.

The changeover from more traditional to reformed courses in the first-year program required an inten-

sive and, at times, exhausting effort, but actually went remarkably smoothly considering the size of the

undertaking and the controversies that reform efforts elsewhere have sometimes faced. We did encounter

a number of practical and political issues along the way that had to be dealt with to assure a successful

transition, some of which we anticipated and others which caused us to scramble a bit when they arose.

The purpose of this paper is to describe some of those issues and provide suggestions for handling them.

Though this paper appears in a volume on curricular changes in precalculus, in practice the same issues

can arise in any effort to reform introductory mathematics courses, and so are addressed here in that more

general context. The first is one that can quickly doom a nascent reform effort if colleagues get the idea

that they are considered to be the biggest problem that needs to be addressed.

213



214 Theme 5. Implementation

Show respect for your colleagues’ teaching styles

At all costs, one must avoid sending the message to colleagues that those involved in a reform effort have

found the secret to good teaching, and those who do not use the methods must therefore be bad teachers.

Frankly, some of the rhetoric from curricular innovators in the early days of reform sent this message quite

loudly. Faculty who have been caring teachers doing an excellent job using traditional lecture-oriented

methods, but often with some truly innovative twists to those methods, quite rightly resent the implication.

Because of this, whenever I give a talk about the Michigan reformed precalculus and calculus programs

at another institution, it almost always happens that someone in the audience asks why “we” (those of

us who have been involved in reform projects) believe “they” are all bad teachers. “We” certainly do

not—at least those of us do not who remember how much we learned about teaching from watching some

superb teachers who use traditional methods—and we need to say so. A reform effort will not succeed

without support from our colleagues, and we cannot expect to have that if we do not respect what they

have accomplished in the classroom, even if we believe the pedagogical methods associated with reform

will often be more effective with more students.

More generally, implementers of a mathematics reform project should do everything possible to avoid

creating an “us” versus “them” division in the department over the project, and this means listening closely

to colleagues’ concerns about the effect of the curricular revisions and addressing them where possible.

To be able to do this, one must make sure colleagues actually know what is changing and why.

Keep your colleagues in the loop

Make certain that colleagues understand from the beginning the full extent of your reform effort, and how

its pieces fit together. In particular, make sure they understand that reform is not just the selection of the

textbook, or the use of technology. In part, this is to assure that your colleagues do not feel blindsided

when they later see that the changes went beyond a new textbook or the introduction of calculators into a

course. You may also find that there will be more support for your effort if you can demonstrate how its

pieces complement each other, with the textbook, technology, and pedagogical changes working together to

enhance student learning. A seminar or two about your intentions and the problems that will be addressed,

with some hands-on work with a few difficult and interesting exercises from the textbook you will be

using, can do much to reassure your colleagues about the likely results of the curricular changes being

planned. It is particularly important to make sure that the persons most likely to be resistant to the changes

attend these sessions; invite them personally.

Get the backing of senior faculty

It is important to have senior faculty who are part of the power structure of the department buy into

your reform effort at a very early stage, preferably by taking a direct part in it. Our precalculus and

calculus reform efforts were aided greatly by the strong support of the chairs of our department, D.J.

Lewis and B.A. Taylor, during the implementation phase, and administrative support for the programs

has remained strong since then. The calculus reform effort that preceded and laid the groundwork for our

precalculus reform was directed by a respected senior faculty member, Morton Brown, with the help of

another faculty member, Patricia Shure, who is well known at the national level for instructor preparation

and educational innovation. Though most of the rest of our faculty in the early 1990s were not really

familiar with the issues that calculus and precalculus reform were addressing, most did know that there

was already some controversy surrounding reform. However, with senior departmental personnel supporting

the reform efforts, the rest of the faculty were willing to give the curricular revisions a chance to prove

themselves, and in many cases to teach the revised calculus courses to see for themselves how they had

changed. Unfortunately, but not unexpectedly, senior faculty involvement in teaching the reformed courses
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has been almost exclusively in calculus, with only three having taught precalculus at the time of this

writing1. However, the reforms in the precalculus course are very similar to what we did with calculus,

and the faculty know that. In any case, almost all faculty who have actually taught the courses are now

convinced of the value of the changes. With broad, continuing support from departmental administration

and faculty, the curricular changes are now institutionalized.

Because Michigan’s reform programs are well known nationally, graduate students and postdoctoral

faculty who have taught in the programs are sometimes sought by other departments wishing to implement

their own reform programs. A job candidate in this situation needs to check out carefully where the

support for reform in that department actually lies. If there is a strong commitment from the departmental

administration and a substantial collection of senior faculty for a change in the courses, and a solid

understanding of the issues that reform is supposed to address, then well and good. On the other hand,

if that department seems not to be sure why they might want to reform their courses in the first place,

but wishes to try an experiment by bringing in someone from outside to conduct a few sections of a

reformed course and see what happens, then there is a great potential for professional disaster for the job

applicant. Junior faculty already in a department who wish to undertake a substantial reform effort without

obtaining the backing of respected senior faculty, but instead assume that the changes will automatically

prove themselves, should have similar concerns.

Get the backing of client departments

Client departments should be brought on board from the beginning. They can be a great source of support

with the higher administration, as well as within your own department when faculty from the client

disciplines can help reassure uneasy faculty from your own that the changes in the courses should have a

positive impact on preparing students for study in other mathematically-based fields. It may turn out that

the client departments are concerned with the same pedagogical issues that you wish to address, and will

be quite supportive if they understand what it is you are doing and why you are doing it.

At the beginning of our reform efforts at Michigan, we had extensive meetings with the science and

engineering departments about our intentions and to get their advice on how our revisions could better

prepare students for courses in those departments. The result has been generally strong support by those

departments for the program and its goals. One piece of anecdotal evidence of this occurred in a joint

meeting of the curriculum committees of our liberal arts and engineering colleges attended by the author

of this paper. A faculty member who is not in one of our usual client disciplines, but who had read

an anti-reform article in the popular press, initiated a discussion about whether our reform efforts had

compromised Michigan’s introductory mathematics program. The most vocal supporter of our efforts in

that meeting turned out to be a physics professor who said that, based on the early discussions between

mathematics and physics about the goals of the reform programs, his department had decided to try

assigning exercises in the introductory calculus-based physics course that would require students not just

to be able to compute integrals mechanically, but to understand more conceptually what integrals really

represent. It was discovered that the students could actually do those exercises, which our supporter from

physics was confident would not have been the case prior to our reform efforts. He closed by stating that

he would not want mathematics to go back to our previous way of presenting the material. His words in

that meeting had a far more positive impact than just about anything a member of our own department

could have said to defend our program.

Get the backing of academic counselors

It is important to explain to your institution’s academic counselors the reasons for the reform and how

it will affect their advising of students, and obtain their support for the program. Many students taking

1Editor’s note: The original version of this paper was submitted in February, 2002.
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college precalculus have already done well in high school mathematics; about a quarter of our precalculus

students in the fall 2001 term had previously taken a high school calculus course. When faced with a

reformed course as an introduction to college mathematics, such a student may become very concerned

that someone has changed the rules under which the student had done well in the past, particularly after

a bad first quiz or homework grade.

When this happens, the student is likely to head straight for an academic counselor for advice. It is

important that the counselor be able to explain to the student the reasons for the curricular revisions and

their ultimate benefits, and provide suggestions for improving performance that might be a bit different

from those appropriate for a more traditional course. The advisors will be able to do this if they have been

brought into the loop early in the planning stages of the project and have had any concerns of their own

about the curricular changes addressed, and in this case they can end up being some of your strongest

supporters. If this is not done, then the advisors will be at a loss about what to tell students who are in

trouble in the course. They also might end up advising students away from it at registration time, and

spreading the word on campus that there seems to be something strange going on in your introductory

program.

The next recommendation addresses one very reasonable concern that colleagues in your own depart-

ment are almost certain to bring up, and that you might also hear from colleagues from other departments

and academic counselors if the issue is not dealt with from the beginning.

Make sure skills are learned

In the early days of the current mathematics reform efforts, quite a bit was said about the need to increase the

emphasis on concepts and understanding in introductory college mathematics courses, with correspondingly

less stress placed on algebraic and computational skills. Though the de-emphasis on skills was in most cases

never as great as some of the rhetoric on both sides of the reform issue would have one believe, this issue

became a hot-button item for many persons worried about the early direction of mathematics reform. The

concern by colleagues that students might not learn needed skills in courses that are supposed to prepare

them for more advanced study has brought down fledgling reform efforts in more than one department.

To help allay fears about this issue at Michigan, and, more importantly, to make sure our students really

were getting required skills from our precalculus and first-year calculus courses, we implemented gateway

examination programs in those courses.

A gateway examination is a test of a student’s mastery of important basic skills, such as applying

fundamental differentiation and integration rules quickly and accurately, that need to be part of a student’s

personal mathematical toolkit even though computer algebra software or calculators can do the computa-

tions. In most implementations of gateway testing, including ours, students may continue taking different

versions of a gateway examination over a particular set of skills without penalty so long as the test is finally

passed by some deadline, which allows the student to shore up shaky skills between attempts. However,

in trade for being allowed the multiple attempts, the skill level required to pass is high. For example, on

Michigan’s eight-question differentiation test containing some quite difficult derivatives covering all of the

basic differentiation rules, the student is allowed to miss only one question, and errors the student might

think are small, such as an omitted set of parentheses, are not forgiven.

The effort involved in implementing and maintaining a major gateway-testing program should not be

underestimated. So that a student will get fundamentally different versions of a test on successive attempts,

Michigan’s gateway tests have been computer-generated from the beginning of the program in the early

1990s. However, before the 2001–02 academic year most of the tests were given in paper form, mostly in

a testing center rather than in the classroom, and were proctored and graded primarily by undergraduates;

(see [4] for a description of the early days of the program). The logistics involved in administering, grading,

and returning thousands of tests in a timely fashion each semester were formidable, so almost from the
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beginning we sought ways to mechanize as much of the process as possible. By the late 1990s, computer-

based testing systems were becoming sophisticated and stable enough to handle our requirements, and

at the time of this writing Michigan is in the midst of a two-year effort to convert all of these tests to

be administered in a computer laboratory designed specifically for this purpose, using testing software

originally developed by John Orr and collaborators at the University of Nebraska and currently marketed

by John Wiley & Sons under the name eGrade. This conversion and a further extension of the program

has been made possible by the support of the National Science Foundation, through grant DUE-0088264.

Know who takes the courses

It can happen that a successful program at one institution will not work well at another because of

fundamental differences in the student populations. When problems arise because of a bad fit between

program and students, it might be possible to make matters better with a few modifications, but it might

also be too late if the project is already perceived to be a failure. For this reason, it is particularly important

for implementers of reformed introductory mathematics courses to consider the nature of the population to

be addressed by the reforms.

At the University of Michigan, the “typical” precalculus student is a first-year student in the liberal

arts college, with the goal of preparing for calculus rather than taking a liberal arts mathematics course,

and has not ruled out the possibility of a major or minor in mathematics. Here is one example of how

such information affects the conduct of the course. A major feature of the program is group homework,

with extensive exercise sets due weekly from students who solve the exercises together outside of class

in teams of size three or four. We would have been more concerned about the logistical issues students

would face in arranging meetings to do the group homework if we did not know that a sizable majority

of them, as first-year students, live in residence halls that are located in four clusters on campus. Where

possible, the initial assignment of students to homework groups is made so that the students in each group

live near each other. If one were to attempt to transplant the Michigan model without modification to

another institution where most of those taking precalculus were nontraditional students living at home,

then scheduling meetings outside of class to work on group homework could cause major problems.

Prepare instructors for a changed classroom

At Michigan, there is a weeklong professional development program before the fall term starts that is

required of all instructors who are going to be teaching the reformed courses for the first time. This is

followed up with weekly meetings in precalculus and differential calculus where further pedagogical issues

are addressed, often as they arise in the classrooms. Visits are also made to the classroom of each instructor

new to the program, usually twice during the term.

This instructor training model may not be practical for institutions where only a few instructors would

require the training each year, but it is still important for those instructors to learn what they will need to

do in a classroom that may be radically different from those in which they learned mathematics. One good

resource for such instructors, whether or not a full-blown instructional training program is available to

them, is [2]. Both authors of that volume are former Michigan instructors who helped with the coordination

of the reformed courses and instructor development program.

Finally, and perhaps most important . . .

Do not underestimate the total impact that a curricular change can have on the department. Because

teaching precalculus and calculus is such a large part of the role of almost every mathematics department,

a serious curricular change in the first-year courses will affect the entire operation of the department. If a
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commitment to smaller class sizes is made, then there is an obvious impact on the hiring of faculty and the

support of teaching assistants. Reformed courses taught in multiple sections tend to require more attention

from a course coordinator than more traditional courses, particularly when the instructors have not taught

such courses before, in which case the reward system in the department may need some modification

to assure that the coordinators are appropriately rewarded, both monetarily and professionally, for their

efforts. When many instructors will be teaching the courses, training the instructors and following up with

classroom visits can consume substantial resources. All of these issues, as well as others specific to the

implementation, will quite likely require an increase in resources for the department as a whole and a

reprioritization of resources within the department.

The personal effort required from someone coordinating part of a reformed introductory mathematics

program can also be substantial. There are occasions on which each of us involved in the Michigan program

would go home quite exhausted, or occasionally would not go home at all; more than once I watched the

sun set from my office window while working on some problem involving the coordination of precalculus

or calculus, and then saw it rise again before leaving. However, the effort is worth it. Michigan’s students

are now getting better courses from instructors who are better prepared to address differing student learning

styles, and that is paying dividends for both the institution’s own programs and those of the institutions

that Michigan’s teaching assistants and postdoctoral faculty ultimately make their academic homes.
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Implementing Curricular Change in Precalculus:
A Dean’s Perspective

Judy E. Ackerman

Montgomery College

Introduction

Mathematics departments have not been overly enthusiastic about rethinking precalculus courses despite

changes in calculus, changes in K-12 mathematics that have resulted from the NCTM Standards, and an

increased emphasis on accountability. In four-year colleges and universities, some faculty equate precalculus

with precollege mathematics or at best as the one mathematics course that students take to meet their

graduation requirement. However, in the two-year colleges, precalculus often serves as a true pathway to

calculus and to majors that require a significant amount of mathematics.

For many years, calculus reform was the rallying point for mathematics faculty around the country. It

involved much more than the addition or deletion of topics from the calculus curriculum. Rather, it initiated

the fundamental questioning of what was really important for calculus students to know, particularly in

the light of the increasing availability of technology in the form of computers, graphing calculators, and

computer algebra systems. The balance of depth versus breadth, applications, and theory was questioned.

Calculus reform was much more than just curriculum reform since it also demanded significant change in

pedagogy and assessment. Today, even so-called “traditional” mathematics courses and textbooks reflect

elements directly attributable to calculus reform. With the history of collegiate calculus reform, why isn’t

precalculus reform being embraced by the mathematics faculty?

Initiating curricular change

What will it take for significant change to take place in the collegiate precalculus course? Who needs to

get on board for it to happen? Although the literature is relatively silent about a dean or administrator’s

role in curricular reform there are a few suggestions that indeed there is a role and informed deans can

be advocates for change. In Crossroads in Mathematics: Standards for Introductory College Mathematics

Before Calculus it is suggested that although the faculty have the primary responsibility for implementing

educational reform, deans can facilitate reform by providing leadership, resources and incentives [1].

A few years ago, when I was the chair of a mathematics department in which there was a limited

amount of interest in implementing curricular change in some of the courses, I handed my dean an article by

Lynn Steen. Steen articulated twenty questions that deans should ask their mathematics department if they

wanted to improve mathematics instruction on their campus [7]. Since the dean had not seen the article,
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this was a way to initiate a long overdue dialogue between the dean and the mathematics department in

order to accomplish change that would benefit our students. Steen’s questions were independent of course,

pedagogy, technology, or type of higher education institution, and are still applicable. Today, as we grapple

with the issue of fundamental change in precalculus, the following questions based on Steen’s earlier

questions might be particularly relevant to the discussion:

� Who are the students at your institution and what mathematics preparation do they come with?
� What do your students achieve in your precalculus course and in each of your other mathematics
courses?

� Do you know what happens to students after they leave your precalculus course?
� Is technology used extensively and effectively in mathematics courses?
� Are the mathematics faculty aware of the national discussion concerning the NCTM Standards,

AMATYC Crossroads, Quantitative Literacy, and MAA’s work on the first undergraduate mathematics

course?

� What steps has your department taken to be sure that faculty are well-informed about curriculum
studies and research on how students learn?

� What resources are required to achieve the objectives that will result in change in your precalculus
course?

� How well do department priorities match institutional priorities?
Of course, since each institution is different, the answers to these questions will differ and should inform

how each college addresses the issue of change in precalculus.

Deans should not sit around indefinitely waiting for mathematics departments to initiate needed im-

provements in their courses. There are a number of trigger points that should signal to a dean that the

mathematics department needs to take a close look at what is going on in their precalculus course. If the

department doesn’t raise the issue of change, then the dean should raise it when one or more of these is

present:

� The success rate in precalculus is significantly lower than for other introductory college level mathe-
matics courses.

� The success rate in calculus I for students who complete precalculus at the institution is low.
� The number of students who successfully complete precalculus and go on to calculus I is small.
� Departments that offer courses with a prerequisite of precalculus are complaining about students’
mathematics preparation for these courses.

� The pattern of student complaints about precalculus is different than for other introductory college-level
mathematics courses.

One of the issues regarding precalculus reform is that there is not a well-defined definition as to what

is meant by precalculus. In fact, at the national workshop held in October 2001, Rethinking the Preparation

for Calculus, participants were talking about precalculus with a big “P” being different from precalculus

with a small “p.” An additional source of confusion comes about because in some colleges, college algebra

is the precalculus course. Since it’s pretty clear that those of us in the mathematics community have some

difficulty defining what is meant by a precalculus course, how can we expect those from outside of the

mathematics community to understand the distinction between “Precalculus,” “precalculus,” and “college

algebra” and advise students appropriately? So, to clarify discussion on precalculus course reform, I

recommend that we come up with better names for these courses that clarify the intent of each of them.

Then we can proceed on the task of reforming all three of these so called precalculus courses.

One of the courses, that today is often called “Precalculus,” is for students who plan to continue on

through a rigorous calculus sequence. The name “Precalculus” might even be reserved for this course.
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Another course is for students who expect to take a limited number of additional mathematics courses that

might include applied calculus and/or statistics. Today such a course might be known as either “precalculus”

or “college algebra.” Finally there is the mathematics course that is frequently called “college algebra,”

that students take as their last college mathematics course. There are usually administrative policies that

require this course to be called college algebra, but many different types of courses come under this name.

For example, in Maryland, the Maryland Higher Education Commission (MHEC) initially planned to

issue regulations defining the statewide general education requirement in mathematics for all two-year and

four-year college graduates as college algebra. Mathematics faculty from around the state’s two-year and

four-year public colleges got together and proposed a modification of the wording to “at or above the level

of college algebra.” Although this policy is not totally problem-free, introductory college level mathematics

courses can be identified with a meaningful name that describes the actual scope of the course.

Let’s start with the assumption that the purpose of the Precalculus course is to prepare students for a

calculus I course. Does it make sense today, to offer the same type of manipulative-oriented, skills-driven,

precalculus course that was offered in the past in which we assumed that most of the students in the

class were going to be math majors or majors that required a significant amount of mathematics? Instead,

shouldn’t we be considering changes in pedagogy, content, type of applications and use of technology

that are consistent with changes that have already been made in most calculus courses and in the K–12

preparation of the students who come directly from high school? This same argument can also be made

for precalculus and college algebra courses.

Implementing curricular change

Case studies on curricular change in higher education are few and usually relate to changes in general

education programs. Sandra Kanter, Director of the Doctoral Program in Higher Education Reform at

the University of Massachusetts–Boston, suggests that change not be viewed as a one-time occurrence,

but rather as a series of incremental happenings. She further asserts that “successful implementation of

curricular changes required the energies and talents of many faculty members. To the degree that the process

was open and collaborative, it built trust and good will among and between faculty and administrators,

and only this ensured that faculty felt committed to the eventual outcome” [3].

An article by Alison Schneider [6], contrasting what happened in the overhaul of general education at

two universities, points to the need for political savvy, considerable time spent in anticipating objections,

and the active participation of the dean. At the university where the dean promised to provide the resources

necessary to implement the new plan the revamped curriculum succeeded, whereas it did not at the other

university.

Robert Diamond suggests that in many institutions of higher education the faculty promotion, tenure and

reward system doesn’t recognize significant time and energy devoted to improving courses and curricula

[2]. If this is the case, there is actually a disincentive for faculty to make changes to precalculus courses

or any other course.

The Long Island Consortium for Interconnected Learning reported in its progress report for year one

[4] and year two [5] on how one of the deans from a member institution said that evidence of instructional

innovation would be required for promotion to full professor in his college. This is an example of a dean

taking on a leadership role and providing incentive for faculty participation in instructional innovation and

curricular reform.

Making a case to the dean

Faculty who hope to initiate change in one of the precalculus courses at their college cannot assume that

their dean is familiar with the issues surrounding the course. They need to be prepared to make a reasoned
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argument that makes the case as to how students at their college will benefit from the proposed change(s).

A clear understanding of who enrolls in precalculus and what they take next is crucial. One of the most

powerful arguments to make to a dean is that a reformed precalculus course will increase student success

and satisfaction. You should be prepared with knowledge of the current status at your college of the course

and its outcomes for students, in addition to being acquainted with the existing literature that documents

the need for this type of change in precalculus courses. Be ready to suggest new models for the course.

An implementation plan needs to include the goals to be accomplished by a reformed precalculus

course, specific strategies to carry them out, and anticipated outcomes resulting from the implementation.

It also needs an evaluation component so that the effectiveness of the change(s) can be documented.

Don’t forget that important outcomes may also be in the affective domain. Course objectives usually don’t

state that students completing a precalculus course will be interested in enrolling in an additional, non-

required mathematics course, or that students completing a precalculus course will consider majoring in

mathematics. In most other disciplines these are goals, so why shouldn’t they be goals for mathematics

courses too?

Finally, the dean needs to be given a realistic estimate of the resources necessary to implement a

reformed precalculus course. Consider the resources needed to start the project as compared to those

needed to maintain a project. It helps if you have considered alternative ways to fund the project. Are the

proposed changes such that partial funding might be available from the National Science Foundation to

develop a new course, or to adapt an existing, reformed precalculus course?

Carefully consider how much faculty development will be necessary to implement a reformed pre-

calculus course. In every implementation of a reformed mathematics course I have been involved with,

faculty development has been the underestimated component of implementation. Plan for time to prepare

for implementation and to anticipate all of the potential difficulties that might be encountered. Request

support for a project coordinator who can stay on top of the implementation process. Require each faculty

member teaching the reformed course to participate in regular course meetings during their first semester

teaching the course. Depending on the teaching load at your institution, you may want to provide alternate

time for faculty for this activity too.

Pilot first

A pilot implementation of a reform precalculus course provides the opportunity to observe the intended

and unintended effects of the reformed course and make necessary adjustments. For colleges with a large

number of students and many different instructors, I would highly recommend this approach. This is also

recommended when a mathematics department is not in general agreement as to the nature of a reform

precalculus course.

The proposal for a pilot implementation of a reform precalculus should specify the length of time

of the pilot, the number of sections to be included in the pilot, and the criteria to be used in deciding

whether or not to go from the pilot to full implementation. For example, early on when our mathematics

department piloted the use of graphing calculators in our precalculus course, there were those who were

sure that students using graphing calculators would not perform well in calculus I. During the pilot we

learned that students using graphing calculators did as well as those who did not use them even when they

went on to take a traditional calculus I course. We learned other things as well including the fact that over

half of our precalculus students did not take a calculus course with us during the two years following their

successful completion of either version of the precalculus course. At the conclusion of the pilot, graphing

calculators were required in all sections of precalculus.

Some of the criteria that you might consider to evaluate a pilot of a reformed precalculus course would

be student success in the reformed precalculus course, change in student attitude towards mathematics,

student success in their next mathematics course, and student enrollment patterns in an additional mathe-



22. Implementing Curricular Change in Precalculus: A Dean’s Perspective 223

matics course. Although cost of a reformed course might not be a major consideration for faculty, this is

something that deans need to consider. As a dean, I have chosen to go with an instructional choice that is

somewhat more expensive when there has been a positive impact on student success. It is important to be

open to changes or results that were not anticipated.

Support for faculty implementing change

Professional development is an important component of implementing curricular and instructional change,

particularly for the faculty who did not initiate the project. After all, the faculty who support change are

already knowledgeable about the change while the others who will be teaching the course need to be

brought on board. In a department where the majority of the faculty who teach precalculus are adjuncts

or TAs, this can be a problem. If incentives can be provided, this is the place. They may be in the form

of travel to a conference, alternate time for project activities, or in the case of adjuncts, extra pay.

Although deans are not usually involved in the day-to-day implementation of curricular reform, it is a

good idea for the project leadership to keep the dean informed about how things are going and to alert the

dean to what unexpected things are happening. There should also be opportunities for informal discussions

of the project between the dean and the rest of the project team. Finally, encourage and help the dean to

understand the student perspective. The best way to do this might be to invite the dean to sit in on the

course that is being changed. Whenever I sit in on a class, I always try to ask the students about the course

at the end of the class period. The student perspective is important and may help shape a better course.

Summary

It is easier to effect change in precalculus courses if the dean is on board than without the dean. The dean

can be an ally when faculty recognize the need for change, or the dean can be the instigator when the

mathematics department resists change. Be prepared to educate your dean about the issue and make sure

that you understand the current state of affairs with respect to students in precalculus at your college. In

this way there is a chance that you can make an effective case for how a reformed precalculus course will

improve things for students.
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The Need to Rethink Placement in Mathematics

Sheldon P. Gordon
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Several years ago, Richard Riley, secretary of education in the Clinton administration, challenged the

mathematics community to address the problems of articulation in mathematics education between high

schools and two- and four-year colleges. Riley called for this national initiative, through the National

Research Council, because of the growing breakdown in the once smooth transition between high school

and college mathematics, as well as the differences between mathematical experiences in different colleges

when students transfer from one institution to another.

In large measure, many of the problems with mathematical transitions are due to the rapidly growing

reform movements in mathematics education, both at the secondary level and at the college level. NCTM’s

efforts to promote a school curriculum based on their Standards documents are bearing fruit around

the country, as described in other articles in this volume. Instead of the relatively uniform secondary

curriculum that most of us went through, many schools across the country have implemented a variety of

reform curricula that provide students with very different content and very different teaching and learning

environments.

� There is a major emphasis on conceptual understanding, not just routine manipulation;
� There is an emphasis on realistic problems, not just artificial template problems whose solutions are
to be memorized and regurgitated;

� There is an emphasis on mathematics via discovery, not mathematics as a collection of facts and
procedures to be memorized;

� There is an emphasis on the use of technology;
� There is an emphasis on writing and communication and working collaboratively.

Most of these themes are also part of the reform movements in collegiate mathematics. However, the

extent to which these changes have permeated school mathematics is considerably more extensive than the

extent to which they have affected collegiate mathematics.

Thus, the smooth transition from high school to college mathematics is breaking down. In particular,

we have the following four scenarios:

� a traditional high school preparation leading to traditional college offerings.
� a traditional high school preparation leading to reform college offerings.
� a Standards-based high school preparation leading to traditional college offerings.
� a Standards-based high school preparation leading to reform college offerings.

224
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The first of these scenarios should present no major transition problems, either to the students or to

the institutions. Students are placed into courses offered in the same spirit as their high school experiences

and the level of the courses should be comparable to the students’ level of previous accomplishment.

The fourth scenario should likewise present no major transition problems. (Of course, students can still

encounter significant mathematical problems, but that is another issue altogether.)

However, the second and third scenarios can present significant transition problems, especially to

the students. In one case, students arrive on campus, presumably with strong manipulative skills, and

suddenly they are faced with the expectation that they have to think deeply about and fully understand the

mathematics, and that they cannot succeed just by memorizing procedures by rote. In the other case, the

students arrive on campus expecting to expand on their understanding of mathematical concepts, to apply

mathematics to more sophisticated realistic problems, to use technology, and to work collaboratively in

teams. When they are faced with courses that focus almost exclusively on skills and the expectation that

they need to memorize procedures by rote, the effect is comparable to running into a brick wall.

Unfortunately, in practice, things are not quite this clear cut. Very few institutions can be selective

enough to choose students with any single type of mathematical background. Thus, most schools need to

think through how to deal with students having all sorts of different mathematics background, but few are

doing so.

However, the transition problems involve considerably more than differences between school and

college mathematics offerings. Perhaps the most significant, yet often overlooked, aspect of transition is

the issue of placement—the interface between the two. What are the usual placement tests that decide how

much students know and what courses they are placed into? There are several widely used, standardized

placement tests, which are all based on the traditional school curriculum and are designed to assess

students’ ability at algebraic manipulation. Also, many mathematics departments use home-grown tests,

which likewise typically focus on the traditional high school curriculum. All of these placement vehicles

are fine for the first scenario listed above, but what of the other three scenarios?

For instance, one of the two national placement tests typically starts with a component measuring a

student’s ability in algebra. Students who do well are automatically moved on to a higher level component

that tests college level (precalculus) mathematics; those who do poorly on the algebra level are automatically

moved down to a lower level component testing arithmetic and introductory algebra ability. The algebra

portion of this test covers 12 topics in an adaptive manner:

1. Square a binomial.

2. Determine a quadratic function arising from a verbal description, e.g., area of a rectangle whose sides

are both linear expressions in x.

3. Simplify a rational expression.

4. Confirm solutions to a quadratic function in factored form.

5. Completely factor a polynomial.

6. Solve a literal equation for a given unknown.

7. Solve a verbal problem involving percent.

8. Simplify and combine like radicals.

9. Simplify a complex fraction.

10. Confirm the solution to two simultaneous linear equations.

11. Traditional verbal problem—e.g., age problem.

12. Graphs of linear inequalities.

Now picture what happens to students who have come through a Standards-based high school cur-

riculum. Such a student has likely developed an appreciation for the power of mathematics based on
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understanding the concepts and applying them to realistic situations, as illustrated in some of the lovely

examples and problems described in several of the accompanying articles in this volume, such as Dan

Teague’s or Eric Robinson and John Maceli’s. But, this type of traditional placement test clearly ignores

much of what they have learned in the way of non-manipulative techniques, of conceptual understanding,

and of contextual applications. So, what happens when such students sit down to take a traditional place-

ment test, which is designed only to determine how many manipulative skills the students have retained?

Is it surprising that many such students end up being placed into developmental mathematics offerings

because their algebraic proficiency is seemingly very weak? This is certainly unfair to students if they

were never exposed to some of those skills, or if the emphasis on those particular skills was lower than

in the past to make time for more important mathematics or if the students’ experience in mathematics

has led them to think of mathematics as something considerably more important, more practical, and more

intellectually demanding than squaring a binomial. The result is that many students are placed one, two,

or even more semesters behind where they likely should be placed based on the amount of mathematics

they took in school.

Furthermore, the standardized tests and most of the home-grown tests deny students’ use of technology,

even though that had been an integral part of their mathematical experience in high school. (Supposedly,

some of the national placement tests will soon allow students to use any standard calculator, including

most graphing calculators.)

It certainly seems unreasonable to take students who have completed two, three or even four years

of high school mathematics and place them into low level developmental courses because their algebra

skills are weak. That weakness is perhaps because those skills may not have been emphasized or perhaps

because those skills have grown rusty due to a long lay-off since the last math course in high school.

All too often, both courses and textbooks assume a blank-slate philosophy, presuming that the students

have never seen anything previously. That is not likely the case and will be less the case in future as

the reported percentages of students who continue on to successive mathematics courses in high school

increases. (Historically, the drop-out rate was on the order of 50% each year; recent evidence indicates,

for instance, that the drop-out rate from first year algebra to second year algebra is now on the order of

10–15%. For additional data, please see “High School Overview and the Transition to College,” by Zal

Usiskin, in this volume.) It seems that a better solution would be for departments to rethink some of the

“remedial” courses they offer to see if they are reasonable based on the overall mathematical backgrounds

of today’s students.

Now picture what can happen with students who took traditional mathematics courses in high school

and who are going into reform courses. On the basis of these traditional placement tests, the students’ level

of manipulative skills may well be assessed as high enough to place them into courses that are well above

the level of their conceptual abilities. If they have never had to understand the mathematics they have

apparently mastered and have never been expected to read a mathematics textbook, these students may

well be overwhelmed by the intellectual expectations of a reform course. (We would not dream of putting

a student coming out of elementary algebra into a course in linear algebra; although the student might

have the necessary skills, he or she would need to develop a much higher degree of conceptual ability.)

To illustrate just how bizarre these issues can become, consider the situation in New York state. Over

20 years ago, the State Education Department implemented the Sequential Math curriculum, whose content

is much in the spirit of the NCTM Standards. (Effective in 2001, the state began to implement a new

version of this program, a pair of courses called Course A and Course B.) However, apparently not a

single college in the state has changed its mathematics offerings to reflect what their in-state students are

actually taught in the Sequential Math curriculum, nor the nature of the mathematical experiences that the

students came through. Moreover, most of the colleges in the state use the standardized, national placement

tests that are based on the old syllabus. Some use home-grown tests, but they are typically as traditional

in what they seek to assess.
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For instance, the author’s school and two neighboring institutions all use the same national placement

test, which is designed to assess what students learned from a traditional curriculum that has not been

offered in New York for over 20 years. So countless students are being declared “remedial-level” and

being penalized for not knowing things they were never taught. Moreover, the mathematics curricula at

these three neighboring institutions differ markedly. The curriculum at one school is totally traditional,

mirroring the old New York state curriculum, so the students are being squeezed through a filter that has

little validity for their backgrounds. At a second school, the curriculum is reform from precalculus up,

while at the author’s school, the entire curriculum is totally reform starting at the development math level.

Thus, at the latter two schools, the students not only are being squeezed through a filter that has little

validity for their backgrounds, but also they are being squeezed through a filter that has little validity for

mathematics courses they are about to take. Our department has been trying to address the placement issue,

but has encountered resistance from the placement office, which does not want to implement a new test,

and we have been unable to identify a computer-administered test that reflects our philosophy and needs.

To illustrate just how poorly these tests can assess what students have learned in high school, some

15 years ago, when the author was on staff at one of these neighboring two year colleges, the school

first adopted and implemented one of the two national placement tests. Just as the fall classes were about

to begin that year, the then-department head discovered that more than 140 entering students who had

taken some calculus in high school had been placed into developmental arithmetic by this placement test.

The test just kept finding the weaknesses in the students’ mathematical ability and eventually traced them

all the way down to things like problems with manipulating fractions. To avoid this issue subsequently,

the department simply re-normalized the results of the placement test. That is, the bar was significantly

lowered—the cut-off scores needed for placement into the various courses were lowered sufficiently to

assure that appropriate numbers of students would be placed into each course.

Reportedly, the test-makers such as ETS (Educational Testing Service) have been under pressure to

develop a new generation of national placement tests that are more aligned to Standards-based courses.

That would certainly be a huge step in easing the transition problems. However, the process of developing,

testing, and validating such tests is a long-term undertaking and we probably cannot expect to see such

products available in the immediate future. Unfortunately, departments that depend exclusively on such

tests—most likely because of the ease of administering them to large numbers of students—probably can’t

do much until then.

However, there are some adjustments that can be made rather simply in terms of placement. For

instance, some departments have a placement scheme that utilizes the number of years of high school

mathematics that a student has taken and his or her ACT or SAT score in conjunction with a placement

test to decide on the appropriate course. Other departments take the number of years since the student’s

last math course into account in placement decisions. In fact, the author is aware of one large scale study

conducted some 10 or 15 years ago at a large two year college where about 18 different factors, including

placement test score, SAT or ACT score, age, last math course, and years since last math course were

all studied in terms of being effective predictors of student performance. They found that about 12 of

the factors were statistically significant and so developed a multivariate regression formula for prediction

based on all the relevant factors.

There is one other factor that may be particularly relevant today in terms of the new emphases in reform

courses. The greater stress on conceptual understanding, on real-world problems, and writing and other

communication skills requires a significantly greater level of verbal ability on the part of the students.

As such, it is reasonable to link the score on the verbal/English portion of a placement test with the

mathematics score. For instance, the author’s department has considered ways to add extra points to a

student’s math score based on high levels of performance on the verbal portion of the placement test.

We believe that the verbal ability will likely compensate, to some degree, for relatively low math scores

achieved by some students on such a traditional test.
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In the meantime, there is much that departments that give their own placement tests can do to help

alleviate many of these problems. The first step is to recognize that they will likely need two different

placement tests, one for students coming out of a traditional high school program and another for those

coming out of a Standards-based program. (Alternatively, such departments might try to develop a single

placement test that covers both sides and is designed in such a way that the faculty can interpret the results

based on their own needs.) The key is to find ways to identify which student is which; it is unlikely that

most students will be able to identify the kind of program they went through.

The second issue is to determine the appropriate mix of problems that are mechanical in nature

versus those that are conceptual in nature. In a department offering reform courses, just what are the key

manipulative skills that are necessary to succeed in those courses? Is it necessary, for instance, to be able

to add or divide relatively complicated fractions, say 5
24

C 3
16
or 43

4
=15

8
, or should students be allowed to

convert such expressions to decimals and get the answer using a calculator? Is the ability to get the right

answer as important as the ability to look at the second expression and estimate that the value is about

3? (Or should the inability to perform such operations relegate students to a course in remedial arithmetic

despite their having successfully completed three years of high school mathematics?)

Then there is the reverse issue. What are the key conceptual skills that are necessary to succeed in a

reform course, especially for a student coming out of a reform curriculum in high school? How do you

determine if a student truly understands the notation, say for a function, or can only move the symbols

around mechanically? How do you measure whether a student has the verbal ability to handle the emphasis

on mathematical concepts? Perhaps it would be desirable to use the score on a verbal or English placement

test in conjunction with the score on a math placement test.

On the other hand, if a department offers only reform courses, how should it assess the skills of a

student who has undergone a traditional high school preparation? If a student lacks key conceptual skills

because they were not stressed in high school, but has extremely strong manipulative skills, is a reform

college algebra or precalculus course the appropriate solution? Must each such course begin with a review

of fundamental concepts that students are expected to know?

And, finally, if a department is offering only traditional courses, how should it assess the non-traditional

skills that students may bring to the courses? If a student lacks facility with algebraic manipulations because

they were not stressed in high school, but has a relatively deep understanding of the mathematics, is a

standard remedial course the appropriate solution? Similarly, if a student has a much broader mathematical

experience that includes, for instance, an understanding of statistics, data analysis, and probability, does a

standard remedial course make sense? If the answer to these questions is “no,” how should such courses

be redesigned to build on what such students have learned? Can courses be created that emphasize the

development of algebraic skills that take advantage of some of the relatively sophisticated knowledge

and experience such students bring instead of treating them as individuals who have never mastered any

mathematics? Certainly, if such courses can be designed, they would have a much better impact on the

students in terms of both motivation and morale.

Clearly, if we can ease the mathematical transitions of the students, we would make things better for

all of us. The students will be better served when they arrive on campus; enrollment in “remedial” courses

may actually diminish because many of the students being placed there may not really need remediation;

enrollment in college-level mathematics offerings might even increase. The students will be happier, the

faculty will be happier, and the administrators will be happier.
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Introduction

Sam looked up from the stack of orders on his desk and glanced at his watch. 3:30, time to work on his

project with Andrew. He pushed the orders to one side and turned to his computer. No picture this time,

but Andrew’s voice came through with sounds of students playing frisbee in the background.

Sam, 28, was a non-traditional student, fitting his course work around his work schedule. Andrew was

a traditional first-year student. The two had been partners now for four weeks—though they had never

met in person.

The background rock music ceased, and Sam heard Andrew’s voice, “Hey Sam! What’s it like in the

real world today?”

“Usual thing, pushing paper. . . Better watch out for wild frisbees,” Sam replied.

“Right. But it’s too nice to stay inside,” Andrew explained.

“You kids have a soft life,” Sam teased. “OK, let’s get started.”

The instructor’s discussion of the project flashed up on the screen. It was just text—Professor Rodriguez

was not much for adding voice descriptions. Not like Sam’s political science prof, who always added a

video stream with her verbal instructions.

Sam proposed a plan of work. “OK, we need to find a picture of a cross-section of a chambered

nautilus, then construct a model of the shell’s spiral curve. And then we compare it with the real thing.

Why don’t you search the Web for a good picture, while I look through our class notes for the right

formulas?”

Andrew agreed, and his end of the connection went dead. Sam entered a search query, refined it,

and found what he wanted. He opened a computer algebra worksheet, made some notes, copied in code,

modified it, and produced a test graph.

Andrew’s voice returned, and a great picture of a shell appeared in the communication window. “I’ve

put in the x- and y-axes. You can see. And here is a table of coordinates that I pulled off the picture with

that cursor widget. . . . Oh great, you are all set with the modeling function. Right, exponential growth. I

worked through that lesson last week. Now how do we match that up with the coordinate data?”

After another fifteen minutes of trial and error and a return to the class notes, the graph of the model

function fit well—except for a stretch near the center that just wasn’t the same as the rest of the spiral

growth pattern.

“Let’s ask Rodriguez about this center stuff,” suggested Andrew. They quickly drafted a question,

attached the picture and the worksheet, and e-mailed the lot to their instructor.
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“Once we hear back from Rodriguez, we need to write up the report. Should be able to wrap this up

in another hour,” summarized Andrew.

Sam heard the rock music resume and then the dull thunk of a wayward frisbee catching Andrew in

the head as he bent over his wireless notebook. The communication screen vanished just as Sam’s boss

showed up at his desk with another pile of orders.

Our scenario is only partly fanciful. For over five years we have had students working on a project

similar to this—albeit in a classroom environment with help available from the instructor. The team project

in the scenario could have come from our Equiangular Spiral module [5] with some minor changes. (For

example, we continue the project into its calculus implications, and we supply the picture.) Indeed, if

Andrew did a Google image search for “chambered nautilus,” he would have found over 200 great pictures,

one of which is the one we used. And if he searched for “spiral” at the math.duke site (not a likely choice,

to be sure), he would have found about 20 images, one of which is the picture on which we ask students

to do their measurements.

Note in particular the following features of the scenario:

� Assigned group work
� Remote collaboration
� Use of the World Wide Web as an integral part of the project
� Traditional and non-traditional students working together in real time
� Time on task outside of classroom hours, but with (asynchronous) contact with the instructor

Students with notebook computers connected to a campus backbone by wireless cards are increasingly

common. Extensive use of communication technology such as NetMeeting is less common but should be

the norm in a couple of years. And, if this were an interactive, online article, we could provide a live link

to video of students working through our module.

If our scenario is an accurate glimpse of the future—and we believe this future is almost upon us—what

are the issues for student learning? We will discuss the following issues in this paper:

1. Learning and working in an increasingly rich technological environment

2. Making sense of mathematical information—using technology to check

3. Student-to-student interactions

4. Creation of interactive learning materials

5. Intellectual demands of these new forms of learning

Learning and working in an increasingly rich technological environment

Technology is changing the way students approach learning. Increasingly, they will conceive of their

work in terms of interactive learning materials, computer algebra systems, spreadsheets, and Web-based

cooperation—with occasional use of pencil and paper. Learning how to learn in this environment is as

important as learning about the mathematics itself.

Of course, technology has changed how we work and think about work in many ways. Let us illustrate

with an example. Suppose you are thinking about writing a paper. You have a couple of ideas; possibly

you jot them down on a pad. Then you want to expand them, so you make some more notes, circle them,

and draw an arrow to the spot where they should be inserted. Reading the change to be inserted, you

realize that other sentences need to be changed as well, and so on. Soon you have several sheets covered

with words, lines, loops, and arrows that look more like an abstract painting than a draft of a paper. You

quickly abandon paper and resort to a word processor to straighten things out. The point is not so much

that you eventually used the technological tool, but that right from the beginning you were framing your
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thoughts about the paper with the use of the word processor in mind. Technology has changed the way

you conceived of the task, as well as the way you carried it out.

Just as technology has changed the way that most of us approach a writing task, it also is changing

the way students think about mathematical activities and carry out mathematical investigations. Graphs

are now easy to display and can guide an investigation rather than just be an end product of a difficult

calculation. With a symbolic calculating system, long trial calculations are also relatively easy and can also

serve to guide an investigation. Similarly, data can be gathered, plotted, and compared. Now the important

issues become what calculations, graphs, and data to display and how to interpret them.

Making sense of mathematical information—using technology to check

While it is true that technology will enable students to work with their favorite mathematical representations

—symbolic, graphical, numeric—it is even more true that students will need to learn how to work and

think productively, using many different modes of representation. Indeed, learning how to work and think

in multiple representational modes may be one of the most important learning goals of mathematics courses

in the age of technology.

In the old pencil-and-paper days, each calculation was likely to be long and subject to errors. Checking,

if it was done at all, was likely to consist of performing the same calculation over again—probably making

the same error. Now, complicated calculations are easy, and, more importantly, many new ways of checking

are readily available. One can compare the symbolic derivative with a difference quotient calculation, a

symbolic integration with a numeric integration, or a model function with data. Indeed, modeling provides

a strong incentive for students to check their work and correct their mistakes. A student who is not bothered

by a pencil-and-paper calculation of a negative volume is much more unsettled by a graph of a model

function that does not lie anywhere near the data.

Since students have less emotional attachment to a short computer algebra system calculation than to a

long pencil-and-paper one, they are more willing to check the result. They are not looking at the possibility

that another 15-minute calculation will have to be repeated. With the pain of checking largely mitigated,

the teacher is free to make checking a requirement—and to build checking strategies into the content of

the course. Think of the consequences: Getting a confirmed right answer every time will be a normal

expectation for both teachers and students. That means we will have to abandon the bell-shaped grading

curve—which was never a scientifically sound idea anyway. But it also means—if we have the will—we

can eliminate high withdrawal/failure rates and turn mathematics into a subject in which students expect

to succeed.

The National Research Council study How People Learn ([1], [3]) identifies self-monitoring as one

of the key findings from research about successful learning. Specifically [3], p. 13, “A ‘metacognitive’

approach to instruction can help students learn to take control of their own learning by defining learning

goals and monitoring their progress in achieving them.” The concept of confirming every mathematical

calculation is a local implementation of this principle, since most students start most assigned tasks with

the goal of getting the right answer.

This self-monitoring function, known to be important for learning in general, takes on added importance

with ubiquitous Web access. Using the Web, a student may find many others who have already dealt with

the problem under consideration. How can one know which calculations or conclusions to trust? The

ability to evaluate information, to decide what is reasonable, what is correct, is vital to making intelligent

use of Web resources.

One illustration of this is [8], a page of lecture notes for a mathematically oriented biology course. This

page contains a lot of apparently correct and useful information, but it draws an incorrect mathematical

conclusion—one that is obvious to a mathematician but that would easily fool a student. Specifically, Sugg

analyzes the classical Lotka-Volterra predator-prey model (in its differential form, not a discrete model) and
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concludes that the model is inherently unstable. Nowhere on the page is there any hint of the population

cycles that are the correct trajectories of the differential system—and also the observations from nature

that motivated both Lotka and Volterra.

Another related issue, one that is general across the sciences and engineering, is created by simulations

that eliminate the need to perform real physical experiments. This becomes increasingly important in

mathematics as modeling becomes a central part of mathematics courses. The issue is not just the accuracy

of the simulation, but also the student’s conception of the physical world. What models and data are being

used to create a given simulation? How reasonable is it that the simulation accurately represents the aspect

of the world under consideration? How can one check?

Student-to-student interactions

A particularly important challenge of this new environment will be designing learning experiences that

support cooperative work and the development of a class-wide community of learners. One way to go

about this is described in [7] in the context of a differential equations course–but the same principles

could be expected to work with lower-level courses as well.

As we imagined in our opening scenario, there will be great opportunities for productive cooperative

work—even for students with little or no opportunity for face-to-face contact. In addition to Microsoft’s

NetMeeting (http://www.microsoft.com/windows/netmeeting), many other ways to accomplish real-time

collaborations are now available. Some other examples include

� Blackboard (http://www.blackboard.com)
� WebCT (http://www.webct.com)
� Netopia’s Timbuktu (http://www.netopia.com/en-us/software/products/tb2/)
� AT&T’s Virtual Network Computing (http://www.uk.research.att.com/vnc/)
� Interwise’s Enterprise Communications Platform (http://www.interwise.com/)

The capabilities of these products are all different from one another, as are their prices, but each enables

collaborators to share work in real time via the Internet.

In the other direction, there is a tendency for technology to provide the individual with a personal

learning environment, insulated from contact with others. With headphones delivering a stream of back-

ground music and individual hand-held computing devices replacing workstations that can accommodate

two people, the individual student may retreat from any significant learning interaction. It will be important

for both curriculum developers and instructors to focus on this issue.

Creation of interactive learning materials

What are the implications of technology for developers of learning materials? In the recent past, individual

faculty have been creating interactive class materials shortly before they were needed in class. Then, more

often than not, the materials were left alone until the next time the author-instructor was teaching the same

course. Even if an author did more work, it was unlikely that the materials were ever “finished” in any

reasonable sense. In some ways, this is comparable to the period in the 1970s when many individuals

wrote their own word processing programs. After a short transition period, users came to expect more

from a word processing program than most individuals were willing or able to produce. Now most of us

use one of the common commercial programs.

