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Preface

In the summer of 2001, the editors of this volume organized a contributed papers session at the MAA

MathFest in Madison, Wisconsin. The topic was ways to use the history of mathematics in teaching. We

received many wonderful abstracts. Due to time limitations, we had to make some cuts. Two or three of

the abstracts dealt with more recent topics. The majority of the topics however, were more \traditional"

in that they addressed ways to use the history of Greek mathematics or calculus for example. We decided

to use talks which dealt with topics up to the development of the calculus. The abstracts that addressed

more recent mathematics were very intriguing, and made us realize that even though using the history of

mathematics in the classroom is becoming very popular, the topic of recent history may be overlooked.

We decided to organize a follow-up session the next year in Burlington. This session was entitled

The Use of History in the Teaching of Mathematics, with a focus on roughly the last two hundred years.

Again, we had many excellent abstracts. The talks covered a range of topics from Galois theory to using

the history of women and minorities in teaching.

The interest at MathFest in the topic of recent mathematical history, and a noticeable lack of information

for educators on how to incorporate that history into the classroom, was the motivation for this volume.

Several of the papers are from that 2002 session, while others are new. The papers cover a range of topics,

from logic and computer science to Galois theory to the evolution of statistical thought in education. There

are a variety of levels of detail, from general course outlines to ideas for projects and units in specific

courses. Some papers focus on the history, while others focus on teaching.

This volume is by no means an exhaustive survey, simply a first step toward building a body of

knowledge and ideas for incorporating recent history into the classroom. Whether you teach lower or

upper division courses, mathematics, computer science or statistics, there should be something of interest

to you.

We thank Andrew Sterrett for his support of this project from the beginning. Additionally, Barbara

Reynolds and Donald Albers were instrumental in guiding our effort. Of course we appreciate the deter-

mination of all the contributing authors, many of whom were speakers at the contributed papers sessions

we chaired at the MathFests. Both of us are very thankful for the mentorship provided by V. Frederick

Rickey and Victor Katz. Finally, special thanks goes to our spouses, Chris Gellasch and Deb Jardine, who

provided support on the home front, which is immeasurably important.
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Introduction

Using the history of mathematics to motivate interest and understanding in the mathematics classroom has

become an acknowledged pedagogical option for mathematics instructors. The knowledge base on how to

incorporate history into the classroom has grown by leaps and bounds in the last few decades. A look at

the number of recent books published by many academic publishers, to include the MAA, is indicative of

this effort to improve mathematics teaching and learning.

However, due to the nature of mathematical advances in the last few centuries, the history of topics

such as logic and Galois theory are much less accessible. The level of mathematical sophistication needed

to grasp these topics, even at an introductory level, is much higher than that needed for most older subjects.

Given that the development of a subject is usually harder to follow than the final theory, the history of

more recent topics may be even harder to comprehend. For exactly these reasons, it is important to present

the historical evolution of and motivation for these topics. Many higher-level concepts seem remote and

arbitrary to students. Presenting the historical development of these more recent and advanced topics gives

the students the connections needed to gain a deeper understanding of higher mathematics.

This volume is intended to be a resource for undergraduate mathematics teachers, providing ideas and

materials for immediate adoption and proven examples to motivate innovation by the reader. The book is

divided into sections by subject area to make it easier for teachers to find a relevant article for a course

they have in mind.

Section One focuses on courses commonly found in the undergraduate mathematics core and elective

courses: calculus, abstract algebra, numerical methods and number theory. David Pengelley uses a seminal

paper by Cayley to motivate student learning in an abstract algebra course. Bob Rogers offers activities

which utilize the differential to solve calculus problems, an alternative approach to motivate students'

geometric and historical insights. Matt Lunsford's contribution answers the question: How can the ideas of

Evariste Galois enhance the teaching of undergraduate abstract algebra? The study of elliptic curves relates

algebra and geometry, and Lawrence D'Antonio ties together those concepts in describing some deep and

current mathematics in a way accessible to upper-level undergraduate students. Through a presentation of

the historical development of predator-prey models, Holly Hirst provides activities to ensure that students

understand that mathematical modeling is an evolving process.

Section Two contains articles on the subject of geometry. Jeff Johannes relates how advances in that

subject area dispelled fears of prominent mathematicians of the late eighteenth century that the future of

mathematics was bleak since all the work was done and no new great minds were apparent to carry on the

mathematical tradition. Daina Taimina and David W. Henderson integrate the history of mathematics in

undergraduate geometry instruction and include historical presentation of non-Euclidean geometries. Eisso

Atzema and Homer White survey a few of Euler's late geometrical papers and offer ideas for exercises in

a geometry class or problems for investigation by students.

Section Three includes additional topics found in other courses of the undergraduate mathematics

curriculum, to include statistics and the mathematics of computation. Dick Jardine offers the use of

historically based projects to engage students and deepen their learning of numerical analysis topics. For
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xii From Calculus to Computers

instructors of a course in logic for undergraduate mathematics or computer science majors, Francine Abeles

provides a paper for those who wish to include an historical approach to the significant developments

of modern logic. In a similar vein, William Calhoun connects logic and computing to motivate both

mathematics and computer science majors in discrete mathematics and theory of computation courses. Linda

McGuire describes important issues concerning semester-long research projects given in an upper division

combinatorics and graph theory class. The mathematics of cryptography has growing interest among our

students, and Shai Simonson writes about classroom activities that work for him, his colleagues, and his

students in discrete mathematics and number theory courses. Patti Hunter uses a historical perspective to

address the controversy of just how much rigor to include in undergraduate statistics courses. Jerry Lodder

offers ideas for implementing the history of logic and programming into computer science courses.

Section Four addresses some issues relevant to the history of mathematics and methods for conducting

a history of mathematics course, to include those courses targeted at pre-service school teachers. Sarah

Greenwald notes that students identify more readily with current mathematicians, and she offers ideas to

include projects involving the history of current mathematicians, with examples of women and minority

practitioners. Dave Roberts offers mathematical topics from a history of science course that would apply

to portions of a history of mathematics course, relating the interconnection between mathematics and other

disciplines. Amy Shell-Gellasch \personalizes" the history of mathematics course by suggesting ways to

include the history of one's own institution as a significant component. The protractor is an oft-used tool

in middle and secondary education; Amy Ackerberg-Hastings outlines the historical development of that

instructional tool. A history of the slow acceptance of the metric system in American mathematics education

is given by Peggy Kidwell. Peter Ross offers some ideas to spark interest and discussion and to motivate

student interest in the history of mathematics. John Prather concludes the volume with a description of a

problem-solving approach to the history of mathematics in a course intended for pre-service middle and

secondary teachers.

This collection, then, is an eclectic mix of ideas expressed by colleagues with interests similar to ours:

the improvement of mathematics education through the use of the history of mathematics. There are other

references more definitive on the specific mathematical topics addressed, and we invite the reader to take

advantage of those available from the MAA collection and their local college and university library. We

hope the reader will be inspired to apply the history of mathematics for the betterment of teaching and

learning, and then share the experience with the mathematics community.



I
Algebra, Number Theory,

Calculus, and Dynamical Systems

For the things of this world cannot be made known without a
knowledge of mathematics

|Roger Bacon





1
Arthur Cayley and the

First Paper on Group Theory

David J. Pengelley

New Mexico State University

Introduction

Arthur Cayley's 1854 paper On the theory of groups, as depending on the symbolic equation � n D 1

inaugurated the abstract idea of a group [2]. I have used this very understandable paper several times

for reading, discussion, and homework in teaching introductory abstract algebra, where students are first

introduced to group theory. Many facets of this short paper provide wonderful pedagogical benefits, not

least of which is tremendous motivation for the modern theory. More information on teaching with original

historical sources is available at our web resource [8], which includes information on the efficacy of

teaching with original sources [3, 4, 5, 9, 10], about courses based entirely on original sources [6, 7], and

which provides access to books and other resources for teaching with original sources.

Cayley introduces groups as a unifying framework for several critical examples current in the early

nineteenth century. These include \substitutions" (permutations, with reference to Galois on solutions of

equations), \quaternion imaginaries," compositions arising in the theory of elliptic functions, and trans-

Figure 1. Arthur Cayley (1821{1895) [11]
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4 I. Algebra, Number Theory, Calculus, and Dynamical Systems

position and inversion of matrices. These phenomena are either familiar to or easily understandable for

our students. Cayley observes that they all have common features, which he abstracts in a first attempt

at defining a group axiomatically. He proceeds to develop initial steps of a theory, including stating and

using what Lagrange's theorem tells us on orders of elements, which classifies groups of prime order. Then

he provides a detailed classification of all groups of order up to six. Cayley gives a brief description of

how to form what we call a group algebra, and comments that when applied to the six-element symmetric

group on three letters, the group algebra does not appear to have anything analogous to the modulus for

the quaternions. He ends with a description of two nonabelian groups of higher order.

The richness of Cayley's paper provides a highly-motivated foundation for the beginnings of the theory

of groups in an abstract algebra course. Numerous questions and contrasts arise with students as one studies

the paper. First I will display some excerpts and will footnote features that I have focused on with students.

Then I will discuss specific pedagogical aspects of incorporating Cayley's paper in the classroom, and the

accruing benefits.

Cayley's paper

I provide here selected extracts from Cayley's paper, with my own pedagogical comments as footnotes in

order not to interrupt unduly the beautiful flow of Cayley's exposition. I will let his paper speak for itself

as an inspiring and powerful tool for learning.

On the theory of groups, as depending on the symbolic equation �n D 1

Arthur Cayley

Let � be a symbol of operation, which may, if we please, have for its operand, not a single quantity x, but

a system .x; y; : : : /, so that

�.x; y; : : : / D .x0; y0; : : : /;

where x0; y0; : : : are any functions whatever of x; y; : : : , it is not even necessary that x0; y0; : : : should be the

same in number with x; y; : : : . In particular, x0; y0; &c. may represent a permutation of x; y; &c., � is in this

case what is termed a substitution; and if, instead of a set x; y; : : : , the operand is a single quantity x, so that

�x D x0 D f x, � is an ordinary functional symbol.1 It is not necessary (even if this could be done) to attach any

meaning to a symbol such as � ˙ �, or to the symbol 0,. . . but the symbol 1 will naturally denote an operation

which . . . leaves the operand unaltered . . . . A symbol �� denotes the compound operation, the performance of

which is equivalent to the performance, first of the operation �, and then of the operation � ; �� is of course

in general different from �� . But the symbols � , �,. . . are in general such that �:�� D ��:�, &c., so that

���, ���!, &c. have a definite signification independent of the particular mode of compounding the symbols;2

this will be the case even if the functional operations involved in the symbols � , �, &c. contain parameters

such as the quaternion imaginaries3 i , j , k; but not if these functional operations contain parameters such as

the imaginaries which enter into the theory of octaves4, and for which, e.g., ˛:ˇ is something different from

˛ˇ: , a supposition which is altogether excluded from the present paper.5 The order of the factors of a product

��� : : : must of course be attended to, since even in the case of a product of two factors the order is material;

1It is delightfully unclear just how Cayley's initial general notion of operation really differs from that of function, and this

makes good classroom discussion.
2One can discuss here why we know this, e.g., for function composition, and whether this is exactly Cayley's actual context.
3The eight-element quaternion group is a wonderful example to motivate students.
4Also called the octonions, or Cayley numbers, these are an eight-dimensional non-associative real division algebra [1].
5This contrast offers opportunity for discussing the sense in which quaternions or octaves are or are not acting as functions,

and how their multiplication is connected to function composition.
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it is very convenient to speak of the symbols � , � : : : as the first or furthest, second, third, &c., and last or

nearest factor. What precedes may be almost entirely summed up in the remark, that the distributive law has no

application to the symbols �� : : : ; and that these symbols are not in general convertible,6 but are associative.

It is easy to see that � 0 D 1, and that the index law �m:�n D �mCn, holds for all positive or negative integer

values, not excluding zero.7

A set of symbols,

1; ˛; ˇ; : : :

all of them different, and such that the product of any two of them (no matter what order), or the product of

any one of them into itself, belongs to the set, is said to be a group8 [Cayley's own footnote]. It follows that

if the entire group is multiplied by any one of the symbols, either as further or nearer factor, the effect is simply

to reproduce the group9; or what is the same thing, that if the symbols of the group are multiplied together so

as to form a table,10 thus:

that as well each line as each column of the square will contain all the symbols 1; ˛; ˇ; : : : .. . . Suppose that the

group

1; ˛; ˇ; : : :

contains n symbols, it may be shown11 that each of these symbols satisfies the equation

�n D 1;

so that a group may be considered as representing a system of roots of this symbolic equation.12 It is, moreover,

easy to show that if any symbol ˛ of the group satisfies the equation � r D 1, where r is less than n, then that

6I.e., what we today call commutative.
7By indicating that negative exponents are always allowed, Cayley here implicitly seems to assume that his \operations," now

metamorphosing seamlessly into \symbols," always have inverses. . . .
8[Cayley's footnote]: The idea of a group as applied to permutations or substitutions is due to Galois, and the introduction of it

may be considered as marking an epoch in the progress of the theory of algebraical equations.
9This raises the question of what Cayley is really requiring for something to be a group. Although not mentioned explicitly, it

seems clear from above and below that he has in mind associativity and existence of inverses as implicit. Is this a good example

of axiomatization? Will students agree, and think this necessary? All Cayley specifies literally is closure and the existence of an

identity. Cayley does not justify his claim that translation always reproduces the group, but it clearly follows from existence of

inverses and associativity.
10Here we see why we call such a \Cayley table" today.
11This fascinating claim of Cayley's is usually proven from Lagrange's theorem on orders of subgroups, which comes from an

analysis of cosets. How did Cayley know this? Did he have a proof? Students can look ahead for this result in a text.
12Note Cayley's interesting point of view here, that this result on orders of elements can be interpreted as an \equation" for

which the group is a solution set.
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r must be a submultiple of n; it follows that when n is a prime number, the group is of necessity of the form13

1; ˛; ˛2; : : : ˛n�1; .˛n D 1/;

and the same may be (but is not necessarily) the case, when n is a composite number. But whether n be prime

or composite, the group, assumed to be of the form in question, is in every respect analogous to the system of

the roots of the ordinary binomial equation14 xn � 1 D 0 . . . .

The distinction between the theory of the symbolic equation �n D 1, and that of the ordinary equation

xn � 1 D 0, presents itself in the very simplest case, n D 4. . . .15

. . . and we have thus a group16 essentially distinct from that of the system of roots of the ordinary equation

x4 � 1 D 0.

Systems of this form are of frequent occurrence in analysis, and it is only on account of their extreme

simplicity that they have not been expressly remarked. For instance, in the theory of elliptic functions, if n be

the parameter, and

˛.n/ D c2

n
ˇ.n/ D �c2 C n

1 C n
.n/ D �c2.1 C n/

c2 C n
;

then ˛; ˇ;  form a group of the species in question17 . . . . 18

Again, in the theory of matrices, if I denote the operation of inversion, and tr that of transposition, . . . we

may write19

˛ D I; ˇ D tr;  D I:tr D tr:I:

I proceed to the case of a group of six symbols, . . .20

An instance of a group of this kind is given by the permutation of three letters21 ; . . .

It is, I think, worth noticing, that if, instead of considering ˛; ˇ, &c. as symbols of operation, we consider

them as quantities (or, to use a more abstract term, `cogitables') such as the quaternion imaginaries; the equations

expressing the existence of the group are, in fact, the equations defining the meaning of the product of two

complex quantities of the form

w C a˛ C bˇ C : : : I
thus, in the system just considered, . . . 22

It does not appear that there is in this system anything analogous to the modulus w2 C x2 C y2 C z2, so

important in the theory of quaternions.23

13Students may relate this form to the group of numbers on a clock, i.e., cyclic groups.
14By this Cayley means the group of nth roots of unity in the complex plane. One can examine with students why these

complex roots form a cyclic group.
15At this point Cayley makes a detailed logical analysis of all the possibilities for the nature of a group of order four, shows

that there are only two essential types (i.e., up to isomorphism), and displays their multiplication tables. This is excellent material

for a class to work through.
16The non-cyclic \Klein Viergruppe."
17Students may check that these functions compose to create the Viergruppe.
18Cayley also mentions how the theory of quadratic forms provides another example.
19And this, too, may be verified to create the Viergruppe.
20Cayley's exhaustive analysis now shows that there are exactly two types of groups of order six, the cyclic one and another

kind.
21This is a nice segue to permutation groups for students.
22Cayley now shows how to multiply in the six-dimensional system based on his noncommutative group of order six. Here

he is presenting the general idea of a group algebra, and he makes analogy and contrast with quaternions. In fact, while the

quaternions are not actually a group algebra, the real group algebra of the eight-element quaternion group is a direct sum of two

copies of the four-dimensional algebra of quaternions over the real numbers. This can be shown from the modern theories of

semi-simple rings or of Clifford algebras. I thank Pat Morandi and Ray Mines for showing me this.
23Cayley's interest in a modulus is presumably related to the question of whether such a system supports division, since division

in the complex numbers, quaternions, and octonions (Cayley numbers) goes hand in hand with a modulus.
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. . . I conclude for the present with the following two examples of groups of higher orders. The first of these

is a group of eighteen, viz.. . . ; and the other a group of twenty-seven, . . . .

Pedagogy

What are the challenges and rewards Cayley's paper offers in an abstract algebra course? The challenges

include that, while Cayley's writing is very expansive and accessible, it is hard to understand in places,

partly due to older terminology, but more due to its pioneering nature, in which his assumptions and

contexts are not always crystal clear to us today. For instance, reading Cayley with students raises the

following questions:

� Are all his group operations tacitly formed from composing functions or not, and what are the impli-
cations for associativity (e.g., quaternions, octonions)?

� Are inverses always assumed to exist? Does one need to assume this?
� Is Cayley tacitly assuming that his groups are finite? Why?
� How did Cayley know that every element in a (finite) group satisfies the \symbolic equation" for the
order of the group? This is a nontrivial result, usually proved today by studying the theory of cosets

of a subgroup.

But these very challenges are also precisely the pedagogical strengths of Cayley's paper, leading directly

to rewards. These questions lead instructor and student to grapple with many of the key motivations and

issues for group theory: What is the appropriate role of function composition, associativity, inverses, orders

of elements? Through studying this paper and these questions, via the diverse and rich examples Cayley

raises, students will quickly become intimately engaged by the most fundamental issues about groups,

showcasing their unifying role in algebra and other mathematical contexts. Relevant assignments can

include:

� Find Cayley's claims in their context in a modern textbook, and contrast their place today with their
role for Cayley. For instance, Cayley's claim about elements satisfying the \symbolic equation" for the

group will lead students ahead to cosets and Lagrange's theorem on orders of subgroups.

� Contrast Cayley's \symbolic equation" �n D 1 with his \ordinary equation" xn � 1 D 0, with its

complex nth roots of unity as solutions, and consider which group it represents.

� Study and describe the general \classification" question in mathematics, algebra, and group theory, e.g.,
the classification results for finite simple groups, and finitely generated abelian groups, with Cayley's

classification of groups of certain orders as inspiration.

� Develop the concepts of normal subgroups and quotient groups by examining Cayley's tables for
groups of order six, including how his layout and heavily drawn lines begin to display the quotient

group formed by certain cosets.

� Explore a new concept raised by Cayley, e.g., the notion of a group algebra, with examples.

Conclusion

Arthur Cayley's paper produces group theory in a fully motivated context, emerging from important math-

ematical currents of the mid-nineteenth century. Working with the paper inserts students, as personal

witnesses and even as vicarious participants, into the dynamic process of mathematical research, at a
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formative moment in the birth of one of the most essential concepts of modern mathematics. Students'

own struggles with Cayley's ideas in comparison with their modern textbook will leave them with a

more profound technical comprehension, while simultaneously initiating them into thinking and acting like

mathematicians.
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2
Putting the Differential Back Into Differential Calculus

Robert Rogers

SUNY Fredonia

2.1 Introduction

The topic of the differential of a function of a single variable is typically relegated to a single section

in calculus textbooks and is usually only applied in linear approximation applications. Though the notion

of linearization is certainly important, this brief treatment seems to belie the fact that the subject itself is

called the differential calculus. While the present treatment of calculus focuses on the derivative as the

main topic of study, this was not always the case, as illustrated by the following crude chronology of the

ideas encountered in calculus. The reader must bear in mind that it is often incorrect to attribute an idea

to just one person.

Calculus Chronology

- (ca. 250 B.C.): Rudiments of integration | Archimedes

- (1666): Instantaneous velocity (fluxions) | Newton

- (1676):
R

y dx | Leibniz

- (1684): First paper on differential calculus | Leibniz

- (1691): L'Hôpital's rule | Bernoulli

- (1693): Fundamental theorem of calculus | Leibniz

- (1715): Taylor series | Taylor

- (1754): Replacing infinitesimals with limits | D'Alembert

- (1772): Derivatives | Lagrange

- (1797): Mean-value theorem | Lagrange

- (1817): Continuity and the intermediate-value theorem | Bolzano

- (1823): Riemann integral | Cauchy

- (1861): Extreme-value theorem | Weierstrass

- (1874): Limit of a function | Weierstrass

- (1960): Rigorization of infinitesimals | Robinson

As the chronology indicates, differentials in fact predate formal limits and derivatives. The author

contends that it is not only possible to recapture the power of differentials in our current calculus sequence,

but that it is fruitful for our students to exploit this tool in applications of the calculus. Furthermore, this

can be done intuitively without delving into the rigor of non-standard analysis. This is consistent with our

current teaching philosophy of exploiting but not studying foundational issues such as the structure of the

real number line in the calculus sequence.

9
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Before we approach the issue of implementing these ideas, it will be useful to provide a brief history

of differentials and infinitesimals.

2.2 Brief History of Differentials

One of the first to exploit the infinitesimally small was Archimedes. See [4, p. 29{76] for a more detailed

account. In his Method, Archimedes describes his procedure for computing areas and volumes by mentally
slicing objects into infinitesimally thin slices which could be balanced on a lever. By comparing the

corresponding objects, theorems about areas and volumes could be deduced. As Archimedes pointed out,

these theorems would need to be proved by geometrical means (typically the method of exhaustion) since

the infinitesimally small had not been rigorously defined. However, as Archimedes states, \It is of course

easier, when we have previously acquired, by the method, some knowledge of the questions, to supply the

proof than it is to find it without any previous knowledge . . . I am persuaded that it will be of no little

service to mathematics; for I apprehend that some, either of my contemporaries or of my successors, will,

by means of the method when once established be able to discover other theorems in addition, which have

not yet occurred to me." [4, p. 68]

The prophecy of Archimedes was realized in the seventeenth century by mathematicians such as Kepler,

Galileo, Cavalieri, Torricelli, Roberval, Fermat, Pascal, Barrow, and Huygens who exploited infinitesimals

to solve a number of specific problems of areas, volumes, and tangents [20, Chapter IV]. The work of

these pioneers paved the way for the invention of calculus by Newton and Leibniz in the late seventeenth

century. While Newton's fluxions were based on velocities and infinitesimal instances of time, Leibniz's

differential and integral calculi worked directly with differences and sums and provided the tools for

applications by eighteenth century continental mathematicians.

The first paper on the calculus, Leibniz's A New Method for Maxima and Minima as well as Tangents,
Which is Impeded Neither by Fractional Nor by Irrational Quantities, and a Remarkable Type of Calculus
for This (1684), introduces differentials in a manner which is similar to our modern definition [20, p. 272].
Leibniz' idea (in more modern terms) is to draw a tangent line to the curve v D v.x/ at an arbitrary point

as in Figure 1.

B X

v

Figure 1.

Given an arbitrary length dx, Leibniz defines the differential of v, dv, to satisfy dv
dx

D v
BX
. In present

day calculus textbooks, this is written as dv D v 0.x/ dx. As with our modern definition, Leibniz does

not state that dx is infinitesimally small (perhaps for the controversy it would create). Leibniz does state

later that in dealing with tangents these differentials can represent infinitesimally small distances. In his

applications, these differentials were always taken as infinitesimally small.

This reluctance to mention the infinitesimally small does not appear in the first calculus textbook,

L'Hôpital's Analysis of the Infinitely Small, for the Understanding of Curve Lines (1696) [20, p. 312]. In
this work L'Hôpital provides the following:

Definition II: The infinitely small part whereby a variable quantity is continually increased or decreased,
is called the differential of that quantity.
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Scholium: The differential of a variable quantity is expressed by the note or characteristic d , and to avoid

confusion this note d will have no other use in the sequence of this calculus.

Postulate I: Grant that two quantities, whose difference is an infinitely small quantity, may be taken (or
used) indifferently for each other: or (which is the same thing) that a quantity, which is increased or

decreased by only an infinitely small quantity, may be considered as remaining the same.

Postulate II: Grant that a curve line may be considered as the assemblage of an infinite number of infinitely
small right lines: or (which is the same thing) as a polygon of an infinite number of sides, each of an

infinitely small length, which determine the curvature of the line by the angles they make with each other.

Despite the foundational questions raised by critics such as George Berkeley [5, p. 555{58 and 9, p. 86{

93], the exploitation of the calculus led to astounding advances in mathematics and physics in the eighteenth

century. Infinitesimal quantities were routinely used with great success. The question of their existence

was overshadowed by the correctness of the results obtained from using them. However these foundational

issues surfaced more and more throughout the century. One of the first people to seriously address this issue

was d'Alembert in 1754 [20, p. 341 and 9, p. 91]. D'Alembert's idea was to replace an infinitesimally

small quantity with a limiting process.

Another attempt was made by Lagrange in 1772 and later years to settle the foundational issue of

calculus by considering the coefficient of the linear term in the Taylor series expansion of a function. By

considering this fonction d �eriv�ee, Lagrange contended that he had placed the foundational questions of
calculus on a firm algebraic footing [8, p. 38{46].

Both of these approaches were utilized by Cauchy. While much of our modern approach to calculus

as analysis can be attributed to Cauchy, it is incorrect to assume that Cauchy dropped all references to

infinitesimals. After all, Cauchy's principal audience was students of engineering and science and most

French textbooks took a practical point of view in teaching calculus [15, p.274]. In the forward to his

R�esum�e of Lessons Given at the �Ecole Royale Polytechnique on the Infinitesimal Calculus, Cauchy wrote:

\. . . My principal aim has been to reconcile rigor, which I have made a law to myself in my Cours
d'analyse, with the simplicity which the direct consideration of infinitely small quantities produces.
. . . " [4, p. 309].

In contrast to L'Hôpital, Cauchy defines an infinitesimal to be a variable quantity converging to zero

rather than a fixed quantity. This definition not only appears in calculus books into the twentieth century

[7 and 14], but more importantly made limits the fundamental concept in the study of calculus. However,

Cauchy was not ignoring the accomplishments made in the eighteenth century and it is my belief that

neither should we in our calculus sequence. With this in mind, I have reworked the differentials section

of my own calculus course.

2.3 Implementation of Differentials in a Calculus Class

My approach to calculus starts traditionally, with limits and derivatives. What follows is my treatment of

differentials.

Given a quantity x, an increment of x, denoted by �x, is a measurable (finite) change in x. The idea

is that no matter how small �x may be, it is possible to magnify the picture sufficiently to perceive the

change. By contrast, a differential of x, denoted by dx, is an instantaneous change in x. Here the idea is

that no matter how large the picture is magnified, dx cannot be perceived. It is often convenient to think

that a differential can be perceived if the graph is \infinitely magnified". In my experience, students have

no difficulty with the lack of rigor in this definition nor its intuitive meaning.
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The author's rules for dealing with differentials are, to a large part, based on L'Hôpital's work and

the definition of infinitesimal given by Cauchy.

Rule I: One should not try to measure differentials, only compare them with other differentials.

Rule II: An increment cannot equal a differential, but a differential can be thought of as a sequence of

increments converging to zero. One should not write �x D dx, but instead write �x � dx.

Rule III: When a graph is \infinitely magnified", a differential change along the curve is the same as the

differential change along the tangent line (local linearity).

As a consequence, we have the following familiar definition.

Rule IV: If y D y.x/, then dy
ˇ
ˇ
ˇ
xDa

D y0.a/ dx.

For example, if y D x2, then dy
ˇ
ˇ
ˇ
xDa

D 2a dx.

Rule V: Differential triangles can be treated as regular triangles and in fact may be similar to regular

triangles.

As I tell my students, these heuristic definitions and rules are really secondary to the application of

differentials. Here is where students can see the power and utility of this tool and hopefully will become

comfortable enough to use differentials in subsequent courses such as differential equations and physics.

In my opinion, these applications provide a simpler, more natural approach than the traditional approaches

do.

Differentiation of sine and cosine

This is an adaptation of an argument given by Leibniz concerning simple harmonic motion [12, p. 529].

Consider the unit circle in Figure 2. Since the tangent to the circle is perpendicular to the radius, then

the differential triangle is similar to �OPQ.

x

y1

dq

– dx
dy

QO

P

q

Figure 2.

Thus we have the proportion
dy

d�
D x

1
:

Notice that we are using the local linearity to identify the hypotenuse of the differential triangle as the

change along the circle. Since y D sin � and x D cos � , we obtain

d.sin�/

d�
D cos �:
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Similarly, the proportion �dx
d�

D y
1
yields d.cos�/

d�
D � sin� . The negative sign is due to the fact that

dx itself is negative in the first quadrant; the other quadrants will work out similarly.

I personally find this derivation more appealing than the standard one found in many calculus textbooks.

It eliminates the need for demonstrating lim�!0
sin�

�
D 1, though this can be presented as a corollary of

the derivative formula if one wishes. It also emphasizes the importance of radian measure.

Curvature

One can define the curvature, �, of a plane curve by � D d˛
ds
where s denotes arc length and ˛ is the

angle formed by the tangent line to the curve and a fixed line (typically the x-axis). Many present-day

calculus books show that the curvature of a circle is constant. Few present textbooks mention the converse:

if a plane curve has a constant curvature, then it must be either a line .� D 0/ or a circle of radius 1
�

(� ¤ 0). This result can be found as an exercise in [21, p. 958]. The solution manual solves this problem

by parameterizing the curve with respect to arc length, and the problem appears fairly late in the book.

The problem also appears as an exercise in [14, p. 367] and [11, p. 299], though I do not know how it

was intended to be solved. The following solution is based on the presentation in [16, p. 472] where it is

shown that a curve, in general, is determined by its arc length and curvature. It should also be noted that

this solution is accessible to first semester calculus students.

We will solve the case where curvature is nonzero and leave the other case as an exercise for the

reader. Consider Figure 3 which shows a piece of the curve in question and the corresponding tangent

differential triangle.

dyds

dx

a

Figure 3.

We have the equations sin˛ D dy
ds
, cos ˛ D dx

ds
, ds D 1

�
d˛ which in turn yield

dy D 1

�
sin˛ d˛; dx D 1

�
cos˛ d˛:

Antidifferentiation gives us

y C c2 D �1

�
cos˛; x C c1 D 1

�
sin˛

which results in the circle .x C c1/2 C .y C c2/2 D 1
�2
.

The fundamental theorem of calculus

There is the oft-told story of Leibniz's first encounter with Christian Huygens who was then the most

renowned scientist and mathematician on the continent [4, p. 236-38]. To \test his mettle," Huygens
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essentially gave Leibniz the following problem: compute the sum of the series 1
1�2

C 1
2�3

C 1
3�4

C � � � . By
rewriting the series as

�
1
1

� 1
2

�

C
�

1
2

� 1
3

�

C
�

1
3

� 1
4

�

C � � � and canceling like terms, Leibniz arrived at
the correct answer of 1. Geometrically, this can be seen in Figure 4.

Figure 4.

More important than the answer is Leibniz's observation that the sum of consecutive differences equals
the difference of the extreme terms. Applying this to differentials we obtain (essentially) Leibniz's proof

of the fundamental theorem of calculus [20, p. 282]: if dF
dx

D f , then fdx D dF and
R b

xDa fdx D
R b

xDa
dF D F.b/ � F.a/. Figure 5 illustrates this geometrically.

a b x xdxdx

f

F b( )

dF

F a( )

f F

Figure 5.

Comparing the curves f and F , we have that the area of the rectangle (fdx) is equal to the length

dF . As the sum of the rectangles fills out the area under the curve f , the sum of the differences dF

yields the difference of the extremes.

From my experience, this argument is appealing to students and is readily understood. This argument

can be \rigorized" by using the mean-value theorem [6, p. 248{49], but the value of this rigor for students

in the calculus sequence is not apparent.

This notion of an integral as the sum of infinitely many infinitesimally small parts is often ignored in

modern treatments of the calculus in favor of Riemann sums. However, for applications, this infinitesimal

approach provides a simpler, more streamlined, and holistic approach. For example, consider arc length

and surface area of a surface of revolution. Rather than having students memorize a formula involving an

integral, it is advantageous to compute arc length s by summing infinitesimally small pieces of arc length

and applying the Pythagorean Theorem to a differential triangle as follows:

s D
Z b

xDa

ds D
Z b

xDa

q

.dx/2 C .dy/2:

This integral has the advantage of being reformulated into either

Z b

xDa

s

1 C
�

dy

dx

�2

dx or

Z b

xDa

s
�

dx

dy

�2

C 1 dy:

Furthermore replacing infinitely small segments of the curve with the corresponding tangent lines is

consistent with the later treatment of the surface area of general surfaces where using inscribed polyhedra



2. Putting the Differential Back into Differential Calculus 15

does not work and approximating tangent planes must be used. (See [3, p. 341{42] for an example of a

sequence of approximating polyhedra inscribed in a cylinder with their surface areas diverging.) Moreover,

this holistic approach works well in treating the surface area of a surface of revolution as a sum of infinitely

thin frusta. Although this seems natural to a working mathematician, this approach seems foreign to many

calculus students and their textbooks. As a test of this assertion, ask yourself how many calculus students

could solve the following problem and then ask yourself if you have ever seen such a problem in any

calculus text. The problem is to find the surface area of the surface of revolution generated by revolving

the curve y D x2; 0 � x � 1 about the line y D x. The solution using differentials [See Figure 6.] makes

the problem as natural as one where the axis of revolution is a coordinate axis and requires students to

think about the process instead of applying a formula.

r

ds

y = x

( )x, x2

Figure 6.

Noting that the total surface area is the sum of the areas of the infinitely thin frusta, it is straightforward

to see that the surface area is given by

Z 1

xD1

2�r ds D 2�

Z 1

xD0

1p
2

.x � x2/
p

1 C 4x2 dx:

The idea that an integral is a sum of infinitesimally small parts can be infused throughout the integral

calculus course. Instead of having separate chapters for various applications, these could be presented as

variations on the same theme. However, integration is not the only place where differentials provide a

valuable tool for physical applications. My classroom presentation on the utility of differentials typically

starts with the following example.

The cable on a suspension bridge and the catenary

What is the shape of a cable of negligible weight supporting a uniform horizontal load of weight density

w?

To solve this, consider one half of the cable and assume that the lowest point of the cable is at the

origin as in Figure 7. Let h denote the magnitude of the (constant) horizontal tension throughout the cable.

Since the cable is at rest, the vertical and horizontal components of the tension T at the point P must

equal the weight of the horizontal load and h respectively. Drawing a differential triangle [Figure 8] and

using similar triangles, one has dy
dx

D wx
h
. This is readily seen to be the differential equation of a parabola.

The differential equation for the catenary (a chain of weight density w hanging under its own weight)

can be derived in the same manner, except that the vertical force is now ws where s denotes the arc length

of the chain between the origin and the point P . Differentiating both sides of the equation dy
dx

D ws
h
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y

h

T

x

P
( )x, y

Figure 7.

wx

h
dx

dy

Figure 8.

results in the differential equation

d2y

dx2
D w

h

ds

dx
D w

h

s

1 C
�

dy

dx

�2

:

The derivation of the final equation can be given as an exercise to first semester calculus students as well

as showing that y D
�

h
2w

� �

ewx=h C e�wx=h
�

provides a solution to the equation. Students can also

graph this for various values of h and w to see that this answer makes sense physically.

A similar problem is to find the shape of a stone arch bridge if the force due to the weight of the stone

is to equal the vertical component of the tangential force at any point on the arch (so that the weight of

the bridge is directed toward the base of the bridge).

y

h
P T

x

Figure 9.

Using Figure 9 and an analysis similar to before, we obtain that the differential equation of the arch

is dy
dx

D w
h

R x
0 y.x/ dx where w is the weight density of the stone (per cross sectional area) and h is

the horizontal force from the matching half of the bridge. Differentiation and the fundamental theorem of

calculus yield d2y=dx2 D wy=h. As in the catenary this leads to the hyperbolic cosine as the solution.

This also provides a nice application of the differentiation of an integral.

The stone arch bridge problem can be found in [13, p. 171] while the previous two problems can be

found in [19, p. 58] along with an analysis that does not involve differentials. This more modern solution

(of the catenary for example) involves labeling the angle of elevation, say ˛, and noting that sin˛ D ws
jT j

and cos˛ D h
jT j
. Division yields dy

dx
D tan˛ D ws

h
.
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I gave the catenary problem to a group of students a number of years ago, thoroughly intending them

to provide this (standard) solution. After we discussed the forces involved I told them that the first step

was to obtain the equation dy
dx

D ws
h
. Immediately, one student said, \But that's obvious!" He proceeded

to draw the differential triangle and provided the first solution I mentioned. I must admit I was a bit

stunned. The student's solution not only rendered the trigonometry and slope superfluous, but his solution

turned out to be (essentially) the solution given by Johann Bernoulli (1692). [10, p. 249] This episode

and the student's insight led me to notice that over the years we have sought to replace the simplicity

of differentials with \more rigorous" approaches rather than to reconcile it with rigor as in the words

of Cauchy. For our students who struggle with calculus, including superfluous items such as angles of

elevation, etc. when not necessary, makes many applications unduly complicated. A good example of this

can be seen in the following application.

Brachistochrone

James McKenna of SUNY Fredonia devised a very nice exercise for his students where they are to

examine the time it takes for a ball to roll down various curves from rest only under the influence of

gravity. Differentials provide a nice analysis of this situation. In Figure 10, y D y.x/ will denote a curve,

g will denote the acceleration due to gravity, a will denote the tangential component of this acceleration,

t will denote time, v will denote velocity, and s will denote arc length.

y

g

dy
dx

ds a

x

Figure 10.

Using similar triangles we have a
g

D dy
ds
which leads to the following calculations:

g dy D a ds

g dy D dv

dt
ds

g dy D dv
ds

dt
D v dv:

Antidifferentiating and applying the initial condition v D 0 when y D 0, we obtain

g � y D v2

2
ds

dt
D v D

p

2gy

dt D dsp
2gy

:

Therefore the time it takes for the ball to roll from the origin to a point with abscissa b is given by
Z b

xD0

dt D
Z b

xD0

dsp
2gy

:
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Students can proceed to examine this integral for various curves. Note that this derivation makes no mention

of kinetic energy as one might find in a typical modern calculus text. This problem also lends itself to

Johann Bernoulli's solution of the brachistochrone problem [17, p. 315{17] or [20, p. 391{96]. To find this

path of fastest descent, Bernoulli starts with the fact that this path must satisfy Snell's law of refraction,

namely sin˛
v

D c where ˛ is the angle the tangent line makes with the vertical and c is a constant. We

already know that the velocity v is given by
p

2gy. Using a differential triangle, it is readily seen that

sin˛ D dx
ds
. Substituting these into Snell's law yields the differential equation 1=2gc 2 D y

�

1 C . dy
dx

/2
�

.

Although solving this equation is beyond the scope of a first semester calculus course, its derivation

is not. Furthermore, students can show that the cycloid

x D t � sin t

4gc2

y D 1 � cos t
4gc2

provides a solution. [Note that to Leibniz and his school, dy
dx

D dy=dt
dx=dt

would be obvious.]

Not only can these examples be used to develop meaningful exercises, but the instructor and students

will find that quite often in physical and geometric applications (for example, the tractrix or pursuit curves),

the use of differentials and similar triangles will render the use of slopes superfluous and rather unnatural.

This is particularly exemplified in the solution to this problem found in [18, p. 235]: If a cylindrical

container partially filled with a liquid is rotated about its axis with a constant angular velocity of w,

then the liquid will rise along the walls and sink in the center. Show that the surface formed is that of

a parabola revolved about the axis. [Hint: The force R perpendicular to the surface at point P has as

its horizontal component the centripetal force mxw2 and as its vertical component the force required to

counteract gravity mg, where m is the point mass at P and g is the acceleration due to gravity.]

dx

dy
P

R

x

y

mg

mxw2

Figure 11.

It is readily seen in Figure 11 (without mentioning slopes of perpendicular lines) that dy
dx

D w2x
g
which

is the differential equation for a parabola. The Steward Observatory Mirror Laboratory at the University of

Arizona employs a rotating furnace to cast parabolic mirrors in this fashion. [See 23.] Students becoming

proficient in using differentials in this manner will appreciate the power that made differential and integral

calculus a major tool for mathematics in the eighteenth century.

2.4 Conclusion

Of course the issue of adding more to an already crowded curriculum must be addressed. It has been

suggested by others that the mean-value theorem be dropped from the calculus sequence (sometimes in

favor of more intuitive theorems) [22]. The mean-value theorem itself acts as a bridge between the finite and
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the infinitesimally small (or more appropriately the average and the instantaneous). This notion provides

an answer to the previous question of why inscribed polyhedra do not work for computing surface area;

there is no such bridge for surfaces [3, p. 268]. The direct use of instantaneous changes renders this bridge

unnecessary in any case. As was seen earlier, presentations of the fundamental theorem of calculus and

arc lengths and surface areas of surfaces of revolution can be presented more quickly and cleanly with

infinitesimals than by applying the mean-value theorem.

The theorem (f 0 > 0 ) f increasing) is typically given as a corollary of the mean-value theorem.

Interestingly, Cauchy uses this result to prove his generalized mean-value theorem [4, p. 314]. While

Cauchy's proof of the first result leaves much to be desired, a perfectly rigorous indirect proof can be

given by repeatedly bisecting the (finite) interval in question and applying the nested interval property

of the real number system (equivalent to the least upper bound property). See [22] for details. I present

this proof in my intermediate real analysis class; in calculus I prefer appealing to a diagram to convince

students.

As for L'Hôpital's rule, the following special case can be proved without use of the generalized

mean-value theorem. See [1, p. 500] for such a presentation.

If f and g are differentiable on an open interval containing a with g0 ¤ 0 on that interval

andf .a/ D g.a/ D 0, then limx!a
f.x/
g.x/

D f 0.a/
g 0.a/

.

Not only is the proof of this result readily seen by students, but it is essentially Bernoulli's original

version as given in L'Hôpital's calculus book [20, p. 315{16].

For non-majors, foundations such as the mean-value theorem could be argued as unnecessary. This is

consistent with our chronology showing that the calculus was utilized with much success long before the

foundations of the subject became central. Mathematics majors will see these foundations in a subsequent

real analysis course. Indeed a curriculum that presents this more intuitive geometric approach in calculus

provides a springboard for a more rigorous approach in introductory real analysis. See [2] for a presentation

of this subject put into its historical context.

Throughout the calculus sequence, many places where we stop to supply nineteenth and twentieth

century rigor can be eliminated in favor of differentials with the understanding that this rigor will surface

later in the curriculum. This model more closely matches the evolution of the subject. At the very least, it is

an injustice to ignore the very tool that revolutionized mathematics and science throughout the eighteenth

century.
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3
Using Galois' Ideas in the Teaching of Abstract Algebra

Matt D. Lunsford

Union University

Introduction

Joseph Gallian [3, p. 47] in his popular text Contemporary Abstract Algebra states, \The goal of abstract algebra
is to discover truths about algebraic systems (that is, sets with one or more binary operations) that are independent

of the specific nature of the operations." While this modern approach, because of its generality, provides a unifying

element to the study of mathematics, it conceals from the student many of the great ideas generated by significant

problems in the history of the discipline. B. Melvin Kiernan [4, p. 40] asserts that \without a clear historical

perspective it is difficult to see or even imagine the connection between the [abstract] algebra of the present day

and the computational problems from which it arose." Similarly, John Stillwell [6, p. 143] in his book Elements of
Algebra says that, \it seems to be one of the laws of mathematical history that if a concept can be detached from
its origins, it will be."

One approach to teaching a first course in abstract algebra that attempts to address the concerns raised by Kiernan

and Stillwell without compromising sound pedagogy will be discussed here. In particular, this approach introduces

the basic algebraic structures of group, ring, and field in a natural way using the theory of polynomial equations

and the ideas of several mathematicians including Lagrange, Abel, and, especially, Evariste Galois. The historical

problem of the solvability of polynomial equations provides a context for motivating the abstract structures as well

as a link between this advanced course and elementary courses in algebra.

Historical Background

Polynomial equations have been an object of study since antiquity [7, Chapter 1]. Babylonian mathematicians around

1600 B.C. gave a verbal recipe for the solution of various forms of quadratic equations. Greek mathematicians added

a geometric flair to solutions of polynomial equations by using standard straight-edge and compass constructions

along with conic sections. The Arab mathematician al-Khwarizmi provided a systematic account of the solution of

all known quadratic equations in his work The Condensed Book on the Calculation of al-Jabr and al-Muqabala.
It is from this work that we have derived the modern term algebra. The Persian mathematician (and poet) Omar
Khayyam presented conic section solutions to all known cubic equations in his text Treatise on Demonstrations of
Problems of al-Jabr and al-Muqabala.

Polynomial equations that can be solved using only the algebraic operations of arithmetic and the extraction

of roots are said to be solvable by radicals. Many mathematicians of antiquity and the Middle Ages believed that,
unlike quadratic equations, an algebraic formula for the solution of all types of cubic equations was not possible.

However, sixteenth century Italian mathematicians proved this wrong. Cardano, in his monumental work Ars Magna
(The Great Art), demonstrated that both cubic and quartic equations are solvable by radicals. An interesting account
of the major figures who were involved in these discoveries can be found in Dunham [1, Chapter 6]. With Cardano's

publication, the quest for a general formula for solving quintic equations began. By the end of the eighteenth century,

no such formula had been found. As in the case of the cubic, some began to doubt the existence of such a formula.

21
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In 1770{71, Lagrange published Reflections on the Resolution of Algebraic Equations. In this work, Lagrange
recounted the various known methods for solving polynomial equations of degree 2, 3, and 4 and attempted to

synthesize these methods into a coherent theory to address the solvability of higher degree equations. He focused on

relationships that exist between the roots of a polynomial equation and its coefficients. In particular, Lagrange used

the fundamental theorem of symmetric polynomials and the fact that the coefficients of a polynomial equation are

given by the elementary symmetric polynomials in the equation's roots to give a necessary condition for the roots to

be rationally expressible in terms of the resolvent of the equation and other known quantities (i.e. the coefficients of
the given equation, rational numbers, and roots of unity) [2, pp. 32{35].

In 1826, Abel built upon the work of Lagrange and was able to prove that the general quintic equation is not

solvable by radicals [7, Chapter 13]. His work not only answered the question for the quintic but also demonstrated

that the general polynomial equation of degree n, n > 4, is not solvable by radicals. Thus the conjecture that no

algebraic formula existed was proven correct. Of course, specific polynomial equations might be solvable by radicals.

In fact, Gauss had shown previously that cyclotomic polynomial equations of arbitrary degree are solvable by radicals

[2, pp. 23{30].

Evariste Galois addressed the question of solvability by radicals in his Memoir on the Conditions for Solvability
of Equations by Radicals. The memoir, which was published posthumously in 1846, not only provided a theoretical
basis for answering the solvability question for any polynomial equation but also developed a framework for a

mathematical theory with far-reaching applications. Galois translated the solvability problem into the language of

field theory using a primitive form of the idea of an extension field. He then associated a set of permutations, which

he called a group and which is now known as a Galois group, with a polynomial equation over its base field of
coefficients. He coupled these new ideas by showing that the Galois group of a polynomial over an extension field

either remains the same or is a normal subgroup of the original Galois group. Conversely, he showed that if the Galois

group of a polynomial has a normal subgroup, then this subgroup is in fact the Galois group of the polynomial over

a particular extension field [2, pp. 59{65]. (Galois assumed the presence of roots of unity in his field extensions.)

Recall that a splitting field for a polynomial is a field containing all of the polynomial's roots. Using the

Galois group, Galois was able to analyze a particular splitting field for a given polynomial. His results completely

characterized the situation: a polynomial is solvable by radicals precisely when its Galois group admits a sequence of

normal subgroups, beginning with the whole group and ending with the trivial subgroup, for which the consecutive

quotient groups are cyclic. A finite group with this property is now called solvable. Complete details on Galois work
can be found in the works by Edwards [2] and Tignol [7, Chapter 14].