For learning materials, there are currently two trends. One is for teams of individuals to work together

to produce materials that include sophisticated interactions delivered in a setting that is easy to use and

very flexible. The other trend is similar to the phenomenon of open-source software. Authors cooperate
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in a loose federation that combines compatible learning components in different ways as necessary and

leaves the product for further development by others.

In the old textbook-oriented model, a small group of authors, working very intensely, produced most of

the major text material. The individual faculty member’s responsibility was to create a syllabus around the

published text. Now, regardless of the interactive materials used, the instructor is going to be much more

closely involved, often adapting the materials for his or her own use. Beyond that, many more instructors

will be part of the design and development of the materials. However, if it is done well, the development

of learning materials that incorporate technology will take extensive time and effort. How are authors to

be rewarded? The rewards will probably not be royalty income so much as scholarly recognition. So far,

this sort of recognition has been slow to develop.

Intellectual demands of these new forms of learning

Finally, we need to be clear that students will be expected to do more challenging tasks than in the

past—particularly in precalculus and calculus courses. In the past, just deciding on a symbolic calculation

algorithm and executing it with care represented a satisfactory learned response. Now the student will

need to recall and evaluate the usefulness of and connections among a variety of representations and

computations. This is a higher-order intellectual activity—one that will allow learning at a deeper level.

Fortunately, reforms such as the NCTM Principles and Standards [6] have paved the way for this change.

It is no longer acceptable to assess student learning by asking them to solve calculational problems

because computer algebra system (CAS) capabilities are widely available to almost everyone. For example,

the Texas Instruments TI-89 (about $150) provides powerful algebra and calculus capabilities (with 2-D

and 3-D graphics) in a handheld calculator. Many schools and colleges provide site-license access to

Maple® or Mathematica®. StudyWorks (essentially a fully functional version of Mathcad®) is available

from Mathsoft for about $40. And there are a number of free or inexpensive online services that will

accept a problem input and provide the output from, say, Maple® or Mathematica®. One example is The

MathServ Calculus Toolkit at Vanderbilt University [2], which includes a number of precalculus topics

as well. Simply forbidding the use of any of these tools is about as effective as sticking a finger in a

crumbling dike.

In fact, it never did make sense to assess student understanding of mathematics solely or primarily by

their ability to do unaided symbolic calculations. At best this ability is a poor proxy for understanding, as

anyone can learn simply by asking students to explain what they are doing as they carry out a calculation.

And generations of students have come to believe that the calculations are what mathematics is. Worse,

reserving the rewards for those who are proficient at calculations in a timed, closed-book, no-technology

test setting has denied success to many other students who are quite capable of understanding mathematical

concepts—as we have learned by teaching those students in technology-rich environments. Whatever the

limitations on our profession in the past, we are not condemned to repeat failing practices forever.

On the positive side, a recent analysis and synthesis [4] of research on the use of technology in math-

ematics instruction at all levels has documented strong support for welcoming technology as a component

of our pedagogical practices. One of us co-authored the calculus chapter [9] in this volume, which includes

among its conclusions the following:

� “Technology integrated intelligently with curriculum and pedagogy produces measurable learning

gains.. . . ”

� “There is evidence that using tools such as Mathematica and Maple for conceptual exploration . . .
leads to conceptual gains in solving problems that can transfer to later courses. In comparison, students

following traditional courses tend to use more procedural solution processes.”

� “Technology enables some types of learning activities (e.g., discovery learning) and facilitates some
others (e.g., cooperative learning) that are harder or impossible to achieve without technology.”
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Of course, the completed research all refers to technologies that have been available in the past. The

technologies becoming available to us now hold promise for even more exciting gains—if we can keep

up with the intellectual challenge of adapting our pedagogies to the realities of the world in which our

students live.
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Preparing for Calculus and Beyond:

Some Curriculum Design Issues

Al Cuoco

Center for Mathematics Education–EDC

This paper outlines an alternative to the topic-driven design principle that is the basis for most precalculus

courses, arguing that the real power of mathematics lies in the methods used to produce results as much

as in the results themselves. It describes a fourth-year high school course that adopts this design, with

examples and student work.

Introduction

Curriculum design in US precollege mathematics is largely topic driven; a course is defined by the topics

it treats. The major criteria for including a topic in any particular course include:

� does it review and deepen important ideas from previous courses?
� is it a prerequisite for likely subsequent courses?
� did it fall through the cracks in earlier grades?
� does it appear on high stakes tests?
As one moves up the grades, the effects of this design principle compound. By the time one reaches

the fourth year of high school, we end up with 18-chapter, 800-page compendia of topics that range from

trigonometry to data analysis to complex numbers. These monster texts all go under the name “precalculus,”

which is therefore defined as everything from trigonometry to data analysis to complex numbers.

Of course, there’s much more in these texts than what one needs as preparation for any of the current

calculus offerings. Indeed, it’s a well-known fact among high school teachers that one can only finish

slightly more than half of these chapters in a given year, and yet many students who go on to calculus

from such experiences have what they need to get respectable grades.

But in addition to being too big, these courses are, at a deeper level, too small. There has been a growing

consensus among all involved in secondary mathematics education that this topic-driven curriculum is not

serving our students well. Today’s high school graduates enter a highly technological world in which

mathematics plays an essential role. However, the widespread usefulness and effectiveness of mathematics

in fields outside the discipline come not just from mastering specific skills, topics, and techniques, but

more importantly, from developing the ways of thinking used by scientists, mathematicians, engineers,

and others. National reports and standards documents ([1], [2], [3], [4], for example) have articulated

a sentiment that is widely held by people in the mathematics education community: essential student

outcomes from a modern mathematics curriculum should include skills like:

235
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� finding and analyzing patterns,
� designing and conducting experiments,
� describing and communicating,
� tinkering and inventing,
� visualizing and conducting thought experiments,
� conjecturing and guessing,
� theorizing and abstracting, and
� making logical connections and explanations.
See ([6], [7]) for an elaboration on this list. Over a decade ago, Everybody Counts [5] described it

this way:

Mathematics offers distinctive modes of thought which are both versatile and powerful, including

modeling, abstraction, optimization, logical analysis, inference from data, and use of symbols.

Experience with mathematical modes of thought builds mathematical power—a capacity of mind

of increasing value in this technological age that enables one to read critically, to identify fallacies,

to detect bias, to assess risk, and to suggest alternatives [p. 31].

Some very useful “modes of thought” in mathematics are given short shrift in high school (and

especially in precalculus courses): hardly showing up at all are reasoning about algorithms, combinatorial

thinking, and using the linearity of certain maps on the plane. Furthermore, even for students who go

on to calculus and advanced mathematics, the emphasis on traditional precalculus skills and methods is

misplaced. Calculus instructors have long complained that the real stumbling blocks for their students are

the hard ideas in the subject: notions like limit, approximation, convergence, and error estimation.

Organizing curricula around these mathematical habits of mind provides an alternative to topic-driven

design. It provides another criterion for including or excluding a particular topic, and, what’s more im-

portant, it has a great influence on how topics are developed: Explicit attention is given to the methods

behind the results.

In mid-1996, NSF convened a group of curriculum developers, mathematicians, and educators to

discuss possible directions for fourth-year high-school mathematics. At the time, NSF had invested heavily

in comprehensive curricula for the first three years of high school. It was time to look at what belonged in

the bridges between high school, postsecondary programs, and the workplace. At that meeting, participants

expressed a need for problem-based and student-centered materials that:

� build on and make use of the rather different backgrounds that students would develop in any of the
three-year “standards based” programs,

� identify and formalize “big mathematical ideas” developed during the first three years of high school
(for example, a general notion of function or proportional reasoning),

� use mathematics itself as a context for developing mathematical ideas, and
� treat topics and thinking processes that are prerequisites for postsecondary education and for school-
to-work transitions (trigonometry or algorithmic thinking, for example) in the spirit of reform without

losing their essentially technical nature.

It was clear at this meeting that there were many different topics, organizing principles, and viable

directions that could be taken in such a curriculum for the latter part of high school. Everyone agreed that

the last years of high school, more than any other part of the K–12 curriculum, called for a multiplicity

of approaches and options, not only for the preparation of future scientists and engineers, but also for

developing informed citizens.

My colleagues and I at EDC’s Center for Mathematics Education decided to apply our design principle—

putting mathematical thinking at the center of curriculum development—to the creation of a fourth year

course for high school seniors. More precisely, we wanted to develop a program that would:
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� give students a sense of what mathematics is about and the experience of what it is like to do mathe-
matics,

� help students develop the habits of mind used to create the major results of modern mathematics, and
� prepare students for future work in mathematics and science, should they choose to pursue those fields.

This paper describes that attempt, an attempt that evolved over the course of several years by adding

constraints imposed by the field, making compromises imposed by the nature of schools, and incorporating

the brutal and enlightening feedback one gets from field-test teachers and (especially) students. The result

is a course for high school juniors and seniors, appropriately named Mathematical Methods (or M2, for

short) [11], that looks quite different from traditional precalculus courses, in spite of all the compromises

we made.

Goals for the program

While mathematical thinking was our primary goal, there were several others at play. Some are deeply

rooted in our approach to mathematics education, while others are more focused on the particular audiences

for this course. Like all projects just starting out, we spent some time creating a list of lofty (and rather

poorly defined) goals for the work:

1. The materials should center around mathematical thinking.

2. The materials should be accessible to our intended student and teacher audiences.

3. We should set high expectations and help people meet them.

4. Each chapter should be easy to start and should take students farther than they dreamed possible.

5. The chapters should form a web of interconnected ideas.

6. We should use the most effective technology available for helping students develop the habits that we

want to foster.

7. The materials should help students see the value and importance of mathematics.

8. We should work to enlarge students’ and teachers’ notions of reality to include mathematics.

9. Graduates of our course should love mathematics.

10. The benchmarks for choosing a topic include:

� it provides an opportunity to develop mathematical ways of thinking
� it is of historical importance
� it is useful
� it is beautiful
� it prepares students for future mathematics
� it contributes to a broad picture of mathematics

11. The materials should be useful across the wide range of upper high school courses.

12. The materials should be faithful to mathematics as a discipline, emphasizing major historical themes,

results, and problems.

Looking back, these seem grandiose, subjective, and a little naive. Some of them seem to pull in

opposite directions. Seven years later, there’s a story to tell about what happened with each of them. We’ll

tell a few of these stories in the last section of this paper.
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What habits? What topics? What students?

There’s an old saying that you can’t think about thinking unless you think about thinking about something.

A course organized around mathematical thinking would be little more than a mathematics appreciation

course if it contained chapters on “doing experiments” or “using linearity.” Our intention was to use

mathematical topics as vehicles for certain ways of thinking. But, of course, the topics needed to serve

other purposes as well—the ones laid out in item 10 above.

And what was the audience for the course? As other papers in the proceedings have documented so

well, there is wild variation in the reasons students take a fourth year of mathematics. At one extreme are

the students who aren’t interested in (or lack the grades for) a college-prep precalculus or calculus course.

These students typically take courses, with titles like Senior Topics, that are just watered down versions of

precalculus, with some SAT review thrown in. At the other end are students who’ve taken all the AP the

school has to offer and want an advanced elective. These students often find haven in a computer science

course, a directed study with a willing teacher, or a college level course at a local college. In the middle

are most of the college-bound students, taking precalculus, calculus, or one of the AP calculus courses.

The design therefore turned into a three-dimensional effort:

� What students will we serve?
� What mathematical habits do we want students to develop?
� What topics are good vehicles for developing these habits and serving the needs of students after they
finish M2?

Based on the belief that the vast majority of students are capable of serious mathematics, we decided

to develop materials that could be used across a wide spectrum of fourth year courses, from the topics

courses to the advanced electives. This led to some early decisions:

� M2 would be designed for students who have either completed one of the comprehensive high school

curricula or a more traditional Algebra 2 course.

� We would aim the materials at:
– secondary students who intend to work in a technical field;

– college-intending students who are looking for an alternative fourth year of mathematics;

– students who wish to take a mathematical elective during their junior or senior year (either instead

of or in addition to precalculus/calculus sequence).

We also wanted to address the needs of students who may not be planning to continue their mathematical

studies.

To reach such a broad audience we borrowed a structure from an earlier curriculum effort [14]: We

would write a small number of large chapters around big themes. Each chapter would start with an

extremely simple entry point that would be tractable for almost every student and then would carry the

development to levels to challenge the most advanced students. The idea was that each chapter would have

certain jumping off points, so that teachers could customize the materials for their students in a way that,

instead of forgetting the last half of the book, allowed them to help all students to experience the important

themes, develop the central mathematical habits, and dig into the major results in the course. This decision

was by no means unanimous. As one staff member put it, “It sounds to me like we’re willing to take on

students of widely different backgrounds and prepare them for very different future mathematical careers.

I’m not sure just how feasible this really is.” None of us was sure, but we decided to see how far we

could take this approach.

As for mathematical ways of thinking that we wanted to foster, we decided on “the big four”:

� algebraic thinking
– designing and using algorithms
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– reasoning about numerical and algebraic calculations

� linearity

– reasoning by linearity (in the sense of linear algebra)

– using linear approximations

� combinatorial methods

– recognizing isomorphic combinatorial problems

– counting without explicit enumerations

� analytic thinking

– reasoning by continuity

– making successive approximations

Our benchmarks for choosing a topic, our choice of habits of mind, and this “no threshold, no ceiling”

decision put some strong constraints on our choices for chapters. For example, not every mathematical

topic has easy entry, and school mathematics is notorious for introducing topics that don’t go very far. Our

first cut contained four chapters:

� Solving Equations (including polynomial and trigonometric equations)
� Coordinates and Linear Methods (including the use of matrices)
� Counting/Recursion/Sequences and Series (including limits and infinite series)
� The Complex Numbers (building on and using everything that comes before)

Lists are seductive, and we had created several. I was convinced that we had a simple plan for a lean

course that would give students a real taste of what mathematics is all about—the rest of the work ahead

seemed straightforward. Then we took these ideas out for a spin, in classrooms, with a local advisory

board of teachers, and with a national advisory board of high school and college teachers, mathematicians,

and mathematics educators.

The Evolution

After consulting with our advisors, drafting sample activities, and piloting the drafts in local schools, it

became apparent that the design had to be refined. There were missing topics (that had to be there, of

course), there were inter-chapter dependencies that couldn’t be resolved, teachers were worried that the

chapters were too big (covering too much material), and the easy entry and useful benchmarks seemed

to be violated in some of the drafts—we needed some better hooks. The outline passed through several

iterations. We stayed faithful to the habits we wanted to develop and the audience we wanted to reach, but

the outline at each iteration began to look a little more like a precalculus course, with more and shorter

chapters.

And there was a problem with technology. The writers were convinced that, in addition to a graphing

calculator, a computer algebra system was essential for some of the topics, methods, and ideas we wanted

to develop. The CAS of choice was one installed on a computer, something like Mathematica or Maple. It

was especially important that the system we use be extensible, so that students could build computational

models of their own for algebraic objects (sequences of polynomials, for example) and so that they could

express in the CAS abstract relationships (of their invention) between mathematical structures. However,

it became clear that M2 would not be used, except by the wealthiest districts, if we insisted on a computer-

based CAS. Indeed, actual use of desktop or laptop computers in mathematics classes is on the decline

among the teachers in our advisory group. Instead, teachers are using calculators. The CAS system on
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calculators lacked some of the functionality and power that we thought we needed. I was especially worried

about the interface, memory limitations, and notational conventions built into these hand-held machines,

seeing many places where students could develop bad habits of mind through their use. But it was clear

that we needed to adapt to the constraints or give up hope of using a CAS. It turned out that the system

on the TI-89 and 92 allowed us to do most of what we wanted (especially with the wonderful support

we got from the TI development staff), was extensible enough to get across the idea that one could build

computational models for mathematical objects, and had an interface that posed very little difficulty for

students. And in at least a few cases, the memory limitations of the machine turned out to be a perfect

pedagogical device for developing important methods like mathematical induction (see [9] for details).

After several iterations, we ended up with a book containing seven chapters—more than we wanted but

less than the norm. We had to make some hard decisions about what to leave out. The linearity of rotations

and summations remains, but a more general discussion of linear transformations fell out. We didn’t get

as far into difference equations as I had wanted. I had hoped that we’d take a much more structural

approach to complex numbers. And we just touched on ideas that I wish could have been given better

play: Applications of complex numbers to the theory of regular polygons, and the mathematics behind

public key cryptography. Many of these decisions to leave topics out would have been made differently

had we been using topic-driven design, but the key focus on mathematical habit became the arbiter that

caused many beautiful topics to be put aside. Other decisions came about from purely practical issues. For

example, in the last months of the development, we did a major rearrangement of the order of the chapters,

because teachers said that, especially in senior classes, technical material (like trigonometry) should never

come near the end of the year. And, of course, we had to make sure that students would be prepared for

calculus.

Here’s a brief description of the seven chapters:

(1) Tables, Patterns, and Rules. This chapter asks students to find functions that agree with input/output

tables. Students generate closed form and recursive rules for these functions, and then learn about math-

ematical induction as a way of showing that two seemingly different functions agree on the non-negative

integers (see [10] for an elaboration of the approach). Advanced topics include methods for finding gen-

uinely different functions that agree on a table and Lagrange interpolation. The focus is on algorithmic

thinking, finding and describing patterns, and algebraic thinking.

(2) Polynomials. This is a chapter on advanced algebra. There’s a dual focus: Polynomials as formal

objects (algebraic thinking and reasoning about calculations) and polynomials as representations for certain

continuous functions (reasoning by continuity and analytic thinking).

(3) Complex Numbers and Trigonometry. The typical way to establish the geometric interpretation of

complex numbers is to use the addition formulas for sine and cosine. This chapter goes the other way: By

establishing the linearity of rotations in the plane, one can use the geometry of complex multiplication to

derive the addition formulas for sine and cosine (as well as most other trigonometric identities). This has

several advantages:

� It shows the essential connection between geometry and the algebra of complex numbers without the
heavy machinery of trigonometry.

� It provides an application of the algebra of complex numbers: Students develop a general purpose
machine for proving trigonometric identities.

� It provides some coherence to the topic of identities, showing how most depend on the invariance of
the unit circle under rotation about the origin and reflection in a diameter.

(4) Count It Up. This is a chapter about combinatorics and combinatorial thinking (predicting the

outcome of an enumeration without having to carry it out explicitly). Combinatorial formulas are developed
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in special cases by solving problems and are then generalized. After developing results about permutations,

combinations, and binomial coefficients, the chapter culminates with one large problem—the “Simplex

Lock” problem—described at: http://www2.edc.org/makingmath/mathprojects/simplex/simplex.asp

(5) Add It Up. The idea here is to build on Chapter 1, looking at techniques for summing series. This

can all be done in an informal way, using the kind of mathematical induction developed earlier. Topics

include:

� arithmetic sequences and series,
� geometric sequences and series,
� sums of squares and cubes, and
� telescoping sums and how to build them.
Students use their CAS to investigate and prove properties of the

P
operator, many of which have

parallels in calculus with
R
. This chapter is about algebra and algorithms, reasoning about and transforming

calculations.

(6) The Ideas of Calculus. This chapter tells the story of how mathematics evolved to solve the problem

of finding areas enclosed by curves. Another message is that functions can’t always be given by algebraic

formulas. Using techniques for summing powers from Chapter 5, students can tackle the problem of finding

areas bound by graphs of polynomial functions. We also develop Fermat’s brilliant method for finding

the area under every curve of the form y D xn .n ¤ 1/ using geometric series. Again, techniques from

Chapter 5 allow students to recreate Fermat’s solutions.

(7) Algebra and Cryptography. The chapter starts by looking at some simple and historically important

encryption schemes. For example, students look at linear functions x � ax C b , applied to a letter’s

position in the alphabet. This introduces the structure of Z/26Z (because if a has a common factor with

26, you make a bad cipher). More general ciphers are defined by 1–1 functions on Z/26Z. From here, we

will investigate some elementary number theory, including:

� solving equations in modular systems,
� units and zero divisors, and
� Fermat’s Little Theorem.
The chapter culminates in a treatment of public key cryptography.

In the next section, I’ll describe a student activity that illustrates more precisely how the design

principles play out across the chapters.

An example

The course opens with students trying to find rules that agree with tables. As many people who’ve tried

this know, students naturally gravitate to recursively defined rules. So, asked to find a function that agrees

with this table:

Input Output

0 3

1 5

2 7

3 9

4 11

5 13

6 15
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students notice both the closed form rule n ! 2n C 3 as well as the recursively defined rule

f .n/ D

(
3 if n D 0;

f .n � 1/ C 2 if n > 0:

While many students notice the recursive pattern, the transition between a verbal description and the above

mathematical notation is not easy. Modeling the recursive rule in a CAS helps many students make the

transition. In the TI-89 system, the model looks very much like standard mathematical language:

: f(n)
: Func
: if n = 0 then
: return 3
: else
: return f(n-1) + 2
: endif
: endFunc

The interplay between recursive and closed form models for functions is a theme that runs throughout

the course. For example, early in the year, with no formal machinery behind them, students are presented

with the following problem:

Suppose you want to buy a car. You don’t have much money, but you can put $1,000 down and

pay $250 per month. The interest rate is 5%, and the dealer wants the loan paid off in three years.

What price car can you buy?

This leads to the question, “How does a bank figure out the monthly payment on a loan?”

A recursive approach lets students experiment using their CAS. They begin with a simpler model: one

in which there is no interest. Suppose the original price of the car is $10,000. If b.n/ is the balance owed

at the end of n months, the model looks like this:

b.n/ D

(
9;000 if n D 0;

b.n � 1/ � 250 if n > 0:

Students gradually refine the model to include interest. They translate the following verbal description:

What you owe at the end of the month is what you owed at the start of the month, plus 1=12 of

the yearly interest on that amount, minus your monthly payment.

into a mathematical function:

b.n/ D
(

9;000 if n D 0;

b.n � 1/ C :05
12

b.n � 1/ � 250 if n > 0:

Students can then experiment, adjusting the “250” until they make b.36/ D 0. In fact, many students add

another input to their balance function, so they can change the monthly payment on the fly. A TI-89 model

looks like this:

: b(n,m)
: Func
: if n = 0 then
: return 9000
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: else

: return (1 + 1/12*.05)* b(n-1,m) - m

: endif

: endFunc

Students love to get the monthly payment down to the penny. In fact, we go up one level of abstraction

and ask them to calculate monthly payments on several loans, seeing how the payment changes with the

cost of the car:

Pick an interest rate and keep it constant. Suppose you want to pay off a car in 36 months.

Investigate how the monthly payment changes with the cost of the car.

(1) Make a table like this:

Cost of car (in thousands of dollars) Monthly payment

10

11

12

13

14

15

16

17

18

(2) Describe a pattern in the table. Use this pattern to find either a closed form or a recursive rule

that lets you calculate the monthly payment in terms of the cost of the car in thousands of dollars.

Model your function with your CAS and use the model to find the monthly payment on a $26,000

car. Check your result with the original approximation method.

Each entry in the table is calculated by a series of approximations, and then the entire table is treated as

a new data set in which students find a surprising relationship. A snapshot of one student’s work can be

found on the next two pages.

Michelle notices a linear relationship between the cost of the car and the monthly payment. She doesn’t

yet have the background to prove that the observed relationship is, in fact, linear, but she has evidence for

a conjecture. Indeed, Eric Karnowski, a colleague at EDC, was working through this problem and found

an extremely beautiful way to use the full features of the CAS on the TI-89 to get an explicit formula for

the monthly payment with no need for successive approximation. The balance at the end of 36 months

with a monthly payment of $250 can be obtained by entering b(36,250) in the calculator (we get $764.92
as a balance). Eric thought of m (the monthly payment) as a variable, and he wanted to find the value

of m that makes b.36; m/ output 0. So, he asked the CAS to simplify b.36; m/. Rather than assigning

m a value, he left it as an indeterminant and entered b(36,m) in the TI-89. The calculator outputs an
expression in m—it gives

10453:250082011 � 38:75333552005m:

But we want this expression to be 0. So, we enter

solve(10453.250082011 - 38.75333552005*m = 0,m)
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Figure 1.
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Figure 2.
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and find that

m D 269:738 : : : :

A monthly payment of $269.74 will do the trick. For more examples like this, see [8].

Much later in the year, when studying series, students develop the technique of unstacking a recursive

definition to express it as a summation. They apply this technique to the problem of finding an explicit

formula for monthly payments. The development goes something like this:

Suppose you borrow $12,000 at 5% interest. Then you are experimenting with this function:

b.n; m/ D
(

12000 if n D 0;

.1 C :05
12

/ � b.n � 1; m/ � m if n > 0:

Notice that:

1 C
:05

12
D

12:05

12
:

Call this number q: So, the function now looks like:

b.n; m/ D

(
12000 if n D 0;

q � b.n � 1; m/ � m if n > 0

where q is a constant.

Then at the end of n months, you could unstack the calculation as follows:

b.n; m/ D q � b.n � 1; m/ � m

D q .q � b.n � 2; m/ � m/ � m D q2 � b.n � 2; m/ � qm � m

D q2 .q � b.n � 3; m/ � m/ � qm � m

D q3 � b.n � 3; m/ � q2m � qm � m

:::

D qn � b.0; m/ � qn�1m � qn�2m � � � � � q2m � qm � m

D 12000 � qn � m.qn�1 C qn�2 C � � � C q2 C q C 1/:

The last series is geometric; summing it, we get

b.n; m/ D 1200 qn � m
qn � 1

q � 1
:

Setting b.n; m/ equal to 0 gives an explicit relationship between m and the cost of the car that explains

the conjectured linearity that was noticed months earlier.

This description of the development is a much compressed version of the informal and gradual devel-

opment that students in M2 experience. And, in fact, the last part of the development wasn’t attempted in

several of the field test classes.

The monthly payment activity is typical of the kinds of activities we sought in developingM2: Activities

with easy entry, fundamental use of technology, and opportunities to develop and prove conjectures, make

connections, and experience some basic mathematical methods.

Lessons learned

Developing M2 has been a learning experience for all of us on the staff. Here are some reflections now

that the development is finished.
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� Reviews of early drafts of the chapters often contained comments like “high school kids could never
do this kind of thing.” Field tests showed otherwise. The materials had to be revised, and in many

cases completely reworked, but in no case did we need to water down the level of mathematics for

either students or teachers. I’m convinced that traditional curricula expect far too little from teachers

and students.

� A colleague and I taught sections of the field test at two different local high schools. Observing classes
or delivering occasional lessons is important, but the experience of teaching the course every day, in

an authentic school setting, seeing first hand both students’ fundamental difficulties and breathtaking

insights, informs the development process in a way that nothing else can. Three-hour arguments at

staff meetings about the sequencing of problems or the potential engagement of students are settled in

10 minutes in a classroom.

� High school students take delight in their own mathematical thinking. In addition to a teacher advisory
board, we convened a student board to help us with questions of readability and level. At the first

meeting, we asked students what they liked most about M2. Now, the students had at this point been

fitting functions to tables, proving things by mathematical induction, and working on other activities

that are usually classified as pure mathematics. Four of the students immediately responded to our

question, almost in unison, with something like “It’s realistic.” When prompted to explain, it became

clear that they liked doing real work—work that allowed them to think for themselves and to exercise

their creativity. Realistic contexts were nowhere near as important to them as a realistic style of work.

� Along these lines, students want to see how mathematics is used, but applications are just as engaging
from inside as they are from outside mathematics. Indeed, by not separating or distinguishing these

types of applications from each other, students enlarge their definitions of “real world” to include

mathematical contexts, and in the end, this makes them much more able to apply mathematical thinking

to all kinds of situations.

� Students at all levels can do this kind of work. Much of the field test of M2 was done in senior topics

classes; my students were the weakest students in their school taking a fourth year of mathematics. Poor

performance in mathematics courses has many causes, but lack of ability to think in a characteristically

mathematical way is, for the vast majority of students, not one of them.
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Alternatives to the One-Size-Fits-All
Precalculus/College Algebra Course

Bonnie Gold

Monmouth University

Introduction

How do we want our future legislators, our future news reporters, our country’s future parents to feel

about mathematics? Do we want them to believe it is a collection of rituals, requiring special skills only

achievable by a few and of no practical value? Or would we prefer that they see mathematics as a way of

describing many aspects of the world, central to many issues that will affect their lives, and a subject in

which they can achieve whatever level of proficiency they need?

If the last mathematics course students take is a traditional college algebra or precalculus course, the

vast majority of the students leave feeling defeated in their ability to do mathematics and mystified as to the

use or value of the subject. As someone at the conference, Rethinking the Preparation for Calculus, said,

“There’s something very wrong if the last course a student takes in a subject is named ‘pre’ anything.”

And yet, there is a wealth of mathematics, accessible to students at this level, that is being applied to a

wide range of contemporary issues.

Can one size fit all?

A cornerstone of the American democracy is that all children should be given equal opportunity. Unlike

many countries that start directing children to different academic tracks by age 12 or earlier, American

education treats all children as potential national leaders. We try to give them a mathematical background

that allows them to become top scientists. As a result, the standard school mathematics track leads to

calculus. While this may be a reasonable policy at the school level, by the time students arrive at col-

lege, they have become unequal in many ways. Some have been stimulated by their school mathematics,

while others have been crippled by their early mathematical experiences. Some have a clear interest in a

mathematically-intensive discipline, while others are clearly focused on the humanities, business or social

sciences and others are still undecided. One size no longer fits all (if it ever did), in college mathematics

courses.

At the conference, many felt that the problem is that precalculus (or college algebra) is trying to do

too many things for too many audiences. It’s trying to prepare students to major in mathematics and the

sciences, to be the terminal general education mathematics course, and everything in between, and is doing

none of this well. The solution I developed at Monmouth was to break up our college algebra course into

249
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several separate courses each with a clear mission and clientele. At institutions where the standard course

taken by everyone is precalculus, one could do the same at that level.

When I came to Monmouth University in 1998, college algebra was our largest course. It was taken

as the prerequisite for precalculus for students who didn’t do well on the placement examination but

intended to go on to calculus, as the prerequisite for the business mathematics sequence (a semester of

combined linear programming and precalculus, followed by a semester of applied calculus), and was

required of biology and social science majors who would continue on to a statistics course. Since all these

disciplines required college algebra, advisors used it as the default placement for almost all students. Even

students who entered planning on a major not requiring college algebra would thus not have to take a

second mathematics course should they change their major. Only students who were absolutely decided

on a major in the humanities were placed in the course (Quantitative Reasoning and Problem Solving) the

department had developed for general education purposes. By the time I arrived, even our future elementary

teachers were often taking college algebra as their only college mathematics course.

In our college algebra course, we try to give students all the algebra they need for calculus. So the

course includes linear, quadratic, polynomial, rational, exponential, and logarithmic functions, solutions of

equations involving all of these kinds of functions, simplifying expressions involving these functions, and

so on. For students continuing on to precalculus (which adds trigonometric functions and does more with

functions in general—graphing, inverses, transformations, and so on), all of this material is necessary. We

use all of this material in our standard calculus sequence. But students in biology don’t need to know how

to solve
p

2x � 3 D 5 �
p

x C 7. They do need to understand linear and exponential growth, and be able

to recognize the distinction between them. They must understand the idea of a rate of change, have a bit

of appreciation of effects of scaling, and know enough trigonometry to handle vectors in physics. Students

in the social sciences need to be able to correctly use formulas in statistics involving sigmas, have an

understanding of rates of change, including what units are involved in a particular context, and be able

to use and interpret graphs and tabular data. Our business mathematics sequence uses linear, quadratic,

exponential and logarithmic functions, but with much less symbolic manipulation than the standard calculus

course. Because of the amount of time devoted to algebraic manipulation in the college algebra course, the

students in these disciplines were not learning the things they actually needed for their majors and, since

they mostly got Cs and Ds on the second or third try, they were not learning symbolic manipulation either.

An alternative: Splitting the course

The best way to break up college algebra or precalculus to serve client disciplines depends on the particular

institution’s programs and student body. At Monmouth, the college algebra audience was sent in four

directions.

� For elementary education majors (who NEVER should have been in the course) we developed a
new course, Foundations of Elementary Mathematics that, as the Mathematical Education of Teachers

document (Chapter 1 in [1]) strongly recommends, gives these students a deeper understanding of the

mathematics they will be teaching.

� For biology majors we developed two courses, Introduction to Mathematical Modeling in the Biological
Sciences and Calculus for Biologists, only the first of which is required. We hope the better students

in the first course will be inspired to continue to the second (and some do).

� For social science majors, we developed Mathematical Modeling in the Social Sciences, which also is
an acceptable prerequisite for the business math sequence.

� For students who eventually go on to a standard calculus course, we retained College Algebra.
In addition, we retained Quantitative Reasoning and Problem Solving as our general education quan-

titative literacy course for students in majors without a specific mathematics requirement.
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The two modeling courses are at the college algebra level. We study primarily linear and exponential

models, with some time spent on quadratic models in Mathematical Modeling in the Social Sciences and

on power function models in Mathematical Modeling in the Biological Sciences. These are topics from

the college algebra course. However, we replace time spent learning symbolic manipulation by time spent

looking at a range of applications related to the disciplines whose majors take the course, including how to

interpret answers in terms of the original problem. We use many data-driven projects taken from the media

or texts in their fields. We also make extensive use of the computer; each course involves at least seven

computer lab projects done by students working in pairs. (This would work equally well with graphing

calculators.) We use Excel as the computational tool, since it, or a similar spreadsheet, will be available

to most of these students once they graduate and start working. (In addition, all students at Monmouth

are required to take an introduction to information technology, which includes some work in Excel.) We

assign for homework primarily the problems from the texts that are relevant to students’ fields and use

examples from those fields on exams as well as in labs.

Before developing these courses, I spoke with the chair of the biology department and then to the

whole department at one of its meetings. I also spoke to the chairs of the social science departments,

whose students had been taking college algebra as a prerequisite for statistics, and to the faculty member

responsible for their statistics course, who is in the psychology department. I wanted to find out, from the

perspective of the faculty in these fields, what they needed students to get from college algebra.

For the social sciences, the main skill they wanted was correct understanding of order of operations.

They also felt that students in our general education offering didn’t develop the necessary level mathematical

sophistication. (The students in our quantitative reasoning course are, on average, even more math phobic

than our social science majors. Since this is their last mathematics course, and the purpose is, in part,

to make them less math phobic, we cover topics rather gently, which doesn’t get them to the level of

sophistication the statisticians in the social science departments wanted.) The biologists wanted a bit

more—their students need some knowledge of exponential and logarithmic functions for chemistry and a

bit of trigonometry for physics. I looked at what was available among current textbooks and designed a

course for social sciences based on the Kime-Clark text [2], and one for biology based on the Crauder-

Evans-Noell text [3]. Once I had a tentative syllabus and text, I again discussed the courses with the

client departments to ensure the new courses would meet their needs. The departments were delighted to

be consulted by the mathematics department about what they wanted for their students. They were very

cooperative and helpful and promptly changed their requirements to make these courses required of their

majors.

Students are much more responsive in these courses than they were in college algebra. They can see the

use of the mathematics they are learning and are not overwhelmed by attempts to learn too many techniques

in too short a time. There are some problems that don’t go away. Most students take these courses in their

first semester or two, and many haven’t yet adjusted to college and the need to take responsibility for their

own learning. But the old complaint - “Where will I ever use this?” - has gone away, and students view

the courses as important to their future work. Because we’re not trying to cram so much into the courses,

there is time to make sure those who are working (which seems to be a higher proportion than in the old

college algebra course) actually understand what we’re trying to teach. Faculty seem to find these new

courses less painful to teach because it’s easier to interest students in the material.

Advising issues

The head of our advising center was very worried when we added these new courses, because many

students come in undeclared or change their major in their first year or two. We’ve worked hard with the

advising center to minimize situations in which students need to take an additional mathematics course if

they change majors. If students come in genuinely undeclared (rather than simply vacillating between two
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majors), we suggest that they wait a semester before taking mathematics (unless they place into calculus,

since all majors except elementary education will accept calculus as a substitute for their requirement). The

education school (with the mathematics department’s support) won’t accept anything else as a replacement

for the course we developed for future elementary teachers. We require students to be sophomores for that

course, since by then they have started to think of themselves as teachers as well as students and take

it more seriously. Thus, those undeclared majors who think they might teach at the elementary level are

encouraged to wait until their sophomore year.

We give special help to the small number of students who start out majoring in the social sciences

or biology and then change their major to a subject requiring calculus (mathematics, chemistry, computer

science, software engineering). The two modeling courses are acceptable as replacements for each other.

Because students get a course oriented toward their current interests, they take it more seriously than they

would a course unrelated to their proposed major. Yet if they later decide to change majors, their graduation

isn’t delayed by the mathematics course they took.

My department feels strongly that a course emphasizing symbol manipulation, rather than concepts, is

an inappropriate terminal mathematics course. Therefore, we removed the standard college algebra from

the list of courses satisfying the mathematics component of the university’s general education require-

ments. It still yields three credits toward the total number needed for graduation, but it doesn’t satisfy the

mathematics requirement. This got the attention of advisors fairly quickly and made implementing these

changes relatively simple. In addition, the department secretary screens the list of students registered for

college algebra and telephones all those whose major doesn’t require calculus to warn them that college

algebra does not meet the general education requirements.

Scheduling issues

One potential problem with having a range of entry-level courses is that it’s much easier to fill students’

schedules if there are many sections of a given course. There are a variety of ways one can partition the

students flowing through college algebra or precalculus, depending on institutional enrollment patterns.

Of the various college algebra alternatives we offer, only the course for biology majors has fairly few

sections—three per year. To ensure that these fill and are offered at times biology students can take them,

we schedule them in consultation with the chair of biology. For all other courses we have sufficiently many

students to fill at least three sections per semester, and scheduling them has not been a problem.

Articulation issues

After our Undergraduate Studies Committee approved these new courses, I contacted our three main two-

year colleges that feed into Monmouth University. I asked the chairs of their mathematics departments if

I could visit them to discuss the changes we were making and explore what could be done in terms of

their students who planned to transfer here. Of the three, the closest one was initially rather hostile to the

new courses, since we are only one of three major client schools for their graduates. However, within a

year they had developed a version of our social science course that meets our requirements and also meets

the requirements of the main state university (Rutgers) where many of their students continue. One of the

other two feeder schools already had a course similar to our social science version, and the last one was

interested in at least trying one out. Two of the three schools were also interested in what we were doing

with the elementary school teachers. They were not happy about our plan not to give general education

credit for college algebra. On further investigation, it turned out that the lock-in articulation agreement

to which Monmouth University has agreed promises that, if their students complete an associate’s degree

at their school, then their college algebra course will meet Monmouth’s general education requirements.

However, our students can’t simply take a course at another school to get around our requirement—the

agreement only applies to students who complete a full associate’s degree.
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In retrospect, it would have been better if I had contacted our neighboring two-year schools earlier

in the process and involved them in the course development. I was new to an institution with a large

transfer population, and this is one mistake I won’t make again! But the chairs of the other schools were

appreciative of my taking the time to visit them to discuss what we were doing.

Another way to cut the pie

Portland Community College has split college algebra into three versions: College Algebra for Liberal Arts,

College Algebra for Business, Management, Life and Social Science, and College Algebra for Math, Sci-

ence and Engineering, which have the same course number, but a terminal letter, A, B or C, to distinguish

among them. All three courses cover linear functions investigated graphically, numerically, symbolically,

and verbally as well as logarithmic, exponential, polynomial and rational functions. They differ primarily

in the applications considered. The business and science versions also include solving systems of equa-

tions. College Algebra for Liberal Arts is considered a terminal course, but the other two are accepted

interchangeably as the prerequisite for Elementary Functions. This latter leads to the standard calculus

sequence, to Calculus for Management, Life and Social Science, as well as to Discrete Math I. Presumably

most students planning to major in business or the social sciences start in College Algebra for Business,

Management, Life and Social Science, while those going into the sciences start in College Algebra for

Math, Science and Engineering. If they change their major, they can still continue without retaking a course.

All three versions were designed to be transferable and are accepted by the Oregon universities. The state

has guidelines that say what must be taught in a course in order to give it a specific title, for example

College Algebra. These guidelines are fairly broad—thus allowing for the variants Portland Community

College has developed—and consequently courses vary between institutions, although they all include the

same core material. College Algebra for Liberal Arts fulfills the college-level mathematics requirement at

the other universities, but may transfer in with a different title. The other two versions are accepted as

college algebra.

Summary

Splitting college algebra into several courses more relevant to students’ majors requires an understanding

of the needs of the particular institution. It also requires a few days of effort talking with client disciplines.

However, the time thus spent does wonders for the image of the mathematics department at the institution

and results in much less grief for faculty teaching these courses, as students are more motivated to learn

the mathematics involved. And, in the long run, it should also result in a less math-phobic and antipathetic

public.

Acknowledgement: My thanks to Jerry Kissick at Portland Community College for information on their

variants of college algebra.
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the Mathematics Community

Changes are taking place. New materials are being developed. New pedagogies are being implemented. Data

are being collected at schools here and there. Conferences are being held where colleagues meet to discuss

the issues. Tools to assess student learning are being developed and new programs are being evaluated.

Conversations are taking place between members of the mathematics community and colleagues in partner

disciplines and between mathematicians who teach at the collegiate level and at the high school level.

However, the biggest challenge confronting refocusing the courses below calculus is to launch a national

initiative. This is a complex and immense undertaking. In this section, Bernard Madison stresses, once

again, the importance of drawing on what was learned during the calculus reform efforts and building

on our successes. Recalling that the sound-bite for the calculus movement was “a pump, not a filter,”

Bernard asks: “What is the headline for precalculus reform? Is there a nugget or snippet that will bring

to mind the goals of this effort?” Naomi Fisher and Bonnie Saunders describe a national program to help

mathematics and mathematical science departments strengthen their undergraduate programs. Sheldon

Gordon summarizes what has been done-to-date to refocus the courses below calculus, and he outlines an

ambitious, comprehensive, collaborative plan for implementing systemic change.

One of the reasons given to support the need for precalculus reform is the reform of calculus. Some argue

that calculus has changed little, and some argue that what changes there have been have not helped. Others

have quite different views. However one views calculus reform, it did serve to galvanize the community we

address on curricular and pedagogical issues. This and significant societal changes, technology advances for

one, make the challenges of precalculus reform very different from those of its ancestor, calculus reform.

Nonetheless, our effort should draw strength and ideas from our past experiences while avoiding pitfalls and

building on past successes. . . .

Proposals for change must be clear about subjects and goals. They must take into account the other priorities

of the mathematics community and the forces that constrain actions. Proposals must be honestly presented

and patiently tested. Most of all, in considering calculus and the preparation for calculus, we must not

forget that most US citizens will never study or use calculus. Whatever is proposed must respect the general

education of all students.

Launching a Precalculus Reform Movement: Influencing the Mathematics Community

Bernard L. Madison

The population of students falling into the category of those who need to take a mathematics course, but do

not intend to advance to a calculus sequence is a widely varying group, which is difficult to classify. Even

knowing who they are is difficult. If college algebra is the only option for them, they are mixed in with

other students who intend to take calculus. Putting a name to the group is difficult, but for simplicity this

paper refers to these students as rest-of-us students. . . .

In many math departments, the students enrolled in courses below calculus who do not intend to take

calculus account for the majority of enrollment. The numbers alone make it critical that these students' needs

be addressed. Beyond whatever mathematics knowledge and skills the students learn in these courses, they
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are forming attitudes, or reinforcing earlier attitudes, about mathematics that are likely to be fixed at this

time.

Mathematics Programs for the “Rest of Us”

Naomi D. Fisher and Bonnie Saunders

Any initiative to refocus the courses below calculus must be a collaborative effort among the MAA,

AMATYC, and NCTM, since each has a significant interest in these courses. However, a collaboration

of this scale and complexity is unprecedented. . . . Perhaps the most important activity needed to launch

a national initiative is to conduct a reasonably large-scale data collection project to collect and analyze

information on the student population that is actually taking these courses. . . . Unlike the calculus reform

initiative a wide variety of projects have already developed effective and innovative materials that bring

new visions to the courses below calculus, including precalculus, college algebra, quantitative reasoning,

and developmental algebra. What is needed is a cohesive plan to identify and publicize model programs

that have adapted and implemented these projects. . . . What is needed is a comprehensive effort designed to

influence members of the community to get them to try new versions of the courses themselves or to allow

and encourage other members of their departments to do so. . . . To be successful, this initiative must reach

out beyond the mathematics community for support and assistance.

Where Do We Go From Here? Creating a National Initiative to Refocus the Courses below Calculus

Sheldon P. Gordon
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Launching a Precalculus Reform Movement:

Influencing the Mathematics Community

Bernard L. Madison

University of Arkansas

Introduction

In 1982 I was chair of a mathematical sciences department that included statistics and computer science

and a PhD program in mathematics. Resources other than booming student enrollments were scarce. In

an act of frustration I wrote a letter to the presidents of the American Mathematical Society (AMS) and

the Mathematical Association of America (MAA) asking for help in addressing the problems facing my

department and many other departments. That letter opened the door to my involvement, over the next

decade, in several interconnected efforts where influencing the mathematics community was a central and

critical focus, including the Mathematical Sciences in the Year 20001 project, Calculus for a New Century,2

A Challenge of Numbers [1], and Moving Beyond Myths [2].

The above and other initiatives in the 1980s and 1990s were successful in influencing the mathe-

matics community to revitalize undergraduate mathematics and to reform calculus. The effects of these

successes and the lessons learned bear heavily on efforts to influence that community again and improve

the preparation for calculus. One of the reasons given to support the need for precalculus reform is the

reform of calculus. Some argue that calculus has changed little, and some argue that what changes there

have been have not helped. Others have quite different views. However one views calculus reform, it did

serve to galvanize the community we address on curricular and pedagogical issues. This and significant

societal changes, technology advances for one, make the challenges of precalculus reform very different

from those of its ancestor, calculus reform. Nonetheless, our effort should draw strength and ideas from

our past experiences while avoiding pitfalls and building on past successes.

The community

I mentioned community. The community I address consists largely of academic mathematicians—faculty

at universities, colleges (four-year and two-year) and schools. This is a large and diverse community,

with a variety of priorities. The 2000–2001 Combined Membership List (AMS, AMATYC, AWM, MAA,

1Mathematical Sciences in the Year 2000 (MS2000) was a joint project of the Board on Mathematical Sciences and the

Mathematical Sciences Education Board at the National Research Council. The aim of MS2000 was assessment and renewal of

US undergraduate mathematical sciences.
2Calculus for a New Century was the 1987 national colloquium that brought national attention to calculus reform.
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and SIAM)3 lists 54,030 individuals, with approximately 50,000 of these being members of AMS or

MAA. The National Council of Teachers of Mathematics (NCTM) has approximately 80,000 individual

members, including many elementary and middle school teachers. The community we need to address,

or try to influence, in order to launch a precalculus reform movement, is mostly contained within this

community of approximately 135,000. From one view, since preparation for calculus is contained in

school mathematics, this issue is one for the 80,000 NCTM members. From another view, since much of

the preparation for calculus does occur in colleges, and because colleges’ curricula and courses are more

susceptible to piloting reform efforts, the target audience could be considered within the 50,000 AMS and

MAA members. It is this latter view that will dominate most of the analysis in this paper.

The professional activities within this community range from full-time attention to creating new mathe-

matics in the research-intensive environments to full-time teaching of basic topics in arithmetic and algebra.

Priorities for professional lives and measures of success are likewise spread over a large landscape.

There are pressure points for influencing this large and varied community, and I outline a few from

my own experience—in national reform efforts, as department chair for ten years, as dean for ten years,

and in various positions with the AP4 Calculus program of the College Board for twenty years. In much

of what I say I draw parallels with the calculus reform movement, which is part of the rationale for this

effort and addressed essentially the same audience.

Need for change

There must be need for the proposed changes. Since the need for mathematics education is rarely only

local, need for change is national. Since preparation for calculus implies a single purpose—getting ready

for calculus—the argument for need has to hinge on the needs of calculus. So, should this be re-titled

improving calculus? If rethinking the preparation for calculus has benefits other than those realized through

calculus, then the argument needs recasting to include these other benefits. Not all students in precalculus

courses go on to calculus. How will the reform courses serve them?

The arguments for the importance of calculus have been made far and wide. Some believe that these

arguments have been made too well. They view calculus as a magnet with too much influence in school

and college mathematics curricula. Arguments for improved calculus education rather than more calculus

education mute much of this debate. Arguments for changes in precalculus that increase success in calculus

are on the edge of the debate. Arguments for a larger share of the curriculum will probably fail; a smaller

more efficient share would have more appeal.

Are there differences in the preparation for calculus for different student populations? College calculus

attracts a variety of students with wide-ranging interests and education goals, from art majors to business

and engineering students. Some students are in calculus for general education; others are there to learn

the techniques for applications in other courses or in their chosen profession; still others are there because

calculus is seen as a good testing ground for study in their selected majors.

The preparation for calculus has been mostly algebra and trigonometry, with considerable time spent

on algebraic manipulation. Calculus courses have also emphasized the techniques of differentiation and

integration. The need for these techniques has been reduced by technology, so some calculus courses have

shifted to emphases on the concepts of calculus. Many of the students mentioned above will never use

3AMATYC = American Mathematical Association of Two-Year Colleges; AWM = Association for Women in Mathematics;

SIAM = Society for Industrial and Applied Mathematics.
4Advanced Placement (AP) Calculus is a program of the College Board. Two AP Calculus courses, AB and BC, are taught in

high schools following the AP Calculus course descriptions. Each year examinations are given and graded on a 5-4-3-2-1 scale

with these grades being roughly equivalent to A-B-C-D-F. Many colleges and universities award college credit for one semester

of college calculus for grades of 3 or better on the AB examination and two semesters of college calculus for grades of 3 or

better on the BC examination.
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the techniques of calculus, but the ideas of calculus—for examples, rate of change, approximation, and

optimization—have relevance in many intellectual endeavors. So, perhaps the need for preparation for

calculus is much less now, or much different.