Applications To Pedagogy

A historically focused first course in abstract algebra can be designed using the solvability of polynomial equations

as its cornerstone. Students come to a first course with some understanding of polynomials and their solutions.

Building upon this prior knowledge, the instructor can formulate the question of solvability by radicals and use this

concept to introduce the basic abstract structures of group, ring, and field in a concrete way. Four pertinent questions

bring about the structure of the course.

1. How are the set of integers and the set of polynomials with rational coefficients similar?

As with any mathematics course, a certain amount of the material is preliminary. In this design, the first connection to

discover is the existence of similarities between the set Z of integers and the set QŒX� of polynomials with rational

coefficients. A thorough discussion of the basic notions of divisibility, unique factorization, prime (or irreducible)

elements, and zero divisors is essential and leads smoothly to the axiomatic definitions of ring and integral domain.
Moreover, Galois used the ideas of divisibility and irreducibility early in his memoir. In particular, Galois associated

to a given polynomial f .x/ 2 Q ŒX� of degree n an auxiliary polynomial F.X/ 2 Q ŒX� of degree nŠ which he

factored into a product of irreducible polynomials over the rational field Q [2, p. 38]. The factorization of F.X/

played a crucial role in Galois' determination of whether or not the polynomial f .x/ is solvable by radicals.

2. Where can we find non-rational solutions to a polynomial equation with rational coefficients?

Galois assumed that all of the roots of a polynomial f .x/ 2 QŒx� exist in some set containing Q and that this

set is closed under the four arithmetical operations of addition, subtraction, multiplication, and division [2, p. 37].
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Galois referred to the elements of this set as rational quantities since they could be expressed as a rational function
of the coefficients of f .x/ and of a certain number of adjoined quantities. Clearly, Galois was articulating, in a
rudimentary form, the idea of an extension field of Q and, more specifically, a splitting field of the polynomial f .x/.

These observations inspire the current definitions of field, extension field, and splitting field.
To illustrate Galois' thoughts, consider the simple example of a monic quadratic polynomial f .x/ D x2CpxCq,

p; q 2 Q. We assume that the equation f .x/ D 0 has distinct roots a ¤ b (an assumption that Galois made which

causes no loss of generality [2, pp. 35{36]). Then, the two expressions t1 D a � b and t2 D b � a in the roots

are also distinct and are known as the resolvents of the equation. If a; b … Q, then t1; t2 … Q and the associated

auxiliary polynomial

F.X/ D .X � t1/.X � t2/ D X2 � .a � b/2 2 QŒX�;

is irreducible over Q. The roots

a D t1 � p

2
and b D �t1 � p

2

are elements of K D Q.t1/ and therefore K is a splitting field of f .x/.

3. What relationships exist between a polynomial equation and its roots?

To exploit the connection between solutions of polynomial equations and their coefficients, we need the fundamental

theorem of symmetric polynomials. This theorem, which states that any symmetric rational function can be expressed

as a rational function of elementary symmetric polynomials, implies that any rational symmetric function of the roots

of f .x/ D 0 can be expressed in terms of the coefficients of f .x/. This crucial result not only introduces the notion

of symmetry into the theory of polynomial equations but also forces the definition of the general symmetric group

Sn.

Galois brilliantly generalized the idea that rational symmetric functions of the roots of a polynomial equation

can be expressed in terms of its coefficients. He associated to a given polynomial f .x/ 2 QŒX� of degree n a set of
permutations of the n distinct roots of the equation f .x/ D 0. This set of permutations, denoted by G.f;Q/, is a

subgroup of Sn and is known as the Galois group of the polynomial f .x/ over Q. He then showed that any rational
function (not necessarily symmetric) of the roots which is invariant under all of the permutations in G.f;Q/ is, in

fact, expressible in terms of the elements of the coefficient field Q of f .x/ [2, pp. 52{53].

Consider again the monic quadratic polynomial f .x/ D x2 C px C q, p; q 2 Q. The coefficients of f .x/ are
given by the elementary symmetric functions in the roots a, b: p D �.aCb/ and q D ab. Applying the fundamental

theorem of symmetric polynomials, we conclude that any symmetric polynomial in the roots a and b can be expressed
in terms of the coefficients p and q. So, in particular, the discriminant .a � b/2, being symmetric in the roots, can

be expressed simply as .a � b/2 D p2 � 4q 2 Q. Hence the splitting field K is obtained from Q by the adjunction

of a square root of the discriminant .a� b/2 2 Q. Moreover, since the roots a and b are not in Q, the Galois group
G.f;Q/ is not trivial; hence it is the symmetric group S2.

This introduction to finite permutation groups allows for an easy transition to the definition of an abstract group.
The course would then focus on the discovery and exploration of elementary properties of abstract groups.

4. When can we express solutions of a polynomial equation using only arithmetical operations and the

extraction of roots?

To answer this question, we must discuss the concept of a normal subgroup. Galois was the first mathematician to
recognize the significance of those subgroups of a finite permutation group that are invariant under conjugation. In

particular, he showed that if an extension field K 0 is obtained from the field K by the adjunction of a pth root of

an element from K, where p is prime, then the associated Galois group G.f;K0/ for the polynomial f .x/ over K0

either remains equal to the Galois group G.f;K/ or reduces to a normal subgroup of G.f;K/ of index p [2, p. 59].

Next, he showed that for a polynomial equation with rational coefficients to be solvable by radicals, the splitting

field must be obtainable from the rational fieldQ by a finite sequence of field extensions in which each intermediate

field extension K0 is obtained from the previous field K by the adjunction of a pth root of an element from K.

Combining these ideas, he proved that a polynomial with rational coefficients is solvable by radicals precisely when

its Galois group G.f;Q/ is a solvable group [2, pp. 64{65].
Let's return to our example of the monic quadratic polynomial f .x/ D x2 C px C q, p; q 2 Q. As stated

earlier, the Galois group G.f;Q/ D S2. The adjunction of the square root of the discriminant .a � b/2 2 Q yields



24 I. Algebra, Number Theory, Calculus, and Dynamical Systems

the splitting field K. Moreover, G.f;K/, which contains only the identity permutation, is the only proper normal

subgroup of G.f;Q/. It follows easily that G.f;Q/ D S2 is a solvable group. Finally, the roots a and b are given

succinctly by the radical expression

a; b D .aC b/˙
p

.a � b/2
2

D �p ˙
p

p2 � 4q
2

:

Therefore, exposing the answer to the question of when the roots of a polynomial equation are expressible

by purely algebraic methods naturally leads to a discussion of normal subgroups. This conversation permits a
straightforward introduction to the related topics of homomorphism, isomorphism, ideal, quotient group, and factor
ring.

Conclusion

The solvability of polynomial equations, with its interplay of polynomial rings, field extensions, and permutation

groups, provides a wonderful context for introducing the basic topics of abstract algebra. In addition, the use of

concrete problems from the history of the discipline motivates the subject matter and interjects humanity into the

enterprise. Highly motivated students may be interested in reading Galois' Memoir on the Conditions for Solvability
of Equations by Radicals. An English translation of the memoir can be found in Edwards [2, Appendix 1].

The approach presented here, while far from unique, presents major topics in a context that respects both the

origins of the discipline and the pedagogical needs of the student, and motivates algebraic structures through the

examination of concrete mathematical problems. A different approach to teaching abstract algebra from a historical

perspective can be found in Kleiner [5].
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Introduction

In this paper we give an overview of the subject of elliptic curves and examine some of the original sources that

can be used to teach this very important topic in a history of mathematics course. Portions of this material are also

appropriate for courses in abstract algebra, number theory, or geometry.

There are two purposes for introducing students to elliptic curves. First, the topic of elliptic curves is a beautiful

one combining significant ideas from algebra, geometry, number theory, and analysis; the elements of this topic can

be understood by the undergraduate mathematics major. Second, this topic gives students an exposure to mathematics

with a rich history, that is still an active area of research. As L.J. Mordell writes, the subject of elliptic curves is

fascinating \not only because of the simplicity of enunciation, but also because it appeals to the natural curiosity of

persons who have anything at all to do with numbers" [31, p. 41]

The subject of elliptic curves is both ancient and very modern. The roots of the subject lie in the work of

Diophantus, and Diophantine problems remain to this day a primary source for research in elliptic curves. Fermat's

Last Theorem is a well-known example of a Diophantine problem and elliptic curves played a central role in its

proof. Andrew Wiles' proof is beyond the scope of the present paper, but the text by Hellegouarch [17] has an

excellent discussion of the mathematical background needed for the proof.

The use of original sources is, in general, an excellent method to allow students to see actual examples of how

mathematicians think and to observe the process of discovery in mathematics. The historical development of the

subject of elliptic curves is mirrored in the order of the sections in the paper. We consider a progression of topics

from rational points on conics to rational points on cubics, from the group law on elliptic curves to Mordell's finite

basis theorem, ending with two applications of elliptic curves, the Beha Eddn problem and Euler's conjecture.

In parallel with this historical exposition, a series of original sources are considered. These sources were chosen

for their intrinsic interest and for their accessibility to undergraduate majors. Most of the sources discussed are in

English; a few are only available in French. We begin with Newton's very interesting but rather overlooked work

on the classification of third order curves. Next we consider an 1879 paper by �Edouard Lucas that shows how the

chord and tangent process can be used to generate additional solutions for a cubic from given solutions. The first

intimations of an algebraic structure to the set of rational points on a cubic curve can be found in the series of four

articles that J.J. Sylvester published in the American Journal of Mathematics. The structure of the group of these
rational points is investigated in a paper of Mordell. The Beha Eddn problem is solved in a paper from 1983 by

Horst Zimmer (based on earlier work of Lucas, [26]). We end with a discussion of a counterexample to Euler's

conjecture from a 1988 paper by Noam Elkies.

Preliminaries

In this section we give a brief overview of the basic concepts in this subject, including the concepts of algebraic

curve, singular point, genus, inflection point, cubic curve, homogeneous coordinates, birational equivalence and

elliptic curve.
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We consider an algebraic curve to be defined by an equation of the form f .x; y/ D 0, where the left side is a

polynomial, with coefficients usually taken to be rational. The independent variables x; y may be taken to be real or

complex. The resulting curve is then called real algebraic or complex algebraic. A cubic curve is simply an algebraic
curve of degree 3 (i.e., the largest sum of x and y powers in any term is 3). We say that the point P is on the curve
if f .P / D 0.

A singular point P is one for which
@f

@x
.P / D @f

@y
.P / D 0:

A singular curve is one with at least one singular point (otherwise we call the curve nonsingular).
An alternative definition for a singular point considers the multiplicity of intersections of lines with the curve.

By Bezout's Theorem [44, pp. 242-251], two algebraic curves of degree m and n respectively, will have m � n points
of intersection (counting multiplicity). Any line intersects an algebraic curve of degree 2 or higher in at least two

points (counting multiplicity). We can then define a point to be singular if more than one line intersects the curve at

that point with multiplicity at least 2. So for a nonsingular point, there will be a unique tangent line.

For example the curve y2 D x3 has a cusp at the origin, since lines such as y D x; y D 2x intersect the curve

at the origin with multiplicity two. See Figure 1.

Another example of a singularity is a double point. Consider y2 D x2.x C 2/. The curve has a double point at

the origin. See Figure 2.

For the curves of the form y2 D f .x/, there is a simple criterion for singularity. The curve is nonsingular if

and only if f .x/ has no repeated roots.

The genus g of a curve is defined by the equation

g D d.d � 1/

2
�

X mp.mp � 1/
2

where d is the degree of the curve and the sum is over all singular points P, where mp is the multiplicity of the

singularity. So a line or a conic has genus 0, and a nonsingular cubic has genus 1.

An inflection point (or flex point) is a point on a cubic whose tangent meets the curve with multiplicity 3. Flex
points may be defined analytically as points where the determinant of the Hessian of the curve is zero. A simple

example of a flex point is shown in Figure 3. This is the curve y2 D 1C 2x3 which has a flex point at P(0,1). Also,

the point (-1,0) is a flex point.
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Many problems in this subject are more easily handled by changing to homogeneous coordinates. This is
equivalent to looking at the curve as being defined over the projective plane (either the real or complex plane,

depending on the context). In general, given a curve f .x; y/ D 0 we change to the homogeneous form by letting

F.x; y; z/ D f
�x

z
;
y

z

�

D 0:

For example, the cubic curve y2�2y D x3C2x�4 becomes the projective cubic curve y2z�2yz2 D x3C2xz2�4z3.

The concept of birational equivalence is very important when working with elliptic curves. Two curves C1; C2

are birationally equivalent if there is a rational function, with rational coefficients,  W C1 ! C2 which is invertible

(except possibly for a finite set of points). In such a case there is a 1-1 correspondence between the rational points

on the curves with, again, a few possible exceptions.

So now we may ask, what is an elliptic curve? It's not an ellipse! The origins of the term \elliptic curve" are

fairly obscure. Leonhard Euler and Count Giulio di Fagnano in the 18th century defined a class of integrals, the

so-called elliptic integrals, which includes the integral giving the arclength of an ellipse. Translations into English

of selections from the original texts of Euler and Fagnano can be found in Struik [45, pp. 374{383]. These integrals

are defined by u.x/ D
R x

0
R.t/
f .t/

dt where f is a polynomial of third or fourth degree, without multiple roots and

R.t/ is a rational function of t.

The inverses to these integrals are called elliptic functions. That is, a function v such that x D v.u/. This

terminology is due to C.G. Jacobi [21], although Legendre had earlier used the phrase \elliptic functions" for what

we call elliptic integrals.

Then in 1865, Alfred Clebsch published an article showing that curves of genus 1 can be parametrized using

elliptic functions [8]. After this, the phrase \elliptic curve" gradually came into use for such curves, although it is

not clear who actually first used it. Clebsch made several important observations. One being that three points on a

cubic are collinear if and only if their associated parameters sum to zero.

To agree with modern usage, we will restrict the phrase \elliptic curve" to mean a nonsingular curve of genus

1 having a rational point.

There are several equivalent ways to define an elliptic curve.

1. A nonsingular cubic f .x; y/ D 0 having a rational point.

2. A nonsingular projective cubic F.x; y; z/ D 0 having a rational point.

3. A nonsingular curve of genus 1 having a rational point.

4. A curve y2 D f .x/, where f .x/ is a cubic with rational coefficients and distinct roots. This implies that at

least one of the roots must be rational.

5. A curve y2 D x3 C axC b with 4a3 C 27b2 ¤ 0 (which guarantees that the curve is nonsingular). Such curves

are said to be in canonical or Weierstrass normal form.

We are in fact asserting that all elliptic curves are birationally equivalent to a curve in canonical form. Two

typical examples are found in Figures 4 and 5. Note that an elliptic curve in the canonical form may have one or

two branches.

An important point to make is that we are focusing on the set of rational points on the cubic, denoted by E.Q/,

but one can also consider the cubic defined over other fields, such as the set of real points E.R/ or the set of

Figure 4. Elliptic curve | one branch Figure 5. Elliptic curve | two branches
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complex points E.C/. Our primary interest is in examining the group of rational points that is defined below. But

also both E.R/ and E.C/ can be made into Lie groups. In particular, E.C/ is isomorphic to the direct sum of

two circles, i.e. the complex torus. This leads to another way of looking at elliptic curves, since the complex torus

is also isomorphic to C/L, where L is a lattice in the complex plane. This viewpoint has been fundamental in the

development of the theory of elliptic functions; see the text by Akhiezer [1, Chapter 1].

Cubic Curves

Original source: Isaac Newton, Enumeration of Lines of the Third Order, 1667

The general form of a cubic curve in two variables is,

ay3 C bxy2 C cx2y C dx3 C ey2 C f xy C gx2 C hy C kx C l D 0

where we assume that the coefficients are rational (although we sometimes we need to assume they are integral).

Isaac Newton (1642{1727) was the first to give a detailed analysis of cubic curves, using the well-established

theory of conics as a starting point. See his paper [33] from circa 1667 or the excellent study [47] by C.R.M.

Talbot of Newton's later revision [35] of this text. The paper that we are discussing is contemporary with Newton's

investigations in the calculus.

Newton had studied the analytical geometry of Ren�e Descartes in 1664 (see [33, p. 1{9] for Whiteside's

introduction to this paper). Newton encountered the problem that, at this time, few examples of curves were known,

beyond the category of conics. Descartes, John Wallis, and Thomas Neil had given a handful of examples of cubic

curves, but without any satisfactory analysis of their properties. Newton set himself the task to investigate cubics as

thoroughly as the ancients had studied conics.

On this basis a line of the first order will be the straight line alone, those of the second or quadratic order

will be conics and the circle, and those of third or cubic order the cubic parabola, Neilian parabola, cissoid

of the ancients and the rest which we here undertake to enumerate. [35, p. 589]

His analysis is based on the number and type of branches the curve possesses and the nature of the asymptotes to

the curve. Newton distinguishes between infinite hyperbolic or parabolic branches, depending on whether or not the

branches have an asymptote. Hyperbolic cubics may have up to three asymptotes. Figures 6 and 7 show examples

of some of the more unusual curves studied by Newton.

Newton begins his analysis by showing that every cubic can be reduced to the form

bxy2 D dx3 C gx2 C hy C kx C l:

The further analysis that Newton makes is based on Figure 8. In this figure we take AB to be the x-axis, and Ad to
be the y-axis. He then states that:

10
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–7.5 –5 –2.5 0 2.5 5 7.5

Figure 6. Cleft parabola
xy D x3

C x2
C x � 1
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Figure 7. Three-limbed adiametral hyperbola
xy2

C 3y D x3
� 7x
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Figure 8. Newton's cubic [33, p. 19]

If the signs of b and d are the same, the curve will be a hyperbola having three asymptotes, none of which

are parallel, and round which it crawls in each of its three pairs of infinite branches and on opposite sides.

[33, p. 19]

Note that, as shown in Figure 8, the general curve may possess up to three infinite branches along with possibly

having an oval component.

Newton goes on to compute the asymptotes. The directrix Adh is one of the asymptotes. Assuming that g ¤ 0,

and letting

AD D � g

2d
;
Ad

Aı
D ˙ g

2
p
bd
:

The other two asymptotes lie on Dd;Dd .

There are many interesting observations made by Newton on the geometric properties of this cubic. For example,

if we bisect the asymptotes Dd;Dı at ˛; a respectively. Then either of the resulting pairs of lines ˛ı and Dd , or,

ad and Dı, makes up a coordinate system in which the cubic equation has the same form as the original.

Altogether, Newton identified 72 species of cubics. Julius Pl�ucker did a different classification in which he

gave 219 species of cubics [39, pp. 220{241]. In any case, it is clear that the geometry of cubics is much more

complicated than the more familiar case of conics.

Rational Points on Conics

We consider a polynomial equation of degree two in two variables, that is,

f .x; y/ D ax2 C bxy C cy2 C dx C ey C k:
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Figure 9. Rational parametrization of the circle

Such an equation defines a conic if the polynomial is not the product of linear factors, which would simply lead to

a pair of lines (or a doubled line). We also exclude the case where the solution set is empty or a single point.

Not all rational conics have rational points. For example, the circle x2 C y2 D 3 has no rational points. Let

.x; y/ be a rational point on the circle, then by clearing denominators we may obtain the equation a2 C b2 D 3c2

where a; b; c are relatively prime integers. Since the only squares in Z=3Z are 0 and 1, a2 C b2 � 0 mod 3 implies

that a � b � 0 mod 3. But this implies that 3jc which contradicts that a; b; c are relatively prime.
All conics have a rational parametrization. For example, the circle, x2 C y2 D 1, may be parametrized by

x D 1 � t2
1C t2

; y D 2t

1C t2
:

This parametrization may be thought as the intersection of the line y D t.x C 1/ with the circle. This sets up a

one-to-one correspondence between rational points on the circle and rational points on the y-axis, as in Figure 9.

Note that the rational point .�1; 0/ on the circle corresponds to letting the parameter t ! 1.
This defines a birational equivalence between the circle and the line.

More generally, David Hilbert and Adolf Hurwitz proved in an 1890 paper [18] that a curve of genus 0 having

a rational point is birationally equivalent to a line. Specifically they proved that such a curve admits a rational

parameter, and hence has infinitely many rational points. We have not used an original source for this section, but

much of this material is due to Euler and Joseph Louis Lagrange. L.E. Dickson has a general discussion of the

problem of finding rational solutions to second degree equations [10, Vol. II, pp. 412{419].

Rational Points on Cubics

Original Source: �Edouard Lucas, Sur l'analyse ind�etermin�ee du troisi�eme degr�e, 1879
The basic problem considered in this section is how to generate additional rational points on a cubic from given

points. This problem has both an algebraic and geometric component. The algebraic method is to start with a

particular solution to the cubic, use that solution to perform a substitution, which will then lead to further rational

solutions. The geometric approach is to take a tangent line at a rational point on the cubic or a secant line passing

through two rational points, and find additional solutions by intersecting that line with the curve. This uses the fact

that a line intersecting a cubic has three intersection points, counting multiplicity. If two of those intersections are

rational then so is the third (a fact that seems to have been first mentioned by Newton).

Lucas was the first to explicitly merge these points of view (although Euler and Cauchy had given earlier

examples of Lucas' general approach). He recognized that the substitution method employed by Fermat , and tracing

back to Diophantus, was equivalent to finding intersections of secant and tangent lines with the cubic. Lucas also

gave an historical overview of the importance of cubics in Diophantine problems.

In the work of Diophantus we see the first attempt to find rational solutions to cubics (which is the primary

thesis of the work of Bashmakova [3]). For example, Problem 24 of book IV of the Arithmetic is to \Divide a given
number into two numbers such that their product is a cube minus its side" [3, p. 34]. Diophantus takes the given
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Figure 12. Tangent method

number to be 6. Despite this, the method of Diophantus is entirely general. The problem to be solved is then,

y3 � y D x.6 � x/:

Using the linear substitution y D kx � 1, representing an arbitrary line passing through the solution .0;�1/,
Diophantus obtains the equation

x.6 � x/ D k3x3 � 3k2x2 C 2kx: (1)

By equating the first power terms, we obtain 2k D 6. This selects the tangent line through the point .0;�1/ as
shown in Figure 10. Solving for x in equation (1), we get the solution x D 26=27 that corresponds to point Q in

the figure.

It must be noted that the description of the above solution as using a method of tangents is of course anachronistic.

It is not a valid historical interpretation of the methods of Diophantus; rather it is a way of describing his method

that connects his work to the later tradition of Fermat, Euler, Cauchy, and Lucas.

Vi�ete and Fermat extended the algebraic methods of Diophantus (see the surveys by Bashmakova [3], Norio

[36], and Weil [48, Chapter 2]). It should be noted that all of these approaches implicitly used the tangent line at a

point on a cubic.

Newton discovered the basic geometric laws for generating rational points on a cubic [34]. In particular, Newton

discovered the method known as the chord or secant method. The chord method states that given two rational points

on a cubic, the line connecting them intersects the cubic at a third rational point.

Here is an example of the chord method, illustrated in Figure 11:

y2 C y D x3 � x:

P D .�1; 0/ and R D .1;�1/ are rational points. PR intersects the curve at Q D .1
4
;� 5

8
/.

Given one rational point on an elliptic curve, the tangent line at that point will intersect the curve at another

rational point. Here is an example of the tangent method, shown in Figure 12.

y2 C y D x3 � x:

P D .0;�1/ is a rational point. The tangent line at P intersects the curve at another rational point Q D .1; 0/.

Now let us turn to the paper of Lucas [27]. The French mathematician François �Edouard Anatole Lucas (1842{

1891) was one of the major figures in 19th century number theory (see [16] for a study of the mathematical research

of Lucas). We are interested in his work on Diophantine equations, but he is perhaps best known for his work on
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primality testing. He originated the procedure now known as the Lucas{Lehmer test for primes. Using this method,

Lucas showed that the Mersenne number 2127 �1 is prime. This remains the largest prime number found without use
of a computer. Lucas also did considerable work in recreational mathematics. For example, he invented the Tower

of Hanoi puzzle (well-known to computer science students).

Lucas begins the paper by considering the work of Pierre de Fermat. Given the equation,

x3 C y3 D a3 C b3;

the rational point .a; b/ clearly lies on the curve. Using the linear substitution passing through this point,

x D aC 2u; y D b C u:

If we choose z D �b2=a2, this will eliminate the first power term in u, giving us an equation of the form,

Au3 C Bu2 D 0:

This leads to a first degree equation in u, which we can then use to look for additional solutions. Specifically,

assuming a ¤ 0; b ¤ 0, we obtain the solution

x D a4 C ab3

a3 � b3
; y D �b

4 C 2a3b

a3 � b3
:

This is all well known. Lucas makes the important contribution of noticing, for the first time, that this procedure

is actually finding the intersection of the tangent line at .a; b/ with the cubic.

Lucas uses this procedure in studying the homogeneous cubic

x3 C y3 D Az3:

This example, related to Fermat's Last Theorem, was also investigated by Sylvester. Lucas finds by using the tangent

method that if .x; y; z/ is a solution, then further solutions can be obtained from the relations,

X D x.x3 C 2y3/; Y D �y.y3 C 2x3/; Z D z.x3 � y3/:

In the case of A D 9, Lucas obtains the sequence of integral solutions,

x1 D 2 y1 D 1 z1 D 1

x2 D 20 y2 D �17 z2 D 7

x3 D 188479 y3 D �36520 z3 D 90391.

He notes the rapid growth of these solutions, suggesting the existence of an infinite number of rational points.

Lucas considers a general cubic in homogeneous coordinates, f .x; y; z/ D 0. Given a solution .x1; y1; z1/, the

intersection of the tangent at this point with the cubic is found by solving,

f .x; y; z/ D 0; x
@f

@x1

C y
@f

@y1

C z
@f

@z1

D 0:

Given two solutions, .x1; y1; z1/; .x2; y2; z2/, we find the intersection .x; y; z/ of the secant through these

points by solving,

f .x; y; z/ D 0;

2

4

x y z

x1 y1 z1

x2 y2 z2

3

5 D 0:

Lucas applies these formulae to the equation,

x3 C 2y3 C 3z3 D 6xyz:

From a solution .x; y; z/ he obtains a new solution .X; Y; Z/,

X D x.2y3 � 3z3/

Y D y.3z3 � x3/

Z D z.x3 � 2y3/

[27, pp. 179{180].
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From the obvious solution .x0; y0; z0/ D .1; 1; 1/, he obtains additional solutions .x1; y1; z1/ D .1;�2; 1/,
.x2; y2; z2/ D .19; 4;�17/. Then the secant through .x0; y0; z0/, .x2; y2; z2/ meets the curve at the point

.143; 113; 71/.

Lucas goes on to use this method to investigate further properties of the equation x3 C y3 D Az3, showing the

power of elliptic curves to solve problems in number theory.

One last note for this section; cubics, like conics, need not have any rational points. But unlike conics, there is

no known effective method to determine whether or not a cubic has any rational points.

The Group Law for Cubics

Original Source: J.J. Sylvester, On Certain Cubic-Form Equations, 1879{80

Now we examine what is perhaps the key idea associated with elliptic curves. One can define a procedure to

\add" rational points on an elliptic curve so that the set of all rational points on the curve forms an Abelian group.

Why is this important? Why is it necessary to bring in all the machinery of abstract algebra in order to investigate?

Further, why do we single out cubic curves; if we are going to go to all this trouble, why not do it for all algebraic

curves?

The significance of defining a group law for elliptic curves is the ability it gives us to answer two fundamental

questions. Given a particular rational solution how does one find other solutions? How does one know all possible

rational solutions have been found?

The question of how to find other solutions has a simple answer. Use the group law itself to generate further

solutions; i.e., if P;Q are rational points on the curve then P C Q will be a new rational point, where we must

define how to add points. To answer the second question, we must consider the structure of the group. As we discuss

below, Mordell proved that all rational solutions are linear combinations of a finite basis of solutions. Finding a

basis is not trivial; in fact, there is no known effective procedure for determining whether or not an elliptic curve

has any rational solutions at all. As to why we define a group law only for cubics, the answer is directly related

to the degree of the curve. A line intersects a cubic at three points, counting multiplicity. Given a line through two

rational points on the cubic we can produce a third rational point by intersection. This geometric process is easily

converted into an algebraic one; one simply views the third point as the result of a binary operation performed on

the first two points. Although, as we note below, this operation needs to be carefully defined to have a group law.

The chord and tangent method does not directly define a group operation. Given rational points P;Q on a cubic,

suppose we try to define a binary operation ˚, where we take the sum P ˚Q to equal the third point of intersection

of the chord PQ with the cubic. We would also want to define P ˚ P to equal the intersection of the tangent

line with the cubic. This operation does not define a group. For example, if P ˚ P D Q then we must also have

P ˚Q D P . But if P;Q were group elements under ˚ then Q D 0, which clearly cannot always be the case.

To properly define a group law, we start with a particular rational point O for elliptic curve E that we will use

for the identity element. A flex point is a common choice for the identity. Any elliptic curve with rational point O is

birationally equivalent to an elliptic curve with O mapped to a flex point. Another useful result is that any elliptic

curve with rational point O is birationally equivalent to a curve in Weierstrass normal form where O is mapped to

the point at infinity. More generally, for any elliptic curve of the form y2 D f .x/ we may use the point at infinity

for the group identity.

We wish to compute the sum of rational points P;Q. Let R be the intersection of chord PQ with E . Define

P CQ to be the intersection of chord OR with E. Under this operation the set of rational points forms an Abelian

group which we denote E.Q/. If Q is the intersection of the chord OP with E , then Q D �P . So the only group
property that does not immediately follow from this definition is associativity. See Milne [29, pp. 13{14] for a proof

of the associative law.

Figure 13 is a visualization of the group law. As we can see from the figure, .P CQ/CR D O , thus illustrating

the result of Clebsch that the necessary and sufficient condition for three points on the cubic being collinear is that

the points sum to zero (Clebsch expressing this in terms of the elliptic parameters associated with the points).

This method also works in the case of the tangent, i.e., when adding P C P . One can see this illustrated in

Figure 14.

Note that in this case R D �2P . It is also worth mentioning that the point �2P is independent of the choice

of identity element.
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Figure 13. Group law for elliptic curves
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Figure 14. Doubling a point on an elliptic curve

The group E.Q/ itself can be either finite or infinite. For example, consider the curve y2 C y D x3 � x (the

examples in Figures 15 and 16 are adapted from Husem�oller, [20, p. 26{28]). The point P D .0; 0/ is an obvious

rational solution. Some of the elements of the cyclic group generated by P are shown in Figure 15. In this example

we are using the point at infinity for the identity element. Note that odd multiples of P are on the left branch and

even multiples on the right. So E.Q/ must be infinite.

On the other hand consider the example y2 C y D x3 � x2. In this case let P D .0; 1/. It is easy to then see

that the group of rational points is precisely f0; P; 2P; 3P; 4P g. That is, E.Q/ D Z=5Z.

Notice that if we start with an arbitrary rational point P , then the points that are obtained by the chord and

tangent process are of the form nP , where n � 1 .mod 3/. So the tangent process produces the sequence of points

P;�2P; 4P;�8P; : : : :

This fact was first noticed by Hurwitz in 1891 [19, p. 725] and then more generally by Henri Poincar �e in 1901 [40,

p. 491].

The general structure of the elliptic group is given by,

E.Q/ D Z ˚ � � � ˚ Z
„ ƒ‚ …

r times

˚E.Q/tor

where r is an invariant called the rank of the curve and the torsion subgroup E.Q/tor is the set of points of finite

order. So the group is completely determined by its rank and the torsion group.

The structure of the torsion group was first investigated by Beppo Levi in a series of papers in 1906{08 [24].

Among his many results in this area, he showed that an elliptic curve can have no points of order 16. A survey of

Levi's results can be found in the article by Schappacher and Schoof [42].

The study of the torsion group culminated in Barry Mazur's proof in 1976 of the following result [28], previously

known as Ogg's conjecture,

Mazur's Theorem: E.Q/tor is isomorphic to either

Z=mZ

or

Z=mZ ˚ Z=2Z

for m D 1; 2; 3; : : : ; 10; 12

for m D 2; 4; 6; or 8:
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Figure 16. Points of finite order

This theorem gives a complete characterization of the torsion group for an elliptic curve.

The first examination of the rational points of a cubic in algebraic terms is due to the British mathematician J. J.

Sylvester [46]. James Joseph Sylvester (1814{1897) stands as a major figure in several areas of mathematics, matrix

theory, combinatorics, invariant theory, and number theory. Sylvester is an interesting personality, described in [37,

p. 210] as \prolific, gifted, flamboyant, egocentric, and cantankerous." He played a central role in establishment of

the mathematical community in the United States. It was during his tenure as the chair of the mathematics department

at Johns Hopkins University (1876{1883) that he publishes in the American Journal of Mathematics the series of
four articles that we are presently considering. Good biographical sources for the life and work of Sylvester are

the article in the American Mathematical Monthly [37] and the well-received treatise [38, Chapters 2, 3] on the
emergence of the American mathematical community.

None of the 19th century investigators such as Clebsch, Hurwitz, Poincar�e, or Sylvester actually recognized

the group structure for the rational points on elliptic curves, although, in some ways, Sylvester comes the closest.

Sylvester, in a series of masterful articles on cubic curves, begins with a study of a classical Diophantine problem

going back to Fermat. This is the question of which numbers are resolvable into the sum of two cubes. Sylvester's

research into this problem is very interesting and worthy of notice, but we will only give a summary of his results.

Building on earlier work by Pepin and Lucas, Sylvester shows that if pi ; qi are primes respectively of the forms

18nC 5; 18nC 11, then any number of one of the following forms is not resolvable into the sum of two cubes,

p; q; p2; q2; pq; p2; q2; p1p
2
2 ; q1q

2
2

together with 9 times each of these classes and further classes 2p; 4q; 4p2; 2q2.

It is in the course of this research that Sylvester develops a law of composition for elliptic curves. Sylvester starts

with a rational point and considers the set of points one may obtain using the chord and tangent process, but does not

use the group law described above. So the system of points that he obtains do not form a group but satisfy several

group properties (closure and analogs for associativity, identity and inverse). In addition to these points Sylvester

includes an inflection point, which plays a role that is analogous to a group identity. He calls the points that are

obtained \rational derivatives" of the original point and the resulting set a \chain" [46, Part III p. 58]. Sylvester then

states that the resulting set of points may be infinite or finite, \winding round and round upon itself so as to include

only a finite number of distinct points." [46, Part III p. 59]. The intersection of the tangent line with the curve he

calls the tangential.
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Sylvester labels the starting point 1, the tangential to the first point 2, the second tangential 4, etc. He then

defines the binary operation .m; n, which he calls a \residue," to be the point on the cubic collinear with m; n. So

.1; 4/ D 5; .2; 5/ D 7; .1; 7/ D 8 and so on. Sylvester definesm�n to be whichever of mCn;m�n is not divisible
by 3. He then proves that .m; n/ equals m � n. This differs from Poincar�e's result since Sylvester is only allowing

positive labels for his points.

The chord and tangent process produces a \numbered chain" of points, 1; 2; 4; 5; 7; : : : . Sylvester calculates the

coordinates of the points produced in this chain, each of which will of course be rational functions of the coordinates

of the original point. The terms of this chain \constitute what may properly be called a self-contained group, infinite
or finite" [46, Part III p. 61]. His use of the word \group" is not in the formal algebraic sense.

He considers two cases in which the chain is finite. First, the closed polygon case occurs when some tangential

goes back to the original point of the chain. The second case, the open chain, occurs when a tangential falls on a

point of inflection; succeeding tangentials remain at this point.

Sylvester never considers the associative law for his rational derivatives, but does prove what he calls the law of

double decomposition. This states that ..a; b/; .c; d // D ..a; c/; .b; d //. The extensive use that he makes of this law

shows the typical combinatorial technique that Sylvester was famous for, as opposed to the more purely geometric

approach of Poincar�e. Sylvester uses this law to simplify calculations, as for example, .1; 7/ D .1; 2/, .2; 5/ D .2; 2/,

.1; 5/ D .4; 4/.

If I is a given point of inflection, then Sylvester defines points collinear with I to be \opposites." He points

out that .I; I / D I , so that I is its own opposite. He denotes the opposite of point p to be p0, So .p; p0/ D I ,

.p0/0 D p, and he shows the identity .p0; q/0 D .I; .p0; q// D .I; I /; .p0q/ D .I; p0/; .I; q/ D .p; q0/. Note that

.I; p0/ D p, which of course is the \wrong" formula for a group identity.

Sylvester now defines the residues .I; 2/ D 3; .I; 5/ D 6; : : : ; .I; 3i � 1/ D 3i . This means that the system of

residues produced by the chord and tangent process includes the chain of points 1; 2; 3; 4; 5; 6 : : : together with their

opposites and the inflection point. He then proves that this system is closed under the chord and tangent operations.

This gives only a glimpse into the many interesting aspects of Sylvester's paper on cubics. There are other

sections of this paper worth studying; for example, the long article on divisors of cyclotomic functions. Sylvester

states, with great enthusiasm, \that Cyclotomy is to be regarded not as an incidental application, but as the natural

and inherent centre and core of the arithmetic of the future." [46, Part II, p. 380]

Mordell's finite basis theorem

Original source: L.J. Mordell, Indeterminate Equations of the Third Degree, 1923

Once the group law had been introduced, the next important question is the structure of the group. The first

result was the finite basis theorem of Mordell, published in 1922 [30]. This theorem states that for any elliptic curve

E , the group E.Q/ is finitely generated. This means that there is a finite set of rational solutions, the generators,

such that all rational solutions are linear combinations of the generators. Mordell's proof only states the existence

of this generating set, but gives no method for finding it.

Louis Joel Mordell (1888{1972) was born and raised in Philadelphia, but attended Cambridge University and

spent his subsequent professional career first at Manchester University and then returned to Cambridge. It was during

his stay in Manchester that the research that we are now considering was done. Two sources of further information

about Mordell's life and work are the article by Cassels [5] and Mordell's own reminiscences [32].

A useful summary of Mordell's proof was presented in Mordell's paper [31] and examined in more detail by

Cassels [6]. Weil generalized Mordell's proof to number fields [49]. That is, he proved that for any elliptic curve E

over a number field K, E.K/ is finitely generated.

Mordell begins the paper, which was based on a lecture delivered to the Manchester Mathematical Society in

1922, with a historical overview of elliptic curves. He examines the work of Fermat and Euler. For example, he looks

at Fermat's method of infinite descent to show that x4 C y4 D z4 has no positive integral solutions (which implies

there are no positive rational solutions). The method of infinite descent generates a strictly decreasing sequence of

positive solutions, which is impossible.

He then looks at the methods of Euler and Lagrange used to deduce new solutions from given ones. For example,

Euler analyzed the equation

ax2 C by2 D z3
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for integer solutions. First he writes,

z D pa2 C qb2

and takes

x
p
a C y

p
�b D .p

p
aC q

p
�b/3

which then implies

x D ap3 � 3bpq2; y D 3ap2q � bq3:

Turning to the 19th century, Mordell looks at the work of Lucas and Sylvester that we examined previously.

Also, he considers results of Hurwitz and Lebesgue on cubics that have no integer solutions [31, pp. 49{50]. One

such example is

y2 � 7 D x3:

Mordell first notes that x cannot be even, for a number of the form 8nC 7 is not a square. Also x cannot be of the

form 4nC 1, for then

y2 D .4nC 3/2 C 7:

The left side is then divisible by 4, but the right side is not. So x is of the form 4nC 1. In this case,

y2 C 1 D .x C 2/.x2 � 2x C 4/:

But the factor x C 2, which is of the form 4nC 3, must divide y2 C 1, which is impossible.

Mordell next examines the work of Axel Thue who had proven in 1908{17 a series of results about integer points

on cubics. For example, ax3 C by3 D c has finitely many integer solutions (see [43, Chapter V] for a thorough

discussion of this result). This result was later generalized by Siegel, who showed that any nonsingular cubic has

finitely many integer solutions. Mordell examines the equation y2 � k D x3, showing by three different methods

that the equation has only finitely many solutions. Let us look briefly at one of the methods. Mordell factors the

equation as

.y C
p
k/.y �

p
k/ D x3:

He then deduces, using the theory of ideals, that there are a finite number of solutions to

c.y C
p
k/ D .a C b

p
k/.p C q

p
k/3;

where a; b; c are known integers and p; q; y are unknown. Since c can be expressed as a cubic in p; q, Mordell is

able to use Thue's theorem to conclude the argument.

Mordell uses these ideas to first show that the cubic

y2 D ax3 C bx2 C cx C d

has finitely many integer solutions. When Mordell tries to apply the same argument to the quartic

z2 D ax4 C bx3y C cx2y2 C dxy3 C ey4 (2)

his application of Thue's theorem breaks down. \But I could not prove that there were only a finite number of

solutions, as I thought I had at one time proved," [31, p. 54].

To briefly summarize the proof of Mordell, he shows that an infinite descent argument applies. Given any

specific solution to (2), a descending sequence of solutions are produced. Each solution in this sequence is a linear

combination of the next, smaller, solution. We can also guarantee that in every case the last solution in our descent

is smaller in magnitude than some fixed constant. So every integer solution of (2) is a linear combination of a finite

set of solutions. A similar argument applies to rational solutions of a homogeneous cubic, thus proving Mordell's

theorem.

It is interesting to see the historical basis for Mordell's proof. Mordell himself makes that basis very clear in

his exposition.
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The Beha Eddn Problem

Original Sources:

Baha' al-Din 'Amili, Khulasat al-hisab, tr. 1846
�Edouard Lucas, Recherches sur plusieurs ouvrages de L�eonard de Pise, 1877
Horst Zimmer, On the problem of Beha Eddn 'Amuli and the computation of height functions, 1983

The Islamic mathematician Baha' al-Din Muhammad ibn Husain 'Amili (1547{1621) wrote an important al-

gebra text entitled \Khulasat al-hisab" or \The Essence of Computing" (see [2] for a French translation and for

a biographical introduction). Note that we are using the older spelling \Beha Eddn" for the name of the problem,

primarily because that is the spelling used in the secondary literature. Baha' al-Din was the author of works in many

different areas; law, religion, grammar, and astronomy. He wrote a treatise on the astrolabe and left an unfinished

work, \Bahr al-hisab" or \The Ocean of Computing."

At the end of his algebra text, Baha' al-Din poses seven problems which he claims to be unsolvable, including

Fermat's Last Theorem in the cubic case. Another of these problems, now known as the Beha Eddn problem, seeks

to find all rational solutions to the pair of Diophantine equations,

x2 C x C 2 D y2; x2 � x � 2 D z2:

The problem clearly does have solutions, for example, .x; y; z/ D .�2; 2; 2/. Additional solutions
�

� 17
16
; 23

16
; 7

16

�

,
�

34
15
; 46

15
; 14

15

�

were found in the nineteenth century [50, p. 180]. Lucas was the first to transform the problem into

one involving elliptic curves. Using the following substitution [50, pp. 180{181]

u D x � z; v D y � x

and eliminating x, we obtain the cubic

�.2u � 1/v2 � 2.u2 C 2/v C .u2 C 4u/ D 0:

This can then be put into normal form by the substitution,

u D Y � 3X C 207

6X C 342
; v D �3Y CX2 C 69X � 450

�6Y C 36X � 216
:

We end up with the Beha Eddn curve (see Figure 17),

Y 2 D X3 � 5211X C 31050:

The right hand side of this cubic has roots �75, 6, and 69. So the following points are torsion points of order 2,
P1 D .�75; 0/; P2 D .6; 0/; P3 D .69; 0/ (we are using the point at infinity as the identity). In fact one can show that

these are the only non-zero torsion points. Zimmer proves that E.Q/tor D f0; P1; P2; P3g D Z=2Z � Z=2Z. These

points correspond respectively to solutions f1; .�2;�2; 2/;1; .�2; 2;�2/g of the original Beha Eddn problem
(where 1 is the point at infinity).

2000

1000

0

–1000

–2000

–50 0 50 100 150 200

Figure 17. Beha Eddn cubic
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So any other rational point on the curve must have infinite order. The point Q D .�3; 216/ is such a point.
It corresponds to the solution

�
34
15
; 46

15
; 14

15

�

to the original problem. Zimmer shows that Q generates all points of

infinite order (i.e., all points of infinite order are multiples of Q). So this establishes that the Beha Eddn curve has

rank 1. The description of the torsion group and the rank of the curve completely determines the solutions to this

problem. It is interesting to see how much of the machinery of elliptic curves was needed to solve the Beha Eddn

problem. This is a good illustration for students of how ideas in mathematics get connected together.

Euler's Conjecture

Original Source: Noam Elkies, On A4 CB4 C C 4 D D4, 1988

Euler's conjecture concerns the sums of like powers. As a generalization of Fermat's Last Theorem in the

cubic case, Euler conjectured in 1769 that the sum of three biquadrates is never a biquadrate (for the original Euler

reference see [13] and a general discussion of the background of the problem see Dickson [10, Vol. II, pp. 648{649]).

That is, the equation

A4 C B4 C C 4 D D4

has no solutions in positive integers. More generally he conjectured that no fifth power is the sum of four fifth

powers and similarly for higher powers.

The first counterexample to Euler's conjecture was found by a computer search of fifth powers [23],

275 C 845 C 1105 C 1335 D 1445:

A significant breakthrough in this problem was made by Noam Elkies [11]. Elkies, born in 1966, received his

PhD in mathematics from Harvard at the age of twenty. His paper on Euler's conjecture came only a year after

receiving his PhD. In addition to his work in mathematics, Elkies is also an accomplished classical composer (see

the Web page [12] for more biographical data).

Elkies transformed the problem into one involving elliptic curves. In this way he found the fourth power

counterexample,

26824404 C 153656394 C 187967604 D 206156734:

It's not surprising that it took more than 200 years to find this counterexample!

We now consider a sketch of Elkies' proof. It is remarkable how much of this recent paper is at a level that can

be understood by an undergraduate major.

First note that integer solutions of A4 C B4 C C 4 D D4 correspond to rational solutions to,

r4 C s4 C t4 D 1 (3)

where .r; s; t/ D
�

˙ A
D
;˙ B

D
;˙ C

D

�

. Elkies not only shows that (3) has rational solutions, but in fact the rational

solutions are dense in the set of real solutions.

Elkies introduces the following parametrization:

r D x C y; s D x � y (4)

.2m2 C n2/y2 D �.6m2 � 8mnC 3n2/x2 � 2.2m2 � n2/x � 2mn (5)

˙.2m2 C n2/t2 D 4.2m2 � n2/x2 C 8mnx C .n2 � 2m2/: (6)

This defines a pencil of conics parametrized by m; n. We may take m; n to be relatively prime, with n odd. Elkies

shows that m; n must satisfy certain conditions (e.g., m must be divisible by 4).

The general strategy is to start with a pair of values for m; n, find a particular rational solution of the resulting

conic (5), use that point to parametrize the conic, and substitute the parametrization into (6), thus obtaining an

elliptic curve whose group of rational points may be studied (to find, for example, if the group is infinite).

Consider the case .m; n/ D .0; 1/. The resulting conic y2 D �3x2 C 2x has a rational point .x; y/ D .0; 0/.

This gives rise to the parametrization

x D 2

k2 C 3
; y D kx



40 I. Algebra, Number Theory, Calculus, and Dynamical Systems

which, after further substitutions, leads to the elliptic curves

Y 2 D X3 CX � 2:

These curves have finite groups of rational points (specifically Z=2Z; Z=4Z respectively). These points give rise

only to trivial solutions .˙1; 0; 0/ of (3).
A \better" choice of parameters is .m; n/ D .3=14; 1=42/. After some further algebraic manipulation, which is

straightforward, Elkies obtains the elliptic curve

Y 2 D �31790X4 C 36941X3 � 56158X2 C 28849X C 22030:

A computer search turns up the rational solution

.X; Y / D
�

� 31

467
;
30731278

4672

�

which in turn leads to the earlier mentioned counterexample

26824404 C 153656394 C 187967604 D 206156734:

Furthermore, Elkies shows that the difference of the solutions

�

� 31

467
;˙30731278

4672

�

is a point Q of infinite order in the group of rational points. Elkies uses Mazur's theorem, discussed above, to

simplify the computation. Namely, it suffices to show that nQ ¤ 0 for n D 2; 3; : : : ; 12. This then gives rise to an

infinite number of counterexamples to Euler's conjecture.