Whatever the proposal, need must be demonstrated, clearly and cleanly, taking into account the goals

of preparation for calculus. What are the consequences of not acting, and what will we get for our work?

Compatible with other priorities

Probably the most important consideration when seeking to influence the mathematics community is

considering how what is being proposed fits with other priorities of this community. Some in the community

have as their highest priority production of original research. Maintaining enrollment levels are critical

at some institutions. Transferability of credit is critical, especially at two-year institutions. Teaching by

graduate assistants is a big part of the precalculus instructional programs of many institutions. The needs

of client disciplines are critical. How will improving the preparation for calculus interact with these and

various other priorities? Will it take time away from research? Can the reformed courses be taught by

graduate assistants and adjunct faculty?

For many students, the preparation for calculus occurs in school mathematics, and, in the view of many

college faculty, all the preparation for calculus should be in school mathematics. Consequently, improving

the preparation for calculus means changes in school mathematics, and several other forces come into play.

Are teachers prepared to teach the proposed courses? (This was a major issue in changing AP calculus

and requiring graphing calculators.) Exit testing from high school is in place in several states and being

considered in others. College entrance and placement examinations must be considered.

Implementing any significant reform of precalculus courses will need to be linked with other efforts

and take pressures and priorities into account. If these are not taken into account, they may become tethers

to moving ahead with the reform efforts.

Empirical evidence

Improved education is difficult to document. Nonetheless, if the mathematics community is to be con-

vinced to take a different path to calculus, that path has to be lighted by a few candles of successful

innovations. These innovations have to pass some tests. Can they be multiplied and transferred to other

student populations with other teachers? Will they require more resources, both fiscal and human? Are

these resources available? Is the evidence of improved education strong enough or significant enough to

warrant the risks of change? How will surrounding educational efforts be affected?

Although others know much more than I about the success of precalculus innovations, different ap-

proaches have different appeals, which is important when attempting to influence others. Among the

approaches I know are:

� Just-in-time prerequisites
� Front-loaded prerequisites
� Independent value courses
Just-in-time calculus courses insert prerequisite material from algebra, geometry and trigonometry as

needed. Front-loaded calculus courses cover prerequisite material in the first portion of the course. This

model has been used in AP calculus courses in high schools. In fact, prior to 1998, the AB calculus

course description included the ‘A’ material, which was prerequisite material. The 1998 course description

dropped the ‘A’ material from the course description but kept the AB rubric. Both just-in-time and front-

loaded models appeal because they focus on success in calculus, and strand fewer students with just the

precalculus experience.
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The third model consists of courses that have educational value beyond preparation for calculus. These

include problem-based courses in algebra and trigonometry, where the precalculus material is learned in

real-world contexts. The effectiveness of these courses versus the effectiveness of a streamlined route to

calculus needs study. The route that has independent value for general education is much easier to sell to

both students and policymakers.

Need a headline

What is the headline for precalculus reform? Is there a nugget or snippet that will bring to mind the

goals of this effort? All of us have dismissed and decried these sound bite approaches to US politics

and advertising, but we have used them big time in various efforts. In calculus reform, there were two,

“A Pump, not a Filter,” and “Lean and Lively.” In current teacher education, Liping Ma’s PUFM [3]

acronym (which stands for Profound Understanding of Fundamental Mathematics) implies broad changes

in what teachers need to know and how they need to learn. In the early days of the efforts to stimulate

reform in collegiate mathematics, Ken Hoffman5 had his own version of “It’s the economy, stupid”6 that

demonstrates the need for a more focused headline. Hoffman’s headline was “x is the problem.” Some7

would argue that this is indeed an appropriate headline for a precalculus effort. Hoffman claimed that

everyone had his or her candidate for x and that x varied across a large domain that included teaching

by graduate assistants, bad textbooks, and the public schools. As long as the discussion has this kind

of dispersion, focused efforts will be deterred. Focus is necessary and the headline needs to capture that

focus.

At the risk of stepping outside my charge to write about influencing the mathematics community, let

me suggest that our current precalculus suffers from two ills: too many students and too much material.

Many students take courses that have as their central purpose preparation for calculus, but these students

never take calculus. Much of the material in courses prior to calculus is not necessary for calculus. Both

these ills are rooted in the dual purposes of these courses—preparing for calculus and general education.

Neither is served well. So, perhaps our headline is “less is more.”

What are the issues?

Calculus reform was partially driven by changes in technology, by the introduction and rapid development

of widely available computers and calculators. Is technology a major issue in the preparation for calculus?

To what extent do we know how computing power, graphing technology, and computer algebra systems

change preparation for calculus?

Another impetus for calculus reform was to slim down the topics, to reduce the size of textbooks—

toward a leaner course. Are we trying to cover too much in precalculus? The second half of lean and lively

is lively. Calculus courses were seen as needing more life, more discovery and less narration. Surely, lean

and lively are issues for improving the preparation for calculus.

More contextual problems was a major issue in calculus reform. That may not be an issue here if the

aim is the quickest route to calculus where the contextual problems can be attacked with both precalculus

notions and calculus notions.

5Ken Hoffman was a faculty member at Massachusetts Institute of Technology but spent many years in Washington working

with the Joint Policy Board for Mathematics, and the Board on Mathematical Sciences and the Mathematical Sciences Education

Board at the National Research Council.
6In the 1992 Presidential Campaign, James Carville, a Clinton strategist, had this slogan posted above his desk at Clinton

Headquarters in Little Rock. It became the headline of the Clinton strategy.
7In “What Mathematics Should Everyone Know and Be Able to Do?” (draft, 2001) Arnold Packer argues that one should not

use x and y as variables names until the junior year of college.
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Improved communication skills was an issue in calculus reform. Students needed to learn to read,

write, and explain mathematics. Surely, improved communication is an issue in preparation for calculus.

Are there issues in improving preparation for calculus that are not issues in improving education in

calculus? The articulation issue is different for precalculus since precalculus is available in all high schools.

The calculator and computer issue is different, especially in precalculus courses with the single purpose

of success in calculus.

Stamp of approval

Mathematics faculties and departments have many demands on their time and resources. Very often prior-

ities are set by what is viewed as important by agencies or organizations they respect or give support to

their work. Therefore any effort to influence this community needs the stamp of approval from some of

these agencies or organizations.

The calculus reform movement received several stamps of approval in 1987. Two of the more significant

ones were the Calculus for a New Century (CNC) colloquium (with Sloan Foundation support) in the bully

pulpit of the National Academy of Sciences and the announcement by the National Science Foundation of

a program of grants for calculus reform projects. The proceedings of the CNC colloquium were published

by the MAA and soon thereafter calculus reform projects were underway at prestigious institutions (for

examples, Harvard University and Duke University). The movement had prestige. Prestige combined with

projects that had a range of institutions involved—universities, liberal arts colleges, and two-year colleges—

paved the way for many more efforts at many different institutions.

The NSF support of the conference on“Rethinking the Preparation for Calculus” was a beginning, and

the publication of this volume by MAA adds more luster. AMS is partnering with Mathematicians and

Education Reform (MER) in efforts aimed at precalculus and other collegiate courses. These stamps will

help. Now, real support is needed.

Real support

Calculus reform was an approved activity after the CNC colloquium in 1987, but without the impetus of the

NSF program of grants for reform projects, the reform would have moved more slowly. Part of the reason

for the colloquium was to generate proposals for the NSF program, and that effort was successful. One

should not judge the effectiveness of the NSF program of grants solely on the reports of the NSF-funded

projects. Many projects were carried out with support from educational institutions and other agencies

or organizations. And one major change, the rewriting of the AP calculus course descriptions, was not

NSF-funded, but no doubt was strongly influenced by NSF-funded projects.

Improving the preparation for calculus will require real support—money and energy—from a variety

of sources. It is likely that much of this will need to come from educational institutions themselves since

there is considerable competition for agency and foundation funds for reform educational efforts.

Top-down and bottom-up

Efforts to influence change in mathematics programs in colleges and universities are much more likely to

succeed if they grow from within the mathematics faculty and have support and encouragement from the

university administration. Calculus reform had strong support from university disciplines whose students

study calculus, notably the physical sciences and engineering. Considerable work was directed at these

client disciplines to secure their support. It was the president of the National Academy of Engineering

who spoke the phrase “pump, not a filter” in his keynote to the CNC colloquium. This support translated

to support from university administrations.
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There is considerable interest among university administrators for improved courses in mathematics,

especially precalculus mathematics. This interest centers on improved student learning and, as a conse-

quence, better student retention. Leaner and livelier courses would probably be popular, and if they lead

to more student success, they will receive strong support from many university administrators.

Bottom-up initiated changes are difficult in some situations. School mathematics teachers have far

less freedom to change and to experiment with innovations than do college faculty; and two-year college

faculty may be restricted from innovations because of transfer agreements.

AP calculus and technology: the levers of calculus reform

There were two major levers that affected the reform of calculus courses and significantly broadened its

effect. These were: (1) the development of affordable graphing and calculators that support a computer

algebra system (CAS) and (2) the revision of the AP calculus course descriptions to include many of the

features of reform calculus courses.

The calculus reform movement began with two small conferences, one at Williamstown College in

1983 and another at Tulane University in 1986. The large national colloquium CNC was held in October

1987. About this time hand-held graphing calculators were appearing and soon became generally available

at affordable prices. In 1989, the AP Calculus Development Committee (responsible for test construction,

course descriptions and policy recommendations) began discussions about the use of calculators on the AP

calculus examinations. Subsequently, scientific calculators were required in 1993 and 1994, and graphing

calculators were required from 1995 onward. By 1999, calculators with CAS were permitted.

Because AP calculus was taught in high schools across the country to approximately a quarter-million

students, the AP calculus policies have considerable immediate effect. The preparation for the implemen-

tation of the use of calculators in AP calculus was extensive and was centered on a program of TICAP8

workshops held following the 1993–1996 AP calculus readings at Clemson University. This effort prepared

hundreds of AP calculus teachers to teach thousands of students using graphing calculators.

Around 1994, the AP calculus Development Committee began discussions of rewriting the AP course

descriptions both to reflect the use of technology and to incorporate some of the ideas of reform calculus

courses in the AP calculus courses. A conference of reformers and traditionalists from the mathematics

community was held to get advice, and consensus exceeded most expectations. A draft was produced,

made public and discussed at several national meetings. In 1996 the revised course description was adopted

for implementation in 1998, giving time for teachers to prepare. Some had considered the AP calculus

program to be an impediment to reform since AP calculus is modeled after a typical college course. Quite

the opposite was the case; AP calculus provided one of the first national recognitions of the reality of

calculus reform.

Fifteen years separated the Williamstown Conference in 1983 and the rewritten AP calculus course

descriptions in 1998. In between these two dates, there was considerable discussion within the mathematics

community about reformed calculus ideas. The discussions were healthy and should serve to inform and

inspire the reform of preparation for calculus.

What about strategy?

Advertising campaigns, political campaigns, or fund-raising campaigns usually have intricate and expensive

strategies mapped out. Should a campaign to influence the mathematics community have a strategy?

Probably, and the conference for which this paper is written should give the general structure of a campaign.

8TICAP= Technology Intensive Calculus for AP.
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The MS2000 project was aimed at the assessment and revitalization of undergraduate mathematics.

When MS2000 began in 1985–86, the calculus reform effort was still reasonably small. Revitalization

of calculus, not necessarily reform, was a part of MS2000, but there were other surrounding issues:

remediation, resources for departments, faculty supply and qualifications, precalculus mathematics, general

education mathematics, and teacher education, to name a few. But in 1986 it became clear that the calculus

reform movement was gathering steam, so the MS2000 project joined the calculus reform movement to

sponsor the CNC colloquium. Some argued that this focused too much effort on one part of undergraduate

mathematics. Others argued that if we could reform and revitalize calculus, then the effect would spread

to other parts of undergraduate mathematics. The latter view prevailed, the saddled horse taken. History

will see if that was correct.

The above describes a strategy of the MS2000 project that is essentially opportunistic in nature. The

precalculus movement needs to be alert for such opportunities. The technology lever is still there; the AP

lever is less relevant than it was for calculus. Better general education is a possible powerful argument, if,

in fact, better preparation for calculus means better general education.

Whatever the opportunities, there needs to be public discussion of the issues. The conference, “Re-

thinking the Preparation for Calculus,” is a part of that. The 1993 conference/workshop, “Preparing for

a New Calculus,” and the subsequent proceedings [4] have not received much attention. This effort was

probably too early in the calculus reform effort; attention was still focused on what the new calculus would

be.

Conclusion

In order to influence the mathematics community, proposals need to be well reasoned and important.

Mathematicians have high standards for proofs and preponderance of evidence. They are busy with their

research and teaching, and usually hold strong views on educational issues. Their experiences in learning

mathematics are not typical. Most of them had little trouble with precalculus or calculus topics, and

consequently they see limited reasons to make significant changes in the system that worked so well for

them. On the one hand, the mathematics community is a tough audience; on the other, it is a rich source

of questions and ideas that sharpen our arguments.

As I rethink the preparation for calculus, several questions surface. What is preparation for calculus? Is

it twelve years of school mathematics or is it one school or college course? Can we afford the attention that

calculus now receives? How can we make the system more efficient? How can we give more independent

value to our courses? Why do we always seem to be going somewhere? How does precalculus take shape

with full use of graphing and CAS devices? What’s the best preparation for understanding the ideas of

calculus?

Proposals for change must be clear about subjects and goals. They must take into account the other

priorities of the mathematics community and the forces that constrain actions. Proposals must be honestly

presented and patiently tested. Most of all, in considering calculus and the preparation for calculus, we

must not forget that most US citizens will never study or use calculus. Whatever is proposed must respect

the general education of all students.

Acknowledgements: The author is indebted to Tom Rishel who read a draft of this paper and made

suggestions that improved the final version; however, all the mistakes are the author’s.
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Introduction

Beginning in 2001, the American Mathematical Society (AMS) and the Mathematicians and Education

Reform (MER) Forum began a three-year project, funded by the National Science Foundation, to help

mathematics/mathematical science departments strengthen their undergraduate programs. Entitled Excel-

lence in Undergraduate Mathematics: Confronting Diverse Student Interests, the project focuses on the

different groups of students in mathematics and their particular mathematical needs. The goal is to develop

curricula and instruction that is valuable to these different student populations. The project seeks to build

a network of departments that are committed to (1) reviewing and assessing how well their undergraduate

program is working for their students, and (2) revising existing courses and developing or adapting new

courses to afford all their students a meaningful experience in learning mathematics.

The heart of the project is six integrated 4-day workshops, two in each academic year, each of which

will bring together faculty teams of 2 to 4 members from some 20 or more colleges and universities

to discuss curricular, instructional and implementation issues relating to the mathematics offerings for

different groups of students. The first workshop, Excellence in Undergraduate Mathematics: Mathematics

for the “Rest of Us,” was held on December 6–9, 2001 at Arizona State University. It focused on students

who fulfill their mathematics requirement with a course or courses below the calculus level. This student

population, which accounts for the majority of instruction in most mathematics/mathematics sciences

departments, represents a variety of academic interests.

Prior to the workshop, the departments were asked to complete a comprehensive departmental survey.

The purpose of the survey was to obtain detailed profiles including:

� information about the student population of the institution

� information about the students enrolled in mathematics courses

� information about the mathematics faculty

� courses for students in the focus population of the workshop

� descriptions of three successful educational initiatives

� descriptions of three challenges faced by the department

This information was summarized and distributed to the participating departments as part of the follow-

up of the workshop.
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Note on ‘‘rest-of-us” terminology

The population of students falling into the category of those who need to take a mathematics course, but

do not intend to advance to a calculus sequence is a widely varying group, which is difficult to classify.

Even knowing who they are is difficult. If college algebra is the only option for them, they are mixed in

with other students who intend to take calculus. Putting a name to the group is difficult, but for simplicity

this paper refers to these students as rest-of-us students. The term refers to those students who need or

want a mathematics course but do not intend to take calculus. The term rest-of-us course refers to any

course that may be taken by rest-of-us students whether or not the course is intended to be on the calculus

track. We will distinguish between rest-of-us students and other students in rest-of-us courses whenever

possible.

Profile of participating departments

Thirty-three departments participated in the December workshop, which included departments from re-

search universities (11), other comprehensive universities (11), four-year colleges (5), and two-year col-

leges (6). These departments represented seventeen different states from across the country as shown on

the map.

Students

The total number of students represented by the participating institutions is over 200,000. These students

represent a cross section of America as represented in the nature of the institutions and their geographical

locations, and the cultural background of the students.

Departments do not often have available detailed information on the students enrolled in their classes,

so it can be difficult to represent trends among students taking mathematics courses. It is particularly

difficult to find information about rest-of-us students. Many of these students are mixed in the lower-level

courses with students who do intend to complete a calculus sequence, and many of these students are

marginal to the mathematics world. However, it appears that 42% of the students enrolled in a math course

at the participating institutions are enrolled in a course that does not require calculus. In contrast, the

number of mathematics majors is a slim slice of the pie at 2.6% of all students studying mathematics, but

if we include only the pure mathematics major, the percentage reduces further to 1.4%.

Faculty

The number of faculty in the participating departments ranged from 11 at a small liberal arts college to

100 at one of the large state universities—the average was 31. Frequently, adjunct faculty do the majority

of the mathematics teaching at this level. Among the reporting departments from four-year institutions,

33% of the faculty are adjunct employees. This figure varied from 0% at a small state university to 79%
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at a private urban university. Looking at just the 2-year schools in the study, the percent of adjunct faculty

jumps to almost 60%. All of the 2-year schools in the survey employ at least 30% adjuncts and one

department reported that 83% of the faculty are adjunct employees.

Courses for rest-of-us students

In the initial survey of the departments, the departments were asked to describe the courses offered for

students, who need to meet some mathematics requirement, but do not intend to take calculus. The following

chart summarizes this information by type of course: developmental, college algebra, trigonometry and

precalculus, statistics, finite math, elementary education, math for liberal arts, and modeling.

Course Type # of schools

reporting

Average

class size

Comments

Developmental 16 22 Six departments reported more than one course of this type.

College

algebra

14 29 Most of the departments felt that this traditional and remedial

course was not working.

Trigonometry 12 39 Four departments listed separate trigonometry courses. One listed a

college algebra with trig course. The others are precalculus courses.

Most departments felt that these courses do not work for students

who do not intend to take calculus.

Elementary

education

9 29 Most of the departments reported hands-on learning, use of ma-

nipulatives, and problem solving as part of these courses. Five

departments reported having a 2-course sequence.

Finite

mathematics

9 30 Business majors usually take this course but there are courses de-

signed for general education that includes education majors. Many

students will continue to a calculus course, most likely a calculus

designed for business majors.

Statistics 17 29 Many of the departments are developing statistics courses. Some

are designed for general education requirements; some for other

majors like business, biology, political science, geography, psychol-

ogy, forestry, or environmental science. One department mentioned

two courses.

Math for

liberal arts

17 30 Two departments mentioned courses that are designed for future

teachers. One course was interdisciplinary. Most mentioned general

education requirements.

Modeling 6 21 Modeling was also often mentioned as part of the liberal arts

courses.

The second column in the chart indicates the number of schools that reported at least one course of

that type. It should be noted that, although all of the 25 departments that completed the survey reported at

least one course, a department did not necessarily report all the courses offered at this level.

The third column reports the average class size. For large lectures this number represents section size.

Class size varied from 10 or 12 at small schools to 45 or 60 at some of the larger universities.

Successes and challenges

Participating departments came to the workshop anticipating discussion of issues that were already of great

concern to them. In advance of the workshop, each department was asked to identify and describe three

successful educational initiatives in the department/institution and three initiatives that the department

would like to develop to meet the needs of rest-of-us students.
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We can identify four major areas in which the participating departments are attempting change to

improve the quality of education offered to those students who will not be continuing in mathematics.

Technology

Fourteen departments listed improvements in some sort of technology: web-based learning, com-

puter labs, graphing calculators, use of specialty software in courses.

Development of new courses

Nineteen schools listed development of specialty courses including quantitative literacy, modeling

or other application-driven courses, and math for elementary education majors, technology and

business. Nine schools mentioned new statistics courses at this level.

Changes in Pedagogy

Changes mentioned by the departments included new placement procedures, peer mentoring or

resource centers, smaller class size, self-paced or group work alternative assessments, using real-

life applications, and teaching problem-solving.

Collaboration with other institutions

Types of collaboration reported included long term education reform efforts with other colleges;

articulation between colleges and community colleges, as well as interdisciplinary collaboration

on courses and/or requirements within the institution.

Those areas where departments see future challenges often overlap with areas where others have already

seen success. For example, some departments report success with their courses for elementary education

majors while other departments are seeking to develop these courses. We summarize the challenges in

several categories:

� Adjunct faculty. A large number of adjunct faculty are employed to teach rest-of-us courses. This
provides many challenges for departments. Two departments mentioned better coordination of courses,

for example, by developing strong coordinators, as a means of improving education with a large adjunct

faculty.

� Collaboration. One department mentioned a university-wide goal of a new curriculum mandate to
“help students learn to use and value the lenses of different disciplines, and seek the connections

between them.” Other forms of collaboration cited were the development of interdisciplinary courses

or links between math courses and other disciplines, increasing the understanding of mathematics

courses in other disciplines, understanding what is being done in the rest of the country, and merging

statistics courses which are sometimes offered by each client department separately.

� Courses. The types of courses departments would like to see developed or improved include quanti-
tative reasoning, alternative and less rigorous business courses, teacher preparation courses, and, more

generally, reform oriented-courses.

� Pedagogy. Departments are looking for improved teaching methods including updated technology,
project-based activities, more problem-solving in the classroom, and skill modules.

� Concern for students. Departments have concerns about inadequately prepared students, placing stu-
dents into the right math course and high attrition rates. They are seeking techniques to motivate

students, attract students to reformed courses, improve student attitude toward mathematics, reduce

math phobia, and increase student participation in class.

Workshop program overview

The workshop program is aimed at helping departments better understand the issues underlying the creation

and implementation of successful courses for the targeted student groups. In turn, this will help the faculty
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make informed decisions and plan changes thoughtfully. The program looked at issues and exemplary

courses in several ways, including presenting department case studies, focusing on particular student-client

groups, and discussing courses in depth. Subgroups of departments in peer institutions discussed what

problems they face and what improvements they would like to make.

Thinking about the problem

In the opening session the participants were challenged to think about the interaction between the courses

below calculus and the students who take one or more of these courses to complete the mathematics

requirement of their majors. Participants were asked to consider a 2 by 2 matrix in which the columns

indicate whether or not the course curriculum and instruction are satisfactory, and the rows indicate whether

or not the students in the course are satisfactory.

Course

S U

S (1) (2)

S
tu

d
en

ts

U (3) (4)

This gives four possibilities: 1) both the course and the students in the course are satisfactory; 2) the

students are satisfactory, but the course is not; 3) the course is satisfactory, but the students are not; and

4) neither the course nor the students are satisfactory. This breakdown suggests different ways to analyze

the problem. For example, for the third possibility that the course is satisfactory, but the students are not,

there are two options for adjustments, either change the course or change the students. The second option

is not as outlandish as it appears. What it suggests is that the mechanisms for allowing students to take

the course need adjustment. Making changes in advising procedures or placement exam, or both, would

be ways to improve the situation. The most challenging category is the one in which the course is judged

unsatisfactory and the students do not succeed. Some points that come up in considering these different

scenarios are:

� developing the goals for a course involves a negotiation between the mathematical curriculum and
recognized academic needs of the targeted students—keep in mind how these students will use math-

ematics in their subsequent studies.

� planning instruction so that the targeted students are likely to succeed.

Department case studies

Benny Evans, Oklahoma State University, Amy Cohen, Rutgers University, and Eric Kostelich, Arizona

State University, presented department case studies of their respective departments.

Evans discussed how a new course, Functions and Change, was developed in response to the de-

partment’s problems with college algebra. The department identified some eight different major areas

represented among the students in college algebra, and then set out to talk with faculty in these client

disciplines about the mathematical capabilities they would like their students to have. These conversations

revealed that the college algebra course, even if students succeeded, was not preparing students for using

mathematics in client disciplines. Some of the ways in which the new course is more relevant and useful

to the students in the client disciplines interviewed are using linear, exponential and power functions,
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including the qualitative idea of rates of change throughout the course, and relying on the use of graphing

calculators or spreadsheets.

Cohen explained how some of the political savvy and instructional expertise that the department had

developed in running workshops as part of an intensive calculus course were channeled at the precalculus

level. One example is improving the course on Topics for the Liberal Arts. The course coordinator, Charlie

Sims, regularly updates the syllabus, sets the exercises, and briefs the instructors on expectations. As an

instructional innovation, he has hired undergraduate graders, selected from graduates of the course who

have earned A or B+; this works well for the faculty and enrolled students, as well as providing jobs for

a non-standard group of mathematics undergraduates.

Kostelich spoke about the different viewpoints of administration and the mathematics faculty with

regard to introductory courses. The administration wants students to be able to pass required mathematics

courses in politically acceptable numbers; the math faculty wants courses with substantive content at

a university level with broad applicability. The department developed a First Year Mathematics (FYM)

program that is taught by a specially hired cadre of full-time instructors. The courses in FYM incorporate

modern pedagogy and technology, and emphasize conceptual understanding as well as manipulation. The

TAs assisting in the courses have a two-week training program to prepare them for assisting in these courses.

From the department case studies, it’s clear that departments face many common problems including

high failure rates, student dissatisfaction, and faculty dissatisfaction in teaching the targeted courses. A

variety of strategies may be used to address the problems such as developing an alternative course for a

targeted student population, dramatically changing the instructional format for the course, and incorporating

successful innovations from other courses. Each of the departments has reaped benefits from investing in

changes: greater student and faculty satisfaction with the course, tangible administrative recognition, and

an improved reputation for the mathematics department. Among the lessons learned that other departments

can heed is the importance of communicating with faculty in client disciplines, enlisting faculty support

and avoiding faculty opposition, and developing good working relationships with the community colleges

whose graduates enroll in the university.

Courses for targeted groups of students

Another aspect of the workshop program was highlighting two groups of student clients among those tak-

ing the courses below calculus to fulfill their mathematics requirements: students majoring in elementary

education and liberal arts majors whose major does not require calculus. Cathy Kessel, a mathematics

education consultant, and Rosamond Welchman, CUNY Brooklyn College, discussed the importance of

keeping in mind how prospective elementary teachers learn mathematics as well as the mathematical

content they study. Thus, courses for prospective teachers simultaneously should aim to deepen the stu-

dents’ understanding of mathematics and enable them to implement effective teaching strategies in school

classrooms.

Michael Starbird, University of Texas at Austin, advocated a course aimed at liberal arts students that

makes “great ideas of mathematics” accessible to these students. When having to make the choice between

mathematical elegance of the presentation and the students’ comprehension and appreciation, the students’

positive experience should be the favored choice. In teaching about powerful ways of thinking mathemat-

ically to liberal arts students, the instruction should present the material to allow for the investigation of

the ideas without depending on a lot of notation, for example.

Two fundamental issues and discussion sessions

The program also included discussions of preparing graduate students for their teaching responsibilities

using case studies, and participation of under-represented groups in mathematics, as exemplified by the

SUMS Project at Arizona State University.
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Solomon Freidberg, Boston College, posed the question, “How can we stimulate mathematics instructors

to understand and successfully embrace the challenge of teaching, especially non-mathsci students?” He

advocated an experience-based approach based on group discussions and analyses of case studies that are

designed to present a variety of pedagogical and communication issues. In support of this approach, he

cited some results of the use of case studies from The Boston College Case Studies Project (BCCase),

which Friedberg directs, at 19 colleges and universities. Graduate students, including foreign students, can

discuss the case studies effectively. The case studies provide a window into American university culture

for the foreign students, and promote thoughtful dialogue about teaching for all the participants. The case

studies provoke spirited discussion among experienced faculty and help them continue to analyze their

teaching.

Kate Sisulak, Arizona State University, talked about the Institute for Strengthening Understanding

of Mathematics and Science (SUMS) an intense math and science program for high school students in

which they are enrolled in a university level mathematics course for university credit. This nationally

recognized project, directed by Joaquin Bustoz, has had a great impact in the participation of Native

American students in mathematics, and on the number of mathematics majors at Arizona State University.

Among other lessons that can be learned from this project is the critical role of counseling and mentoring

students.

Breakout sessions gave the participants the opportunity to discuss particular courses in greater detail,

and also to learn about the situation with respect to the lower level courses on other campuses represented

at the workshop.

Participant assessment of the workshop

Participants tended to describe their expectations in coming to the workshop in terms of interest in ideas for

a particular course or courses, and these courses varied from department to department. In contrast, their

assessment of the workshop experience showed a greater appreciation of the issues under consideration, and

interest in expanding the course offerings in their department. At the highest level, the workshop inspired

and energized some participants. In these cases, participants recognized the importance of reaching students

in the targeted courses, and that teaching these students can be exciting and positive.

The networking experience is particularly appreciated and worthwhile. It was valuable to meet with

other departments that are concerned about the targeted courses. This affords a sense of perspective about

the efforts of one’s own department in comparison to other departments, an opportunity to revisit and

expand ideas, and an opportunity to collect new resources.

Actions plans and follow-up to the workshop

At the closing session of the workshop, the members of each department team met to begin outlining plans

to effect change in their departments. Many of the participants were very excited about the possibilities

of making positive changes in how their department teaches rest-of-us students. The action plans were to

be discussed within their department and/or institutions and implemented in the near future. Six months

after the workshop many of the participating departments reported on their progress. A sampling of these

initiatives by participating departments include:

� University of Portland, a private institution in Portland, Oregon, has implemented improvements in
three courses: elementary statistics, a workshop precalculus especially for prospective middle school

teachers, and a calculus course that includes timely precalculus material.

� Northern Arizona University has made improvements in their placement system and is field testing an
“Interactive Notetaking System.”
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� Trinity College, a small liberal arts school in Washington, DC, is implementing changes in their
curriculum that are designed to provide students with more choices in an environment where only a

few courses can be offered.

� Miami-Dade Community College is implementing the course “Geometry for Educators.”
� Roosevelt University, a private comprehensive university in Chicago, held a forum with all science
and mathematics professors to discuss curriculum issues in the elementary mathematics sequence at

Roosevelt.

� Rutgers University in New Jersey is introducing a course that will count for general education credit in
the liberal arts colleges and that also is particularly valuable for prospective elementary school teachers.

� Southern Utah, a teaching university of 6,000 undergraduate students, has begun a Masters in Education
with Emphasis in Mathematics where they will take teachers from where they are to a level IV (BS in

Math Education). They are also trying to work with the school districts in their rural area to raise the

level of mathematics.

Summing up

In many math departments, the students enrolled in courses below calculus who do not intend to take

calculus, account for the majority of enrollment. The numbers alone make it critical that these students’

needs be addressed. Beyond whatever mathematics knowledge and skills the students learn in these courses,

they are forming attitudes, or reinforcing earlier attitudes, about mathematics that are likely to become fixed

at this time.

One reason the numbers are so large is that a great variety of disciplines require one or more math-

ematics courses. But appropriate mathematical content and mathematical skills differ from one major to

another, although being able to think conceptually, for example, should transcend all the courses. Math-

ematics departments should consider offering several courses at this level with each designed for one or

more of the targeted student populations.

How the courses are taught is of equal importance as to what is taught. The method of presentation

should take into account what purpose the mathematics serves for the students. Some instructional con-

siderations are using technology, such as graphing calculators, to allow students access to problems that

are beyond their skills in algebraic manipulations; using hands-on manipulatives suitable for elementary

classrooms in teaching prospective teachers; and presenting and discussing ideas without unduly using

specialized mathematical notation.

Recognizing that these students learn appropriate mathematics well should be a goal of mathematics

departments. In addition, it would be well if these students completed their formal study of mathematics

with a positive view of mathematics and a regard for its usefulness in their major field.

More details on this project can be found on the MER webpage, www.math.uic.edu/mer
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Appendix: Participating departments

AMS-MER Workshop

Excellence in Undergraduate Mathematics: Mathematics for the “Rest of Us”

Arizona State University, Tempe, AZ

Thursday, December 6–Sunday, December 9, 2001

Arizona State University, Tempe, AZ

Boston College, Boston, MA

Bowie State University, Bowie, MD

Portland State University, Portland, OR

Brooklyn College, Brooklyn, NY

Butler County Community College, Butler, PA

Eastern Michigan University, Ypsilanti, MI

Edinboro University of Pennsylvania, Edinboro, PA

Gallaudet University, Washington, DC

Grand Rapids Community College, Grand Rapids, MI

Loras College, Dubuque, IA

Miami-Dade Community College, Miami, FL

Mississippi State University, Mississippi State, MS

Northeast Mississippi Community College, Booneville, MS

Northern Arizona University, Flagstaff, AZ

Occidental College, Los Angeles, CA

Oklahoma State University, Stillwater, OK

Roosevelt University, Chicago, IL

Rutgers University, Piscataway, NJ

Maricopa Community College District, Scottsdale, AZ

Southern Oregon University, Ashland, OR

Southern Utah University, City Cedar City, UT

Texas Tech University, Lubbock, TX

Trinity College, Washington, DC

University of Arkansas at Little Rock, Little Rock, AR

University of California at Santa Barbara, Santa Barbara, CA

University of Illinois at Chicago, Chicago, IL

University of New Haven, West Haven, CT

University of North Carolina at Pembroke, Pembroke, NC

University of Portland, Portland, OR

University of Texas at Austin, Austin, TX

Voorhees College, Washington, DC

Wake Technical Community College, Raleigh, NC



29

Where Do We Go From Here? Creating a National

Initiative to Refocus the Courses below Calculus

Sheldon P. Gordon

Farmingdale State University of New York

Background on subsequent activities

In the four-month period following the Rethinking the Preparation for Calculus conference in October

2001, there were three other invited conferences regarding the undergraduate mathematics curriculum.

1. CRAFTY’s Curriculum Foundations Summary Workshop (November 2001), organized by Bill Barker

and Susan Ganter and supported by the NSF and the Calculus Consortium for Higher Education [1].

CRAFTY (the MAA committee on Curriculum Renewal Across the First Two Years) had previously

organized a series of 11 workshops in which leading educators from 17 different quantitative disci-

plines came together to discuss and inform the mathematics community of the mathematical needs of

their students today. The summary workshop was held to unify the suggestions from the individual

workshops.

2. The Forum on Quantitative Literacy (December 2001), organized by Bernard Madison, sponsored by

the Woodrow Wilson Foundation and funded by the Pew Charitable Trusts [2].

3. Reforming College Algebra (February 2002), organized by Don Small on behalf of the MAA Task

Force on the First College Level Mathematics Course and supported by the Consortium of Historically

Black Colleges and Universities [3].

Each of these conferences focused on the mathematical needs of students in courses below calculus.

Although the CRAFTY Curriculum Foundations Workshop did not look at these courses specifically, the

recommendations from most of the quantitative disciplines were directed at courses such as college algebra

and precalculus, because these are the courses that provide the mathematical foundation for students in

most other disciplines. The final reports [4] were mailed to the chairs of all mathematics departments in

the country.

It soon became clear that there was a need to bring together the principals from each of the four

conferences to see to what extent there was a common philosophy among the four groups. The goal was

to see if it was possible to channel the momentum from the four groups into a unified, national initiative

that would refocus this portion of the curriculum that affects several million students each year [5]. With

support from the NSF and the Calculus Consortium for Higher Education, a working meeting was held at

the MAA headquarters in April 2002. The intent of this meeting was to:

1. Identify the common elements from among the four groups;

2. Carefully delineate the differences between them;
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3. Prepare a formal report to the MAA Committee on the Undergraduate Program in Mathematics (CUPM)

on the group’s thinking about the courses below calculus. CUPM’s 2004 Curriculum Guide [6] recom-

mendations for the mathematics curriculum based much of its discussion on the courses below calculus

on this report.

4. Prepare a comparable document informing the writing team that is in the process of revising the

AMATYC Crossroads Standards; and

5. Plan toward a national initiative that would influence the mathematics community and other related

constituencies to refocus the courses below calculus.

Subsequent working meetings of the group were held at all succeeding MAA national conferences.

Either in attendance at the working meeting or participating in the discussions prior to and following

the meeting were principals from each of the four conferences. There were also official representatives

of various MAA committees, including the Task Force on the First College Level Mathematics Course,

CUPM, CRAFTY, the Committee on Quantitative Literacy (CQL), the Committee on Service Courses

(CSC), the Committee on Two Year Colleges (CTYC), the Committee on Articulation and Placement

(CAP), and the Committee on Professional Development. In addition, the presidents of AMATYC and

NCTM, the head of the writing team for the revisions of the AMATYC Crossroads Standards, and the

director of the Mathematical Sciences Education Board (MSEB) were also involved. In total over 40

individuals are presently involved in the working group for this initiative.

The common elements

At the April 2002 meeting, the participants focused entirely on the courses below calculus, most notably

college algebra and precalculus and the relationship between these courses and quantitative literacy. They

intentionally did not address remedial level algebra courses, leaving them explicitly for the AMATYC

writing team, nor did they discuss any of the other mathematics courses at this level, such as statistics,

finite mathematics, and survey of mathematics. A brief outline of these discussions is presented here; the

complete report produced for CUPM is available from the author.

There was an amazing degree of convergence of thought and philosophy regarding all of these courses.

This can be seen in the articles [1–3] describing each of the other three conferences as well as the other

articles in this volume on the Rethinking the Preparation for Calculus conference. Perhaps the most

impressive aspect is the fact that the identical themes and recommendations came from almost all of the

quantitative disciplines represented in the Curriculum Foundationsworkshops [4]; moreover, most of those

individuals were not at all aware of the efforts to revitalize calculus in the mathematics community.

For instance, the main points made by the physicists in their original report to CRAFTY were:

Conceptual understanding of basic mathematical principles is very important for success in introduc-

tory physics. It is more important than esoteric computational skill. However, basic computational

skill is crucial. Development of problem solving skills is a critical aspect of a mathematics educa-

tion. Courses should cover fewer topics and place increased emphasis on increasing the confidence

and competence that students have with the most fundamental topics. The learning of physics

depends less directly than one might think on previous learning in mathematics. We just want

students who can think. The ability to actively think is the most important thing students need to

get from mathematics education. Students need conceptual understanding first, and some comfort

in using basic skills; then a deeper approach and more sophisticated skills become meaningful.

Computational skill without theoretical understanding is shallow.

The engineers emphasized:

One basic function of undergraduate electrical engineering education is to provide students with

the conceptual skills to formulate, develop, solve, evaluate and validate physical systems. Mathe-
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matics is indispensable in this regard. The mathematics required to enable students to achieve these

skills should emphasize concepts and problem-solving skills more than emphasizing the repetitive

mechanics of solving routine problems. Students must learn the basic mechanics of mathematics,

but care must be taken that these mechanics do not become the focus of any mathematics course.

We wish our students to understand various problem-solving techniques and to know appropriate

techniques to apply given a wide assortment of problems.

The business faculty recommended that:

Mathematics is an integral component of the business school curriculum. Mathematics departments

can help by stressing conceptual understanding of quantitative reasoning and enhancing critical

thinking skills. Business students must be able not only to apply appropriate abstract models

to specific problems, but also to become familiar and comfortable with the language of and the

application of mathematical reasoning. Business students need to understand that many quantitative

problems are more likely to deal with ambiguities than with certainty. In the spirit that less is more,

coverage is less critical than comprehension and application. Courses should stress problem-solving,

with the incumbent recognition of ambiguities. Courses should stress conceptual understanding

(motivating the math with the ‘whys’—not just the ‘hows’). Courses should stress critical thinking.

Very similar sentiments were voiced by the representatives from business, industry, and government

at the QL Forum regarding the mathematical preparation of students for today’s increasingly quantitative

workplace. These views are enunciated very forcefully in articles in the volume, Quantitative Literacy:

Why Numeracy Matters for Schools and Colleges, edited by Lynn Steen and Bernard Madison [7].

In summary, there was total agreement among the working group members that college algebra and

precalculus courses, as presently constituted with a primary emphasis on the development of algebraic

skills, are not working for a variety of reasons, including:

1. At most schools, these courses have unacceptably high DFW rates.

2. These courses do not motivate large numbers of students to go on to further mathematics courses.

3. These courses do not adequately prepare most of the relatively few students who do go on to subsequent

mathematics courses.

4. These courses do not serve the present-day mathematical needs of most other quantitative disciplines,

where a deep level of conceptual understanding of mathematics is deemed more valuable than a very

high level of facility in manipulating symbols.

5. These courses do not provide the students with the type of intellectual skills and understanding that

are needed in the workplace or that would enable them to be effective citizens.

Yet, according to the data such as the most recent CBMS study [5], some two million students take

these courses each year. The overwhelming majority of them take these courses only to fulfill some general

education requirements that are imposed (and often prescribed in extreme detail) by people and groups

outside the mathematics department. The working group believes that:

� These courses should have a solid algebraic spine, but algebraic techniques should not be the focus of
the courses.

� These courses should have a strong emphasis on conceptual understanding and be deep intellectual
experiences for the students.

� It is at least as important to prepare students conceptually for succeeding mathematics courses as it is
to prepare them algebraically.

� These courses should focus heavily on mathematical modeling and realistic problem-solving, and that
interpretation of results should be a vital component of an applied problem.
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� Data analysis should be an integral part of all of these courses and should be used to connect the
mathematics to its use in most other quantitative disciplines.

� Technology has an important and meaningful role to play in both the teaching and learning of mathe-
matics.

� The development of writing and communication skills should be an important and significant aspect
of these courses.

� The quantitative literacy theme should permeate all of these courses.

Developing a national initiative

The meeting in Washington (and the follow-up meetings) also addressed some longer-term strategies to

bring about a climate in which change in the courses below calculus could take place. The working group

developed a three-year plan to launch a movement to rethink and refocus these courses. To accomplish this,

we hope to influence either NSF or the Department of Education or both to develop a funding program

that is at least as large as the NSF’s calculus initiative. Such an initiative would spur the development

and implementation of new approaches to these courses, as well as adaptation of previously developed

innovative approaches.

However, there are some significant differences between the initiative being organized to rethink the

courses below calculus and the efforts to revitalize calculus during the 1990s. First, and perhaps most

importantly, the changes proposed for calculus did not significantly change the content of the course—they

did introduce some new topics, such as differential equations via slope fields; they changed the focus in

the course to achieve a better balance between graphical, numerical, and symbolic approaches; and they

introduced the use of technology to support both the teaching and learning of mathematics. But a reform

calculus course was clearly recognizable as a calculus course by anyone in the mathematics community.

Some of the proposed changes to the courses below calculus go substantially further in terms of

changing the very nature of the courses. Perhaps the greatest challenge to be faced is changing some very

deep-rooted beliefs, both within and without the mathematics community. People who think of college

algebra as consisting primarily of a collection of algebraic techniques to be practiced and mastered may

not recognize some of the alternative courses as being algebra courses. NCTM has been working for years

at the school level to broaden the definition of algebra to encompass all types of algebraic reasoning and

algebraic representations, as well as just symbolic operations. The same kind of effort will be needed at

the college and university level.

A second deep-rooted belief held by many in the mathematics community is that college algebra and

precalculus courses exist primarily to prepare students for calculus and, more indirectly, to produce the next

generation of mathematicians. Underlying this outlook is the strong belief among many mathematicians

that it is necessary for all students to replicate as much as possible of their own mathematical training.

But when significant changes are made to the courses below calculus, that replication may no longer

occur. The data shows that the reality is quite different from this perception, given that so few students

taking these courses ever go on to take what traditionally was considered freshman mathematics. But

changing the attitudes will represent a true change in the culture of mathematics education for many.

One way to do this is to identify some successful models by which students can move toward and into

higher mathematics without having a strong algebraic theme in the preparatory courses. Certainly, relatively

few professional mathematicians ever use the full array of algebraic techniques they learned outside the

introductory mathematics classroom.

Another major difference between the calculus revitalization movement and the proposed initiative to

refocus the courses below calculus is that the former was basically an academic effort—the key was to

convince other mathematicians and some people in a handful of allied disciplines of the need to change

some aspects of calculus. However, the proposed initiative necessarily extends well beyond the academic
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arena. In some states, general education requirements, including the specific course content and allowable

textbooks, are specified by state education departments and even state legislatures. In many university

systems, the courses are specified by academic senates or other external bodies. At many institutions,

particularly two-year colleges, transfer and articulation agreements limit the changes that can be made

in courses. There are many individuals who are subjected to such external requirements, who express

tremendous frustration at not being able to change the courses they give to better serve the needs of

their students. One major challenge we face is to convince these external bodies to change some of the

requirements that they have laid down.

Still another difference between the calculus revitalization efforts and a movement to refocus the

courses below calculus is that the former basically started at ground zero. The initial stages of the cal-

culus movement involved the development and testing of new materials that implemented the ideas being

discussed. As one unanticipated outgrowth of the effort at revitalizing calculus, various individuals have

already developed a variety of alternatives to the traditional courses below calculus; descriptions of many

of those projects and the materials they have developed are included in this volume.

To develop a national initiative to refocus the courses below calculus, the following activities, which

fall into several distinct categories, have been planned.

A. Developing an organizational structure

Any initiative to refocus these courses must be a collaborative effort among the MAA, AMATYC, and

NCTM, since each has a significant interest in these courses. However, a collaboration of this scale and

complexity is unprecedented. Thus, it is necessary to develop an appropriate structure that will satisfy the

needs of the three organizations, as well as to identify the special roles that each organization will play. One

suggestion that has been made is for the three society presidents to appoint a joint presidential commission

to assume responsibility for the initiative. Within MAA, the overall responsibility for the initiative has been

given to CRAFTY. With a functioning organizational structure in place, the working group has an official

mandate from the three societies that will enable the group to approach various groups (governmental and

others) outside of the mathematics community that need to be persuaded to encourage a new focus for

these courses. The official mandate will also help in obtaining the large scale funding needed for this

initiative through the organizations, rather than through an ad hoc group.

As part of the organizational issues, we also have to take the following steps.

� The 40 member working group already involves the official participation of a large number of MAA
committees, including the Task Force on the First College Level Mathematics Course, CUPM, CRAFTY,

CAP, CTYC, CSC, CQL, and the Committee on Professional Development. We need to forge links to

other MAA committees, such as the Committee on the Mathematics Education of Teachers (COMET),

the Committee on Sections, the Committee on Mathematics Across the Disciplines, and the Committee

on Industrial and Government Mathematicians. We also need to forge links to comparable groups in

AMATYC and NCTM.

� Increase the links with the writing team that is currently revising the AMATYC Crossroads Standards.
� Develop greater connections with MSEB that go beyond the present involvement of its past-director,
Carole LaCampagne, in the working group.

� Develop a network of people who are interested in this initiative. One special emphasis will be to
involve the Project NEXT fellows, as well as the participants in the joint AMATYC/MAA NEXT

project for two-year college faculty. Many of the Project NEXTers have been teaching for as long as

10 years now and have reached a stage in their careers where they may welcome the opportunity and

challenge of becoming involved in a national initiative.

� Develop a regional structure to coordinate efforts at the local section and affiliate level.
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B. Collecting data

Perhaps the most important activity needed to launch a national initiative is to conduct a reasonably large-

scale data collection project to collect and analyze information on the student population that is actually

taking these courses. Such a project should determine:

1. Who are the students who take these courses and why do they take the courses? What are their majors?

What requirements do the courses fulfill?

2. Where do the students come from? Do they come from the prerequisite courses given at the same

institution, from prerequisite courses at a feeder college, or from high school? How many are actually

repeating the course?

3. How do the students do in these courses?

4. What subsequent math courses do these students take and how do they do in the follow-up courses?

5. How do the students do in subsequent courses in other quantitative disciplines?

Such data have been collected at several institutions. For instance, Steve Dunbar has been conducting

such a study at the University of Nebraska for more than 12 years, tracking each of the approximately

120,000 students who have taken mathematics. He has found that, of the studentswho successfully complete

their college algebra course, only about 10% ever go on to start calculus I; less than 1% go on to start

calculus II; and virtually none has started calculus III. Mercedes McGowen has found very similar results

at William Rainey Harper College, a large two-year institution. Both studies are reported on in detail earlier

in this volume [8, 9]. Very comparable results (though unpublished) have been found at other schools.

Yet, the underlying philosophy on most campuses is that college algebra courses are intended to prepare

students for mainstream calculus.

If appropriate funding can be obtained, we would like to provide small grants to many schools to assist

them in obtaining the appropriate data and preparing reports and possible articles.

In addition, it would be very helpful to conduct a separate project to determine just what mathematical

ideas and techniques are needed in other disciplines and in the workplace. We need to know precisely what

the consumers of our students really need and want. Much of that information regarding the needs of the

other disciplines has begun to emerge from the Curriculum Foundations project; some of the comparable

information on the needs of today’s business, industry, and government was reported on at the Forum on

Quantitative Literacy.