The above counterexample is not minimal. Taking .m; n/ D .20;�9/ leads to the counterexample,

958004 C 2175194 C 4145604 D 4224814

which was proven to be minimal by exhaustive computer search. With the computing power available to students

today, finding this minimum solution can be assigned as a student exercise.

Further work on Euler's conjecture can be found in the paper by Yu Li, [25]. Using elementary methods, Li

finds a necessary condition for integer solutions to the equation x4 C y4 C z4 D 2c4. If .x; y; z/ is such a solution

and c is a product of primes of the form 4kC 1 and d D gcd.x; y; z/, then one of x=d; y=d; z=d is divisible by 4.

Further Reading

There are several textbooks on elliptic curves that give a good introduction to the subject. Particularly worth noting

are the texts by Cassels [7], Husem�oller [20], Knapp [22], Silverman [43], and Silverman and Tate [44]. A very

useful survey for someone who wants to see an overview of the subject is the online text by Milne, [29]. The work

by Bix [4] has a very good discussion of the geometric properties of elliptic curves and only assumes first year

calculus.

Texts that have a historical bent are those by Hellegouarch [17], Prasalov and Solovyev [41], and Weil [48].

Weil's book has an in-depth study of the work of Fermat and Euler. The other texts have a good discussion of more

modern material.

As far as other original sources that one may wish to use, the classic papers in the field are those of Clebsch

[8] and Poincar�e [40], although these are less accessible than the papers discussed above. Another source paper

worth reading is that by Desboves [9], which gives a thorough discussion of the chord and tangent methods from a

coordinate perspective.

Conclusion

Now that we have seen a selection of topics from elliptic curves, how are they to be used in an actual course? Here

are five scenarios that an instructor may use to fit their own courses.
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Course Sections Covered Lectures

History of Mathematics

(Only Calculus prerequisite)

Cubics,
Rational Points on Conics,
Rational Points on Cubics,
Euler's Conjecture

4

History of Mathematics

(Senior level course)

Cubics,
Rational Points on Conics,
Rational Points on Cubics,
Group Law for Cubics,
Beha Eddn Problem

6

Abstract Algebra

Rational Points on Cubics,
Group Law for Cubics,
Mordell's Finite Basis Theorem

4

Geometry

Cubics,
Rational Points on Conics,
Rational Points on Cubics

4

Number Theory

Cubics,
Rational Points on Cubics,
Euler's Conjecture

3

With regard to the use of original sources, there are several options for the instructor. One can use some or all

of the cited sources, use full-text, excerpts, or summaries. The author teaches a senior level history of mathematics

course for which all the students have had a course in linear algebra, and most have had abstract algebra. For such

an audience, I discuss excerpts of these sources and then assign the students to read and report on a particular source

of their choice.

In conclusion, I hope that I have conveyed some sense of the beauty of the ideas in elliptic curves and given

instructors some ideas for how they may be included in a course.
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5
Using the Historical Development of Predator-Prey Models

to Teach Mathematical Modeling

Holly P. Hirst

Appalachian State University

Introduction

Many differential equations texts introduce the classic Lotka-Volterra predator-prey model as an application of

coupled systems of differential equations. The model is based on a set of very simple premises:

� In the absence of predators, the prey population grows exponentially.
� Some fraction of predator-prey interactions end in death for prey.
� In the absence of prey, the predator population decreases exponentially.
� The predator birthrate is dependent on predators interacting with the prey (as the food source).

Using these assumptions as starting points for proportionality arguments, the four terms in the model (prey birth

and death, predator birth and death) can be built in a variety of ways. The classic Lotka-Volterra form of the model

is written as
dx

dt
D ax � bxy

dy

dt
D cxy � dy;

where x is the current prey population, y is the current predator population, and a, b, c, and d are constants of

proportionality that can be interpreted as birth and death rates.

This model, first proposed in the 1920s, is the most famous of many models developed during the twentieth

century. In attempts to correct the model's unnatural behavior (such as predators never becoming sated or prey

growing without bound), scientists proposed alternatives to one or more of the four terms. Studying the historical

development of these models, including variations and extensions proposed in the 1930s, 1950s, and 1970s, is an

excellent way to introduce students to the issues associated with building mathematical models involving rates of

change.

Access to technology such as computer algebra systems or spreadsheets makes these models accessible to students

at a much lower level in the undergraduate curriculum, motivating the study of calculus and differential equations,

rather than serving as an \afterthought" example.

In this paper, two teaching sequences are presented: The first outline has been used with students who have not

studied calculus, such as liberal arts majors in a freshman mathematics course, to motivate mathematical modeling of

complex systems. The second outline has been used with students who have had basic calculus, such as sophomore

mathematics majors, in order to motivate further study of modeling with differential equations and dynamical systems.

These outlines differ mainly in the tools used to explore the models once built. In the first case, discrete models in

the form of difference equations are explored with a spreadsheet; in the second, continuous models in the form of

differential equations are explored with a computer algebra system.

45
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The Historical Background

Before presenting the teaching sequences, a review of the historical development of the predator-prey equations is

in order. This survey is by no means complete; the models chosen for discussion here have been selected because

they are easily described as differential equations and because the rationales are understood by students with little

experience in model development. For a more complete discussion of the mathematical evolution of predator-prey

models, complete with suggestions for using the models with advanced students, see [9]. For a different point of

view, including more historical information on the scientists involved in the lively development of the discipline of

population ecology, see [3].

For all models, we will assume the following notation:

� x.t/: The size of the population of prey at time t , i.e., the number of individuals or some other measure of their

biomass.

� y.t/: The size of the population of predators at time t , again either the number of individuals or some other

measure of their biomass.

Using this notation, a general compartmental model of the changes in these populations is

dx

dt
D f1.t; x; y/ � f2.t; x; y/

dy

dt
D f3.t; x; y/ � f4.t; x; y/;

where f1.t; x; y/ is the function governing the increase in prey population, f2.t; x; y/ the decrease in prey population,

f3.t; x; y/ the increase in predator population, and f4.t; x; y/ the decrease.

The most famous and the earliest model of interest to us is the Lotka-Volterra system, named for the two scientists

who developed it independently, Alfred Lotka (1880{1949) publishing the equations in 1925 [6] and Vito Volterra

(1860{1940) in 1926 [10]. Using modern notation, the equations can be written in the form

dx

dt
D ax � bxy

dy

dt
D cxy � dy;

for non-negative rate constants a, b, c, and d . There are several ways to justify the choices for the four functions,

and it is interesting to look at how Lotka and Volterra each justified their choices.

First consider Lotka's argument concerning the prey increase term: In the absence of predators, the prey should

increase without bound at a rate proportional to the current population level, hence the ax term. Likewise, Lotka

assumed that in the absence of prey, the predators should decrease at a rate proportional to the current population

level, hence the dy term. When the two species co-exist, Lotka used a chemical kinetics analogy to explain the

change in the populations resulting from interactions: When a reaction occurs by mixing chemicals, the law of mass

action states that rate of the reaction is proportional to the product of the quantities of the reactants. If two quantities

are denoted A and B , then the reaction rate would be proportional to AB . Using this as a rough analogy, Lotka

argued that prey should decrease and predators should increase at rates proportional to the product of the number of

prey and predators present, hence the terms bxy for the prey decrease and cxy for the predator increase.

This analogy is not surprising, given Lotka's background. An American educated in Germany and France, Lotka

had degrees in physics and chemistry and was extemely interested in the emerging field of physical chemistry,

the application of physical principles, particularly thermodynamics, to chemistry. He believed that one could apply

physical principles to biological systems as well, and his work on predator-prey interactions is just a small part of

extensive work in this area, work he published in 1925 in the text, Elements of Physical Biology [6]. For more
information on Lotka's life and his contributions to population ecology, see chapter two in [3].

Volterra appears to have arrived at the interaction terms using somewhat different reasoning, namely a competition

argument to suggest that in the presence of predators the prey's effective growth rate should be less than a, and how

much less should depend on the predator population, giving

dx

dt
D .a � by/x:
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A similar argument for the predator increase yields

dy

dt
D .cx � d/y:

As with Lotka's ideas, this approach is not surprising given Volterra's background and connections. Born

and educated in Italy, Volterra was a physicist whose daughter and son-in-law were biologists. While looking

for a mathematical explanation for a problem his son-in-law was working on, Volterra became very interested in

interactions of species and spent the rest of his professional life looking for a mathematical theory of evolution. For

more information on Volterra's life and work in this field, including an account of the lively interplay between Lotka

and Volterra, see chapters five and six in [3].

The Lotka and Volterra rationales yield models that are algebraically equivalent. For most values of the rate

constants, the solution of these equations leads to periodic behavior for both species. It is interesting to note that

these continuous, quantitative attempts to explain species interaction were met with great skepticism by biologists

of the day, but led to a huge increase in research related to the field of population dynamics by both physical and

natural scientists as well as mathematicians.

An obvious limitation of these equations is the unrealistic behavior of the prey population in the absence of

predators, so one of the first changes to the system proposed above was to limit the growth of the prey by incorporating

a maximum sustainable population, M . One of the strongest proponents of the notion that intra-species competition

is important was Alexander Nicholson (1895{1969), an Australian entomologist who studied predator-prey models

applied to parasite-host relationships. Developed in the 1930s, his models were strictly discrete. See chapter 5 of [3].

Adding intra-species competition to the prey equation can be accomplished using Belgian mathematician Pierre

Verhulst's (1804{1849) notion that population growth should slow at a rate proportional to the ratio of the excess

population to the total population. We can incorporate a birth slowing term into the prey equation, yielding with a

little algebra the modified system
dx

dt
D a

�

1 � x

M

�

x � bxy

dy

dt
D cxy � dy:

This generalization appears to have arisen almost immediately after Lotka's and Volterra's work.

Much work was done in the 1930s, 1940s, and 1950s on population ecology and population dynamics. The

Bureau of Animal Population was established at Oxford University in 1932, and many articles were published in

the Journal of Animal Ecology, established the same year. In 1935, physiologist and biomathematican Patrick Leslie
(1900{1974) joined the Bureau and helped steer the research in a mathematical direction, including development of

the matrix approach to modeling age distributions in animal populations that now bears Leslie's name. For more

information on the Bureau and Leslie's role, see chapter six of [3].

In 1958, Leslie [4] discussed several objections to the modified Lotka-Volterra equations, the most interesting

of which is that there is \no upper limit to the relative rate of increase of the predator." The predator (y) equation

above can be interpreted as indicating that predator births increase as prey become more plentiful. Leslie felt that

more realism would be reflected if a reduction in the number of prey caused more predator deaths rather than fewer

predator births. He suggested that the predator should do worse as the ratio of predators to prey increases. Altering

the predator equation accordingly gives the new system

dx

dt
D a

�

1 � x

M

�

x � bxy

dy

dt
D

�

c � d y
x

�

y:

This model yields damped oscillation of the predator and prey populations over time for suitable values of the rate

constants.

Since the 1950s there have been many more attempts to improve the predator-prey equations. We will examine

two more here. For more examples of the mathematical development of the dynamics of interacting species, see [9].

In his work on using mathematical modeling to investigate the complexity of interacting species, physicist Lord

Robert May (1936{ ) suggested several modifications to predator-prey models, one of which addressed the following

problem with Leslie's model: The prey death term implies that for a fixed number of predators y, the number of
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prey eaten is proportional to the number of prey present. This implies that predators are always hungry, eating a set

proportion of the prey present no matter how large the number of prey gets [7]. May addressed this flaw by replacing

the prey death term bxy with a term that approximates bxy for small x and approaches by as the number of prey

x becomes large, giving
dx

dt
D a

�

1 � x

M

�

x � b xy

x C 1

dy

dt
D

�

c � d y
x

�

y:

May's model has behavior similar to Leslie's model, namely decaying oscillations over time for both populations.

Many biologists liked these models, since in all but the most contrived laboratory experiments, the predator kills off

the prey over time or the two populations seem to reach stable levels. It is interesting to note, however, that these

equations can exhibit a wide range of behavior, from stable points to chaotic fluctuations. As a result of studying

these behaviors, May is credited with creating the new field of \chaotic dynamics" in biology.

The last model of interest to us is one developed by Jagannathan Gomatam in 1974 [2]. A physicist and

applied mathematician, Gomatam used Benjamin Gompertz' (1799{1865) model for limiting population growth to

the interaction terms in the predator-prey model. A self-educated mathematician, Gompertz was employed as an

actuary by a British assurance company where he developed his mortality model. Gompertz' model implies that

deaths from interactions between members of a population of size N should be proportional to N log .N /.

Gomatam applied this mortality model to the interactions between predators and prey, proposing

dx

dt
D ax � bx log .y/

dy

dt
D cy log .x/ � dy:

The main advantage of this model is that it is explicitly solvable for suitable values of the rate constants.

In all of the above models, a discrete version of the model can be explored, i.e., replacingdx
dt
with x.tC1/�x.t/,

and similarly for y. In fact, Nicholson, Leslie and May were primarily interested in these difference equations while

Lotka, Volterra, and Gomatam studied the continuous versions presumably assuming that the differential equations

were suitable approximations to the more realistic discrete versions. For other variations of predator-prey models,

see [1], [5], and [9].

Teaching Dynamical Systems in a Liberal Arts Mathematics Course

Studying population growth with liberal arts majors is an excellent way to review high school mathematics in a

context that the students have not encountered before. If students have access to a spreadsheet, they can build and

analyze fairly sophisticated models. These problems lend themselves well to extended writing assignments in which

students can practice incorporating data, mathematics, and graphs into reports.

Before examining predator-prey interactions, we begin with a study of one-species population growth, examining

well-known models due to Thomas Malthus (1766{1834) and Pierre Verhulst (1804{1849):

dx

dt
D kx

dx

dt
D k

�

1 � x

M

�

x:

The Malthus model is the classic exponential growth model, justified with the statement \the more individuals in

the population, the more potential for reproduction." The Verhulst model adds a linear slowing factor, forcing the

population to grow more slowly as a maximum sustainable populationM is approached. For an excellent introduction

to these models from a historical point of view see [8].

We approach all of the models in discrete format; i.e., these models are viewed as

�x

�t
D f .t; x/:
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Here the time step, �t , is defined to be the time between successive observations, typically one month (thought of

as 1
12
of a year). �x is then rewritten as xnew � x, where the \new" subscript denotes the population after one time

step and the non-subscripted variable the population at the previous time. At this point it is important to address the

issue of units, discussing the pros and cons of measuring population by population count versus some sort of density

or \biomass," and deciding ahead of time how to handle fractional answers. We also discuss the fact that both the

left and right sides of the equations have units \population per unit time." Thus rate constants must be \per unit

time" in order for the equations to balance. When modifying models to incorporate new assumptions like harvesting,

students need to consider the units involved, so we address them right from the start.

Students build these models using a spreadsheet such as Excel by allocating a column for time and a column

for the population x. The equations are rearranged to make building the formula for the population easier by solving

for xnew . For example, in the Malthus model, we have

xnew D x C .kx/�t:

Note that this approach is exactly Euler's method for solving differential equations.

After discussing with the students the rationales for these two classic models, we work through the following

questions in class.

1. Consider the Malthus model with rate constant 0.2 and initial population 10. What is the populationafter 1 year?

2 years? How does this compare to the behavior of the Verhulst model with rate constant 0.2, initial population

10, and maximum sustainable population 30?

2. In the Verhulst model, what happens when the rate constant is increased to 0.5? decreased to 0.05?Explain what

this indicates about the role of k in the model.

3. In the Verhulst model, experiment with different values for M . Does M really give the maximumsustainable

population? Explain.

4. In the Verhulst model, what happens when the initial population is greater than the maximum sustainablepopu-

lation? What happens when the initial population is equal to the maximum sustainable population?

5. Add harvesting to the Verhulst model, assuming that the population harvested per unit time is proportionalto the

amount of the population present at any given time. How would you incorporate a harvesting termlike this into

the model? What happens when you change the rate constant for your harvesting term?

6. Certain animals cannot survive when the population level falls below a minimum size; if the population gets

too small and sparsely distributed, reproduction becomes difficult. Modify the model to incorporatea minimum

sustainable population m, using an approach similar to that used to add the maximum sustainablepopulation

M in the Verhulst model. Experiment with the model to see what happens if the initial populationis below m,

between m and M , and above M .

Through their work on these problems, students encounter ideas related to equilibrium values, numerical ap-

proximation, and discrete versus continuous approaches. They also see first-hand that changing coefficients in

mathematical expressions yields predictable results: Increase the birth rate constant, and we increase the speed of

population growth.

Turning our attention to two-species models, we start by examining Lotka's and Volterra's ways of building the

four birth and death terms in the model, carrying out the algebraic manipulation necessary to show that the models

are equivalent. Then we implement a particular version of the model, using

xnew � x

�t
D 0:7x � 0:3xy

ynew � y

�t
D 0:08xy � 0:44y;

letting x.0/ D 4 and y.0/ D 2.

As in the one equation case, to build this model in a spreadsheet such as Excel, students solve these equations

for xnew and ynew arriving at

xnew D x C .0:7x � 0:3xy/�t
ynew D y C .0:08xy � 0:44y/�t:
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Figure 1. Lotka-Volterra Populations in Excel

Columns are built for time, x, and y, as in the one species model solution. The populations can be plotted over

time yielding a scatter plot similar to Figure 1.

Students are then asked to experiment with the model, answering the following questions.

1. Experiment with changing the rate constants to answer the following questions:

(a) Describe the effect of increasing the prey birth rate. Is this what you expected to happen? Explain.

(b) Describe the effect of increasing the prey death rate. Is this what you expected to happen? Explain.

(c) The predator birth rate is currently much less than the prey birth rate.What effect does having the same

birth rate for both species have on the solution?

2. The time step is currently set to one month ( 1
12
). Experiment with the time step, increasing it and decreasing it.

What happens when the time step is set to 1, i.e., one year? Does the behavior exhibited by the model make

sense? This model was proposed as a continuously changing one, i.e., the change of the population over time

was assumed to be changing continuously and so a small time step should give the behavior expected by Lotka

and Volterra.

3. Experiment with the initial populations for the predators and prey. Are the behaviors of the populations over

time sensitive to small changes to the initial populations? Can you force the extinction of one of the species?

both?

4. Suppose that we harvest some proportion of both the predators and the prey. Experiment with incorporating

harvesting terms into both of the equations. What happens when you change the harvesting rate? Can you

harvest and have the populations increase rather than decrease? Is this what you expected? Explain.

After ensuring that the students are comfortable with the Lotka{Volterra model, we then consider adding com-

petition and improving the death terms as in the Leslie and May models described above. In each model, we start

with the same values of the rate constants and initial populations, setting maximum sustainable population for prey

to 15 in these models. Students are asked to experiment with these models, answering questions similar to those

above.

To close the unit on dynamical systems, students are given individual writing projects. A typical example is:

Rabbits-Wolves-Grass: Add grass to the predator-prey models discussed in class. Think about how the rabbits

would eat the grass and how the grass would grow back. What equation would you use to model how grass changes

over time? What are the units for the grass variable and associated terms? How would you modify the predator

and prey equations? List your assumptions, and experiment with modifying the parameters. Think about what the

appropriate �t would be: Do you want discrete growth or continuous growth?

This approach has been quite successful with our liberal arts students. The population modeling material is

introduced after they have used spreadsheets for financial applications, so they have some facility with building

formulas to generate columns of data. The open-ended, experimental nature of the questions and projects requires

some coaching on behalf of the instructor at first in order to build the students' confidence, but even the least

mathematically inclined students have been successful at interpreting the graphs and drawing reasonable conclusions.
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Teaching Dynamical Systems in a Sophomore Introduction to Modeling Course

The teaching sequence for students who have knowledge of differential calculus is similar to the outline we follow

in the freshman class. The equations are approached in a continuous sense as differential equations, and the tool is

changed to a computer algebra system such as Maple.

As with the previous outline, we start with an examination of one species models and work through essentially

the same questions related to the Malthus and Verhulst models. Next we study the predator-prey models due to

Lotka, Volterra, Leslie, May, Ivlev, and Gomatam, answering the same questions as with the liberal arts students and

looking at the models using Maple. Maple will produce an image of the solution quite easily as in Figure 2. See the

Appendix for example Maple code.
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Figure 2. Lotka{Volterra Populations in Maple

Since these students have studied differential calculus, we can introduce slope fields and phase diagrams, and

then more formally discuss stable and unstable equilibria. Maple can be used to create nice phase diagrams by

changing the viewing scene. Figure 3 shows the result of this Maple command. See the Appendix for example

Maple code.
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Figure 3. Phase Diagram of Lotka{Volterra Populations



52 I. Algebra, Number Theory, Calculus, and Dynamical Systems

These students can push the models further than the liberal arts students, which raises some issues that need to

be addressed. As May realized in his study of these interacting species models, chaotic behavior is very common.

Students can become quite frustrated when experimenting with some of these models since certain choices for the

rate constants can yield bizarre behavior. It is essential to warn them ahead of time that this is not an error on their

part. A good problem for exploring these issues is the competitive hunter model:

Two Species Competition | Competitive Hunters: In the situation where we have two species who compete for

the same resources (hunting for the same food rather than one being the food source for the other), we can build a

two equation model in a similar fashion. The birth terms do not involve interaction between the species (i.e., only

x is present in the birth term for the x equation), but the death terms for each involve both species. Build a model

that reflects this situation. What are the parameters? What units are involved in each term? Build this model. What

happens to the populations? Experiment with parameter values and report your findings. Beware: This model can

exhibit very strange behavior!

Values of the rate constants that give reasonable behavior are given in the Maple code in the Appendix. See

Figure 4 for the plot resulting from the solution in Maple. See the Appendix for example Maple code.
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Figure 4. Competitive Hunter Populations in Maple

Students in the sophomore class build their mathematical modeling skills by formulating these population models

and then experimenting with different (justifiable) functions for the four terms in the model, then they examine

problems from other contexts that also yield differential equations models, such as heating and cooling, pollution

flow, basic mechanics, etc. This gives the students a framework from which to study differential equations in more

detail in subsequent classes.

Conclusions

Exploring these classical models with students gives them an appreciation of the mathematical modeling process

as it is more commonly applied: Start with a simple model and gradually refine it. The basic models attributed

to Lotka, Volterra, Leslie, and May are all sufficiently elementary that students without sophisticated mathematics

backgrounds can understand why the algebraic terms in the models were proposed. This progression of models is

ideal for demonstrating to students how \behavior" can be modeled algebraically, and how changes to the algebraic

formulation in a model often cause predictable changes in the solution.

For advanced students, these models provide a natural segue to the study of dynamical systems through differential

equations and/or difference equations. Natural extensions include examining other forms of two-species interactions

such as mutualism and host-parasite systems, as well as larger, multi-species ecosystems. Increasing complexity in

these models can lead students naturally to the study of stability, bifurcations, and chaos.

For students interested in the interplay between mathematics and science, the development of the mathematics

of ecology and population dynamics is well-documented in [3]. The historical information on this topic can be used
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to motivate many interesting investigations, including a comparison of continuous and discrete models, a study of

the origins of chaos in biology, and the role of mathematicians in the development of the subject.
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Appendix: Maple Code

Using Maple's DEtools and plots packages, we can enter the two differential equations and request nu-

merical solutions using the DEplot command. The DEplot commands give the solutions in the form of

plots of time versus prey population and time versus predator population. Finally, the display command

shows both of these curves on the same set of axes. See Figure 2 for the plot.

> with(DEtools): with(plots):

> eqn1 := diff(prey(t), t) = 0.7*prey(t)

> - 0.3*prey(t) * predator(t):

> eqn2 := diff(predator(t),t) = 0.08*prey(t)*predator(t)-

> 0.44*predator(t):

> a := DEplot([eqn1, eqn2], [prey(t), predator(t)],

> t=0..50, stepsize=.01,

> [[prey(0)=10, predator(0)=4]], scene=[t,prey(t)],

> linecolor=black, thickness=1, labels=[time,populations],

> labelfont=[TIMES, ROMAN, 12]):

> b := DEplot([eqn1, eqn2], [prey(t), predator(t)],

> t=0..50, stepsize=.01,

> [[prey(0)=10, predator(0)=4]], scene=[t,predator(t)],

> linecolor=black, thickness=1):

> display(a,b);
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Changing the scene to view prey population versus predator population:

> DEplot([eqn1, eqn2], [prey(t), predator(t)],

> t=0..50, stepsize=0.01,

> [[prey(0)=4, predator(0)=2]], scene=[prey(t),predator(t)],

> linecolor=black, labels=[prey,predator], thickness=1,

> labelfont=[TIMES, ROMAN, 12]);

The competitive hunter model in Maple:

> eqn1 := diff(hunter1(t), t) = 0.07*hunter1(t) -

> 0.3*hunter1(t)*hunter2(t):

> eqn2 := diff(hunter2(t),t) = 0.08*hunter2(t) -

> 0.44*hunter1(t)*hunter2(t):

> DEplot([eqn1, eqn2], [hunter1(t), hunter2(t)],

> t=0..5, stepsize=0.1,

> [[hunter1(0)=10, hunter2(0)=4]],

> scene=[hunter1(t),hunter2(t)],

> linecolor=black, labels=[hunter1, hunter2], thickness=1,

> labelfont=[TIMES, ROMAN, 12]);
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Geometry

It is easier to square a circle than to get round a mathematician
|Augustus De Morgan





6
How to Use History to Clarify

Common Confusions in Geometry

Daina Taimina and David W. Henderson

Cornell University

Most people judge the size of cities simply from their circumference. So that when one says that

Megalopolis is fifty stades in contour and Sparta forty-eight, but that Sparta is twice as large as

Megalopolis, what is said seems unbelievable to them. And when in order to puzzle them even

more, one tells them that a city or camp with the circumference of forty stades may be twice as

large as one of the circumference of which is one hundred stades, what is said seems to them

absolutely astounding. The reason of this is that we have forgotten the lessons in geometry we

learnt as children. | Polybius, 2nd century B.C. [56]

Introduction

We have found that students who take our senior/graduate level geometry course usually have very little

background in geometry. We have lead many week-long UFE and PREP workshops (funded by the National

Science Foundation) for professors on teaching geometry and we found that even mathematicians are often

confused about the history of geometry. In addition, many expository descriptions of geometry (especially

non-Euclidean geometry) contain confusing and sometimes-incorrect statements | this is true even in

expositions written by well-known research mathematicians. Therefore, we found it very important to give

some historical perspective of the development of geometry, clearing up many common misconceptions

and increasing people's interest both in geometry and in the history of mathematics.

Questions that often have confusing or misleading (or incorrect) answers:

1. What was the first non-Euclidean geometry?

2. Does Euclid's parallel postulate distinguish the non-Euclidean geometries from Euclidean geometry?

3. Is there a potentially infinite surface in 3-space whose intrinsic geometry is hyperbolic?

4. In what sense are the usual models of hyperbolic geometry \models"?

5. What does \straight" mean in geometry? How can we draw a straight line?

These questions are asked by our students and by mathematicians in our workshops. In the literature

we often do not find clear answers.

In order to clarify these questions for ourselves and for our students, we find that it is important to

talk about the development of different ideas in mathematics. It also gives us a way to bring the history of

57
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mathematics into the geometry course. Talking with our students, we noticed that most confusions related

to the above questions come from not recognizing certain strands in the history of geometry. Thus, even

though the topic of this volume is the use of more recent history of mathematics in our courses, we will

start (as we do with our students) with a quick look back to various historical strands that can help us

understand the issues surrounding these questions. More recent history will come later.

It is important to talk with students about deep roots of human experiences of mathematics and how it

connects with modern theories. One of our student responses demonstrates how learning is motivated by

history:

I found 451 (Spherical and Euclidian Geometry) to be my favorite math class so far. I feel the

way we are learning math is like collecting pieces of a puzzle through our education. We need

lots of those pieces to form a picture (or I should say \part of a picture" here), but if we haven't

collected \enough" of them, we won't be able to put them together and thus can't see anything. I

think this is why my interest in mathematics is growing as I am learning more of it, and want to

take [the history of mathematics class]. I want to know how and why people started to think about

\mathematics."

The Four Strands of Geometry

We introduced to our students the notion that the main aspects of geometry today emerged from four

strands of early human activity, which seemed to have occurred in most cultures: art/patterns, building

structures, motion/machines, and navigation/stargazing. These strands developed more or less independently

into varying studies and practices that eventually from the 18th and 19th century on were woven into what

we now call geometry.

Art/Patterns Strand To produce decorations for their weaving, pottery, and other objects, early artists

experimented with symmetries and repeating patterns. Later the study of symmetries of patterns led to

tilings, group theory, crystallography, finite geometries, and in modern times to security codes and digital

picture compression. Early artists also explored various methods of representing existing objects, and living

things. These explorations led to the study of perspective and then projective geometry and descriptive

geometry, and (in the 20th century) to computer-aided graphics, the study of computer vision in robotics,

and computer-generated movies (for example, Toy Story). For more details, see [1], [3], [15], [18], [21],

[23], [24], [26], [27], [40], [41], [54], [57].

Navigation/Stargazing Strand For astrological, religious, agricultural, and other purposes, ancient hu-

mans attempted to understand the movement of heavenly bodies (stars, planets, sun, and moon) in the

apparently hemispherical sky. Early humans used the stars and planets as they navigated over long dis-

tances, thus they were able to solve problems in navigation and to understand the shape of the Earth.

Ideas of trigonometry apparently were first developed by Babylonians in their studies of the motions of

heavenly bodies. Even Euclid wrote an astronomical work, Phaenomena, [4], in which he studied proper-
ties of curves on a sphere. Navigation and large-scale surveying developed over the centuries around the

world and along with it cartography, trigonometry, spherical geometry, differential geometry, Riemannian

manifolds, and thence to many modern spatial theories in physics and cosmology. For more details, see

[2], [4], [10], [20], [22], [53], [62], [63].

Motion/Machines Strand Early human societies used the wheel for transportation, making pottery, and

in pulleys. In ancient Greece, Archimedes and Hero used linkages and gears to solve geometrical problems
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| such as trisecting an angle, duplicating a cube, and squaring a circle. These solutions were not accepted

in the Building Structures (Euclid) Strand, which leads to a common misconception that these problems

are unsolvable and that Greeks did not allow motion in geometry. See [42] and [49]. We do not know much

about the influence of machines on mathematics after Ancient Greece until the advent of machines in the

Renaissance. In the 17th century, Descartes used linkages and the ideas of linkages to study curves. This

study of curves led to the development of analytic geometry. Computing machines were also developed in

the 17th century. As we will discuss below, there was an interaction between mathematics and mechanics

that leads to the modern mathematics of rigidity and robotics. For more detail see [14], [16], [19], [52],

[58], [65].

Building Structures Strand As humans built shelters, altars, bridges, and other structures, they discovered

ways to make circles of various radii, and various polygonal/polyhedral structures. In the process they

devised systems of measurement and tools for measuring. The (2000{600 B.C.) Sulbasutram [60] is written
for altar builders and contains at the beginning a geometry handbook with proofs of some theorems

and a clear general statement of the \Pythagorean" Theorem. Building upon geometric knowledge from

Babylonian, Egyptian, and early Greek builders and scholars, Euclid (325{265 B.C.) wrote his Elements,
which became the most used mathematics textbook in the world for the next 2300 years and codified

what we now call Euclidean geometry. Using the Elements as a basis in the period 300 B.C. to about 1000
A.D., Greek and Islamic mathematicians extended its results, refined its postulates, and developed the study

of conic sections and geometric algebra. Within Euclidean geometry, analytic geometry, vector geometry

(linear algebra and affine geometry), and algebraic geometry developed later. The Elements also started
what became known as the axiomatic method in mathematics. For the next 2000 years mathematicians

attempted to prove Euclid's Fifth (Parallel) Postulate as a theorem (based on the other postulates); these

attempts culminated around 1825 with the discovery of hyperbolic geometry. (See below for discussion of

the more recent history of parallel postulates.) Further developments with axiomatic methods in geometry

led to the axiomatic theories of the real numbers and analysis, and to elliptic geometries and axiomatic

projective geometry. For more detail see [7], [9], [10], [12], [14], [28], [59], [60].

We will now describe how these strands can be used to clarify issues surrounding the five questions

identified in the introduction. We include those aspects of the recent history of mathematics that are either

related to these issues or are difficult to find in the current literature.

Spherical Geometry | the first non-Euclidean geometry

Answering the first question: Spherical geometry can be said to be the first non-Euclidean geometry. It

developed early in the Navigation/Stargazing Strand. The connections of spherical geometry with other

strands will be covered in the following sections. For at least 2000 years humans have known that the

earth is (almost) a sphere and that the shortest distances between two points on the earth is along great

circles (the intersection of the sphere with a plane through the center of the sphere). For example:

. . . it will readily be seen how much space lies between the two places themselves on the circum-

ference of the large circle which is drawn through them around the earth.. . . [W]e grant that it

has been demonstrated by mathematics that the surface of the land and water is in its entirety a

sphere,. . . and that any plane which passes through the center makes at its surface, that is, at the

surface of the earth and of the sky, great circles, and that the angles of the planes, which angles

are at the center, cut the circumferences of the circles which they intercept proportionately,. . .

| Claudius Ptolemy, Geographia (ca. 150 A.D.), Book One, Chapter II
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Spherical geometry is the geometry of a sphere. The great circles are intrinsically straight on a sphere

in the sense that the shortest distances on a sphere are along arcs of great circle and because great circles

have the same symmetries on a sphere as straight lines have on the Euclidean plane. The geometry on

spheres of different radii is different; however, the difference is only one of scale. In Aristotle we can find

evidence that spherical non-Euclidean geometry was studied even before Euclid. (See [30], p. 57 and [64].)

Even Euclid in his work on astronomy, Phaenomena [4], discusses propositions of spherical geometry.
Menelaus, a Greek of the first century A.D., published a book Sphaerica, which contains many theorems
about spherical triangles and compares them to triangles on the Euclidean plane. (Sphaerica survives only
in an Arabic version. For a discussion see [45], page 119{120.)

Up into the 19th century, spherical geometry occurred almost entirely in the Navigation/Star-gazing

Strand and was used by Brahe and Kepler in studying the motion of stars and planets and by navigators

and surveyors. The popular book Spherical Trigonometry: For the use of colleges and schools (1886) by
Todhunter [62] contains several discussions of the use of spherical geometry in surveying and was used in

British schools before hyperbolic geometry was widely known in the British Isles. On the continent, C.F.

Gauss (1777{1855) was using spherical geometry in various large-scale surveying projects. This happened

before the advent of hyperbolic geometry. Currently, 3-dimensional spherical geometry is being considered

as one of the possible shapes for our physical universe. (See [64] and [34].)

The Parallel Postulate(s)

Let us now discuss Question 2: Does Euclid's parallel postulate distinguish the non-Euclidean geometries

from Euclidean geometry? After developing for some 2000 years, spherical geometry was related to the

Euclidean postulates of the Building Structure Strand in the 19th and 20th centuries. There are many

popular accounts (for example, Katz [42], p. 782, and Davis & Hersh [13], pp. 219{221) that attempt to

distinguish between Euclidean and spherical geometries on the basis of the parallel postulate. In Euclid's

Elements, the \parallel postulate" is the Fifth Postulate (here stated in Heath's translation [29], page 155,
but in more modern English as given in [34], Appendix A):

(EFP) If a straight line intersecting two straight lines makes the interior angles on the same side

less than two right angles, then the two lines (if extended indefinitely) will meet on that side on

which the angles are less than two right angles.

The interested reader can check that EFP is not needed to assert the existence of parallel lines. In fact
Euclid in I.31 proves (in modern wording):

Given a line l and a point P not on l there exists a line through P parallel to l .

In his proof, Euclid constructs first a line n through P perpendicular to l and then another line m

through P and perpendicular to n. Then Euclid concludes (I.27) thatm is parallel to l because the alternate

interior angles are equal. In none of these constructions or conclusions does Euclid use his Fifth Postulate.

Now, in this situation, the reader can easily see that EFP immediately implies that any line through P ,

other than m, will intersect l and thus m is the unique parallel line through P parallel to l .

Note that EFP is true in spherical geometry (because all lines intersect) and is even provable in the

strong sense that the two lines meet closest on that side on which the angles are less than two right angles

(see, for example, [34], Chapter 10). However, the existence of parallel lines is false in spherical geometry
and thus it must be one of the other postulates that fails on the sphere. Thus it is not true that EFP

distinguishes Euclidean from non-Euclidean geometries.

Over the years, EFP has been replaced by many other postulates (see for example, [29], p. 220, [31],

p. 203, [13], p. 219). Any of these alternate postulates plus Euclid's first four postulates imply EFP;
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and EFP plus the first four imply each of the alternate postulates. The most common of these alternate

postulates used in modern high school textbooks and popular accounts is:

(HSP) Given a line and a point not on the line there is one and only one line through the point
that is parallel to the given line.

We will call this the High School Postulate (HSP). Note that this postulate posits both the existence
and uniqueness of parallel lines. Therefore, unlike EFP, the High School Postulate is not true in spherical
geometry. Thus, in any context that includes Euclidean and spherical geometry, EFP and HSP are not
equivalent.

Often, HSP is called by many authors (including us in [32, p. 124]!) \Playfair's Parallel Postulate."

However, Playfair actually stated ([55], p. 11, 1839, and in the editions Philadelphia, 1806; Boston, 1814;

Edinburgh, 1819; and New York, 1835):

(PP) Two straight lines which intersect one another, cannot be both parallel to the same straight

line.

Many other authors (including David Hilbert in his axiomatization of Euclidean geometry [35]) state

the Playfair postulate in its logically equivalent form:

(PP) Given a point P and a line l , there exists at most one line through P and parallel to l .

This postulate only posits uniqueness and thus it is true in both spherical and Euclidean geometries.
We see that EFP and PP are true in spherical geometry, but HSP is not true. Nevertheless, many

writers are confused, for example: The excellent history text [42] (p. 782) says that one of the \two

possible negation of Euclid's parallel postulate" leads to spherical geometry. In the useful paper [31] (p.

203) it is stated (correctly) that PP is true on a sphere, but continues \so [PP] can only be equivalent to

[EFP] under some additional condition . . . " The delightful book [13] (pp. 218{221) states EFP and then

asserts (correctly) that it is \totally equivalent" to HSP (but calls it \Playfair's Axiom" and \Playfair's

postulate") in the sense that each plus the first four of Euclid's postulates implies the other. However, the

text then asserts that elliptic geometry (geometry on a sphere with diametrical opposite points identified)

satisfies the first four postulates of Euclid but not HSP. It is easy to check that EFP holds in elliptic

geometry, which contradicts the assertion of total equivalence.

All of these confusions seem to come from replacing EFP with HSP. We do not know in detail how

this happened but there are two hints: Heath's translation of Euclid has been for the past century the de

facto standard and in his commentary he states [29] (p. 220) \Playfair's Axiom" as:

Through a given point only one parallel can be drawn to a given straight line or, Two straight
lines which intersect one another cannot both be parallel to one and the same straight line.

The second statement here clearly posits uniqueness while the first statement could be mistaken for
the HSP. And then Kline, in [45] (p. 865) which was for many years the de facto standard history of

mathematics, repeats the first statement of Heath's and then adds:

This is the axiom used in modern books (which for simplicity usually say there is \one and only

one line. . . ").

Because of the 2000-year long history of investigations into parallel postulates within the Building

Structures Strand, many books misleadingly call hyperbolic geometry \the non-Euclidean geometry" or
\the first non-Euclidean geometry." Spherical geometry has been studied since ancient times but it did
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not fit easily into this axiomatic approach and thus was (and still is) left out of many discussions of

non-Euclidean geometry.

In the discussions that do include spherical geometry it is called by various names which causes

more confusions: Riemannian, projective, elliptic, double elliptic, and spherical. These different labels for

spherical geometry usually imply different settings and contexts as summarized in the following:

� Bernhard Riemann (1826{1866) pioneered the intrinsic (and analytic) view for surfaces and space; and,
in particular, he introduced an intrinsic analytic view of the sphere that became known as the Riemann
Sphere. The Riemann Sphere is usually studied in a course on complex analysis. Some writers use the
term \Riemannian geometry" to describe spherical geometry (usually in parallel with \Lobatchevskian

geometry"), but this practice has led to confusion among students and mathematicians because the

term \Riemannian geometry" is most often used to describe general manifolds as a part of differential
geometry.

� Double-elliptic geometry usually indicates an axiomatic formalization of spherical geometry in which
antipodal points are considered as separate points. This axiom system for spherical geometry is in the

spirit of Euclid's Axioms (as embellished by Hilbert [35]) for Euclidean geometry (see for example,

[8]), in this context spherical geometry is usually called double-elliptic geometry. This axiomatization
has seemed not to be very useful.

� Elliptic geometry usually indicates an axiomatic formalization of spherical geometry in which each
pair of antipodal points is identified as one point.

� Projective geometry originally developed within the Art/Patterns Strand in the study of perspective
drawings. If you project space (or a plane) onto a sphere from the center of the sphere (called a gnomic
projection) then straight lines in space correspond to great circles on the sphere. Thus projective
geometry can be thought of as a non-metric version of spherical geometry.

� Spherical geometry often indicates the geometry of the sphere sitting extrinsically in Euclidean 3-space.

Starting soon after the Elements were written and continuing for the next 2000 years mathematicians
attempted to either prove Euclid's Fifth Postulate as a theorem (based on the other postulates) or to modify

it in various ways. These attempts culminated around 1825, when Nicolai Lobatchevsky (1792{1850) and

J�anos Bolyai (1802{1860) independently discovered a geometry that satisfies all of Euclid's Postulates and

Common Notions except that the Fifth Postulate does not hold. It is this geometry that is called hyperbolic
geometry.

Hyperbolic Surfaces

Historically, one of the first open questions about hyperbolic geometry was whether it is the geometry of

any surface in Euclidean space, in the same sense that spherical geometry is the geometry of the sphere in

Euclidean 3-space. This is also our Question 3. In the mid-19th century beginnings of differential geometry

it was shown that hyperbolic surfaces would be precisely surfaces with constant negative curvature. This

aspect of hyperbolic geometry belongs in the Navigation/Star Gazing strand of geometry, in the sense that

differential geometry of surfaces (and higher-dimensional manifolds) uses calculus to study the geometric

properties that are intrinsic | properties of the surface that a bug crawling on the surface could detect.

Intrinsic properties include geodesics (intrinsically straight lines), length of paths, shortest paths (which

are almost always segments of geodesics), angles, surface area, and so forth.

Students (and mathematicians) desire to touch and feel a hyperbolic surface in order to experience its

intrinsic properties. Many people have trouble with standard \models" and pictures of hyperbolic geometry
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in textbooks, because the intrinsic meanings of geodesics, lengths, angles, and areas cannot be directly

seen. However, it is a common misconception that you cannot have a surface in 3-space whose intrinsic

geometry is hyperbolic geometry.

Mathematicians looked for surfaces whose intrinsic geometry is complete hyperbolic geometry in the

same sense that the intrinsic geometry of a sphere has the complete spherical geometry. In 1868, Eugenio

Beltrami (1835{1900) described a surface, called the pseudosphere, whose local intrinsic geometry is
hyperbolic geometry but is not complete in the sense that some geodesics (intrinsically straight lines)

cannot be continued indefinitely. (See [25], p. 218, for photos of the surfaces that Beltrami constructed

and further discussion of the pseudosphere.) In 1901, David Hilbert (1862{1943) [36] proved that it is

impossible to define by (real analytic) equations a complete hyperbolic surface. In those days, \surface"

normally meant one defined by real analytic equations and so the search for a complete hyperbolic surface

was abandoned and still today many works state that a complete hyperbolic surface is impossible. For

popularly written examples, see [53] (p. 158) and [37] (p. 243). In 1964, N. V. Efimov [17] extended

Hilbert's result by proving that there is no isometric embedding defined by functions whose first and

second derivatives are continuous. However, in 1955, Nicolas Kuiper [48] proved, without giving an

explicit construction, the existence of complete hyperbolic surfaces defined by continuously differentiable

functions. Then in some workshops in the 1970's William Thurston described the construction of complete

hyperbolic surfaces (that can be made out of paper), see [61] (p. 49 and p. 50).

Figure 1. Crocheted hyperbolic planes of radius 4 cm and 8 cm. (crocheted by Daina Taimina, photo by David

Henderson)

Directions for constructing Thurston's surface out of paper can be found in [32] (p. 48), [33], or [34],

(p. 58). These references also contain a description of the method (invented by the first author of this

article) for crocheting these surfaces. See Figure 1 for crocheted hyperbolic planes with different radii. In

addition, there is in these references a description of an easily constructible polyhedral hyperbolic surface,

called the \hyperbolic soccer ball," that consists of heptagons (7-sided regular polygons) each surrounded

by 7 hexagons (the usual spherical soccer ball consists of pentagons each surrounded by 5 hexagons)

| this construction was discovered recently by the second author's son, Keith Henderson. The intrinsic

straight lines (\geodesics") on a hyperbolic surface can be found by folding the surface (in the same way

that folding a sheet of paper will produce a straight line on the paper). This folding also determines a

reflection about the intrinsic straight line.
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Projections, Coordinate Systems, ``Models" of the Hyperbolic Plane

Question 4 asks: In what sense are the usual models of hyperbolic geometry \models"? To study the

geometry of the sphere analytically we develop coordinate systems and projections (maps) of the sphere

onto the plane. (Note that the usual spherical coordinates give a projection of portions of the sphere onto

a rectangle in the plane.) For the same reason, coordinate systems and projections of the hyperbolic plane

are useful for systematic analytic study. At the same time as he discovered the pseudosphere, Beltrami

described (in 1868) a projection of the hyperbolic plane onto a disk in the plane, this projection was more

fully developed in 1871 by Felix Klein (1849{1925). This projection, which can also be thought of as

describing a coordinate system, is now called in the literature projective disk model, the Beltrami{Klein
model, or Klein model.

The Beltrami{Kleinmodel (and other models) was called a \model" instead of a \coordinate system" or

\projection" because of the absence of a known surface whose intrinsic geometry was complete hyperbolic

geometry. But after Thurston's construction we can now describe this model (and the ones described below)

as projections or coordinate systems of the complete hyperbolic surface | for details, see [34], Chapter

17.

The Beltrami{Klein model was based on projective geometry and projective transformations, which

had their origins in the Art/Pattern Strand. The Beltrami{Klein model (thought of as a transformation)

takes straight lines in the hyperbolic plane to straight lines in the Euclidean plane in the same way that

gnomic projection takes straight lines (great circles) on the sphere to straight lines on the Euclidean plane.

As with gnomic projection, the measure of angles is not preserved in the Beltrami{Klein model. (See

Chapters 14 and 17 of [34].)

Other well-known models of the hyperbolic plane were developed in 1882 by Henri Poincar�e and were

based on circles and inversions in circles. Both Poincar�e models preserve the measure of angles but take

straight lines in the hyperbolic plane to semicircles in the upper half-plane or disk. Reflection through a

straight line on the hyperbolic plane corresponds in the Poincar�e models to inversion in the semicircles.

See [28] (Section 39), and [34] (Chapter 17).

Inversions in a circle are a necessary component of the analytic study of hyperbolic geometry. As we

will see below they are also useful to understanding linkages that convert straight-line motion into circular

motion. Our students ask questions about the origins of inversions, but there are not many sources on the

history of inversions. We describe inversions as emerging from the Art/Pattern Strand and trace the ideas

in the theory of inversions in circles back to Apollonius of Perga (225 B.C.{190 B.C.), who investigated

one particular family of circles and straight lines. We know about this from a commentary of Pappus of

Alexandria (290{350). Apollonius defined the curve ck.A; B/ to be the locus of points P such that PA =
k.PB, where A and B are points in the Euclidean plane, and k is a positive constant. Now this curve is a

straight line if k=1 and a circle otherwise and is usually called an Apollonian Circle. Apollonius proved

that a circle c (with center C and radius r/ belongs to the Apollonian family fck.A; B/g if and only if
BC.AC = r2 and A and B are on a same ray from C . [In modern terms, we say \if and only ifB is the

inversion of A with respect to c(and vice versa)".] See Figure 2. Theory of inversions in circles can be

developed purely geometrically from Euclid's Book III but was not done so in ancient times. (We would

say that this is because it was part of a separate strand.) For discussion of properties of circle inversions,

see [6], [11], [28] (Section 37), [34] (Chapter 16), [39], and [51] (Chapter 15).

A systematic study of inversions in circles started only in the 19th century. Jakob Steiner (1796{1863)

was among the first to use extensively the technique of inversions in circles. Steiner had no early schooling

and did not learn to read or write until he was age 14. Against the wishes of his parents, at age 18 he

went to the Pestalozzi School at Yverdon, Switzerland, where his extraordinary geometric intuition was

discovered. By age 28 he was making many geometric discoveries using inversions. At age 38 he occupied
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Figure 2. B is the inversion of A with respect to C (and vice versa).

the chair of geometry established for him at the University of Berlin, a post he held until his death. We

find these facts inspiring to students. For more details, see [47]. A complete recent history of inversions

can be found in the book [50].

Inversions were also used in the 19th century to solve a long-standing engineering problem (from the

Motion/Machines Strand) we describe in the next section.

What is ``Straight"? How Can We Draw a Straight Line?

This is Question 5. When using a compass to draw a circle, we are not starting with a model of a circle;

instead we are using a fundamental property of circles that the points on a circle are a fixed distance from

a center. Or we can say we use Euclid's definition of a circle. So, now what about drawing a straight line:

Is there a tool (serving the role of a compass) that will draw a straight line? One could say: We can use

a straightedge for constructing a straight line. Well, how do you know that your straightedge is straight?

How can you check that something is straight? What does \straight" mean? Think about it!

We can try to use Euclid's definition: \A straight line is a curve that lies symmetrically with the points

on itself." (See [34], Appendix A, for a justification of this translation; and Chapter 1 for a discussion of

\What is straight?") This leads to knowing that folding a flat piece of paper will produce a straight line.

This use of symmetry, stretching, and folding can also be extended to spheres and hyperbolic planes (See

[34], Chapters 2 and 5.) We can also use the usual high school definition, \A straight line is the shortest

distance between two points." This leads to producing a straight line by stretching a string. Students are

confused when reading in the literature that \straight line" is an undefined term, or that straight lines

on the sphere are \defined to be arcs of great circles". We find that putting it in the context of the four

strands helps clarify this: Symmetry comes from the Art/Pattern Strand, \undefined terms" come from the

Building Structures Strand, and \shortest distance" from the Navigation/Star Gazing Strand.

But there is still left unanswered the question of whether there are mechanisms analogous to a compass

that will draw an accurate straight line. Discussions about straightness in class had a different perspective

after we learned ourselves and then presented to our students the following not widely known history

of the problem. The students responded that it was important to learn this connection between a purely

geometrical problem and a mechanical problem. It also shows that you can find a history of mathematical

problems in the history of other sciences, in this case mechanics, which leads us into the Motion/Machines

Strand.

Turning circular motion into straight line motion has been a practical engineering problem since at

least the 13th century. As we can see in some 13th century drawings of a sawmill (see Figure 3) four
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Figure 3. Hand cranked saw mill from before 1578, Plate 13 in [5].
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bar linkage (rigid bars constrained to be near a plane and joined at their ends by rivets) was in use and

probably was originated much earlier. In 1588, Agostino Ramelli published his book [58] on machines

where linkages were widely used. In the late 18th century people started turning to steam engines for

power. James Watt (1736{1819), a highly gifted designer of machines, worked on improving the efficiency

and power of steam engines. In a steam engine the steam pressure pushes a piston down a straight cylinder.

Watt's problem was how to turn this linear motion into the circular motion of a wheel (such as on steam

locomotives).

It took Watt several years to design the straight-line linkage that would change straight-line motion to

circular motion. Years later Watt told his son:

Though I am not over anxious after fame, yet I am more proud of the parallel motion than of any

other mechanical invention I have ever made. (quoted in [19], pp. 197{198)

Figure 4. A steam engine with Watt's \parallel motion" linkage.

\Parallel motion" is a name Watt used for his linkage, which was included in an extensive patent

of 1784. Watt's linkage was a good solution to the practical engineering problem. See Figure 4 where

the linkage is the parallelogram murt connecting the piston P to the beam B . But Watt's solution did

not satisfied mathematicians who knew that it can draw only approximate straight lines. In 1853, Pierre-

Frederic Sarrus (1798{1861), a French professor of mathematics at Strassbourg, devised an accordion-like

spatial linkage that traced exact straight lines (see Figure 5) if one end is held fixed.

Mathematics continued to look for a planar straight-line linkage. An exact straight-line linkage in a

plane was not known until 1864{1871 when a French army officer, Charles Nicolas Peaucellier (1832{

1913), and a Russian graduate student, Lipmann I. Lipkin (1851{1875), independently developed a linkage

that draws an exact straight line. See Figure 6. (There is not much known about Lipkin. Some sources

mentioned that he was born in Lithuania and was Chebyshev's student but died before completing his

doctoral dissertation.)
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Figure 5. Sarrus Spatial Linkage for drawing a straight line.
(Photo by Francis C. Moon, Cornell University, courtesy of

the Cambridge University Engineering Department.)

Figure 6. Peaucellier-Lipkin linkage from
Cornell University's F. Reuleaux kinematic

model collection. (Photo by Francis C. Moon,

Cornell University.)

The drawing in Figure 7 depicts the working parts of the Peaucellier{Lipkin linkage. The linkage

works because the point P is inverted to the point Q through a circle with center at C and a radius

squared equal to s2 � d2. The point P is constrained to move on a circle that has center at D and that

passes through C and thusQ must move along a straight line. If the distance between C and D is changed

to g (not equal to f ), then Q instead of moving along a straight line will move along an arc of a circle

of radius .s2 � d2/f =.g2 � f 2/. This allows one to draw an arc of a large circle without using its center.

Note that the definition of a straight line used here is: \A straight line is a circle of infinite radius." For

a learning module on these topics, see [46].

In the late 19th century Franz Reuleaux (1829{1905), an engineer with a strong mathematical back-

ground, collected Watt's and 38 other linkages that had been constructed to turn circular motion into

Figure 7. Working parts of the Peaucellier{Lipkin linkage.
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straight-line motion or vice versa. These linkages were a part of a larger collection of about 800 models

of mechanisms that he considered to be a basis of a theory of machines. (For Reuleaux, \mechanisms"

are the simple component parts that are put together to form a machine that does useful work.) The first

president of Cornell University, A.D. White, purchased in 1882 a large number of these models and there

are today more than 220 remaining. A picture of this new collection was on a cover of Scientific American
in 1885. See Figure 8. This Reuleaux model collection at Cornell University is now being digitized and

put on the web as part of the National Digital Science Library complete with viewer controlled motion,

simulations, learning modules, and amazingly the possibility for printing out 3-D working models of many

of the mechanisms. See [52]. It is viewable at [46]. Among mathematicians the most popular of these

mechanisms is the Peaucellier{Lipkin linkage which is described above.

Figure 8. Reuleaux kinematic model collection in Cornell University Sibley School of Mechanical Engineering.
(Reproduced from Scientific American, 1885 cover, Cornell University Library.)

We add here a few remarks that excited our students. In January 1874, James Joseph Sylvester (1814{

1897) delivered a lecture \Recent Discoveries in Mechanical Conversion of Motion." Sylvester's aim was

to bring the Peaucellier{Lipkin linkage to the notice of the English-speaking world. Sylvester learned about

this problem from Chebyshev | during a visit of the Russian to England. He observed:

The perfect parallel motion of Peaucellier looks so simple, and moves so easily that people who see

it at work almost universally express astonishment that it waited so long to be discovered. (quoted

in [19], p 206)

Later, Mr. Prim, \engineer to the Houses" (the Houses of Parliament in London), was pleased to show

his adaptation of the Peaucellier linkage in his new \blowing engines" for the ventilation and filtration

of the Houses. Those engines proved to be exceptionally quiet in their operation. See [44]. Sylvester

recalled his experience with a little mechanical model of the Peaucellier linkage at a dinner meeting of the

Philosophical Club of the Royal Society. The Peaucellier model had been greeted by the members with

lively expressions of admiration,
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when it was brought in with the dessert, to be seen by them after dinner, as is the laudable custom

among members of that eminent body in making known to each other the latest scientific novelties.

(quoted in [19], p. 207)

And Sylvester would never forget the reaction of his brilliant friend Sir William Thomson (later Lord

Kelvin) upon being handed the same model in the Athenaeum Club. After Sir William had operated it for

a time, Sylvester reached for the model, but he was rebuffed by the exclamation:

No! I have not had nearly enough of it | it is the most beautiful thing I have ever seen in my life.

(quoted in [19], p. 207)

In summer of 1876 Alfred Bray Kempe (1849{1922), a barrister who pursued mathematics as a hobby,

delivered at London's South Kensington Museum (now Science Museum) a lecture with the provocative

title \How to Draw a Straight Line" which in the next year was published in a small book [44]. In this

book, which is viewable on the web as part of the Cornell University Library's online book collection,

you can find pictures of the linkages we have mentioned here. Kempe essentially knew that linkages are

capable of drawing any algebraic curve. Other authors provided more complete proofs of this fact during

the period 1877{1902. The Peaucellier-Lipkin linkage is also used in computer science to prove theorems

about workspace topology in robotics [38].

Conclusion

We described four strands in the history of geometry. We used an understanding of these strands as part

of our search for answers to the five questions in the Introduction and for clarifications of the issues

surrounding these questions. In summary:

1. What is the first non-Euclidean geometry? Within the Building Structures Strand, hyperbolic geometry
was the first non-Euclidean geometry. However, spherical geometry has an ancient history that goes

back more than 2000 years within the Navigation/Stargazing Strand. In addition, other geometries

(for example, projective geometry) developed out of the Art/Patterns Strand before the discovery of

hyperbolic geometry.

2. Does Euclid's parallel postulate distinguish the non-Euclidean geometries from Euclidean geometry?
Looking at it only from within the Building Structures Strand the answer is, Yes. However, in any

context that includes spherical geometry the answer is clearly, No.

3. Is there a potentially infinite surface in 3-space whose intrinsic geometry is hyperbolic? As Hilbert
proved there is no such surface that can be described by analytic equations. However, there are such

surfaces that can be made from paper or can be crocheted.

4. In what sense are the usual models of hyperbolic geometry \models"? In light of the answers to
Question 3, we can say that the Beltrami{Klein and Poincar�e Models can be called \analytic models"

because there is no analytic surface with complete hyperbolic geometry. However, in the context of the

existence of a hyperbolic surface these analytic models serve as projections or coordinate systems.

5. What does \straight" mean in geometry? How can we draw a straight line? The meaning of \straight"
seems to depend on the strand: In the Building Structures Strand, \straight" is an undefined term.

\Straight" is described in terms of symmetries in the Art/Patterns Strand. \Shortest path" is the appro-

priate notion of \straightness" in the Navigation/Stargazing Strand. In the Motion/Machines Strand we

obtain a straight line as a \circle of infinite radius."

Using history in a mathematics class shows the human side of mathematics and explores connections

within mathematics and with other sciences. There are questions, which students and mathematicians have,

that can only be clarified by reference to an appropriate history.
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7
Euler on Cevians

Eisso J. Atzema and Homer White

University of Maine Georgetown College

Introduction

For mathematicians looking to incorporate historical sources into their classroom teaching, Leonhard Euler

is of special interest. His mathematical notation closely approximates contemporary use,1 and his prose style

is clear and not forbiddingly concise. Furthermore, he was active just before the era of increasing abstraction

in mathematics, so that almost any problem he takes up is of immediate interest to a contemporary

undergraduate. The motivation for the problem is usually clear, and it is seldom difficult for the student to

come up with lines of further research, either by proving his results using modern techniques, generalizing

them, or investigating related questions. Quite often, too, Euler's problem lies somewhat off the beaten

track of contemporary mathematics, so that a student's further work stands some chance of resulting in

new mathematics.

The present article is a historical examination of a little-known contribution of Euler to classical

Euclidean geometry, combined with a free-floating elaboration on some of Euler's results. We firmly

believe that this two-pronged approach provides a feasible method for the introduction into the mathematics

classroom of historical material that might be stimulating to students and teachers alike (as opposed to only

the former or, worse, just the latter). The main body of the paper may be adapted to classroom use, either

in the form of lectures, in the form of exploratory activities, or as a combination of the two. Alternatively,

parts of the text may be assigned as outside-class reading. With the latter use in mind, we maintain a

style of exposition suitable for advanced undergraduates, and we have relegated pedagogical comments

to an appendix, where the reader will find discussion of how the material in this paper has featured in

previous geometry classes, and how it may be profitably used in other ways. Accordingly, the appendix

also suggests various exercises and research projects for students. All diagrams for this paper have been

drawn with Geometers' SketchPadr.The reader is strongly encouraged to explore the various findings in

this paper using SketchPad or a similar dynamical geometry package as well.

Euler's Theorem

One of the cornerstones of the study of the triangle is the concept of the so-called cevian. A cevian of a

triangle is defined as a line that passes through any of the vertices of that triangle, but that is different from

1Or perhaps one should say, since Euler's notational choices were so influential, that modern notation closely approximates

that of Leonhard Euler!

75
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A B

C

C¢

A¢

B¢

Figure 1. Three (non-concurrent) cevians in a triangle

its sides. This term is used in honor of the Italian mathematician Giovanni Ceva (1647{1734), who was

one of the first to systematically study configurations of such lines. Students of classical triangle geometry

will be familiar with what is now called Ceva's Theorem.2 This theorem states that for any triangle ABC ,

if a cevian passing through A intersects BC at A0 with similarly defined cevians passing through B and

C (see Fig. 1), then these three cevians are concurrent if and only if

AB 0 � BC 0 � CA0 D AC 0 � CB 0 � BA0;

where any of the lengths AB0, etc. is taken to be negative if the corresponding angle BAB0, etc. is an

exterior angle of the triangle. Ceva also formulated what is now known as Menelaus' Theorem for the

case of plane geometry.3 The latter theorem states that for any three cevians AA0, BB 0 and CC 0 as above,

their feet A0, B 0 and C 0 will be collinear if and only if

AB 0 � BC 0 � CA0 D �AC 0 � CB 0 � BA0;

where again any of the lengths AB0, etc. is taken to be negative if the corresponding angle BAB0, etc.

is an exterior angle of the triangle. Until recently, both theorems got rather short shrift in many of the

standard geometry textbooks. Of late, they have been given the more central place that they deserve.4

Note that both these results are expressed in terms of the ratios in which cevians cut their opposite
sides, rather than in terms of the ratios in which the cevians cut one another. For this reason we may refer to
these conditions for concurrency and collinearity as external. One may wonder then if the same conditions

cannot be formulated in an internal way, i.e. purely in terms of the cevians and the ratios in which they

intersect one another. Particularly, in the case of concurrency, suppose we have three line segments of

given length (but not position) and intersecting one another in given ratios. Under what conditions might

such a set of line segments be considered as a triple of concurrent cevians to some triangle and if so, can

one `solve' that triangle? It was precisely this question that the great Swiss mathematician Leonhard Euler

(1707{1783) sought to answer in a paper written toward the end of his life.5 What exactly inspired Euler

2Unlike many other theorems, this particular theorem was actually discovered by the person it is named after. It was published

by Ceva in his De lineis rectis of 1678. For most of the 18th and 19th century, however, this result was attributed to John
Bernoulli (1667{1748) who included a proof in his Opera Omnia of 1748 without indicating when he found this result. See [1,
p. 59].

3Menelaus of Alexandria (fl. 100) was the author of a treatise on spherical triangles, which has only been preserved in Arabic

translation. Until the 19th century, the theorem was ascribed to Ptolemy (ca 85-165) in whose Almagest it appears. Both Menelaus
himself and Ptolemy were only interested in the spherical case, but in the 16th and 17th century others had considered the plane

case as well. Ceva's investigations into cevians may have lead him to independently rediscover the theorem.
4See, for instance, [9, pp. 27{35 and pp. 45{50] and [2, pp. 53{58]. It will not come as a surprise that work for this paper

was at least partly inspired by this renewed interest in the two principal cevian theorems.
5Although Euler presented his results to the Petersburg Academy on May 1, 1780, the actual paper entitled \Geometria et

spherica quaedam" only appeared in 1815. See M�emoires de l'Acad �emie des Sciences de St-P �etersbourg 5 (1812), pp. 96{114
(= Opera Omnia, T. 26, pp. 344{358). An English translation, prepared by the second author, will be posted online at the Euler
Archive (http://www.dartmouth.edu/ euler).
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to look into this question is not clear, but the kind of question was not completely original. Most notably,

about half a century earlier, Philippe Naud�e (1684{1745), the Berlin Academy of Sciences' president

before its reform under Euler and Maupertuis, had published two papers on a closely related topic. In these

papers he proposed nothing less than the creation of a new field of mathematical investigation he called

trigonoscopia. Naud �e envisioned this field as a branch of pure mathematics, the principal goal of which
was to `solve' triangles from given data. In that sense, it was to be an extension of the usual techniques of

solving triangles from given angles and sides.6 In addition to these time-honored techniques, trigonoscopia

was to study the solution of triangles from combinations of sides and given points on unknown sides

and other data. At the end of his first paper, Naud�e distinguishes 16 categories of problems, totaling 678

configurations of givens. More relevant to us, among the configurations that he explicitly discussed we

find the solution of a triangle from a triple of medians of given length as well as its solution from a

triple of altitudes. It seems unlikely that the Naud�e paper had much impact, but it is highly probable

that Euler was aware of it. When Euler was still in St. Petersburg, he had been in correspondence with

Naud�e on various issues, including a problem that seems to have originated in Naud�e's investigations into

trigonoscopia. When Naud�e's second paper was published in 1743, Euler had already been working at the

Berlin Academy for two years.7

The point of departure for Euler's own investigations into trigonoscopia was the following observation:

Theorem 1 (Euler, 1780) In a triangle ABC with concurrent cevians AA 0, BB 0, and CC 0 as defined
above with O their point of concurrency, the following property holds:

OA0

AA0
C OB 0

BB 0
C OC 0

CC 0
D 1;

or, equivalently,
AO

OA0
� BO

OB 0
� CO

OC 0
D AO

OA0
C BO

OB 0
C CO

OC 0
C 2:

Proof. In his paper Euler, not usually given to concise exposition anyway, set forth no less than three
proofs of this result. Here, we will follow the most direct of these.8 In Fig. 2, let segment OF be parallel

to AB , and let OG be parallel to AC . The similarity of the three pairs of triangles, BOG and BB 0C ,

COF and CC 0B , FOG and BAC respectively yields the equations

OB 0

BB 0
D GC

BC
;

OC 0

CC 0
D BF

BC
;

OA0

AA0
D F G

BC
:

Summing these equations, we get

OA0

AA0
C OB

BB 0
C OC 0

CC 0
D 1;

6To be sure, Naud�e did not use the expression `solving triangles', nor was this topic as rigorously standardized as it is now.

The techniques existed, but both the expression and the formal classication of the various cases (SSS, SSA, etc.) only came about

in the 19th century.
7See Ph. Naud�e \Trigonoscopia cuiusdam novae conspectus,"Miscellanea Berolinensia ad incrementum scientiarumV (1737),

pp. 10{32 and Ibidem VII (1743), pp. 243{270. In the correspondence between Euler and Naud�e there is a reference to the problem
of the determination of the diagonals of a cyclic quadrilateral. This problem was tackled by Naud�e in an attempt to extend his

trigonoscopia to (cyclic) quadrilaterals. See Ph. Naud�e, \Problema geometricum de maximis in figuris planis," Miscellanea
Berolinensia ad incrementum scientiarum VI (1740) , pp. 217{235. This paper may also have been the source of inspiration for
Euler's own work on quadrilaterals around 1748.

8This proof actually appeared in an appendix to the paper and not in the main text. This might be an indication that it was

added by Euler after he finished his paper. The other two proofs are in the main body of the text. The main text also contains

two proofs for the analogous result in spherical geometry.
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Figure 2. Euler's Proof of Theorem 1

the first of the two relations to be proved. The other is obtained with a bit of algebraic rearrangement. Let

us define

˛ D OA0

AA0
; ˇ D OB 0

BB 0
;  D OC 0

CC 0
;

for the ratios in which the cevians cut one another.9 It is now easy to see that

˛ D 1
AO
OA0 C 1

; ˇ D 1
BO
OB 0 C 1

;  D 1
CO
OC 0 C 1

;

so we have
1

AO
OA0 C 1

C 1
BO
OB 0 C 1

C 1
CO
OC 0 C 1

D 1;

from which a little more algebra gives

AO

OA0
� BO

OB 0
� CO

OC 0
D AO

OA0
C BO

OB 0
C CO

OC 0
C 2

which is the second relation. Note that Euler implicitly assumes that O lies inside of the triangle, although

later he notes that if O lies outside the triangle the relationship will continue to hold, provided that one

allows for directed line segments of negative length, much as in Ceva's Theorem. Euler goes on to prove

this fact, but this part of the paper seems to be badly botched. In the printed text, his proof does not make

any sense.

Euler does not try to generalize his theorem to tetrahedra. Indeed, it is not easy to see how his proof

would allow for such a generalization. Since we will want to generalize to the case of tetrahedra, an

alternative proof might be in order. Note that the cevians divide ABC into three triangles AOB , BOC ,

and COA. Let us denote the areas of these triangles by jABC j, etc. Since AOB shares its base with ABC

and its height is  times the height of ABC , it follows that jAOBj D  jABC j and similarly for the
other triangles. Summing now immediately gives Euler's first result. From this proof, it is also obvious

that similar relations hold in dimensions higher than 3. We will have occasion to resort to this kind of

argument later on in this paper as well.

After having obtained his core theorem, Euler goes on to show that the condition of Theorem 1 is

not only necessary but also sufficient to determine any triangle to a given set of cevians. Following a

somewhat different approach, we will arrive at the same conclusion. Just like Euler, we first need to find

the exact relations between the internal and external ratios and expressions for the theorems of Ceva and

Menelaus in terms of the cevians themselves.

9In the main body of his paper, Euler uses the same three characters to denote the ratios OA0=OA, etc. In the appendix,

however, he switches to our notation. The advantage of this choice will be obvious from what follows.
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Ceva and Menelaus Revisited

Let us start with expressions for ˛, ˇ, and  in terms of the external ratios. We find:

Proposition 2 (Inner-Outer Lemma A) Consider a triangle ABC , with concurrent cevians AA 0, BB 0,
CC 0 meeting at point O . Then, with ratios ˛, ˇ, and  defined as in the proof of Theorem 1,

1 � ˛

˛
D AC 0

C 0B
C AB 0

B 0C
;

1 � ˇ

ˇ
D BC 0

C 0A
C BA0

A0C
;

1 � 


D CB 0

B 0A
C CA0

A0B
:

Proof. Consider the triangle BOC in Fig. 3. Note that the three line segments BC 0, OA0, and CB 0 are

concurrent cevians to this triangle meeting at point A. Therefore, by Theorem 1 we have

� AC 0

BC 0
C AA0

OA0
� AB 0

CB 0
D 1;

or
AA0

OA0
� 1 D AC 0

BC 0
C AB 0

CB 0
;

which becomes
1 � ˛

˛
D AO

OA0
D AC 0

C 0B
C AB 0

B 0C
;

the first desired equation. The other equations are obtained similarly.

A B

C

C¢

A¢

B¢

Figure 3. From External to Internal

Corollary 3 In triangle ABC let cevians AA 0 and BB 0 meet at point P inside ABC . With ˛, ˇ, and 

defined as in the proof of Theorem 1, we have

1 � ˛

˛
D CA0 � AB 0

BA0 � CB 0
C AB 0

B 0C
D AB 0

B 0C

�
CA0

BA0
C 1

�

;
1 � ˇ

ˇ
D AB 0 � BC 0

CB 0 � AC 0
C BC 0

C 0A
D BC 0

C 0A

�
AB 0

CB 0
C 1

�

:

Proof. Draw cevian CC 0 passing through P and use Ceva's Theorem to eliminate AC 0=BC 0.

Proposition 4 (The Inner-Outer Lemma B) Suppose that in triangle ABC , cevians AA 0, BB 0, and
CC 0 meet at a point O . Then, with ratios ˛, ˇ, and  still defined as in the proof of Theorem 1, we have

BA0

A0C
D 

ˇ
;

CB 0

B 0A
D ˛


;

AC 0

C 0B
D ˇ

˛
:

Proof. Consider the triangles AOC and AOB . If, as before, j:::j denotes the area of a triangle, we have
jAOC j D ˇjABC j. Likewise we have jAOBj D  jABC j. Also, jAOC j W jAA0C j D jAOBj W jAA0Bj. It
follows that jAA0C j=jAA0Bj D ˇ= . But the left-hand side of this expression also equals CA 0=BA0. We

conclude that CA0=BA0 D ˇ= , which is the first of the expressions above.
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Corollary 5 Suppose that in triangle ABC , two cevians, AA 0and BB 0 intersect at a point P . Then, with
ratios ˛, ˇ, and  defined as above, we have

BA0

A0C
D 1 � ˇ � ˛

ˇ
;

CB 0

B 0A
D ˛

1 � ˇ � ˛
:

Proof. Draw the cevian CC 0 passing through P . By Theorem 1,  D 1 � ˛ � ˇ. Apply Proposition 4.

We are now ready to formulate the theorems of Ceva and Menelaus in terms of internal ratios. Consider

a triangle ABC in which arbitrary cevians AA0; BB 0; CC 0 are drawn. Say that AA0 and BB 0 meet at C 00,

AA0 and CC 0 meet at B 00 and BB 0 and CC 00 meet at A00. We define ratios which describe how AA0 is

cut by cevians BB0 and CC 0 respectively, as follows:

˛B D C 00A0

AA0
; ˛C D B 00A0

AA0
:

Ratios ˇA; ˇC and B ; C are defined similarly. With these notations, we now have

Theorem 6 (Inner-Outer Theorem) In any triangle ABC , we have

AC 0

C 0B

BA0

A0C

C 0B

BA0
D .1 � ˛C � A/

˛C

.1 � ˇA � ˛B /

ˇA

.1 � B � ˇC /

B

D ˇC

.1 � ˇC � B/

A

.1 � A � ˛C /

˛B

.1 � ˛B � ˇA/
:

Proof. The first equation follows from cycling through all of the letters of the first equation of Proposition
3, the second from cycling through the letters of the second equation.

By combining the last two expressions, we obtain

Corollary 7 (Inner Ceva and Menelaus I) Consider a triangle ABC with cevians AA 0, BB 0, CC 0 and
˛B , etc. defined as above. Then AA0, BB 0 and CC 0 are concurrent or A0, B 0, and C 0 are collinear if
and only if

˛BˇC A D ˛C BˇA;

with concurrency occurring if and only if ˛ B D ˛C , ˇA D ˇC , and A D B .

Proof. In case the cevians are concurrent or their feet collinear, the left-most expression of Theorem 6

equals ˙1, so the product of the two other expressions equals 1, which gives rise to the equation above. If

the equation above is satisfied, then the left-most expression of Theorem 6 equals˙1, so either the cevians

are concurrent or their feet collinear. If concurrency occurs, then obviously B̨ D ˛C , etc. Conversely, if

˛B D ˛C , then clearly the cevians are concurrent.

Solving a Triangle to Given Cevians

Now that we have laid the groundwork, we are ready to address Euler's main question: Suppose one has

a triple of line segments AA0, BB 0 and CC 0 that have a point O in common. Is it possible to find a

triangle to which these segments are cevians? In other words, assuming that the line segments are cevians,

can we solve the corresponding triangle? As we have seen before, for the segments to be cevians, it is

a necessary condition that OA0=AA0 C OB 0=BB 0 C OC 0=CC 0 D 1. Conversely, will the latter condition

be also sufficient for the line segments to be the cevians to a triangle? Euler answers this question in the

affirmative by giving a nice way to properly position the segments. Since his approach is computationally

intensive, we will follow a somewhat different tack to arrive at the same result. Essentially, all that we
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A B

C

O

C¢

B¢ A¢

A²

Figure 4. Extending a cevian

need is a slight generalization of a construction given by Hoehn in [5] for medians so as to make it apply

to any triple of cevians. Consider a triangle ABC with three concurrent cevians AA0, BB 0 and CC 0 and

˛, ˇ,  defined as before. Now construct a line through C and parallel to the side AB (see Fig. 4). Let A00

be the point of intersection of this line with the line AA 0. Since AA0B � A00AC and CA0=A0B D ˇ= , it

follows that CA00 D ˇ


c and AA00 D .ˇC/


a0, where c D jABj and a0 D jAA0j. A triangle congruent to
AA00C , but then rotated by 90o, we find by erecting a square ACBABC on AC and a rectangle ABCACB

on AB with height ˇ


c. It follows that AA0 and BC CB are perpendicular. Clearly the same still applies if

the heights of the rectangles on the side are scaled by the same factor. Because of this, the construction

can also be extended to all three cevians at the same time. One choice would be to take ˛ˇc for the height

of the rectangle on AB and similarly for the other two rectangles. For this particular choice BC CB is still

perpendicular to AA0 and has length ˛.1 � ˛/a0 and similarly for BC BA and CACB (see Fig. 5).
10 Since

these three line segments can be joined to form a triangle by simple translation, it follows that the three

BA

BC

CB

CA

AC

AB

C

B

A

O
B¢

C¢

A¢

Figure 5. Hoehn's Construction Generalized

10For the sake of convenience, the actual heights of the rectangles in the figure are ˛ˇc=3, etc. This yields much nicer pictures.

Besides, for the case of medians the rectangles now reduce to the squares that [5] has.
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cevians are perpendicular to a triangle NABC with sides of lengths ˛.1 � ˛/a0, ˇ.1 � ˇ/b0, and .1 � /c0.

This property suffices to show that for any three line segments with given lengths a0, b0, and c0 as well as

the ratios ˛, ˇ, and  , at most one triangle can exist to which these segments are cevians and from which

one can construct this \mother" triangle in case it exists.11 It remains to be shown under what conditions

such a triangle will not exist.

Clearly, no mother triangle will exist if ˛.1�˛/a0, ˇ.1�ˇ/b0 and .1�/c0 do not satisfy the triangle

inequality. If this inequality is satisfied, however, we can easily compute the lengths of the sides of the

mother triangle. In fact, if the triangle exists, then †AOB and † NBCA are supplements. It follows that

c2 D .1 � ˛/2.a0/2 C .1 � ˇ/2.b0/2 C 2.1 � ˛/.1 � ˇ/a0b0 cos .† NBCA/:

But using the law of cosines on NABC , we find

cos.† NBCA/ D ˛2.1 � ˛/2.a0/2 C ˇ2.1 � ˇ/2.b0/2 � .1 � /2.c0/2

2˛ˇ.1 � ˛/.1 � ˇ/.a0/.b0/
:

It follows that

c2 D
�

1 � 

ˇ˛

�
�

˛.1 � ˇ/2.b0/2 C ˇ.1 � ˛/2.a0/2 � 2.1 � /.c0/2
�

;

with similar expressions for a2 and b2. All we need to check now is whether for a triangle with sides

thus determined, its three cevians through A, B and C , dividing the opposite sides in ratios ˇ= , =˛ and

˛=ˇ respectively, have the same lengths as the given line segments. One way to do so is to make use of

the following result:

Proposition 8 (Stewart's Theorem) 12 For any triangle ABC and a cevian AA 0 as above, we have

.AA0/2 D CA0

CB
� .AB/2 C BA0

CB
� .AC /2 � CA0

CB

A0C

CB
� .CB/2:

Proof. Find AA0 using the law of cosines on ABA0 and replace cosˇ by its expression in terms of sides

of ABC .

A dreary computation shows that the cevians of the candidate mother triangle indeed equal the given

line segments and we can now state

Theorem 9 Suppose we have three line segments of given lengths a 0, b0 and c0 and given ratios ˛, ˇ, 

as defined above. Then the line segments are the cevians to a triangle if and only if

˛ C ˇ C  D 1

and the triangle inequality is satisfied for ˛.1 � ˛/a 0, ˇ.1 � ˇ/b0 and .1 � /c0.

11Indeed, the construction given here allows us to solve Euler's problem as follows: given concurrent cevians AOA0, BOB 0,

COC 0 with sides of length a0, b0, c0 respectively and cutting ratios ˛, ˇ,  defined as usual (i.e., OA0

AA0 D ˛, etc.), construct a

triangle with sides ˛.1 � ˛/a0, ˇ.1 � ˇ/b0 and .1 � /c 0. Now rotate the three given cevians around O so that cevian-to-be

AA0 is perpendicular to the side with length ˛.1 � ˛/a0. Do the same for the other prospective cevian segments, making sure

that no two of the segments AO, BO, and CO are adjacent. The points A, B , C will now be the vertices of the desired `mother'

triangle.
12The theorem is usually traced back to the Scottish mathematician Matthew Stewart (1717{1785) who published it in his

General Theorems of 1746. It appears, however, that the theorem was first proved a few years earlier by his teacher Robert

Simson (1687{1768). Euler himself is among the many who have rediscovered the result; see his \Problematis cuiusdam Pappi

Alexandrini constructio" (Opera Omnia I, vol. 26, pp. 237{241). Euler may have been inspired by a special case of Stewart's
Theorem, in which the point A lies on the line BC; for the result in this form appears as Proposition 125 in Book Seven of the

Collectiones of Pappus ca 300 AD). Indeed, as Proclus was at that point discussing a work of Apollonius (born ca 262 BCE), the
result probably goes back much further.
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Proof. See construction above. Strictly speaking the proof only applies to ˛, ˇ,  between 0 and 1. For

the other cases, slight adjustments such as erecting rectangles into the triangle rather than away from it

are necessary.

To really grasp this theorem, it might be worthwhile for the reader to recreate the diagram of Figure

5 using SketchPad. We have found that the actual construction in SketchPad of the triangle perpendicular

to a triple of cevians of given lengths poses quite a challenge, but it is certainly helpful to give this a try

as well.

Following a purely algebraic approach involving some rather thorny computations, Euler obtained the

dimensions of the perpendicular triangle as well and could thus prove that Theorem 1 was both necessary

and sufficient. For Euler this settled the question and all he had left to do was to extend this result to

spherical geometry. We will not discuss this part of his paper. Instead, we will present some of investigations

of our own that were inspired by Euler's work.

The Case of Non-Concurrent Cevians

In the preceding we assumed that the given line segments were concurrent, which was the only case that

Euler investigated. Let us now assume that the segments do not meet in one single point. If this is the

case, the ratios in which the line segments intersect one another fully determine any triangle to which the

segments might be cevians. All we need to verify is under what conditions A0, B 0, C 0 lie on BC , CA,

AB respectively. The easiest way to find such conditions is to note that A, B 0 and C lie on three different

sides of the triangle A00B 00C 00. Applying Menelaus' theorem yields the condition

ˇA

ˇC

1 � ˛C

1 � ˛B

1 � B

1 � A
D 1;

with two similar conditions for A0 and C 0. Since Menelaus gives both necessary and sufficient conditions,

these three equations give us necessary and sufficient conditions for the existence of a mother triangle.

Actually, as each of these equations can be expressed in terms of the other two, only two of them suffice.

Somewhat more symmetric conditions can be obtained by noting that the points B , A00, C 00, B 0 and the

points C 0, A00, B 00, C lie in perspective with respect to A. It follows that their cross ratios .BB 0I A00C 00/

and .C 0C I A00B 00/ are equal or ˇA.1 � ˇC /=ˇC .1 � ˇA/ D B.1 � A/=A.1 � B/.13 Applying the same

reasoning to the other two pairs of cevians, we find the necessary conditions

ˇA.1 � ˇC /

ˇC .1 � ˇA/
D B.1 � A/

A.1 � B/
D ˛C .1 � ˛B /

˛B.1 � ˛C /
:

Comparison with the previous set of conditions shows that this new set of conditions is equivalent and

therefore sufficient as well.

The first set of conditions also can be used to give an alternative internal formulation of Ceva's and

Menelaus' theorems. Indeed, from these equations it follows that

ˇC

ˇA

A

B

˛B

˛C
D .1 � B/.1 � ˛C /

.1 � A/.1 � ˛B/

.1 � ˛C /.1 � ˇA/

.1 � ˛B/.1 � ˇC /

.1 � ˇA/.1 � B/

.1 � ˇC /.1 � A/

D
�

.1 � ˛C /.1 � B/.1 � ˇA/

.1 � ˛B /.1 � ˇC /.1 � A/

�2

:

In other words, we have

13On cross ratios and their use, see any book on projective geometry.
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Theorem 10 (Inner Ceva and Menelaus II) Consider a triangle ABC with cevians AA 0, BB 0, CC 0

and ˛B , etc. defined as above. Then A0, B 0 and C 0 are collinear if and only if

.1 � ˛B /.1 � ˇC /.1 � A/ D �.1 � ˛C /.1 � B/.1 � ˇA/:

Concurrency of the cevians will occur if and only if

.1 � ˛B/.1 � ˇC /.1 � A/ D .1 � ˛C /.1 � B/.1 � ˇA/;

in which case ˛B D ˛C , ˇC D ˇA, and A D B .

Proof. See above. The correct sign can be determined upon inspection.
Again, we have found it helpful in understanding this theorem to reconstruct the situation above in

SketchPad and to verify the theorem by simple measurements.

Beyond the Plane

As we will show in this section, Euler's Theorem 1 can be fairly easily generalized to higher dimensions

as can many of the other properties that we derived. Specifically, the triangle NABC with each side

perpendicular to one of the cevians of a triangle ABC has a direct analog in three-space. To see this, it

is probably easiest to verify the properties of NABC using vector algebra and then generalize our approach

to tetrahedra. Perhaps a warning is in order that most of this section goes somewhat beyond the kind of

elementary geometry of the preceding sections.

Let Ea, Eb, Ec be vectors in the xy-plane in three-space with their initial points at the origin. The endpoints

of these vectors are the vertices A, B , and C of a triangle. Without loss of generality, we may assume

that three concurrent cevians to this triangle meet in the origin. Thus, the vectors Ea, Eb, Ec also indicate
the directions of the cevians and the directions of the sides of any triangle NABC \perpendicular" to these

cevians (see the Solving a Triangle (...) section) will be given by the vectors Ea � e3, Eb � e3, and Ec � e3.
If we fix the length of the side NBC at jEa � e3j, then the length of the other two sides will be of the form
�B jEb � e3j and �C jEc � e3j. Now, note that because of the area formula for a triangle, we have

.Ea � e3/ � �B .Eb � e3/ D �B.Eb � e3/ � �C .Ec � e3/;

from which it follows that �C D jEa � Ebj=jEb � cj. Likewise, we have �B D jEa � Ecj=jEb � cj. Since triangles
perpendicular to the cevians are determined up to a scalar, it follows that the cevians can be taken to be

perpendicular to a triangle with sides of lengths jEajj Eb � Ecj, jEbjjEc � Eaj, and jEcjjEa � Ebj. Now, the length
of Ea equals the length of that part of the cevian of ABC on the side BC that lies between A and the

point of concurrency of the three cevians. In other words, if ˛ is defined as in the proof of Theorem 1

and a0 denotes the total length of the cevian departing from A, we have that jEaj D .1 � ˛/a0 and jEb � Ecj
equals jBOC j D ˛jABC j. Scaling again, it follows that we can take the lengths of the sides of NABC

as ˛.1 � ˛/a0 and so on, which lengths completely define NABC . Note that for this choice of the sides of
NABC , their lengths are conveniently measured in the same units as the lengths of the sides of the original

triangle. We therefore can meaningfully compare the perpendicular triangle to the original triangle.

In the case of a tetrahedron in three-space, let Ea, Eb, Ec, Ed be vectors with their initial points at the origin.
The endpoints of these vectors are the vertices A, B , C , and D of a tetrahedron. Without loss of generality,

we may assume that four concurrent cevians to this tetrahedron meet in the origin. Thus, the vectors Ea,
Eb, Ec, Ed also indicate the directions of the cevians. Let now NABCD be a tetrahedron \perpendicular" to

these cevians, i.e., a tetrahedron such that the face NBCD is perpendicular to Ea and so on. By construction,
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its edge NAB has to be perpendicular to both Ec and Ed . In other words, the vector Ev NAB with length and

direction of NAB has to have the direction of Ec � Ed and similarly for the other edges of the tetrahedron.

Using the same trick as in the two-dimensional case on the faces of the tetrahedron and symmetrizing, we

find that we may take

Ev NAB D jEa; Eb; EcjjEa; Eb; Ed j � .Ec � Ed/;

where j:; :; :j is the absolute value of a determinant. Or, by the same argument as used in the two-
dimensional case, we could take Ev NAB D ı.Ec � Ed/. Finally, if we want the lengths of the edges of NABCD

to be comparable to those of the edges of the original tetrahedron, i.e. if we want both sets to be measured

in the same units, we will have to scale the expression for Ev NAB once again. One expression that would do

the job is

Ev NAB D ı

3
p

6jABCDj
.Ec � Ed/:

Similar expressions apply for the other edges of this choice for NABCD and together these expressions

completely determine a perpendicular tetrahedron NABCD. For the area j NABC j of the face NABC of this

particular perpendicular tetrahedron we find

2j NABC j D jEv NAB � Ev NAC j D ı

3
p

6jABCDj
ıˇ

3
p

6jABCDj
j.Ec � Ed/ � . Ed � Eb/j

D ı � ıˇ � 6˛jABCDj � .1 � ı/d 0

3
p

36jABCDj2
D ˛ˇı 3

p

6jABCDj � ı.1 � ı/d 0;

where d 0 is the length of the cevian departing from D. Similar expressions apply for the three other faces

of NABCD and it follows that

j NBCDj
˛.1 � ˛/a0

D j NACDj
ˇ.1 � ˇ/b0

D j NABDj
.1 � /c0

D j NABC j
ı.1 � ı/d 0

:

These relations are analogous to what we found in the two-dimensional case. It should be pointed out,

however, that in contrast to the two-dimensional case, this property alone does not uniquely determine a

similarity class of perpendicular tetrahedra for a given set of line segments and theirintersection ratios.

Therefore it does not define a unique `solution' of the tetrahedron and an additional property will be needed.

To see this, it suffices to have a look at the medians of the so-called equifacial or isosceles tetrahedra, i.e.

the class of tetrahedra with congruent faces. For these tetrahedra, all medians are of the same length and

˛ D ˇ D  D ı D 1=4. Therefore, any tetrahedron perpendicular to the medians of a given equifacial

tetrahedron has to be equifacial as well. Since there are infinitely many non-similar equifacial tetrahedra,

this property does not allow for the reconstruction of the original set of medians.

Aftermath

To the best of our knowledge, the results of the two preceding sections have not been published before. In

fact, the internal properties of cevians appear to have been hardly studied at all. As we mentioned before,

even Euler's Theorem 1 received very little notice in the mathematical community. It appears though that

from time to time this specific result was rediscovered. It shows up as an exercise in at least two modern

geometry books.14 Before Euler's paper was published in 1812, cevians (or transversals, as they were

then called) were studied by, among others, Lazare Carnot (1753-1823) in his Essai sur la th �eorie des

14See [4, p.119] and [8].
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Figure 6. Vall�es' construction

transversales of 1806. All of these studies, however, used an external ratio approach only. Early in the
nineteenth century, shortly after Euler's paper was finally published, Theorem 1 and its generalization

to tetrahedra were posed as a problem in the Annales de math�ematiques pures et appliqu �ees, edited by
Joseph-Diez Gergonne (1771{1859). Most likely Gergonne saw Euler's paper and thought the problem

was suitable for his journal. It is equally likely that some of the solvers of the problem saw Euler's paper.

Although Euler is never referred to, three of the four submitted solutions for the plane case were essentially

identical to Euler's proof as given above. A rather elegant and surely original proof of the generalization

of Theorem 1 to tetrahedra was given by one Vall�es, a student at the Coll�ege Royale de Montpellier, a

Jesuit boarding school in the same town where Gergonne taught.15 Following Euler's reasoning closely,

Vall�es assumes that he has a tetrahedron ABCD with a point P inside (see Fig. 6). For this tetrahedron,

he considers the plane containing both P and the edge AB of the tetrahedron. This plane intersects the

edge CD in some point M . Similarly, the plane containing edge CD and P meets AB at some point N .

Considering triangle ABM , he notices that its three concurrent cevians AP , BP and MP meet the sides

of the triangle at A0, B 0 and N respectively. Hence,

PA0

AA0
C PB 0

BB 0
C PN

MN
D 1

by Euler's Theorem 1. Likewise, for triangle CND, its concurrent cevians CP , NP and DP meet opposite

sides at C 0, M and D0, yielding, by Theorem 1,

P C 0

CC 0
C PD0

DD0
C PM

MN
D 1:

Summing these two equations, and noting that MP C NP D MN , Vall�es obtains the desired result.

It is interesting to note that neither Euler nor Vall �es connect Theorem 1 with the determination of the

areas of the triangles into which the cevians divide the mother triangle. Today, this would be the standard

approach, and indeed this is the proof we find in [4]. Taking this tack would seem all the more obvious

to anyone versed in geometry since most proofs of Ceva's theorem use a similar approach as well. But

then again, using the area approach to prove Ceva's Theorem is relatively recent as well. Working in the

15The original problem appeared on p.116 of vol. 9 (1818{19). A first batch of solutions by Vecten, Durrande, Fr�egier, Fabry,

and Gergonne himself was published on pp. 277{284 of the same volume. For Vall�es' proof, see vol. 12, pp. 178{9.
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tradition of Torricelli, Ceva's main proof was based on mechanical considerations and of the two other

purely geometrical proofs that he gives, one is the usual area comparison proof, but the other does not use

areas either.16 John Bernoulli's proof uses similar triangles. Might it be that at least in the 18th and early

19th century, mathematicians were reluctant to use comparison of areas to prove theorems?

August Crelle (1780{1855) might have been the first to give a modern proof of Ceva's theorem

using area considerations in his study on transversals of 1816 (see [1, p. 61]). The first mathematician to

explicitly formulate a theoretical framework for these kinds of techniques was August Ferdinand Moebius

(1790{1764) in his Barycentrische Calcul of 1827. Using mechanical considerations, essentially what
Moebius noted was that to every point P within a triangle ABC one can associate a unique triple formed

by the areas of the triangles AOB , BOC and COA, thereby coordinatizing the plane in an alternative

way. In many ways, this new approach was very well suited to study the kind of problems in geometry

on which Euler had mostly published. Indeed, Moebius does mention Euler at various places, albeit not

in connection with Theorem 1. Not surprisingly, however, Theorem 1, together with its three-dimensional

analog, does show up. We find it at p. 212, at the very end of a long discussion on what Moebius calls

affinity.17 Both are just provided as an example and no reference to Euler or Gergonne is made. Euler's

paper seems to have gone completely unnoticed for practically all of the 19th century. There is no mention

of it in [3]. In his very thorough survey on elementary geometry of 1905, Max Simon does have a section

on the property of Theorem 1, but there is no mention of Euler (see [10, p. 181]). Even if Euler's paper

had been more widely known, it certainly was published too late to exercise any influence on the study

of the problem that he had first tackled. When it finally appeared in 1815, the study of elementary plane

geometry had developed along different lines from those suggested by Naud�e's trigonoscopia. Rather than

focusing on the study of other objects associated with the triangle, attention had shifted to the study of

quadrilaterals and polygons in general. This field of study was known as polygonometry and it seemed a
highly promising area of research around 1800 and for some time afterwards. Ironically, perhaps, one of

the two principal contributors to this new field, Anders Lexell (1740{1784), was a close collaborator of

Euler. The other, Simon l'Huilier (1750{1840), received his mathematical training from a student of Euler.

In Conclusion

In the preceding we discussed Euler's 1780 paper on the transversals of a triangle, as well as some

ramifications of the results it contains. We still have to address in more detail how all this mathematics

might be used in the classroom. Indeed, although Euler's paper may never have had many readers, we do

think his results merit attention. To be sure, we do not claim that his work breaks any new ground today.

We do feel that the paper has great pedagogical value. The problems Euler studies are of an elementary

nature, and the fact that his solutions have never become part of main-stream geometry allows for some

fresh explorations for a reasonably well-prepared college geometry class.