C. Identifying and publicizing model projects and programs

Unlike the calculus reform initiative, as mentioned before, a wide variety of projects have already devel-

oped effective and innovative materials that bring new visions to the courses below calculus, including

precalculus, college algebra, quantitative reasoning, and developmental algebra. Many are described else-

where in this volume. Each project has its own unique vision, but each vision is clearly in the spirit of

what the working group believes is appropriate for the students who take these courses. These projects

are also consistent with the visions that underlie the new CUPM Curriculum Guide, the AMATYC Cross-

roads Standards and the NCTM Standards for courses at these levels. Each project has the flexibility to be

easily adapted to many different settings and to the needs of many different groups of students and related

disciplines.

What is needed is a cohesive plan to identify and publicize model programs that have adapted and

implemented these projects. In particular, we need to:

� Identify a variety of institutions that have refocused their college algebra and related courses to reflect
the kinds of changes that need to be brought about. These institutions would serve as model programs

to prove the existence of successful efforts. They would also provide specific information on student
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performance in such courses and in succeeding courses in mathematics and other fields, as well as

information on implementation issues.

� Stimulate the adaptation and implementation of existing projects at new sites.
� Stimulate the expansion of model programs at institutions that have already implemented new versions
of courses in a few sections of one or more courses.

� Stimulate the development and implementation of several new model projects through a series of grants
that could be awarded as part of the funding for planning and development phases of this initiative, as

discussed below.

� Track student performance and attitudes throughout these model projects and programs over several
years to develop some specific data to help in on-going efforts to develop the national initiative.

� Encourage individuals at each model institution to write articles describing their experiences and results,
to give presentations on their efforts, to give workshops, and to disseminate any curricular materials

they may have developed to help in their implementation efforts.

At MAA, the Committee on Service Courses has accepted the responsibility to spearhead this effort

with the assistance of CRAFTY, CUPM, and CTYC.

D. Influencing the mathematics community

Perhaps the greatest obstacle to widespread change in the courses below calculus is the attitude that

many in the mathematics community hold toward these courses—that they exist to prepare students for

mainstream calculus. What is therefore needed is a comprehensive effort designed to influence members

of the community to get them to try new versions of the courses themselves or to allow and encourage

other members of their departments to do so. These efforts should include:

� Organize panel sessions at national meetings of MAA, AMATYC, NCTM, and ICTCM.
� Organize contributed paper sessions and poster sessions at national meetings to provide the opportunity
for individuals to report on the results of their innovative efforts.

� Produce volumes in the MAA Notes series and similar series. Some recent and forthcoming volumes
that address these issues are:

1. The current volume of the proceedings of the Rethinking the Preparation for Calculus conference

2. The final results of the Curriculum Foundations project, Voices of the Partner Disciplines, edited

by Susan Ganter and Bill Barker

3. A series of volumes coming out of the Forum on Quantitative Literacy edited by Lynn Steen and

Bernard Madison

4. The CUPM curriculum recommendations

5. A volume that we would like to see produced is an MAA Notes volume consisting of reports from,

or on, each of the model projects and programs mentioned earlier.

� Articles and reports in a variety of journals. For instance, The AMATYC Review recently devoted a
special issue to changes in college algebra.

� Panels at regional meetings of MAA sections, AMATYC affiliates, and NCTM affiliates.

� Develop strategies for faculty development for the part-time faculty who teach these courses at most
two- and four-year institutions.

� Develop strategies for faculty development for the TAs who teach these courses at most universities.
At MAA, responsibility for the faculty development efforts has been assumed by the Committee on Pro-

fessional Development’s PREP program. At AMATYC, the challenges associated with faculty development

to support refocusing these courses is one of the most important goals of the organization’s leadership.
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E. Forging connections

To be successful, this initiative must reach out beyond the mathematics community for support and assis-

tance. In particular, we see the need to:

� Develop links to other disciplines to gain their support for the initiative. This has already begun through
the Curriculum Foundationsworkshops and the Forum on Quantitative Literacy. The external support,

most likely from the social and life sciences, will be as critical to this initiative as the support of the

engineering disciplines was to the calculus effort. A second round of Curriculum Foundation workshops

involving many of these disciplines is being undertaken by the MAA’s Committee on Mathematics

Across the Disciplines.

� Develop links to business/industry/government to seek their support from the point of view of preparing
students for today’s workplace and for effective citizenship; this will also be critical in building a case

for change.

� Develop links to other potentially concerned groups, such as AMS, ASA, SIAM, MER (Mathematicians
and Education Reform), and the Consortium of Historically Black Colleges and Universities.

At MAA, responsibility for these efforts has been assumed by the Committee on Mathematics Across

the Disciplines and the Committee on Quantitative Literacy, with assistance from CRAFTY and CTYC.

F. Planned outcomes

The scope and complexity of the challenges of refocusing the courses below calculus are immense. There

are many different aspects that need to be addressed that go well beyond convincing the mathematics

community to rethink these courses. Some of these challenges include the need to:

� Develop links to the testing industry to stimulate the development of a new generation of placement
and related tests that better reflect the content of NCTM Standards-based curricula in the high schools

and refocused versions of college mathematics offerings.

� Develop plans to rethink the mathematical training of prospective teachers, who are often required to
take college algebra as their final mathematics experience. Such efforts need to be made in conjunction

with COMET, the PMET project, NCTM, and AMATYC.

� Develop materials that could be used to influence college and university administrators to encourage
and support, both academically and financially, implementation of projects that refocus the emphasis

in college algebra and precalculus courses. This would include some official statements from the

professional organizations, a position statement on the need to change the courses, and supporting

evidence about the success and benefits of some of the model projects.

� Develop a generic PowerPoint presentation that could be used, or adapted, by many people who will
be giving talks and presentations on the goals of the initiative.

� Develop materials that can be used by individuals in a region to influence state agencies that are
responsible for statewide or university system-wide mandates about which courses students must take

or what the content of such courses must be.

� Affect transfer and articulation agreements between individual schools and across university-wide
systems.

� Develop a series of faculty development workshops to prepare faculty to teach these new versions of
the courses. These workshops would be held in conjunction with national and regional meetings of

MAA, AMATYC, and NCTM. They could also be offered directly to departments and collections of

faculty from neighboring schools to assist them in completely changing their programs. The latter will

be an expansion of AMATYC’s program of travelling workshops on technology and implementation

of the Crossroads Standards, of the MAA’s PREP program offered by the Committee on Faculty

Development, and of a series of comparable workshops currently being offered by the MER network.
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� Influence the publishing industry to publish-and-nurture innovative textbooks instead of the publish-
and-allow-to-perish policy that occurred with most of the innovative calculus texts that emerged.

� Create a website for the exchange of information and ideas regarding the initiative.
� Influence either the NSF or the Department of Education to develop a large scale funding initiative
to fund the development and implementation of new approaches to the courses below calculus. The

influence will be based on the data being collected, the model programs and projects, calls for change

from within the mathematics community in general and the three professional organizations in particular,

calls for change from the other disciplines, and calls for change from business, industry, and government.

Clearly, all of these activities will require the investment of much time, effort, and considerable money.

One of the first efforts by our group will be to seek a large grant to fund the planned activities. The NSF

has already provided a relatively small grant to help get the initiative organized and off-and-running.
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Ideas and Projects that Work: Part 1

Just as our students say, “Show me an example,” participants at the conference, Rethinking the Preparation

for Calculus, asked for examples of ideas and projects that work. The authors of the five papers in this

section discuss some of the larger issues connected with curricular materials that they have developed. The

next section, “Ideas and Projects: Part II,” contains fifteen short, descriptive papers for particular projects.

In this section, Doris Schattschneider describes an alternative one-year college calculus course that

integrates a review of precalculus concepts to help students, who have taken precalculus but are not

prepared for calculus, succeed in calculus. Bill Fox reiterates a common theme in this volume—the need

to work with our colleagues in other disciplines—as he describes a new college algebra course that is based

on modeling and applications. Dan Kalman describes a course in elementary mathematical models for the

general education student that is a hybrid of two approaches, college algebra and liberal arts math. Brigitte

Lahme, Jerry Morris and Elias Toubassi present a case for integrating laboratories into a precalculus

course. Gary Simundza describes the “Fifth Rule” for helping students understand mathematical concepts:

the direct experience of mathematical processes.

A course that integrates precalculus review with calculus takes careful planning, but does not require funda-

mental changes in calculus content or teaching style. An integrated approach can be used in calculus courses

anywhere in the spectrum from traditional to reform, and in special calculus courses such as those designed

for majors in business or the biological sciences. It can be used in a technology-dependent course or without

any technology at all. . . . There is now a small core of institutions (perhaps 40 or more) offering a version of

this course using materials we developed. It is a quiet revolution, but certainly has made a difference where

it has been tried.

College Precalculus Can Be a Barrier to Calculus: Integration of Precalculus with Calculus Can Achieve

Success

Doris Schattschneider

The most important challenge facing our graduates in the future is data overload. Data and statistics are

found everywhere: newspapers, magazines, television, and radio. There is no escape. . . . As a result, we

proposed a different sequence of courses based upon mathematical modeling and applications using college

algebra. It seemed that the goal of the college algebra of the past was to prepare students for calculus, but

most would never take calculus. . . . We felt this new course sequence would better serve our students by

preparing them to solve problems that they may face in their own disciplines and in real life.

College Algebra Reform through Interdisciplinary Applications

William P. Fox

It would be difficult to overstate the importance of algebra in mathematics. If mathematics is the language

of science, then algebra provides the alphabet, vocabulary, and syntax. In particular, the traditional college

algebra course covers the elementary functions of analysis: linear and quadratic functions; polynomial and

rational functions; roots, exponentials, and logs. These functions are inescapable in the most elementary

applications of mathematics to other subjects. In a word, they are ubiquitous all over the place. . . .
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Liberal arts mathematics courses offer an alternative exposure to mathematics for general education students.

These courses emphasize lofty educational goals, hoping to communicate something of the beauty, power and

fascination of our discipline. The development of specific manipulative skills is given much less emphasis.

This essay concerns a hybrid of these two approaches to general education mathematics.

Elementary Math Models: College Algebra Topics and a Liberal Arts Approach

Dan Kalman

The purpose of the labs is to have students investigate real-life situations that can be addressed with the tools

learned in precalculus. The labs provide students with an opportunity to step back from the exercises that

are in the text and allow them to consider problems that require more from them in terms of critical thinking

skills. While many of the exercises in the text are one-step calculations asking for a single answer, a typical

lab project asks questions in an open-ended way that requires students to first identify the correct tools to

use and then to use them in an appropriate way. In addition, these labs give students a chance to discuss

mathematics in small groups, debate strategies, convince fellow students of the validity of their arguments,

and then put it all together into a polished, written report detailing their findings and conclusions. The

labs also allow students to explore mathematical ideas from different points of view—graphically, verbally,

numerically, and symbolically—which helps students solidify their understanding of the concepts.

The Case for Labs in Precalculus

Brigitte Lahme, Jerry Morris and Elias Toubassi

Since the beginning of the calculus reform movement, the Rule of Three has become an essential feature

of mathematics education. . . . Shortly after the Rule of Three construct was widely adopted and became

part of the mathematics educator's lexicon, it evolved into the Rule of Four. If analytical, graphical, and

numerical representations are all different lenses through which mathematical relationships can be viewed,

they are, in many cases, language-independent substitutes for connections or processes that can be described

in words. . . . There is reason to suggest that the Rule of Four should be broadened to a “Rule of Five”:

the fifth component of mathematics understanding is direct experience of mathematical processes. That is,

in addition to providing opportunities for obtaining usable data through active experimentation, the act of

experimenting itself can promote mathematical concept acquisition.

The Fifth Rule: Direct Experience of Mathematics

Gary Simundza
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College Precalculus Can Be a Barrier to Calculus:
Integration of Precalculus with

Calculus Can Achieve Success

Doris Schattschneider

Moravian College

Introduction

The articles collected in this volume make one fact very clear: precalculus means many things to many

people, and serves many different functions. One of the primary functions of a precalculus course (whether

in high school or in a college or university setting) is to serve as a preparation for the first course in calculus.

It is this “preparing for calculus” course, specifically in the college or university setting, that we assert

is failing in its stated purpose. The dismal percentage of those who complete precalculus and continue

on to complete the calculus I course makes it clear that something is very wrong. Tinkering with content,

technology, and pedagogy may improve the precalculus course, but these repairs do not address several

fundamental problems. We discuss here an alternative one-year college course that integrates the review

of precalculus topics on a just-in time basis; it has shown documented success in helping a larger number

of students succeed in completing calculus I.

The problem and a response

In recent years, as mathematical techniques have gained increasing importance in a wide variety of fields,

the requirement of at least one term of calculus has become standard not only for the physical and

mathematical sciences, but for many other college majors. This has created a serious problem for those

who teach calculus: roughly half the students with this requirement arrive at college inadequately prepared

to take calculus. The most standard response to this lack of preparation is to require the completion of a

college precalculus course before enrolling in calculus I. This cohort of students is large, and the standard

response, rather than providing access to calculus, most often serves a gate-keeping function that typically

filters out 60% or more of the students from completing a term of calculus. A typical student in this situation

has done poorly in mathematics in high school or has been away from high school mathematics for several

years, and so comes not only with insufficient or rusty math skills, but an attitude of apprehension about

mathematics, low self-esteem with regard to the ability to do mathematics, and a view that mathematics

is a jumble of formulas and tricks without context.

The assignment to a precalculus course, which is to prepare students for calculus, often does little more

than reinforce these views. The students are in an essentially remedial course (not great for self-esteem)

285
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in which important skills and ideas are retaught, but only with the promise that “you will need this next

term in calculus.” In this course, calculus remains a mysterious subject, providing no context to the topics

covered. For those (typically 50% or fewer) who complete the college precalculus course, calculus is a

great challenge, introducing new symbols and abstract concepts, expecting students to remember algebra

skills and fundamental ideas covered months ago in a setting that used none of those symbols and words. In

the calculus course, many students will insist that they have never seen or used certain techniques simply

because the context is so different. (For example, solving simple linear equations certainly is covered in

precalculus, but linear equations were never solved for something called dy=dx or y 0.) Inevitably, teachers
need to review still again the non-calculus skills that are essential to solve calculus problems. There is

often a high degree of frustration on both the part of the students and of the teachers; in the precalculus

course and (for the survivors) in the calculus course that follows it, there is low morale in both camps.

In 1988, the math faculty at Moravian College reached the decision that something different needed

to be tried—almost anything could not be worse than perpetuating the typical situation described above.

Since our precalculus course existed only to prepare students for calculus and was not a prerequisite for

any other course, the result was to throw out the precalculus course and replace it with a two-semester

course entitled Calculus I with Review. The course would serve the same student population, and in one

year’s time cover all the material in our one-semester calculus I course, but at a slower pace, integrating

the review of precalculus concepts and skills as they were needed, in the context of presenting calculus

concepts and solving calculus problems. The goal was to improve the numbers completing the first course

in calculus, as well as to try to change attitudes towards learning mathematics. Although the idea of an

integrated course hardly seemed radical, we found only a handful of other schools that used this approach;

Amherst College was one.

Finding materials to use with a calculus text was difficult: there were review manuals on algebra,

trigonometry, and scores of precalculus texts, but there were no books that had precalculus review material

presented in a calculus context, or presented in a way that could easily supplement a calculus text.

After trying to use an algebra review manual for the first year, we concluded that we needed to develop

materials ourselves and made a formal proposal to FIPSE (the Fund for the Improvement of Post-Secondary

Education, Department of Education) to produce materials, class-test them, and assess student performance

in the integrated course [4]. The proposal was funded, and a 2-year project ensued that produced the

first draft of A Companion to Calculus, later published by Brooks/Cole [6]. It also produced an extensive

assessment that made clear this approach was far more successful than the traditional precalculus-followed-

by-calculus. The Calculus I with Review course used the same calculus text as that used in the “regular”

one-semester calculus I, and at the end of the year, students had covered the same calculus syllabus as

calculus I, so were prepared to continue to calculus II if they so desired. (The regular calculus I course is

the first of a three-semester calculus sequence and has as a prerequisite a solid background in algebra and

functions (precalculus) from high school or another institution.)

In 1993, at the end of the two-year grant period, a dissemination conference at Moravian College

was well attended by other institutions that were interested in trying the integrated approach. The project

outcomes were also noticed by FIPSE, and we were invited to become mentors in a two-year dissemination

project (1995–1997) to six other institutions as they developed their own versions of the integrated course

and tried it out on their campuses [5], [7]. The mentored institutions in this project were DePauwUniversity,

The George Washington University, Hudson Valley Community College, University of Puerto Rico –

Mayaguez, University of Puerto Rico – Rio Piedras, and the United States Military Academy at West Point.

FIPSE wanted to find out if the model was transportable to various sizes and types of institutions. Some of

the results of that project are summarized in Appendix I. Every one of the institutions showed improvement

in the percentage of students who successfully completed the equivalent of precalculus/calculus I, and

ultimately four of the six institutionalized the course. During the course of this dissemination project and

afterward, several other institutions established an integrated calculus-with-precalculus course on their
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campuses. There is now a small core of institutions (perhaps 40 or more) offering a version of this course.

It is a quiet revolution, but certainly has made a difference where it has been tried.

Some details on the course

A course that integrates precalculus review with calculus takes careful planning, but does not require

fundamental changes in calculus content or teaching style. An integrated approach can be used in calculus

courses anywhere in the spectrum from traditional to reform, and in special calculus courses such as those

designed for majors in business or the biological sciences. It can be used in a technology-dependent course

or without any technology at all. If the goal is to have students arrive at the same place as those who

complete the regular one-semester calculus course, then it should use the same text and technology as

used in that course, and the integrated review needs to be planned with that calculus text and technology

in mind. In order for the integrated review to be successful, those planning the course need to be aware

of the most common “precalculus” difficulties that students encounter in the calculus course, and plan to

address these problems with deliberate intervention at the appropriate times. Some algebraic techniques

need to be reviewed more than once, as the need for them arises in different contexts.

When we at Moravian developed our review materials for the integrated course, we spent a lot of time

discussing each topic covered in the calculus I course and identifying the main weaknesses of students that

could be addressed. For example, to understand how (and when) to use the chain rule of differentiation,

students need to understand how to recognize composite functions and how to decompose them. Extra

examples and practice problems to help students to understand this process are needed. When finding

minima and maxima, they need to solve equations that often have variables with negative or fractional

exponents, or have quotients of functions. They lack the algebra skills to solve these equations, and that

is where the just-in-time review comes in. Needing to solve these calculus problems provides strong

motivation to learn the skills necessary to accomplish the task. Success in solving calculus problems using

the refreshed skills also provides an immediate reward. For each calculus topic, we produced a companion

chapter in our text that reviewed basic ideas and techniques that were needed in order to understand and

solve problems related to the calculus topic. Since the review material was written to directly support a

calculus topic, we used standard notation for calculus terms, and discussed algebraic techniques to solve

typical calculus problems [2].

The syllabus of the two-semester integrated course consisted of an interleaving of our review material

with the calculus I syllabus. We made a deliberate decision to introduce and study only algebraic functions

in the first semester of the Calculus I with Review course, rather than cover the trigonometric, exponential,

and logarithmic functions as well. The rationale for this decision was that the transcendental functions

were more difficult and needed substantial time to be covered; we wanted students to learn the essentials

of limit and derivative in the first semester, not just have a course on functions (i.e., a mostly precalculus

course). The syllabus for our course became an outline in the front pages of our Companion to illustrate

how to interleave its chapters with topics in a calculus text (this outline is given in Appendix II). Others

using the Companion or other review materials might choose to omit, add, or rearrange the order of some

review topics, but the essential point is that thoughtful planning must go into deciding what, when, and how

to give the just-in-time review in support of the calculus topics. In teaching the course, usually readings

and assignments are from one book, either the Companion or the calculus text, but in some instances,

both books may be used for a single topic. Typically, some sections of the Companion are covered first

to give background and algebraic review, and then some sections in the calculus text are covered. Tests

include questions on the precalculus topics as well as the calculus topics. Pacing is particularly important

in this course. In the first term, when there is a great deal of review as well as the introduction of the

difficult new concepts of limit and derivative, the pace is slower than in the typical calculus course. In

the second term, the pace can be gradually accelerated—this is especially helpful to prepare students who
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will continue to the calculus II course. Throughout the course, topics are treated in four modes: verbal,

symbolic, numerical, and visual.

Student outcomes

The goals for our integrated course were clear: to provide better access to calculus for those entering college

inadequately prepared and to increase the number of students completing the first course in calculus. In

the 1991–1993 FIPSE project at Moravian, we undertook a four-part assessment to measure how well the

integrated course met those goals. Detailed results of the assessment are in our final report to FIPSE [3];

here we summarize the main points. Past data was gathered on enrollment, attrition, and completion of our

precalculus-calculus I sequence, and then the same data was tracked for the integrated course. Later, all

institutions in our FIPSE dissemination project gathered this same data for their courses. In addition, during

the dissemination project period, two institutions offered both the integrated course and the precalculus-

calculus I sequence, and tracked this data for both groups. The cumulative data appears in Appendix I. The

data made clear that there was far less attrition between completing the first semester and continuing the

second semester in the integrated course than in the precalculus-calculus sequence. Typically, 80%–95%

who completed the first semester in the integrated course continued. Also, the percentage of students who

completed the full year of the integrated course was substantially higher (from 50% to 100% higher) than

the percentage of students who completed the precalculus-calculus sequence.

A second measure of student achievement was to compare performance on common exam questions.

At Moravian, some precalculus questions from a placement exam (taken by students before entering the

integrated course) were repeated on the final exam; individual answers to these common questions on

each of the two tests were compared for each student. At institutions that offered both precalculus and the

integrated course, common questions appeared on both final exams. The results showed overwhelmingly

that students in the integrated course had mastered precalculus concepts and, when compared with those

in precalculus, significantly outperformed them. At both Moravian and other institutions, another set of

questions on the final exam in the integrated course also appeared on the final exam in the regular calculus

I course; this allowed comparison of performance of students in the two courses. Those in the integrated

course performed almost as well as those in the calculus I, a good achievement, considering the fact that the

average SAT score of those in the integrated course was about 100 points lower than those in the regular

calculus I, and the additional fact that many students in calculus I had previously taken a high school

calculus course. It should be pointed out that when the performance of adult students in the integrated

course was compared with all students in the regular course, they outperformed this group!

The last two assessments were of student attitudes and teacher attitudes. Both groups were assessed

at the end of each semester of the integrated course. Most students showed a positive change in attitude

towards learning mathematics and an increase in self-confidence in doing mathematics. Teachers reported

some problems in teaching the course for the first time, in using two sets of materials and in carrying out

the integration of material, but were very positive about the course and the improvement of morale among

students.

Teaching outcomes

There are some interesting outcomes of teaching an integrated course; some are predictable, and others

unforeseen. A predictable outcome for teaching is that there is more time for teaching both the precalculus

review and the calculus than in the separate precalculus and calculus I courses. This happens for at least

two reasons. First, in the integrated course, since the precalculus review is directly in support of the

calculus topics taught, some material often covered in a precalculus course is not included. Second, in the
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integrated course, many precalculus topics only need to be reviewed once, as needed, rather than twice

(once in the precalculus course and again the next semester when forgotten, but needed, in the calculus

course). This luxury of extra time to absorb, understand, and practice is a great help to students who

have often been left behind in math courses in the past or who need to get back up to speed after a

long absence from math. An unforeseen outcome is that those teaching the regular calculus I course were

happy to have more homogeneous classes of better-prepared students; those students who in the past would

have struggled to keep up in calculus I were now in the integrated course. Another benefit of having the

integrated course is that when sections of the integrated course are offered at the same time as sections

of the regular calculus I course, students in the latter course who find it difficult to keep up can have

the opportunity to change into the integrated course rather than drop out of calculus I altogether. Several

institutions that offer the integrated course allow students to make this course change during the first four

weeks of the course. On the opposite end of the scale, some schools identify early in the integrated course

those who plan to continue to calculus II and then encourage those students to enroll in the regular calculus

I after taking just the first semester of the integrated course. This model uses the review and the slower

pace of the integrated course as a warm up for the regular course, and then when those students enroll in

the faster-paced calculus I, they have a head start and can adjust more easily to that faster pace, which

will be continued in calculus II.

In the study conducted by Moravian of the institutions in its FIPSE project (and in informal reports

from other institutions), teachers uniformly reported that they enjoyed teaching the integrated course far

more than the traditional two-semester precalculus-calculus sequence. A frequent comment was “I would

never go back to what we had before.” While teacher satisfaction may not be a primary goal of the course,

it clearly influences the classroom atmosphere and even the process of teaching.

Challenges in establishing the course

Perhaps the greatest challenge to establishing an integrated calculus/precalculus course is to convince

colleagues both within and without the department that this is worth the investment of time (it takes little

money, if any). The precalculus course is entrenched on most campuses, and to change what has always

been done takes effort. If the focus is on helping those students who need to complete some calculus to

achieve their goal in a positive manner, then “selling” the course is easier. Data and testimony from other

similar institutions that have established the course can help convince departmental colleagues and deans.

One of the primary tasks that we performed as mentors was to sit down with departments and deans to

discuss how the course worked and to show the data from our own assessment. Another convincing factor

was to note that there is an economic problem with the precalculus-followed-by-calculus sequence. Many

students spend much time in remedial courses and often (more often than not) end up not enrolling in or

completing calculus. This is costly to them and also wasteful of faculty resources.

Placement is a crucial issue that must be addressed. Institutions that serve a student population with

wide-ranging preparation have an especially important task in identifying those who lack the most basic

algebra skills and need to complete a remedial course such as college algebra before being ready to take

the integrated course. The integrated course provides review of necessary ideas and skills for calculus, but

assumes that its students are at a level where review can be effective. Simply relying on an SAT score is

not sufficient for placement; an evaluation of high-school records and a placement instrument that tests

specific skills needed for calculus is a much better approach. An interesting fact that emerged in our own

assessment and in assessments at other institutions in our dissemination project was that there was no

correlation at all between SAT scores and grades in the integrated course. (In fact, at one institution, some

students were mistakenly placed in the integrated course rather than in a lower remedial course, and their

grade distribution, from A to F was roughly the same as those who had been placed in the course using

the SAT as a placement tool.)
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At institutions where the precalculus course serves as a prerequisite to courses other than calculus, the

integrated course does not replace the precalculus course, but serves the population who intend to take

calculus. The identification of such students is an important part of the advising process. Two-year colleges

(such as Hudson Valley Community College and Northampton Community College) and some large state

institutions have had success in instituting the integrated course while retaining the precalculus course for

a different population.

As with any change, you need to have a core of teachers willing to try the new approach. They (or the

whole department) need to plan what material to use for the precalculus review and how to integrate it with

the calculus text. In preparation for this article, I contacted about thirty institutions using the integrated

approach and asked what materials they were using for the precalculus review. Many were using the

Companion or another supplemental text, Just in Time Algebra [10]; others were using a precalculus text,

and still others depended on their own materials, using handouts; one institution set up a tutorial center

where review materials could be found.

A natural question arises concerning the amount of course credit for the two-term integrated course.

Most institutions (including Moravian) give the same credit as that for two one-term courses. It is easy to

justify this—in the integrated course, in the first term, a student will see the fundamental ideas of limit and

derivative, not just precalculus topics. At a few institutions where the precalculus course was a non-credit

(remedial) course, the two-term integrated course receives the same credit as a one-term calculus I course.

Other models for the integration of precalculus review in the calculus I course

There are some additional models for an integrated precalculus/calculus I course that have been developed

by others. A notable model is the workshop, or laboratory approach, in which the use of technology and

guided investigation are central to the course. One of the leading reform calculus projects, Project Calc,

centered at Duke University, featured this approach. Workshop Calculus, developed at Dickinson College is

most similar in its goals to the course that we have described earlier [8], [9]. The Workshop course also is

one year in length, and integrates review of precalculus concepts and skills with the introduction of calculus

ideas and problems. The teacher’s role is primarily that of a guide, as students work through investigations

and exercises in a laboratory setting, using technology. Another model followed by some institutions is to

augment their regular one-semester calculus I course with an extra one or two class meetings a week in

which the review of precalculus ideas is covered on a just-in-time basis. While this approach can certainly

help those who need some extra review, it does not alleviate the pressure experienced by students who

simply need extra time to absorb the new concepts as well as receive integrated precalculus review.

Some final comments

At the conference Rethinking the Preparation for Calculus (October 2001), there wasn’t a single participant

who felt that all was well with the course called precalculus. It is the nature of faculty to want to improve

content and pedagogy of courses, and we spend much of our teaching lives doing just that. My point in

this article has been to describe a relatively simple, yet to some, radical alternative to trying to improve the

college precalculus course intended to prepare students for calculus. Let’s offer students who need extra

time and review in order to succeed in calculus just that opportunity, but not in a calculus-free setting.

Instead, let’s introduce them to the interesting ideas of calculus, and in this setting, and as needed, review

the necessary background and techniques for them to succeed in calculus. Many institutions both large and

small, private and public, have tried this approach and report gratifying results. I will be happy to supply

more information on the course, institutions of which I am aware that offer such a course, and answer any

other questions. There is additional information on our website [1] and in the references that follow.
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Appendix I

Comparative attrition and completion data from six institutions

In the traditional model of a precalculus course followed by calculus I, a significant percentage of the

students who complete the precalculus course choose not to continue to calculus I. That, coupled with

a high withdrawal and failure rate in calculus I translates into a low completion rate of the two-course

sequence of precalculus followed by calculus I. Here is completion data from the FIPSE dissemination

project institutions, prior to the adaption of the integrated course, and in two instances, from a control

group for the year the integrated course was introduced on a pilot basis

Completion of Precalculus Followed by Calculus I

Institution Data period % of those enrolling in Precalculus

who completed Calculus I

DePauw U. 1988–1995 33%

Geo. Wash. U. 1992–1995 41%

1996–1997 control group 47%

Moravian C. 1986–1988 40%

Hudson Val. CC 1996–1997 control group 17%

UPR Mayaguez prior to 1995 less than 40%

UPR Rio Piedras 1996–1997 control group less than 40%
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The completion data on the integrated one-year course shows a dramatic difference. The data given in

the chart is for the year 1996–1997, the second year of the project, when all of the adapting institutions

were teaching the integrated course. Where the course has been institutionalized, these completion rates

have persisted. In the following chart, the completion rate is the percentage of those who enrolled in the

year-long integrated course who successfully completed the course.

Integrated Calculus with Precalculus (CWP I & II) Enrollment and Attrition 1996–1997

Enrolled in completed continued to completed Completion

CWP I CWP I CWP II CWP II Rate

DePauw U. 85 83 64 61 72%

Geo.Wash. U. 89 86 66 65 73%

Moravian C. 85 66 59 47 55%

Hudson Val. CC 43 22 20 15 35%

UPR Mayaguez 129 94 93 90 70%

UPR Rio Piedras 68 48 45 40 59%

West Point 45 42 41 38 84%

Appendix II

Topics outline: Calculus I with Review

Outline of Integration of Companion chapters with chapters in a Calculus text

Section in Companion Section in Calculus text

Introduction

Symbols and Notation

Modes of Communication

Cartesian Coordinates

The Cartesian Coordinate Plane

Graphs Coordinate Geometry and Lines

Lines and Their Equations

Parallel and Intersecting Lines

Distance between Two Points

The Circle

Functions

Function Notation

Domain and Range of a Function

Different Ways to Represent Functions Functions and Graphs

The Graph of a Function

Special Classes of Functions

Transformations of Graphs

Limits Tangent and Velocity Problems

Algebraic Combinations of Functions Limit of a Function

Algebraic Simplification of Functions Calculating Limits Using Limit Laws

Inequalities Precise Definition of Limit

If-then Statements
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Continuous Functions Continuity

Polynomials

Zeros of a Polynomial Function

Composition of Functions

Domains of Functions

The Role of Infinity

Graphical Interpretation:

Horizontal Asymptotes, Vertical Asymptotes Limits at Infinity, Horizontal Asymptotes

Algebraic Manipulations: Finding Asymptotes Infinite Limits, Vertical Asymptotes

Rates of Change

Problem Solving

Applications Tangents, Velocity and Other Rates of Change

Secant and Tangent Lines

Rules of Differentiation

Negative and Rational Exponents Derivatives

Decomposition of Functions Differentiation Formulas; Chain Rule

Simplifying Derivatives

Angle measures

Definition and Evaluation of the Trigonometric Functions

Properties of the Trigonometric Functions Review of Trigonometry

Domain, Range, and Graphs of the Trigonometric Functions

Combining Functions with the Trigonometric Functions Derivatives of the Trigonometric Functions

Implicitly Defined Functions

Solving Equations That Contain dy=dx Implicit Differentiation

Iteration Higher Derivatives

Rate of Change of Rate of Change

Setting up Equations for Related Rates Problems Related Rates

Problem-Solving Strategies for Related Rates Problems

Tangent Line Approximation The Differential and Tangent

The Differential Approximation

Rules of Exponents Exponential Functions

The Natural Exponential Function Derivatives of Exponential Functions

One-to-One Functions

Inverse of a Function: Domain, Range, Graph Inverse Functions

Finding the Inverse

Definition and Properties of Logarithmic Functions Logarithmic Functions

Graphs of Logarithmic Functions Derivatives of Logarithmic Functions

Solving Equations with Logarithmic and Exponential Functions Exponential Growth and Decay

Extreme Values of a Function Maximum and Minimum Values

Solving Equations to Find Critical Values

Setting Up Functions to Solve Extreme Value Problems Applied Maximum and Minimum Problems

Solving Inequalities The First Derivative Test

Graphical Interpretation Concavity and Points of Inflection

Putting It All Together Curve Sketching

Antidifferentiation as the Inverse of Differentiation

Finding Antiderivatives Antiderivatives

Substitution for Antiderivatives
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Computing Exact Areas By Using Basic Geometric Shapes

Approximation of Areas Area

The Area Under a Curve as a Definite Integral

Interpretations of the Definite Integral The Definite Integral

Properties of the Definite Integral

The Fundamental Theorem of Calculus The Fundamental Theorem of Calculus

Change of Variable in Definite Integrals The Substitution Rule
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College Algebra Reform

through Interdisciplinary Applications

William P. Fox

Francis Marion University

Traditional college algebra has been taught at Francis Marion University since before the school’s estab-

lishment as a four-year institution in 1970. The majority of students performed poorly in these courses. We

initially tried an experiment using applications and projects to motivate the college algebra. We integrated

real-world problems in the form of projects, applications, and activities to motivate students to better

understand the principles of algebra. Performance improved and feedback from most of the students was

positive. Based on the overall positive experience, two new freshmen algebra courses were added using

modeling and problem-solving as their framework.

In this paper, we discuss courses, our salesmanship, a few illustrative examples of the applica-

tions/projects used, and student comments.

Introduction

Typical of most liberal arts curricula, the college algebra course at Francis Marion University was designed

to achieve mastery in (intermediate) algebra. Currently, the traditional course is offered as either a self-

paced course or as a lecture course. In these courses, the mastery of manipulation skills is the focus.

These skills generally include as a minimum: operations of numbers, linear equations, inequalities on a

number line, polynomials and their operations, factoring, simplification of expressions, exponents and their

simplification, radicals, rational functions, exponential functions, and logarithms. We asked ourselves if

all these skills are important and if so, for what reason? Mathematics professors know that these skills are

very perishable. Use them often or lose them! Our most common exclamation about our own majors is,

“if this student could only do the algebra.”

While I was at the United States Military Academy from 1992–1998, we gave an examination in July to

all our entering freshmen. The freshman class usually has a math SAT average of about 650. Additionally,

we mailed out to all students that were accepted the list of high school mathematics skills that they should

know. The testing results showed a significant decrease over time in the performance on this test indicating

a decrease in high school mathematics algebraic skills. All students were required to pass this test with a

score of 80 or above by the end of the first year. However, most students did not retain these skills for

subsequent courses requiring mathematics. This was a considered a “Pass and Go” requirement (see [6]).

Reform of college algebra now questions this mastery principle in intermediate algebra. Students find

college algebra to be a repeat of their high school experience. Other than fulfilling a course requirement,

295
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these algebra skills serve little real purpose in their college education. Stop for a minute and ask yourself

what mathematics does a college graduate really need. If you are really honest, it will not be the college

algebra of yesterday. The most important challenge facing our graduates in the future is data overload. Data

and statistics are found everywhere: newspapers, magazines, television, and radio. There is no escape. For

any mathematicians who have ever done consulting: “Has anyone ever handed you an equation, let alone

ever asked you to simplify it?” Allow me to answer this—“No.”

As a result, we proposed a different sequence of courses based upon mathematical modeling and

applications using college algebra. It seemed that the goal of the college algebra of the past was to prepare

students for calculus, but most would never take calculus. Also, achieving mathematics maturity through

acquiring manipulation skills is not the best preparation for the calculus. Many of the skills in the algebra

will not be revisited in calculus and thus will be lost. We felt this new course sequence would better serve

our students by preparing them to solve problems that they may face in their own disciplines and in real

life. As you will see, enough of the algebraic structure and manipulation is retained to recognize the course

as algebra, but the focus is now changed toward mathematical modeling and problem-solving.

It is important for mathematicians to recall the reform calculus movement followed by confronting the

core curriculum or the 7-into-4 problem for engineering students (see [1] and [3]). The 7-into-4 problem

concerned the seven topics that engineering students need to cover in the four semesters of core mathematics

that were allowed. In developing possible solutions to the 7-into-4 problem, members of the Mathematics

Department at the USMA listened to their colleagues in client disciplines and tried to restructure the

mathematics courses (calculus and other topics) in response to the specified needs. We believed this same

approach should be applied to college algebra. We went out and talked to our colleagues who require

and use college algebra in their coursework: biology, chemistry, physics, psychology, and business to a

name a few. It was amazing to see what they thought was in our algebra courses and what abilities their

students should have. Low on their list was manipulation skills, but high on their list were the concepts and

connections of the key ideas. These included, but were not limited to the following: slope, proportionality,

linear relations, lines, systems of equations, and linear regression. It was amazing that the theme of linearity,

which we take for granted and which our students have long forgotten, ranked so high on their list.

Mathematics departments need to continue to listen. Today, we should not be telling our client de-

partments what mathematics their majors need. We might not even recognize those disciplines today, as

compared to when we took them in college. We need to listen to their needs. We need to share with them

our offerings. We need to allow them to choose what their majors take and we need to be prepared to

create new courses, if applicable.

Our new courses

Our two-course sequence seeks to interconnect five mathematical topics of linear models, non-linear models,

functions, applications, and data. Together these topics can empower students to solve real-world problems.

The mathematical concepts of statistics, data modeling (linear and nonlinear), graphical interpretation, and

functions (linear and nonlinear) are taught so that they can be applied to problems from a real-world

context. These concepts and topics are further connected to other disciplines through the interdisciplinary

nature of the projects and applications that we use. College algebra can be used to prepare students for

calculus and to prepare them to solve problems that they will see in real life. We believe that the important

concepts of college algebra and the connections to other disciplines are critical to student retention of the

material. For once, the student sees a purpose to the mathematics being taught. Students, especially new

freshmen, need to see mathematics in a new light. They see this as an exciting endeavor that they can use

in their everyday lives.

Let us briefly outline the topics in our new two-course modeling and problem-solving sequence. The

first course includes basic statistics and displays of data, linear equations, linear inequalities in one and
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two variables, absolute value, linear functions, systems of linear equations, graphical linear programming,

and linear regression. The second course includes statistics and data displays, linear functions, nonlinear

functions, inequalities and linear programming, polynomial functions, exponential and logarithmic func-

tions, and conic sections. Note the intentional overlap of some key material for statistics and applications of

linear functions. Based on placement, students might start in either course. All students at Francis Marion

University are required to complete six hours of mathematics for their general education requirement, and

these courses are designed to fulfill this requirement for many students.

Interdisciplinary applications and projects are used to show the diversity of applications of mathematics

and to facilitate our educational (mathematical) threads. One of the ways in which we weave together the

content to attain student growth in problem-solving is through the use of mathematical threads. The

threads that we chose for these courses were scientific computing (technology), mathematical modeling,

and communicating in mathematics (writing and connectivity). Technology removes the tediousness of

doing some calculations and obtaining graphs. It allows for a deeper understanding as well as increased

empowerment, discovery, and experimentation. All students are required to have and use a graphing

calculator for these courses. Modeling provides the motivation for the students to want to learn to solve

problems. Interdisciplinary models show the students how mathematics is used in other disciplines and

in other courses they might take. Communication is used to show interpretation of results and relevance

of mathematics across disciplines both in the sciences and humanities. These three threads are addressed

in a significant way throughout the two-course sequence. Students are expected to model elements within

each project, use technology to assist in solving their mathematical model when applicable, and then

communicate their solution.

Motivation through applications

Application projects are integrated throughout the new courses to motivate student learning and reinforce

critical concepts (see [2]). Projects are used after a topic is taught to provide the student with the opportunity

to synthesize concepts into a real-life context. In our course, the topics chosen to motivate student growth

through projects are statistics, linear functions, linear programming, linear regression, non-linear functions,

exponential and logarithmic models, and conic sections (parabolic motion). These projects are written to

draw on interdisciplinary topics in social sciences, business/economics, and the physical and life sciences.

Each project is a group project where groups consist of one, two, or three students. Students pick their

own groups, because many of our students are commuters. Each project has a writing component, because

we feel writing (communications) is essential to understanding, critical thinking and communicating about

mathematics. Mathematics is much more than just the numerical answers that the student wrote down in

high school.

Each project, as a minimum, includes the following:

� A title page showing the title, the names of the students in the group, date.

� The solution to the project either typed or neatly printed. Included is a problem statement in the

student’s own words, definitions of all variables, sketches (if applicable), formulation of all equations,

solutions, including appropriate graphs, answers to all specific questions, and a brief discussion of the

strengths and weaknesses of their solutions.

� References.

The objective or goal of each project is to provide connectivity through an example for the use of the

mathematical topic and to allow for a deeper understanding or interpretation of the material. The following

are examples of some of these interdisciplinary projects.
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Example 1. Linear functions: Stretching a spring (Physics and Mathematics)

The dimensions of an object tend to change when forces are applied to the object. For example, when

opposite forces are applied to both ends of a spring, the spring is either stretched or compressed. Unless

the spring is damaged, it will return to its original dimension when the forces are removed. Objects that

return to their original dimensions after the applied forces are removed are called elastic objects. Their

study has led to the study of interesting relationships. Many objects react this way: baseballs when hit,

golf balls when struck, and so on. Those objects are much harder to gather data for analysis than a spring

so we will stick with a simple spring.

The amount of deformation of an elastic object is proportional to the forces applied to deform the

object. This statement was first published by Robert Hooke (1635-1703) and is referred to as Hooke’s

Law. This law has many applications, including archery bows, shock absorbers, and automobile bumpers.

In this lab, you will analyze Hooke’s law by using the spring, some weights, and a measurement

apparatus. For your spring, measure the length of the spring without any forces being applied. Record this

length. Next choose at least ten weights (by using the gram weights or combinations of weights). For each

force (the weight) applied to the end of the spring record the additional length (stretch) of the spring.

Requirements:

1. Make a table of your data using the stretch of the spring versus the weight (force) applied.

2. Make a scatterplot of your data. Let force be y and the stretch be x. Describe in words what your data

look like.

3. Representing Hooke’s law mathematically as F D kx, verbally describe the graph of this equation.

What does k represent in this equation?

4. From your scatterplot, estimate the slope and the intercept of your relationship. Write your model in

equation form.

5. What is the physical meaning of the slope of your line?

6. What does the y intercept tell you about the physical system?

7. Use your model to estimate the values of weights for each of the input values of x. Plot both your

data and the equation of your model together on the same axis. Is your model a reasonable fit? Why

or why not?

8. Is the value of k unique? Do you think it can be used to calculate the stretch with other springs?

Compare your value of k with two other group’s value of k. What do you think now?

9. Exceeding the elastic limits: Is it possible to violate the linear relationship?Use your model to determine

the stretch of your spring using your own body weight to stretch the spring (estimate your weight and

ensure it is dimensionally correct in units). Is this answer reasonable?

Example 2. Linear programming: Producing tires (Business and Mathematics)

Firestone Tires headquartered in Akron, Ohio, has a plant in Florence, SC, which manufactures two type

of tires: SUV 225 radials and SUV 205 radials. Demand is high because of the recent recall of tires. Each

100 SUV 225 radials require 100 gallons of synthetic plastic and 5 lbs. of rubber. Each 100 SUV 205

radials require 60 gallons synthetic plastic and 2 1/2 lbs. of rubber. Labor costs are $1 per tire for each

type tire. The manufacturer has weekly quantities available of 660 gallons of synthetic plastic, $750 in

capital, and 300 lbs. of rubber. The company estimates a profit of $3 on each SUV 225 radial and $2 on

each SUV 205 radial. How many of each type tire should the company manufacture in order to maximize

their profits?

Requirements:

1. List the decision variables and define them.

2. List the objective function.
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3. List the resources that constrain this problem.

4. Graph the feasible region.

5. Label all intersection points of the feasible region.

6. Plot the objective function in a different color (highlight the objective function line, if necessary) and

label it the ISO-Profit line.

7. Clearly indicate on the graph the point that is the optimal solution.

8. List the coordinates of the optimal solution and the value of the objective function.

9. Assume now that the manufacturer has the opportunity to sign a nice contract with a tire outlet store to

deliver at least 500 SUV 225 radial tires and at least 300 SUV 205 radial tires. Use graphical methods

to help recommend a decision to the manufacturer. Support your recommendation.

10. If the manufacturer can obtain an additional 1,000 gallons of synthetic plastic for a total cost of $50,

is it worth it to obtain this amount? Determine the new optimal solution caused by adding this level

of resource.

11. If the manufacturer can obtain an additional 20 lbs. of rubber for $50, should they obtain the rubber?

Determine the new solution caused by adding this amount.

12. Write a one-page letter to your boss of the company that summarizes the results that you found.

Example 3. Exponential and logarithmic functions: The terror bird (Biology and Mathematics)

During an archaeology dig in Florida, a prehistoric femur bone was found. As the dig continued, many

more bone fragments were found that allowed the paleontologists to recognize the prehistoric bones of

the bird as a Titanus Walleri. The Titanus Walleri lived over 2 million years ago on the oak and grass

savanahs of what is now Florida. Scientists believe that the Titanus Walleri was a bizarre predatory bird,

and it has been called the “terror bird” (see Figure 1 for an artist’s rendering).

Your team has been asked to assist in determining the size of this terror bird from its fossils. Data

have been collected on numerous large dinosaurs that roamed the earth millions of years prior to the terror

bird as well as birds that currently inhabit the area near Florida.

Dinosaur fingers

and wrists fused

into a feather-

supporting shaft.

Terror birds turned

wing bones into

weaponry.

Figure 1.
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Terror Bird Data

Femur Weight

circumference (cm) (kg)

.7943 .0832

.7079 .0912

1.0000 .1413

1.1220 .1479

1.6982 .2455

1.2023 .2818

1.9953 .7943

2.2387 2.5119

2.5119 1.4125

2.5119 .8913

3.1623 1.9953

3.5481 4.2658

4.4668 6.3096

5.8884 11.2202

6.7608 19.9500

15.1360 141.2500

15.8500 158.4893

Requirements:

1. Plot the data of weight (as the dependent variable) versus the circumference of the femur (as the

independent variable). Very briefly describe the shape. Is it linear or a curve?

2. Using the concept of natural logarithms, calculate the natural logarithms of each data point for weight

and femur circumference. Now, plot the natural logs of the data (natural log weight versus natural log

femur circumference). What does the plot look like now? Does it look like a straight line?

3. Using any method, find the slope and the y-intercept of this line. Write down this equation using LN W

(for natural log of weight) and LN FC (for the natural log of the femur circumference) in the equation.

4. Using the properties of logarithms, transform the equation back into its original form (probably in the

form y D ax C b).

5. Using this equation, predict the weight of the terror bird that has a femur circumference of 21 cm.

That is, evaluate the equation for weight when the femur circumference is 21 cm. Does your value

seem reasonable?

6. Write a short paragraph to the scientists, explaining how you used mathematics to answer their scientific

question.

Example 4. System of equations: Balancing chemical equations (Chemistry and Mathematics)

In your chemistry class, you find you are working on an experiment. You find that chromium compounds

exhibit a variety of bright colors. When solid ammonium dichromate, (N4H2)Cr4O7, a vivid orange com-

pound, is ignited, a spectacular reaction occurs. Although the reaction is actually somewhat complex, let’s

assume here that the products are solid chromium (III) oxide, Nitrogen gas (consisting of N2 molecules),

and water vapor. Solid compounds are annotated with an (s) and gas compounds are annotated with a (g)

after the chemical compound within the equation. The unbalanced equation is:

.NH/42Cr2O7.s/ ! Cr2O3.s/ C N2.g/ C H2O.g/
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Requirements:

Using the four chemicals, nitrogen (N), hydrogen (H), chromium (Cr), oxygen (O) and multipliers

fa, b, c, dg, consider the equation:

a.NH/42Cr2O7.s/ ! bCr2O3.s/ C cN2.g/ C dH2O.g/

1. Write this as a system of equations in matrix form.

2. Solve the values of fa, b, c, dg that balance the chemical equation.

Other projects The table below lists some of the other projects that we have used in these courses. The

authors will provide the project scenarios and solutions, if requested. We create eight to nine new projects

each semester for these courses.