In fact, early on during the Euclidean portion of an undergraduate geometry course, the second author

was prompted to inject some elements of Euler's paper into his treatment of cevian concurrence for that

class when one of his students, James Campbell, reported that he had hit upon an interesting result. Using

Geometer's SketchPad, Campbell noted that given an arbitrary triangle, it is possible to translate its sides

so that they are the concurrent medians of a new triangle. It is then readily shown that this triangle has

an area equal to four thirds of the area of the original triangle.18 Quite naturally, Campbell wondered how

16See De lineis rectis, pp. 15{17. According to Ceva, the area proof was supplied by one Pietro Paulo Caravaggio Jr. For a
modern version of this proof see [4, p. 123].
17Roughly a correspondence between mathematical objects defined by what we now call affine transformations, i.e. linear

transformations preserving area.
18This particular result is well-known, but in this case has been rediscovered. Being a physics major himself,
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this result might be generalized and a perfect opportunity to introduce Euler's work in this particular class

had arisen. Examples of exercises that resulted from this use of Euler's original paper are given below

(Exercises 3, 4, 6, and 8).

This leaves the question how Euler's work might be used in other classes. Even though Euler in

translation is quite accessible to the average undergraduate, it is our view that in this case students need

not consult Euler's original paper. Some of his demonstrations are much more involved than they need to

be. Rather we suggest one of the following two approaches:

� Assign this article in full as independent reading, and have the student solve several exercises as a
\final project" and/or present some of Euler's results to the rest of the class. At the second author's

home institution, the Honors program has an \honors increment" component, in which for several

regular courses a student selects, in consultation with the instructor, an extra project related to the

course. This article along with some of the more involved exercises would make a suitable Honors

Increment.

� Intersperse the Euler material at several different points in the course:
1. Euler's theorem should be introduced fairly early, as soon as students have encountered a few basic

concurrency results (medians, altitudes, etc.). It is also good to discuss the higher-dimensional

versions of Euler's theorem at this time, as well as the Inner-Outer Lemmas. Exercises 13 and

14 are now appropriate to assign.

2. Later on, after Ceva's theorem has been introduced, have students do Exercise 8. Optionally, after

Ceva and Menelaus are covered, introduce the Internal versions of these theorems.

3. Most treatments of geometric constructions include the construction of a triangle given its three

medians, or its three altitudes. These are two of the trigonoscopia problems that so interested
Naud�e. This would be an appropriate time to introduce the Hoehn-like version of Euler's con-

struction of a triangle given the segments into which three concurrent cevians cut one another, or

else have a student, one who has read the entire article, make this presentation with the help of

some dynamic geometry software. Exercises 11 and 12 would serve to motivate this material.

Appendix: Exercises and Projects

The following exercises and project suggestions only serve as an example of the kind of questions that

might be asked to deepen student understanding of the mathematical ideas discussed in the main text.

None of the exercises would count as a routine exercise, but no additional theory is needed to solve any

of them either. Their arrangement roughly follows the discussion of the ideas in the main text. No ranking

according to difficulty has been attempted. Solutions are available from the authors upon request.

Exercise 1 In his second paper on trigonoscopia, Philippe Naud�e discusses the construction of a triangle

to a given set of altitudes. Euler's Theorem 1 would not have been of much help to Naud�e in this case. The

problem is easier solved by using the fact that in a triangle ABC with sides a, b, and c and corresponding

altitudes a0, b0, and c0 we have a0 W b0 W c0 D bc W ca W ab. Prove this property and explain why this

suffices to construct the mother triangle.

Exercise 2 Show that application of Euler's Theorem 1 to the altitudes of a triangle ABC with angles ˛,

ˇ and  leads to the triangle identity

cot˛ cotˇ C cotˇ cot  C cot  cot ˛ D 1

Campbell proved it using vector methods. He spoke on this result at a state MAA meeting; for an abstract see

http://web.centre.edu/mat/kymaa/meetings/abstracts02.doc. See also Exercise 11 below.
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Exercise 3 In Euler's original paper, his proof of Theorem 1 for the case in which the point of concurrence

O lies outside the triangle ABC was badly botched, either by Euler himself or by persons involved in

transcribing or printing the article. Set things right by proving the result mentioned in the note to Theorem

1 above. You can employ a similarity argument very like the one Euler gave.19

Exercise 4 A result that can be easily handled using \internal" cevian-cutting ratios is the following.

Trisect each side of the triangle ABC and denote the trisection points as in Fig. 7. Now let A 00 be the

point of intersection of BBA and CCA, etc. Show that the triangle A00B 00C 00 is a dilation of ABC with

respect to the centroid of the triangle by a factor �1=5, where the negative sign means that in addition to

a scaling, there is a point reflection around the centroid involved.

C

A B

C²

B² A²

AB

AC

BA

BC

CB CA

Figure 7. A similar triangle

Exercise 5 For a triangle ABC and angles A, B , C erect similar isosceles triangles ABC 00, BCA00, and

CAB 00 on each of its sides. Let the base angles of the isosceles triangles be called � and assume that AA 00

intersect BC in A0, etc. Use area considerations and Ceva's theorem to prove that AA00, BB 00 and CC 00

are concurrent in a point O with

OA0

A0A
W OB 0

B 0B
W OC 0

C 0C
D a

sin .A C �/
W b

sin .B C �/
W c

sin .C C �/
:

Exercise 6 (After [7]) Suppose that we have a triangle ABC with concurrent cevians AA0, BB 0, CC 0

meeting at a point O inside ABC . Let ˛, ˇ, and  be as defined before. Prove that

1

˛
C 1

ˇ
C 1


� 9;

with equality if and only if O is the centroid of the triangle. Hint: Use Theorem 1 and Lagrange multipliers.

Exercise 7 Generalize the statement of the previous exercise to higher dimensions.

Exercise 8 (Ceva's Theorem{The necessary part) Suppose we have a triangle ABC with cevians AA0,

BB 0, and CC 0. Use Inner-Outer Lemma B to prove that the equality

AB 0 � BC 0 � CA0 D AC 0 � CB 0 � BA0

is a necessary condition for concurrency of the three cevians.

19Euler himself appears to have tried to use the case in which O lies inside ABC to derive the case in which O lies outside.
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Exercise 9 (Routh's Theorem{Internal) In the case of non-concurrent cevians, with notations as before,

show that

jA00B 00C 00j D j˛B C ˛C C ˇC C ˇA C A C B � 2j � jABC j:
Exercise 10 (Routh's Theorem{External) Show that the relation of the previous exercise can be rewritten

in external form as

jA00B 00C 00j
jABC j D .AC 0 � CB 0 � BA0 � AB 0 � BC 0 � CA0/

2

.BC � CA � A0B � B 0A/.AC � AB � B 0C � C 0B/.AB � BC � C 0A � A0C /
:

Hint: Use Inner-Outer Lemma A and a decent computer algebra package.

Exercise 11 (See [5]) For any given triangle, its sides can be translated (that is, they can be moved without

changing their slopes) so that they form three concurrent cevians of a new triangle. In fact, they are the

medians of the new triangle, the area of which is equal to four-thirds of the original triangle. Prove this

result using one of the following three approaches: (1) the rectangle construction of this paper; (2) vector

methods; (3) Given the original triangle, ABC , draw its medians AA0, etc., meeting at the centroid G .

Next extend one of these medians, say AA0, to a point A00 outside the triangle so that A0A00 equals GA0.

Next draw A00B , and extend it past B to a point B 00 so that BB 00 equals A00B . Then A00B 00C is the desired

mother triangle, as can be seen by playing around with parallelograms.

Exercise 12 (Area of a mother triangle) The previous exercise gives the area of the mother triangle to

three medians. In his paper, Euler derived a more general formula for the area of a mother triangle ABC to

any three concurring cevians: Let the perpendicular triangle NABC be defined as in the Solving a Triangle

(...) section. Prove that

jABC j D 1

˛ˇ
j NABC j;

with ˛, ˇ, and  as in the definition of NABC . Hint: Compute the area of the mother triangle by determining

each of the areas of triangles AOB , BOC , COA and then comparing each of these with the area of the

triangle NABC . Alternatively, you may use the vector approach explained in the Beyond the Plane section.

Exercise 13 Any relation between the volume of a mother tetrahedron ABCD and that of a perpendicular

tetrahedron NABCD is only meaningful in case these volumes can be compared, i.e. in case they are

measured in the same units. For the specific perpendicular tetrahedron suggested in the Beyond the Plane

section for which this is the case, prove that

jABCDj D 1

.˛ˇı/2
j NABCDj;

with ˛, ˇ,  , and ı as in the definition of NABCD.

Exercise 14 Without using Euler's area formula, show that in a triangle ABC for any set of concurrent

cevians with lengths a0, b0, c0 meeting in a point O and ˛, ˇ, and  defined as in the proof of Theorem

1, one has

jABC j3 D 1

8˛ˇ

�

.1 � ˛/a0 � .1 � ˇ/b0 � .1 � /c0
�2
sinp sin q sin r;

where p D †BOC 0 D †B 0OC , q D †COA0 D †C 0OA, and r D †AOB 0 D †A0OB .

Exercise 15 Suppose that in a triangle ABC three given concurrent cevians AA0, BB 0, CC 0 (with A0 on

BC etc.) each have the same length. Using the area formula of the previous exercise, show that the area

of the mother triangle is maximal for ˛ D ˇ D  D 1=3, in which case the cevians are the medians to an

equilateral triangle. You may want to optimize seperately for the variables ˛, ˇ,  and the variables p, q,

r and show that the values that you find for these six variables correspond to the same configuration.
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8
Modern Geometry after the End of Mathematics

Jeff Johannes

State University of New York College at Geneseo

It appears to me also that the mine [of mathematics] is already very deep and that unless one

discovers new veins it will be necessary sooner or later to abandon it. Physics and chemistry now

offer the most brilliant riches and easier exploitation; also our century's taste appears to be entirely

in this direction and it is not impossible that the chairs of geometry in the Academy will one day

become what the chairs of Arabic presently are in the universities.

|Lagrange, September 21, 1781 [5]

Introduction

In Mathematical Thought from Ancient to Modern Times, Morris Kline writes \By the end of the eighteenth
century . . . the mathematicians began to feel blocked." [5] Several prominent mathematicians expressed

concern regarding the future of mathematics. Lagrange fears the end of mathematical evolution, writing

that perhaps \it will be necessary sooner or later to abandon it." Kline continues: \Euler and d'Alembert

agreed with Lagrange that mathematics had almost exhausted its ideas, and they saw no new great minds

on the horizon." As final evidence of his assertions, he includes thoughts from both Diderot and Delambre.

I dare say that in less than a century we shall not have three great geometers left in Europe. This

science will very soon come to a standstill where the Bernoullis, Maupertuis, Clairauts, Fon-taines,

d'Alemberts and Lagranges will have left it.. . .We shall not go beyond this point.

|Diderot, 1754 [5]

It would be difficult and rash to analyze the changes which the future offers to the advancement

of mathematics; in almost all its branches one is blocked by insurmountable difficulties; perfection

of detail seems to be the only thing which remains to be done. All these difficulties appear to

announce that the power of our analysis is practically exhausted.

|Delambre (permanent secretary of the mathematics and physics section of the Institut de France),

1810 [5]

At the very least, some mathematicians were not confident that mathematics would develop beyond the

eighteenth century. It seems that today's students have a similar perspective on the scope of mathematics.

Specifically, they hold that the evolution of mathematics ended with the completion of calculus.

93
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As mathematicians today, it is our duty to dispel this myth by giving students at all levels (especially

those who will not study more advanced mathematics) a view into the expansive growth of mathematics

since the close of the eighteenth century. In particular, geometry and topology were revolutionized during

this time. This yielded not only new disciplines and more formal methods of study, but also changes in

the philosophical nature of mathematics. Rather than positing mathematics as the absolute truth of the

universe, the discipline became focused on the study of potential reality.

The nineteenth century saw many changes in the perception of mathematics. The work of Lobachevsky,

Bolyai and Gauss in non-Euclidean geometry led to questions of the meaning of mathematical truth. Monge

and Riemann's contributions to differential geometry continued to apply ideas from calculus to new and

surprising geometric spaces. Further study by Monge and Poncelet in projective geometry analyzed the

way the world is seen. One of the most popular ideas of this time was the geometric realization of higher

dimensions as introduced by Cayley and Grassman. Finally, the creation of geometric topology by Poincar�e,

M�obius and Klein provided an entirely new view on the significance of geometric properties independent

of metric.

Each of these areas demonstrates the vitality of mathematics in the past two centuries and leads to

major research efforts in modern mathematics. Sharing these topics with students gives them hope for

the future of mathematics and helps them to appreciate the view that mathematics is unbounded in its

possibilities. Without focusing on details as much as some mathematicians believe is necessary, I give the

students in my classes a picture of these and other modern developments in mathematics.1 Hereafter I

connect nineteenth and twentieth century advances in geometry and topology to the mathematical content

of undergraduate courses. This paper also discusses my comments upon these advances in my classes.

(For more information on the history or mathematics of any of these topics, the reader is recommended to

consult [4] or [5].)

Non-Euclidean Geometry

The insights gained from the exploration of non-Euclidean geometry not only greatly expanded the objects

of study within geometry; they were a major step in changing the very nature of mathematics. Gauss

was uneasy about publicizing his work in non-Euclidean geometry because he was concerned that society

was not yet prepared for the idea that mathematics does not necessarily represent true reality, but rather
only possibility. Uneasiness with these consequences of work of Lobachevsky, Bolyai, Beltrami and Gauss
led to a backlash against intuitive reasoning. Subsequent attempts to place a rigorous foundation beneath

mathematics led to the successes of Russell and Whitehead, but also to G �odel's proof of the doomed

nature of the project from the beginning. This leads, as stated above, to the thought that mathematics

presents possibility, not absolute truth. At best, mathematics provides truth about relationships among

abstract concepts, not physical entities.

Similarly, my students are anxious about this new vision of mathematics. While I was teaching a senior

geometry course, a student revisited this historical unrest, saying to me that she found hyperbolic geometry

offensive because it is not the Euclidean geometry given by God. In each of my classes, particularly in the

senior geometry course, but also in the geometry course for preservice elementary teachers, I emphasize

that Euclidean geometry is only one option, one possible geometry. I stress that as we live on a sphere,

there is another geometry relevant on a global scale that is clearly not Euclidean. In the larger scope, there

is the open astronomical question of the shape of space: whether we live in a hyperbolic, spherical, or

Euclidean universe.

1Curiously, this tension within the mathematical community itself developed from concerns around 1900 about the need for

rigor in mathematics.
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Even in my proofs course, I emphasize the danger of moving completely toward formalism, of which

Russell and Whitehead's work was the high point. Now, their work stands as a relic in light of G �odel's

famous proof on incompleteness: any logical system complicated enough to contain exponentiation on the

natural numbers must necessarily have either unprovable statements or contradictions. Rather, I encourage

my students to struggle with the difficulties that they have with their intuition and to develop it into a

reliable guide for the possible worlds of mathematics. Furthermore, I emphasize that mathematical results

depend more upon human assumptions than on the nature of the world. Mathematics is a human creation

much more than the sciences that describe the world.

Differential Geometry

In Calculus I students focus on the geometric information of graphs of single variable functions revealed

by the calculus. In Calculus II there is some consideration of plane curves given by equations in two

variables and plane curves given by parametric equations. These ideas are the beginnings of differential

geometry and were extended by Clairaut and Lambert to consider the geometric properties of parametric

space curves. In Calculus III students begin to consider geometric properties of surfaces, examining not

only maxima and minima, but saddle points and both cylindrical and flat sections with zero curvature. As

elaborated by Gauss and Riemann, these are elementary topics in differential geometry of surfaces.

Also, Calculus III is an important time to mention that there are constraints on how maxima, minima

and saddle points balance. These are the beginnings of Morse theory and lead to the Gauss{Bonnet theorem,

which goes beyond vague ideas of curvature and Euler characteristic to address angle sum of triangles.

Calculus is an ideal place to point out that detailed graphing of functions is not the end of a graphing

program that they began in middle school, but rather the beginning of graphing more intricate curves and

surfaces than they previously had imagined.

Projective Geometry

The world that we see is very different from the idealized three-dimensional world that we imagine. In the

visual world, objects pass over one another and so-called parallel lines appear to converge. For the most

part, vision is two-dimensional with limited depth perception. This is one reason that the two-dimensional

entertainment of films and television seems so realistic. When we see a cubic box, we do not see all

six faces simultaneously, and certainly we do not see the inside of the box. These same ideas are at the

heart of projective geometry as expanded upon by such nineteenth century mathematicians as Monge,

Poncelet, Pl�ucker, and Chasles. Since we rely so heavily upon vision to maneuver in the world, it seems

that projective geometry is more descriptive of worldly experiences than is Euclidean geometry.

I mention these ideas in the elementary geometry course for preservice teachers, where they are explored

in terms of perspective not only for painting and drawing, but also for photography. In the senior geometry

course, we explore these ideas in more detail, considering that all \parallel" lines meet at a line at infinity.

Geometric Topology

The field of geometric topology was first proposed in the late nineteenth century in the seminal work of

Poincar�e and others. While many results in this field are abstract and sophisticated, there are facets that

can be understood by students of all levels. The curious properties of orientation that are evident in the

M�obius strip can be seen even by elementary school students. This generalizes to the peculiarities of the

surface of a Klein bottle, which is a surface without holes that has no well-defined interior or exterior.
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Also, my topology students learn an elementary classification of orientable surfaces that merely involves

cutting and gluing polygons, which gives some insight into the significant position that the torus holds as

the first non-spherical surface.

Another topic in geometric topology that is broadly accessible is the study of knots and links. This

exploration began after Lord Kelvin proposed a theory of classifying chemical bonds in terms of knotting

between the atoms. At that time Tait and Little began a table of knots, which was extended in the late

twentieth century to include over a million knots. Manipulating string and diagrams is a tangible activity

that makes this topic particularly appealing to students. Knot theory also features many simply stated

questions that are surprisingly difficult to answer. The most important unsolved question is simply: how

does one tell if a piece of string is knotted? [2]

I mention these studies to my preservice elementary school teachers, emphasizing the wide variety of

topics within mathematics. Many students are quite surprised that mathematics extends to such diverse

realms.

Higher Dimensions

The contemplation of higher dimensions is perhaps the most broadly disseminated new (in the past two

centuries) idea of mathematics. It is one of the primary themes of science fiction, and most people in

Western culture have had some exposure to (and some confusion with) the fourth dimension. Abbott and

Hinton set the stage in the late nineteenth century for a mystical view of higher dimensions as representing

a deeper reality. [1, 3] Mixing this with modern astrophysics that contemplates a ten- or twenty-four-

dimensional universe, it becomes clear how it has become a science fiction staple. As there is so much

public curiosity about this topic, I am eager to mention it to anyone who will listen.

Students are always interested to hear about the fourth dimension. Usually they have been exposed to

an idea of it as time, or some idea that the fourth dimension is a mystical arena. It is rewarding to explain

to them that the fourth dimension is no different than any of the first three, but that there are things that

can happen with four dimensions that are not possible with three, just as there are possibilities with three

dimensions that are not there with two.

The fourth dimension arises when modeling numbers in my elementary education classes. We use a

new dimension to model each of the place values: the units place is modeled as zero-dimensional, the

tens place as one-dimensional, the hundreds place as two dimensional, and the thousands place as three-

dimensional. There are higher places than the thousands place, so the ten-thousands place is modeled

as four-dimensional and the hundred-thousands place as five-dimensional, with no end to the number of

dimensions that we may consider.

Each of the aspects of geometry mentioned in this chapter opens up new possibilities as we move into

higher dimensions. The models of hyperbolic spaces are at times difficult to work with because they run

out of room in our limited three dimensions. The most intriguing surfaces that are discussed in differential

geometry are those that do not fit in three dimensions. Furthermore, the Klein bottle of topology does not

fit in three dimensions without intersecting itself, but easily can be placed into four dimensions without this

concern. Many topological theorems are more coherent when viewed as special cases of higher dimensional

results, much in the same way that properties of functions of the real numbers are more consistent when

viewed as a subset of the higher dimensional complex numbers. Contrarily, knotting of string vanishes as

we move to four dimensions. In this case there is so much extra space that the string can pass \over"

itself, thus unknotting. However, not all knots are eliminated in higher dimensions; there are knotted two-

dimensional spheres in four dimensions, something that is completely foreign to our three-dimensional

perspective.
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Conclusion

Most of the aforementioned topics are not central subject areas in my courses. I do not teach a course on

projective or differential geometry. I do not evaluate students on their understanding of these comments,

but I make them nonetheless in order to give students the view that there is always more to mathematics.

It is our responsibility as active mathematicians to show students that mathematics did not end in 1800

and that, in fact, much has been and continues to be done.
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The purpose of computing is insight, not numbers.
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Using 20th Century History in a

Combinatorics and Graph Theory Class

Linda E. McGuire

Muhlenberg College

Introduction

A few years ago, during the first week of the fall semester, I assigned a writing project in an upper-

division undergraduate mathematics course. The class was charged with pondering the often-asked question

\Was mathematics discovered or invented?" and then crafting a three to four page essay establishing and

supporting their personal position. Students were instructed to cite specific and appropriate historical

happenings in mathematics to argue their points.

I anticipated that the assignment would serve as an ice-breaker for the class as a whole and that I

would gain some early insight into each student's expository writing ability. While these goals were (to

some extent) achieved, I received an unexpected revelation during the course of reading these assignments.

Almost without exception, students aligned themselves firmly with the camp whose opinion is that

mathematics is a man-made invention. It was after making this assertion that the quality of most essays

deteriorated, and it became clear why almost immediately. These genuinely skilled junior and senior

mathematics majors had no working knowledge of mathematical history and, as a result, possessed no

sense of a historical context in which to search for evidence to strengthen their cases. Most bandied about

names like Euclid, Euler, Newton, Cauchy, and Riemann, but virtually no one conveyed the idea that they

truly understood how the work of these mathematicians fit into the mosaic of mathematics. Nor did they

give any indication that individuals other than the likes of the aforementioned giants practiced the art of

mathematics at all.

I was overwhelmed by the feeling that we, as an institution, had failed these students. They were

bright, hardworking, and inquisitive young people. There was no other reason for this massive gap in their

mathematical foundation except for the obvious one. Either we did not stimulate within them an interest

in the historical setting in which all of the mathematics they had been studying took place or we did not

encourage that curiosity if it did arise. Their classes, for the most part, had focused exclusively on content

and only superficially on context.

This was a painful revelation, and one that I resolved to work hard to avoid encountering again. As

I began reading papers devoted to introducing the history of mathematics into one's pedagogy, I was

heartened to find that many others in the mathematics community were hard at work trying to address

this very problem. The opinion expressed by V. Frederick Rickey in his article The Necessity of History
in Teaching Mathematics [12] closely mirrored my own feelings:
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It is not sufficient that we simply present the mathematical details. Our responsibility is much

greater. We would be derelict in our responsibilities as teachers if we presented mathematics as a

fully developed discipline, a discipline that seemingly appeared millennia ago in perfect form.

Teaching by means of utilizing historical sources has become a more prevalent instructional technique

in mathematics classes over the last several years. I teach a substantial number of calculus and analysis-

based courses and the opportunities for adopting a rich, historically based pedagogy in such classes are

ample. The passage of time has allowed a library of well-written, accessible history texts and papers to

be produced. From ancient to pre-modern times; be it Greek, Hindu, Islamic, Chinese, European, or early

American mathematics, an instructor can find any number of excellent historical sources to employ in the

classroom.

However as an applied mathematician by training and interest, I spend much of my time teaching

courses in discrete mathematics, combinatorics, graph theory, network analysis, modeling, numerical anal-

ysis and the like. A historically-driven pedagogical approach can be quite challenging when one focuses on

the more modern branches of mathematics mentioned above, where the \newness" of the discipline renders

traditionally consulted sources scarce or non-existent. Yet with the interest in applied mathematics that

students of mathematics, computer science, economics, and the physical sciences demonstrate, designing

activities through which students can gain a historical perspective of such applied topics should become a

high priority.

This treatise will describe and analyze a semester-long, historically-based research project used in an

upper division undergraduate course in combinatorics and graph theory. The assignment was constructed to

provide all students in the class with historical background pertaining to these fields, the origins of which

are primarily in the twentieth century. This description will include discussions of the nature of the project,

the quality of the research produced by the students, the innovative research techniques they employed, the

amount of intricate mathematical reading and writing that the task demanded, and the motivating element

that this assignment proved to be for the entire class. Issues involving assessment, time constraints, material

coverage, and writing difficulties will also be addressed.

Motivating Factors

The course in question was billed as a special topics course in combinatorics and graph theory. One of the

nicest aspects of offering this course in the liberal arts setting that Muhlenberg College provides is that the

class draws a varied audience. Students come to this course from major fields of study such as mathematics,

computer sciences, economics, physics, chemistry, history, and philosophy. This diversity does not come at

the expense of a certain level of mathematical sophistication as each student had successfully completed

a prerequisite course in proof technique and logical reasoning.

Early in the planning stages of this course it was decided that students would be required to complete an

extensive, semester-long research project. Several motivating factors influenced the design of that project

and, ultimately, the entire course. Chief among them was the desire on my part to increase the historical

content of the course and to test the suspicion that such a project would appeal to the mixed audience that

this class enrolls. Other issues strengthened my resolve to require this research assignment.

Contrary to published reports proclaiming that our society is becoming increasingly ahistoric, most

students when asked indicated that they wanted to see more historical information woven throughout their

mathematical course work. They bemoaned the fact that they had no sense of history where mathematics

was concerned. Most knew the names of the major players like Newton, Gauss and von Neumann, yet

these students had no sense of the context in which these men lived and worked. One of our strongest
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majors summed it up best when she said that she always felt as though she had \arrived at a play halfway

through Act I; by the time you figure out who is who and who did what, you are almost through Act III."

As is the case in many colleges and universities throughout the United States, Muhlenberg College

is dedicated to encouraging and emphasizing the \Writing Across the Curriculum" ethos. Integrating an

historically themed research project seemed like a natural way to introduce a relevant writing assign-

ment. Such an exercise had the additional appeal of requiring not only solid English exposition, but also

necessitating clear and concise mathematical descriptions and proofs of pertinent results.

Another key element in the decision to create this component of the course was the nature of the

subject matter itself. The modern, visual, and hands-on nature of subjects like combinatorics, graph theory

and computer science would stimulate students' interest in twentieth century mathematics. Also, from the

point of view of both student and professor, focusing on mathematics from the last century appeared to be

slightly less daunting than opening the flood gates and allowing topics to be taken from the entire spectrum

of mathematics.

Course Structure

Before describing the project and the results it produced in detail, some general information about the

structure of the course is in order. The set physical parameters of the course proved to be ideally con-

ducive to discussing mathematical history. The class had two, seventy-five minute meetings per week in a

classroom that possesses excellent audio-visual equipment including fast-reacting computer systems, video

capabilities, and well maintained overhead projection units.

The course itself would focus on problem solving within a framework that emphasizes the primary

themes of any combinatorics class: examining problems of existence, enumeration and optimization. Major

topics included counting techniques, game theory, recurrence relations, generating functions, basic graph

theory, matchings, planarity, traversal theory, chromatic numbers, and computer science applications. With

these general topics on the agenda, I was confident that the mathematical content of the course was such

that students would be able to find some topic they wished to explore in depth.

Project Description

The research component of the course was briefly described on the syllabus. On the second day of the

term students were presented with an outline of what the project would entail.

Each student would research the life and work of a significant figure in (predominantly) applied

mathematics with both an oral presentation and a term paper being the major elements of their required

work. At the end of the semester we would assemble a portfolio containing the work that the entire class

had produced. The names of possible subjects, partially replicated below, was distributed.

Fan Chung Graham Frank Harary Edouard Lucas

Ingrid Daubechies D. A. Huffman John McCarthy

Edsger Dijkstra Richard M. Karp John Nash

G. A. Dirac Andrei Kolmogorov John von Neumann

Paul Erdős Donald Knuth Frank Ramsey

Ronald Graham Joseph Kruskal Bertrand Russell

Richard Hamming Kasimir Kuratowski Alan Turing

While these names were mentioned to offer students ideas, they were encouraged to put forward their

own suggestions if they felt strongly about wanting to examine the work of an appropriate person not

included on this list.
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For example, one young woman came to see me to ask if she might do her project on Ren�e Descartes.

When pressed for a rationale she said that since he appeared to have solved many mathematics problems

primarily to apply those results to questions in physics, music, meteorology, and optics, he had an \applied

math" perspective. Also, he lived at a time in history that was of particular interest to her. As a philosophy

minor she was already familiar with a variety of Descartes' writings. In particular she expressed a curiosity

about his essay on the hydrostatic paradox. This paradox, stated as \the pressure exerted by a fluid does

not depend on the area at the bottom of the container but only on the height of the liquid" [13], was where

she wanted to begin her reading.

Her interest was genuine and her informed argument was well thought out, so I consented to grant her

request under two conditions. First, given the historical parameters of Descartes' lifetime, that she give

the first oral presentation of the term. Second, that she make a concerted effort to ascertain and establish

how Descartes influenced twentieth century mathematics.

Students were then given a week and a half to scout around, read about each person and formulate a

list of their top three choices. By the end of the second week of class, assignments were made allowing

for no duplicates.

The selections that the students submitted were such that it became clear that their oral presentations

could fulfill an important pedagogical purpose. I scheduled the oral presentations so that each would serve

as either an introduction to the next section of course material or as a special topic that somehow related to

current discussions. For example, students who were studying about Richard Hamming and D.A. Huffman

would give their talks immediately preceding the sections on coding. Presentations on Alan Turing, Fan

Chung Graham, and Joseph Kruskal would be sprinkled throughout the sections on graph theory. Those

topics that did not quite fit any category of course material, like reports on Ingrid Daubechies and wavelet

theory, would be inserted into the schedule between major units.

The class was informed that each of their presentations should be 25 to 30 minutes in length. The

presentation should be designed in such a way that they introduce the individual in question to the rest of

the class by means of a biographical sketch. Then they should attempt to address, to the degree possible

for each subject, the following aspects of each person's work:

1. the context, both mathematical and physical, in which their work takes/took place;

2. the implications and significance of their work;

3. how their work continues to influence other researchers;

4. when applicable, how the work of their subject tied into our course topics;

5. complete mathematical descriptions of problems whose solutions their researcher is responsible for

solving;

6. a description of at least one open problem whose origins can be traced to the subject under investigation.

This \wish list" of information gave rise to a variety of intriguing problems that the students encountered

in their research process. These issues will be discussed shortly.

The 20 to 25 page term paper associated with each project would not be due, in finalized form, until

the end of the semester. However two drafts were required at the one-third and two-third marks of the

term. This requirement ensured that no one left the project to the last minute.

Assessment

In that combinatorics contains a great deal of rich mathematical content without such a research component,

the question of appropriate assessment had to be considered early in the course planning process. Given the

often innovative reasoning and intricate problem-solving techniques that combinatorics requires, one could
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easily restrict all evaluative measures to exams and problem sets. So how should the project be woven into

an assessment paradigm? Clearly it had to carry significant weight in that the mathematical and expository

scope of the paper was extensive, and the presentation was to be an intrinsic part of the course material.

Exams would include questions based upon these presentations. On the other hand, combinatorics and

graph theory are all about problem-solving, so the exercise sets and exams were also crucial evaluative

devices. After much deliberation and revision, the following grading scheme was employed:

two in-class exams 15% each

final exam 20%

weekly problem sets 25%

term paper 15%

oral presentation 10%

This scheme proved to yield a balanced, fair assessment. No crises of conscience on my part arose.

Of note is how much of the grade was determined by the research project. Post-semester analysis showed

that, in most cases, the quality of the project closely matched the level of the student's mathematical work

in other areas of the class. In a few instances students who struggled with the problem-solving content

of the course did benefit once the project grade was included. However this did not inflate their grades

in an inappropriate or exaggerated way. The reverse scenario also materialized. There were students who

demonstrated solid mathematical skills but were not as proficient at (in particular) the writing component

of the research project. It appears that the project served to reward the student who had cultivated not only

their mathematical abilities, but also their abilities in the fields of oral and written communication and

information analysis. On the whole the projects allowed students to display and utilize all of the elements

of their education obtained within a liberal arts environment.

Pros and Cons

As is the case when implementing any new approach in the classroom, this term-long research experience

had both positive and negative consequences. Since, in my opinion, the pros far outweigh the cons, we

will consider the bad news first.

Combinatorics and graph theory are packed with excellent mathematical material. Giving over class

time to the oral presentations did reduce the amount of material we covered in class. The result was that

students had to do careful preliminary reading before class and also had to grapple with some difficult

material on their own or in groups outside of class. While this was initially a cause for concern, it proved

to be an important lesson in self-reliance for these upperclassmen. For the most part, students performed

admirably. From an instructional point of view, only two or three smaller topics had to be jettisoned due

to time constraints.

Despite my best efforts, there was often an end-of-term pile up of presentations. This can be avoided

by carefully scheduling the special topics presentations throughout the term, even if they are an apparent

digression from current discussions.

Significant research issues arose. For many students, commonly consulted sources and standard investi-

gatory techniques were of little use since the \history" they were examining was so recent. They frequently

came to my office complaining that they could not find sufficient information. While our excellent science

and history librarians proved to be invaluable resources at this juncture, the problem of inadequate or

nonexistent source material dogged many students throughout this experience. A suggestion of mine that

proved to be useful was that students try to determine if their subject had any co-authors with whom they

frequently worked. Through analyzing available information about the co-author, students often uncovered
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important facts and research leads regarding their project. To their credit, diligent students unearthed a

wealth of interesting material through clever methods of their own. Many of these approaches will be

discussed later.

In an effort to honestly acknowledge the time crunch that all academics face, I must confess that the

work involving this project took up a significant amount of my time. Reasons for this included my own

need to read up on project topics, scheduling extra office hours and consultation times to help students

interpret some of the weighty mathematics they encountered, reading and commenting on drafts, dealing

with plagiarism issues both large and small, and assembling and editing the final portfolio. I did not have

many spare moments that term. I feel that many refinements and alterations to my approach to the course

would reduce this extra workload substantially. For example, I would reduce the number of required drafts

due and, enrollment numbers permitting, allow students to work in pairs on the project.

Negative student comments on the course were of the \this class required too much work" variety.

While this was, to some degree, true this is a student comment that is difficult to interpret. It was a common

but by no means universal complaint. Frankly, had at least a handful of such comments not arisen I would
be likely to conclude that I did not challenge the class adequately.

While the negative elements described above were in evidence, they were not deterrents to the prospect

of utilizing this instructional device again. On the contrary, those obstacles were minor in the overall

scheme of things and are now merely viewed as pitfalls with regard to weaving the project into the

academic calendar that need to be anticipated and avoided. The far-reaching rewards that this project

granted to everyone in the class were easily identifiable.

Students were motivated, involved and, by necessity, well-prepared for each class meeting. Having

worked with several of these students in other courses, it became clear that their writing skills had

improved dramatically. While many struggled with designing the \script" for their presentations, most

overcame their difficulties with little intervention on my part. In particular, it was evident that they were

taking great care to understand and carefully explain the often complex mathematics they were analyzing.

The topic choices that students made generated several interesting match-ups. Some did focus on

subjects in their own areas of interest . . . a physics major researched Ingrid Daubechies and wavelets and a

computer science major studied the life and work of Donald Knuth. For each example like these, one could

find a companion case of a student studying someone seemingly well outside of their fields of interest.

There were students one would categorize as pure mathematics majors looking at figures like Hamming,

Turing, and Dijsktra, a philosophy major examining the graph theory work of Paul Erdős, a chemistry

major looking into the logical inference work of Bertrand Russell, and an economics major studying

John McCarthy and the beginnings of artificial intelligence. These pairings led to a lot of extracurricular

communication amongst the students. They helped get each other up to speed on topics in their own majors

and many worked together to analyze and interpret the mathematics being considered. This contributed

mightily to the overwhelmingly positive classroom atmosphere. Students were more supportive of, instead

of competitive with, one another. Almost everyone felt as though they had something relevant to bring to

class discussions.

It was also the case that one presentation topic often led beautifully into the next. A talk on John von

Neumann and self-replicating automata was immediately followed by a presentation on John McCarthy. The

introduction to the life and work of Frank Ramsey preceded the presentation about Paul Erdős. Students

got a sense of how these researchers influenced and inspired each other, as well as future scholars.

The research resource difficulties many students encountered were overcome in some innovative, bold

and clever ways. In that many of these researchers are still very much alive, students (on their own)

attempted to contact the people whose work they were investigating. One student included a transcript

of a conversation/interview with Joseph Kruskal as part of her report. She inquired about his young life,

inspirations, and work philosophy and he was quite gracious in his willingness to respond. Another student
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corresponded with Donald Knuth and included the letters in both his presentation and paper. Others found

relevant vitae on the web and established contact by using information found there.

While these \plusses" are worthy of mention in and of themselves, the mathematics education that

students received from this project is the primary positive result that emerged after completing this as-

signment. Students had to read not only historical sources, but mathematically dense articles as well. This

was a new and difficult experience for most of them. However, the nature and quality of the conversations

I had with these students in my office as we tried to analyze the mathematics at hand were the kind of

moments all academics hope to have with their students. They were given the chance to see good open

problems, to witness how original proofs were improved upon by subsequent mathematicians and, perhaps

most significantly, they were made privy to the problem solving techniques that distinguish mathematicians

from other types of researchers.

Students were excited by the prospect of being \historian for a day," introducing their classmates to

new information. In general, students walked away from this class with the knowledge that mathematics

is something that is actively occurring, instead of feeling as though it is something that has occurred.

Conclusion

How successful was this project from the student's perspective? Students were asked to comment exten-

sively on the project at the end of the semester and the resulting course evaluations contained comments

like:

When I started I thought it was unfair to assign a paper on topics that had few references in book

form. By the end I felt like a cross between a private investigator and a stalker. I was determined

to find out about this guy.

I'll admit that \Oh God, not another paper.. . . " was my first reaction to the research assignment.

Looking back I really think that the project was the most complete learning experience I had this

year.

While comments such as the last one are gratifying, I believe that the \complete experience" alluded

to can be attributed to a single pedagogical device. The historical presentations served to provide the

framework upon which the related mathematics the students examined was constructed. With varying

degrees of success, students obtained some context in which to place the theories being discussed. I am

convinced that this component of the course brought about the sense of \completeness" to which many

class members, in one form or another, referred. I can say in all honesty that this class was one of the

most rewarding experiences of my teaching career to date.

The first implementation of a historically-inspired pedagogy presents the instructor with numerous new

challenges. While many of these revolve around issues of front-end organization, time management and

research strategies, none of these elements are so crippling that they should negatively influence one's

decision to assign such a project. The overall results are too good, the class experience too valuable to

reject the use of such an approach. An appropriately modified model of this course will require a different

type of work on an instructors part, not necessarily more work.

I have assigned this type of project on two occasions subsequent to the one described here. In both

instances the quality of each students' research and presentation experience was excellent. However, in

these cases I put considerable effort into devising a schedule to balance material coverage and presentation

time well before the semester began. Such information was included in course syllabi to better inform

students as to when they could expect to give their presentations. This brought better structure to the
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entire course and the oral reports fit more naturally into the flow of the course. The end-of-term rush of

presentations was virtually eliminated.

Knowing what I do now about using such an assignment as a classroom construct, I would not hesitate

for a moment to continue to employ it in future classroom settings. I would encourage any of my colleagues

to do the same.
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Public Key Cryptography

Shai Simonson

Stonehill College

Introduction

When teaching mathematics to computer science students, it is natural to emphasize constructive proofs, al-

gorithms, and experimentation. Most computer science students do not have the experience with abstraction

nor the appreciation of it that mathematics students do. They do, on the other hand, think constructively and

algorithmically. Moreover, they have the programming tools to experiment with their algorithmic intuitions.

Public-key cryptographic methods are a part of every computer scientist's education. In public-key

cryptography, also called trapdoor or one-way cryptography, the encoding scheme is public, yet the decoding

scheme remains secret. This allows the secure transmission of information over the internet, which is

necessary for e-commerce. Although the mathematics is abstract, the methods are constructive and lend

themselves to understanding through programming.

The mathematics behind public-key cryptography follows a journey through number theory that starts

with Euclid, then Fermat, and continues into the late 20th century with the work of computer scientists

and mathematicians. Public-key cryptography serves as a striking example of the unexpected practical

applicability of even the purest and most abstract of mathematical subjects.

We describe the history and mathematics of cryptography in sufficient detail so the material can be

readily used in the classroom. The mathematics may be review for a professional, but it is meant as an

outline of how it might be presented to the students. \In the Classroom" notes are interspersed throughout

in order to highlight exactly what we personally have tried in the classroom, and how well it worked. The

use of history is primarily for context and for interest. There are great stories to tell, and the results are

better appreciated in context. Plenty of references are given for those who would like to extend our work

and design their own labs.

The material presented here was taught in a learning-community course at Stonehill College [5].
The course is a three-way collaborative of three courses: Discrete Mathematics, Data Structures, and

Mathematical Experiments in Computer Science. Students register for all three courses. The first two

courses are standard lecture and discussion. The third course is a closed lab: a scheduled time when
students work on specially prepared laboratory assignments and interact with the computer in order to

discover solutions and principles. The course has five 3-week units, one of which is Cryptography. In

each unit: the first week is spent analyzing, proving theorems, and writing programs; the second week

is spent using the programs and theorems of the first week for experimenting and exploring; and the

third week is used for \enrichment", which usually means videos, stories, and related material of a lighter

nature. The course is interactive, with only short impromptu lectures during which we can react on the

109
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spot to the student's questions and experiments. The labs appear at the Stonehill College computer science

department's website [24].

A Motivating Puzzle

In the 1995 movie Die Hard: With a Vengeance (aka Die Hard III), Bruce Willis and Samuel L. Jackson
play a bomber's deadly game as they race around New York trying to prevent explosions. In order to stop

one explosion, they need to solve the following puzzle:

Provided with an unlimited water supply, a 5-gallon jug, and a 3-gallon jug, measure out precisely

4 gallons, by filling and emptying the jugs. (See photo in Figure 1).

This image was removed since we were unable to get
permission to use it in the electronic version of the book.

Figure 1. Bruce Willis and Samuel L. Jackson solving a mathematical puzzle.

This puzzle is useful for studying public-key cryptography, because the solution embodies the two

major related number-theoretic results: Euclid's algorithm and Fermat's Little Theorem. Of course this

puzzle was not invented for this movie. Most references attribute the puzzle and its variations to Tartaglia

[29], but the earliest known version of the problem occurs in the Annales Stadenses compiled by Abbot
Albert of the convent of the Blessed Virgin Mary in Stade. Stade is a small city on the west side of the

Elbe estuary a bit downriver from Hamburg.  The date of compilation is uncertain, but seems to be 1240

[27]. The puzzle is also discussed in detail at the wonderful educational mathematics site created by Alex

Bogolmony [4]. Bogolmony retells the story of how the famous French mathematician Simeon Poisson

(1781-1840) was pressured against his will by his father to study medicine. Poisson stumbled upon the

puzzle, solved it, and decided to abandon medicine in favor of mathematics.

In the Classroom: The Poisson story allows us to digress and discuss what kinds of mathematics

are inspiring to what kinds of people. We wonder whether there are any budding mathematicians

who are inspired by viewing Die Hard III.
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A Solution to the Puzzle

When solving this puzzle, it doesn't take the students long to realize that the only thing worth doing is

to repeatedly pour one container into the other, emptying the second container when it gets filled. For

example, to solve the case presented in the movie, where 3-gallon and 5-gallon jugs must be used to

measure out four gallons, we fill the 3-gallon jug, pour it into the 5-gallon jug, fill 3 again, pour it into 5,

empty 5, finish pouring 3 into 5, yielding 1 gallon in the 5-gallon jug, fill 3 once again, and pour into 5,

yielding four gallons. In this way, we could cycle through the following values in the 5-gallon jug: 3, 1,

4, 2, and 0. One could also pour in the opposite direction. That is, from the 5-gallon into the 3-gallon jug,

giving the cycle of values: 2, 4, 1, 3, and 0. The students discover that every value modulo 5 is obtainable

and that the two cycles are the reverse of each other.

In the Classroom: We screen the scene in the movie and compare it to the solution the class

discovered on its own. Afterwards, we try to solve the problem in its general form given jugs of

sizes a and b. We do this with an informal class discussion, allowing the class to follow dead ends

up to a point, and eventually coming to some conclusions.

Using Programs to Experiment and Understand

Gerry Sussman, one of the authors of the award winning text Structure and Interpretation of Computer
Programs, once explained [28] that one grasps a mathematical idea if and only if one is able to write a
program to illustrate it.

In the Classroom: In our closed labs, the students write a program to generate possible values for

the quantities in the jugs. The programming is used to reveal and reinforce an understanding of

this puzzle. It is an exercise that supports Sussman's hypothesis.

When the students write a program to generate the cycles, it becomes clear that the sequence of values

obtained by repeatedly pouring 3 into 5, is simply the successive multiples of 3 modulo 5:

1 � 3 mod 5 D 3

2 � 3 mod 5 D 1

3 � 3 mod 5 D 4

4 � 3 mod 5 D 2

5 � 3 mod 5 D 0

The students notice that if x appears in this cycle then x D 3u � 5v, for some u and v. For example,

when measuring four gallons with 3-gallon and 5-gallon jugs, we calculate: 4 D 3 � 3 � 5 � 1.

The students look at another example. If the jugs held 17 and 7 gallons then the cycle would be: 7,

14, 4, 11, 1, 8, 15, 5, 12, 2, 9, 16, 6, 13, 3, 10, 0. Because 1 is the fifth number in the list, 7 � 5 D 1

mod 17, and 1 D 7 � 5 � 17 � 2. Naturally then:

2 D 7 � 10 � 17 � 4

3 D 7 � 15 � 17 � 6

4 D 7 � 20 � 17 � 8
:::

Therefore, after they can calculate 1, they can also calculate the rest of the numbers by using multiples

of the values used for 1. Looking at the cycle, the numbers 1 through 16 can be counted in order, by
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starting with 1 and moving five to the right each time, cycling around when you hit the end of the list. In

general, given two jugs of sizes a and b, a > b, the values that can be obtained are the values between 0

and a that are multiples of the smallest positive value that can be obtained.

What is this smallest number that can be obtained from pouring water back and forth between jugs of

sizes a and b? In other words, given a and b, a > b > 0, how can we find the smallest positive integer

x such that au C bv D x?, where u and v are integers.

Euclid's algorithm gives the answer: x D gcd.a; b/, the greatest common divisor of a and b. Hence, a

complete solution to the two jug puzzle for sizes a and b, a > b, is that we can measure all multiples of

the greatest common divisor of a and b. In particular, when a and b are relatively prime, all values less

than or equal to a can be obtained.

Euclid's Algorithm

The students' first stop in mathematical history is Euclid. Euclid's method provides a fast recursive

algorithm, given a and b, to calculate u and v, such that au C bv D gcd.a; b/. Euclid's algorithm is

described in The Elements, Book VII, Proposition 2 [13].

To find the greatest common measure of two given numbers. . . Let AB and CD be the two given numbers
not relatively prime. It is required to find the greatest common measure of AB and CD. If now CD measures
AB, since it also measures itself, then CD is a common measure of CD and AB. And it is manifest that it
is also the greatest, for no greater number than CD measures CD. But, if CD does not measure AB, then,
when the less of the numbers AB and CD being continually subtracted from the greater, some number is
left which measures the one before it. . .

In the Classroom: We take this opportunity to briefly discuss Euclid's Elements and its place in

the history of mathematics. We also spend some time discussing Euclid's style of writing and in

particular the absence of any algebra or modern notation. Eventually, we interpret the paragraph

above well enough to deduce the famous algorithm, that given a > b, gcd.a; b/ can be computed

recursively as follows: gcd.a; b/: if b divides a then return .b/ else return .gcd.b; a mod b//.

The students try some examples. For 28 and 123, the tail recursive algorithm (tail recursion means

that the recursion does nothing on the way back but pass the result upwards) computes: gcd.123; 28/ D
gcd.28; 11/ D gcd.11; 6/ D gcd.6; 5/ D gcd.5; 1/ D 1.

Working backwards the students recursively calculate u and v such that 123u C 28v D 1. We start

at the penultimate recursive call by calculating a linear combination of 6 and 5 that equals the greatest

common divisor:

(A) 1 D 6 � 1 � 5.

Now, using 5 D 11 � 1 � 6, and substituting for 5 in equation (A) gives:

(B) 1 D 6 � 1 � .11 � 1 � 6/ D 2 � 6 � 1 � 11.

Continuing backwards, using 6 D 28 � 2 � 11, and substituting for 6 in equation (B), we get:

(C) 1 D 2.28 � 2 � 11/ � 1 � 11 D 2 � 28 � 5 � 11.

Similarly, using 11 D 123 � 4 � 28, and substituting for 11 in equation (C), we get:

(D) 1 D 2 � 28 � 5 � .123 � 4 � 28/ D 22 � 28 � 5 � 123.

Euclid's Algorithm Extended

This idea can be used to extend Euclid's algorithm, so that given a > b, the algorithm below, Calcula-

teUV(a,b), calculates u and v, such that au C bv D gcd.a; b/. This algorithm is not tail recursive, and
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the results are changed as they are passed back up. Note that the division is integer division, and truncates

the remainder.

CalculateUV(a; b):

if a mod b D gcd.a; b/ then return .u; v/ D .1; �a=b/.

else let .u0; v0/ D CalculateUV(b; a mod b), and return .v0; u0
� .a=b/v0/.

In the last example, when a D 123 and b D 28: CalculateUV(123, 28) calls CalculateUV(28, 11),

which calls CalculateUV(11, 6), which calls CalculateUV(6,5), which returns .1; �1/.

Winding back from the recursion: CalculateUV(11, 6) returns .�1; 1 � 1 � .�1// D .�1; 2/. Calcula-

teUV(28, 11) returns .2; �1�2�2/ D .2; �5/. CalculateUV(123, 28) returns .�5; 2�4�.�5// D .�5; 22/.

This means that gcd.123; 28/ D 123 � .�5/ C 28 � 22 D 1.

In the Classroom: As short as this algorithm may be, we find that students always have some

trouble remembering exactly how to do the calculations. In order to make the idea more concrete,

they are asked to code the algorithm, and to print out and interpret the values at each level of

recursion.

The Complexity of Euclid's Algorithm

The following brief discussion regarding the time complexity of Euclid's algorithm will be important later

when we talk about public key cryptography. Euclid's algorithm is usually not taught to middle school

children, perhaps because the reason why it works is not obvious, or perhaps because for small numbers

other methods seem more intuitive, simpler, and faster. Here are two intuitive methods for calculating

greatest common divisors that are usually found in middle school textbooks.
Given a > b, gcd.a; b/ can also be computed by:

1. Factoring: Factor a and b into prime factors, and take the intersection of the prime factors.

2. Brute Force: Try all the numbers from b down to 1, and return the first one that divides both a and b

evenly.

Of course, middle school children should learn how to factor, and should understand why these two

methods work. From that point of view, these algorithms are worth teaching; however, both algorithms

have a horribly large time complexity. The time complexity of the first algorithm is proportional to the

size of a C b, and that of the second is proportional to the size of b.

In contrast, Euclid's algorithm is very fast. Gabrielle Lam�e (1795{1870), using Fibonacci numbers,

proved that the complexity of Euclid's algorithm, including the extended version CalculateUV, is propor-

tional to the number of digits in b [23]. This time complexity is exponentially faster than the middle

school algorithms described in the last paragraph! On 100-digit numbers, the two slow algorithms will

take hundreds of centuries even on the world's fastest computer, while Euclid's algorithm will appear to

work instantaneously even on the hand-me-down PCs often donated to middle schools!

In the Classroom: Students write programs for the greatest common divisor in three different

ways. Sure, one way would be enough, and the right way is Euclid's simple recursive formula.
However, by doing it the other two ways, we introduce a side lesson about computational complexity,

which parallels the discussion of the complexity for factoring that is so crucial later on. Simple

measurements are done to illustrate the speed differences between these algorithms. We focus on

the preoccupation that theoretical computer scientists have had with exponential versus polynomial

time complexity since the beginnings of computational complexity in the 1960s [10].
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Fermat's Little Theorem

The next stop through mathematical history that relates to modern cryptography is Fermat's Little Theorem,

not to be confused with Fermat's Last Theorem. Fermat's Little Theorem was stated in a letter from Fermat

to the amateur mathematician Frenicle de Bessy (1605{1675) dated October 18, 1640.

Fermat's Little Theorem Let p be a prime that does not divide the integer a, then a p�1 D 1 mod p.

Fermat wrote \I would send you the demonstration, if I did not fear its being too long"[19]. Frenicle

de Bessy was an excellent amateur mathematician but not the equal of Fermat, and he was not able to

provide a proof. He wrote angrily to Fermat and although Fermat gave more details in his reply, Frenicle

de Bessy felt that Fermat was teasing him. Bessy was able to solve many other problems posed to him by

Fermat, but it was Euler who first published a proof of Fermat's Little Theorem in 1736.

In the Classroom: As with Euclid, we spend a brief time reviewing the life and influence of

Fermat. We emphasize how Fermat published almost nothing in his lifetime, and gave no systematic

explanation of his methods. Instead, he left his results on the margins of works that he had read

and annotated, or in letters to mathematicians of his day. He almost always described his results

without proof, leaving the details of the proofs to other mathematicians, who usually supplied them.

We make sure the class knows about the famous Last Theorem, and contrast it with Fermat's Little

Theorem which is less famous but more applicable. One interesting note is that the same Gabrielle

Lam�e, who proved the logarithmic complexity of Euclid's algorithm, also proved the special case

of Fermat's Last Theorem when n D 7. For both Fermat and Euclid, there are dozens of good

references, and the reader can follow the lists in [16].

Euler's proof, essentially identical to an unpublished version by Leibniz around 1680, can be understood

and motivated by the same water jug puzzle that helped us with Euclid. Consider again the case of a 17-

gallon jug and a 7-gallon jug. The sequence of quantities that end up in the 17-gallon jug as we repeatedly

fill and empty the 7-gallon jug into it is: 7, 14, 4, 11, 1, 8, 15, 5, 12, 2, 9, 16, 6, 13, 3, 10, 0.

In the Classroom: Students use the program they wrote earlier that generates the successive possible

values for the quantities in the jugs, and experiment to see what happens when the sizes of the two

jugs are relatively prime versus when they are not. Examples and special cases are always helpful

when trying to motivate the statement and proof of a theorem.

The students notice how the 16 multiples of 7 are all distinct modulo 17. This would be true for any

pair of relatively prime numbers a and p. If any two of the p � 1 multiples of a were equal modulo p,

then their difference, call it ax, would be divisible by p. However, p does not divide ax. By assumption,

p does not divide a, and p does not divide x because x is less than p. Hence p does not divide ax,

because:

Euclid (VII.30) : If two numbers, multiplied by one another make some number, and any prime
number measures the product, then it also measures one of the original numbers.

Now if the p�1 multiples of a are all distinct modulo p then their product, a�2a�3a�� � ��.p�1/a

equals the product 1�2�� � �� .p �1/, modulo p. Fermat's Little Theorem follows by dividing both sides

of the equality by 1 � 2 � � � � � .p � 1/. With the proof of Fermat's Little Theorem in hand, we are ready

to study public-key cryptography.
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Cryptography: A Brief History

The history of cryptography covers thousands of years with dozens of interesting stories [14, 25], including:

� The story of Lysander of Sparta in 404 B.C. who decoded a message written on a belt by winding the
belt around a wooden staff, and reading the letters that appeared adjacent to each other, (see Figure 2).

He learned that Persia was planning an attack, and he was able to thwart the attack.

Figure 2. Lysander Decoding the Transposition Code

� The story of Mary, Queen of Scots, who was executed after her encoded correspondence regarding her
plan to murder Queen Elizabeth I was intercepted and decoded.

� The strange story of the Beale Ciphers, describing the hidden location of a fortune in gold, buried
somewhere in Virginia in the nineteenth century and still not found.

� The cracking of German codes by Alan Turing in Bletchley Park, England, during World War II. This
story is brought to life by Sir Derek Jacobi in the Broadway play and later PBS TV special Breaking
the Code.

A complete history of cryptography is beyond our scope here, and the reader is referred to [14, 25].

We will review only enough of cryptographic history to give context to the work of Rivest, Shamir, and

Adelman [21].

In the Classroom: These stories are all very colorful and fun. They catch the interest of the class,

who are about to get hit with some much less colorful and more difficult mathematics.

The code of Lysander was a transposition code where the letters transmitted were correct but scrambled
out of order. The winding of the belt put them back in order. Modern cryptographic methods are all

substitution ciphers in which letters or numbers are replaced by other letters or numbers.
One of the oldest substitution ciphers is called the Caesar cipher, invented by the Roman Emperor

Julius Caesar. Caesar's method is similar to the decoder rings given away in cereal boxes in the 1960s

(see Figure 3).

The alphabet is rotated by some number of letters, so for example if we rotate five places, \a" becomes

\f," \b" becomes \g",. . . , and finally \z" becomes \e," wrapping all the way around. The substitutions

for this rotation (call it the \f-shift") are shown below:

a b c d e f g h i j k l m n o p q r s t u v w x y z

f g h i j k l m n o p q r s t u v w x y z a b c d e

For example, Caesar's famous phrase \veni vidi vici" (\I came I saw I conquered") would read \ajsn

anin anhn" using the f-shift. Actually, Caesar himself was partial to the c-shift. A codebreaker only has to

try 25 possibilities to break an encoding like this. By translating the message 25 times using the reverse
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Figure 3. Ovaltine Nostalgia Decoder Ring

of each possible letter shift, until one translation looks like a real message, he will eventually find the real

message.

A better substitution method that is much more difficult to decode is called the Vigen �ere Cipher. Blaise

de Vigen�ere (1523{1596), from the court of Henry III described his method in a book titled A Treatise on

Secret Writing. Vigen�ere was also known for his 1578 rationalist treatise debunking superstitions about

comets. \In this little book various statements regarding comets as signs of wrath or causes of evils are

given, and then followed by a very gentle and quiet discussion, usually tending to develop that healthful

skepticism which is the parent of investigation." [31]

The Vigen�ere cipher is an example of a polyalphabetic substitution cipher, in which each subsequent

letter uses a different shift. After a while these shifts cycle. The sequence of shifts is represented by a

codeword consisting of letter shifts. For example, if the codeword is \remarkable", then the first letter of

the message would shift by 17, the second letter by 4,. . . , the 7th letter by 0, etc. The 11th letter would

shift by 17 again like the first and the cycle would repeat.

For example, using the codeword \remarkable," the sentence \we meet in new york for a rendezvous"

would be encoded as \ni yevd io yin carb pos l vvrpeqfovd." Note that spaces between words are not

actually transmitted or encoded. For a codeword like \remarkable" of length ten, there are 2610 different

possible encodings. The longer the codeword, the more possibilities there are.

In the Classroom: Students write a program that encodes and decodes a Vigen�ere cipher. The

program takes plaintext along with a codeword and produces encrypted text. In this exercise as

well as others that follow, we have the students compete against each other by creating messages

for each other to decode. This is a lot of fun, and the students love it.

Breaking the Vigen�ere Cipher: Determining the Length of the Codeword

The first step in breaking a Vigen�ere cipher is to determine the length of the codeword. There are a number

of ad hoc ways of doing this including the work of Kasiski (1863) and Kerckhoff (1883). The former

searches for commonly recurring bigrams (two letter combinations) that might encode words like \me" or
\it," hoping that the distances between repeated occurrences will be the length of the codeword. The latter
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tries different lengths, groups the letters into disjoint sets each of which contains letters that use the same

substitution, and sees if the sorted frequencies of the encoded letters match the sorted expected English

frequencies. This latter method also suggests guesses of the actual key word. However, neither of these

methods is as reliable as the more systematic method of Philip Friedman published in 1922 [8].

Friedman's ingenious method to determine the length of the codeword is described by David Kahn

[14] as \the most important single publication in cryptology." Friedman defines the index of coincidence,
a statistical measure of text, that for normal English is about 6.6%, but for a random collection of letters

is only about 3.8%. He uses this measurement to calculate the length of the codeword.

To determine the index of coincidence of a particular piece of text, take the text, rotate it by some

random number of places, and write the rotated text underneath the original text. For example, the sentence

below is rotated by 58 characters and the rotated version appears beneath it.

alanturingbreakscodeslikenobodysbusinessbuthispersonallifesadlybecameeverybodysbusiness

dysbusinessbuthispersonallifesadlybecameeverybodysbusinessalanturingbreakscodeslikenobo

The index of coincidence is the number of places in which the same letter occurs in both strings of

text. In this example, there are 6 coincidences for 87 characters of text, a rate of 6.9% and close to the

6.6% of normal English text. An important point to notice is that when a text is encrypted with a Caesar

cipher, where every letter is shifted by the same value, the index of coincidence remains constant.

For a Vigen�ere encryption, we would expect to see an index of coincidence more like the 3.8% of

random letters, unless we happen to have rotated by a multiple of the Vigen�ere cycle length. In the case
where the rotation is a multiple of the cycle length, the letters that are lined up underneath each other are

encoded using the same shift, and the usual English index of coincidence would be expected, because the

index of coincidence is invariant under a Caesar cipher. Hence the way to determine the Vigen�ere cycle

length is to rotate the encrypted text by 1, 2, 3, etc. symbols, until we see an index of coincidence that

looks more like 6.6% than 3.8%.

The Vigen�ere cipher itself did not catch on, but variations of it did, including the Gronsfeld cipher,

(which is essentially a Vigen�ere cipher with a codeword of digits), and the more complex ciphers of the

Germans during World War II. Until the work of Kasiski, Kerkehoff, and later Friedman, the Vigen�ere

cipher and its variants, were for 300 years considered unbreakable, especially if long codewords were used

and short messages were encoded.

In the Classroom: Students write a program using Friedman's technique to determine the cycle

lengths of messages encrypted with different codewords. Seeing the correct percentage pop up is

perhaps the best way to appreciate Friedman's amazing contribution to code breaking.

Breaking the Vigen�ere Cipher Given the Length of the Codeword

Once one knows the length of the cycle, 10 for the \remarkable" example, there are a number of techniques

for breaking the code without having to try all the possibilities. One idea is to divide the letters of the

encoded message up into 10 groups, one for each shift in the cycle. The 1st, 11th, 21st, etc. make the

first group. The 2nd, 22nd, 32nd, etc. make the second group. And so on. The letters in each group are

encoded using the same shift. This method is very much like Kerckhoff's method but without having to

guess the length of the codeword.

We try to decode the letters a group at a time. For each group, we try all 26 possible shifts, but since

the letters in each group are scattered throughout the message, we are unlikely to learn anything by doing

this. The chance of the partially decoded message looking familiar will be very small.

Nevertheless, there is a way to learn something about the message. Every language has a characteristic

statistical frequency for each letter. For example, in English the letter \e" is the most frequently used letter.
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For a given group, we compare the frequencies of the letters in each of the 26 decodings to the expected

frequencies. Matching the two sets of frequencies helps identify the shift or at least narrows down the

number of possibilities from 26 to just a few. Of course this method requires a large text sample.

In the Classroom: We have not yet designed a lab to experiment with this method. It requires a

linear least squares regression and our students have not yet studied this in their math classes.

Instead, we have the students design more ad hoc methods for guessing the letters, which allow

for computer-human cooperation. These methods force the students to be creative and unique. The

methods are also true to the history of breaking codes. The kind of programming that went on at

Bletchley Park during World War II was exactly this ad hoc style of combining analytical methods

with practical necessity. It was the combined power of machine and human problem solving that

ultimately cracked the German codes.

In World War II, the Germans used an encoding scheme similar to the Vigen�ere cipher but more

complex. They used a machine to generate the letter substitutions, and the cycles were extremely long. The

machine the Germans used was called the Enigma. An online simulator of such a machine can be found

at [6]. Breaking Nazi codes required the sophisticated computer-aided decoding effort led by Alan Turing.

The important thing to note about the Vigen�ere Cipher and all its variants is that if one knows the
encoding method (via espionage for example), then the decoding is trivial. At first thought, a kind of

encryption where the encoding method is not easily reversible might appear impossible. However, if such

a scheme were possible, then even if the encoding method were to fall into the wrong hands, the enemy

could still not easily decode messages! Now we are ready to jump ahead to the late twentieth century to

the work of Rivest, Shamir and Adelman.

Public Key Cryptography: The RSA Breakthrough of 1978

Cryptographic methods do not have to be reversible! Today a new kind of encoding is used which is called

public-key cryptography (or one-way, or trapdoor). With this new method, the whole world is able to
encode messages, but unless Sam Hacker has more information, he still cannot decode a message.

This new method is what allows e-commerce to flourish without fear of a security breach. Suppose

I want to send my credit card number to Amazon.com. I encode my number with a publicly published

method that anyone else could use called the public key, but only Amazon.com can decode it because only
they have the private key!

Authentication

What if I don't trust that I am actually talking to Amazon.com? That is, I suspect that Sam Hacker posing

as Amazon, sent me a fake public key, and that he is planning to decode my reply with his own private

key and get my credit card number! In that case, we do the process in reverse. I ask Amazon to send me

a message encoded with their private key. If I decode their message with their public key and it states,

\Hi I am Amazon.com", I know that the message had to come from Amazon.com, because nobody else

would have known how to encode it correctly. This is called authentication and is described in nice detail

by VeriSign, the largest digital signature provider [30].

The students often wonder what prevents Sam Hacker from using Amazon's private signature. After

all, everyone who decodes \Hi I am Amazon.Com" knows what those characters look like before they

are decoded. Sam could decode their signature just like anyone does, and start signing messages with

it! This is a serious problem. The solution is to run the whole message sent by Amazon through a hash
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function|and then encode the result of the hash function with Amazon's private key. (A hash function

H is a function that takes a message M of any size and computes H.M/ a fixed size output, with the

property that it is computationally infeasible to find another message N , where H.N / D H.M/.) Then

all Sam could do is retransmit the very same message Amazon meant to send, but he could not send his

own messages with Amazon's signature.

Another objection often arises in class: How do we know that the public key of Amazon is correct?

Perhaps an adversary has published fake Amazon.com public keys all over the Internet. The solution is to

have a company like VeriSign guarantee the authenticity of Amazon's public key by the same process. Of

course someone could pretend they are VeriSign, but that is hard to do since VeriSign's raison d'être is to

make sure that nobody masquerades as them. Their business depends on it.

The Mathematics Behind Public Key Cryptography

How do we construct and use these private and public keys? Interestingly, the method is based on number

theory, one of the oldest branches of pure mathematics, more famous for its beauty and elegance than its

practical applications.

We start by describing a simple version of the Rivest, Shamir, and Adelman (RSA) algorithm that is not
public-key cryptography because the private key can be computed from the public key using the Extended

Euclid's Algorithm described earlier. This simpler version isolates the main ideas from the public-key part,

and helps one better appreciate the contribution of RSA.

Public key cryptographic methods encode integers into integers, so we assume that our messages are

first converted somehow to a sequence of integers. The exact method of conversion uses hash functions

and is not trivial but that won't concern us here.

To encode a number, we will need the public key. This consists of two integers, for example 5 and
17. The second integer must be prime, and the first must be relatively prime to the second integer minus

1. In this case, 17 is prime, and 5 is relatively prime to 16.

For example, to encode 6 using this key, we calculate 65 mod 17. You can check that this equals 7.

To decode 7 back into 6, a brute force approach requires trying all possible values from 0 to 16 to see

which one would encode into 6. This is computationally prohibitive when the prime has 40 or more digits.

However, we can decode quickly if we calculate the private key. The private key also consists of two

numbers, one of which is part of the public key, namely the prime 17, and one of which is private, in this

case 13. To decode, we calculate 713 mod 17, which you can verify equals 6.

How is the private key, 13 in our example, calculated? It is the solution to the equation 5u D 1

mod 16. This solution can be computed efficiently with Euclid's Extended Algorithm, by finding u and v

such that 5u C 16v D gcd.5; 16/ D 1.

Why does the private key decode correctly? In our example, why does 65.13/ mod 17 D 6 mod 17? It

all comes down to Fermat's Little Theorem. Fermat's Little Theorem implies that 616 D 1 mod 17. Since

5.13/ D 1 mod 16, we can write 5.13/ D 16.4/ C 1. Thus 65.13/ D 616.4/C1. Finally, since 616 D 1

mod 17, 616.4/C1 D 6 mod 17.

In the Classroom: We have found that isolating the RSA idea from the part that requires the

factoring enables students to more easily understand the algorithm. Furthermore, there is some

historical justification for this pedagogy because the results were discovered in this layered way.

The RSA Algorithm

The real RSA algorithm is very similar to the algorithm described in the previous few paragraphs with

one important difference: with the real RSA it is not easy to compute the private key from the public key.
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This time we start with two prime numbers, p and q, say 2 and 17, and compute their product pq D 34.

We calculate .p � 1/.q � 1/ D 16, and then choose a value that has no common factors with 16, let's try

5. The public key becomes the pair of numbers 34 and 5.

The encoding and decoding is done just like before. For example, to encode 6, we compute 65

mod 34 D 24, and to decode 24 we compute 2413 mod 34 D 6. As before, 13 is the solution to the

equation 5u D 1 mod 16.

The difference between the real RSA idea and our first attempt is that previously 16 was calculated

simply by subtracting 1 from the common public prime. The equation, 5u D 1 mod 16, was then solved

by Euclid's Extended Algorithm. But now the only way to calculate 16 is to factor the number 34 into

2 and 17 and compute .2 � 1/ � .17 � 1/. And the factoring part is hard! Nobody knows how to factor

numbers quickly. The best methods are exponentially slower than the time complexity of the Extended

Euclid's Algorithm.

Of course, anybody can factor 34, but in practice the two primes that are chosen for the public key

are on the order of 100 digits each. This makes all currently known factoring algorithms take years. If you

come up with an efficient algorithm that can factor numbers, you will be famous!

In the Classroom: Students write programs to encode integers using the RSA algorithm. As with the

Vigen�ere cipher, they compete by trying to break each other's codes. The importance of choosing

large enough prime numbers comes to life, as otherwise their messages are easily cracked. As the

large prime factors defeat the cracking attempts, the students appreciate first hand just why it is

safe to send a credit card number over the internet.

The Problem of Factoring

What makes the RSA algorithm a one-way, or trapdoor method, is that decoding requires factoring, and
encoding does not. There is currently no better way to factor an integer n than to try all possible prime

factors, up to
p

n. This is an exponential time algorithm. At first, a lot of students mistakenly think that this

is a polynomial time algorithm, because the process takes about
p

n operations for an integer n. However,

computer scientists naturally measure time complexity as a function of the size of the input, and the size
of an integer n is the number of bits it takes to store the integer, which is proportional to logn. Letting

m D logn, the best factoring algorithm takes time proportional to 2m=2 operations.

Is there a faster way to factor numbers? There is, after all, no proof that factoring is inherently hard.

The problem of factoring is not even known to be NP-Complete. Perhaps one day someone will come up

with a polynomial time factoring algorithm.

In 2002, a trio of Indian computer scientists, Agrawal, Kayal, and Saxena invented a polynomial time

algorithm [1] to determine whether or not a number is prime. Let m be the number of bits representing the

number to be factored. Their algorithm runs in time proportional to m12 . This was a huge breakthrough,

since up until then the best result wasm c log logm discovered in 1983 [20]. This latter result is not polynomial

in m because of the log logm factor in the exponent.

For determining whether or not an integer is prime, it is possible that the exponential time algorithm,

mc log logm, will run faster than the provably polynomial time algorithm, m12 , but that is a question of

engineering. Even though log logm is theoretically not a constant, it is less than 4 for all input sizes

currently being used for secure message transmission, and less than 10 for all input sizes ever likely to

be used. A joke from Carl Pomerance [20] summarizes \that although it has been proved that log logm

tends to infinity with m, it has never been observed doing so." Nevertheless, from the complexity theorists'

point of view, the polynomial time breakthrough of Agrawal, Kayal, and Saxena [1] is a milestone in the

way the 4-minute mile was. It opens possibilities, debunks impossible barriers, and confirms what most

thought would be true and what some suspected would not.
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This breakthrough in the complexity for determining whether a number is prime or composite is

reminiscent historically of the 1980s breakthrough in linear programming. Linear programming is an

optimization problem that is used in all sorts of practical situations, such as determining the best way to

schedule airline flights so as to minimize costs and maximize profits. The simplex algorithm of Dantzig

(1947) had been used for years to successfully solve linear programming problems, despite its theoretical

worst-case exponential time complexity. In practice, the exponential time behavior was not observed,

although theoretically it was not clear why this was the case. Then in 1979 [17], a polynomial time

algorithm was invented. It took another breakthrough in 1984 [15] and years of software engineering and

testing before this polynomial time algorithm was competitive with the exponential time simplex algorithm.

Complexity theory, a 20th century field of study, has a long way to go before it completely models practical

computer science problems.

In the Classroom: This historical parallel between linear programming and factoring makes an

impression on the students. They are often suspicious of theory and its practical uses. Although

there are plenty of examples to show them the applicability of theory in computer science, here we

show them examples where the theory is weak! They learn that the critique of theory in science is

a historical process that forces the theory to improve.

Can this new breakthrough for determining whether or not a number is prime be used to help factor

numbers quickly? Not yet as far as anyone knows, and most people suspect it cannot. However, in

many cases, including the well-known Traveling Salesman Problem, the decision version of a problem is
polynomially related to the optimization version. [10]. That is, if you can decide whether or not something
is possible, then you can also figure how to do it. If this were the case for factoring, then a polynomial

time algorithm for deciding whether or not a number is prime would hint at a polynomial time algorithm

for determining the factors.

In the Classroom: The students learn where the history of this research is heading and what

problems are still open. Examples of problems where the decision and optimization versions are

not polynomially related is rare. It seems that this may be the case for factoring. When will we
know?

Research on new cryptographic methods continues simultaneously with research on breaking the cur-

rent codes. There are long-term strategies, like quantum computing and DNA computing, and short-term

strategies using conventional computing. In all cases, mathematics will no doubt play a central role. In the

meantime, e-commerce is still on secure ground.

In the Classroom: Quantum computing and DNA computing are very new fields that try to deal

with the fundamental intractability that is inherent in hundreds of NP-Complete problems. They

represent two parallel paths of future work that may or may not bear fruit. They are difficult fields

but could be used to design labs, although we have not yet attempted to do this. The interested

reader should consult [9].

Cryptographic Decoding Challenges for Practice and Review

In the Classroom: In our labs, we not only have the students compete against each other by designing

and cracking each other's codes, but also by seeing who can first decode messages that we created.

There are usually cash prizes where the amount is proportional to the level of difficulty. The

Vigen�ere ciphers pay more when we do not tell the students the length of the codeword. Here are

some examples:
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Historical Notes on RSA Encryption

Ron Rivest [22] was kind enough to share with me his own recollections of the RSA discovery and his thoughts about

the future directions of cryptography. Rivest credits the original motivation for the RSA work to the 1976 seminal

ground-breaking paper \New Directions in Cryptography" by Diffie and Hellman [7]. The paper explains how two

users can exchange a secret key over an insecure medium without any prior secrets. The challenge of public-key

cryptography was directly proposed in this paper, and was brought to the attention of Rivest by a graduate student.

Rivest, Shamir, and Adelman were assistant professors at MIT at the time, Rivest in computer science, Shamir and

Adelman in mathematics. The departments in MIT overlap through the many independent research labs, and the

three colleagues collaborated at LCS, the lab for computer science.

The three tried a number of unsuccessful approaches, including a method using the knapsack problem as a way to

thwart the bad guys. I suggested that it was ironic that the approach using knapsack, a known NP-Complete problem,
failed, while the approach using factoring, a problem not known to be NP-Complete, succeeded. Rivest responded

that NP-complete problems often have many different solutions, and for the purposes of public key cryptography, it

is easier to work with factoring which has a unique solution.

Rivest is not currently working on the complexity of factoring, although he continues to work on new applications

in cryptography related to internet voting and to radio frequency ID tags. When I asked him whether he believed

that factoring was provably hard, he responded \I have a built-in bias in favor of hoping that factoring is hard, but

to prove lower bounds for factoring|we'll need something a bit different than NP-completeness." Rivest does not

expect that the new polynomial decision algorithm for prime numbers will yield a better factoring algorithm, but he

is willing to be surprised. \I'm always in favor of the truth."

Did Rivest realize the broad applications and notoriety that their work would eventually yield? Rivest explained

that RSA was discovered long before the days of the internet and just before the personal computer age. He had

no inkling of the eventual supporting and crucial role his research would have on e-commerce. \It wasn't obvious,

a priori, that our result would stand the test of time." Theoretically, there could be advances in factoring methods.

Practically, the applications might not find enough uses.

After PCs came on the scene, Rivest et al started a company in 1983, called RSA Data Security, in an attempt

to find commercial uses for the theory. By 1986, \we thought we would go bust," but then Lotus Notes signed a

contract. The 1990s introduced the world-wide-web and RSA became ubiquitous. VeriSign was spun-off, in order

to maintain its independence from the technology, and RSA Data Security was bought and renamed simply RSA

Security (http://www.rsasecurity.com/).

Commercial success notwithstanding, Rivest seems most pleased with how cryptography as a field has evolved.

\The rich interplay between theory and practice brought vitality to the subject." It has also brought controversy.

The National Security Agency (NSA) is a government agency with a heavy investment in secret cryptographic

research. They do not publish their results, nor commercialize their implementations, but they do monitor what

others are doing. At one time they threatened that the planned delivery of a paper related to RSA, at a Cornell

IEEE conference, would violate the Export Control Act! The subject matter they claimed is classified. Eventually

and sensibly, the government backed down. Rivest pointed out the absurdity of classifying research when one or

more of the authors has no security clearance themselves. Today the NSA allows academic freedom in cryptographic

research but still insists that software companies register their cryptographic products with the Bureau of Industry

and Security (formerly the Bureau of Export Administration); see http://www.bxa.doc.gov/Encryption/Default.htm.

The role of the NSA in monitoring cryptographic research and its commercial development will no doubt continue

to evolve.

Vigen�ere Ciphers I A two-cycle Vigen�ere encryption gives an encoding of a well-known cerebral song:

BQHIERPVBZXOPORHASACNFLQHBYSKFBBZKBHAHASYZHKXFLQHBLIEHBBZKBHAHASKOBB

PWMVMVXHACNUAHLWWPXHAWGYBBBQHIERUSTBHHASKZBBVCEBBTBCGZRVTRTPKOBB.

What is the original text?

Vigen�ere Ciphers II A five cycle Vigen�ere encryption gives an encoding of a Woody Allen math joke:

BOQWMNWOOQSSFHQKASRLAGOWRAADWRKAONCIOHKJKCYHVYWHLLC.

What is the original text?
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RSA Ciphers I An RSA encoding of nine ASCII values, using public key (10555, 21971), gives the

name of a hunter: 16912 19531 20676 16912 6613 2348 17835 15770 15770. What is the original text?

RSA Ciphers II An RSA encoding using public key (5555551, 118513313) gives: 80217189 107242213

96490860 79543571 25953566. What are the original numbers?

Conclusion

Cryptography is an ancient yet vibrantly active field for mathematicians and computer scientists. It is fun

to teach because it contains a beautiful combination of elegant theory and practical application, and lends

itself to exploration and learning through programming and experiments. The history of cryptography,

while providing stories of intrigue and excitement, is a mathematical metaphor for the delicate balance

between theory and practice.

Acknowledgments: Thanks to Ralph Bravaco, Tara Holm, Andrea Simonson, and Amy Shell-Gellasch

for their suggestions on early versions of this article. A special thanks is due to Ron Rivest for sharing
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11
Introducing Logic
via Turing Machines

Jerry M. Lodder

New Mexico State University

Introduction

A curious situation has arisen today in the undergraduate curriculum with many computer science majors

learning the fundamentals of logic from a memorized list of truth tables and rules of inference, without

regard to the original problems whose solutions involved the logic that would become part of the pro-

grammable computer. Current discrete mathematics textbooks, which often cover combinatorics, deductive

reasoning and predicate logic, present the material as a fast-paced news reel of facts and formulae, with

only passing mention of the original work and pioneering solutions that eventually found resolution through

the modern concepts of induction, recursion and algorithm. Presented here are curricular materials, based

on primary historical sources, designed for use in an introductory discrete mathematics course, particularly

one with a significant number of computer science majors. The materials are organized into two-week

written projects for students, and offer excerpts from Alan Turing's (1912{1954) original 1936 paper \On

Computable Numbers with an Application to the Entscheidungsproblem"1 [49], a paper which outlines a

logical device, a Turing Machine, that is the forerunner of a modern computer program.
The two projects included here, \An Introduction to Turing Machines" and \Turing Machines, In-

duction and Recursion," were both assigned recently in a beginning discrete mathematics course at New

Mexico State University, and build on the pedagogical idea of calculus projects [5]. For each project

the students wrote a detailed paper, answering a sequence of guided questions designed to illuminate

the ground-breaking ideas of Turing's work. Each project contributed significantly towards the student's

course grade (about 25% per project), and each took the place of an in-class examination. Student reaction

was overwhelmingly positive, with most becoming actively involved in both the historical significance of

the piece as well as the details of the solutions to particular questions. Several students excelled beyond

the specifics of the project, researched independently the impact of Turing's work, and discussed this in

their papers. Particular advantages of the written historical project include providing context and direction

to the subject matter, honing the students' verbal and deductive skills through reading the original work

of some of the greatest minds in history, and the rediscovery of the roots common to discrete mathematics

and computer science.

1Das Entscheidungsproblem is German for the decision problem.
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The Decision Problem

David Hilbert (1862{1943), an intellectual giant of the last century, is well known for his list of mathemat-

ical problems in 1900 [9, pp. 290{329] [34], whose study and (attempted) solutions would occupy many

mathematicians for at least another hundred years. Among the problems were the foundational questions

of whether the axioms of arithmetic are consistent, and whether there is a number system in cardinality

between the rational numbers and the continuum of real numbers. In 1928 Hilbert posed another group of

problems [11, 12], this time dealing with the consistency, completeness and independence of the axioms of

a logical system in general, as well as the problem of deciding whether a given statement is valid within a

logical system. The solutions to these problems, in particular Kurt G�odel's (1906{1978) demonstration of

the incompleteness of arithmetic with the existence of statements that are not provable (as true or false)

[7], had profound consequences for mathematics, and brought to the fore mathematical logic as a separate

field of study [22]. In this exposition, however, we deal primarily with the decision problem:

: : : there emerges the fundamental importance of determining whether or not a given formula of

the predicate calculus is universally valid. : : : A formula : : : is called satisfiable if the sentential
variables can be replaced with the values truth and falsehood : : : in such a way that the formula

[becomes] a true sentence. : : : It is customary to refer to the equivalent problems of universal
validity and satisfiability by the common name of the decision problem [13, pp. 112{113].

Following G�odel's results, the decision problem remained, although it must be reinterpreted as meaning

whether there is a procedure by which a given proposition can be determined to be either \provable" or

\unprovable". In the text Introduction to Mathematical Logic [4, p. 99], Alonzo Church (1903{1995)
formulated this problem as: \The decision problem of a logistic system is the problem to find an effective
procedure or algorithm, a decision procedure, by which for an arbitrary well-formed formula of the system,
it is possible to determine whether or not it is a theorem : : : ." To be sure, Church proves that the decision

problem has no solution [2, 3], although it is the algorithmic character of Turing's solution that is pivotal

to the logical underpinnings of the programmable computer. Moreover, the simplicity of a Turing machine

provides a degree of accessibility to the subject ideal for a first course in logic or discrete mathematics.

Briefly a Turing machine,M, is a device which prints a sequence of 0s and 1s on a tape based on (i)

the figure currently being scanned on the tape, and (ii) a set of instructions. Moreover, Turing describes

the logical construction of a universal computing machine, U , which accepts the set of instructions of a

given machineM in some standard form, along with the input to that machine, and then outputs the same

sequence as M. Applying a machine U to another machine M is denoted as U.M/ for this exposition.

It follows from Turing's paper [49] that if the decision problem has a solution, then there is a machine D

which accepts the set of instructions of another machineM and decides whetherM prints a finite or an

infinite number of symbols on the tape. Determining whether a machine terminates in a finite number of

executable steps is today known as the halting problem in computer science. If the decision problem, and

hence the halting problem has a solution, then a new machine T can be defined so that T .M/ halts ifM

does not halt, and T .M/ does not halt if M halts. By considering the behavior of T .T /, we conclude

that T halts and T does not halt, a contradiction, from which it follows that the decision problem has no

solution.

The Projects

What follows are descriptions and the actual text of the projects \An Introduction to Turing Machines"

and \Turing Machines, Induction and Recursion," along with a few words of advice for the instructor.
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The first project acquaints students with the workings of a Turing machine, asks the reader to compute the

output of a particular machine, and then to design a machine with a given output. All background needed

to answer these questions is gleaned from reading the excerpts from Turing's original paper included in

the project, without a special in-class lecture to define a Turing machine. In fact, an entire class session

was set aside to allow the students to work on their project and discuss their progress among themselves.

During office hours or while students worked during class, I would answer questions about the output

of the examples presented in Turing's paper, but only on the students' initiative. The project also asks

the students to design a Turing machine to test the property of set containment (for finite sets), which

builds on the topic of set theory, covered just prior to the assignment of the project. For that question, the

operation of storing a character in memory is allowed, although Turing did not include this feature in his

paper. The instructor is encouraged to tailor the projects to mesh with what has transpired in class, add

some questions relevant to topics being covered, and delete or rephrase others. The details of a project

should be clear before assignment.

The second project, \Turing Machines, Induction and Recursion," explores the machine's capacity for

a limited type of memory, and its use in elementary arithmetic operations. In particular, the students are

asked to describe a machine, which given two positive integers n and m, produces the product n � m. In

doing so, the student witnesses the appearance of recursion when repeating steps in a Turing machine as

well as the use of induction when verifying that the output of a machine is the desired result. For the second

project, the students worked in groups of two or three, which often resulted in a group dynamic with one

member proposing an algorithm for multiplication, and the other group members testing its accuracy. The

first project, on the other hand, was an individual project, requiring that every student learn the rudiments

of a Turing machine before tackling the more sophisticated concepts of induction and recursion needed

for the design features of the second project. The second highlights the need of several abstract topics in

discrete mathematics for programming needs.

Two projects appear to be ample material for a one-semester course, supplemented with a midterm and

final, both of which could include questions about the projects. Two additional projects could easily be

authored from Turing's paper. The third in this sequence would be to develop Turing's idea of a universal

computing machine (today known as a compiler or an interpreter), and the fourth would outline Turing's

negative solution to the decision problem in what has been called the halting problem in computer science.

These last two projects, available in [1], are best suited for an intermediate or advanced undergraduate

course in the subject. Finally, for a detailed history of related topics in logic, see [22]; for a leisurely

account of the events leading up to the programmable computer, see [6]; and for a detailed description of

Turing's life and times, see [14].

Project I: An Introduction to Turing Machines

During the International Congress of Mathematicians in Paris in 1900, David Hilbert (1862{1943), one

of the leading mathematicians of the last century, proposed a list of problems for following generations

to ponder. On the list was whether the axioms of arithmetic are consistent, a question which would

have profound consequences for the foundations of mathematics. Continuing in this direction, in 1928

Hilbert proposed the decision problem (das Entscheidungsproblem), which asked whether there was a

standard procedure that can be applied to decide whether a given mathematical statement is true. Both

Alonzo Church (1903{1995) and Alan Turing (1912{1954) published papers in 1936 demonstrating that

the decision problem has no solution, although it is the algorithmic character of Turing's paper \On

Computable Numbers, with an Application to the Entscheidungsproblem" [49] that forms the basis for the

modern programmable computer. Today his construction is known as a Turing machine.
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The goal of this project is to read a few excerpts from Turing's original paper [49] and outline a

machine that would verify the condition of set containment, a topic discussed in class. After carefully

reading the attached pages, answer the following:

(a) Describe the workings of a Turing machine (referred to as a \computing machine" in the original

paper).

(b) What is the precise output of the machine in Example 1? Certain squares may be left blank. Be sure

to justify your answer.

(c) Design a Turing machine which generates the following output. Be sure to justify your answer.

010010100101001 : : :

(d) Describe the behavior of the following machine, which begins with a blank tape, with the machine in

configuration ˛.

Configuration Behavior

m-config. symbol operation final m-config.

˛ none R P1 ˇ

˛ 1 R P0 ˇ

˛ 0 HALT (none)

ˇ 1 R P1 ˛

ˇ 0 R P0 ˛

(e) Given finite, non-empty, sets A and B , design a Turing machine which tests whether A � B . Suppose

that the first character on the tape is a 0, simply to indicate the beginning of the tape. To the right of 0

follow the (distinct, non-blank) elements of A, listed in consecutive positions, followed by the symbol

&. To the right of & follow the (distinct, non-blank) elements of B , listed in consecutive positions,

followed by the symbol Z to indicate the end of the tape:

0 . . . & . . . Z

The symbols 0, &, Z are neither elements of A nor B . The machine starts reading the tape in the right-most

position, at Z. If A � B , have the machine erase all the elements of A and return a tape with blanks for

every square which originally contained an element of A. You may use the following operations for the

behavior of the machine:

� R: Move one position to the right.
� L: Move one position to the left.
� S: Store the scanned character in memory. Only one character can be stored at a time.
� C: Compare the currently scanned character with the character in memory. The only operation of C is
to change the final configuration depending on whether the scanned square matches what is in memory.

� E: Erase the currently scanned square.
� P( ): Print whatever is in parentheses in the current square.
You may use multiple operations for the machine in response to a given configuration. Also, for a

configuration qn, you may use the word \other" to denote all symbols S.r/ not specifically identified for

the given qn. Be sure that your machine halts.

The following is an excerpt from Turing's original paper [49, pp. 231{234], reprinted with permission

from the London Mathematical Society.
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On Computable Numbers, with an Application to the Entscheidungsproblem

By A. M. Turing

1. Computing Machines

We have said that the computable numbers are those whose decimals are calculable by finite means.

This requires more explicit definition. No real attempt will be made to justify the definitions given

until we reach �9. For present I shall only say that the justification lies in the fact that the human

memory is necessarily limited.

We may compare a man in the process of computing a real number to a machine which is only

capable of a finite number of conditions q1, q2, : : :, qR, which will be called the \m-configurations".

The machine is supplied with a \tape" (the analogue of paper) running through it, and divided into

sections (called \squares") each capable of bearing a \symbol". At any moment there is just one

square, say the r-th, bearing the symbol S.r/ which is \in the machine". We may call this square

the \scanned square". The symbol on the scanned square may be called the \scanned symbol". The

\scanned symbol" is the only one of which the machine is, so to speak, \directly aware". However,

by altering its m-configuration the machine can effectively remember some of the symbols it has

\seen" (scanned) previously. The possible behaviour of the machine at any moment is determined

by the m-configuration qn and the scanned symbol S.r/. This pair qn, S.r/ will be called the

\configuration"; thus the configuration determines the possible behaviour of the machine. In some

of the configurations in which the scanned square is blank (i.e. bears no symbol) the machine writes

down a new symbol on the scanned square; in other configurations it erases the scanned symbol.

The machine may also change the square which is being scanned, but only by shifting it one place

to right or left. In addition to any of these operations the m-configuration may be changed. Some

of the symbols written down will form the sequence of figures which is the decimal of the real

number which is being computed. The others are just rough notes to \assist the memory". It will

only be these rough notes which will be liable to erasure.

It is my contention that these operations include all those which are used in the computation of

a number. The defense of this contention will be easier when the theory of the machines is familiar

to the reader. In the next section I therefore proceed with the development of the theory and assume

that it is understood what is meant by \machine", \tape", \scanned", etc.

2. Definitions.

Automatic machines
If at each stage the motion of a machine (in the sense of �1) is completely determined by the
configuration, we shall call the machine an \automatic machine" (or a-machine).

For some purposes we might use machines (choice machines or c-machines) whose motion is

only partially determined by the configuration (hence the use of the word \possible" in �1). When

such a machine reaches one of these ambiguous configurations, it cannot go on until some arbitrary

choice has been made by an external operator. This would be the case if we were using machines to

deal with axiomatic systems. In this paper I deal only with automatic machines, and will therefore

often omit the prefix a-.

Computing machines
If an a-machine prints two kinds of symbols, of which the first kind (called figures) consists entirely

of 0 and 1 (the others being called symbols of the second kind), then the machine will be called a

computing machine. If the machine is supplied with a blank tape and set in motion, starting from

the correct initial m-configuration the subsequence of the symbols printed by it which are of the

first kind will be called the sequence computed by the machine. The real number whose expression



130 III. Discrete Mathematics, Numerical Methods, Computer Science, Logic, and Statistics

as a binary decimal is obtained by prefacing this sequence by a decimal point is called the number
printed by the machine.
At any stage of the motion of the machine, the number of the scanned square, the complete

sequence of all symbols on the tape, and the m-configuration will be said to describe the complete
configuration at that stage. The changes of the machine and tape between successive complete
configurations will be called the moves of the machine.

3. Examples of computing machines

I. A machine can be constructed to compute the sequence 010101 : : :. The machine is to have

the four m-configurations \b", \c", \f ", \e" and is capable of printing \0" and \1". The behaviour

of the machine is described in the following table in which \R" means \the machine moves so that

it scans the square immediately on the right of the one it was scanning previously". Similarly for

\L". \E" means \the scanned symbol is erased and \P " stands for \prints". This table (and all

succeeding tables of the same kind) is to be understood to mean that for a configuration described

in the first two columns the operations in the third column are carried out successively, and the

machine then goes over into the m-configuration described in the last column. When the second

column is blank, it is understood that the behaviour of the third and fourth columns applies for any

symbol and for no symbol. The machine starts in the m-configuration b with a blank tape.

Configuration Behaviour

m-config. symbol operation final m-config.

b none P0, R c

c none R e

e none P1, R f

f none R b

If (contrary to the description �1) we allow the letters L, R to appear more than once in the

operations column we can simplify the table considerably.

Configuration Behaviour

m-config. symbol operation final m-config.

b none P0 b

b 0 R, R, P1 b

b 1 R, R, P0 b

Project II: Turing Machines, Induction and Recursion

The logic behind the modern programmable computer owes much to Turing's \computing machines,"

discussed in the first project, which the reader should review. Since the state of the machine, or m-

configuration as called by Turing, can be altered according to the symbol being scanned, the operation of

the machine can be changed depending on what symbols have been written on the tape, and affords the

machine a degree of programmability. The program consists of the list of configurations of the machine and

its behavior for each configuration. Turing's description of his machine, however, did not include memory

in its modern usage for computers, and symbols read on the tape could not be stored in any separate device.

Using a brilliant design feature for the tape, Turing achieves a limited type of memory for the machine,

which allows it to compute many arithmetic operations. The numbers needed for a calculation are printed

on every other square of the tape, while the squares between these are used as \rough notes to `assist the

memory.' It will only be these rough notes which will be liable to erasure" [49, p. 232].



11. Introducing Logic via Turing Machines 131

Turing continues:

The convention of writing the figures only on alternate squares is very useful: I shall always make

use of it. I shall call the one sequence of alternate squares F -squares, and the other sequence

E-squares. The symbols on E-squares will be liable to erasure. The symbols on F -squares form

a continuous sequence. : : : There is no need to have more than one E-square between each pair

of F -squares: an apparent need of more E-squares can be satisfied by having a sufficiently rich

variety of symbols capable of being printed on E-squares [49, p. 235].

Let's examine the Englishman's use of these two types of squares. Determine the output of the following

Turing machine, which begins in configuration a with the tape

X : : :

and the scanner at the far left, reading the symbol X .

Configuration Behavior

m-config. symbol operation final m-config.

a X R a

a 1 R, R a

a blank P(1), R, R, P(1), R, R, P(0) b

b X E, R c

b other L b

c 0 R, P(X ), R a

c 1 R, P(X ), R d

d 0 R, R e

d other R, R d

e blank P(1) b

e other R, R e

Recall the meaning of the following symbols used for operations.

� R: Move one position to the right.
� L: Move one position to the left.
� E: Erase the currently scanned square.
� P( ): Print whatever is in parentheses in the current square.

(a) What is the precise output of the machine as it just finishes configuration a and enters configuration

b for the first time? Justify your answer.

(b) What is the precise output of the machine as it just finishes configuration a and enters configuration

b for the second time? Justify your answer.

(c) What is the precise output of the machine as it just finishes configuration a and enters configuration

b for the third time? Justify your answer.

(d) Guess what the output of the machine is as it just finishes configuration a and enters configuration

b for the nth time. Use induction to prove that your guess is correct. Be sure to write carefully the

details of this proof by induction.
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(e) Design a Turing machine which, when given two arbitrary natural numbers, n and m, will compute

the product n � m. Suppose that the machine begins with the tape

A 1 1 : : : 1 1 B 1 1 : : : 1 1 C

where the number of 1s between A and B is n, the number of ones between B and C is m, and the

machine begins scanning the tape at the far left, reading the symbol A. The output of the machine should

be:

A 1 : : : 1 B 1 : : : 1 C 1 1 : : : 1 D

where the number of 1s between C and D is n � m. Use induction to verify that the machine produces the
correct output.