Name of the Project Topic Area

Mark McGwire’s homerun pace Statistics

Calories and fat content Statistics

Relations of GPA and SAT Scores Statistics

Braking distance versus reaction time Linear functions

Cost of US postage stamp Systems of linear equations

Automobile repair in SC Linear programming

Manufacture and sale of tennis shoes in SC Linear programming

Flight of a cannon ball Parabolic motion

Flight of a baseball Parabolic motion

Student growth through projects

While solving these projects, our students were surprised that there were many correct answers. Most

students entered this course believing that mathematics problems had only one correct answer that there

was only one way to obtain the answer. For example, as we discussed the linear function project results,

more students appreciated the idea that their selection process for the two points used to derive a linear

equation determined all other results. Also, students struggled, at first, with factors that could affect the

use of their model in the future. After hearing many other student responses, it became apparent that the

students were beginning to grasp the connections between mathematics and external factors.

Our linear regression project introduced the students to the idea of best fit. We discussed the idea of

a best-fit line during an earlier linear function project, and subsequently the students were going to try to

use the concept. Graphical examination of the linear relationship as well as numerical tables of relative

error did a lot to illustrate this concept.

The “terror bird” project was very interesting to the students. They were interested in this fossil and

determining the weight of this prehistoric bird. Transforming the data into a log-log data set (using natural

logarithms) was very doable. Each group was able to perform the transformation, plot the data, and obtain

an estimate for the slope and intercept. Yet, very few groups could transform the model back from the

log-log form into exponential form, y D axb .

To follow up on our projects, we include a question or two similar to parts of the project on each

major test. So the final course grade includes the group submission of the projects and their individual

performance on tests. Students realize that the understanding of the work in the project is important to

their success on the test and in the course.

Student growth is also achieved within our threads: technology, modeling, and communications. Within

each course, we see growth in the ability to use the graphing calculator to assist in solving problems, to
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model basic mathematical course related problems and to communicate their solution (see [1], [4] and

[5]).

Student responses

Students were asked to write reflective summaries of their project experiences in the form of portfolios.

Student responses were not all positive. Some students were very apprehensive about projects, the work

involved, and the value of projects.

Students who stated that they did not like the projects said that because the projects were too much

work and were not like the problems in the book. One student claimed that projects were not good, because

he or she was used to being taught mathematics through many examples. These reasons were the only non-

positive comments from a survey of over a hundred students. These comments, in our opinion, are really

positive comments. Projects are supposed to be different, challenging, and make students think critically

about the mathematics that they are learning. Students who learn only through repetitive examples may

not truly understand the concept and may be merely memorizing a procedure.

Many students provided more positive feedback. As one student wrote, “. . . projects provided more

help than an endless series of tests would have. Either would have covered the material but projects are

something we can refer to time and time again.” Another student wrote, “. . . this way, you realize how

you may need this information one day.” One student said that after doing these projects, he now looks

at newspaper articles differently, in that, he sees whether or not he can build the mathematical model to

get or check their results. Most of the students directly stated positive comments about the experience and

that they felt it would make them better students in the future.

Faculty growth and development

We have established an open line of communication to our other departments that transcend these courses.

Some of the members of the mathematics department and members of other discipline departments have

joined together to create these projects and joint articles. Currently the following interdisciplinary projects

are being developed that fit many other mathematics courses.

Title Discipline Mathematics Topics

Capture-recapture Biology Statistics and algebra

Population survivability Biology Algebra

Genetic transfer across borders Biology Markov chains and dynamical systems

Tracking turtles Biology Modeling

Bridge swinging Physics Algebra and trigonometry

Planetary motion Physics Algebra and conic sections

Moons of planets Physics Algebra

Radon Physics Statistics

Chemical balancing Chemistry Algebra and matrices

Diffusion Chemistry Differential equations

Saving $ for college Economics Algebra

The development of joint projects has enabled faculty to work together and get to know each other.

These broaden our own perspectives and are an important component of our professional development.
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Conclusions

Based upon the student comments, anecdotal evidence from faculty teaching the new courses, and the

success of our students in follow-on mathematics courses, we claim that the two new courses in our

freshman sequence, Math Modeling and Problem Solving I & II, are successful. They use a subset of

skills from the college algebra sequence and concentrate on the student’s ability to truly master these skills

through motivation, modeling, problem-solving, projects, and writing with mathematics. We also measure

success by the student growth in our mathematical threads as measured through the student portfolios.

The portfolios illustrate growth in each area of our threads during the semester. The effort, sophistication,

use of technology, and communications of the mathematical results into understandable language improve

throughout the semester. Additional departments have begun to request and allow their students to take

these new courses. Finally, our own mathematics department has unanimously endorsed a plan to move

towards one four-credit-hour course, joining the best ingredients of the traditional and reform algebra

courses.
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Elementary Math Models:
College Algebra Topics and a Liberal Arts Approach

Dan Kalman

American University

Introduction

It would be difficult to overstate the importance of algebra in mathematics. If mathematics is the language

of science, then algebra provides the alphabet, vocabulary, and syntax. In particular, the traditional college

algebra course covers the elementary functions of analysis: linear and quadratic functions; polynomials and

rational functions; roots, exponentials, and logs. These functions are inescapable in the most elementary

applications of mathematics to other subjects. In a word, they are ubiquitous all over the place.

It is tempting, therefore, to prescribe algebra as the minimal quantitative component of a higher

education. Unfortunately, for many students who study algebra in college, their mathematical education

goes no further. For these students, the significance of algebra is largely lost. It is as if they studied an

alphabet, vocabulary, and syntax, but never got to read any literature.

Liberal arts math courses offer an alternative exposure to mathematics for general education students.

These courses emphasize lofty educational goals, hoping to communicate something of the beauty, power,

and fascination of our discipline. Developing specific manipulative skills is given much less emphasis.

This essay concerns a hybrid of these two approaches to general education mathematics. Elementary

Mathematical Models (EMM) was developed in the mid 1990s at American University, a selective medium

size university in Washington, DC. It is offered at the lowest level of the mathematics curriculum and

fulfills the general education mathematics requirement. Like a traditional college algebra course, EMM

seeks to make students familiar with the elementary functions. But like a liberal arts math course, it strives

for an intrinsic educational significance independent of utility for any other courses.

Classroom materials for EMM evolved into a textbook, now available from the MAA [1]. Additional

resources are available on the web [2]. The course has been used successfully for about five years at

American University and a few other institutions. In the discussion below, I will provide an overview

of the course and its clientele as I observe them at American University, concluding with a summary of

student reactions and performance.

Content and organization

The core of the EMM course is a sequence of progressively more complicated growth models: arithmetic

growth, quadratic growth, geometric growth, mixed models, and logistic growth. The first three of these give

304
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rise to important families of elementary functions, linear, quadratic, and exponentials, respectively. Logs

are introduced as part of the material on exponential functions. Mixed models, which are a combination of

arithmetic and geometric growth, give rise to shifted exponentials of the form Aebt C c: This core material

can be expanded in a variety of ways, covering closely related units on polynomials and rational functions,

additional properties of logs, linear regression, or chaos.

In EMM, mathematical topics are always introduced in the context of some realistic modeling problem,

and the mathematical exposition never strays far from the applied context. Algebra is presented when and

where it is needed and in conjunction with numerical and graphical methods. I made a commitment in

developing the course to omit any topic or skill that could not be immediately justified in the context of

application. That is, I only included topics that students could see they needed. It should not be surprising

that relatively little of the traditional material on elementary functions had to be discarded in this way.

Afterall, those topics are in the traditional curriculum because they are useful. EMM simply exploits this

fact by developing each topic within the context where it is needed. EMM students never ask, Why is this

topic useful?

By design, EMM incorporates themes that appear repeatedly throughout the course. Acquiring a deep

understanding of these themes and retaining that understanding beyond the end of the course are among

the liberal arts goals of the course. Some of the themes are methodological and procedural, others are more

philosophical. For example, the modeling framework as a broad methodology for applying mathematics

constitutes a philosophical theme. I hope students will, by the end of the semester, understand that models

involve simplifying assumptions; that there is a spiral aspect to model development, evaluation, and re-

finement; that mathematical analysis provides a powerful tool for tracking the consequences of simplifying

assumptions; and that mathematical models have both strengths and limitations.

A more procedural theme concerns the use of discrete models with simple recursive patterns. The

general framework is a sequence of data values or predictions, and the recursive pattern specifies how each

successive term is obtained from its predecessor. In arithmetic growth, the recursive pattern is addition of a

constant; in geometric growth it is multiplication by a constant. These patterns are expressed as difference

equations. For example, anC1 D an C 2 describes an arithmetic growth pattern where each term is found

by adding 2 to the preceding term. With the exception of logistic growth models, all the simple difference

equations have corresponding solutions, which express the terms of a sequence, an, as a function of n.

As part of this theme, there is a repeated pattern of development for each family of growth models.

In each topic, we look at several examples of different phenomena (e.g. metabolization of drugs, pollution

in a body of water, repeated loan payments) and find a simple recursive pattern that is common to all of

them. The pattern is expressed as a specific kind of difference equation. Systematic exploration of these

difference equations leads to solutions comprising a family of elementary functions. Graphical, numerical,

and analytic properties of these functions then reveal information about the evolution of the corresponding

models.

EMM makes no attempt to survey modeling in a broad way. In fact, EMM is not a modeling course

at all. Its primary goal is not to teach students all about mathematical modeling. Rather, models of a very

particular kind, discrete recursive models, are used as a vehicle for motivating the study of elementary

functions. In the process, I hope students will acquire a realistic sense of how mathematics is truly applied

and experience some of the creativity and judgement that goes into applying mathematics to real problems.

Students

The students of EMM have as a minimum the traditional college preparatory mathematics coursework at

the secondary level. This typically means something like three years of high school math, often algebra 1,

algebra 2, and geometry. However, the specific algebraic skills of my students can be quite low. Presumably,

this reflects both imperfect mastery of material in the earlier courses, as well as attenuation over time of
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whatever skills were originally learned. In fact, students who master and retain three years of high school

mathematics would probably not be placed in EMM at American University.

Part of the design of EMM was a reaction to working with students for whom abstract symbol

manipulation is nearly meaningless. I see these students often. Typically they are willing to work diligently

in the course. They also often have moderate to good number sense and can function quite well in the

concrete context of a particular problem. Somehow, though, the language of algebra just does not work

for them.

This point is worth elaborating. One of the advantages of algebraic notation is its ability to capture

numerical relationships or patterns in a very general, yet very succinct way. Take for example, the difference

equation anC1 D 3an: To anyone with a command of algebra, this says in a very compact way, each term

is three times the preceding term. I regularly see students to whom it says nothing of the kind. These

students easily apprehend and work with the pattern of successive tripling of terms in a sequence. When

that sequence is part of a model, they can handily use numerical methods to answer questions about the

model. In short, they understand everything about the model that I want them to understand. But, whereas

to me the equation captures most or all of that understanding, for these students, the equation does not.

They cannot quite see what the point of the equation is and can only translate between the abstract notation

of the equation and their own clear understanding of the pattern with great effort and concentration.

For these students, the context of a particular problem or family of problems is critical. They cannot

attach any meaning to the symbolic notation otherwise. EMM tries to assist these students by keeping the

mathematics firmly in a meaningful context. I hope students will use their concrete number sense, general

reasoning ability, and verbal skills to help them endow the symbolic notations with meaning.

I do not want to leave the impression that EMM students all struggle with algebra. On the contrary,

the audience is quite diverse, and frequently one or two of the students in EMM have even completed a

semester of calculus. For the strongest students, the contextually thick buildup to each symbolic abstraction

can be a bit annoying. But overall, these students do not find the course boring or trivial. The realistic

models make the material interesting, and the constant connections between mathematical procedures and

application issues is something that is unfamiliar to just about all of the students.

Classroom practice

The EMM course does not presuppose any particular style of presentation. When I teach the course, I use

a mixture of lecture-discussion, small group activity, and computer exercises. Some of my colleagues have

used mainly traditional lecture style presentation. The course is intended to be language rich, and reading

and writing are heavily emphasized.

The application contexts and recursive models lend themselves nicely to empirical investigation. This

is easily supported by technology in a number of ways. I have successfully used graphing calculators

and special purpose computer activities designed for the course. These were implemented in an authoring

package called Mathwright [4] and are freely available over the internet [2]. They have the interaction style

of a webpage, allowing students to enter data and equations in a natural and intuitive way and explore

graphical and numerical properties of models. It is also possible to provide similar kinds of computer

activities using a spreadsheet program, such as Excel. I imagine that notebooks in Mathematica or Maple

could also be created, but I have not done so.

Sample lesson

To illustrate the evolution of ideas in the course, here is an outline for one topic, mixed models. This

material would be covered in about one and one-half weeks. For additional samples, see [3]. Mixed

models are characterized as a combination of geometric growth and arithmetic growth and by a difference
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equation of the form:

anC1 D ran C d

with r and d fixed constants. These models arise in a variety of contexts, including:

� pollution in a body of water
� metabolization of medicine with repeated doses
� amortized loan payments
� sums of geometric growth models
Given the formula 1Cr Cr2 C� � �Crn�1 D .rn �1/=.r �1/ for the sum of a geometric series, a simple

pattern analysis leads naturally to the solution of a mixed model difference equation. This is presented in

terms of a numerical example of the following sort. Consider the sequence an, where a0 D 200; and each

successive term is 3/4 of the preceding term, plus 100. We systematically generate several terms of the

sequence, without actually carrying out any of the arithmetic:

a0 D 200

a1 D 200.:75/ C 100

a2 D 200.:752/ C 100.:75/ C 100

a3 D 200.:753/ C 100.:752/ C 100.:75/ C 100

Here, the right-hand side of each equation is obtained by multiplying every term on the preceding line by

.75, and then appending an additional increment of 100. Students quickly recognize the pattern and are

soon led to discover

an D 200.:75n/ C 100
1 � :75n

1 � :75
:

It is a small step from this result to the generalization:

if anC1 D ran C d; then an D a0.rn/ C d.1 � rn/=.1 � r/:

Students study the graphs and the numerical tables for these sequences and observe that for r < 1, the

values of an level off to an equilibrium value. In one lab period, they explore a model for repeated drug

doses numerically and graphically, discovering that the equilibrium value does not depend on the initial

dose of medication, but is proportional to the size of the repeated dose and inversely proportional to the

percentage of the drug which is eliminated from the body between doses. They use these observations to

determine the size of the repeated dose required to achieve a predetermined equilibrium level of medication

retained in the body.

The algebraic lessons associated with this unit focus on algebraic rearrangement and solving equations.

One of the goals of the course is to make it clear to students why algebraic rearrangement is necessary

and useful. In this unit, they see that the natural form for a solution to a difference equation, for example:

an D 200.:75n/ C 100
1 � :75n

1 � :75
;

can be expressed more compactly in the form:

an D 400 � 200.:75n/:

Each form has value in some context. The first form shows clearly the significance of the parameters

a0, r , and d . The second is more convenient for computation and shows at once that the graph is a

vertically shifted exponential, with equilibrium value 400. In this way, the abstract practice of algebraic

rearrangement is observed to have significance in a very concrete way.
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A second repeated appearance of algebra occurs in connection with inverting the functions which arise

as solutions to difference equations. In the context of the example discussed above, we might ask when

the amount of drug will reach a value of 350. Using the simplified form of the equation for an, that leads

to:

350 D 400 � 200.:75n/:

Here, algebraic rearrangement is again used, this time to reduce the equation to one which the students

can solve with logs:

:25 D :75n:

In this unit, there is also a discussion of fixed points and their role in determining equilibrium values.

If x is fixed by the recursive operation multiply by .75 and add 100, then it follows that:

:75x C 100 D x:

This provides an alternative route to the equilibrium value of 400.

Assignments for this unit include applications of mixed models that arise naturally in all of the areas

cited above. Students can formulate models for these application areas and use numerical, graphical, and

symbolic methods to predict future behavior of the models. They also work with the idea there are several

different justifications for using a mixed model (or any other kind of model). In some of the applications,

simple assumptions about mechanisms at work in the model (like elimination and repeated ingestion of

medications) lead to a mixed model. In other cases, the data are simply observed to fit closely to a mixed

model pattern. In yet other situations, a previously defined geometric model is summed to obtain a mixed

model. For example, a geometric growth model for annual oil consumption leads directly to a mixed model

for world petroleum reserves.

Student reactions and performance

Students have been very supportive of the goals and framework of the EMM course. Between 80% and

90% describe the course as interesting and worthwhile. Each semester, there are a few students (perhaps

3 or 4 in a class of 30) who make comments like these:

Best math course I ever took; I am usually awful at math but I really understood this course; first

time I actually enjoyed a math course; I was dreading math but this turned out to be one of my

favorite courses.

There also are always a few students who object to the emphasis on writing and thinking. It is rare for

a student to find the material so easy that it offers no intellectual challenge. On the other hand, the stronger

students would find that a traditional college algebra course can be completed in a much more mechanical

way and with much less in the way of conceptual demands. Perhaps these are the same students who

complain: Too much writing. I never had to write essays in a math class before.

In my classes, almost every student who makes a reasonable effort over the course of the semester

completes the course successfully, ending with a grade of C or better. Roughly half to two thirds of my

students receive final grades of B or above.

I have not gathered any data on the long term instructional goals that provided a primary motivation

for creating this course. I do not know how well EMM students retain ideas about mathematical models

in general, about how and why math is applied, about the specifics of recursive patterns and functions. To

that extent, I cannot really substantiate how effective the course is.
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Conclusion

As a teacher, I find the EMM course very satisfying. It has a coherent story line and an evolving conceptual

thread that stretches from the simplest models to current concepts in chaos. There are well-defined long-term

instructional goals, and the repeated emphasis of aspects of these goals enable students to make progress

through the entire semester. I am confident that the course is laying a foundation for the quantitative

demands of other general education courses in the natural and social sciences. But at the same time, I

feel that EMM students have an opportunity to learn something significant about how math is used, and

why math is important. In addition, positive student reactions reinforce the philosophical convictions that

inspired the course to begin with.
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Background

The goal of this position paper is to make the case for the use of labs in a precalculus course. The

observations made in this paper are based on our experience with the precalculus program at the University

of Arizona, where supplementary lab assignments are integrated into the precalculus curriculum. While

these lab assignments frequently involve the use of technology, they are not computer labs in the traditional

sense; rather, they are multi-step, real-life problems that students explore in a group setting.

First, we set the context for the precalculus course at the University of Arizona. All students intending

to take beginning mathematics courses, including precalculus, must take a readiness test. The tests currently

in use were developed in California by the Mathematics Diagnostic Testing Project. The tests primarily

cover topics from algebra, geometry, and trigonometry. Most of the students who end up in the precalculus

course hoped to start in first semester calculus. Most have had four years of high school mathematics

ending in a course equivalent to precalculus and in some cases they have had calculus.

The precalculus course at Arizona is a four-credit course that meets in three 50-minute sessions and one

two-hour lab session. The text for the precalculus course is Functions Modeling Change: A Preparation for

Calculus by Connally, Hughes Hallett, et al [2]. It is followed by three semesters of the reform calculus

text by the Consortium schools written by Hughes Hallett, et al [5]. The precalculus course adopts a

balanced approach, focusing on both concepts and procedures. As with all the Consortium material, it

stresses understanding and multiple ways of representing mathematical ideas. It aims to build a solid

foundation for calculus by focusing on key classes of functions. The exercises in the text are varied,

with some challenging problems and some using real data. The material encourages students to think

symbolically, numerically, graphically, and verbally. Finally, technology is integrated into the course with

the form and degree of use varying by instructor and student preparation. All precalculus classes use TI

graphing calculators, which are also part of the calculus sequence.

Why labs?

The purpose of the labs is to have students investigate real-life problems that can be addressed with

the tools learned in precalculus. The labs provide students with an opportunity to step back from the

exercises that are in the text and allow them to consider problems that require more from them in terms of
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critical thinking skills. While many of the exercises in the text are one-step calculations asking for a single

answer, a typical lab project asks questions in an open-ended way that requires students to first identify

the correct tools to use and then to use them in an appropriate way. In addition, these labs give students a

chance to discuss mathematics in small groups, debate strategies, convince fellow students of the validity

of their arguments, and then put it all together into a polished, written report detailing their findings and

conclusions. The labs also allow students to explore mathematical ideas from different points of view—

graphically, verbally, numerically, and symbolically—which helps students solidify their understanding of

the concepts.

The labs are very different from problems students may see in the text. In particular, the labs are not

short answer questions requiring only a few calculations; in some cases there is no right answer, only

a model that approximates a natural phenomenon. The labs require written explanations supported with

data, numerical calculations, graphs or spreadsheets, which ultimately lead to some conclusions. The lab

report is meant to stand alone and be understandable by anyone with a basic knowledge of mathematics.

In addition to helping students gain deeper insight into the concepts of precalculus, the labs are one of

several ways that the instructor can use to gauge how well students understand these concepts.

Format of the labs

The lab assignment is handed out one week in advance with a brief discussion of the overall idea behind

it. During the intervening week, students read the assignment and may have to collect data for use during

the lab. Students work in groups of 3-4 that can be formed in different ways. Some instructors let the

students select their own partners, while others select groups at random or just assign groups they think

will work well together. During the lab, students analyze data, discuss mathematical models, find answers

to specific questions, look for patterns, and come up with some conclusions. Students continue to discuss

the lab after class and write a report that is due the following week. Some instructors require one report

per group with the lead author rotating among the group while others require a report from each student.

Some advantages of the labs

The labs are intended to enhance the writing/explanation part of the course. In the reformed calculus text,

many of the problems require answers that are explanatory in nature, i.e., students have to express answers

in verbal form, not just numerical format. This is often difficult and frustrating for students, especially

for those whose view of mathematics is limited to numerical calculations. Here are some of the main

advantages of labs:

� The labs give the students experience communicating mathematics through writing. Most students have
never been required to do this before but will be expected to do it in subsequent mathematics courses.

� The lab environment allows students to work together on math problems where they have to explain
their thinking to fellow students. Thus, students are forced to communicate mathematics to each other

in order to finish the lab assignment.

� The labs are an opportunity to reach the students in the course who put very little effort into homework
problems involving written explanations. The fact that labs are done in class guarantees that students

will use this time to write and communicate mathematics.

� The labs help students learn to explain the ideas in precalculus. This skill is necessary to succeed in
a reformed calculus course. Thus, doing the labs gives students who go through the reformed version

of precalculus an advantage over those who do not. Some calculus instructors have noticed that these

students seem to experience less frustration doing calculus than those who have not had the precalculus

course.
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� The lab assignments present practical problems that help change the students’ flawed or narrow views
of what mathematics is. Many students, especially in this course, come into it thinking that a problem

requiring a written explanation is not really a mathematics problem. Therefore, they think that such

problems should not be included in a mathematics course. By giving them examples of practical

problems like those in lab reports, they become accustomed to accepting such problems as a part of

what they view to be mathematics.

� The lab reports give the instructor a window into the way students think about concepts. It alerts the
instructor as to which concepts are understood and which ones need additional attention.

� The labs provide students with the opportunity to use multiple strategies to solve problems including
the use of formulas, graphs, tables, and verbal descriptions. The labs also provide a good opportunity to

use technology such as graphing calculators, Excel, and the web. The ability to use different strategies

and tools makes students more competent problem solvers.

� The labs add an important dimension to the course which otherwise may appear to some students
as merely a catalog of functions. They provide students with an opportunity to discover practical

interpretations of mathematical objects.

� The labs provide students with lots of practice organizing, displaying and analyzing data in real-world
contexts. These are important mathematical skills that relate directly to other areas in life.

� The labs are designed to promote teamwork, and improve writing and problem-solving skills. All of
these are skills that future employers look for in college graduates.

Some challenges associated with the labs

Focusing too much time on lab reports takes away from the time needed to improve algebra skills. Since

a lack of algebra skills is usually the reason students end up in precalculus, a careful balance must be

achieved. To solve this problem, some instructors choose to do labs only every two weeks and use the lab

days in between to concentrate on algebra intensive worksheets. It is also possible to include labs where

algebra skills are necessary to solve the problems posed in the labs. (For instance, please see the Revenue

Lab, which is the fourth sample lab given below.)

Asking students to work in groups always brings up issues involving fairness. This is particularly the

case when each group submits one report and all students get the same grade for unequal amounts of work.

Good students are sometimes resentful of having to work in groups, since they often have higher standards

than their partners. It is a good idea to remind students that being a productive member of a team will be

expected of them in their careers. To ensure that it is not possible for some students to get a free ride, it

is a good idea to require every student to be the lead author for at least one lab and to remind students

to omit an inactive group member’s name from the group report. Sometimes it is also necessary for the

instructor to reassign groups, allow students to switch groups or to include attendance requirements during

lab days.

Many of the labs involve calculations done by graphing calculators, especially those involving scatter

plots and linear regression. Since students do not have the same or roughly the same, kind of calculator,

this makes such a lab assignment difficult to manage. Since students often become anxious and frustrated

when calculator instructions do not apply to their calculator, it is a good idea for instructors to announce

early in the course the type of calculator they will use for in-class demonstrations. For students who use

different calculators, it helps to collect or design calculator instructions for as many different calculators as

possible. Putting students with the same type of calculator together in a group for the first lab and having

additional instructors (teaching assistants, other precalculus instructors) available to help with calculator

problems is also helpful.
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It is sometimes hard to motivate students for some labs since they are overwhelmed by the technical

details of the lab and fail to see the big picture. For these difficult labs, a good introduction to the lab by

the instructor can prevent a lot of frustration.

Below are examples of four labs.

Body Parts

The following is an excerpt from Jonathan Swift’s, Gulliver’s Travels.

The seamstresses took my measure as I lay on the ground, one standing at my neck and the other

at my midleg, with a strong cord extended, that each held by one end, while the third measured

the cord with a rule an inch long. Then they measured my right thumb, and desired no more; for

by a mathematical computation, that twice round the thumb is once round the wrist, and on to the

neck and waist and by the help of my old shirt, which I displayed on the ground before them for

a pattern, they fitted me exactly.

This project will focus on finding mathematical relationships between various body parts. The first

relationship we want to investigate is the length of the ulna (the bone extending from the elbow to the

wrist, on the side away from the thumb) and the length of a person’s shoe.

� Without taking any measurements, can you make a conjecture regarding the relationship between the
length of one’s ulna and the length of his/her shoe?

� Begin by measuring the length of each person’s ulna and the length of his/her shoe, both in inches.
Be careful to be very precise when making these measurements. Keep the male data separate from the

female data. Make one table which represents each female in your group’s ulna and shoe lengths and

another table which represents each male in your group’s ulna and shoe lengths. Include in these tables

results from a few of the other groups.

� Make two scatterplots—one which corresponds to the male data and the other the female data. Make
sure your plots contain a well-labeled set of axes. Based on your scatterplot, can you guess a relationship

between the length of one’s ulna and the length of one’s shoe?

� Think of the length of your shoe as a function of the length of your ulna. What is the appropriate
domain and range? Calculate the best-fit linear models for the male and female data.

� Based on your model, suggest a rule of thumb describing the mathematical relationship between the
length of one’s shoe and the length of his/her ulna.

� Suppose someone has an ulna that is 10 inches. Predict the length of her shoe.

Can you think about any other body parts that might be related? How about arm span and height?

Describe and conduct an experiment that finds the mathematical relationship of a person’s height and

his/her arm span. (Please note a similar activity is presented at:

http://mathforum.org/alejandro/frisbie/math/leonardo.html.)

Goals: The lab gives students the chance to collect and organize data by hand and to use their graphing

calculators. In addition to being introduced to the idea of fitting a function to data points and using the

function to make predictions, they learn how to use linear regression on their calculators.

Advantages: The “Body Parts” lab is a good lab to do early in the semester. The students begin by taking

measurements of each other. They move around and share their data with different groups, and this creates

a nice atmosphere where students get to know each other. The lab involves everyone since measuring,

recording, and entering data into the graphing calculator can each be done by a different group member.

Challenges: The most common problem associated with this lab is the nature of the measurements them-

selves. Most of their numbers are very close together, and there are not that many data points to consider.
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Many students are therefore confused by the scatter plot that they see and do not see how a line of best

fit is relevant to the problem. The instructor can help with leading questions and encouraging the students

to discuss their concerns about the model as part of their lab reports.

Modeling the Hours of Daylight

The website http://aa.usno.navy.mil/data/docs/RS OneYear.html provides a way for you to obtain a table of

the times of sunrise/sunset for one year at different locations worldwide. To start this lab, please go to the

website and obtain sunrise and sunset times for Fairbanks, Alaska, Seattle, Washington, Honolulu, Hawaii,

and Barrow, Alaska. It is the goal of this lab to use the given information to find functions that model the

amount of daylight as a function of time (in days) in Fairbanks, Seattle, and Honolulu. Your assignment

is to write a report that explains how you come up with a mathematical model and how you can use your

model to answer different questions about the amount of daylight in these cities. The following questions

will help you to explore the topic.

1. Given the data for 1999, can you make predictions about the hours of daylight in the future and also

in the past?

2. What kind of function do you expect to model the behavior of the amount of daylight?

In fact, there are infinitely many functions that model this kind of behavior. Suppose for each city,

we choose the function f .t/ D A cos.Bt/ C C to model the amount of daylight, where t is given in

days. You can choose a date for t D 0, that is, t D 0 could represent January 1 or any other day of the

year. Remember that a trigonometric function is characterized by three things: its period, amplitude, and

midline. In our function f .t/, these three quantities are related to A, B, and C (not neccesarily in the

same order).

1. What is the practical interpretation of the period?

2. What is the practical interpretation of the amplitude?

3. What is the practical interpretation of the midline?

4. What is the practical interpretation ofA?

5. What is the practical interpretation of B?

6. What is the practical interpretation of C ?

What kind of information do you need to compute the amplitude, period, and midline of a trigonometric

function? On which day do we have the most hours of daylight? On which day do we have the fewest

hours of daylight? (In the northern hemisphere!) For each of the three cities do the following:

1. Find A, B, and C .

2. Plot the function f .t/. Plot y D cos.t/.

3. Explain how you have to transform the graph of the normal cosine function to get the graph of f .t/.

Having found the three functions that model the given situations, do the following:

1. Explain in geographical terms why A and C differ for the three cities, but B stays the same.

2. Use your functions to predict the hours of daylight in each city on October 8, 2010.

3. Use your graphs to find out the days on which there will be 12 hours of daylight. In what seasons

does this happen? Is there a name for those dates?

We haven’t looked at the data given for Barrow, Alaska yet. You may wonder about the following

points:

1. What is the meaning of all the dashes and stars in the table?
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2. What would the function of daylight look like? Does it still look like a trigonometric function?

3. Do you have a geographical explanation for the dashes and stars?

4. Can you think of any other towns that will exhibit a similar kind of behavior? Where are they (latitude)?

Please don’t just write this lab as a list of answers to the posted questions! The questions are simply

there to help you explore the topic. The lab report, however, should be a flowing text explaining how you

come up with the mathematical model of a given situation and how you can use this model to point out

interesting features of the situation. Don’t forget the introduction and conclusion!

Goals:Many students have experience with the sine and cosine function coming into a precalculus class, but

few have seen them applied to model periodic phenomena. This lab provides students with the opportunity

to understand the concepts of period, amplitude, and midline in terms of a real-word problem.

Advantages: For students who have only understood sinusoidal functions in terms of the unit circle or

triangles, this lab develops a more complete conceptual understanding of the sine and cosine functions.

By doing this lab, students are forced to interpret input and output values of the function and to see the

physical interpretation of midline, period, amplitude, and horizontal shift in the context of this problem.

Challenges: Students generally find this to be one of the most challenging labs that they do over the course

of the semester. Many are overwhelmed by all the numbers in the tables of data that they are given and

incorrectly think that the point of the lab is to enter all of the data into their calculator and graph it. It is

very helpful to have a thorough introduction to the lab before the students begin. During this introduction,

the instructor can prompt students for the times of year when we have the most and the least amount

of daylight and guide students toward a method of determining the critical features of the function to be

calculated. The instructor can also point out details for students to look out for when doing the lab, like

conversion from hours and minutes to decimal representations of hours.

The Richter Scale

The following description of the Richter Magnitude Scale can be found on the webpage of the U.S. Geo-

logical Survey (USGS) at http://neic.usgs.gov/neis/general/richter.html. It was abridged from The Severity

of an Earthquake [8], a U.S. Geological Survey General Interest Publication.

Seismic waves are the vibrations from earthquakes that travel through the Earth; they are recorded

on instruments called seismographs. Seismographs record a zig-zag trace that shows the varying

amplitude of ground oscillations beneath the instrument. Sensitive seismographs, which greatly

magnify these ground motions, can detect strong earthquakes from sources anywhere in the world.

The time, locations, and magnitude of an earthquake can be determined from the data recorded by

seismograph stations.

The Richter magnitude scale was developed in 1935 by Charles F. Richter of the California

Institute of Technology as a mathematical device to compare the size of earthquakes. The mag-

nitude of an earthquake is determined from the logarithm of the amplitude of waves recorded by

seismographs. Adjustments are included for the variation in the distance between the various seis-

mographs and the epicenter of the earthquakes. On the Richter Scale, a magnitude is expressed

in whole numbers and decimal fractions. For example, a magnitude of 5.3 might be computed

for a moderate earthquake, and a strong earthquake might be rated as magnitude 6.3. Because of

the logarithmic basis of the scale, each whole number increase in magnitude represents a tenfold

increase in measured amplitude; as an estimate of energy, each whole number step in the magnitude

scale corresponds to the release of about 31 times more energy than the amount associated with

the preceding whole number value.

At first, the Richter Scale could be applied only to the records from instruments of identical

manufacture. Now, instruments are carefully calibrated with respect to each other. Thus, magnitude
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can be computed from the record of any calibrated seismograph. Earthquakes with magnitude of

about 2.0 or less are usually called microearthquakes; they are not commonly felt by people and are

generally recorded only on local seismographs. Events with magnitudes of about 4.5 or greater—

there are several thousand such shocks annually—are strong enough to be recorded by sensitive

seismographs all over the world. Great earthquakes, such as the 1964 Good Friday earthquake

in Alaska, have magnitudes of 8.0 or higher. On the average, one earthquake of such size occurs

somewhere in the world each year. Although the Richter Scale has no upper limit, the largest known

shocks have had magnitudes in the 8.8 to 8.9 range. Recently, another scale called the moment

magnitude scale has been devised for more precise study of great earthquakes. The Richter Scale

is not used to express damage. An earthquake in a densely populated area which results in many

deaths and considerable damage may have the same magnitude as a shock in a remote area that does

nothing more than frighten wildlife. Large-magnitude earthquakes that occur beneath the oceans

may not even be felt by humans.

Given below is a table of earthquakes that were recorded during the 1990s.

Place Year Magnitude

San Francisco 1996 7.8

Athens 1999 5.8

Taiwan 1999 7.6

Netherlands 1992 5.9

Los Angeles 1994 6.7

Mexico 1999 6.5

Columbia 1999 4.2

Your assignment is to explain how the Richter Magnitude Scale works. Reading and doing Problem

35 in Section 4.4 (see [2]) may help you. Problem 35 defines magnitude or Richter scale rating, M ,

of an earthquake with seismic waves of size W as M D log.W =W0/, where W0 is the strength of a

standard earthquake. The problem then leads toward the fact that a one-point increase on the Richter scale

corresponds to a tenfold increase in energy output. In your write up, assume that your reader knows what

an earthquake is but not much more. Make sure to address the following points in your report:

� What does the Richter Scale measure?
� What does it mean that the scale is logarithmic?
� To find the magnitude of an earthquake you have to take the logarithm of what data?
� Which logarithm is used, i.e., which base are we talking about: 2, 10, e?

� How does an earthquake of magnitude 4 compare to an earthquake of magnitude 5, etc.?
� Compare the severity of several (at least two pairs) of the earthquakes in the table.
� Thinking about the energy that is released during an earthquake: How much more energy was released
during the Los Angeles earthquake than during the earthquake in the Netherlands?

� Include a possible graph that represents the Richter Scale: Magnitude is a function of . . . ?

Goals: For a lot of students, logarithms are one of the reasons that they are taking precalculus and not

calculus. This lab is designed to improve students’ algebraic skills involving logarithms and to show them

a practical application of logarithmic scales.

Advantages: The key benefit of this lab is to tie the idea of logarithms to a practical concept like the

Richter scale, which most students have heard of. Even if students struggle intensely with the algebraic
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computations involved in this lab, most of them will remember that a one-point increase in earthquake

intensity represents a tenfold increase in energy output. The instructor can then refer back to this example

repeatedly when explaining the properties of logarithms in general. This lab is an excellent exercise in

reading and writing about science.

Challenges: The biggest difficulty to overcome in this lab is the frustration encountered by students as a

result of their lack of comfort with logarithms. Some students may not know where to begin on this lab

or exactly what is expected of them. It is therefore helpful for the instructor to spell the expectations out

to students ahead of time and to be prepared to clarify or rephrase the wording of some of the questions.

A review of the basic properties of logarithms before the lab is assigned can also be helpful.

Revenue Lab

Furniture Barn is a chain of furniture stores in the northeastern corner of South Dakota. In the past few

weeks, they have been disappointed by the revenue produced from the sale of their luxury recliners. In

an effort to find a solution to their revenue problems, they have compiled the data below showing the

combined daily demand for their recliners at various selling prices.

Recliner Price, $ 399 459 499 569 599

Demand (recliners) 62 58 56 52 50

All levels of management seem to agree that revenue would increase by raising the price of the recliner

somewhat, but there is disagreement as to how far the price should be raised. Your first job is to decide

whether or not raising the price will increase revenue. Then, your job is to decide on a selling price which

will maximize Furniture Barn’s daily revenue from recliner sales.

Begin by plotting the demand for the recliners as a function of price. Does the collection of data points

appear linear? Use linear regression to find an approximate formula for the number of recliners demanded,

q, as a function of the price for the recliner, p, in dollars. Does your equation fit the data points exactly?

Explain. Use your formula to predict the number of recliners which would be demanded at selling prices

of $650, $700, and $750. According to your formula, is there a price at which the recliner is so expensive

that there would be no demand?

Now, focus on the question of daily revenue earned from sales of the recliner at various prices. Explain

how you would compute Furniture Barn’s daily revenue from recliner sales at selling prices of $399 and

$650. Do you think that revenue will continue to increase as the price of the recliner is raised higher and

higher, or is there evidence to suggest otherwise? Justify your answer by constructing a table showing

revenue, r (in dollars) as a function of recliner price, p (in dollars), for an appropriately chosen list of

selling prices.

Finally, find a formula r D f .p/ that gives approximate revenue as a function of recliner price.

Construct an accurate plot of your function on a well-chosen scale. What type of a function do you end

up with? Based on your revenue function, find the selling price of the recliner that maximizes Furniture

Barn’s daily revenue. What is the maximum daily revenue that they can expect?

Note: Keep in mind that this is a lab report, not just a disjoint collection of questions to be answered.

That means that it should clearly communicate the problem and solution procedure to the reader, with one

idea following the next in a smooth and natural fashion. The vast majority of your report should consist

of words, not calculations! It must also contain an introduction which presents the problem to the reader

and describes the ultimate goal, and a conclusion which sums up the results obtained. Graphs and tables

should be placed at the appropriate places in the report, or at least referred to at the appropriate places

in the report. As in any other class where you write reports, neatness, organization, and presentation style

will definitely weigh into your grade.
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Goals: This lab provides a practical application of finding the vertex of a quadratic function. It is hoped

that students will see that multiple approaches to the problem of finding the maximum value of a function

can work and give them practice in explaining the problem and its solution in detail to a reader.

Advantages: One of the most positive features of this lab is that it allows students to create a simple

mathematical model for an everyday quantity on their own. If they do the lab in the intended way, they

will discover for themselves that revenue is modeled by a quadratic function in the context of this problem

and will be forced to recognize the practical significance of the vertex. It also gives students another

opportunity to gain comfort with linear regression and with using a modeling function to make predictions.

If extra practice with completing the square is desired, the instructor can ask students to find the vertex

of the modeling quadratic algebraically.

Challenges: While most students will have no trouble using linear regression to model demand as a

function of price, many of them will automatically assume that revenue is also a linear function and try to

use linear regression to find a formula for revenue. This is a great opportunity for the instructor to ask the

students if a linear model makes sense for revenue, pointing out that this would mean that revenue grows

without bound as the price of a recliner is increased. Also, while students seem to have no trouble at all

calculating revenue when given a specific recliner price, they have great difficulty in generalizing this to a

formula. It helps for the instructor to be prepared to ask the students leading questions to help them make

the leap from specific to general.

Other resources for precalculus labs

We cite two excellent resources for use as labs in precalculus courses. Although they were written to

accompany specific texts, they work very well with most textbooks on precalculus.

The first citation is Projects for Precalculus by J. Andersen, T. Swanson, and R. Keeley [1]. It is a

set of 26 projects to accompany Contemporary Precalculus by T. Hungerford [9]. The projects promote

similar themes to ones presented in this paper: viewing concepts from several points of view, emphasizing

writing skills, use of technology, use of collaborative learning, and stressing the application of mathematics

to other disciplines.

The second citation is Precalculus in Context by M.J. Davis, J.F. Moran, and M.E. Murphey [3]. This

lab manual is a companion to the precalculus text by the authors. It contains 10 labs which emphasize the

use of graphing technology as an integral component. Here, too, the labs are collaborative, emphasizing

real-world situations, culminating in a written report.

Other reform texts

Reform texts lend themselves well for the use of labs in precalculus. They tend to emphasize understanding

in multiple ways and they encourage explanations in written form. In addition to the precalculus book we

use, Functions Modeling Change: A Preparation for Calculus by Connally, Hughes Hallet, et. al. [2] we

cite two other reform texts. Functioning in the Real World: A Precalculus Experience by S. P. Gordon, F.S.

Gordon, A.C. Tucker, and M. J. Siegel [4] is the outgrowth of an NSF-funded project. The text focuses on

the following goals: mathematical thinking involving geometric, numerical, symbolic, verbal, and algebraic

approaches; the mathematics in a scientific oriented society emphasizing applications and models; providing

the skills and knowledge needed for subsequent courses; and the appropriate use of technology. The text

recommends that students do several mathematical projects, individually or in groups, similar to the concept

of a lab. The projects are intended to get students involved in formulating mathematical questions, collecting

and analyzing data, drawing conclusions and presenting them in a written report.

The Contemporary Precalculus Through Applications text is written by the North Carolina School of

Science and Mathematics [6]. The text provides a beginning knowledge of real-world applications in the
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areas of mathematical modeling, data analysis, discrete mathematics, and numerical algorithms. It adopts

an investigative approach to the development of these topics. It lays the foundation to support future course

work in subsequent courses such as calculus and statistics. Technology, both calculators and computers, is

encouraged as a tool for investigation and discovery. The authors have also developed material for calculus.

Conclusion

In summary, we found the lab assignments to have benefits that are not usually found in a beginning

level course. First and foremost, the labs provide students with the opportunity to tackle some real-life

problems, to find their solutions, and then to write a report detailing their findings and conclusions. They

do this in a small group setting which emphasizes teamwork. Second, they learn how to debate strategies,

explain their thinking, and communicate their ideas to fellow students. These are skills that are important

to their future employers. Moreover, the labs help to address a big challenge in our precalculus course,

namely, how to teach a diverse student audience with varied mathematical background. Requiring students

to turn in written lab reports brought these very different groups of students together and encouraged them

to communicate mathematical concepts to one another. Finally, another positive aspect of the labs was to

break the monotony of the traditional library of functions approach to precalculus by using these functions

to model real-life situations.

While we found the labs to have a positive influence on the precalculus course, we discovered that

significant preparation was required to successfully implement them. For example, the Hours of Daylight

Lab and the Richter Scale Lab assignments require careful thinking before any meaningful calculations

can be made. Since students at this level are inherently uncomfortable with open-ended questions, many

of them have no idea how to start such a project without a carefully-led discussion. Another challenge we

encountered is introducing students to the idea of writing in a math course. We found that giving students

a particular audience to address helped them overcome their initial resistance. For example, the Revenue

Lab asks students to assume the role of a consultant hired by the owners of a furniture store to write a

business proposal for a specific purpose.

Acknowledgement: We would like to take this opportunity to acknowledge the contributions of Kate

McGivney to the institutionalization of labs in precalculus. These contributions took place while she

served in a teaching postdoctoral position at Arizona from 1997 to 2000.
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Introduction

In recent years, the use of multiple representations has become an important part of the teaching of

mathematics at all levels. This paper describes how a laboratory approach to precalculus instruction can

allow students to achieve mathematical insights using direct sensory experience of quantitative phenomena.

Such experience can complement and inform the graphical-numerical-analytical-verbal models students use

in problem-solving.

Since the beginning of the calculus reform movement, the Rule of Three has become an essential feature

of mathematics education. Facilitated by the availability of technological aids to constructing graphs and

tables, the use of multiple approaches in describing mathematical functions and processes is a cornerstone

of current pedagogical practice throughout the K–16 mathematics curriculum.

Shortly after the Rule of Three construct was widely adopted and became part of the mathematics edu-

cator’s lexicon, it evolved into the Rule of Four [1]. If analytical, graphical, and numerical representations

are all different lenses through which mathematical relationships can be viewed, they are, in many cases,

language-independent substitutes for connections or processes that can also be described in words. Thus,

verbal description became a co-equal partner to the original trinity. In particular, describing a mathematical

model in English (or any other language) can make mathematics more accessible for those who have not

typically been successful with traditional symbol-intensive mathematics. Using language (written or oral)

to articulate mathematical modes of thought has now become an integral part of the way we expect our

students to approach mathematics [2]. This emphasis on language has also forced mathematics teachers

to be more precise in their own interactions with students. “Explain your answer” has given way to such

instructions as “How is this property reflected in the graph of the function?”, as both tests and textbooks

have acknowledged that, in some respects, to talk intelligently about mathematics is to understand it.

Government funding initiatives beginning in the late 1980’s resulted in, among other things, a number

of projects that emphasized laboratory approaches to college calculus and precalculus [3, 4, 5]. Although

many of these emphasized computer or calculator investigations of contextual problems, a few involved

hands-on experimentation to collect data for analysis. A 1993 National Science Foundation workshop that

led to the creation of the Advanced Technological Education program urged that “technician education

programs should . . . make experiential, contextual, and collaborative learning an integral part of education”

[6]. And one of the basic principles of the AMATYC standards is, “Mathematics must be taught as a

laboratory discipline” [7]. A number of elementary and secondary materials that emphasize activities have

also become available [8, 9, 10, 11, 12].
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Experiencing mathematics

Emphasizing that there are multiple ways of seeing mathematical relationships is consistent with recog-

nizing that students exhibit a diversity of preferred learning styles. Theories of multiple intelligences [13]

suggest that some students are more likely to understand any subject through visual presentation, others

through verbalization, and so on. As seen in the examples that follow, there is reason to suggest that the

Rule of Four should be broadened to a Rule of Five: the fifth component of mathematics understanding

is direct experience of mathematical processes. That is, in addition to providing opportunities for obtain-

ing usable data through active experimentation, the act of experimenting itself can promote mathematical

concept acquisition. There are numerous opportunities at the precalculus level for students to strengthen

their grasp of mathematics by seeing, hearing, and feeling phenomena that reveal mathematical connec-

tions in real time. And there is some evidence that such an approach can improve student performance in

subsequent courses that rely on mathematical problem-solving [14].

The Mathematics for Technology project at Wentworth Institute of Technology created a series of

Mathematics Laboratory Investigations for courses preceding calculus [15]. Intended primarily for students

of engineering technology, architecture, and related fields of study, most of the laboratory investigations are

interdisciplinary and focus on technical problem situations. Each activity embeds mathematics within an

authentic engineering or design application. One of these, entitled “Strength of Materials,” uses laboratory

measurements of material strength to introduce the concept of slope. Students measure the force required

to stretch a rubber band by various amounts, compute stress and strain values from measured data, and

graph stress versus strain. The slope of the resulting linear graph is equal to the modulus of elasticity

for the material. This experiment is similar to activities that have been widely used in physics courses

for many years. Before students perform the experiment, they are each given a length of extruded plastic

(polyethylene rod) and asked to pull on it and describe what they observe. If pulled with a moderate

amount of force, the plastic resists, but it is elastic enough to return to its original state when the force

is removed. However, if the force is increased, there is a point at which the plastic suddenly yields, and

without additional force it will stretch a great deal. Indeed, it permanently deforms, visibly necking down

to a smaller diameter. (In fact, monofilament fishing line can be produced by such controlled stretching

of extruded plastic.) After students have taken their rubber band data and graphed it, they are shown the

graphs of stress-strain data from samples of a different type of plastic that were stretched using a Universal

Testing Machine, with the accompanying instruction (see Figure 1).

“Based on your observations of what happened as you stretched the polyethylene, and assuming that a

similar process happened with the plastic specimens that produced the graphs, see if you can explain the

shapes of the graphs by relating them to the behavior of the polyethylene.”
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Figure 1. Stress-strain graph for polypropylene
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Students who made careful observations of the polyethylene’s behavior in response to being pulled

are able to relate the linear portion of the graph to the elastic resistance of the polyethylene, the stress

increasing with strain. They can also recognize the yield point on the graph where stress levels off, just

as it suddenly became easier to stretch the plastic. Here we see the Rule of Five in action. Students

experience the response of the polyethylene; they collect data in a table; they graph their own data, and

find an equation for the linear portion, as well as identifying the slope as a real physical quantity. And

finally they verbalize connections among the representations with reference to their experiences.

While it is certainly possible for students to do much of the important mathematical analysis from

instructor- or text-provided data, with numerical-graphical-analytical connections, the experience of stretch-

ing the plastic rod makes the exercise come alive in a way that a pencil-and-paper (and graphing calculator

or computer) analysis cannot.