Letting T denote the Turing machine which multiplies n and m together, so that the value of T .n; m/

is n � m, design T so that for n 2 N,
T .n; 1/ D n

and for m 2 N, m � 2, we have

T .n; m/ D T .n; m � 1/ C n:

Such an equation provides an example of a recursively defined function, an important topic in computer

science. In our case, the algorithm for multiplication, T , is defined in terms of addition, a more elementary

operation.

Conclusion

The written historical projects presented here combine learning techniques from both a projects-based

approach to instruction [5] and an historically informed teaching strategy [15]. For implementation in the

classroom, introduction to the relevant historical material should begin early in the course, with a brief

description of Hilbert's problem list, its effect on the development of mathematics, and the significance

of the decision problem. Further commentary about the evolution of Turing's ideas into the modern pro-

grammable computer should be provided by the instructor before assigning the projects. If the projects are

used verbatim, allow about two weeks for the completion of each. Monitor the students' progress on what

for them is a lengthy assignment, provide in-class time for them to work on the projects, and offer guidance

when they become perplexed (and they will). The projects should count for a significant percentage of the

course grade, with each taking the place of an in-class examination, thus providing incentive to complete

them. Two projects are included here, although just one could be used in a given course, or a third could

be authored. Modify the projects to fit the course, with the course content and class size being factors

which may well influence the questions asked. For example, if set containment has not been covered, this

part of Project I (part(e)) may be deleted, or for a large class, deleting part (e) would much simplify the

project, and reduce the time needed for grading. Project II could be shortened by asking the students to

design a Turing machine to compute the sum of two positive integers, instead of the product. Nonetheless,

pedagogical advantages are to be had by asking significant questions, ones which engage the students and

reflect the actual development of the subject. Two additional projects in this direction would be the logical

description of Turing's \universal computing machine," and Turing's (negative) solution to the decision

problem, available at the web resource [1] along with other historical projects.
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From Hilbert's Program to Computer Programming

William Calhoun

Bloomsburg University

Introduction

The impact of computers on our lives is obvious to everyone, while mathematical logic is an esoteric subject

for most people. Yet the histories of mathematical logic and computers are tightly interwoven. I will discuss

the connections between logic and computing, and how I use these connections in my teaching. I find that

connecting logic and computing helps to motivate both mathematics and computer science majors. The

students are surprised to learn that ideas developed by mathematicians studying abstract questions of logic

turned out to be fruitful in the design of computers.

Teaching Mathematics and Computer Science Majors

The needs, goals and attitudes of mathematics and computer science students are somewhat different. I

have tried in various ways to satisfy both camps in my Discrete Mathematics classes. My main goal for

the mathematics majors is to develop their logical reasoning. To that end, I have my students write many

short proofs for homework. Although I emphasize that logical reasoning is also important in programming

and theoretical computer science, most of my computer science majors do not see theorem proving as a

priority. To show computer science majors how discrete mathematics will be useful to them, my class

includes examples of applications to computer science in areas such as digital logic circuits, the binary

number system, logical programming languages, and analysis of algorithms. However, I do not want to do

so much of this that the mathematics majors feel they are in a computer science course.

Another excellent way to motivate both mathematics majors and computer science majors is to use

history to show them the interconnections between the two subjects. I weave some of the history into

my lectures, but I have found that the most effective way to get the students interested is to have them

research a topic and give a short presentation. I assign a 10{15 minute talk in class on an application or

person related to the math in the course. Many of the students choose to give brief biographies. They have

chosen to speak about such contributors to mathematical logic and computing as Cantor, Hilbert, G�odel,

Turing, Kleene, von Neumann, Chomsky and Julia Robinson. My students in other classes such as Number

Theory also enjoyed learning the history of the subject, but mathematical logic and computer science have

the advantage that most of the important results have come in the last 200 years. The students can relate

better to lives that are not so remote in time from our own. I recognize that giving up 10{15 minutes of

class time per student is a significant cost. However, I believe that if I can get my students interested and
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engaged in the subject, it is a worthwhile use of the time. In larger classes, I have the students work in

pairs to keep the amount of time devoted to talks from becoming overwhelming.

I do not claim to be a professional historian or that my students do original historical research. We are

consumers of history researched by others. I also recognize that some of the sources my students use may

have questionable validity, particularly if the source is the first web-site the student finds. (There are, on

the other hand, some excellent sources on the web such as the MacTutor History of Mathematics Archive
maintained by the University of St. Andrews [53].) To combat this problem, I require my students to use

multiple sources, and I sometimes respond to a student presentation with an opposing point of view I have

read. In the end, I think the benefits of giving students a general idea of the history of the subject outweigh

the danger that they will learn some questionable or even false claims. History does not have the surety of

deductive logic, but that is no reason for mathematicians and computer scientists to avoid history. History

helps us understand the organization of our subjects and the interconnections between them.

Why History Works

Much of the logic, set theory and proof techniques studied in Discrete Mathematics derive from the work of

Boole, Cantor, Frege and other nineteenth century logicians. The twentieth century brought fascinating new

insights in logic and the invention of the computer. Some of the less technical aspects of twentieth century

logic can be used to enliven a Discrete Mathematics course. The topics in my Theory of Computation class

follow many of the historical developments in the twentieth century, although not always in chronological

order, including work of Hilbert, G�odel, Turing, Kleene, Chomsky, Backus, Cook and others. Taking time

to discuss the historical contributions of these mathematicians and computer scientists helps students see

the interconnections between the two disciplines.

As discussed above, the impact is even greater if the students research topics and report to the class. For

instance, in Discrete Mathematics, I let my students choose from a list of applications. A mathematician or

computer scientist is associated with each topic. The student (or pair of students) may chose whether to talk

about the application or give a biographical talk about the associated person. Those who choose biographical

talks must still give examples of applications to discrete mathematics from their subject's work. Some

examples of applications/biographies I have used are: Logic Circuits (Boole), Prolog (Frege), Conditionals

and Loops in Programming (Ada Lovelace), Formal Languages (Chomsky), The Halting Problem (Turing),

Finite State Automata (Kleene), Cardinality (Cantor) and Computability (Julia Robinson). I schedule the

talks throughout the semester so they will roughly coincide with related topics in the course. I recommend

that the students prepare transparencies or Power Point slides to accompany the talk and, while I don't

require a formal paper, they must turn in their notes and other materials to me after giving the talk,

including a list of references. I encourage them to discuss the talk with me in advance during office hours.

I evaluate the talks on the following equally weighted criteria: clarity of presentation, organization, good

examples, and mechanics (presentation materials, reference list).

Most students seem to enjoy the assignment, judging from their enthusiasm and comments on my

teaching evaluations such as \The application project was cool!" I feel this assignment works well for

two reasons. The first is \general intellectual interest." This is a phrase I borrowed from noted logician

Harvey Friedman, who used it in a foundations of mathematics e-mail discussion to describe a quality

of the work of G�odel and Turing. They are the only two mathematicians on Time magazine's list of the
greatest scientists of the twentieth century. According to Friedman, the reason they achieved this level of

fame is the general intellectual interest in their work [18]. To me, general intellectual interest means one

can understand and be fascinated by their accomplishments, without knowing all the technical details. The

work of many of the logicians discussed below has this quality since they attempted to answer philosophical

questions such as:
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� What is proof?
� What is computation?
� What is truth?
� What is intelligence?
� What is possible?
The second reason I think students enjoy learning the history of logic and computing is human interest.

Our classes tend to emphasize logic and strip away the personal. There is beauty in an elegant proof or

algorithm, but our students are human beings who are naturally interested in the lives of the people

who created the subject. Since much of the history of mathematical logic and computing is recent, it

is particularly easy for students to relate to these lives, and there are many inspirational, humorous and

moving anecdotes to tell. My students often include anecdotes in their presentations, and I like to include

them occasionally in my lectures as well. Anecdotes keep students interested in the lecture. They can also

help motivate students to do mathematics by showing them that mathematics was created by a diverse

group of people, many of whom had to persevere against difficult challenges in their lives. A few brief

examples are listed below.

� Hilbert supported Emmy Noether's appointment at G�ottingen by saying \I do not see that the sex of
the candidate is an argument against her admission as a Privatdozent. After all, the [University] Senate

is not a bath house." [38, p. 143]

� G�odel applied his logical analysis to the United States Constitution and discovered a \paradox" that
would allow the United States to become a dictatorship. [15, pp. 179{181].

� Despite Turing's invaluable contributions to the war effort, he was later persecuted for homosexuality,
leading to his tragic suicide. Turing's story is movingly told in Andrew Hodges excellent biography

[28], and dramatized in Hugh Whitemore's play Breaking the Code [59].

� Von Neumann had a phenomenal memory, ability to do mental calculations, and facility with languages.
He once amazed his colleague Herman Goldstine by reciting several pages of A Tale of Two Cities
from memory [21, p. 166]. He was also a fun-loving gregarious person who gave legendary parties at

his home in Princeton [36, pp. 97{122].

� A reporter called the University of California at Berkeley for information about Julia Robinson and
was told she was \Professor Robinson's wife." He responded, \Well, Professor Robinson's wife has

just been elected to the National Academy of Sciences!" [37, p. 79] (Constance Reid's beautiful little

book on her sister, Julia Robinson, has been particularly inspiring to some of my female students.)

Nineteenth Century Logic and Computing

As a convenience to readers who wish to use the historical connections between logic and computing in

their teaching, this section and the next provide a brief survey. More extensive overviews along these lines

can be found in The Universal Computer by Martin Davis [14] and in the Companion Encyclopedia of the
History and Philosophy of the Mathematical Sciences edited by I. Grattan-Guinness [22, pp. 595{707].
This section surveys some of the developments in nineteenth century logic and computing that laid the

groundwork for the invention of the modern computer in the twentieth century.

Logic

George Boole (1815{64) gave mathematical foundations to propositional logic in his The Mathematical
Analysis of Logic (1847) [3] and An Investigation of the Laws of Thought (1854) [4]. Building on work
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of Augustus De Morgan (1806{71), Boole's system was a great advance on the Organon, Aristotle's
classic treatment of syllogisms. Boole showed that a slight variant on ordinary arithmetic could be used

to represent logical arguments. He represented classes, such as the class of sheep or the class of horned
animals, by variables and showed how to represent intersections, unions and complements of classes by
algebraic expressions. He used 1 to represent the universal class and 0 to represent the empty class. Thus

he started the practice followed in modern computing of representing true by 1 and false by 0. The truth
tables of propositional connectives can then be expressed in algebraic terms, with xy expressing x and y

and 1 � x expressing not x. Since the arithmetic fact 1 C 1 D 2 doesn't make sense in the new context,

Boole used x C y only for disjoint unions. Other logicians such as Stanley Jevons (1835{1882) and Hugh

MacColl (1837{1909) revised Boole's system, reinterpreting C as the inclusive or, and adding the new

rule 1 C 1 D 1 to Boole's laws. The resulting Boolean algebra gives students a unified approach to logic,

set operations, and logic circuits.

Charles Dodgson (1832{98) and John Venn (1834{1923) popularized the use of diagrams for solving

logic problems. Gottfried Leibniz (1646{1716) and Leonhard Euler (1707{83) had previously used dia-

grams in similar ways. The primary legacy of Dodgson and Venn is in logic instruction, but the use of

diagrams points toward the mechanization of logic. Dodgson is better known under his pen name, Lewis

Carroll. Carroll's The Game of Logic [8] gives an algorithm for students to solve logic problems by moving
counters on a rectangular board. The process is similar to doing arithmetic on an abacus. Carroll's board

is rarely used today, but is equivalent to Venn's circle diagrams. Carroll's famous Alice books contain
many amusing references to logic, and are often quoted in logic text books. His own logic books include

hundreds of problems that students still enjoy solving because of their quirky humor. Contrary to the views

of other logicians, Carroll argued that the universal quantifier should imply existence. For instance, he

thought the statement All unicorns have a horn should imply that at least one unicorn exists. Carroll was
on the losing side of this argument: the mathematical properties of the quantifiers are simpler the other

way. However, it is worth discussing the issue with students. Many of them agree with Carroll, and have

to learn to accept the standard usage.

Georg Cantor (1845{1918), the founder of set theory, published his initial investigations of infinite

cardinalities in 1874 [7]. He introduced the idea that two infinite sets have the same cardinality if there is

a one-to-one correspondence between them. He showed the set of algebraic numbers is countable, that is,

it has the same cardinality as the set of whole numbers. In devising one-to-one correspondences between

the whole numbers and other sets, Cantor showed that many kinds of information can be coded by whole

numbers, an important idea for computer science. Cantor developed the diagonal argument to show that

the set of real numbers is not countable. Diagonal arguments have been used repeatedly in 20th century

logic and computer science, notably in Turing's proof of the unsolvability of the Halting Problem. Cantor

used the diagonal argument to show that the cardinality of a set is always less than the cardinality of its

power set. He realized that this implied there could be no set of all sets, an observation that preceeded

Russell's famous paradox. (See below.) For further reading on Cantor see Dauben's biography [12].

Symbolic logic was brought to fruition by Gottlob Frege (1848{1925), who developed the rules of

predicate logic in his Begriffsschrift (Conceptual Notation, 1879) [16]. A predicate is a propositional

function such as \x is larger than y." The predicate takes on a truth value when appropriate words are

substituted for the variables. Frege's system, unlike previous ones, included predicates with any number of

variables, and he worked out laws for the universal quantifier, for all x. Thereby, Frege made it possible

to express any mathematical proof formally. (The existential quantifier, for some x, can be defined from

the universal quantifier and negation.) Frege used a two-dimensional notation that was rather cryptic and

cumbersome. Most of the logical notation we use today comes from others, such as Charles Sanders Peirce

(1839{1914), who independently studied predicates and quantifiers, and Giussepe Peano (1858{1932),

who developed axioms for arithmetic in 1889.
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In his Foundations of Arithmetic [17], Frege sought to go further than Peano and define the integers
within logic. However, Frege was bitterly disappointed by a 1902 letter from Bertrand Russell (1872{1970)

that arrived when the second volume of his work was already in press. Russell pointed out that within

Frege's system one could define a predicate w.v/ that is true if and only if v is a predicate and v.v/ is

false. But if w itself is substituted for v this leads to a contradiction: w.w/ is true if and only if w.w/ is

false. Frege was forced to add an appendix to his book with an attempt to work around the inconsistency,

an attempt that was later shown to be unsuccessful. Russell's paradox struck a blow to Frege's program to

define mathematics within logic. In the appendix, Frege wrote, \A scientist can hardly meet with anything

more undesirable than to have the foundation give way just as the work is finished. In this position I

was put by a letter from Mr. Bertrand Russell as the work was nearly through the press." On top of this

disappointment came his wife's death in 1904. Frege was thrown into a depression and did little work

for several years. While this strikingly melancholy anecdote is often told, it is important that students

know that Russell's Paradox did not undermine Frege's success in developing predicate logic. Frege's

achievement stands as one of the greatest advances in the history of logic. For further reading on Frege,

see Harold Noonan's Frege: A Critical Introduction [34].
Russell noted that his paradox also arises if we consider the set of all sets that are not members

of themselves. This, and other similar paradoxes, required a revision of set theory and stimulated much

work in logic around the turn of the century. Russell and Alfred North Whitehead (1861{1947) developed

type theory to work around Russell's paradox and continued Frege's work on the logical foundations

of mathematics in their monumental Principia Mathematica (1911{13) [58]. However, type theory is
cumbersome and Russell's paradox was resolved in a simpler way by restricting the set existence axioms in

Ernst Zermelo's (1871{1953) axiomatization of set theory (1908) [62]. This effectively makes a distinction

between sets and classes, where classes are collections that are \too big" to be sets, such as the class of all

sets. Paradoxes were later used by twentieth century logicians such as Alfred Tarski (1902{83) and Kurt

G�odel (1906{78) to prove limitations on formal systems. In 1933, Tarski used the ancient paradox of the

liar (\This sentence is false.") to show that truth cannot be defined within a formal system [47]. G �odel

used a variant of the liar paradox in the proof of his Incompleteness Theorems. Raymond Smullyan's

puzzle books such as What is the Name of this Book? [43] and Forever undecided: a puzzle guide to
G�odel [44] have lots of entertaining logic problems that can be used to introduce students to the kind of
reasoning used by Tarski and G�odel. For a detailed outline of the developments in mathematical logic from

Boole to G�odel, see The Search for Mathematical Roots 1870{1940 by I. Grattan-Guinness [23].

Computing

Desire to ease the burden of laborious calculation led many mathematicians and scientists to work on

computing machines. Although analog devices such as slide rules, planimeters and eventually harmonic

and differential analyzers played an important role in scientific computation, this survey will focus on

digital computing. Mechanical calculating devices had been around since the 1600's when Blaise Pascal

(1623{62) built a machine that could add and subtract, and Gottfried Leibniz (1646{1716) built one

that could multiply and divide as well. Leibniz dreamed of a calculating machine similar to a modern

computer. He thought such a machine would settle all logical arguments. In 1805 Joseph-Marie Jacquard

(1752{1834) invented a programmable loom. The Jacquard Loom was controlled by a series of punched

cards that were fed into the machine in sequence. Later, others would use Jacquard's innovation to advance

toward Leibniz's dream.

George Babbage (1792{1871), an English mathematician and inventor, spent much of his life build-

ing computing machines. His many interests also included codes and mathematical notation. He used

mathematical notation to describe switching mechanisms in his paper On expressing by signs the action
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of machinery [1]. In 1822, he began work on the Difference Engine, a machine designed to generate
mathematical tables by solving difference equations. He never completed the project, despite substantial

government funding, but a working Difference Engine based on Babbage's design was built in 1852.

Meanwhile, Babbage had begun work on a more ambitious machine, the Analytical Engine. This was to

be a calculating machine that could be programmed using Jacquard's punched cards. Lady Ada Lovelace

(1815{52), who had studied logic and mathematics with DeMorgan, became fascinated with Babbage's

machine and wrote notes explaining it, including example programs [33]. She used a nice analogy to

describe the machine: \We may say most aptly that the Analytical Engine weaves algebraical patterns
just as the Jacquard-loom weaves flowers and leaves." [33, Note A] Babbage received little support for

the difficult task of assembling a device of such complexity, and he died in 1871 with only scattered

pieces of the machine completed. Alan Turing later gave credit to Babbage for conceiving the universal

computer, but the design of the Analytical Engine differed from modern computers in that it did not use

stored programs. Still, Babbage anticipated many of the ideas later used in computing. He was ahead of

his time, and was hindered by the limitations of the technology available to him. For more information on

Babbage and Lady Lovelace, including historical documents, see the Analytical Engine web site [56].
Herman Hollerith (1860{1929), also inspired by the Jacquard loom, developed a tabulating machine

that was used in the 1890 United States Census [21, pp. 65{71]. The machine used punched cards to

enter the data. Hollerith formed the Tabulating Machine Company in 1896, which eventually became

International Business Machines.

The Twentieth Century

Although the earlier developments in logic and computing discussed above show some of the connections

between the two subjects, it is in the twentieth century that the connections become most significant. We

can trace the genesis of \computer code" from Hilbert to G�odel to Turing and von Neumann. Students

in upper-level courses in Mathematical Logic or Theory of Computation encounter concepts such as

provability, consistency, decidability and computability. In those classes, the history of twentieth century
logic is directly relevant to the course material. The concepts listed above are ordinarily beyond the scope

of Discrete Mathematics courses. Still, Discrete Mathematics students who research the lives of twentieth

century logicians and computer scientists have sufficient background to appreciate the \general intellectual

interest" in their work. Mathematics and computer science majors also discover a common heritage by

learning the history of twentieth century logic and computing.

David Hilbert

In 1900, David Hilbert (1862{1943) gave his famous speech outlining the most important mathematical

problems for the next century. Hilbert was remarkably prescient in listing problems that turned out to

be important avenues for mathematical investigation. Hilbert's second problem was one that might be

considered rather esoteric: to investigate the consistency of the arithmetical axioms. Surprisingly, we can

follow a trail from this question to the most dramatic technological change of our time, the invention

of the computer. Hilbert had shown that the consistency of Euclidean geometry could be reduced to the

consistency of arithmetic, so he now asked for a proof that arithmetic is itself consistent. His interest in

the consistency of mathematical systems was strengthened in the years that followed by disputes with the

intuitionists such as L.E.J. Brouwer (1881{1966), who challenged the validity of nonconstructive methods

of mathematical reasoning such as proof by contradiction. Although Brouwer's objections were based on

philosophical grounds, there is a more direct concern about proof by contradiction: what if mathematics

itself is inconsistent? If so, any statement, true or false, could be proved by contradiction. As inconsistencies
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were discovered in Frege's attempt to formalize arithmetic and in Cantor's set theory, Hilbert wanted to

put mathematics on a solid footing.

Hilbert's program was to use finitistic methods, acceptable even to intuitionists, to show that arithmetic,

and eventually all of mathematics, is consistent. He began the new field of proof theory in which proofs

are formalized and treated as mathematical objects. To keep the intended consistency proof from being

circular, Hilbert realized that he needed two sorts of mathematics: the ordinary mathematics being studied

and a finitary metamathematics in which to prove facts about mathematical proofs. By formalizing proofs
symbolically, Hilbert started an intensive investigation of the use of strings of symbols to code statements.

Furthermore, he called attention to decision problems. For instance, is there an algorithm to determine

which statements of a mathematical system have proofs? This question led Alan Turing and others to

formulate the definition of computability, a concept that preceded and inspired the construction of physical
computers. It is certainly reasonable to say that, although Hilbert never worked on computing directly,

Hilbert's program led others to important contributions in the development of computers and computer

programming.

For further reading, see Constance Reid's Hilbert [38]. Hilbert's Problems and their influence have
been discussed in The Honors Class: Hilbert's Problems and Their Solvers by Ben H. Yandell [61] and
in recent articles by Ivor Grattan-Guinness [24] and R�udiger Thiele [48].

Kurt G�odel

In 1931, Kurt G�odel brought an end to Hilbert's Program by publishing his famous Incompleteness The-

orems [19]. G�odel showed that any potential axiomatization of mathematics, or even of arithmetic, would

necessarily be incomplete in the sense that there would be sentences expressible in the system that could

neither be proved nor disproved in the system. In addition, G�odel showed that no consistent mathemati-

cal theory strong enough to prove the basic axioms of arithmetic could prove its own consistency. Thus

metamathematics couldn't prove its own consistency, much less the consistency of arithmetic. Hilbert's

Program was doomed to failure.

G�odel's Theorems are often described only as negative results showing the limitations of mathematics.

However, an examination of G�odel's proof reveals novel ideas that were absorbed by some of the most

influential visionaries of computing. G�odel took Hilbert's symbolic formalization of proofs a step further

by assigning a number to each symbol and using those numbers to form code numbers for sentences.

These code numbers could be combined to obtain a number coding an entire proof. G�odel numbering was

a revolutionary new way to relate text to numbers. The longest part of G�odel's proof was to show that

logical relationships between sentences could be mirrored by arithmetic relationships between their code

numbers. Ultimately he showed that proof theoretic statements such as \The number p codes a proof of

the sentence with code s" could be expressed arithmetically. He was then able to show that in any potential

axiomatization of arithmetic, one could form a sentence with code number c that expressed \the sentence

with code number c is not provable." In other words, through coding, G�odel's sentence said \This sentence

is not provable." Let's assume the system is correct in the sense that it doesn't prove any false sentences.
Then the system cannot prove G�odel's sentence, since if it did the sentence would be false. So, G�odel's

sentence cannot be proved, and is therefore a true sentence expressible in the language of arithmetic that

can neither be proved nor disproved. (The discussion here has been simplified by the assumption that

the system is correct. G�odel used a weaker, somewhat technical hypothesis. J. Barkley Rosser (1907{89)

suggested a slight variation on G�odel's sentence that allowed the proof to go through assuming only that

the system is consistent.) Although G�odel did not directly consider computing machines, his numerical

coding of text and use of the computations of arithmetic to express logical relationships foreshadow the

later development of computer code and the parsing of programming languages. In fact, G�odel influenced
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two of the founders of computer science, Turing and von Neumann.

G�odel also contributed to theoretical computer science in a more direct way. Not all axiomatizations

of mathematics are useful. For instance, if one declares that every true sentence is an axiom, the result is

a complete system, but a useless one, since there is no way to tell which sentences are axioms. G�odel's

theorem does not apply to such useless axiomatizations, but only to ones where there is an effective method

to recognize axioms. To clarify the hypotheses for his theorems, G�odel defined the recursive functions in
1934 [20], basing his definition on a suggestion of Jacques Herbrand (1908{31). The recursive functions

are ones that can be computed by a sequence of substitutions according to a fixed set of rules. Recursive

substitutions such as f .x/ D f .x �1/Cf .x �2/ are allowed. G �odel suspected that all functions that can

be computed by following an algorithm are recursive, but he was not sure. A few years later, Turing and

Kleene showed that G�odel's recursive functions coincide with the computable functions. Thus, in a sense,

G�odel was the first to define computability, but he did not attempt to design a computing mechanism.

For further reading see Dawson's carefully researched biography [15]. Other books on G�odel's life,

philosophy and work include a slim and accessible guide by Hintikka [27] and the dense, idiosyncratic

musings of G�odel's friend Hao Wang [57]. Douglas Hofstadter's Pulitzer Prize-winning best seller, G �odel,
Escher, Bach [30] provides an entertaining, nontechnical introduction to G �odel's theorems and their con-
nections with computer science.

Alan Turing

Alan Turing (1912{1954) studied Hilbert's Program and G �odel's Theorems in a course at Cambridge

University in 1935. He became fascinated by the Entsheidungsproblem, a question of Hilbert's that had

not been resolved by G�odel. (See Davis [14, pp. 146{7].) The Entsheidungsproblemwas to find a procedure

to determine whether or not a given statement could be proved from a given set of axioms using predicate

logic. Turing suspected that there was no such decision procedure, but in order to prove this he needed

to precisely define what a decision procedure is. Clearly a decision procedure should be an algorithmic

process that does not involve creative thought, chance or magic. But how could one define an algorithm?

In 1936, Turing published On Computable Numbers with an Application to the Entsheidungsproblem
[49], in which he defined a type of abstract machine and argued that any given algorithm could be carried

out by one of his machines. Turing's article is so clearly written that the opening pages may be given

to students as an introduction to Turing machines. A Turing machine consists of a control unit with a

finite number of possible states, a paper tape divided into squares and a tape head that can read and write

symbols. At each step of a computation the tape head scans one square of the paper tape. Depending

on the symbol scanned and the current state of the control unit, the Turing machine may write a new

symbol on the current square, move the tape head one square to the left or right and the control unit may

enter a new state. The new state may cause the machine to halt or to continue as described above. Turing

argued convincingly that any algorithmic process could be simulated using a series of these basic steps.

He added weight to this argument by showing that Turing machines could perform the computations of

arithmetic. Turing then gave an example of a problem with no algorithmic solution. The Halting Problem

is to determine whether or not a particular Turing machine will ever halt. Turing used a variation on

Cantor's diagonal argument to show that none of his machines could solve the Halting Problem. Turing's

mathematical definition of Turing machines shows that each instance of the Halting Problem can be

expressed as a mathematical statement. Furthermore, if the machine halts, a mathematical simulation of

the machine proves that it halts. So, as Turing noted, the algorithmic unsolvability of the Halting Problem

implies there is no decision procedure for the provable statements of mathematics.

Shortly after completing his paper, Turing learned that Alonzo Church (1903{95), a logician at Prince-

ton, had independently settled the Entsheidungsproblem [9] [10]. Church had characterized algorithmic
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processes using his lambda calculus, and his student Stephen Kleene (1909{94) showed the functions de-
finable in the lambda calculus were the same as G�odel's recursive functions [31]. On learning of Church's

work, Turing soon showed that Turing machines could compute any function definable in the lambda

calculus and vice versa [50]. Another independent characterization of algorithms came from Emil Post

(1897{1954). In a 1936 paper [35], he gave a sketchy description of a type of machine similar to Turing's.

Post machines were also shown to compute the same functions as Turing machines. Thus the approaches

of G�odel, Turing, Church and Post all provided equivalent ways to define an algorithm. Turing's pene-

trating analysis of computation convinced G�odel, who had been unsure whether his definition captured all

possible forms of computation, that the correct definition of computability had been found.

For the history of computing, the most significant result in Turing's 1936 paper was his construction

of a Universal Turing machine. Turing showed that, rather than building a different Turing machine for

each task, a single Universal machine could be used. To simulate the operation of a Turing machine, a

code for the given machine is placed on the tape of the Universal machine along with the input data. Thus

Turing gave the first description of a universal stored-program computer. Although Turing's paper was a

theoretical one, and provided none of the engineering details required to build such a machine, the concept

was clearly described and later served as an outline for Turing and others in designing physical computers.

Turing spent two years working with Church at Princeton and then returned to England. During World

War II he worked with a team of code breakers at Bletchley Park. In the 1930's, Polish mathematicians

had developed a method for cracking the German Enigma code [41]. However, the Enigma device could

be set multiple ways and was frequently modified, so the code had to be cracked repeatedly. Turing made

vital contributions to the design of an electro-mechanical computing device called a Bombe to speed up

the process. Turing applied mathematical logic to achieve a much faster and more powerful method of

cracking the Enigma code than had been possible before [29]. A large electronic code breaker called the

Colossus was also built at Bletchley park. Turing was not directly involved in the construction of this

device, but he surely saw the potential for using vacuum tubes to build a realization of his universal

Turing machine. After the war Turing turned his attention to doing just that. In 1945 he drafted a report to

the National Physics Laboratory giving detailed plans for a universal stored-program computer called the

Automatic Computing Engine [52]. Because of difficulty obtaining funding, it was not until 1950 that a

pilot version of the ACE was constructed, so Turing's ACE report was not as influential as it might have

been. However, Turing clearly deserves recognition as a founder of computer science.

For further reading see Andrew Hodges excellent biography [28]. Hodges also maintains the Alan

Turing home page on theWorld WideWeb [29]. This is a great source on Turing, including new information

that has become available since the biography was published. The Universal Turing Machine: A Half
Century Survey, edited by Rolf Herken [26] contains historical articles on Turing's work as well as articles
on related research in mathematical logic and computer science. For further reading on the definition of

computability see Robert Soare's article Computability and Recursion [45].

John von Neumann

John von Neumann (1903{57) was a great mathematician with a wide range of interests, including logic and

computing. As an undergraduate student he worked on clarifying Cantor's ordinal numbers, and in 1925

he published his own axioms for set theory [54]. He then worked with Hilbert on both quantum mechanics

and proof theory. He achieved some partial results toward proving the consistency of mathematics, but

when he heard G�odel speak about his Incompleteness Theorems at a symposium in 1930, he realized that

Hilbert's Program was hopeless, and he abandoned his work in logic. In 1931, von Neumann moved to the

United States to teach at Princeton University and he joined the Institute for Advanced Study in 1933. As

mentioned above, Alan Turing worked with Church in Princeton from 1936 to 1938. During this period,
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von Neumann did not formally work with Turing, but it is apparent from discussions he had with others

that he became familiar with Turing's work. In fact, von Neumann asked Turing to stay on as his assistant

in 1938, but Turing returned to England instead.

During World War II, von Neumann became involved in several military projects, including the de-

velopment of the atomic bomb at Los Alamos. This work involved many lengthy calculations, and von

Neumann became interested in computing machinery. In 1944, von Neumann had a chance encounter with

mathematician Herman Goldstine (1913{2004) who was supervising a computing project for the Army

Ordnance Department [21, p. 182]. Goldstine invited von Neumann to see the Electronic Numerical Inte-

grator And Computer, under development at the Moore School of Electrical Engineering at the University

of Pennsylvania. The mammoth electronic computing device used 18,000 vacuum tubes, and was designed

by a team led by engineer J. Presper Eckert (1919{95) and physicist John Mauchly (1907{80). The other

members of the team were engineers, except for Arthur Burks (1915{ ), a mathematician and logician. The

ENIAC was not a stored program computer. It might best be described as an electronic version of a desk

calculator that could be programmed by setting external switches and connecting patch cords. Numbers

were entered from an IBM punched card reader and were represented internally in base 10.

At the time of von Neumann's visit, plans were already being made to design a more sophisticated

computer, the Electronic Discrete Variable Computer. The Army began funding development of the EDVAC

in January 1945. Von Neumann became heavily involved in the logical design of the machine, and in June

1945 he wrote the First Draft of a Report on the EDVAC [55]. Von Neumann never wrote another draft
of the report, but the first draft was widely circulated and highly influential. The EDVAC would be a

general purpose, binary, stored-program computer with what is now called the von Neumann architecture.

It had five main parts: Central Arithmetic, Central Control, Memory, Input and Output. The operation of
such a computer consists of a cycle in which the Central Control fetches an instruction from Memory at
the location indicated by a program counter, increments the program counter, decodes the instruction, and

performs the indicated operation. The operation could involve sending a command to Central Arithmetic,
moving data in or out of Memory, changing the program counter (to cause a branch in program execution),
or sending a command to the Input or Output devices. Note that the cycle is essentially the same as in a
Turing machine, except that the machine von Neumann described is more efficient since there is random

access to the Memory and numerical calculations can be rapidly performed by the Central Arithmetic.
Von Neumann described the EDVAC using a neurological analogy he adapted from a paper by Pitts and

MacCulloch, that in turn had been inspired by Turing's 1936 paper [14, p. 183]. The designs of many

other computers around the world were based on the EDVAC and a more advanced computer built by von

Neumann, Goldstein, Burks and others at the Institute for Advanced Study between 1946 and 1952.

For further reading on von Neumann see Norman Macrae's biography [32]. Herman Goldstine's The
Computer from Pascal to von Neumann [21] contains a first-hand account of the development of the
ENIAC, EDVAC and Institute for Advanced Study computers. Students may also enjoy Ed Regis's popular

history of the Institute for Advanced Study, Who Got Einstein's Office [36]. It includes chapters on G�odel
and von Neumann.

Invention of the Modern Computer

It is not clear how much of the EDVAC Report represents original contributions by von Neumann since he

was summarizing the work of the team. Eckert and Mauchly later attempted to patent both the ENIAC and

EDVAC. Goldstine gave von Neumann primary credit for designing the first stored-program computer, but

Eckert and Mauchly claimed they had conceived of stored programs in 1943 [46, pp. 74{75]. They said

they chose not to use stored programs in the ENIAC because they wanted to build it quickly for war-time

use. For patent purposes, the issue was moot, since government lawyers determined that the dissemination
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of the EDVAC Report had put the design in public domain [46, p. 97]. It is interesting to note that in

1948 von Neumann, with the help of Adele Goldstine and Richard Clippinger, managed to program the

ENIAC to function as a limited stored program computer [21, pp. 233{235]. This is similar to Turing's

use of the stored program concept in his construction of a universal Turing machine. The ENIAC could

be programmed much faster as a stored-program machine, with it's switches and patch cords left in a

particular configuration, and it continued to run this way until the end of its operating life in 1955.

Eckert and Mauchly did obtain a patent on the ENIAC. They later assigned the patent to Sperry Rand,

but it was invalidated in a 1971{1973 court case between Honeywell and Sperry Rand [46, p. 34]. The

judge's ruling was partly based on the fact that a physicist at Iowa State University, John Atanasoff (1903{

95), had developed a special purpose electronic digital computer in 1940 [25]. Atanasoff's machine was

not a general purpose computer but a device to solve systems of linear equations. Mauchly had visited

Atanasoff in 1941 to see the computer and learn how it worked. Although Mauchly testified that he had

begun his own studies of digital electronic circuits in the 1930's and didn't use any of Atanasoff's ideas

in the ENIAC, the judge ruled otherwise. The judge also noted that although Mauchly and Eckert were

the inventors of the ENIAC, \the work on the ENIAC was a group or team effort and that inventive

contributions were made by Sharpless, Burks, Shaw and others." [46, p. 34]

It is impossible to assign credit for the modern (digital, electronic, stored-program) computer to one

person. The teams that designed the ENIAC and EDVAC drew on numerous sources, including ear-

lier mechanical calculating machines, Atanasoff's electronic computer, and the contemporaneous electro-

mechanical relay-based machines such as Howard Aiken's (1900{73) Harvard-IBM Mark I, built in 1944

[11]. (German engineer Konrad Zuse (1910{95) had built a relay-based computer in 1941 [39], but it was

unknown in the United States.) Clearly a good deal of credit is due to the brilliant engineers, such as

Eckert, who developed the required technology. Still, over the course of time, the technology has changed,

leaving only the fundamental logical structure. Turing seems to have been the first to clearly state the

concept of a universal stored program computer and von Neumann seems to have been the first to dissem-

inate a practical design for such a machine. Their backgrounds in mathematical logic, work on Hilbert's

Program and understanding of G�odel numbering put them in a position to be leaders in the development

of computing.

For further reading, Nancy Stern's From ENIAC to UNIVAC [46] attempts to assess the contributions
of Eckert, Mauchly, von Neumann and others using original documents, interviews and information from

the Honeywell-Sperry Rand trial. It includes a complete reprinting of von Neumann's EDVAC report.

The First Computers|History and Architectures, edited by Ra �ul Rojas and Ulf Hashagen [40], provides
technical information and history for the ENIAC and EDVAC as well as other machines designed by

Atanasoff, Aiken, von Neumann, Zuse, and others.

More Twentieth Century Logic and Computer Science

In addition to Hilbert, G�odel, Turing and von Neumann, a few of the many others who contributed to logic

and computer science in the 20th century are listed below. Some of them have been discussed above. Any

of them would make an excellent choice for a student's biographical report.

� Bertrand Russell: Russell's paradox, Principia Mathematica

� Alonzo Church: The lambda calculus, the undecidability of predicate logic
� Stephen Kleene: Recursion theory, finite automata
� Emil Post: Post machines, formal grammars
� Noam Chomsky (1928{ ): formal grammars
� John Backus (1924{ ): Backus-Naur (context-free) grammars



146 III. Discrete Mathematics, Numerical Methods, Computer Science, Logic, and Statistics

� Julia Robinson (1919{85), Martin Davis (1928{ ), Hilary Putnam (1926{ ), Yuri Matijasevic (1947{ ):
Undecidability of Hilbert's 10th problem (to determine which Diophantine equations have solutions)

� John McCarthy (1927{ ): Lisp (based on the lambda calculus)
� Stephen Cook (1939{ ): Complexity Theory, P=NP? (inspired by analogy to work of Church and
Turing)

Students can find short biographies and lists of additional references for Russell, Church, Kleene,

Post and Robinson in the MacTutor History of Mathematics Archive [53]. Another good source for Julia
Robinson is Constance Reid's Julia: A Life in Mathematics [37]. Noam Chomsky: A Life of Dissent by
Robert Barsky [2] is one of many books on Chomsky. Out of Their Minds: The Lives and Discoveries of
15 Great Computer Scientists by Dennis Shasha and Cathy Lazere [42] includes interviews with Backus,
McCarthy and Cook.

Conclusion

While computer science has established itself as a separate discipline from mathematics, the two subjects

are still closely linked, with logic at the heart of both. Ironically, the links between mathematics and

computer science have become less obvious since, as Turing foresaw, computers are now used for many

purposes other than numerical computation. Today, students may think of computers primarily as machines

for text-processing, communicating, playing music and playing games. While technological advances made

possible the small, fast and inexpensive computers of today, the amazing range of computer applications

is implicit in the theoretical concept of the universal stored-program computer. This concept, as we have

seen, arose in work on Hilbert's program by G�odel, Turing and Von Neumann. Instructors can use this

fascinating history in their classes to help mathematics and computer science students to appreciate the

power of logic and the depth of the connections between the two disciplines.
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From the Tree Method in Modern Logic to the
Beginning of Automated Theorem Proving*

Francine F. Abeles

Kean University

Introduction1

In teaching an upper division elective course in mathematical logic for mathematics and computer science

students, I have found that the class usually is divided evenly between these two groups of students, both

of which suffer from insufficient experience in proving theorems. To remedy this insufficiency, I have

chosen as the engine for the first part of the course a proof technique known as the tree method, an

intuitively appealing and relatively simple approach for establishing the validity of arguments that works

for a large subset of first order logic whose roots go back to the early part of the twentieth century.

This method provides students with the opportunity to develop several important technical skills such as

deriving conclusions from premises, exposing the inconsistency of a set of statements, and determining if

an argument is sound. That the method became a crucial step in the development of automated theorem

proving beginning in the 1950s serves to heighten the interest of the computer science students in the

class, the group that needs to be even more engaged in theorem proving activities to provide the tools for

constructing complex computer programs. What most distinguishes this course is that I present the method

and its historical context so that the topics and their emergence are tightly coupled.
To facilitate this approach, I will present both the development of increasingly more sophisticated trees

together with the relevant historical topics so that an instructor who adopts this approach using logic to

teach the skills to prove mathematical theorems can choose just how much history to incorporate. Little of

this historical content appears in logic texts or in standard histories of mathematics. At recent professional

meetings, where there have been presentations or discussions about the role of logic in writing proofs

in collegiate mathematics courses, participants have expressed a strong interest in knowing more about

truth trees and their history. Although the presentation here is certainly not complete, it is sufficient for

presenting this important logical tool historically, and it supplements the textbook for this first half of the

course, the third edition (1991) of Richard Jeffrey's book, Formal Logic: Its Scope and Limits. [18]
To illustrate some of the many differences between the scope of logic before and after the mid nineteenth

century, when modern logic emerges, the course begins with some quite complex syllogism problems

�This paper is dedicated to the memory of Richard Jeffrey (1927{2002) whose 1967 publication of Formal Logic: Its Scope
and Limits was the first book to popularize the tree method of testing unsatisfiability.

1For assistance with biographical and bibliographical information throughout this article, I am indebted to Shirley Horbatt,

librarian in the Kean University Library.
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(soriteses) given by Charles L. Dodgson (Lewis Carroll) who also applied a tree method to solve them.

Syllogistic reasoning still was considered in his time to be the archetype of correct reasoning. In July 1894,

Carroll devised his Method of Trees to test the validity of these highly complicated multiliteral statements.

His method was the earliest modern use of trees as a way of reasoning efficiently from syllogisms. It

was, in effect, a mechanical test of validity through a reductio ad absurdum argument for a large part of

propositional logic. [5, pp. 279{319; 1, pp. 25{35]

One of Carroll's problems, suitably altered for a modern audience, to obtain the strongest possible

conclusion from the premises, is given in Example 1 for the universe of men. [5, pp. 135{37] Carroll

considers these statements to be equivalent: some x exist and none of them are y; all x are not y.

Example 1

1. All the policemen on this beat eat with our aunt.

2. No man with long hair can fail to be a poet.

3. Andrea Jones has never been in prison.

4. Our aunt's cousins all like cold meat.

5. None but policemen on this beat are poets.

6. None but her cousins ever eat with our aunt.

7. Men with short hair have all been in prison.

By applying the appropriate syllogistic rules to statements 1 and 5, we can conclude that all men not

eating with our aunt are not poets. Next we use this conclusion and statement 2 to conclude that all men

not eating with our aunt are not long-haired. This conclusion coupled with statement 6 allows us to say

that all long-haired men are cousins of our aunt. This conclusion when used with statement 4 allows us to

reason that all long-haired men like cold meat. Taking this statement together with statement 7 permits us

to say that all men who don't like cold meat have been in prison. Finally, this conclusion when coupled

with statement 3 leads to the ultimate conclusion that Andrea Jones likes cold meat.

In the next two sections of this paper I provide a concise history of the tree method so that the instructor

who adopts this approach will not only understand its evolution and can include some of the historical

context in a logic course, but also can choose to enrich the course with additional material such as Beth's

semantic tableau method (which quickly became useful in the development of automatic theorem proving),

or the role of modus ponens in the structure of a proof.

Natural Deduction and the Roots of the Tree Method2

The principal developers of natural deduction for proving theorems were Gerhard Gentzen (1909{1945)

and Stanis law Ja�skowski (1906{1965) who worked independently, yet published their results in the same

year, 1934. [10; 17] Gentzen established formulations of predicate logic different from those developed

by Gottlob Frege, David Hilbert, and Bertrand Russell in the sense that Gentzen considered his proof

procedures to be more \natural" than those based on axiomatic systems. One of these formulations is

known as Gentzen's calculus of natural deduction sequents. A sequent A1; A2; : : : ; An ! B1; B2; : : : ; Bn

is a one-dimensional array of two finite sequences of formulas connected by an arrow ! whose meaning

2In this section and the next one, I have relied on the following pieces to supplement the original sources: [3, pp. 22{4, pp.

36{9]; [4, pp. 113{52]; [19, ch. 6].
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is: the sequence on the right-hand side (RHS) is a logical consequence of the sequence on the left-hand

side (LHS). The sequence on the left is the set of antecedents; the sequence on the right is the set of

succedents. To arrive at a formal deduction, each line in the proof is either an axiom or is a derivation

from a previous line according to a set of rules.

In their systems, Gentzen and Ja�skowski treated the existential quantifier differently. Gentzen included

both the universal and the existential quantifiers explicitly; Ja �skowski included universal quantification

explicitly, but existential quantification only indirectly by giving the existential quantifier only as the

negation of the universal quantifier. Probably for this reason, logicians of his day preferred Gentzen's

approach which became the one that led to further development.

The modern tree method as a decision procedure for classical propositional logic and for first order

logic originates in Gentzen's pioneering work on natural deduction in 1934, particularly his formulation

of the sequent calculus known as LK. But the route is not a direct one; the chief contributors being Evert

W. Beth (1908{1964), and the contemporary logicians, Jaakko Hintikka (1929{ ), Raymond Smullyan

(1918{ ), and Richard Jeffrey (1927{2002).

In 1955, Beth presented a tableau method he had devised consisting of two trees that would enable

a systematic search for a refutation of a given (true) sequent. The tableau has the LHS of the sequent as

the root of one tree, and the RHS of the sequent as the root of the other tree. Using the tableau method,

one can obtain a cut-free proof (one that does not use the cut elimination rule which is a generalization

of modus ponens) by systematically building a counterexample for the sequent, and finding that at some
stage the process becomes blocked, i.e. there is no counterexample, confirming that the sequent is true.

But we have to be sure that no counterexample at all exists, so the construction must be formal, i.e.
based on a syntactical definition of logical derivation, one composed of a finite list of logical inferences,
each inference resulting from an application of a formal rule. The problem of determining whether or

not a given formula V is a logical result of the (given) formulas, U1; U2; : : : ; Un can be determined by

constructing an appropriate counterexample showing that V does not logically result from U1; U2; : : : ; Un.

But if the construction is unsuccessful and a counterexample cannot be found, then V is a logical inference
from U1; U2; : : : ; Un. A semantic tableau is a systematic method for constructing a counterexample, if one

exists. It should be emphasized that if a semantic tableau shows that no counterexample exists, then its

pieces can be rearranged to obtain a semantic derivation (in some natural deduction system), in the sense
of Alfred Tarski's (1902{1983) semantic definition of the concept of logical consequence, and conversely.

So, obtaining a derivation of V from U1; U2; : : : ; Un by applying the rules of some system of natural

deduction, or showing that such a derivation is unobtainable using these rules, is a method equivalent to

the method of semantic tableau. [26, ch. II] An example of Beth's semantic tableau method (Example 1A)

is in the Appendix. [6, pp. 186{7, pp. 196{7]

In his 1934 paper, Gentzen proved that the use of the cut rule can be eliminated from any logical proof.

The cut rule, or modus ponens, is a valid derived rule in natural deduction systems, but it is not obviously
a valid derived rule in the tree method, i.e., if there are closed trees for both A and A ! B , then it is not

obvious that there is one for B as well. (A tree is closed if it contains a matching pair of contradictory

sub-formulas.) Indeed, Gentzen's LK without the cut rule is the tree method. In any natural deduction
system, not using the cut rule can increase the length of derivations considerably. The efficiency of the tree

method is preserved by adding a version of the cut rule, in the form of the law of the excluded middle,

which permits any open branch of a tree to split into two, then allowing any sentence to be appended to

the bottom of one of the new branches, and the negation of that sentence to be appended to the bottom of

the other.