Another example relates to properties of exponential functions. In “Getting a Charge Out of Math,” a

simple circuit (Figure 2a) is constructed that allows a large electrical capacitor (a charge-storing device)

to be charged by a battery and then discharged.
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Figure 2. (a) A capacitor charging circuit (b) Capacitor charging curve

Students use both digital and analog meters to observe the capacitor’s voltage increase from 0 to 6

volts when charged, and then decrease quickly to 0 when shorted out with a wire across its terminals. If a

resistor is placed between the battery and capacitor, the process is slowed down, and students can observe

the change in voltage with time. As with the plastic stretching experiment, they are asked to write down

their observations. What becomes obvious is that the rate of charging (or discharging) is very fast at first,

becoming gradually slower and seeming to stop. Students find that if they watch the analog meter, the

speed of rotation of the needle decreases in either case.

When the data are graphed (Figure 2b), the speed of the needle can be related to the absolute value of

the slope (for charging or discharging).

An interesting thing happens when students watch the behavior of the digital meter, however. They

know the capacitor should charge to 6 volts. But as they continue to take data until the capacitor reaches full

charge, they find that, while the voltage may reach, say, 5.8 or 5.9 volts fairly rapidly, the value continues

to increase, albeit slowly, for quite a while. After several minutes, the voltage may still be approaching

6 volts through values like 5.987, 5.988, 5.989, etc. The movement of the analog meter’s needle has

appeared to stop by this time, but the digital meter continues its ever slower increase toward 6 volts.

Students who have observed this type of behavior directly develop a much deeper understanding of the

nature of asymptotic behavior. And the equipment is simple enough that no specific technical knowledge is
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Figure 3. Buckling a thin column

needed to understand the application—architectural majors do as well with this lab as electronics majors.

Perhaps an even more personalized acquaintance with such behavior comes from buckling a thin

column. If a vertical load of sufficient magnitude is placed on top of a thin column, it will buckle sideways.

If this happens in a structural column, the result can be sudden and catastrophic failure. (Buckling of the

thermally weakened steel columns supporting the World Trade Center towers was directly responsible

for their collapse following the September 2001 terrorist attacks.) Using plastic columns and an ordinary

bathroom scale, students can measure the force required to buckle columns of various lengths (Figure 3),

and can experimentally investigate the relationship between column length L and Euler Load P embodied

in the formula P.L/ D �2EI=L2.

By observing how difficult it is to buckle columns of shorter and shorter length, they gain intimate

knowledge of the meaning of an asymptote (as well as, for the particularly zealous, a sore hand).

On the other hand, some functions exhibit decreasing rates of change without being asymptotic. Ask

a student how much sound is produced by two alarm clocks, as compared to one, and the answer will

certainly be “twice as much.” But the loudness of two alarm clocks as perceived by the human ear is

not double that of one alarm clock, and use of a meter measuring loudness in decibels confirms that fact.

If the number of alarm clocks is increased, the loudness continues to increase as well, not linearly or

asymptotically, but as a function of the logarithm of the total sound intensity. Students can experience this

aurally and confirm their impressions with a sound meter.

A model for laboratory-based mathematics

In developing this approach to precalculus mathematics, our group at Wentworth settled on a paradigm for

creating laboratory investigations that is shown in Figure 4.

Beginning with a goal-oriented contextual situation, problem-solving involves active experimentation,
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The “Ideal” Math Lab

Engineering/Design Problem

Real World Application

Cooperative Group Work

Imitates Insustrial Situation/Peer Learning

Hands-On Activity

Data Collection/Computer Simulation

Technology Used Appropriately

Critical Thinking

Concrete Results

Reinforced Math Application

Verbal Expression

Clear Exposition of Results

Revisit the Problem

In a New Mathematical Context

Figure 4. Characteristics of an “ideal” math lab investigation

using technology where appropriate. The problem should require applying previously acquired mathematics

knowledge to the learning of a new concept. While it is not always possible to incorporate all of the features

of an ideal lab in a laboratory activity, this list is a useful set of guidelines for creating activities that engage

and motivate students while they learn to think mathematically. An overarching goal of this project is to

foster a mindset that reaches for mathematical approaches in solving problems that students will confront

later in other courses and careers.

The last listed feature of the paradigm, “revisiting the problem in a new mathematical context,” implies

a problem with a mathematical core that transcends the specific problem situation. A good example is

a “Building Site Excavation” lab in which students are given a topographical map of a proposed home-

building site on a sloping piece of land (Figure 5).

The goal is to determine whether, in excavating for the foundation of a house, enough earth will be

removed from the high side to build up the low side to the necessary height. If not, more fill must be

trucked in. On the other hand, if there is excess dirt excavated, it must be trucked away from the site.

Students can begin by creating or examining a three-dimensional model based on the topographical map

(Figure 6).

They go through an estimating process that culminates in coordinatizing the foundation region and

using linear interpolation to find the height of each grid point. A spreadsheet analysis of the volume

contained in each element of the resulting collection of rectangular prisms (Figure 7) then allows students

to solve the volume fill problem and also construct a 3-D graph of the region (Figure 8).

The connection between the 2-D site map and the 3-D model and graph can give students a concrete

sense of multivariable functions. Having seen a geometrical third dimension as a function’s output, they
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Figure 5. Building site plan

Figure 6. A physical model of the site

X

Y 0 10 20 30 40 50 60 70 80

0 87.2 86.2 85 83.8 83 82.2 81.2 80.9 80.4

10 87.3 86.4 84.6 84.3 83.4 82.6 81.8 81.1 80.2

20 87.5 86.7 85.9 84.9 83.9 83 82 81.4 80.5

30 87.8 87 86.2 85.3 84.4 83.4 82.5 81.5 81

40 88 87.3 86.5 85.8 85 84.2 83.3 82.4 81.5

Figure 7. Elevations on the house footprint
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Figure 8. A computer model of the house site
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are then prepared to consider level curves of non-geometrical quantities in other contexts such as tem-

perature, pressure, electrical field strength, or material stress, and to understand how functions involving

these quantities can be represented. It’s not necessary to wait for a Calculus III course to gain such an

appreciation.

Another feature of the building-site problem is that it is robust: it works on many mathematical levels.

Even elementary school children can explore topographical maps to begin to understand their use in

representing three-dimensional space [16]. Precalculus students can compare their site map and model to

help them determine the direction of the land’s greatest slope at any point, laying the groundwork for the

later study of directional derivatives and gradients. And of course the computation of volume by adding

small elements is a first step toward numerical integration.

One final example shows how a relatively abstract concept, composite functions, can be made accessible

with the proper context. An inexpensive electrical device called a diode can be used as the basis for a

digital temperature-measurement system in the range of 00 � 1000 Celsius. In a simple battery-powered

circuit (Figure 9), the voltage across the diode is linear with temperature.

protective sheath

diodebattery

resister block

Figure 9. “Temperature Sensing Diode” circuit

Students can easily measure the diode voltage at room temperature, and then hold the diode between

their fingers to provide a higher skin-temperature reading. The linear relationship can be confirmed with

a third temperature-voltage pair (ice water being convenient). However, at higher temperatures the voltage

is lower: an equation like VD D �0:0021T C 0:66 is typical. This is inconvenient from the standpoint of

using the voltage display to provide a temperature reading. The engineering design problem is as follows:

Given the negatively-sloped linear function that characterizes the diode, how can an output voltage VO

be produced that is directly proportional to Celsius temperature? For example, how can the function

VD D �0:0021T C 0:66 be turned into the function VO D 0:1T ? Then a mere shift in the placement of

the decimal point in the display would accomplish the direct readout of temperature.

Mathematically, what is needed is another linear function VO D mVD Cb such that VO.VD/ D 0:1T .

Students can show algebraically that the required function is VO D �48VD C 31:7. The engineer would

build a signal-conditioning circuit (SCC) with output described by this function. Of course, the SCC

completes a composite function (Figure 10).

VD

VD

VO V = fO (V TD ( ))

T T

Figure 10. A composite function
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Students have observed directly that as they warmed the diode with their fingers, its voltage decreased.

They recognize that finding the missing link in a composite function achieves the mathematical solution of

an important design goal. Instead of seeing f .g.x// as merely a group of symbols, they can now connect

f and g with real systems.

Conclusion

For our better students, the Rule of Four serves as an appropriate and often sufficient organizing principle

for the study of mathematical relationships. For many others, particularly those who are not ready to begin

their college mathematics program with calculus, inclusion of an experiential component in mathematics

courses can help to make those relationships more accessible.

Acknowledgement: The Mathematics for Technology project was supported by a grant (DUE-9553704)

from the Advanced Technological Education program of the National Science Foundation.
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Ideas and Projects that Work: Part 2

This volume focuses on challenges that need to be met and changes that need to be made. Repeatedly authors

have stressed the importance of emphasizing conceptual understanding , instead of rote manipulations; the

importance of focusing on situations where mathematics is used in the real world, instead of on rinky-dink

word problems; the importance of utilizing the methods of data analysis, instead of relegating it to the last

chapter (if it's there at all); and the importance of fostering an active learning environment, where students

ask what-if type questions, make connections, explore mathematical ideas, and work collaboratively instead

of sitting passively copying notes off the board. The good news is that our colleagues are grappling with

how to do this. Projects are being developed. New texts are being written. Alternative pedagogies are being

implemented. The authors of the following papers are at the forefront of this movement. But, they are not

alone. They are simply the ones who came to mind when we started this project over three years ago. We

apologize to those of you who do not appear in this collection. You are here in spirit and are an important

part of this movement of change.

The Mathematics in Action project aims to empower college mathematics students with a real-world math-

ematical literacy that will provide a solid foundation for future study in mathematics and other disci-

plines.. . . The project's goal to empower students mathematically focuses on developing desired student

outcomes in five main areas: number sense, symbolic sense, a general function sense, a thorough linear

function sense and a sense of nonlinear relationships. The word “sense” in each of these areas certainly

conveys developing requisite skills, but far more than that, it means generating mathematical intuition and

building techniques of reasoning.

Mathematics in Action: Empowering Students with Introductory and Intermediate College Mathematics,

Ernie Danforth, Brian Gray, Arlene Kleinstein, Rick Patrick, and Sylvia Svitak

Precalculus: Concepts in Context is a combined text and lab/project manual. The text portion is unusual in

that it uses a mathematical modeling approach and requires students to interact with the text during reading

(there are fill-ins within the text).
Precalculus: Concepts in Context

Marsha Davis

[Functions and Change, A Modeling Approach to College Algebra contains] applications from business, the

natural sciences, social sciences and many other areas. The mode of presentation is not to look at abstract,

algebraic formulas of a certain type, look at their properties and then go looking for applications. Rather,

physical situations are presented, discussed, and the need for a new idea or type of function made evident.

Rethinking College Algebra

Benny Evans

[COMAP has produced] two new texts, unimaginatively tilted,College Algebra and Precalculus. It should be

noted that the texts cover the mathematical content one would expect in courses with these titles, with a few

notable differences. Not surprisingly, these differences all relate to the fact that our approach is applications

and modeling based. This has always been at the foundation of our approach to mathematics education and

it directly addresses the contextual relevance issue emphasized again and again throughout the Standards

documents.
From The Bottom Up

Sol Garfunkel
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[Functioning in the Real World: A Precalculus Experience emphasizes] the qualitative, geometric and com-

putational aspects of mathematics within a framework of mathematical modeling at a level appropriate to

precalculus students. All the mathematical knowledge and skills students will need both for calculus and

for quantitative courses in most other disciplines are introduced, developed and reinforced in the process of

applying mathematics to model and solve interesting and realistic problems.

The Functioning in the Real World Project

Florence S. Gordon and Sheldon P. Gordon

If students are to remember what they learn, the courses they take must tell a coherent story. This story

provides a framework onto which they can hang their newly acquired knowledge.. . . The central theme we

chose for our precalculus course is how functions can be used to model change. This theme provides a

framework into which all the prerequisites for calculus naturally fit (functions, graphing, algebra, trigonom-

etry, numerical approximation), while at the same time illuminating a central concept of calculus—the rate

of change.

The Importance of a Story Line: Functions as Models of Change

Deborah Hughes Hallett

Workshop Precalculus: Discovery with Graphing Calculators, seeks to provide students with a bridge to the

study of calculus by helping them develop the confidence, understanding and skills necessary to continue

their study of mathematics.. . . In the workshop environment, students learn by doing and reflecting on what

they have done. The guiding principle is that instructors try not to talk in depth about a concept until students

have had an opportunity to think about it first.

Using a Guided-Inquiry Approach to Enhance Student Learning in Precalculus

Nancy Baxter Hastings

Since several college algebra/precalculus reform projects were already underway, we concentrated on course

materials for three precursor courses: arithmetic review, elementary algebra, and intermediate algebra. Ma-

terials for these courses are commercially available as The Maricopa Mathematics Modules and Beginning

Algebra with Arithmetic Review. From 15 available modules, a course instructor can select three or four mod-

ules to match their own course objectives.. . . The Modules embody four attributes: student centered, activity

driven, context centered, and technology inclusive.. . . In the Modules, the guiding principle is Investigate–

Generalize–Practice.

Maricopa Mathematics

Alan Jacobs

For many years, the head of Continuing Education at the University of Massachusetts, Boston had been

receiving complaints from industry that their employees couldn’t think quantitatively. She called together a

handful of faculty from the Mathematics Department, Graduate School of Education, and Academic Support,

and asked us to a design a course she could market to these companies. Having an academic bias, we took

this as an opportunity to revise our traditional college algebra course—with the thought that later some of

the modules could be used to serve the corporate world.. . . The result is the text Explorations in College

Algebra, which we now use in an alternative college algebra course called Quantitative Reasoning.

College Algebra/Quantitative Reasoning at the University of Massachusetts, Boston

Linda Almgren Kime

Our project has attempted to move away from the procedural orientation in mathematics, which focuses

on getting the correct answers and which students have learned to value above all. Instead, our curricular

materials [Applying Algebraic Thinking to Data and Mathematical Investigations: Concepts and Processes

for the Introductory Algebra Student] offer an alternative approach to learning algebra for students who

have taken one or both of beginning and intermediate algebra—in high school or at college—and who have

failed to place into a college-level mathematics course. What it means to learn mathematics, the nature of

mathematics, the development of flexible thinking, and the ability to see and value connections are explicit

goals of instruction.

Developmental Algebra: The First Mathematics Course for Many College Students

Mercedes McGowen
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In this project—Workshop Precalculus: Functions, Data and Models—[we] are developing materials for a

course that integrates ideas of data analysis and mathematical modeling into the study of precalculus. The

primary goal of the materials is to prepare students for calculus, primarily by helping them to develop a

deep understanding of the crucial concept of function. A secondary goal, especially important considering

that many precalculus students never go on to study calculus, is to develop skills of data analysis and

mathematical modeling, which will be valuable for courses in other disciplines.

Workshop Precalculus: Functions, Data, and Models

Allan J. Rossman

The primary goal of Contemporary College Algebra is to empower students to become exploratory learners,

not to master a list of algebraic rules. Some of the means that are used to establish an exploratory environment

for the students include: (1) queries for engaging students in questioning and exploring the material being

presented; (2) exercises that explicitly ask students to: explore, ask what-if type questions, make up examples,

further investigate worked examples, or iterate for the purpose of recognizing a pattern and developing a

sense for the behavior of the solution; and (3) graphically fit a curve to a data set.

Contemporary College Algebra

Don Small

We wanted Precalculus: A Study of Functions and Their Applications to be a non-traditional precalculus text

that treats functions as the object of study while focusing on important mathematical concepts. We did this

by introducing each of the basic types of functions (linear, exponential, logarithmic, periodic, and power)

early in the book rather than relegating each type to a separate chapter. Doing so allows us to emphasize

the commonalities and differences between the various types of functions. The properties of each type of

function are developed throughout the remainder of the text.. . . The text was written in a conversational

format addressed to the student and students are expected to read it.

Precalculus: A Study of Functions and Their Applications

Todd Swanson

Our materials address essentially all the topics found in traditional college algebra and precalculus books.

However, we designed several innovative features to meet our objectives. To connect mathematics to the

world around our students, we created a large collection of what we call Mathematical Looking Glasses, each

of which is a discussion of mathematics in a physical context, accompanied by exercises.. . . To encourage

students to read and learn actively, we weave our discussion of most topics around a Mathematical Looking

Glass and intersperse exercises at several points in each lesson.

Successes and Failures of a Precalculus Reform Project

David M. Wells and Lynn Tilson

Since 1991 [we] have developed unique materials for use in mathematics courses ranging from algebra

through calculus. These projects have resulted in three books, Earth Algebra (college algebra), Earth Angles

(precalculus), and Earth Studies (applied calculus), that all have applications to environmental issues that

affect students' lives. They are designed to generate more interest in the use of mathematics as a tool to

analyze real situations. The authors are currently working on a new curriculum development project that is

an extension of the work described above. The goal is to produce versatile, technology-intensive materials

for classroom use and teacher training.

The Earth Math Projects

Nancy Zumoff and Christopher Schaufele
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Mathematics in Action: Empowering Students with

Introductory and Intermediate College Mathematics

Ernie Danforth Brian Gray

Corning Community College Howard Community College

Arlene Kleinstein Rick Patrick

Farmingdale State University of New York Adirondack Community College

Sylvia Svitak

Queensborough Community College

The Mathematics in Action project aims to empower college mathematics students with a real-world

mathematical literacy that will provide a solid foundation for future study in mathematics and other

disciplines. The project was developed by the Consortium for Foundation Mathematics, a team of fourteen

SUNY and CUNY faculty, with support from the National Science Foundation (DUE 9455638), and is

based on the AMATYC Crossroads Standards.

The project’s goal to empower students mathematically focuses on developing desired student outcomes

in five main areas: number sense, symbolic sense, a general function sense, a thorough linear function

sense, and a sense of nonlinear relationships. The word “sense” in each of these areas certainly conveys

developing requisite skills, but far more than that, it means generating mathematical intuition and building

techniques of reasoning.

To achieve desired student outcomes, project materials are written with the expectation that by com-

pleting the course, students would be able to perform tasks beyond the basic skills/knowledge level. These

tasks include extracting relevant data to solve realistic problems, analyzing and interpreting graphical and

tabular data, recognizing and expressing, in verbal, numerical, graphical, and symbolical format, the pat-

terns displayed by linear data, and identifying equivalent variable relationships in numerical, algebraic,

and graphical format and translating those relationships from one representation to any of the others.

The project’s objectives extend to developing general education competencies through its realistic

contextual approach to learning mathematics. The project aims

� to help students to use proportional reasoning appropriately in contextual applications,
� to read technical material with facility to determine information relevant to solving a problem,
� to recognize that solution processes are multifaceted,
� to express and communicate solutions to problems verbally and in writing by using appropriate vocab-
ulary, sentence structure, and persuasion,

� to demonstrate an improved comfort level when applying critical thinking and problem-solving skills,
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� to work collaboratively with others to enhance mathematical understanding through problem-solving,
and

� (last if not least) to appreciate the importance of mathematics in everyday life and in the work place.

The Mathematics in Action project materials form a three-book sequence [1, 2, 3] designed to serve

a very large population of college students who, for many reasons, have not succeeded in learning math-

ematics. The original two books (now in second editions) were developed for the elementary algebra and

the intermediate/college algebra audience. The newest book, designed for the prealgebra audience, became

available in fall 2003.

The project is based on the belief that students learn mathematics best by doing mathematics. The

books present a series of realistic situations from which the crucial need for mathematics arises. Students

are guided to take an active role, to develop a sense of independence, and to take responsibility for their

own learning. This approach is illustrated below in the introduction to rates of change, which provides the

crucial link between slope and linear functions.

Suppose you are a member of a health and fitness club. A special diet and exercise program has

been developed for you by your personal trainer. At the beginning of the program, and once a week

thereafter, you are tested on the treadmill. The test consists of how many minutes it takes you to

walk, jog, or run 3 miles on the treadmill. The following data gives your time, t , as a function of

weeks, w, over an 8-week period.

Weeks, w 0 1 2 3 4 5 6 7 8

Time, t , (in min) 45 42 40 39 38 38 37 39 36

Note that w = 0 corresponds to the first time on the treadmill when you started this exercise

program, w D 1 is the end of the first week, w D 2 is the end of the second week, and so on.

This situation is followed by a series of guided questions designed to aid the student in developing a

conceptual understanding of rate of change. The lesson leads to the slope concept and ultimately to linear

functions. Examples of some of the questions follow.

1. Is time, t , a function of weeks, w? If so, what are the input and output variables?

2. Plot the data points using ordered pairs of the form .w; t/.

3. Your time decreased during each week of the first four weeks of the program.

a. Determine the total change in time, t , during the first four weeks of the program (i.e., from t D 45

to t D 38). Why should your answer contain a negative sign? Explain.

b. Determine the change in weeks, w, during this period (that is, from w D 0 to w D 4).

Although the approach and order may be nontraditional, our third book covers the topics routinely

found in a college algebra and trigonometry curriculum. In particular, this book [3] includes the following

topics:

� Functions
� The algebra of functions (including composition)
� Exponential and logarithmic functions
� Quadratic and higher order polynomial functions
� Rational and radical functions
� An introduction to trigonometric functions
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Technology is integrated throughout so students can interpret real life data numerically, symbolically,

and graphically. Access to the TI-83 Plus calculator or its equivalent is assumed. Students use the technol-

ogy to investigate graphs, to solve equations, to create tables for numerical investigation, and to produce

scatterplots and regression equations. Students are frequently asked to solve problems either algebraically,

graphically or numerically, and then to check using one of the other techniques. This would not be practical,

or in some cases possible, without the technology.

The major differences between the Mathematics in Action approach and the traditional approach include

the following:

� Lessons begin with a contextual problem or situation to motivate a new skill or concept. The mathe-
matics arises naturally from the context.

� The materials are designed to work well in group situations where students are actively involved in the
learning process. They learn not only from the teacher but by exploring situations on their own and

sharing insights with classmates.

� There is a decreased emphasis on topics that have few practical applications, e.g., factoring and

simplifying algebraic expressions. For many students, this is the last mathematics course they will

take, and we believe it is vital that they understand the relevance of mathematics in the contemporary

world.

� The use of alternative assessment techniques such as group exams and portfolios is encouraged.
The key to bridging the gap between abstraction and application, and the basis for transfer of learning is

to encourage students to construct, reflect on, and apply their own mathematical models. We are confident

that all students can succeed with our approach and materials to achieve the following goals:

� Develop mathematical intuition along with a relevant base of mathematical knowledge.
� Connect classroom learning with real-world applications.
� Be efficiently and thoroughly prepared for additional college experiences in mathematics and related
disciplines.

� Work both in collaborative groups and independently.
� Increase mathematical literacy through meaningful applications and explorations.
� Build techniques of reasoning, regardless of level of preparation.
� Challenge and, at the same time, foster positive attitudes that build confidence in abilities to learn and
use mathematics.

� Apply and display their learning and understanding through multi-faceted assessment.
Mathematics in Action has changed the emphasis in our own classes from “covering the syllabus” to

“uncovering the mathematics” with our students and it is our goal to extend the benefits of this approach

beyond our own classrooms.
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Precalculus: Concepts in Context

Marsha Davis

Eastern Connecticut State University

Precalculus: Concepts in Context [1] was developed in response to calculus reform and to the authors’

general dissatisfaction with results in traditional precalculus courses. Believing that traditional precalculus

instruction failed to prepare students for reform calculus (and we would argue, for traditional calculus as

well), Judy Moran, Mary Murphy and I set out to reform precalculus with the publication of a laboratory

manual, Precalculus in Context: Functioning in the Real World [2]. The lab manual was designed to

supplement a standard precalculus course by providing opportunities for students to work collaboratively on

lengthy, context-based problems. However, we soon discovered that the supplementwas more powerful than

the course it was meant to serve. During labs, students were actively grappling with mathematical problems

from real-world contexts and they were learning to think, speak, and write mathematics. Furthermore,

by listening to their discussions, we learned much about what students really understood or failed to

understand. As a result, our more global fix for precalculus, Precalculus: Concepts in Context, was

a combined text and lab/project manual. The text portion was unusual in that it used a mathematical

modeling approach and required students to interact with the text during reading (there are fill-ins within

the text).

In writing the second edition, we have changed neither our original goals nor our strategies for achieving

those goals. Our major goal has been to make the text more student and instructor friendly. Key points are

summarized in the margins for easy reference. Only one lab is essential to text development, which gives

instructors greater latitude in lab selection. Chapters in the second half of the text are unlinked and, thus,

can be taught in any order.

Student background

Precalculus: Concepts in Context assumes that students have an algebra II background (with or without

trigonometry). However, we recognize that many students’ algebraic skills are rusty. Rather than break up

the flow of the text with algebra review, we include an algebra appendix. Margin notes in the text send

students to specific sections of the algebra appendix as they are needed.

Project description/goals

We have rejected the more traditional approach of compartmentalized layout of topics. Instead, several

themes run throughout the text: mathematical modeling of real-life phenomena, choice of a convenient
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and meaningful scale/variable (including exponential and logarithmic), constant and nonconstant rates

of change (and how to interpret them in context), and relationships between algebraic statements and

geometric representations. Our pedagogy is based on four principles:

� writing about mathematics deepens understanding
� student exploration is at least as valuable as teacher explanation
� collaboration, rather than competition, promotes genuine learning
� graphing technology widens the range of questions students can consider, supports development of
connections between algebraic and geometric representations, and provides alternative strategies for

problem solving.

Modeling approach

Precalculus: Concepts in Context subscribes to a modeling approach. As an example, one of our text

scenarios is based on a 1992 newspaper article with the headline: “The Decade Will Add a Billion.” In

the accompanying article, the executive director of the United Nations Population Fund explains that the

world’s population is increasing by approximately a quarter of a million people every day and that she

anticipates a total increase in population of one billion people during the decade of the 1990s. Students

recognize that the assumption of a constant daily increase leads to a linear model. Predictions based on

this linear model, however, fall short of the one billion increase indicated by the newspaper’s headline.

During the analysis, students consider whether the assumption of constant annual growth regardless

of population size seems reasonable. Their answer, a resounding No, motivates the adoption of a new

assumption, constant annual percentage growth, and the development of an exponential model.

When students compare the graphs of their two models (see below), they realize that for the first half

of the decade the two graphs are practically indistinguishable.
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Noticeable separation occurs only toward the end of the decade. From this example, students learn

about rate of change assumptions associated with linear and exponential functions and observe that an

exponential function can be approximated locally by a linear function.

Lab activities

Each chapter contains one or more labs relevant to the mathematical topics in the chapter. The labs are

designed to be cooperative ventures that culminate in a written report submitted by the group. Some labs

can be used to introduce new topics while others can be used for assessment. For example, the Graph Trek

lab is an exploration. This lab helps students to discover how they can affect the graph of a function by

modifying its formula—that is, by performing an algebraic transformation. It covers translations (vertical
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and horizontal), reflections (in the x-axis and in the y-axis), and stretches and compressions (vertical and

horizontal). The Atmospheric Pressure lab, on the other hand, serves as an assessment of text material.

This lab asks students to write a linear model and an exponential model for atmospheric pressure as a

function of elevation. Because elevation is measured in 1000-foot units in the linear model and 900-foot

units in the exponential model, students must reconcile the variables before they can compare the two

models.

Projects and explorations

In addition to labs, every chapter contains projects and explorations. These are non-routine exercises that

can be used in different ways: as take home exam questions, small-group class activities, or opportunities

for independent work. For example, the project Copycats is an exploration of how the parameters A, B,

C , and D affect the graphs of sinusoidal functions, f .x/ D A sin.B.x � C // C D. This is a great small-

group activity to assign prior to a class presentation of period, amplitude, and phase shift. The project

Fuels Rush In presents gas usage and temperature data (from one of the author’s gas bills). Students fit

sinusoidal models to the gas-usage-and-time data and to the temperature-and-time data. This makes an

excellent take-home exam question.

Classroom experiences

The second edition of Precalculus: Concepts in Context has been field tested at Smith College (Northamp-

ton, MA) and Eastern Connecticut State University (Willimantic, CT), two very different institutions. At

Smith College, precalculus is designated as a writing intensive course. Students complete 10 labs but rela-

tively few projects. At Eastern Connecticut State University, students complete three to four labs and many

more projects. (In particular, the Just Algebra projects are always assigned at ECSU and rarely assigned

at Smith.)

Students are generally more comfortable with the step-by-step approach of the projects than the

extensive-word-problem approach of the labs. They often complain about the labs, particularly early in

the semester. Many are not sure that they should be expected to think through a math problem on their

own without first seeing an example. Students worry that they cannot check their work; there are no

back-of-the-book solutions for labs. Over time students learn to rely on their group members to determine

whether their answers are reasonable. Finally, students complain about how much time it takes to write

the lab reports, particularly the first lab report. However, after all this complaining, it is not unusual to

find comments, such as the ones below, on course evaluations at the end of the semester.

� Writing lab reports . . . helped me not only learn appropriate and correct mathematical language, it
forced me to confront areas of understanding about which I was unsure. Writing about larger concepts

and how math is applied made me clarify connections on an entirely different level.

� I liked the AIDS, SAD, and Turtles labs because they put math in the context of situations that were
not mathematical.. . . These labs forced me to understand all the information (graphs, equations, derived

functions, etc.), but then it was another, separate process to tie in each bit of info . . . to explain its

relevance.

Based on classroom experiences both at Smith College and at ECSU, we are very excited about the new

and improved second edition. Without sacrificing the exploratory, hands-on pedagogy that was a hallmark

of the first edition, we have found the second edition easier for students to use and more adaptable to

individual instructors’ course goals.
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Rethinking College Algebra

Benny Evans

Oklahoma State University

There are many difficulties with traditional college algebra. Oklahoma State University mirrors many other

campuses in that virtually every student on campus must take some mathematics course, and for the vast

majority that course is college algebra. By and large the students don’t like the course, and they perform

miserably. Success rates are embarrassingly low; perhaps the lowest of any course on campus. Such courses

quickly draw the attention of the upper administration. Even worse, for most of the students, this is the

last mathematics course they will ever see, and it shapes their perception of what mathematics is. Far too

many come away with the idea that mathematics is no more than the manipulation of meaningless formulas

into other meaningless formulas. Little wonder that much of the population thinks mathematics is stupid

and pointless. As mathematicians, we see mathematics as just the opposite; a beautiful discipline whose

manifestations abound in nature, science and many other fields. I am personally on a campaign to give a

much larger segment of the population a little taste of the real beauty and utility of mathematics.

In 1995, through a National Science Foundation Grant, Bruce Crauder, Alan Noel, and I started a

project designed to answer some basic questions about college algebra, at least on our own campus. Our

first question, “Why do students enroll in the course?” was easily answered. Their majors require it for

graduation. The second question, “Why do other departments send their students to college algebra, and

what do they expect them to learn?” proved a bit more difficult but a great deal more interesting. We were

most interested in students who are not headed for engineering calculus. (Statistics show that at many

places, that may be as high as precalculus.) Over a two-year period, we interviewed people from virtually

every department on campus that had college algebra as a requirement, but not engineering calculus.

We wanted to know what skills they expected their students to gain from the course. The results were

interesting and sometimes surprising.

� Understand the basic relationship among formulas, verbal descriptions, graphs, and data tables.
� Understand and use linear and exponential functions. (Other functions such as logarithmic and trigono-
metric functions were also mentioned, but linear and exponential functions were the overwhelming

winners.)

� Perform linear algebraic manipulations.
� Have a qualitative understanding of rates of change.
� Understand how to make and use elementary models.
Items not mentioned by anyone we talked with included simplifying complex fractions, solving

quadratic equations, radicals, and so on. This may not be scientific proof that we should deemphasize

algebraic manipulations, but we took it as a pretty good argument.
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The next step was to scrap the traditional college algebra curriculum and design a new course from

the ground up using the information we had gleaned. We settled on the following guidelines:

� Create a modeling course based on material drawn from other disciplines and from the scientific

literature.

� Emphasize linear, exponential, and power functions.

� De-emphasize nonlinear symbol manipulation and supplant where possible by calculator or spreadsheet.

� Put qualitative idea of rates of change at the heart of the course.

� Emphasize mathematical reasoning and clear communication.

Course content

The project resulted in a text [1] emphasizing the following topics:

Calculator arithmetic. A brief introduction to basic calculator use and order of operations.

Functions. Functions are introduced and it is emphasized that they often serve as models of real-world

situations. Functions are commonly presented via formulas, tables of values, graphs, or verbal descriptions,

and often the key to understanding is to convert from one type of presentation to another.

Graphical and tabular analysis. Concentration is on functions given by formulas or verbal descriptions

and using the calculator or spreadsheet to produce graphs or tables of values to analyze the function.

Solutions of equations and optimization are emphasized.

Straight lines and linear functions. A linear function is introduced as one with a constant rate of change.

When a linear function is used as a model of a real-world situation, the meaning of the slope is of key

importance. Linear regression is introduced as a crucial topic.

Exponential and logarithmic functions. Exponential functions are presented as functions with a constant

proportional or percentage rate of change. Logarithms are the inverses of exponential functions. Exponential

regression is a key topic.

A survey of other common functions. Polynomial, rational, and other common types of functions are

presented along with the usual methods of combining functions.

Trigonometric functions. An elementary look at trigonometric functions. Emphasis is placed on modeling

periodic phenomena.

Rates of Change. Rates of change occur throughout the course, but here the idea is qualitatively formalized.

Mathematics of Population Ecology. Population dynamics, life tables, survivorship curves.

It is worth emphasizing once more that the informal notion of rates of change is at the heart of

the course. Once the idea is introduced, it occurs almost daily. The flavor of the course is perhaps best

illustrated by the types of problems that drive it.

Examples

Running speed versus length

The following table gives the length L (in inches) of an animal and its maximum speed R (in feet per

second) when it runs [2]. (For comparison, 10 feet per second is about 6.8 miles per hour.)
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Animal Length L Speed R

Deermouse 3.5 8.2

Chipmunk 6.3 15.7

Desert Crested lizard 9.4 24.0

Grey squirrel 9.8 24.9

Red fox 24.0 65.6

Cheetah 47.0 95.1

1. Based on this table, is it generally true that larger animals run faster?

2. Plot the data points. Does it appear that running speed is approximately a linear function of length?

3. Make a model for R as a function of L by finding the equation of the regression line, and explain in

practical terms the meaning of its slope. Add the plot of the regression line to the data plot.

4. Based on the plot in Part 3, which is faster for its size, the red fox or the cheetah?

One feature of this problem is common to virtually every problem in the book. If the indicated reference

is consulted, it will be found that it is actual data taken from the scientific literature, and what the student

is asked to do is part of what was done in the paper. Biology majors can see how the mathematics they are

learning really does get used. The question of “when will I ever need to know this?” just never arises. The

regression line is calculated using the calculator or spreadsheet. The instruction to “explain in practical

terms the meaning of its slope” is repeated ad infinitum in the course. Certainly, students need to know

how to get their hands on the slope, but more importantly in physical situations the slope has an important

meaning, and understanding what that meaning is can be key to understanding the physical situation. Part

4 is really the fun part. Students have to do some serious mathematical thinking to figure out how to

answer it. This also is typical of the exercises in the text. It’s more fun to find out the answer yourself

than have the instructor tell you.

Holling’s functional response curve

The total number P of prey taken by a predator depends on the availability of prey. C. S. Holling proposed

a function of the form:

P D
cn

1 C dn

to model the number of prey taken in certain situations [3]. Here n is the density of prey available, and c

and d are constants depending on the organisms involved as well as other environmental features. Holling

took data gathered earlier by T. Burnett on the number of sawfly cocoons found by a small wasp parasite

at given host density. In one such experiment conducted, Holling found the relationship:

P D
21:96n

1 C 2:41n

where P is the number of cocoons parasitized and n is the density of cocoons available (measured as

number per square inch).

1. Make a graph of P versus n. Include values of n up to 2 cocoons per square inch.

2. What density of cocoons will insure that the wasp will find and parasitize 6 of them?

3. There is a limit to the number of cocoons that the wasp is able to parasitize no matter how readily

available the prey may be. What is the upper limit?
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A couple of remarks are important here. First of all, the model for the situations is the one chosen by

the expert, not by us. In this case, the reasons for choosing this particular model are more appropriate for

a biology course than for an elementary mathematics course, and we simply offer it as the one the expert

chose. This is not an unusual occurrence in the course. Where possible, some rationale for why a particular

model is chosen is offered. But often, this is not realisitc since the explanation may involve fairly deep

concepts from other disciplines. Students do Part 2 by solving an equation. In this case the equation can

easily be turned into a linear equation, and students might be asked to solve it by hand. Often equations

that need to be solved are quite complicated, perhaps with no closed form solution at all, and students are

expected to solve those using the calculator or spreadsheet. Part 3 is one that occurs often. Of course, it

is a limit, but the students don’t see the usual calculus treatment of limits. Rather, they are expected to

understand that they can approximate the answer by looking at the tail end of the graph.

These examples perhaps give a taste of the kinds of things that the course emphasizes. There are

applications from business, the natural sciences, social sciences, and many other areas. The mode of

presentation is not to look at abstract, algebraic formulas of a certain type, look at their properties, and

then go looking for applications. Rather, physical situations are presented, discussed, and the need for a

new idea or type of function made evident.

Conclusions

After running test sections at OSU, my preference was to replace college algebra with this course. We did

not do that. We continue to teach a traditional college algebra course and, in parallel, run the modeling

course. (There is actually a third course taught from For All Practical Purposes [4] which is taken by

a small minority of students.) Some departments require one or the other, some accept either, and a few

require both. (The courses are sufficently different that this makes sense.) The enrollments in the two

courses are about equal.

The results at OSU have been dramatic. The success rate for the modeling course is much better than

was the case with college algebra and, in general, students actually like the course. They emphasize that

the topics make sense, and they see most of them as part of the world they live in. This is an outcome

we had hoped for. What we did not anticipate was that the success rate in traditional college algebra also

improved. With hindsight, one can conjecture that when students are placed in courses which suit their

preparation and interests, they do better.

There are in fact several alternative college algebra texts on the market today which I think are very

good. All of them emphasize modeling in one way or another. But it is probably the case that none of

them, including our own, has got it right. Probably there is no single right text, but I believe as we learn

more about what works and what doesn’t, better texts will be coming. What is most important today is

to get the mathematics community interested and talking about college algebra, much as what happened

with calculus. There have been some very good conferences over the past few years providing forums for

discussion of the pertinent issues. I would like to see greater participation in the discussion. Get involved,

and by all means, get thinking about what that better text should look like.
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From The Bottom Up

Sol Garfunkel

COMAP (Consortium for Mathematics and its Applications)

In 1989 the National Council of Teachers of Mathematics (NCTM) published a rather remarkable document,

known to all now as the NCTM Standards. The Standards recognized and announced that we have done a

rather poor job of teaching mathematics at the K–12 level. It set out a rather bold agenda for new curricula

and pedagogy built around a number of principles focused upon improving the mathematics education of

all students. To a surprising extent this document went relatively unnoticed at the undergraduate level. That

state of affairs changed rather dramatically in 1997–8, when new curricula built to embody the Standards’

philosophy began appearing in published form.

It is important to note and underscore the fact that the NCTM Standards used the words mathematics

education to mean the education of our nation’s students in mathematics—not the education of mathemati-

cians. This distinction underlies much of the later criticism, which has become akin to a religious dispute,

played out in a variety of political arenas. Needless to say, COMAP embraced the Standards mission as

our own.

In fact, we received one of the National Science Foundation grants to produce a comprehensive four-

year secondary school mathematics curriculum, published under the titleMathematics:ModelingOur World

(M:MOW). This project took six years to complete and the texts began appearing in 1998.

But we were struck by the fact that much of the material in these books was a significant part of

the college algebra and precalculus syllabi. We feel strongly that reform should not be level dependent.

College students can and should benefit by changes in content and pedagogy as well as students in K–12.

Moreover, it is no secret that college algebra is a euphemism for remediating high school failures. And

repeating material louder and faster has never been a successful strategy, no matter what the motivation.

As a consequence, COMAP decided to work on two new texts, unimaginatively titled, College Algebra

[1] and Precalculus [2]. It should be noted that the texts cover the mathematical content one would expect

in courses with these titles, with a few notable differences. Not surprisingly, these differences all relate to

the fact that our approach is applications and modeling based. This has always been at the foundation of

our approach to mathematics education and it directly addresses the contextual relevance issue emphasized

again and again throughout the Standards documents. Moreover, modeling is a life skill. And we must be

honest with ourselves. There is a schizophrenia about the college algebra—precalculus sequence. On the

one hand, we truly hope that students in these courses will be successful and move on to take and succeed

in calculus. On the other hand, we know that for the great majority of students, one or the other of these

courses is the last math course they will take. So, we have the dual responsibility of giving students the

best possible calculus preparation and preparing them (hopefully) to make intelligent use of mathematics

and quantitative reasoning.
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As a natural consequence, both texts contain a significant amount of data analysis and experiences

in using mathematics to model real problems. Many of the other unique features are pedagogical in

nature. Every lesson has an activity. Activities often involve the use of appropriate technologies—graphing

calculators or spreadsheets or geometric utility programs. And the applications are real. Given that, there

is more reading for the student. Modeling a real problem, means learning about that problem and the

application field from which it comes. Frequently that means reading. While some may find this an

impediment, we feel strongly that reading mathematics and about mathematics is a necessary step to being

able to write and communicate mathematics, a core feature of the Standards.

Sample investigation

The following investigation taken from the college algebra text gives a feel for the flavor of the course.

You live in an information age. Whether it’s CDs, digital cameras, or computers, information is

stored as collections of 0s and 1s in some kind of binary code that is interpreted by the specific

application. But what is information? How much binary code is needed to convey information?

The basic measure of information is a bit. For the purposes of this investigation, you may think of

one bit as the information contained in the answer to one yes-no question.

Part 1: Exploration

a. Consider a simple situation in which you must select one particular CD from 2 that are gift-wrapped.

You know that one of them is the latest recording by your favorite artist, and you don’t have it yet.

What’s the smallest number of questions you can ask in order to identify the CD you want? What

question(s) would you ask? How many bits of information are needed?

Let f denote the information function, where f .n/ represents the number of bits of information needed

to identify 1 item from among n items. Thus, you just computed f .2/.

b. Consider an even simpler situation. Suppose there is only 1 CD from which to select, and you know

it’s the latest recording by your favorite artist. How many questions do you have to ask now? How

many bits of information are needed here? That’s f .1/.

c. Henry needs to identify a particular CD from among 4 CDs. He saw your solution to the 2-CD problem

and reasons as follows, “Let me group the 4 CDs into groups of 2 CDs per group. That leaves me with

2 groups, and I just saw how to identify one item (group) from a pair. After that, I’ll have one group

(2 CDs), but that’s just the 2-item problem again. So I should need exactly f .2/ C f .2/ questions

(bits).” Comment on Henry’s reasoning, then find f .4/.

d. How many questions do you have to ask if there are 8 CDs? That is, find f .8/. Explain your reasoning

carefully. If possible, provide more than one explanation of your computation.

e. Maria has to select from among 32 CDs. She heard Henry’s explanation for f .4/ and reasons that

she could arrange the 32 CDs into 4 groups of 8 CDs each. Then f .4/ questions would identify the

correct group and an additional f .8/ questions would find the right item. Compute f .32/ using this

approach, then check it directly.

Part 2: Modeling

a. Based on its contextual meaning, identify a reasonable domain for the information function, f , used

in Part 1.

b. Should the information function be increasing, decreasing, or neither? Explain based on the contextual

meaning.
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c. Generalize the observations made by Henry and Maria to write f .MN / as the sum of two values of

f . Explain your reasoning.

d. Use the values of f that you computed in Part 1 to begin its graph. Label your axes carefully. Compute

more values, either directly or by using properties you identified above, to extend the graph until you

can identify it as a member of your tool kit.

e. Through your work in Parts 1 and 2 (a)–(d), the following properties have been attributed to the

information function, f .

– domain: N > 0

– initial condition: f .1/ D 0

– additional observed value: f .2/ D 1

– increasing: f .N / > f .M / whenever N > M

– addition property: f .MN / D f .M / C f .N /

Verify that the function you named in Part 2(d) satisfies all these properties.

Conclusion

The important point here is that the new Standards-based curricula represent serious change in K–12

mathematics. Yet, they are extremely slow in being accepted into the undergraduate marketplace, even

when dealing with precisely the same subjects. It is our hope that this approach will become the norm and

that research and assessment will show that it is an approach that works. . . if not for all. . . then for more.
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The calculus reform movement of the last decade or more has led to major changes that include an em-

phasis on geometric and numerical ideas as a balance to symbolic manipulations, student projects, realistic

applications via mathematical modeling, the use of technology, and a more active learning environment.

These efforts were intended to transform calculus into a pump, not a filter.

But if we are to change calculus, we must also consider how we “fill the tank”; that is,

� how do we increase the numbers of students who proceed on to calculus?
� how do we improve the mathematical experience of both those students and the ones who have no
intention of going on to calculus?

Each year approximately three-quarters of a million college students take some variety of precalculus

course; yet only a small fraction of them ever go on to start calculus. Most of those who do take calculus

display a singular lack of retention of the material they were taught and often cannot complete calculus.

This is a dreadful indictment of the effectiveness of traditional precalculus courses. They neither motivate

the students to go on in mathematics nor adequately prepare them when they do continue, especially in

view of the changing curricula in calculus and also the client disciplines.

What is needed is a precalculus experience that extends the common themes in the calculus reform

efforts—an experience that focuses heavily on mathematical concepts and student understanding, that

provides students with an appreciation of the importance of mathematics in a quantitative oriented society,

that provides the skills and knowledge that students will need for subsequent mathematics courses or

courses in other disciplines, and that makes appropriate use of technology.

The Functioning in the Real World project [1] addressed this challenge by developing an alternative

to standard precalculus courses under a series of NSF grants. Our goal was to emphasize the qualitative,

geometric and computational aspects of mathematics within a framework of mathematical modeling at a

level appropriate to precalculus students. We chose to capitalize on the fact that most students are more

interested in the applications of mathematics than in the mathematics itself, so that the applications drive

all the mathematical developments. Thus, all the mathematical knowledge and skills students will need

both for calculus and for quantitative courses in most other disciplines are introduced, developed and

reinforced in the process of applying mathematics to model and solve interesting and realistic problems.

We believe that such an approach excites the students and encourages them to go further with mathematics

by showing them some of the payoffs that mathematics provides.

Our goal was to develop a set of materials that serve a multiplicity of audiences:

� A one-semester course that lays a different, but very effective, foundation for calculus;
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� A one- or two-semester course that stands as a contemporary capstone to the mathematics education
of students who do not plan to continue on to calculus. As a bonus, we have found that the course

encourages a surprising number of these students to change their minds and go on to calculus and

other quantitative courses.

� A course in math modeling as an alternative to traditional college algebra or precalculus courses.

Course contents

The following is an annotated description of the contents of the project materials.

Functions in the Real World introduces students to the function concept from graphical, numerical,

symbolic, and verbal points of view as functions arise in daily life. The emphasis is on the behavior of

functions (increasing or decreasing, concave up or concave down, point of inflection, periodicity).

Families of Functions includes linear, exponential, logarithmic, and power functions, with emphasis on

their applications and their qualitative behavior. The intent is to have the students learn to identify and

distinguish the different families from algebraic, graphical, and tabular representations.

Fitting Functions to Data includes linear and nonlinear curve fitting. These ideas and methods reinforce

the properties of the different families of functions, develop algebraic skills in working with the properties

of those functions, and connect the mathematics to the real world.

Extended Families of Functions includes polynomial functions, fitting polynomials to data, the nature

and relative frequency of the roots of polynomial equations, finding polynomial patterns (including sums

of integers and sums of squares of integers), building new functions from old (shifting, stretching, sums,

differences, products, quotients, and composition of functions), and the logistic and surge families of

functions.

Modeling with Difference Equations includes the development and analysis of models for describing

population growth, including logistic (inhibited) growth, eliminating drugs from the body, radioactive

decay, Newton’s laws of heating and cooling, geometric sequences and their sums, iteration and chaos,

etc. The pre-eminent mathematical tool today in virtually every discipline is the spreadsheet and recursion

is the mathematical language of spreadsheets.

Modeling Periodic Behavior stresses using trigonometric functions to model phenomena such as the

number of hours of daylight as a function of day of the year, the temperature over the course of a year,

and the height of tides over time. Relationships between trig functions (identities) are introduced and used

to approximate the sine, cosine and tangent functions with polynomials. The trig functions are also used

to examine the properties of complex numbers and chaotic phenomena.

Geometric Models includes analytic geometry, the conic sections, parametric and polar curves, and realistic

applications.

Matrix Algebra and its Applications includes a variety of applications of matrices, such as Markov

chains in the spirit of a finite math course, not merely the use of matrices for solving systems of linear

equations.

Probability Models includes binomial probability and the binomial expansion, geometric probability,

estimating areas of plane regions using Monte Carlo simulations, waiting time models, and estimating the

frequency of real and complex roots of polynomials with non-integer coefficients.

Illustrative examples and problems

The following examples and problems illustrate the philosophy of the project. They also indicate the

nature of problems that encourage group work and collaborative learning. The problems also indicate
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the necessity of incorporating some type of technology—graphing calculator and/or spreadsheet—into the

course to enhance both the teaching and learning of the mathematics.

1. Identify each of the following functions (a)–(n) as linear, exponential, power or other. In each case,

explain your reasoning.

(c)(a) (b) (d) (e) (f )

(g) y D 1:05x (h) y D x1:05

(i) y D .0:7/x (j) y D x0:7

(k) y D x.�1=2/ (l) 3x � 5y D 14

(m)
x y

0 3.0

1 5.1

2 7.2

3 9.3

(n)
x y

0 5.0

1 7.0

2 9.8

3 13.72

2. The world-wide wind power generating capacity, in megawatts, in different years is shown.

Year 1980 1985 1988 1990 1992 1995 1997 1999

Wind Power 10 1020 1580 1930 2510 4820 7640 13840

a. Which variable is the independent variable and which is the dependent variable?

b. Explain why an exponential function is the best model to use for this data.

c. Find the exponential function that best fits this data.

d. What are some reasonable values that you can use for the domain and range of this function?

e. What is the practical significance of the base in the exponential function you created in (c)?

f. What is the doubling time for this exponential function? Explain what it means.

g. According to your model, what do you predict for the total wind power generating capacity in 2010?

3. Biologists have long observed the fact that the larger the area of a region, the more species that inhabit

it. The table on the next page gives some data on the area A (in square miles) of various Caribbean

islands in the Greater and Lesser Antilles and estimates of the number N of amphibian and reptile

species living on each island.

a. Which is the independent variable and which is the dependent variable?

b. The overall pattern in the data suggests either a power function with a positive power p < 1 or a

logarithmic function, both of which are increasing and concave down. Explain why a power function

is a better model to use for this data.
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Island Area N

Redonda 1 3

Saba 4 5

Montseratt 40 9

Puerto Rico 3459 40

Jamaica 4411 39

Hispaniola 29418 84

Cuba 44218 76
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c. Find the power function that models the relationship between the number of species, N , living on

one of these islands and the area, A, of the island and find the correlation coefficient.

d. What are some reasonable values that you can use for the domain and range of this function?

e. The area of Barbados is 166 square miles. Estimate the number of species of amphibians and reptiles

living there.

4. The average daytime high temperature in New York City as a function of the day of the year varies

between 32ıF and 94ıF. Assume the coldest day occurs on the 30th day of the year and the hottest
day on the 214th day of the year.

a. Sketch the graph of the temperature as a function of time over a three year time span.

b. Write a formula for a sinusoidal function that models the temperature over a year.

c. What are the domain and range for this function?

d. What are the amplitude, vertical shift, period, frequency, and phase shift of this function?

e. What is the most likely high temperature on March 15?

f. What are all the dates on which the high temperature is most likely 80ı?

Conclusion

In conclusion, examples and problems such as these change the entire dynamic of the course and the

classroom environment. There is classroom discussion of mathematics and its implications, and the class-

room comes alive. The mathematics becomes something valuable to the students, because it is obviously

applicable to realistic situations all around them. The simultaneous emphasis on conceptual understanding

also changes students’ attitudes—mathematics becomes a subject that one should understand, not simply

a set of rules that one performs by rote to solve seemingly meaningless problems that are minor variations

of worked examples. After all, the students see that virtually any routine operation can be programmed; it

is the emphasis on the intellectual aspects that gives them a valuable and useful commodity to take away

from the course.
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If students are to remember what they learn, the courses they take must tell a coherent story. This story

provides a framework onto which they can hang their newly acquired knowledge. Without such a frame-

work, teachers find themselves having to repeat material. Precalculus courses often run the risk of not

being memorable because they are defined as the skills needed in calculus rather than telling a coherent

story. Thus, the first decision in designing a new precalculus course is to choose the story it will tell.

The central theme we chose for our precalculus course is how functions can be used to model change.

This theme provides a framework into which all the prerequisite material for calculus naturally fit (func-

tions, graphing, algebra, trigonometry, numerical approximation), while at the same time illuminating a

central concept of calculus—the rate of change [1]. Choosing a family of functions to represent a real

situation requires students to think about the qualitative behavior of different types of functions. A good

way to decide, for example, whether an exponential function fits a particular set of data is to look at a

plot. The shape of the plot suggests the family; the values of the parameters are then determined from the

data.

We have found that introducing the rate of change as the slope of a line is an excellent springboard for

comparing the behavior of linear and exponential functions (absolute versus relative rate of change), and

for introducing the concepts of increasing, decreasing, and concavity. Thus, even without the advantage of

the derivative, precalculus students can experience some of the central ideas of calculus.

No matter what flavor of calculus course they take, students benefit from a precalculus course that

emphasizes interpretation as well as calculation. Particularly for students who are repeating material that

they did not fully master before, a focus on meaning is an essential part of making the ideas fit together

and finally stick. For example, the following problem asks students to think about the meaning of function

notation:

1. The number of gallons of paint, n, needed to cover a house is a function of the surface area, A,

measured in ft2, of the house. That is, n D f .A/. Match each story below to one expression.

a. I figured out how many gallons I needed and then bought two extra gallons just in case.

b. I bought enough paint to cover my house twice.

c. I bought enough paint to cover my house and my welcome sign, which measures 2 square feet.

(i) 2f .A/ (ii) f .A C 2/ (iii) f .A/ C 2

352
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A precalculus course also needs to provide a context for reinforcing skills—though which skills are

chosen may vary widely from instructor to instructor. Some will want to focus on algebraic and graphical

fluency, others on the ability to model a real situation. Thus, we have put together a stock of varied

problems. Problems that involve the use of parameters are particularly useful in our view. Working with

functions expressed in terms of parameters is seldom familiar to students, and provides valuable experience

both with algebraic manipulation and with understanding the behavior of an entire family of functions. As

an example, consider the following problem:

2. Consider the exponential functions graphed in Figure 1 and the six constants a; b; c; d; p; q.

y

x

y a b= × x

y c d= × x

y p q= × x

Figure 1.

a. Which of these constants are definitely positive?

b. Which of these constants are definitely between 0 and 1?

c. Which of these constants could be between 0 and 1?

d. Which two of these constants are definitely equal?

e. Which one of the following pairs of constants could be equal?

a and p b and d b and q d and q

As in calculus, we believe students should be encouraged to make a connection between their calcu-

lations and reality. Since many students benefit from the experience of solving longer problems, we have

written both problems and projects. An example of each follows.

3. Hong Kong shifted from British to Chinese rule in 1997. Figure 2 shows the number of people who

emigrated from Hong Kong during each of the years from 1980 to 1992.
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a. Find an exponential function that approximates the data.

b. What does the model predict about the number of emigrants in 1996?

c. Write a short paragraph explaining why this model is or is not useful to predict emigration in the

year 2000.

4. The table shows the population of Ireland at various times between 1780 and 1910.

Population of Ireland, 1780–1910, where 0 corresponds to 1780.

Years since 1780 0 20 40 60 70 90 110 130

Population (millions) 4.0 5.2 6.7 8.3 6.9 5.4 4.7 4.4

a. When was the population increasing? Decreasing?

b. For each successive time interval, construct a table showing the average rate of change of the

population.

c. From the table you constructed in part (b), when is the graph of the population concave up? Concave

down?

d. When was the average rate of change of the population the greatest? The least? How is this related

to part (c)? What does this mean in human terms?

e. Graph the data in the table and join the points by a curve to show the trend in the data. From this

graph, identify where the curve is increasing, decreasing, concave up, and concave down. Compare

your answers to those you got in parts (a) and (c). Identify the region you found in part (d).

f. Something catastrophic happened in Ireland between 1780 and 1910. When? What happened in

Ireland at that time to cause this catastrophe?

We have successfully used these materials for several years both at the college and at the high school

level. Some of the high school students using the materials were sufficiently enthusiastic that they made a

presentation to their school board about the mathematics they were learning. Since then, many have gone

on to do excellent work in AP and college calculus.
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The Workshop Mathematics Program

The Workshop Mathematics program [2, 3, 5] broadens student access to university-level mathematics by

providing multiple entry points into the discipline. Courses in the program—Workshop Statistics, Workshop

Precalculus, and Workshop Calculus—seek to enable students, who might otherwise “fall through the

cracks,” to develop the skills and understanding necessary to use mathematics in other disciplines and

to continue their study of mathematics. Like other reform courses, workshop courses seek to encourage

students to read, write and talk about mathematical ideas and develop confidence in their abilities to think

about and do mathematics. They seek to promote student learning through guided hands-on investigations.

But most importantly, workshop courses seek to provide a supportive environment in which students enjoy

learning and studying mathematics and feel comfortable asking questions and taking risks. [1]

The workshop approach

In the workshop environment, students learn by doing and reflecting on what they have done. The guiding

principle is that instructors try not to talk in depth about a concept until students have had an opportunity

to think about it first. The workshop approach makes no formal distinction between classroom and labo-

ratory work. Rather than using lectures, instructors follow an interactive teaching format that includes the

following components:

� Summary discussion: Typically, workshop instructors devote the beginning of each class to summa-
rizing what happened in the last class, reviewing important ideas, and presenting other related material.

Although this segment of a class may take only ten minutes or so, many students claim that it is one

of the most important parts of the course, as it helps them make connections and focus on the overall

picture. Students understand, and consequently, value the discussion because it relates directly to work

they have done.

� Introductory remarks: The summary discussion leads into a brief introduction about the material that
students will cover next. The purpose of this initial presentation is to help guide students’ thoughts in

appropriate directions without giving away too much information. Instructors introduce new ideas and

concepts in an intuitive way, without providing any formal definitions, proofs of theorems, or detailed

examples.
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� Collaborative activities: The major portion of the class consists of students working collaboratively in
groups of two to four on the activities in their Workshop Mathematics text. The activities are designed

to help students think like mathematicians—to make observations and connections, ask questions,

explore, guess, learn from their errors, share ideas, and read, write and talk mathematics—as they

work with their peers. As students work together, the workshop instructor moves from group to group,

guiding discussions, posing questions, and responding to queries.

Workshop Precalculus

There are two Workshop Precalculus books—an applied version and a standard version. Both versions

incorporate the effective workshop-based educational practices utilized in the other workshop texts [2, 3].

Both versions seek to meet the challenge of preparing students for calculus, while providing a positive

learning experience for students who choose not to take another mathematics course. Both versions em-

phasize traditional precalculus concepts, including a study of linear, polynomial, exponential, logarithmic,

and trigonometric functions. However, in the applied version, Workshop Precalculus: Functions, Data

and Models, new concepts are motivated by real-world applications and basic data analysis concepts are

integrated throughout the materials. This text, which I am co-authoring with Allan Rossman, is now in

the writing phase and is described in Allan’s paper in this volume [4]. The standard version, Workshop

Precalculus: Discovery with Graphing Calculators, seeks to provide students with a bridge to the study

of calculus by helping them develop the confidence, understanding and skills necessary to continue their

study of mathematics [5]. The remainder of this paper describes the standard version.

Workshop Precalculus: Discovery with Graphing Calculators—or Workshop Precalculus—consists

of a sequence of in-class activities and a related set of follow-up activities. The in-class activities are

designed to help students explore new concepts and discover ways to solve problems. The steps in the

activities provide students with a substantial amount of guidance—in other words, they use a guided-

inquiry approach. Students make predictions, do calculations, and enter observations directly in their book.

The conclusion of each activity includes a summary of the main ideas, and then students receive a brief

overview of what they will be doing in the next activity. The follow-up activities provide students with

an opportunity to review important ideas from algebra, utilize new techniques that were introduced in the

section, think more deeply about new concepts, and tackle applications.

Students finish each unit by reflecting on what they have learned and recording those thoughts in a

journal. They are asked to describe in their own words the concepts they have studied, how those concepts

fit together, and which ones were easy and which were hard. Students are also asked to reflect on the

learning environment for the course. We view journal writing as one of the most important activities in

each unit. Not only do journal entries provide us with feedback and enable us to catch any misconceptions,

but more importantly, they provide the students with an opportunity to think about what they have learned

and write about their observations.

As students begin to use the Workshop Precalculus text, they are encouraged to tear out the pages

for the current section and place them in a three-ring binder, so that they can intersperse the pages with

lecture/discussion notes, responses to follow-up activities, supplemental activities, and projects. During the

course, students put together their own book.

Sample activities

Using technology to create mental images associated with fundamental concepts

Technology plays an important role in Workshop Precalculus. Students use technology not only to do

numerical and graphical manipulations, but also to form mental images associated with abstract mathe-
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matical ideas. For example, students use a motion detector connected to a Computer- or Calculator-Based

Laboratory interface (CBL or MBL) to create graphs of distance versus time functions and to analyze their

behavior. As students walk back and forth in front of a motion detector, they make a mental connection

between how they move and the shape of the graph representing their movement.

In the first activity in the book, students are asked to increase their distance from the detector while

walking at a slow, steady pace. Then they are asked to fit a line to the graph; they are asked to do this

by hand and to turn to the members of their group for help recalling how to read a graph, to calculate the

slope of a line, and to find the equation of a line. Next, students are asked to create a graph by walking

at a slightly faster constant pace, fit a line to the graph, and compare the new graph to the original one.

In addition to helping one another remember some basic algebraic tools, students observe that when they

walk at a constant pace, the graph representing their movement is linear; when they increase their distance

from the detector, the graph rises from left to right and the value of its slope is positive; and when they

walk faster, the value of the slope increases. Finally, with much less guidance, students walk toward the

detector at a steady pace and make relevant observations.

To us as mathematicians, these seem like very simple ideas—ones that we could easily tell students

about and then quickly move on. However, by doing this activity, students develop mental images associated

with slope and with the concepts of increasing and decreasing. Students take ownership of the ideas, and

the ideas mean something to them. The activity also serves to set the tone for the course. The classroom

is a hubbub of activity. Students start talking with each other about mathematical ideas (using their own

jargon). They begin to understand the importance of reading individual questions carefully. And they begin

to develop confidence in their ability to figure out and explain things on their own. More importantly, they

have more fun than listening to a lecture, and we do, too.

Building a bridge to calculus

The activities in Workshop Precalculus also seek to help students develop a conceptual understanding of

fundamental calculus terminology and concepts. After exploring the concept of slope, students develop

squiggly curves by walking back and forth in front of a motion detector. They observe that when they

increase their distance and then decrease their distance from the detector, the curve representing their

motion opens down, and similarly, when they decrease their distance and then increase their distance

from the detector, the curve representing their motion opens up. In the process, students are introduced

to the terms local maximum and local minimum, and they develop, on their own, a statement of the first

derivative test (without, of course, using the word “derivative”).

Students do similar activities to help them develop mental images associated with the concept of

concavity. For example, students explain how they would walk to create functions with the following

shapes:
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In subsequent activities, students develop an intuitive understanding of the concept of tangent line in

terms of local linearity by zooming in on a point on a smooth curve. They explain why a tangent line

cannot exist at a cusp or a sharp peak. They examine the behavior of the tangent line as it travels along
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a curve and note the relationship between the sign of the slope of the tangent line and the shape of the

curve, in terms of whether it is increasing or decreasing. They also investigate the relationship between

the location of the tangent line to the curve at a point (above, below, passes through) and the concavity of

the curve at that point.

After observing how useful the tangent line is, we note that in the case of a squiggly curve it is hard

to find the actual value of the slope of the tangent line at a particular point P , since the slope formula

requires knowing the coordinates of two points on the line, but they only know the coordinates of one,

namely P . We mention that they will learn how to find the exact value in calculus, but that in the meantime

they can approximate the value by considering a nearby point on the curve and calculating the slope of

the associated secant line.

In a follow-up activity, students examine the limiting behavior of the slopes of some secant lines to

the graph of y D x2 C 1 at P.2; 5/. They are asked to make a large scale graph of the function, sketch

the secant line determined by a point near P , and then find its slope. They repeat the process for several

points closer to P and list their results in a table. Finally, they make a best-guess sketch of the tangent

line at P and use the slopes of the secant lines to approximate the value of its slope.

These types of activities serve as pointers to calculus. Moreover, since they appear in the first unit in

the text, students are able to utilize these ideas as they study other classes of functions in subsequent units.

Implementing the workshop approach

Assessment data show that the workshop approach is an effective pedagogical tool. However, utilizing

workshop-based materials, especially for the first time, can be challenging. Based on our experiences and

those of others, Allan Rossman created the following list of suggestions for workshop instructors.

� Take control of the course. It is a mistake to think of a workshop course as a self-paced class in which
the instructor plays only a minor role.

� Keep the class roughly together. Students in a workshop class spend most of their time working through
activities in small groups. The instructor needs to set the pace, not letting some groups get too far

ahead or lag behind.

� Allow students to discover. Workshop instructors need to resist the temptation to tell students too much.
They need to let students discover ideas for themselves.

� Promote collaborative learning among students. Instructors should ask students to work on activities
in pairs or groups of three.

� Encourage students to guess and to develop their intuition. Instructors should encourage students to
think and make predictions about issues before analyzing them in detail.

� Lecture when appropriate. By no means do we propose that you never speak to the class as a whole.
As a general guideline, however, instructors should try not to lecture on an idea until students have

had an opportunity to grapple with it themselves.

� Have students do some work by hand. While technology is a powerful tool for exploring mathematical
phenomena, students benefit from becoming competent at performing computations, doing symbolic

computations, and sketching graphs by hand.

� Use technology as a tool. The counterbalance to the previous suggestion is that students should come
to regard technology as a valuable tool for modeling situations and tackling complex problems.

� Provide plenty of feedback. Some students are fearful of the workshop approach because they worry
about reaching wrong conclusions. Instructors need to provide students with regular, consistent feedback

by interacting with the student groups in class and collecting a sampling of activities.
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� Stress good writing. Many activities call for students to write interpretations and explain their findings.
In addition to writing in complete, coherent sentences, students should relate their findings to the

context at hand.

� Motivate students to read well. Instructors need to help students realize that they do a great service to
themselves by taking their time and reading the questions and the brief discussions carefully.

� Have fun! We enjoy teaching with the workshop approach, principally because we get to know the
students better and we love seeing them actively engaged with the material. We genuinely enjoy talking

with the students on a regular basis. We hope that other workshop instructors will have as much fun.
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Faculty in the Maricopa Community Colleges began the project, The Maricopa Mathematics Consortium

(NSF grants: DUE9352897 and DUE9602386), in 1993, at the convergence of two significant reform

movements: Calculus reform and the implementation of the 1989 NCTM Standards. We believed that the

mathematics curriculum before calculus would need to change, not only to prepare students for a reformed

calculus course, but also because our entering students will have had a different preparation in their school

mathematics. We decided to reconstruct the entire curriculum below calculus and to write appropriate course

materials. Since several college algebra/precalculus reform projects were already underway, we concentrated

on course materials for three precursor courses: arithmetic review, elementary algebra, and intermediate

algebra. Materials for these courses are commercially available as The Maricopa Mathematics Modules

[1] and Beginning Algebra with Arithmetic Review [2]. From 15 available modules, course instructors can

select three or four modules to match their own course objectives. The Modules won the AMATYC 2000

Input Award, highlighting exemplary mathematics programs revitalized in accordance with the Crossroads

in Mathematics: Standards for Introductory College Mathematics Before Calculus [3].

Features and content

The Modules embody four attributes: student centered, activity driven, context centered, and technology

inclusive. These attributes flow from our belief that students need to gain a strong conceptual foundation

of mathematics and that learning mathematics means building connections among various mathematical

topics. We recognize that students do not build conceptual knowledge quickly, nor do they build conceptual

knowledge by merely becoming proficient at template exercises. Rather, students need to think and reflect;

they need to explore a topic numerically, symbolically, graphically and verbally.

Most traditional mathematics textbooks are organized around the guiding principle: Rule-Example-

Practice. In The Modules, the guiding principle is Investigate-Generalize-Practice. A typical lesson begins

with a student investigation, usually in small groups. Students are guided to make conjectures, draw upon

knowledge from life experience, and discuss with each other to reach a conclusion or generalization.

We see several valuable consequences of this approach. Students view mathematics less as an externally

imposed system because they have had a role in its development. Since the investigations are set in

context, students make meaning in what they learn as they connect the new knowledge with their own

prior experience outside the classroom and with related mathematics. Because the investigations take place

in groups, students gain much practice in expressing mathematics to each other verbally and in writing.

We illustrate the Investigate-Generalize-Practice model in a lesson on logarithms in the Exponential

Growth and Decay module, in intermediate algebra. This lesson introduces students to logarithms through
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Source Acoustic power watts/square meter Scientific notation dB

whisper 0.000000000032 3.2x10�11 15

rustling leaves 0.000000000064 6.4x10�11 18

bedroom at night 0.00000000064 6.4x10�10 28

library 0.00000000128 1.28x10�9 31

refrigerator 0.00000005 5.0x10�8 47

dishwasher (in next room) 0.0000001 1.0x10�7 50

Figure 1.

their use in decibels, based on a news magazine article that explores the health risks of loud noises.

Students are asked to complete a data table of sound intensities and their corresponding decibel reading.

Part of that table is shown in Figure 1.

Students are asked to study the table and report the patterns they notice. They observe that as the sound

intensity doubles, the decibels go up by 3; as the sound intensity is multiplied by 10, the decibels go up

by 10. After confirming several instances of this in the table, they practice this pattern (if one fan has 75

dB, what will the decibel reading be for 2 fans? for 8 fans? for 10 fans?) to solidify their understanding.

Now that students have been introduced to the concept of logarithms by a table of data, set in a real-life

context, they have a foundation for exploring other related ideas. For example, the decibel table has the

characteristic that a multiplicative change in the input (number of fans) resulted in an additive change

in output (decibel level). Students have a basis for exploring whether this might be the inverse of the

exponential function, for which an additive change in input means a multiplicative change in output.

Many of the modules set the mathematics in a specific context. For example, in Data and Graphs, stu-

dents learn to make and interpret graphs while investigating fast-food franchises. In Systems, students solve

systems of linear equations in the context of commercial fishing and ecology, leading to a mathematical

view of sustainable harvest.

The goal of The Modules is to draw students into the habit of using mathematics to learn about the

world, while preparing them for their future coursework. As the following results show, when students are

in the habit of using mathematics to investigate problems, they are well-prepared for their next courses.

Results

We have collected evidence that suggests that community college students benefit from using The Modules.

At three community colleges in the southwest, some students used published versions of The Modules for

a course; most used the conventional text for comparison purposes. Our basic measure is an extension of

“pass-rate”
# of students who passed a course

# of students who started the course

which applies to a single course. We extend the concept to the pass-rate through two successive courses,

calling it “throughput-rate.” In this study, we compared the throughput-rate of concurrent cohorts of students

at each college, where throughput-rate is defined to be

# of students who passed both course 1 and course 2 in successive semesters

# of students who started course 1

We believe that this measure is an appropriate indicator of the quality of course 1 because it captures

the core of what the mathematics program intends: students learn enough in the first course to prepare

them to successfully learn the material in the second course. As an indicator of the quality of course 1,
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Table 1. Aggregate throughput-rate results for three course transitions

Start Earn grade Register for Pass Course 2 Two-semester

Course 1 of ABC Course 2 with ABC throughput-rate

Module 975 627 (0.64) 453 (0.72) 312 (0.69) 0.32

Conventional 8262 4595 (0.56) 3323 (0.72) 1870 (0.56) 0.23

Table 2. Intermediate algebra to college algebra throughput-rate results

Start Register for Pass College

Intermediate Earn grade College Algebra with Two-semester

Algebra of ABC Algebra ABC throughput-rate

Module 457 313 (0.68) 213 (0.68) 168 (0.79) 0.37

Conventional 3113 1807 (0.58) 1166 (0.65) 683 (0.59) 0.22

throughput-rate is most valid when students scatter to a variety of instructors in the second course. That

way, the varieties of influences of the second course are averaged. Most of the students in this analysis,

both module and conventional, scattered to different instructors for the second course. All courses were

taught by both residential and adjunct faculty.

In Table 1, the aggregate throughput-rate results of all the students at the three colleges are shown for

three first course to second course transitions: arithmetic review to elementary algebra, elementary algebra

to intermediate algebra and intermediate algebra to college algebra.

The students using the module had a two-course throughput-rate of 32% compared to conventional

student throughput-rate of 23%. In other words, from a hypothetical initial class of 31 students, 10 module

students passed the successor course, whereas 7 conventional students did.

In Table 2, the throughput-rates for the transition from intermediate algebra to college algebra are

shown. The throughput-rate for module students was 37% compared to the throughput–rate for conventional

students of 22%; that is, from a hypothetical initial class of 31 students in intermediate algebra, 11 passed

college algebra the following semester, compared to 7 conventional students. Furthermore, the pass-rate in

college algebra was 79% for students with a module background, compared with 59% for the conventional

students.

These throughput-rate results confirm that The Modules are successful in preparing students to succeed

in their next mathematics courses. The results also serve as an indicator that the approaches used in The

Modules (student centered, activity driven, context centered, and technology inclusive) benefit students.

Anecdotal evidence corroborates the empirical results. One intermediate algebra student expressed it this

way, which we think typifies what we hope to accomplish in The Modules.

I have never taken a math course that actually requires you to think about the answers! Most classes

focus on memorizing equations and steps; it always seemed there was very little logic in what you

were doing. It made math highly anxiety provoking. This class was a learning experience for me. I

feel my anxiety level has gone down. I always thought people were good at math or they were not

good at it. This class has given me the confidence to take a moment to look at a problem before I

am convinced I can’t do it.
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University of Massachusetts at Boston

Motivation

For many years, the head of Continuing Education at the University of Massachusetts, Boston had been

receiving complaints from industry that their employees couldn’t think quantitatively. She called together

a handful of faculty from the Mathematics Department, Graduate School of Education, and Academic

Support, and asked us to a design a course she could market to these companies. Having an academic

bias, we took this as an opportunity to revise our traditional college algebra course—with the thought that

later some of the modules could be used to serve the corporate world.

The discontent (at least for some) with the college algebra course was for the usual reasons:

1. It was a fast forward version of a skill and drill high school course in which many of our students had

fared poorly the first time around.

2. The students viewed the topics as irrelevant and boring.

3. College algebra had the largest enrollment in the Math Department, but only because it was the penalty

foisted upon most students as a result of distribution requirements.

4. The failure/withdrawal rate was unacceptably high.

5. In an informal survey, less than 2% of the students in calculus came from college algebra.

Judy Clark and I received an NSF grant to rethink college algebra. The result is the text Explorations

in College Algebra [1], which we now use in an alternative college algebra course called Quantitative

Reasoning.

Math/quantitative reasoning requirement

New general education requirementsmandated, for the first time, a math/quantitative reasoning requirement.

The Mathematics Department agreed that our traditional college algebra should be narrowly targeted

towards math/science majors and was not the appropriate course for most students. The university then

needed to decide what course the bulk of the students—liberal arts, social sciences, management, nursing,
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education majors—should take to meet the new requirement. A special general education subcommittee

was set up to study the QR issue. After some debate, the subcommittee rejected certain models.

� They did not want the a la carte approach, where the QR requirement is met by taking one or more
selections from an unrelated list of courses (in multiple departments) each of which contains some

element of quantitative reasoning.

� They did not want a terminal course, in which a selection of random topics is taught, often at the
discretion of the instructor, with no integration into future (or past) courses.

Since we would offer many sections of QR, we decided, for efficiency’s sake, to create one basic

multi-sectioned course that the bulk of our 9,000 undergraduates could take (or place out of). After much

discussion, the course ended up in the Mathematics Department, but is taught by faculty from several

different disciplines. We debated setting up a separate program, but felt that it would not have the clout

to ensure that there were enough faculty to teach the course. Other departments are encouraged to create

QR courses and a handful have been created, but nowhere near enough to meet the university’s needs.

None of the QR courses is terminal. So the challenge was to define the basic skills (algebraic and

technological) that would feed smoothly into other quantitatively based courses (statistics, economics,

future math courses, and so on) and be helpful in understanding, constructing and critiquing quantitative

arguments throughout life.

QR course design

Philosophical/pedagogical premises

The QR committee decided that all QR courses should share the following premises:

1. Close links with other departments

This ensures that appropriate topics are being covered and enables us to “borrow” ideas to incorporate

into the QR course.

2. Class sizes restricted to 25 students

3. Student–centered focus

4. Data-driven approach

We use real data from the Internet, Statistical Abstracts, medical journals, newspapers, etc.

5. Systematic integration of technology

Currently all the sections are taught in a computer lab and utilize Excel and some specially created

software. In the past, some sections have used graphing calculators. All students utilize the Internet,

email, and class websites.

6. Group work

7. Emphasis on communication of ideas through:

� Active class discussions
� Writing
Students regularly create 60-second summaries, translating algebraic results into common English.

� Formal group presentations
Students work in small groups of 2 to 3 to prepare at least one formal class presentation. They

prepare overheads and have a peer evaluation. However, students write up individual reports that

are graded.
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� Reading and analyzing articles
The text includes related articles and students are encouraged to bring in current event examples.

8. Basic skills not neglected

A mathematical spine runs throughout. Students regularly do algebra aerobics and are given regular

short skill quizzes.

9. Periodic evaluations of the courses

Course topics

In addition, the QR committee decided that all QR courses should cover the following topics:

1. Basic descriptive statistics

We include measures of central tendency, histograms, and pie charts, so that students are able to create

or interpret the basic kinds of graphs that occur in the press.

2. Linear and exponential models

Students should leave with a thorough understanding of the two most common mathematical models.

For example, students should be able to articulate clearly the differences between the statement that

the average house cost has been “increasing by $20,000 each year” versus it has been “increasing by

10% each year.” They should be able to construct appropriate functions (by hand or using technology),

along with their corresponding graphs, and make future predictions.

3. Optional topics

Instructors can choose from among power functions, proportionality, laws of scale, quadratics, poly-

nomials, logarithms (including semi-log and log-log plots), probability, and so on.

Sample homework problems

1. The following population pyramids show the age distribution in the United States and Tanzania in

the year 2000. The U.S. is considered an industrialized country and Tanzania a developing country.

Construct a 60-second summary comparing the differences in population distribution between the

two countries. (You may want to go to the web site and compare these charts with those of other

industrialized or developing countries.)
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2. One part of the Exploration “Having it your way,” includes the following assignment:

With your team, use the data on the distribution of high school rank and SAT scores in the current

Student Statistical Report for UMass/Boston to make the following opposing arguments:

a. You are the president of the student body, arguing before the trustees that UMass/Boston is becoming

a more elite institution, and hence is turning its back on its urban mission.

b. You are the head of the Honors Society at UMass/Boston, writing a letter to mass media proclaiming

that the university is lowering its academic standards and is in danger of compromising its academic

credibility.

3. A patient was admitted to Brigham and Women’s Hospital in Boston for a bone marrow transplant.

The transplant was needed to cure myelodysplastic syndrome, a disease in which the patient’s own

marrow fails to produce enough white blood cells to fight infection. The patient’s own bone marrow

was intentionally destroyed using chemotherapy and radiation, and on Oct. 7th the donated marrow

was injected. Each day the hospital carefully monitored the patient’s white blood cell count to detect

when the transplant took hold and the new marrow became active. The patient’s white cell counts are

listed in the table (omitted here), available in electronic form, and plotted in the accompanying figure.

Normal counts for a healthy individual are between 4,000 and 10,000 cells per milliliter.

19-Sep 29-Sep 9-Oct 19-Oct 29-Oct 8-Nov

C
el

ls
 p

er
 m

il
li

li
te

r

0

2,000

4,000

6,000

8,000

10,000

12,000

White Blood Cell Count

a. Identify the time frame in which the white blood cells appear to be growing exponentially. This will

be the domain for your model.

b. Using technology, generate a best-fit exponential function to the section of data you identified in

part (a). You may want to reinitialize your starting day as day 0.

c. Interpret the equation in this context. In particular how fast were the number of white blood cells

increasing? At that rate, how long would it take for the white blood cells to double?

Conclusions

The QR course has been in place for over eight years now. We currently run 10-12 sections per semester.

The course is assessed regularly using, among other factors, a combination of student portfolios, student

questionnaires, and common final exam questions. We have learned that about 35% of the QR students

have taken a developmental mathematics course at UMass/Boston. Over time, students’ facility with

technology has increased significantly. In spring 2001, 90% of entering QR students were familiar with

word processing, 60% with speadsheets, 92% with the Internet, 93% with email, and 52% with graphing

calculators. As a result, we now have to spend substantially less time on technology training. Few of the

students (less than 25%) entered the course because they enjoyed math, or wanted to learn more about

quantitative reasoning. However, by the end of the course, most would recommend it to friends. Almost
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80% thought the course was at the right level. The majority felt that the features that enhanced the course

were integration of technology, use of real world data, working in groups, and giving formal presentations.

The anecdotal comments from faculty—especially in other disciplines—have been favorable. QR stu-

dents seem to do well in follow-up courses. The College of Management is considering dropping its

calculus requirement and instituting a sequel to the current QR course. The chancellor has highlighted the

QR course as one of our cutting edge programs.

The math/QR requirement is not perfect yet. We still need to work out a better relationship between

the revised college algebra/QR course, the traditional college algebra course, and precalculus. We need to

communicate with other disciplines to ensure that the QR skills are actually used throughout the curriculum.

Our long-term goal is not one QR course, but the creation of quantitatively literate citizens.
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Since 1980, increasing numbers of students are repeating their high school mathematics courses as under-

graduates and enrollment in the developmental courses has continued to grow. In Fall 2000, more than

three million students were enrolled in undergraduate mathematics courses taught in departments of math-

ematics. Thirty-one percent of these students (981,000) were enrolled in remedial mathematics courses

(arithmetic, algebra I, algebra II). Of these students, 763,000 were at two-year colleges (57% of the total

two-year math enrollment) [1].

The large number of students who enroll in remedial courses suggests that the traditional emphasis on

showing students how to use a rule to get the answer has failed many students. They learned the rules and

passed the course(s) but, despite having learned the rules, they don’t know when to apply them. They have

not made sense of symbolic notation, nor have they learned to think for themselves. For these students,

algebra is nothing but rules applied, often incorrectly, to manipulate symbols, which are meaningless marks

on paper [2, 3, 4].

Based on their prior mathematical experience, most students expect to be told which formulas to use, and

how to get the correct answers. This narrow approach is where many students stop in their understanding

of mathematics—this strict utilitarian perspective too often limits their mathematical vision. Students’

descriptions of their prior mathematical experiences and their views of mathematics are remarkably similar:

I was used to having a formula and all I cared about was getting the right answer.

Ever since I could remember the teacher would sit in front of the class and my friends and I would

listen to try to figure out where to plug a number in or what formula was used. I would raise my

hand and say, “I don’t get it,” and he would give me the explanation of how to use the formula.

This caused problems for many like me because when it came to something that didn’t fit the exact

rule, I became confused.

We were taught the rules and how to use them. There are many times I remember seeing the book

show how they came about an equation and most teachers would ignore that part of it.

Changing what students value in mathematics and how they view learning mathematics are frequently

much harder challenges than teaching them mathematical procedures and application of formulas. Essential

components for success in learning mathematics include the ability to convert mathematical material into

formulas, to generalize, to think flexibly, to operate with numerals and symbols, and to develop a proficiency
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in sequential, properly-segmented logical reasoning. Flexible thinking has been defined as an ability to

switch rapidly from one mental operation to another, from one method of approach to another, from one

method of solution to another. A particular case of flexibility of thinking is the ability to transfer from

a direct to a reverse train of thought [5, 6, 7]. Setting expectations for growth in flexible thinking at the

beginning of a course plays a major role in determining how students grow mathematically. Students also

need opportunities to make choices about which techniques make the most sense in a particular situation

and to check their answers for reasonableness.

Our project has attempted to move away from the procedural orientation in mathematics, which fo-

cuses on getting the correct answers and which students have learned to value above all. Instead, our

curricular materials offer an alternative approach to learning algebra for students who have taken one or

both of beginning and intermediate algebra—in high school or at college—and who have failed to place

into a college-level mathematics course. What it means to learn mathematics, the nature of mathematics,

the development of flexible thinking, and the ability to see and value connections are explicit goals of

instruction.

With the concept of function as an organizing lens, this developmental algebra curriculum incorporates

the results of research on how mathematics is learned [8, 9, 10]. Development of the materials was

initially funded by NSF DUE Grant #9354471. Following extensive national field testing, preliminary

editions were published in 1996, with the materials currently in second editions [11, 12]. The curriculum

builds on fundamental ideas linked to each other and prepares students for continued study of increasingly

sophisticated mathematical ideas. Important elements such as terminology, definitions, and notation are

investigated and explicitly discussed. Conceptual understanding and skills emerge in the process.

Examples

In the intermediate algebra course, the unifying concepts of functions and difference equations are used to

develop mathematical models from data. Students investigate rates of change with arithmetic and geometric

sequences, with constant finite differences and ratios used to introduce various types of functions. These

explorations are followed by examining differences between parameters and variables. Initially, students

analyze functional processes.

Example 1. Consider the function machine for the function shown below.
x

Multiply by –5,
Add 7.
Divide by 3.
Subtract 6.

y

a. Create a table of five input/output pairs.

b. Graph the distribution.

c. Write the algebraic representation (equation).

d. Find the output if the input is 2:6.

e. Write an equation that displays the case for the output of �13.

f. Find the input if the output is �13.

g. Write an inequality that represents the case when the outputs are less than or equal to 2. Solve the

inequality.



44. Developmental Algebra: The First Mathematics Course for Many College Students 371

Building on their initial investigations using function machines, students focus on making sense of

mathematical notation and arithmetic operations.

Example 2. Create a function machine for y D x2 � 3x C 5:

a. Find the outputs for this function if the inputs are 4, �5, and 2=3.

b. When you use �5 as input, do you write it as y D �52 � 3.�5/ C 5 or as y D .�5/2 � 3.�5/ C 5?

Does it make a difference? Why or why not?

We emphasize investigations that focus on key characteristics of various types of functions, using

constant finite differences and ratios to find parameter values. Students investigate the role of parameters

and make interesting discoveries and connections.

Example 3. Consider the function y.x/ D x2 C 2x � 3.

a. Identify the values of the parameters a, b, and c for this specific quadratic. (Note: the general quadratic:

y.x/ D ax2 C bx C c.)

b. Predict the effect on the graph if only the sign of c is changed.

c. Predict the effect on the graph if only the sign of b is changed.

d. Predict the effect on the graph if only the sign of a is changed.

e. Graph the given function along with the function in which the sign of c is changed. Describe the effect

if only the sign of c is changed.

f. Graph the given function along with the function in which the sign of b is changed. Describe the effect

if only the sign of b is changed.

g. Graph the given function along with the function in which the sign of a is changed. Describe the effect

if only the sign of a is changed.

Students develop conjectures about the change that occurs when only the sign of the quadratic coeffi-

cient is changed. They create additional quadratic functions, testing and modifying their conjectures when

necessary.

Course structure

After investigating key characteristics of various basic types of functions, students select and create appro-

priate models that mathematically describe real-world situations based on their analysis of the data. Figure

1 provides an overview of the course structure.

Basic Statistic: input is a list of data; output is a statistic

Sequence: input is position; output is sequence element

Whole Number
Domain

Real Number
Domain

Data

Arithmetic Constant
Rate of Change

Linear
Function

Geometric Percent
Rate of Change

Exponential
Function

Quadratic
Function

Sequence of partial sums: second finite
differences in output are constant

Linear Regress Exponential Regress Quadratic Regress

Figure 1. Intermediate algebra course structure
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Conclusions

The function machine representation is a generic image that embodies the salient features of the idea of

function—including process (input-output) and object—with various representations seen as methods of

controlling input-output. It provides both an object-like status and the process aspect from input to output.

The usual representations of function (table, graph, formula, procedure, verbal formulation, etc.) may be

seen as ways of representing or calculating the input-output relationship.

INPUT

OUTPUT

PROCESS

We use the function machine as a central unit of core knowledge from the first introduction of the

function concept up through the most sophisticated ideas presented. Recent studies indicate that the intro-

duction of the function machine as an input-output box enables students to have a mental image of a box

that can be used to describe and name various processes [13, 14]. A student’s ability to utilize algebraic

representations of functions is correlated with the ability to form mental images of functions as machines.

Combined with the use of finite differences and finite ratios along with use of a graphing calculator as a

concrete manifestation of a function machine, students develop a more meaningful understanding of where

equations come from and make sense of parameters from given data.

For students who have taken algebra previously, starting with a process notion of function and a

function machine representation seems to help them make sense of notation. Students believe they need to

be able to manipulate symbols successfully. As a consequence of this belief, they focus on being able to

do algebra—that is, manipulate symbolic expressions. A function machine representation provides them

with a means to organize their thinking so they can be more successful in dealing with notation than in

their past experiences with algebra.

Students develop confidence in their ability to make sense of mathematics with contextual problem

situations that involve various ways of thinking about algebra and multiple representations. They develop

the ability to reason mathematically by looking for patterns, generalizing those patterns, and justifying

results. After students have had the opportunity to think about and to investigate a problem, they talk about

it—first in small groups, then in whole-class discussions in an interactive, supportive environment. A key

issue is the development of appropriate skills for future courses—whether for calculus or non-calculus based

courses. Skills are introduced in both mathematical and real-world contexts, with connections between

mathematical ideas and skills emphasized.

Growth in understanding and improved flexibility of thought on the part of students enrolled in courses

using our materials have been reported in several published studies. These studies document students’

explanations and work based on an input-output process and give evidence of their improved ability:

(i) to interpret and use ambiguous function notation;

(ii) to translate between and among various function representations; and

(iii) to view a function as an object in its own right [15].

David Clarke et al [16] defined meaningful learning as “learning in which students are actively involved

in integrating, or linking, new concepts and skills into an already existing conceptual framework, not simply

accumulating isolated facts and procedures.” It is characterized by evidence that indicates the students:

� claim to have learned something new;
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� can articulate what it is they think they have learned with some degree of clarity and accuracy;
� are able to demonstrate formation of links with an existing framework that they already possess.

This definition combined with students’ comments and work offers a useful framework by which we

assess student learning. An examination of student work together with students’ claims of understanding

made in their mid-term and final course self-evaluations provides evidence of meaningful learning [17].

A journal problem given to students near the end of the semester was used by a student in his final self-

evaluation as one piece of evidence, along with other work to support his claim of understanding quadratic

functions:

My understanding of the quadratic function is quite clear. I now know when to use the quadratic

formula and when not to. Actually, when it’s more efficient to do so. I have also learned to solve

a quadratic equation (if it crosses the x-axis) using a table and a graph. And when it doesn’t cross

the x-axis, to use the quadratic formula because there are no x-intercepts. Knowing that a quadratic

function is to the 2nd degree also tells me that there are supposed to be 2 solutions.

The journal problem:

Given f .x/ D x2 � 6x C 25, determine the values of x so that the output is 4. Show all work and

justify your response.

The student initially investigates the problem algebraically, substituting the value of 4 for f .x/:

x2 � 6x C 25

4 D x2 � 6x C 25

Eq D 0 x2 � 6x C 21 D 0

He concludes: “This equation cannot be factored out so I put it into y D and graphed it.” He sketches the

graph and records the view window settings (Figure 2), writing:

At the vertex the output is 12 which is the smallest number the output can produce. Given this

problem, the value of x cannot produce an output of 4.

Window

xmin = –20

xmax = 20

xscl = 5

ymin = 0

ymax = 150

yscl = 20

(2.98, )y

Figure 2. Student work: graph and view window settings

The student then uses the discriminant to algebraically confirm his conclusion that there are no real number

values for x that produce an output of 4 (see Figure 3).

What does the student know? How well does the student know it? What constitutes evidence of

a student’s understanding? Efforts to answer these questions focus attention on the need to clarify our

beliefs, our values, our instructional goals and our expectations of students. In order to provide some

guidance, our answers are based on analysis of student’s work combined with descriptions of what they
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What am I looking for? i) graph or ii) b2 � 4ac

2 sol a D 1; b D �6; c D 25

1 sol (perfect square) .�6/2 � 4.1/.25/ D 36 � 100

No real sol No real solutions

x2 � 6x C 21 D 0 1=2 of b and sq it

x2 � 6x C .�3/2 D �21 C .�3/2
p

.x � 3/2 D �12

Square root of both sides: x � 3 D ˙
p

�12

Simplify: x D 3 C 2
p

3i ; x D 3 � 2
p

3i

Figure 3. Student’s algebraic confirmation of his graphical analysis and initial response

claim to have learned in their journals and self evaluations. Individual interviews with students provide

additional information and evidence of understanding.

With encouragement and support, students work past their initial discomfort and discover they can

make sense of mathematics. This is accomplished by directing students’ attention to relevant informa-

tion, explicitly discussing ambiguous notation, selecting and sequencing tasks that provide students with

opportunities to build connections, and incorporating reflective writing and revisions of submissions into

these courses. Students experience great personal satisfaction in discovering that they are indeed able to

“do mathematics”—sharing strategies and conjectures, discussing the results of investigations with group

members and the class, and convincing others that the approach and results are valid. Building on the

foundational ideas of functional relationships and patterns, students find that algebraic symbols and lan-

guage become more meaningful and purposeful means of expressing relationships between objects and

processes. In turn, this provides students with mathematical experiences that deepen their understanding

of mathematical concepts as well as improve their skills.
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Workshop Precalculus: Functions, Data, and Models

Allan J. Rossman

California Polytechnic State University

The Workshop Mathematics program [1], developed at Dickinson College, leads students to discover,

explore, and apply fundamental concepts of introductory mathematics and statistics courses. Active learning

is the distinguishing feature of the “workshop” pedagogical approach, which replaces lectures with activities

through which students interact with each other, with technology, and with the instructor. This program

has been extended from its beginnings in Calculus [2] and Statistics [3] to the precalculus level, supported

by a grant from the National Science Foundation (#9952483). In this project, Nancy Baxter Hastings and I

are developing materials for a course that integrates ideas of data analysis and mathematical modeling into

the study of precalculus. The primary goal of the materials is to prepare students for calculus, primarily

by helping them to develop a deep understanding of the crucial concept of function. A secondary goal,

especially important considering that many precalculus students never go on to study calculus, is to develop

skills of data analysis and mathematical modeling, which will be valuable for courses in other discliplines.

Some of the principles guiding the development of these materials are:

1. to focus on the concept of function as essential preparation for calculus;

2. to emphasize students’ facility with multiple representations of functions (graphical, tabular, symbolic,

verbal) throughout the course;

3. to integrate the study of data analysis and mathematical modeling with more standard precalculus

topics;

4. to use genuine data and applications for motivating topics, activities, and exercises;

5. to include applications from areas of general appeal, from a wide range of subject fields, from proba-

bility and statistics, and from other areas of mathematics to make connections and strengthen students’

mathematical understandings;

6. to emphasize general problem-solving skills;

7. to use technology both as a learning tool and as a problem-solving tool;

8. to promote development of students’ number sense and of fundamental skills of quantitative reasoning.

Course content

An outline of the content of the course follows:

1. Introduction to Functions, Data, and Models

2. Modeling Data with Linear Functions

376
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3. Power, Polynomial, and Rational Functions

4. New Functions from Old

5. Exponential, Logarithmic, and Related Functions

6. Periodic Functions

7. Functions as Recursive Sequences

The first unit prepares students for the entire course by establishing the interactive nature of the

learning environment and expectations for student involvement, along with the emphasis on conceptual

understanding, problem-solving skills, and effective communication. The first unit also aims to convince

students that the mathematics they are about to learn is applicable, accessible, and fun. It introduces

them to fundamental ideas related to the concept of function that will recur throughout the course. These

include the definition of a function, understanding a function both as a process and as an object, multiple

representations (graphical, tabular, symbolic, verbal) of functions, inverses of functions, and behavior of

functions. One activity through which students investigate these ideas involves walking in front of a motion

detector where the student’s distance from the detector is graphed as a function of time. Students create

graphs of functions with various characteristics, such as increasing at a constant rate or increasing at an

increasing rate.

In this first unit, students also begin to encounter the interplay among functions, data, and models that

permeates the book. Students learn that a key to analyzing data is recognizing the importance of variability.

They discover how to construct and to interpret graphical displays of the variability in data; they also learn

to recognize the usefulness and limitations of numerical summaries of data. Students gather and analyze

data about themselves as well as available data from various fields of application. For example, in one

activity, students record the number of letters and the number of “Scrabble points” in their names. They

recognize that the number of letters and number of points are both functions of the name, but the number

of points is not a function of the number of letters. They also create a scatterplot of number of points versus

number of letters and discover the concept of statistical association: names with more letters typically tend

to have more points than names with fewer letters, although there are certainly exceptions to that tendency.

In the second unit, students begin to learn principles of approximating data by mathematical models.

They study criteria by which functions of “best fit” can be chosen to summarize the relationship between

variables, and they learn to analyze residual plots and to consider the influence of individual observations.

For example, students analyze data on the distance to a destination and the cheapest available airfare to

that destination. They usually find a fairly strong, positive association between these variables, and the

relationship is often well summarized by a linear model. Students use technology, particularly the Fathom

dynamical software package from Key Curriculum Press, to choose a line that seems to fit the data well,

and then they use the least squares criterion to compare the performance of different lines. Students examine

residual plots and what they reveal about the adequacy of the model, and they investigate the influence

that individual data values (in this case, destinations) have on the line.

The remaining units introduce other types of functions that can be used to model real-world behavior,

as well as discussions of combining functions to form new ones. The idea of recursion is also introduced.

Sample activity

In the following sample activity, students analyze genuine data on how the Consumer Price Index has

changed over the years. In the process they reinforce their understanding of the concept of function and

also apply what they have learned about analyzing the behavior of functions, particularly step functions.

Moreover, students learn about how to compare monetary amounts in different time periods, adjusting

for inflation. The questions asked of students in this activity, along with some passages of interspersed

expository text (in italics), appear below.
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The annual salary for the President of the United States has been increased only five times. It started

at $25,000 in 1789 and stayed there for 84 years before climbing to $50,000 in 1873. Then it rose to

$75,000 in 1909, $100,000 in 1949, $200,000 in 1969, and $400,000 in 2001.

(a) Sketch a graph of the President’s salary as a function of year, from 1789 to 2003. [As always, be sure

to label both axes.]

This type of function is called a step function.

(b) How many steps occur in this function? In which years do the steps occur?

(c) What does the height of the step reveal (in the context of these data)?

(d) Why would it not be reasonable to pay today’s President the same annual salary of $25,000 that George

Washington received? In other words, explain why it is not fair to compare monetary amounts across

so many years.

The Consumer Price Index (CPI), determined by the U.S. Bureau of Labor Statistics, measures changes

in the prices of goods and services over time. The CPI therefore enables us to draw comparisons between

the real buying power of monetary amounts at different times.

The following graph displays the CPI as a function of year, from 1913 through 2002:
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(e) Describe the behavior of this function:

– Has it generally increased or decreased over the years, or does it run in cycles?

– During what years did the CPI decrease? Why does this make sense?

– During what years did the CPI increase most dramatically?

You can translate a monetary amount at one time period into its worth at another time using the expression:

dollars at time B = dollars at time A � (CPI at time B) / (CPI at time A). Since the CPI’s at both time

periods are constants, this expression treats the worth at time B as a function of the monetary amount at

time A.

The following table reports the value of the CPI for selected years between 1915 and 2002:

Year CPI Year CPI Year CPI Year CPI

1915 10.1 1950 24.1 1970 38.8 2001 177.1

1920 20.0 1969 36.7 1984 103.9 2002 179.9
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(f) When the President’s salary was raised in 2001, suppose that it had been decided to raise it to what

the $200,000 salary in 1969 was worth in 2001 dollars. What would this amount have been?

(g) Now suppose that the salary had been raised to what the $100,000 in 1950 was worth in 2001 dollars.

What would this amount have been?

(h) Finally, suppose that the salary had been raised to what the $75,000 in 1915 was worth in 2001 dollars.

What would this amount have been?

(i) In 1915 and in 1920 the President’s salary was $75,000. Convert both of these amounts into constant

2002 dollars.

(j) What do these calculations reveal about how well the President’s salary has kept pace with inflation

over the years?

The following graph displays the President’s salary in “constant 2002 dollars” as a function of year:
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(k) Write a paragraph describing the behavior of this function. Be sure to relate your comments to the

context, and be sure to address the following questions:

– Is there an overall upward or downward tendency?

– Are there upward or downward tendencies within certain periods?

(l) In 1915 the cost of a U.S. postage stamp was 2 cents. Express this amount in constant 2002 dollars.

(m) Is the cost of a stamp much more expensive now than in 1915, after adjusting for inflation?

(n) In 1970 the cost of a stamp was 6 cents. Express this amount in constant 2002 dollars. Is the cost of

a stamp much more expensive now than in 1970, after adjusting for inflation?

(o) Convert the current cost of a stamp into constant 1984 dollars.

(p) In 1984 the cost of a stamp was 20 cents. Is the cost of a stamp much more expensive now than in

1984, after adjusting for inflation?

Acknowledgements: The Workshop Precalculus materials will be published by Key College Publishing.

Sample materials and further information may be found at http://calc.dickinson.edu.
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Contemporary College Algebra

Don Small

U.S. Military Academy

Contemporary College Algebra is designed to educate students for the future rather than to train them for

the past. The course, developed in collaboration with faculty in several disciplines as well as with people

in the workplace, provides a strong base for quantitative literacy programs.

The primary goal of the course is to empower students to become exploratory learners, not to master

a list of algebraic rules. Some of the means that are used to establish an exploratory environment for the

students include:

� Queries for engaging students in questioning and exploring the material being presented
� Exercises that explicitly ask students to explore, ask what-if type questions, make up examples, further
investigate worked examples, or iterate for the purpose of recognizing a pattern and developing a sense

for the behavior of the solution

� Graphically fitting a curve to a data set
� Small group work with both in-class activities and out-of-class group projects. In-class activities cul-
minate in student presentations to the class and out-of-class projects culminate in written reports.

Other goals of the course include:

� Improve communications skills: Students read about, write about, listen to, and present mathematical
ideas.

� Use technology: Every student has daily access to a graphing calculator and/or computer.
� Model situations: Students are empowered to use mathematics to quantify real-life situations.
� Build confidence: Students develop personal confidence as problem solvers. Specifically they develop
confidence in the iterative process: try something, note the errors, modify previous attempt to lessen

the errors, and try again.

� Provide a positive learning experience: Students enjoy applying mathematics to meaningful situations.

Concepts and techniques are introduced and motivated by real-life situations. Computational techniques

are introduced in response to the need to solve real-life problems. For example, the quadratic formula is

introduced in order to solve motion problems involving quadratic equations. The course emphasizes the

importance of understanding elementary data analysis, the ability to extract a function relation from a data

set, and the ability to mathematically model real-life situations in different disciplines.

Graphical analysis and problem solving in the modeling sense pervade the text. It is fundamentally

important that students understand and experience the three stage problem-solving/modeling process applied

380
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to real-life problems. Because these problems usually involve dependency on many factors, the first stage

of the process, creating a model, involves making assumptions in order to make the problem tractable. The

second stage is the analysis-computation stage that leads to a mathematical solution. The results of this

stage are often accomplished using technology. The third stage is the interpretation of the mathematical

solution in the setting of the original problem. If the solution is not applicable or meaningful, the process

is repeated after modifying the assumptions. This process is illustrated by the following diagram.

Analysis

Interpretation

Real

Situation

Mathematical

Model

Mathematical

Results

Model Construction

(assumptions)

A nice example of this process is developing a vehicle stopping distance model for a road network

serving residential and business areas as well as highway travel. The first stage is accomplished by accepting

the assumptions and data presented in the 1995 Texas Drivers Handbook for dry, paved roads.

Speed (mph) 20 30 40 50 60 70

Stopping Distance (feet) 45 78 125 188 272 381

Students are expected to form a scatter plot of the data and then fit a curve to the plot (second stage).

An acceptable curve is given by the regression equation y D 0:9343x2 �1:8429x C46 withR2 D 0:9997.

The third stage, interpretation, raises serious questions about the applicability of the model particularly

for slow speeds. According to the solution, the stopping distance for zero speed is 46 feet! Because speed

limits of 5, 10 and 15 miles per hour are common near schools, hospitals and in congested areas, the

model must be applicable to these speeds. Therefore changes in the assumptions and/or model need to be

made and the process repeated. Two possible modifications of the assumptions would be to include .0; 0/

as a data point or to require that the regression curve pass through the origin. Requiring the latter yields

the regression equation y D 0:0715x2 C 0:334x. The R2 value is 0:9977, only slightly less than for the

previous model.
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Features of the course

Overview. The analysis of data is the starting point for most of the topics. Instructors are encouraged to

begin the course by having students fill out a chart of individual characteristics, such as height, weight,

shoe size, eye color, male/female, hair color. This data chart is then reproduced and distributed to the

students as their “Class Data.” Questions involving the Class Data are asked throughout the semester. For

example, compile a class profile based on the Class Data.

Data and variables. Study how to read and display data—table, pie chart, scatter and line plots, and bar

charts. Students learn the meanings, use, and methods to compute the three principle summary measures

of a data set—average (mean), median, mode. The understanding that data is information about a variable,

gives meaning to the notion of variable and its use as a mathematical pronoun. The exploration of relations

between variables leads to the study of straight lines. Applications of linear equations lead naturally to

systems of linear equations, linear inequalities, and their applications in linear programming.

Functions. The concept of function is one of the most important ideas in mathematics. The concept

is introduced informally through discussions of academic grades, modeling water level in a well, and

warming a can of soda. Definitions of function and related terms are then clearly presented and illustrated.

Graphically extracting function relations from data sets introduces the shapes of the basic functions—

power, radical, exponential, logarithmic, and periodic (sine, cosine). The skill to graphically fit a curve to

a data plot is enhanced by studying the function transformations of shifting and scaling. The development

of linear regression for lines passing through the origin is used to illustrate the regression concept. However,

students are expected to use regression programs in their calculators when computing a regression function.

The algebra of functions is developed graphically, symbolically, and numerically. The ability to display

data and to graphically approximate numerical solutions of equations and zeros of functions is an important

thread throughout the course.

Modeling. The concluding chapter in the text for the course contains several sections, each of which is

devoted to modeling real-life situations in a particular discipline (e.g., business, life sciences, economics,

the arts, etc.). The principle techniques used are graphical approximations and recursive sequences (e.g.,

New Situation = Old Situation + Change). An example of how this chapter is used as a capstone for the

course is given by Carrington Stewart of Texas Southern University. He divides his class into seven groups

and assigns a particular section to each group. The group’s responsibility is then to learn the material in

their section well enough to present it to the class.

Fun projects. These are small group, out-of-class projects. Two or three Fun Projects are assigned each

semester. Each project involves an inquiry component as well as a written report.

Sample projects

The following three Fun Projects illustrate the scope and the flavor of these projects.

Recommended daily amount of sodium

On a plane ride to Montana, a flight attendant gave Don a can of Welch’s Orange Juice. The nutrition

label on the can listed 15 mg of sodium representing 1% of the recommended daily value (DV) based on

a 2,000 calorie/day diet. The person in the next seat had a can of Canada Dry Ginger Ale, which listed

90 mg of sodium representing 4% of the DV. Can both of these labels be correct? Can you tell the DV

for a 2,000 calorie/day diet from the information on a nutrition label? How accurate is the information

on nutrition labels? In particular, would it make a difference if the weight or the percentage figure were

rounded off to a full integer?



46. Contemporary College Algebra 383

Your tasks are:

1. Record the weight (mg) and the percentage amounts listed for sodium on at least ten other varieties of

soda.

2. For each variety, determine the allowable range of DV assuming that both the weight and the percentage

figures were rounded to full integers.

3. Are there any contradictions in the data that you collected? That is, could the sodium information on

all of the labels be correct.

4. What information concerning the DV for sodium in a 2,000 calorie/day diet can you extract from your

data?

5. What is the official Food and Drug Administration DV for sodium? (Hint: Research the FDA website.)

6. Include in your written project report a one page essay on nutrition labels. Base your essay on the

FDA article “Scouting for Sodium” that originally appeared in the September 1994 FDA Consumer

and was later revised and reprinted in September 1995. The article can be found at

http://www.fda.gov/fdac/foodlabel/sodium.html.

The optimal dimensions of a soda can

The article “The Aluminum Beverage Can” in the September 1994 issue of Scientific American estimated

that 100 billion drink cans are produced every year. With this number of cans, a sizeable increase in

profits can be realized by making a small reduction in the amount of material that is used in producing a

drink can. Today’s 12-ounce beverage can weighs approximately 0.48 ounces compared to the 0.66 ounces

when the cans were first introduced in the 1960s. The savings from a further reduction of one percent are

approximately $20 million dollars per year. In this Fun Project, you are asked to optimize the dimensions

of a 12-ounce aluminum beverage can. Assume that the can is a closed cylinder. That is, ignore the neck,

domed base, and pull-tab of an actual can. Also assume that the idealized can holds 12 ounces (1 ounce

= 1.8047 cubic inches).

Your tasks are:

1. Write a letter to a soft drink company asking for the approximate number of 12-ounce aluminum

beverage cans the industry produced during the previous year. Include a copy of your letter and the

response received in your project report.

2. Carefully measure the diameter and height of a 12-ounce aluminum soda can.

3. Assume that the material of the can has uniform thickness (bottom, top, sides). Let the thickness be

one unit. Express the volume of material of a 12-ounce aluminum soda can as a function of the radius

of the can and then plot the function.

4. Using the plot from Task 3, graphically determine the dimensions (height and radius) that minimize

the volume of material of the can.

5. Compare your results against the dimensions of an actual soda can. If the results are considerably

different, explain why the soft drink company would not use your dimensions in order to save money.

6. Change the assumption in Task 3 to be that the thickness of the top is 3 times the thickness of the

sides and bottom (to allow for the pull-tab). Now repeat Task 3. Compare your results against those

of an actual can. Comment on the comparison.

Teacher notes:

i. If the students have access to a physics lab, encourage them to measure the thickness of the bottom,

sides, and top of a soda can.

ii. This project offers an interdisciplinary cooperation opportunity with the English Department. For

example, invite an English instructor to speak to your class about writing a business letter.
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Oxygen levels in the Naraguagus River

Environmentalists have grown concerned over the algae build-up in the Naraguagus River. A scientist

assigned to look into the issue asked that the oxygen levels at a designated location in the river be

monitored for four successive days. Due to a mix-up in communications, the field worker assigned to do

the monitoring understood that he was to take oxygen readings in the river at four different times on the

same day. He reported the following data. (The oxygen level is reported as the number of milligrams of

oxygen for every 1,000 grams of water.)

Time Oxygen Level

5:00 a.m. 8

11:00 a.m. 10

5:00 p.m. 17

midnight 10

The scientist, disappointed by having data for only one day rather than four days, has turned to your

group for help. She comments that the day-to-day changes in the weather during the four-day period were

minimal and asks your group to develop several models of the oxygen level in the water as a function

of the time of day for the four-day period. She then wants you to determine which model is best and to

describe your reasoning in clear statements.

Your tasks are:

1. Research oxygen levels in a river.

a. List five factors that affect oxygen levels in a river.

b. Determine the most important factor (explain your reasoning).

c. Describe how oxygen gets into the water.

d. Explain why oxygen levels may differ at different times of the day.

2. Plot the data.

3. Graphically fit a curve to your data plot. List the major characteristics you would like the curve to

have.

4. Using the regression capability of your graphing calculator, determine the following regression models:

(a) Linear (b) Quadratic (c) Cubic (d) Quartic (e) Sine

5. Determine which of the five regression models gives the best fit for the four-day period. Describe your

reasoning for each of the five regression models.

6. Superimpose the plot of your best model on the plot of the data.

7. Use your best model to predict the oxygen level at 2:00 p.m. on the third day.

Summary

Anecdotal evidence strongly suggests that student-centered pedagogy combined with emphasis on modeling

real life situations has a positive impact on student attitudes. Several instructors have commented on “how

alive the class is” and on the depth of the questions students ask. The use of technology has enabled students

to model and analyze situations that they had previously been unable to do because of the complexity of

the algebraic manipulations involved. The emphasis on graphical analysis, rather than just symbolic, has

bolstered student confidence. Group work, particularly projects, has also contributed to student confidence

and self-satisfaction. Student pride is clearly evident in the project reports.
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The text for the course, Contemporary College Algebra: Data, Functions, Modeling, 5th edition, by

Don Small (McGraw-Hill College Custom Series) was developed through the HBCU Consortium for

College Algebra Reform. A monthly newsletter Vision-Potential helps network the instructors teaching the

course.
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Precalculus: A Study of Functions and Their Applications

Todd Swanson

Hope College

In response to the calculus reform movement in the mid-1990s, we wanted to find a way to prepare students

for a calculus course that was more conceptual, contained more real-life applications, and required students

to view functions in multiple representations. With the aid of an NSF grant (DUE-9354741) we set out

to write projects that would have students solve interesting, real-life problems that involved multiple

representations as well as multiple topics from a precalculus course. These 26 projects were eventually

published under the title, Projects for Precalculus [1] and could be used as a supplement to any precalculus

course.

We, along the with the publisher, thought it would be a good idea to write a textbook based on these

projects. Using some of the same philiosophy from our projects, we set out to write Precalculus: A Study

of Functions and Their Applications [2]. We wanted this to be a non-traditional precalculus text that

treats functions as the object of study while focusing on important mathematical concepts. We did this

by introducing each of the basic types of functions (linear, exponential, logarithmic, periodic, and power)

early in the book rather than relegating each type to a separate chapter. Doing so allows us to emphasize

the commonalities and differences between the various types of functions. The properties of each type of

function are developed throughout the remainder of the text. This leads to a natural review as students

build on their understanding of functions. This organization addresses a common student misconception

that mathematics consists of unrelated bits of information that can be forgotten once a particular topic is

finished.

Just as in the projects, applications became an integral part of the text. We took great care to research

every application to insure that the data given is accurate and documented. This way students can easily

see that these applications come from the real world and not just from a mathematics text.

The text is written in a conversational format addressed to the student and students are expected to

read it. To aid them, reading questions were incorporated throughout each section in which students are

asked to write about key concepts and do simple problems.

Our original projects were written to allow students to be more involved in a problem than is possible

with standard exercises. To put this idea into every section of our text, we decided to write what we call

investigations. These problems are more extended than typical exercises, but shorter than projects. We

included investigations along with each exercise set. These investigations can be used as part of a regular

homework assignment, a group homework, a small group in-class activity, or as a class discussion.

Some projects that were written earlier were included at the end of each chapter. Many of the other

projects were broken up and used as examples, exercises, and investigations.
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Annotated table of contents

An Introduction to Functions. Various representations of functions as well as the language and notation

associated with functions are introduced. This unit also illustrates how graphing calculators can be used

and misused in the study of functions.

Families of Functions. Linear, exponential, logarithmic, periodic, and power functions are introduced.

Students are shown how to recognize these functions in their various representations. Students are also

shown how to obtain a formula when given a linear, exponential, or power function either numerically or

graphically. This lays the groundwork for these functions and for their use throughout the remainder of

the book.

New Functions from Old. The basic functions previously studied are transformed to form new func-

tions in a variety of ways. In particular, the relationship between a transformed function in its symbolic

form is compared with its graphical form. Transformations include addition and multiplication as well as

composition. The relationship between a function and its inverse is also explored.

Polynomial and Rational Functions. Polynomials, introduced as transformations of particular power

functions, are important enough to study as independent objects. We look at their properties as well as

how they can be combined through division to form rational functions.

Trigonometric Functions. The periodic functions of sine and cosine, introduced previously, are reviewed

and other trigonometric functions are introduced in this unit. These functions are introduced by using

the unit circle definitions. The geometry of a circle, including arc length and area, is also explored.

Transformations, are applied to the trigonometric functions and trigonometric identities are introduced.

Applications of Trigonometric Functions. Using trigonometric functions to model situations in the world

is the focus of this unit. It begins by looking at problems involving triangles. Combinations of the periodic

functions with other periodic functions as well as with non-periodic functions are then explored. Thus we

expand the areas in which we can use trigonometric functions to model applications.

Solving Equations and Fitting Functions to Data. Different methods for solving equations and inequal-

ities are introduced. This structure gives students a review of the functions first previously studied. The

techniques of linear, exponential, and power regression are introduced as methods of fitting functions to

data.

Getting Ready for Calculus. This unit serves as an introduction to calculus by exploring the concepts

of limits, the derivative, and the integral. These topics are meant to help students prepare for the study of

calculus and serve only as introductions.

Additional Topics. We conclude with a look at parametric equations, vectors, and multivariable functions.

A property of a conic section is the focus of the project in this unit.

Examples

Reading questions

Reading questions ask students to write about key concepts and do simple problems. The following are

examples of reading questions about exponential functions:

1. How is a linear function similar to an exponential function? How is a linear function different from

an exponential function?

2. Let f be the exponential function f .x/ D 3 � 4x. What is the y-intercept? What is the growth factor?

3. Let f .x/ D ax such that f .1/ D 6. What is the value of a? How do you know?
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4. In the chicken bacteria example from this section, we noted that the bacteria doubles every six hours.

Explain why this is equivalent to a sixteen-fold increase each day.

Exercises

In addition to providing sufficient practice to understanding the concepts given in the text, the exercises

also provide many interesting applications. The following exercises about fitting exponential and power

functions to data appear in section 7.5.

1. Two hundred thumbtacks were tossed onto a table. The ones that landed point up were removed. The

remaining tacks were again tossed onto the table and again the ones landing point up were removed.

This process continued until all of the thumbtacks were removed from the table. The results are shown

in the following table.

Tosses 0 1 2 3 4 5 6 7 8

Number of tacks remaining 200 76 28 12 10 1 1 1 0

(a) Why does it make sense that an exponential function would fit a situation like this?

(b) Why will the last point, .8; 0/, make it impossible to use exponential regression on the data?

(c) Eliminate the last point and find an exponential equation where the input is the toss number and the

output is the number of thumbtacks remaining.

(d) How do you think your exponential function would change if instead of removing the thumbtacks

that landed point up, the ones not landing point up were removed?

2. In a book about the biology of birds, the equation logM D log 89 C 0:64 logW is given. In this

equation,W is the weight of a bird in kilograms and M is the bird’s metabolic rate in kilocalories per

day. The given equation can be considered a linear equation where the input is logW and the output

is logM .

(a) Transform this equation into one where the input is W and the output is M .

(b) It is stated in the book that a twofold increase in the body weight of a bird is accompanied by less

than a doubling of the metabolic rate. Using your transformed equation from part (a), explain why

this is true.

Investigations

Investigations are extended problems in which students explore either a mathematical concept or an appli-

cation. The following investigation involves rational functions.

Discover, a credit card company, has a Cashback Bonus Award Program. In this program, each year

a cardholder receives a check representing a portion of the money he or she charged to Discover during

the year. The percentage that each cardholder receives depends on the amount of money that was charged,

according to the following plan.

� 0:25% of the first $1000 in purchases

� 0:50% of the second $1000 in purchases

� 0:75% of the third $1000 in purchases

� 1:00% of the amount of purchases in excess of $3000

1. Write a piecewise function where the amount charged, a, is the input and the cashback bonus award,

c, is the output.
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2. If you charge $500 in a year, it is clear that you earn 0:25% as a cashback bonus rate. In general, if

a is the amount charged, then your cashback bonus rate is r , where r � a = cashback bonus award.

For any yearly charges less than $1000, notice that your cashback bonus rate is always 0:25%. If you

charge above $1000 in a year, though, then your cashback bonus rate increases with each additional

dollar charged.

(a) What is your cashback bonus rate if you charged $1050 in a year?

(b) What is your cashback bonus rate if you charged $1950 in a year?

(c) What is the maximum possible cashback bonus rate if you charge up to $2000 in a year?

3. Assume someone charges over $3000 in a given year and, because of the restrictions on the credit

card, is not allowed to charge over $2000 per month or $24,000 per year.

(a) Determine the function where the amount charged, a, is the input and the cashback bonus rate, r ,

is the output.

(b) Determine the x-intercepts, vertical asymptotes, and long-range behavior of the function from ques-

tion 3, part (a). Give the physical interpretation of each.

(c) In view of the physical situation, what are the restrictions on the domain and range of the function

from question 3, part (a)?

(d) Suppose you heard on a commercial, “You could earn up to 1% of the amount you charged as a

cashback bonus award using your Discover Card.” Would you agree or disagree with this statement?
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Success and Failures of a Precalculus Reform Project

David M. Wells and Lynn Tilson

Penn State University Penn State University (retired)

Where we started

During the years from 1988 through 1996, the authors developed a set of materials ([1], [2], and [3])

for college algebra and precalculus. Our initial discussions about teaching and writing occurred at Penn

State-New Kensington, a regional campus of Penn State University. The campus has an enrollment of

about 1000 students, most of whom are freshmen and sophomores. The precalculus course is populated

primarily by students who plan to complete degrees in engineering, technology, or science, either at New

Kensington or at Penn State’s University Park campus. College algebra is often taken as a terminal course

or as a prerequisite for precalculus or business calculus. Failure rates in both courses are high, and neither

course has lasting value for those students who pass, but choose not to take calculus. The size of the

institution and the need for transferability of credits between campuses make it difficult for an individual

instructor to depart radically from prescribed course content. This limitation led us to conclude that we

could improve the courses most effectively by providing innovative approaches to traditional topics.

What we planned

We wanted our materials to be flexible enough to prepare students for both traditional and reform calculus

courses, and to be used by instructors with different teaching styles. Our primary goals were that each

course should be a valuable educational experience in its own right, and that students should recognize

the value as the course was in progress. In particular, we wanted students to appreciate that they are

developing skills in learning, problem solving, and communication that are independent of mathematical

content and that will be useful to them in both their everyday lives and their careers. To support those goals

we formulated several objectives, some of which focus on developing mathematical skills. Specifically, we

wanted students:

� to learn to create and interpret mathematical models,
� to learn to communicate mathematical ideas,
� to master traditional skills with equations and graphs, both manually and with the aid of technological
tools, and

� to make informed decisions about whether to use a technological tool to perform an operation, and
about the reliability of the output.

Other objectives focus on developing learning skills that transcend mathematics. We wanted students:
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� to acquire the habit of active learning, and
� to utilize broad problem-solving strategies that are applicable to both mathematical and non-mathematical
problems.

Still other objectives focus on connecting mathematics with the world at large. We wanted students:

� to analyze realistic applications of precalculus mathematics,
� to understand that mathematics is created within larger contexts of history and culture, and
� to learn how mathematicians view the world, much as students in survey courses in other disciplines
learn how practitioners of those disciplines view the world.

What we produced

Our materials addressed essentially all the topics found in traditional college algebra and precalculus books.

However, we designed several innovative features to meet our objectives. To connect mathematics to the

world around our students, we created a large collection of what we call Mathematical Looking Glasses,

each of which is a discussion of mathematics in a practical context, accompanied by exercises. Some guide

students through the solution of an actual problem that a scientist or engineer might encounter. Others

trace developments in the history of mathematics. Still others illustrate mathematical views of everyday

activities and the insights that can be gained by asking mathematical questions. Most involve the creation

or interpretation of mathematical models, and many require students to write explanations in full sentences.

The following exercises are taken from a typical Mathematical Looking Glass.

The Coast Guard maintains helicopters at several stations in the Caribbean. Each can fly 200 miles

without refueling. To study a typical helicopter rescue mission, let’s place a portion of the Caribbean into

a coordinate system. Units are measured in miles, Miami is at .�80; 0/ and Nassau is at .100; 0/. A ship

is lost in a storm after leaving Orange Cay, at .0; �40/. Although it may have been blown in any direction,

it is probably still within 20 miles of Orange Cay.

1. Write an equation for the boundary of the region where the ship is located.

2. Write an equation for the boundary of the region that could be searched by a helicopter based in Miami.

Repeat for a helicopter based in Nassau.

3. Can the helicopters in Exercise 2 reach every point where the ship might be located? How can you

tell?

4. Suppose that a helicopter takes off from Nassau, conducts a search, and lands in Miami, covering a

total of 200 miles. Explain why the region it can cover lies inside an ellipse with foci at Miami and

Nassau, and find the equation of the ellipse.

5. You are in charge of helicopter operations out of Nassau. You have received a call from Miami, saying

that a helicopter is already searching for the lost ship and will return to Miami. You can assist by

sending a second helicopter, which will either return to Nassau or fly on to Miami after conducting its

search. Which option do you choose? Why?

To encourage students to read and learn actively, we weave our discussion of most topics around

a Mathematical Looking Glass and intersperse exercises at several points in each lesson. To introduce

students to broad problem-solving strategies, we describe the process developed by George Polya in [4],

apply the Polya process to both mathematical and non-mathematical problems, and frequently refer to

specific Polya strategies.

We assume that students have access to graphing calculators, and our approach to many topics requires

their use. We seldom give explicit instructions on when to use calculators, preferring to let students or

their instructors make that decision. To guide students in the use of technology, we often illustrate both

manual and calculator-assisted approaches to the same problem and discuss the advantages and limitations

of each.
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What we learned

From both our experiences and insights gleaned from others who have used the materials, we learned

several lessons. One is that most students have a narrow idea of the purpose of their education. Students

who major in engineering or technology are especially inclined to see their degree programs as career

training, as opposed to a broad preparation for life. Such students do not value a mathematical idea unless

it can be shown to have direct application to the job they plan to hold after graduation. For that reason,

we have attempted to convince our students of the importance of all our objectives, not just those that

relate to mathematical skills. For example, one exercise in our section on problem-solving strategies asks

students, “Think of three problems, mathematical or otherwise, you have encountered in your ‘real life’

(that is, outside of mathematics classrooms). Identify at least three Polya strategies you used in solving

these problems, and describe how they were used.”

Most students also have narrow comfort zones. (A student evaluation of one of our courses complained,

“Dr. Wells expects me to think, and I don’t have time for that!”) Even those students who demand real-

world applications do not readily embrace the study of mathematics in a physical context. Furthermore, the

presence of technology-based explorations and exercises requiring essay answers often compounds math

anxiety with calculator anxiety and writing anxiety.

One reason for resistance to these new skill requirements is that most students are not very good at the

skills involved. Not only do most have trouble writing about mathematics, but many have trouble writing

a correct English sentence. The first few writing assignments in a course should require no more than a

sentence or two. We find it helpful to provide examples of both good and poor responses to questions, and

to involve instructors of English in helping students.

The strategy of starting slowly and providing plenty of guidance also applies to the development of

modeling and problem-solving skills. We learned to construct early problem-solving assignments so that

students would have to supply only the more obvious steps and explain why the less obvious instructor-

supplied steps were valid.

We were eventually able to avoid the need for extensive guidance in calculator usage. Our experience

in this area illustrates the potential advantages of cooperation with high schools. In 1990 and 1992 one

of us, with another colleague, obtained grants from the Pennsylvania Department of Education to supply

a large number of local high schools with graphing calculators, instruct teachers in their use, and develop

application-based materials with calculator-assisted solutions. Since entering students at New Kensington

come primarily from those high schools, most college algebra and precalculus students already have some

familiarity with graphing calculators. Recent conversations with mathematicians from other Penn State

campuses indicate that New Kensington is still unique in that respect.
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The Earth Math Projects

Nancy Zumoff and Christopher Schaufele

Kennesaw State University Cortez, Colorado

Since 1991, with support from the National Science Foundation (NSF) and the U.S. Department of Ed-

ucation’s Fund for Improvement of Secondary Education (FIPSE), the authors have developed unique

materials for use in mathematics courses ranging from algebra through calculus. These projects have re-

sulted in three books, Earth Algebra (college algebra) [1], Earth Angles (precalculus) [2], and Earth

Studies (applied calculus) [3], that all have applications to environmental issues that affect students’ lives.

They are designed to generate more interest in the use of mathematics as a tool to analyze real situations.

Using mathematics to study real problems that are interesting to students has been shown to improve

interest in, and understanding and appreciation of the role of mathematics in science and society. Formal

evaluations have been conducted by Dr. Pamela Drummond [4] and are on file with FIPSE and NSF.

The authors are currently funded by NSF (grant #9952568) and FIPSE (grant #P116B001780) for a

new curriculum development project that is an extension of the work described above. The goal is to

produce versatile, technology-intensive materials for classroom use and teacher training. Reform-based

applications are incorporated into platform-independent software to make them accessible to anyone with

a computer. Environmental applications from the previous projects are being redesigned to be used in

courses from algebra through calculus independent of the course textbook. The project features an inquiry-

based format, web-based interactive materials, seamless interface with state-of-the-art technology, use of

real data, and interesting applications of mathematical concepts. The materials can be used as student

projects to enhance the learning of mathematical concepts, thus providing flexible classroom use. The

materials are designed for use in both high school and college, and for training in-service and pre-service

teachers. Appropriate software has been developed to perform the mathematics needed and the materials

are published on CD-ROM and are available over the Internet, at earthmath.kennesaw.edu.

Each module, or study, can be used as an in-class or lab project that illustrates real applications of

mathematics. Each study is written with three linked components: the text, the journal, and the tool chest.

The text, written in HTML, presents the problem to be analyzed, asks questions, and provides links to

relevant information and mathematical concepts. When applicable, Java applets are inserted in the text to

allow the students to experiment with the concept being studied. The journal is a place for students to

record their work and take notes—this is to be done using the word processor on the student’s computer.

Students can transfer the results of mathematical manipulations done with the applets to the journal. Most

of the actual computations are done using the tool chest, a collection of applets that can perform the

mathematics necessary to analyze the problems presented in the text. This is also where students can

experiment with solutions.

Modules are written in a guided-inquiry format that has four stages:
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1. presentation of a problem (comprehension);

2. acquisition of relevant information and skills (acquisition);

3. application of information and skills to the problem (application); and

4. investigation of the solution (reflection).

One two-part module, Atmospheric Carbon Dioxide Concentration, focuses on the increase in CO2

in the Earth’s atmosphere and its impact on global temperature and ocean level. Each part follows the

described format. In the comprehension section, students are asked relevant questions based on the text

material to initiate their own thoughts on the situation. In the acquisition section, relevant data is presented

with links to websites. In the application section, students first use the data and other information provided

to derive a model describing atmospheric CO2 concentration over time. Next, equations are derived based

on this model describing average global temperature increase and ocean level increase. In this section,

students access applets from a side menu to perform the mathematics needed to construct and use their

models. In the reflection section, students are asked questions regarding the validity of their models and the

significance of the mathematics used. This module is written for use at three levels, high school algebra,

college algebra, and precalculus.

Below is the text adapted from the web precalculus version of the first part of the CO2 modules. The

interested reader is invited to access the Earth Math website to see the interactive structure of the text and

applets and the review topics for all the modules.

Carbon dioxide concentration

Comprehension

1. What is the greenhouse effect?

2. Which gases are greenhouse gases?

3. How has the concentration of atmospheric carbon dioxide changed in the last century?

4. What are some of the effects of increased concentration of carbon dioxide?

Acquisition

The table below provides information on carbon dioxide concentration for selected years.

Year Concentration (ppm)

1960 316.75

1965 319.87

1970 325.52

1975 330.99

1980 338.52

1985 345.73

1990 354.04

1995 360.91

2000 369.40

1. What trends do you observe from the data?

2. Do you think these trends will continue in the near future?

3. What kinds of functions (linear, quadratic, exponential, etc.) would accurately describe the change in

atmospheric CO2 concentration over the last 40 years?
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Application

1. For convenience, let t denote years since 2000 and let C denote the carbon dioxide concentration.

Make points out of the data and plot them; use a (t; C ) coordinate system.

2. Use exponential regression to fit the data with an exponential function. Call this function C.t/ and

sketch its graph.

3. For each of the years for which you have data, compare the actual carbon dioxide concentration with

the concentration predicted by your function. Why do you think the figures are different?

4. Use the function C.t/ to answer these questions.

(a) Estimate the carbon dioxide concentration in 2001.

(b) Predict when the carbon dioxide concentration will reach 400 ppm.

(c) How much did carbon dioxide concentration increase between January 1, 1990 and January 1, 1991?

Between January 1, 2000 and January 1, 2001? Between January 1, 1990 and January 1, 2000?

5. Compute the following:

(a) The annual change in concentration for 2001.

(b) The change in concentration between times t D 0 and t D 5.

(c) The average annual change in concentration between t D 0 and t D 5.

6. Until recently, the carbon dioxide concentration stayed at about 280 ppm.

(a) According to your model, when was the concentration at this level?

(b) When will the concentration reach double this level?

Reflection

1. Reflect on the computation.

(a) What did you do to predict carbon dioxide concentration at a particular time?

(b) What did you do to predict when the concentration reached a particular level?

2. Reflect on the graph.

(a) Which do you think is greater: the time it takes for the concentration to increase from 280 ppm to

330 ppm, or the time it takes to increase from 330 ppm to 380 ppm? Why do you think that is?

(b) How is the graph different from the graph of a linear function? How is it similar?

3. Reflect on the interpretations.

(a) What factors might cause a change in the trend you observed?

(b) For how far into the future do you think your model is accurate?

Other studies at various levels can be found on the project website covering such topics as population,

streamflow and water availability, fuel economy of automobiles, emissions from automobiles, natural

resource availability and usage, and food supply. Demonstration modules are posted to instruct students

on format and use of the materials.

These materials have been tested at Kennesaw State University, Diné College, Portland State University,

Phoenix College, San Juan College, and at high schools in Georgia, New Mexico, and on the Navajo

Reservation. [4]



396 Ideas and Projects that Work: Part 2

References

1. Schaufele, Zumoff, M. Sims, and S. Sims, Earth Algebra: College Algebra with Applications to Environmental

Issues, 2nd edition, Addison Wesley, Reading, MA, 1999.

2. Zumoff and Schaufele, Earth Angles: Precalculus Mathematics with Applications to Environmental Issues, pre-

view edition, Addison Wesley, Reading, MA, 1997.

3. Zumoff, Schaufele, and Latiolais, Earth Studies: Applied Calculus–A Modeling Approach, Kendall Hunt,

Dubuque, Iowa, 2000.

4. P. Drummond, “Earth Algebra, Earth Math, and Earth Studies Evaluation Reports, Summaries,”

<earthmath.kennesaw.edu>, full reports available from the authors upon request.


	Cover
	Copyright page
	Title page
	Preface
	Contents
	Introduction
	1  The Conference: Rethinking the Preparation for Calculus  by Jack Narayan and Darren Narayan
	Rationale for the conference
	Overview of the conference
	Some conclusions
	References

	2  Twenty Questions about Precalculus  by Lynn Arthur Steen
	Introduction
	What?
	Who?
	Why?
	When?
	Where?
	How?
	Conclusion
	References
	Appendix A


	Background
	3  Who are the Students Who Take Precalculus?  by Mercedes A. McGowen
	Introduction
	What is ``precalculus"?
	What mathematics courses do undergraduate students enroll in?
	Mathematics course enrollment: 1980 {2000
	Precalculus enrollment: 1980 {2000
	Meeting the needs of our students: A two-year college profile
	Conclusions
	References

	4  Enrollment Flow to and from Courses Below Calculus by Stephen R. Dunbar
	The intent of the analysis
	The data source
	Description of the courses
	The data analysis
	Conclusions
	Appendix A  Description of the courses
	Appendix B  Diagram of course dependencies
	Appendix C  Tables

	5  What Have We Learned from Calculus Reform? The Road to Conceptual Understanding  by Deborah Hughes Hallett
	Goals
	Background to calculus reform: Rationale for change
	Changes in the teaching of calculus
	Cooperation with client disciplines
	Impact of calculus reform
	Summary

	6  Calculus and Introductory College Mathematics: Current Trends and Future Directions  by Susan L. Ganter
	Introduction
	What have we learned about the teaching and learning of introductory college mathematics?
	What questions still remain?
	What do we know about the interaction of introductory college mathematics with partner disciplines?
	How can current knowledge be used to improve introductory collegiate mathematics courses?
	Implications of the proposed changes
	Supporting QL in introductory college mathematics courses through networking
	Conclusions
	References


	Theme 1. New Visions for Introductory Collegiate Mathematics
	7  Refocusing Precalculus: Challenges and Questions  by Nancy Baxter Hastings
	Introduction
	What is the problem?
	What is being done?
	Characteristics of alternative instructional materials
	Changes in pedagogy
	A dozen challenges, plus one, confronting refocusing precalculus
	References

	8  Preparing Students for Calculus in the Twenty-First Century  by Sheldon P. Gordon
	The student population
	Technology and its implications for mathematics education
	Changes in the mathematical needs of students
	The need for conceptual understanding
	The need for realistic problems
	Other topics that should be emphasized
	What can be removed
	Changes in pedagogy
	References

	9  Preparing for Calculus and Preparing for Life  by Bernard L. Madison
	Introduction
	Calculus: An important role
	Quantitative literacy: Need and responsibility
	Calculus: Domination and disappointment
	Calculus in high school
	References

	10  College Algebra: A Course in Crisis  by Don Small
	Introduction
	Traditional college algebra
	Vision for improved college algebra programs
	Improved college algebra: A base for quantitative literacy programs
	Summary
	References

	11  Changes in College Algebra  by Scott R. Herriott
	Introduction
	The DWF problem
	Who takes college algebra?
	Curricular models for college algebra
	elementary probability and statistics, and consumer mathematics.Local and national policy issues
	Conclusions
	References

	12  One Approach to Quantitative Literacy: Understanding our Quantitative World  by Janet Andersen
	Overview and philosophy of the course
	Sample section: Periodic functions
	Evaluation
	References


	Theme 2.  The Transition from High School to College
	13  High School Overview and the Transition to College  by Zalman Usiskin
	Introduction
	Trend data on student performance
	Variability within the United States
	Curriculum
	Advanced placement calculus
	Calculus in high school?|Yes.
	Teachers and tests
	Calculus in college and the mathematics major
	Summary
	References

	14  Precalculus Reform: A High School Perspective  by Daniel J. Teague
	Introduction
	Precalculus reform at NCSSM
	Calculus reform at NCSSM
	Influencing the mathematics community
	My students are not me, your students are not you
	Proof and sense-making
	Conclusion
	References
	Appendix

	15  The Influence of Current Efforts to Improve School Mathematics on the Preparation for Calculus by Eric Robinson and John Maceli
	Introduction
	Should the primary driver of the K–12 curriculum, especially in the upper grades, be preparation for calculus?
	That's all well and good. But, don't we just need to examine the topic differences that there are in Standards-based school mathematics programs in order to understand the changes in students'preparation for calculus?
	Content also is important and there is a sequential nature to the development of mathematicalcontent. How does the content in Standards-based school mathematics education lay a foundationfor calculus?
	What other things influence students' preparation for calculus?
	References
	Appendix


	Theme 3. The Needs of Other Disciplines
	16  Fundamental Mathematics: Voices of the Partner Disciplines  by William Barker and Susan L. Ganter
	The Curriculum Foundations Project
	The Curriculum Foundations Project and precalculus instruction
	Conceptual understanding and problem solving
	Modeling and Applications
	Communication
	Technology
	Instructional techniques
	Student assessment
	Whither college algebra?
	Conclusion
	References

	17  Skills versus Concepts at West Point  by Rich West
	Introduction
	Perspective
	Need
	Solution
	The gateway exam
	The standards
	Lessons learned
	Implications
	Conclusions
	References
	Appendix:  Required mathematical skills for entering cadets

	18  Integrating Data Analysis into Precalculus Courses  by Allan J. Rossman
	Introduction
	Using data to study functions
	Example 1: Scrabble Names
	Example 2: AIDS Epidemic
	Example 3: Margin-of-Error
	Example 4: Benford's Model for Leading Digits

	Data analysis principles for precalculus
	Example 5: Airfares
	Example 6: Televisions and Life Expectancy

	Data analysis in precalculus for general education
	Conclusion
	References


	Theme 4. Student Learning and Research
	19  Assessing What Students Learn: Reform versus Traditional Precalculus and Follow-up Calculus  by Florence S. Gordon
	Introduction
	Background
	Student backgrounds prior to precalculus
	Assessing student performance in precalculus
	Assessing student attitudes in precalculus
	The follow-up study in calculus
	Assessing student performance and persistence on quizzes in calculus
	Assessing student performance on class tests in calculus
	Assessing student performance on the final exam in calculus
	Discussion of results
	References

	20  Student Voices and the Transition from Reform High School Mathematics to College Mathematics  by Rebecca Walker
	Introduction
	Design of the study
	Analysis of student beliefs and conceptions of mathematics
	Transition to college mathematics
	College mathematics placement
	Experiences in the classroom
	Experiences outside of the classroom
	College mathematics performance
	Students' final reflections on their preparation
	Summary
	Limitations of the study and possibilities for further research
	References


	Theme 5. Implementation
	21  Some Political and Practical Issues in Implementing Reform  by Robert E. Megginson
	Introduction
	Show respect for your colleagues' teaching styles
	Keep your colleagues in the loop
	Get the backing of senior faculty
	Get the backing of client departments
	Get the backing of academic counselors
	Make sure skills are learned
	Know who takes the courses
	Prepare instructors for a changed classroom
	Finally, and perhaps most important . . .
	References

	22  Implementing Curricular Change in Precalculus: A Dean's Perspective  by Judy E. Ackerman
	Introduction
	Initiating curricular change
	Implementing curricular change
	Making a case to the dean
	Pilot first
	Support for faculty implementing change
	Summary
	References

	23  The Need to Rethink Placement in Mathematics  by Sheldon P. Gordon
	24  Changing Technology Implies Changing Pedagogy  by Lawrence C. Moore and David A. Smith
	Introduction
	Learning and working in an increasingly rich technological environment
	Making sense of mathematical information—using technology to check
	Student-to-student interactions
	Creation of interactive learning materials
	Intellectual demands of these new forms of learning
	References

	25  Preparing for Calculus and Beyond: Some Curriculum Design Issues  by Al Cuoco
	Introduction
	Goals for the program
	What habits? What topics? What students?
	The Evolution
	An example
	Lessons learned
	References

	26  Alternatives to the One-Size-Fits-All Precalculus/College Algebra Course  by Bonnie Gold
	Introduction
	Can one size fit all?
	An alternative: Splitting the course
	Advising issues
	Scheduling issues
	Articulation issues
	Another way to cut the pie
	Summary
	References


	Theme 6. Influencing the Mathematics Community
	27  Launching a Precalculus Reform Movement: Influencing the Mathematics Community  by Bernard L. Madison
	Introduction
	The community
	Need for change
	Compatible with other priorities
	Empirical evidence
	Need a headline
	What are the issues?
	Stamp of approval
	Real support
	Top-down and bottom-up
	AP calculus and technology: the levers of calculus reform
	What about strategy?
	Conclusion
	References

	28  Mathematics Programs for the Rest-of-Us  by Naomi D. Fisher and Bonnie Saunders
	Introduction
	Note on ``rest-of-us" terminology
	Profile of participating departments
	Workshop program overview
	Summing up
	Appendix: Participating departments

	29  Where Do We Go From Here? Creating a National Initiative to Refocus the Courses below Calculus  by Sheldon P. Gordon
	Background on subsequent activities
	The common elements
	Developing a national initiative
	A. Developing an organizational structure
	B. Collecting data
	C. Identifying and publicizing model projects and programs
	D. Influencing the mathematics community
	E. Forging connections
	F. Planned outcomes

	References


	Ideas and Projects that Work: Part 1
	30  College Precalculus Can Be a Barrier to Calculus: Integration of Precalculus with Calculus Can Achieve Success  by Doris Schattschneider
	Introduction
	The problem and a response
	Some details on the course
	Student outcomes
	Teaching outcomes
	Challenges in establishing the course
	Other models for the integration of precalculus review in the calculus I course
	Some final comments
	References
	Appendix I  Comparative attrition and completion data from six institutions
	Appendix II  Topics outline: Calculus I with Review

	31  College Algebra Reform through Interdisciplinary Applications  by William P. Fox
	Introduction
	Our new courses
	Motivation through applications
	Student growth through projects
	Student responses
	Faculty growth and development
	Conclusions
	References

	32  Elementary Math Models: College Algebra Topics and a Liberal Arts Approach  by Dan Kalman
	Introduction
	Content and organization
	Students
	Classroom practice
	Student reactions and performance
	Conclusion
	References

	33  The Case for Labs in Precalculus  by Brigitte Lahme, Jerry Morris amd Elias Toubassi
	Background
	Why labs?
	Format of the labs
	Some advantages of the labs
	Some challenges associated with the labs
	Other resources for precalculus labs
	Other reform texts
	Conclusion
	served in a teaching postdoctoral position at Arizona from 1997 to 2000.References

	34  The Fifth Rule: Direct Experience of Mathematics  by Gary Simundza
	Introduction
	Experiencing mathematics
	A model for laboratory-based mathematics
	Conclusion
	References


	Ideas and Projects that Work: Part 2
	35  Mathematics in Action: Empowering Students with Introductory and Intermediate College Mathematics  by Ernie Danforth, Brian Gray, Arlene Kleinstein, Rick Patrick, and Sylvia Svitak
	References

	36  Precalculus: Concepts in Context  by Marsha Davis
	Student background
	Project description/goals
	Modeling approach
	Lab activities
	Projects and explorations
	Classroom experiences
	References

	37  Rethinking College Algebra  by Benny Evans
	Course content
	Examples
	Running speed versus length
	Holling's functional response curve

	Conclusions
	References

	38  From The Bottom Up  by Sol Garfunkel
	Sample investigation
	Part 1: Exploration
	Part 2: Modeling

	Conclusion
	References

	39  The Functioning in the Real World Project by Florence S. Gordon and Sheldon P. Gordon
	Course contents
	Illustrative examples and problems
	Conclusion
	References

	40  The Importance of a Story Line: Functions as Models of Change  by Deborah Hughes Hallett
	References

	41  Using a Guided-Inquiry Approach to Enhance Student Learning in Precalculus  by Nancy Baxter Hastings
	The Workshop Mathematics Program
	The workshop approach
	Workshop Precalculus
	Sample activities
	Implementing the workshop approach
	References

	42  Maricopa Mathematics  by Alan Jacobs
	Features and content
	Results
	References

	43  College Algebra/Quantitative Reasoning at the University of Massachusetts, Boston  by Linda Almgren Kime
	Motivation
	Math/quantitative reasoning requirement
	QR course design
	Course topics
	Sample homework problems
	Conclusions
	References

	44  Developmental Algebra:The First Mathematics Course for Many College Students by Mercedes A. McGowen
	Examples
	Course structure
	Conclusions
	References

	45  Workshop Precalculus: Functions, Data, and Models  by Allan J. Rossman
	Course content
	Sample activity
	Sample materials and further information may be found at http://calc.dickinson.edu.References

	46  Contemporary College Algebra  by Don Small
	Features of the course
	Sample projects
	Summary

	47  Precalculus: A Study of Functions and Their Applications  by Todd Swanson
	Annotated table of contents
	Examples
	References

	48  Success and Failures of a Precalculus Reform Project  by David M. Wells and Lynn Tilson
	Where we started
	What we planned
	What we produced
	What we learned
	References

	49  The Earth Math Projects  by Nancy Zumoff and Christopher Schaufele
	References