Some years before Beth published his work on the semantic tableau method, Jacques Herbrand (1908{

1931) had made the equivalent observation in his work on quantification theory that modus ponens can be
eliminated from the proof of any provable formula. In his proof of what has become known as Herbrand's
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fundamental theorem, he showed that if a formula F is provable, then there is another proof of it that uses

only subformulas of F . Indeed, Gentzen's sequent calculus is based on Herbrand's results, but Gentzen's

elimination of his cut rule is not as general as Herbrand's elimination of modus ponens. [14]

The Development of the Tree Method in the Second Half of the 20th Century

A tree is a left-sided Beth tableau in which all the formulas are true. The rules for decomposing the tree,

i.e., the inference rules, are equivalent to Gentzen's rules in his sequent calculus LK.3 In the first edition

(1967) of his book, Formal Logic [18, p. 227], Jeffrey states that the sources of his tree method are Beth's
semantic tableaux [6;7], and Hintikka's method of model sets [15; 16]. Jeffrey also asserts (on p. ix) that

he used Smullyan's idea of one-sidedness to reduce a tableau to a tree, and he suggests that both Beth's

semantic tableaux and Hintikka's model sets may derive from Herbrand's work.

In Hintikka's method, a Hintikka set is a set of formulas interpretable as a partial description of a

model in which all the formulas are true. As in Beth's tableau method (which is more complicated than

Hintikka's method), when a counterexample of a formula cannot be constructed, that formula is proved.

[15; 16] Hintikka sets constitute models in which all the members are true when suitably interpreted. [15,

p. 26]

In the period 1959 to 1968, Smullyan connected Hintikka's model sets and Beth's tableaux and gave

a complete and systematic development of his own method of analytic tableaux, which are left-sided Beth

tableaux or truth trees, as he called them. But Smullyan acknowledged that \the whole idea derives from

Gentzen." [24, p. 15] In both the analytic tableau method and the semantic tableau method the construction

of a counterexample is the goal. They differ in that an analytic tableau is composed of just one column, and

the rules of its construction, the same rules governing the tree method listed in the next section, are rules

for eliminating logical constants only. To decide if formula B can be inferred from the formula A1; : : : ; An,

we begin with A1; : : : ; An and the negation of B . Applying the rules appropriately to A1; : : : ; An, B , we

construct a tree of sub-formulas. If each branch of the tree is closed, then we have shown that B can be

inferred from A1; : : : ; An . [24]

In the Appendix there is an analytic tableau (Example 2A) constructed to answer the same question

raised in Example 1A, is formula (3) a consequence of formulas (1) and (2)? [19, pp. 204{5]

The Tree Method4

Before using the tree method to test the validity of arguments, or equivalently the consistency of a set

of sentences, we first list the basic inference rules. In rules 2, 4, and 8, the symbols below the line (the

conclusion) are connected by \or," i.e., in rule 2 these symbols are � S , T ; in rule 4 they are S , T ; in

rule 8 they are S , �T . In rules 3, 5, 7, 9 and 10 the symbols below the line are connected by \and," i.e.,

in rule 3 they are S , T ; in rule 5 they are S , T , and �S , �T ; in rule 7 they are S , �T ; in rule 9 they

are �S , �T ; in rule 10 they are �S , T and S , �T .

3Gentzen developed two versions of first order logic, each in two flavors. He named one of these versions, natural deduction,

of which NK is classical, and NJ intuitionistic. He named the other version the logistic calculus, and its two flavors are the

classical LK and the intuitionistic LJ.
4All the examples in this section are problems and examples taken from the third edition of [18].
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1. Contradiction. S

�S

x

Given two premises, one the denial of the other, we infer the

conclusion x that the premises contradict each other, i.e., no

counterexamples are determined when these two premises ap-

pear as full lines of a path in a tree.

2. Conditional. S ! T

�S T

Given the premise the sentence S implies T , conclude the

sentence � S , or the sentence T .

3. Conjunction. S ^ T

S

T

Given the premise the sentence S and T , conclude the separate

sentences S and T .

4. Disjunction. S _ T

S T

Given the premise the sentence S or T , conclude the sentence

S or the sentence T .

5. Bi-conditional. S $ T

S �S

T �T

Given the premise S implies T and T implies S , conclude the

sentence S and the sentence T or the sentence � S and the

sentence �T .

6. Double negation. ��S

S

Given the negation of the negation of premise S , conclude the

sentence S .

7. Negation of

the conditional.

�.S ! T /

S

�T

Given the premise the sentence not(S implies T ), conclude the

sentence S and the sentence �T .

8. Negation

of conjunction.

�.S ^ T /

�S �T

Given the premise not(S and T ), conclude the sentence � S

or the sentence �T .

9. Negation

of disjunction.

�.S _ T /

�S

�T

Given the premise not(S or T ), conclude the sentence�S and

the sentence �T .

10. Negation of the

bi-conditional.

�.S $ T /

�S S

T �T

Given the premise not(S implies T and T implies S ), conclude

the sentence � S and the sentence T , or the sentence S and

the sentence �T .

To work with quantified statements we need four additional rules.

11. Universal

instantiation (UI). 8x : : : x : : :

. . . any name . . .

Given the premise that something is true of all x, conclude

that the something is true of any member of the domain over

which the variable x ranges.

12. Existential

instantiation (EI). 9x : : : x : : :

. . . new name. . .

Given the premise that something is true for at least one x,

conclude that the something is true of some member of the

domain over which the variable x ranges.

13. Negation of UI. � 8x S

9x �S

Given (as the premise) the denial that everything in a non-

empty domain has property S , conclude that there is at least

one member of that domain that lacks property S .

14. Negation of EI. �9x S

8x �S

Given (as the premise) the denial of the existence of any mem-

ber in a non-empty domain having property S , conclude that

every member of that domain lacks property S .

Here is an example I develop in class. Consider these two statements: \There is something that is

popular if it's a song." \Then there is something that is a popular song." The upper case letters S , P are
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predicates; the lower case letter a is a value (name), the lower case letter x is a variable name; Sa and

Pa are sentences. The first of these sentences expresses \there is something that is a song; the second

expresses \there is something that is popular." If the first statement is the premise and the second the

conclusion, is the argument if 9x.Sx ! P x/, then 9x.Sx ^ P x/ a valid one? Recall that an argument

will always be valid except when the premise is a true statement and the conclusion is a false statement.

We construct a tree using the premise and the denial of the conclusion. If the set of these two statements is
inconsistent, all the paths through the finished tree will be closed, and the argument is valid. On the other

hand, if the set of these two statements is consistent (not contradictory), there will be at least one open

path (counterexample) through the finished tree, and the argument is invalid. An open path represents a

counterexample because it has the argument's premises and the denial of its conclusion as true statements.

Example 2 is the tree test for this argument. Each line in the tree is a true statement. Inference rules are

applied only to sentences that appear as full lines of open paths. It's understood that successive lines are

connected by \and."

Example 2

1. 9x.Sx ! P x/ Premise

2. � 9x.Sx ^ P x/ Denial of conclusion

3. 8x � .Sx ^ P x/ Rule 14 from line 2

4. Sa ! Pa Rule 12 from line 1

5. �.Sa ^ Pa/ Rule 11 from line 3

6. �Sa Pa Rule 2 from line 4 (The tree branches here.)

7. �Sa �Pa �Sa �Pa Rule 8 from line 5 (The tree branches again.)

x Rule 1 from lines 6, 7

A B C D

There are four paths A, B, C, D through this finished tree, one of which (D) is closed (rule 1 from

lines 6 and 7). So an \x" is placed below this path. Paths A and B are equivalent because since there

are no songs (� Sa on line 6), it doesn't matter if they are popular or not. But path C provides the

counterexample: something is popular and it's not a song. The tree test shows that the argument is invalid

and the set f9x.Sx ! P x/; �9x.Sx ^ P x/g is consistent.
Another type of problem is given in Example 3. Is the statement 9x.P x ! 9yPy/ a logical truth?

It will be if the tree test shows the argument given by the statement is a valid one. The argument has no

premises, just a single statement which we take to be the argument's conclusion, so we begin with its

denial.

Example 3

1. �9x.P x ! 9yPy/ Denial of the conclusion

2. 8x �.P x ! 9y Py/ Rule 14 from line 1

3. �.Pa ! 9y Py/ Rule 11 from line 2

4. Pa Rule 7 from line 3

5. �9y Py Ditto

6. 8y �Py Rule 14 from line 5

7. �Pa Rule 11 from line 6

x Rule 1 from lines 4, 7
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The finished tree is closed, (signified by an \x" placed at the end of its single path) so the argument

is valid, hence the statement is a logical truth, and the (singleton) set of statements is inconsistent (contra-

dictory). What might such a statement actually mean? One possibility is, there is a person who is a parent

providing there is another person who also is a parent.

The tree test can also be used when predicates have more than one value. For example, we can ask if

this sentence is consistent: There is someone who shaves only those people who do not shave themselves.

In logical notation we write, 9x 8y.Sxy $�Syy/. If we construct a tree test beginning with the denial

of this statement, the finished tree will be closed, so the statement, the Barber Paradox, is contradictory

as we expect it to be.

With the tree test we can decide whether or not an argument is a valid one providing the initial set of

premises and conclusion is a finite set, and the quantifiers apply to a single variable. Then the tree will

be finished after a finite number of steps. However, an infinite tree becomes possible when more than one

quantified variable is introduced. For example, the argument

8x 9y P xy

Paa

generates an infinite tree. In this case the tree does not terminate and the tree test is not a decision procedure.

Connections with the Beginning of Automated Theorem Proving 5

The results that we have described thus far motivated further work in the mechanization of reasoning. In

this final section, I provide a short history of resolution, the most important of the early proof methods in
automated theorem proving. The advent of computing machines in the 1950s spurred further the idea of

automating proofs of theorems. This work itself has a rich history, beginning with Martin Davis's program

to prove theorems in an arithmetic with addition as the only operation. The first of these theorems, which

he proved in 1954 but did not publish, was that the sum of two even numbers is an even number. There

are several additional milestones that are linked to the earlier work of Herbrand, Gentzen, and Beth. We

describe those that were developed in the period 1954 to 1965.

Arguably, the first working proof procedure for first order logic, constructed by Paul C. Gilmore, was

based on Beth's semantic tableau method. [11; 12] (Deciding whether or not any given argument is valid is
only partially solvable in first order logic.) In 1958, Hao Wang developed the first set of programs to prove

theorems in both propositional and first order logic. These were based on the methods of Herbrand and

Gentzen. [28; 29] In the period 1960 to 1962, Martin Davis and Hilary Putnam, using Herbrand's theorem,

created a program to reduce the test of the validity of a formula F in first order logic to a sequence of

tests of the validity of the disjunction of a finite number of propositional formulas (substitution formulas

containing no quantifiers) obtained from F . Their procedure used simplification by cancellation to split

a formula into two formulas that could again be simplified. [9] In 1960, Dag Prawitz improved Davis's

and Putnam's scheme of listing the substitutions by using unification, a term coined by J. Alan Robinson

(1930{ ) for the method originally developed by Herbrand (Robinson cited Herbrand's thesis, specifically

his \Property A Method," as the first use of unification), and independently rediscovered by Prawitz. [21]

Robinson defined unification in this way: If A is any set of well-formed expressions, and � is a substitution,

then � is said to unify A. With a unification algorithm developed by M. Douglas McIlroy in 1962, Davis

wrote the first program using unification to improve Davis's and Putnam's procedure. [8]

One of the most important milestones in the history of automated theorem proving, resolution, a single

inference method for first order logic was announced by Robinson in 1963, and described fully by him in

5In this section, in addition to the source material, I have relied on [19, ch. 7], and [2].
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1965. [22] Resolution is a refutation method operating on clauses containing function symbols, universally

quantified variables, and constants. Recall that reducing efficiently from statements in first order logic to

statements in propositional logic (ground clauses) requires unification. Herbrand's fundamental theorem

permits clauses (finite disjunctions of literals or the empty clause) with variables to stand for all their

ground instances (clauses whose members are only literals having no variables). So resolving two of these

clauses requires resolving all their ground instances.

But we can bypass this reduction to ground clauses, and work directly with the original clauses by first

using a substitution (which can cause several literals to collapse to a single literal) followed by resolution.

The essence of the resolution method is that it searches for evidence of unsatisfiability (self-contradiction)

in the form of a pair of clauses, one containing a literal, and the other its complement (negation). Resolution

depends on using Gentzen's cut rule which ensures that the complexity of each step in a proof is not more

complex than its conclusion.

Example 4 is a problem that I develop in class. It gives Robinson's resolution method in its simplest

form (without quantifiers). [19, p. 217] To show that U can be derived from the set of clauses, .P ! S/

^.S ! U / ^ P ^ � U , we begin by using the equivalent conjunctive form for the first two clauses:

.�P _ S/ and .�S _ U /. Then we proceed to show that the formula composed of these four clauses is

not satisfiable (inconsistent) by employing resolution alone.

Example 4

1. �P _ S Clause 1

2. �S _ U Clause 2

3. P Clause 3

4. �U Clause 4

5. �P _ U Resolvent of clauses 1 and 2 (S and �S are eliminated)

6. U Resolvent of clauses 3 and 5 (P and �P are eliminated)

7. Œ � Resolvent of clauses 4 and 6 (U and �U are eliminated)

Step 7 shows that U is a logical consequence of the set fP ! S; S ! U; P g because a set of
clauses is not satisfiable if and only if there is a derivation (by resolution) of the empty clause (Œ �), i.e.,

a contradiction. From this example we see that Robinson is applying a tree method to clausal Gentzen

sequents.

The effect of Robinson's work on unification-based resolution has been profound. The programming

of resolution-based proof procedures led to the birth of logic programming in the 1970s. Unification based

resolution is a machine-oriented reasoning method whose implications we continue to develop.

Conclusion

The tree method is a direct extension of truth tables, and migrating to trees from the tables is easy to

do. Using truth tables to verify inconsistency is straightforward, but very inefficient, as anyone who has

worked with truth tables involving eight or more cases knows. The truth tree method examines sets of

cases simultaneously, thereby making it efficient to test the validity of arguments involving a very large

number of sentences by hand or with a computer. To test the validity of an argument consisting of two

premises and a conclusion, equivalently determining whether the set of the two premise sentences and the

denial of the conclusion sentence is inconsistent, by the method of truth tables involving say, three terms,

requires calculating the truth values in eight cases to determine whether or not there is any case where the
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values of all three terms are true. But a finished closed tree establishes that validity by showing there are

no cases in which the three sentences are true.

I believe I have demonstrated that the topics in the first half of this course should be presented as sets

of concepts and techniques that have evolved logically and historically in a reasonably understandable way.

In standard texts, the works of Herbrand, Gentzen, and Beth, arguably three of the greatest logicians of the

twentieth century, have either been largely ignored or they are treated superficially. Further, I have included

enough material so that both mathematics and computer science students can choose themes for term papers

from these historically informed topics. The extensive bibliography will point them appropriately.

In the fourth section, the heart of this paper, I described explicitly the extremely elegant and efficient

proof procedure, the tree method, and provided several examples for classroom use. To explore this method

more thoroughly, the reader should consult the third edition of Jeffrey's book. Jeffrey describes this me-

chanical procedure as \thrillingly easy to understand and use. It is this simplicity that lets students get

control of the nuts and bolts of formal logic in a couple of months." [18, p. xi] As a practitioner of this

method, I strongly agree.

Appendix

Example 1A

Decide whether or not the formula .9z/ŒP.z/^ �S.z/� (3)

is a logical consequence of the formulas .9x/ŒP.x/^ �M.x/� (1)

and .9y/ŒM.y/^ �S.y/�. (2)

To decide this, construct a tableau placing (1) and (2) on the LHS; and (3) on the RHS. On the RHS,

we attempt to construct a counterexample, which, if we can do it will yield a negative decision. We are

interested in seeing how \truth" propagates downwards on both sides of the tableau by breaking down the

formulas and their descendants into smaller parts. To construct the tableau, we use the following set of

rules A through H. Rules D, E, and F eliminate connectives, so eventually each side of the tableau will

consist only of sentences, those that were given or those produced by rules G and H.

A. The tableau has two columns: the LHS, labelled \valid," and the RHS, labelled \invalid." Arbitrary

formulas can be inserted in either column.

B. If the same formula occurs in both columns of the same (sub)tableau, then that (sub)tableau is closed;

if the two sub-tableaux of a (sub)tableau are closed, then that (sub)tableau is also closed.

C. If � A occurs in a left column, then A is inserted in the conjugate right column, i.e., in the right
column of the same (sub) tableau; if �A occurs in a right column, then A is inserted in the conjugate left

column.

D. If A ^ B occurs in a left column, then both A, B are inserted in the same column. If A ^ B occurs

in a right column, then that (sub)tableau splits into two sub-tableaux in the right columns of which we

insert A, B , respectively. (A sub-tableau created from splitting other (sub)tableaux is subordinate to those
(sub)tableaux; the formulas in both columns of a (sub)tableau occur in the corresponding columns of every

subordinate sub-tableau.)
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E. If A _ B occurs in a left column, then the (sub) tableau splits into two sub-tableaux. We insert A and

B , respectively in their left columns. If A _ B occurs in a right column, then both A and B are inserted

in that column.

F. If A ! B occurs in a left column, then the (sub) tableau splits. In the right column of one sub-tableau

we insert A, and in the left column of the other, we insert B . If A ! B occurs in a right column, then

we insert B in the same column, and A, in the conjugate left column.

G. If .8x/A.x/ occurs in a left column, then we insert A.p/ in the same column for each instantiation

p of x. If .8x/A.x/ occurs in a right column, we introduce a new instantiation p and insert A.p/ in the

same column.

H. If .9x/A.x/ appears in a left column, we introduce a new instantiation p and insert A.p/ in the

same column. If .9x/A.x/ appears in a right column, then we insert A.p/ in the same column for each

instantiation p.

Valid Invalid

1. .9x/ŒP.x/^ �M.x/� Given 3. .9z/ŒP.z/^ �S.z/� Given

2. .9y/ŒM.y/^ �S.y/� Given 7. M.a/ Refer to step 6

4. P.a/^ �M.a/ H from step 1 11. S.b/ Refer to step 10

5. P.a/ D from step 4 12. P.a/^ �S.a/ H from step 3

6 �M.a/ D from step 4 branch(i) branch (ii)

8. M.b/ � S.b/ H from step 2 13. P.a/ �S.a/ D from step 12

9. M.b/ D from step 8 ||||

10. �S.b/ D from step 8 16. P.b/^ �S.b/ H from step 3

branch (i) branch (ii) branch (iii) branch (iv)

|||| 15. S.a/ Refer 17. P.b/ 18. �S.b/ D from step 16

to step 14

|||| ||||

branch (iii) branch (iv)

19. S.b/ Refer

to step 18

||||

By rule C, M.a/ is inserted on the invalid side in step 7 because �M.a/ appears on the valid side in

step 6. Observe that the tableau branches after step 12 into the sub-tableaux (i) and (ii), and using rule B,

(i) is closed by the presence of P.a/ in step 5 on the LHS, and P.a/ in step 13 on the RHS. Sub-tableau

(ii) branches after step 16 into the sub-tableaux (iii) and (iv), and again using rule B, sub-tableau (iv) is

closed by the presence of S.b/ in step 11 on the LHS, and S.b/ in step 19 on the RHS. Sub-tableau (ii)

is closed, again using rule B, because sub-tableau (iv) is closed. But sub-tableau (iii) is open. This open

path gives the counterexample that the universe is composed of two items a and b, with item a having

property P but not property M , while item b has property M but not property S . So the answer to the

initial question is no.
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Example 2A

1. .9x/ŒP.x/^ �M.x/ Premise

2. .9y/ŒM.y/^ �S.y/� Premise

3. �.9z/ŒP.z/^ �S.z/� Negation of conclusion

4. P.a/^ �M.a/ Instantiation of x in step 1

5. P.a/ Conjunction from step 4

6 �M.a/ Conjunction from step 4

7. M.b/^ �S.b/ Instantiation of y in step 2

8. M.b/ Conjunction from step 7

9. �S.b/ Conjunction from step 7

10. � ŒP.a/^ �S.a/� Instantiation of z in step 3

branch (i) branch (ii)

11. �P.a/ ��S.a/ Negation of conjunction from step 10

12. x S.a/ Double negation from step 11

The contradiction from steps 5 and 11 closes branch (i), but branch (ii) is open and complete (because

no additional statements can be added to the branch). Again, the answer to the question is no because

only if every branch of the tree is closed does each branch contain a pair of contradictory statements,
from which we could then conclude that formula (3) is a consequence of formulas (1) and (2). Four of

the eleven rules to decompose a tree are used in this example. These four are

existential instantiation in steps 4, 7, 10: 9x/A.x/; conjunction in steps 5, 6, 8, 9: A ^ B;

A.a/ A

B

negation of conjunction in step 11: �.A ^ B/; and double negation in step 12: ��A.

�A �B A

In each rule, the item(s) below the line can be derived from the item(s) above the line. Items below the

line in the same row are connected by \or," while items below the line in the same column are connected

by \and."

References

1. F. Abeles, \Lewis Carroll's Method of Trees: Its Origins in Studies in Logic," Modern Logic 1, 1990, pp. 25{35.

2. ||, \Herbrand's Fundamental Theorem and the Beginning of Logic Programming," Modern Logic 4, 1994,
pp. 63{73.

3. I. Anellis, \From Semantic Tableaux to Smullyan Trees: A History of the Development of the Falsifiability Tree

Method," Modern Logic 1, 1990, pp. 36{69.

4. ||, \Forty Years of \Unnatural Deduction and Quantification: A History of First-order Systems of Natural

Deduction, From Gentzen to Copi," Modern Logic 2, 1991, pp. 113{152.

5. W. W. Bartley III, ed., Lewis Carroll's Symbolic Logic, Clarkson N. Potter, New York, 1977.

6. E. W. Beth, The Foundations of Mathematics, 2nd revised edition, North-Holland, Amsterdam, 1965. (First
edition 1959.)



160 III. Discrete Mathematics, Numerical Methods, Computer Science, Logic, and Statistics

7. ||, Formal Methods, D. Reidel, Dordrecht and Gordon and Breach, New York, 1962.

8. M. Davis, \Eliminating the Irrelevant fromMechanical Proofs," Proceedings of Symposia in Applied Mathematics
15, 1963, pp. 15{30.

9. M. Davis and H. Putnam, \A Computing Procedure For Quantification Theory," J. of the Association for
Computing Machinery 7, 1960, pp. 201{215.

10. G. Gentzen, \Untersuchungen über das logische Schliessen," Mathematische Zeitschrift 39, 1934, pp. 176{210,
pp. 405{431. (English translation in Szabo 1969, [25] pp. 68{131.)

11. P. C. Gilmore, \A Program for the Production of Proofs for Theorems Derivable within the First Order Predicate

Calculus from Axioms," Proceedings of the International Conference on Information Processing, UNESCO,
Paris, 1959.

12. ||, \A Proof Method for Quantification Theory: Its Justification and Realization," IBM J. of Research and
Development 4, 1960, pp. 28{35.

13. W. Goldfarb, ed., Jacques Herbrand: Logical Writings, Harvard Univ. Press, Cambridge, 1971.

14. J. Herbrand, Recherches sur la théorie de la démonstration, Ph. D. thesis, Univ. of Paris, 1930. (English translation

of ch. 5 containing Herbrand's fundamental theorem in van Heijenoort 1976, [27] pp. 525{581.)

15. K. J. J. Hintikka, \Form and Content in Quantification Theory," Acta Philosophica Fennica 8, 1955, pp. 7{55.

16. ||, \Notes on the Quantification Theory," Societas ScientariumFennica Commentationes physico-mathematicae
17, n. 12, 1955a, pp. 1{13.

17. S. Ja�skowski, \On the Rules of Supposition in Formal Logic," Studia Logica 1, 1934, pp. 5{32. (Reprinted in
MacCall 1967, [20] pp. 232{258.)

18. R. Jeffrey, Formal Logic: Its Scope and Limits, McGraw-Hill, New York, 1991, 1981, 1967.

19. W. Marciszewski and R. Murawski,Mechanization of Reasoning in a Historical Perspective, Rodopi, Amsterdam
and Atlanta, 1995.

20. S. MacCall, ed., Polish Logic 1920{1939, Clarendon Press, Oxford, 1967.

21. D. Prawitz, \An Improved Proof Procedure," Theoria 26, 1960, pp. 102{139.

22. J. A. Robinson, \A Machine-Oriented Logic Based on the Resolution Principle," J. of the Association for
Computing Machinery 12, 1965, pp. 23{41.

23. ||, \Logic and Logic Programming," Communications of the Association for Computing Machinery 35, 1992,
pp. 40{65.

24. R. M. Smullyan, First-Order Logic, Springer-Verlag, New York, 1968.

25. M. E. Szabo, ed., The Collected Papers of Gerhard Gentzen, North Holland, Amsterdam and London, 1970,
1969.

26. A. Tarski, Introduction to Logic and to the Methodology of Deductive Sciences, Oxford University Press, New
York, 1965.

27. J. Van Heijenoort, From Frege to G�odel. A Source Book in Mathematical Logic, 1879{1931, Harvard Univ.
Press, Cambridge MA and London, 1976, 1971, 1967.

28. H. Wang, \Proving Theorems by Pattern Recognition. Part I," Communications of the Association for Computing
Machinery 3, 1960, pp. 220{234.

29. ||, \Proving Theorems by Pattern Recognition. Part II," Bell System Technical J. 40, 1961, pp.1{41.



14
Numerical Methods History Projects

Dick Jardine

Keene State College

Introduction

Hermite, Runge, Birkhoff, and Shoenberg are just four of the many mathematicians of the past 200 years

who contributed to the field of numerical analysis. In the numerical methods course described in this

article, students met Charles Hermite (1822{1901) while studying the interpolating polynomials bearing

his name. Students became acquainted with Carl Runge (1856{1927) as they did the historical research to

learn what applications motivated the development of his popular method for approximating the solution

to differential equations. Isaac Shoenberg (1903{1990) and Garrett Birkhoff (1911{1996) had different

purposes in developing and applying splines, just one of the mathematical methods created to support the

American wartime effort of the 1940s. Students study splines in this and other numerical analysis and

mathematical modeling courses ([1] and [5] are typical texts), but in this one they learn the context for

the historical development of the mathematics.

Projects and other history-based course activities provide an opportunity to bring to life the topics of

a numerical analysis course. A brief overview of history-based projects included in a numerical methods

course is given here. All the projects are described in the paper; one of the course projects is contained in

an appendix. The historical components of the projects are the focus, however other historical activities

included in the course are also presented, hopefully providing the interested reader with resources and

ideas for implementation in other courses.

The projects

The first project was on the subject of root-finding methods: bisection, fixed-point iteration, secant method,

and Newton's method. Although some of the methods are by no means modern, classroom discussion

provided insight into the modern-day implementation of variations of those methods in their graphing

calculators and the Maple software used throughout the course. Since the 2002 Winter Olympics occurred

during the semester this course was implemented, the first project was an adaptation of an exercise from the

text [1] modified to include an Olympic scenario. The project description and requirements are contained in

the Appendix. Students applied and compared numerical root-solving methods in finding the time of flight

for a ski jumper. In addition to the numerical problem, student teams investigated the history of root-finding

methods applied by Newton, Raphson, Vieta, Al Kashi, and Paramesvara. The course instructor shared

research resources with students, many of which are contained in the references [3], [4], [6], [7], [8].
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In completing this and subsequent projects, student teams presented both written and oral reports of

their solution. For their historical research, students were instructed to include at least one web source

and, because of the unreliability of some web resources, at least one print reference. Good web sources

include the MacTutor History of Mathematics Archive [8] or numerical analysis history sites [10], found

using any of the better search engines, such as Google. Any good history of mathematics text, e.g., [7]

and the Dictionary of Scientific Biography [4] are good print sources to begin historical research.
An additional historical activity on the subject of root-finding, which students found both educational

and entertaining, was William Dunham's Pohle lecture [2] entitled Newton's (Original) Method. I chose

to view the streaming video in class because of concerns about out-of-class accessibility, as not all KSC

students have ready access to computers and the internet. (It would be appropriate to require students to

view the video outside of class if the WWW is universally accessible, since the video is available at all

hours on the web.) In viewing the video, students learn that Thomas Simpson (1710{1761) had a role in

the modern version of Newton's method. This is the same Simpson of the numerical integration technique

bearing that name. Later in the course, students learned that the Runge-Kutta method for integrating

differential equations is a generalization of Simpson's rule. This historical connection between three major

subject areas of the course is made apparent to the students through the use of web-streaming video, course

projects, and instructor presentations. What is ordinarily seen as a sequence of disconnected topics can

be readily linked with the history thread, providing a coherence that some students may not see any other

way.

The second project continued the ski-jumping theme, for continuity but not out of necessity. Students

were given a picture of an old ski jump, a two-dimensional graph of the curve modeling a proposed new

ski-jump, and were challenged to construct an interpolating polynomial to match the given curve. The

interpolant would subsequently be used to compute the arc length, using a numerical integration method

for the purpose of estimating the cost of the ski jump's construction. The project combined the course

topics of interpolation and numerical integration.

In that second project, each student group attacked the problem with just one method, assigned by

the instructor. The four methods used were Hermite polynomials, Lagrange polynomials, clamped cubic

splines, and free cubic splines. Each project team was also assigned one of the mathematicians|Hermite,

Lagrange, Schoenberg, and Birkhoff|for the history component of the activity. With regard to the history

portion, students were challenged to learn and report on the kind of problem the mathematician was

attempting to solve using interpolation.

The third project was a course review activity with a history component, supporting all the numerical

analysis topics covered over the entire semester. Each student team was assigned a numerical method

and a corresponding mathematician. During the last two lessons of the course, students presented a brief

introduction to their mathematician and completed an example problem employing their assigned numerical

method to assist classmates' review for the final examination. The final examination was modified to

incorporate variations of some of the student exercises. The students were assessed on the quality of their

presentation, to include the historical piece, and the correctness and thoroughness of the example problem

they provided for their peers. This project served to wrap the course together for the students with the

common theme of the history of numerical analysis.

Conclusion

A history thread helped tie this numerical methods course together, which made the experience more

meaningful and appropriate for students at a liberal arts college. There is always a trade-off in the loss

of specific mathematical course content during class time when the instructor adds activities such as a
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historical video, relates historical anecdotes, and requires history presentations of students. Some might

argue the time would be better spent on mathematical problems that could be solved in that class period.

Some students question the merit of doing even modest historical research and writing in a mathematics

course, and some doubt the merits of the additional homework and project requirements. It is not hard to

justify, nor was it difficult to implement, at a college in which most of the mathematics majors graduate to

become teachers. The pre-service teachers appreciated the interdisciplinary connection of writing, history,

and science afforded by the historical activities in this mathematics course since they will be expected to

do similar work in their classrooms.

It is my opinion that the historical component of the projects contributed to increasing student motiva-

tion to learn the mathematics they practiced during this numerical methods course. Course evaluations and

reflections revealed that most students felt that the projects were very significant in their learning. One

student wrote, \I also enjoyed how with each project you added in a history section so we were not just

doing a math part but also finding out about the history. . . This was my favorite part to all the projects."

Adding the history part affected different students in different ways, and I am confident that it made most

realize that this branch of mathematics had real people associated with its development, people solving

real problems of this and previous centuries.

Special thanks go to V. Frederick Rickey for his inspiration, motivation, and recommendations for the

improvement of this paper.
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Appendix

Project Requirements

MATH260 PROJECT 1: Time to Fall

With the approach of the Winter Olympics, interest in ski jumping has increased. From your physics

courses, you know that there are equations of motion that are readily derived for the motion of a falling

object. But those models that you encountered in the introductory courses often assumed away viscous

forces that definitely affect the descent of a falling object (a ski-jumper leaving a ramp, for example).

Assume that an object with mass m is dropped from a height s0 and that the height of the object after

t seconds is:

s.t/ D s0 � mg

k
t C m2g

k2

�

1 � e�kt=m
�

where gravity g D 32:17 ft/s2, the coefficient of air resistance k D 0:25 lb-s/ft, the mass is 200 lb, and

the initial position s0 D 300 feet. Find the time it takes for the jumper to hit the ground to within .01

seconds.

1. Find the time using the four methods used in the course to date: bisection, fixed-point iteration,

Newton's method, and the secant method, if possible. Create a table showing the performance of each

method used in reaching the solution

2. Compare the performance of the methods, and select the best method for solving this problem. The cri-

teria for selection include the complexity of the operations (operations count), the speed of convergence,

and the assurance that the method will in fact converge.

3. Root-finding methods have an interesting history. Part of the project is to do historical research on root

finding methods, so consider one of the topics listed below. Actual assignments of the specific topics

will be done in class. The historical portion is to be integrated into both your written report and oral

presentation.

(a) Write a brief biography of Isaac Newton and discuss the problems he solved with what we now

call Newton's method.

(b) Newton's method is often called the Newton-Raphson method. Why? Who was Raphson and

what was his connection to this numerical method?

(c) The root-finding methods are algorithms. What is the origin of the word algorithm? What is the
connection between the origin and its present day use?

(d) Iterative methods were found on clay tablets of the ancient Mesopotamian culture. What problems

were inscribed in clay for posterity? Is there a connection between them and Newton's method?

(e) The method of false position (or regula falsi) harkens back to ancient Egypt. Trace the appearance
of the method through the history of mathematics.

(f) Francois Vieta (16th century) also had an iterative method for solving equations. What was it and

how did it compare with Newton's (or other) methods?

(g) Al Kashi (ca. 14th{15th century) was credited with using fixed-point iteration. Who was Al Kashi

and what kind of problems was he interested in solving with this method?

(h) Paramesvara (ca. 14th{15th century) was credited with using the secant method. Who was

Paramesvara and what kind of problems was he interested in solving with this method?
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Foundations of Statistics in American Textbooks:
Probability and Pedagogy in Historical Context
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Introduction

The last two decades have seen increasing interest within the mathematics community in reforming the

undergraduate curriculum. Efforts at reform have embraced a wide range of issues, including teaching

methods, content, assessment, and administration. Among the several mathematical disciplines receiving

close scrutiny under the lens of reform, statistics|especially at the introductory level|has received much

attention, focused particularly on pedagogy, technology, and the content of introductory courses. Recom-

mended changes in content include an increased emphasis on data production and analysis, with less time

given to \recipes and derivations" [5]. Some statisticians also suggest treating data ethics and introducing

students to the nature of official statistics and the organization of national statistics offices. This shift in

emphasis marks a significant departure from traditional approaches to the subject, even at the introductory

level. As one spokesman for reform efforts in statistics has put it, \What we want beginners to learn about

statistics has changed dramatically in the past generation" [23, p. 126].

Statisticians have reached a fairly high level of agreement about the appropriate content and emphases

in introductory statistics courses [23]. Others who teach the subject, however (mathematicians, sociologists,

economists, for example) aren't always familiar with the recommendations of the statistics community, or

in agreement with them. One set of recommendations focuses on the place of probability in elementary

courses. Recognizing that additions to the list of topics in a course nearly always require some deletions,

many reformers argue for a diminished role for probability theory [5, 23], pointing out that \only an

informal grasp of probability is needed to follow the reasoning of standard statistical inference" [23,

p. 128]. Mathematicians, on the other hand, may be inclined to preserve the more traditional emphasis on

probability.

The conversation about the role of probability and how to teach it in statistics courses is not a recent

phenomenon, but has been going on since the introduction of statistical inference in the early decades

of the twentieth century. The treatment of probability in four statistics monographs and textbooks from

the 1920s through the 1940s reflects some important aspects of that conversation and its place in the

context of the formation of the statistics community in the United States in the first half of the twentieth

century. These texts do not offer models that today's introductory statistics textbooks should follow; rather,

all are written at an advanced level and only the later ones fully take into account the measure-theoretic

framework of probability formulated by Andrei Kolmogorov in 1933 [21]. They do not provide a blueprint
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for today's curriculum. Indeed, the voices of the past seldom answer today's questions directly. Instead,

an understanding of the past provides a broader perspective from which to evaluate the needs and choices

of the present. In this case, recent history of mathematics can inform teaching by shedding light on some

of the factors that influence pedagogical choices. Such light may enable today's teachers of statistics to

see more clearly the range of forces impinging on their own choices, equipping them to respond to those

perspectives that most accurately reflect their own values and priorities.

The Books

The four books under consideration here reflect to some extent the values and priorities of what was

becoming in the 1930s a professional community of mathematical statisticians. Three were written by early

members of that community, Henry Rietz and Samuel Wilks, and the timing of their appearance closely

paralleled the progress the community made in the 1930s and 1940s toward establishing the institutional

structures of their discipline. Rietz published his MAA Carus monograph, Mathematical Statistics, in 1927
[26], two years before the initial publication of the Annals of Mathematical Statistics, the first American
journal devoted to the subject. His student, Wilks, published two books based on the notes from his

Princeton statistics courses [37, 34] in the decade following the founding of the Institute of Mathematical

Statistics (IMS), the main professional organization for the discipline. Both the Annals, first published in
1929, and the Institute, founded in 1935, played important roles in the process of the formation of the

mathematical statistics community in the United States [17]. Rietz and Wilks wrote their books in the

context of that process. They were members of a group of researchers seeking to define their interests

in the theoretical aspects of statistics and to set those interests apart from those of the broader academic

and scientific communities to which the group belonged [18]. That group had made significant progress

toward establishing its legitimacy by the time the fourth book was published by Princeton in 1946. Harald

Cram�er's Mathematical Methods of Statistics [6] was a revised and translated edition of the author's
1945 Swedish book. It was the first textbook in English treating probability and statistical inference in

terms of measure theory. The book highlighted the close connection between statistics and mathematics, a

connection that the American mathematical statistics community had worked to strengthen since its earliest

days.

Before the formation of the American mathematical statistics community, methods of data analysis were

most often used in the United States by researchers outside of mathematics|in agriculture, economics,

and psychology, for example. The main professional organization promoting the application of statistics to

these fields was the American Statistical Association (ASA). In part, the establishment of the mathematical

statistics community in the United States resulted from its members' desire for more institutional support

for its interests|interests that were perceived by some of the leadership of the ASA as too technical

and theoretical for the mainstream of the community it represented. The mathematical statisticians, as

they called themselves, wanted to set their discipline apart from these fields of application and align it

more closely with mathematics [17, 18]. They accomplished this goal, to some extent, by emphasizing

the importance of the mathematical foundations of statistics, expecially in the training of statisticians.

Increasingly, the foundations of statistics were presented using mathematical standards of reasoning and

exposition, and this approach depended in part on a careful formulation of the definition of probability.

The books treated here drew from three versions of the definition of probability: the so-called classical

definition, the frequentist definition, and the measure-theoretic definition. The classical approach, as these

writers thought of it, came from the ideas of the French mathematician Pierre Simon de Laplace. According

to the characterization of probability in his 1814 Essai philosophique sur les probabilit �es, \[t]he theory
of chance consists in reducing all the events of the same kind to a certain number of cases equally
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possible."1 Games of chance such as rolling dice, drawing cards from a deck, or tossing coins provide

the simplest context in which to explain this classical definition of probability.2 Rietz incorporated the

classical definition into his informal discussion of probability, but pointed out some limitations of its use,

preferring to combine it with a frequentist definition.

The frequentist approach had received its most elaborate initial formulation in the works of the Austrian

mathematician, Richard von Mises. He first wrote on this subject in 1919, when he published two papers

discussing the lack of mathematical rigor and precision in then current probabilistic thinking [31, 32]. He

proposed to define probability in terms of infinite sequences of elements representing observable events.

Certain postulates served to define these sequences. In particular, for each event in question, the limit of

its relative frequency in the sequence had to exist. Furthermore, in any randomly selected subsequence,

the limit of the relative frequency of any event had to be the same as in the original sequence. This limit

is then the probability of the event.

Samuel Wilks based his 1937 work on a thorough articulation of von Mises's axiomatic system,

attempting to deduce results with careful reference to his definitions and postulates. He had, however,

abandoned the frequentist point of view by the time his 1943 text appeared, although he maintained his

commitment to a rigorous deductive framework for probability. The framework in the second book had

some elements in common with the measure-theoretic approach that would firmly take hold by the end of

the decade.

This definition of probability emerged from generalizations of the ideas of measure theory and inte-

gration first formulated by �Emile Borel and Henri Lebesgue at the turn of the twentieth century. Although

Kolmogorov was not the first to consider the ideas of probability in the context of measure theory, his

Grundbegriffe of 1933 [21] provided a definitive statement of the measure-theoretic approach, in which a
� -field F of subsets of some abstract sample space � forms the set of events, and the probability of an

event is given by a countably additive set function P W F ! Œ0; 1�.

Many of the tools of statistical inference had appeared before mathematicians became concerned with

building an axiomatic structure for probability. The basic ideas had been formulated to model observed

experience and were well established by the time the foundations of mathematical probability began to

receive attention. For this reason, the choice of axioms usually had only minor implications for the methods

of statistics. For example, the books of Wilks and Cram�er began with different sets of axioms, yet their

explanations of hypothesis testing scarcely differed beyond their notation. The significance of the choice of

axioms rested, rather, in what it revealed about the efforts of mathematical statisticians to define the scope

of their discipline. Their increasing emphasis on a logical, deductive structure for probability reflected their

desire to set their subject apart from applied statistics. Consequently, this examination of the textbooks of

Rietz, Wilks, and Cram�er will focus not only on the definitions and axioms they gave, but on the changing

importance the authors placed on a clear, complete articulation of those assumptions as mathematical

statistics became a more well-defined, specialized discipline.

Rietz's Text: Informal Empirical Foundations

When Henry Rietz published his Carus Monograph, the statisticians who would eventually establish the

American mathematical statistics community were just beginning to call attention to the special nature

of their subject. Rietz was a key player among those mathematical statisticians pointing out the unique

1From [22, p. 6], quoted in [7, p. 29].
2This notion made up only part of probability for Laplace and his contemporaries, however, for they combined it with ideas

about intensity of belief and strength of arguments. Their definition of probability was thus broader than what early twentieth-

century mathematicians usually attributed to them. Along with an objective measurement of certainty, it included subjective

elements that most American mathematical statisticians rejected [7].
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educational requirements of their discipline and the importance of meeting the professional needs of the

growing number of people whose research centered on this area [18]. Nevertheless, his book did not

make explicit use of probability theory as a means for distinguishing mathematical from applied statistics.
Instead, he noted that the classical definition could address some questions of probability, while others

required an informal frequentist definition based on the limit of the relative frequency of an event. Rietz

acknowledged that the existence of such a limit was \an empirical assumption whose validity [could] not be

proved," but that seemed reasonable and useful in light of \experience with data in many fields" [26, p. 8].

Rietz's definitions did not take the form of explicit axioms or assumptions, so in that sense, the

foundations of his discussion had little formal structure. However, he seemed to make a clear distinction

in his text between theoretical and empirical probability. He regarded the assumption of the existence of a

limit of the relative frequency as an idealization of experience that, \for purposes of definition, [was] in

some respects analogous to the idealization of the chalk mark into the straight line of geometry" [26, p. 9].

In geometry, one can discuss a line without reference to any physical representation, and Rietz seemed, to

some extent, to view probability in this more abstract way. For example, in outlining the basic ideas of his

subject, he \consider[ed] these concepts in pairs as follows: relative frequency and probability; observed

and theoretical frequency distributions, arithmetic mean and mathematical expectation; mode and most

probable value; moments and mathematical expectations of a power of a variable"[26, p. 5]. In each pair,

the first element is a number or function computed from a set of data, while the second is a mathematical

idealization of that computation.

Later in the text, Rietz gave a proof of the theorem of Bernoulli, a version of the law of large numbers.

In a set of s trials in which the chance of a success in each trial is a constant p, the probability P

of the relative discrepancy m
s

�p being numerically as large as any assigned positive number � will

approach zero as a limit as the number of trials s increases indefinitely, and the probability,Q D
1 � P , of this relative discrepancy being less than � approaches 1 or certainty [26, p. 28].3

He first remarked that \this theorem is an immediate consequence of the definition" of probability as the

limit of the relative frequency of success. Then he pointed out that \[w]ith a definition of probability

other than the limit definition, the theorem may not follow so readily," and went on to give a proof using

Chebyshev's inequality.4 The proof assumed, as Rietz put it, \that we have any definition of the probability

p of success" [26, p. 28]. This assumption reflected Rietz's awareness that one can treat the probability

of an event as an abstract concept, and that properties such as the law of large numbers do not depend

on particular empirical interpretations for their proofs. Thus, while his exposition did not rely entirely on

precise deductive reasoning from a well-developed axiomatic system, it accomplished Rietz's purpose of

\shifting the emphasis and point of view in the study of statistics in the direction of the consideration of

the underlying theory" [26, p. vi].

Rietz did not manage to shift probability entirely into the realm of abstract mathematics, and indeed,

did not claim to have such a goal. From his point of view, probability and statistics had distinctive,

mathematical qualities, but also served as tools in other branches of research. Careful, deductive reasoning

had a role to play in the development of those tools|but as a means, not as an end in itself. Deductive

reasoning and the formulation of axioms had become important aspects of mathematical research by the

time Rietz wrote his book in 1927. In the late nineteenth and early twentieth centuries, groups and fields

had received axiomatic treatment, while ideas about the abstract notion of a vector space, first formulated

in the 1880s, became the focus of much research in the 1920s. David Hilbert, in his 1899 Grundlagen der
Geometrie [13], chose a set of axioms from which the theorems of Euclidean geometry would follow. His

3Here m
s
is the ratio of successes to number of trials.

4Rietz's derivation of Chebyshev's inequality, as well as his use of it in the proof of the law of large numbers, resembles

those found in more modern texts such as [15].
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interest in foundations surfaced again the following year, when he spoke to the International Congress of

Mathematicians, outlining twenty-three problems \from the discussion of which an advancement of science

may be expected"[14, p. 445]. Suggesting several criteria by which to judge the quality of a problem's

solution, Hilbert recommended that \it shall be possible to establish the correctness of the solution by

means of a finite number of steps based upon a finite number of hypotheses which are implied in the

statement of the problem .. . . [This] is simply the requirement of rigor in reasoning" [14, p. 441].

By the 1920s, the axioms of other branches of mathematics had received intense scrutiny as well. In

a paper of 1908, Ernst Zermelo had introduced axioms for set theory [39]. Maurice Fr�echet's study of

function theory in 1906 presented axioms for abstract metric spaces [11], while the postulates for what are

now called Banach spaces appeared in the first years of the 1920s [1]. In setting forth those assumptions,

Stefan Banach explained his motivation for the axiomatic approach. Rather than demonstrating that certain

theorems held for particular examples, he \consider[ed] in a general fashion the set of elements on which

[he] postulate[d] certain properties, [he] deduce[d] theorems on it," and then showed that the postulates

held for specific cases.5 This general method of reasoning became the standard model for mathematics, but

Banach's description suggests that it was not yet commonplace in the early 1920s. Certainly probability

theory had not reached the level of abstraction and rigor attained by other mathematical subjects. Rietz's

approach, however, seems to reflect an emerging interest in establishing probability, and thus statistics, on

an axiomatic foundation.

It stood in contrast to the typical presentation of statistical methods made by the users of statistics.

For example, in 1923, psychologist Truman L. Kelley began his introductory work, Statistical Method,
by noting that two schools of statisticians had recently arisen. \The first school is that represented by

mathematicians who start with certain elementary principles and deduce therefrom facts of distribution,

frequency and relationship. . . . The second school is best represented by those biometricians and economists

who start with observed data and endeavor so to group them and treat them that the constant features of

the data are made apparent" [20, p. 1]. Kelley, a professor of education at Stanford University, had studied

mathematics with Henry Rietz as an undergraduate at the University of Illinois. After some graduate work

there in psychology, he went on to get his Ph.D. at Columbia under Edward Thorndike. Kelley belonged

to the second school of statisticians, and his book developed statistical methods by starting with what

he called \concrete problems." It consisted primarily of explanations of the methods for calculating such

quantities as the mean, standard deviation, and correlation coefficient of sets of data, and the standard

errors of these quantities.

Rietz's work reflected the general view of mathematical statistics emerging in the 1920s from the

work of members of Kelley's \first school." A few mathematicians and statisticians had begun to point

out the special nature of a subject that combined theoretical reasoning of a mathematical nature with the

methods of analyzing data that social scientists had been applying since the turn of the century [17]. These

mathematical researchers had not yet drawn a clear line demarcating their interests from other disciplines,

but Rietz's monograph had a more theoretical quality to its reasoning than methodological books such as

Kelley's. It highlighted certain mathematical aspects of statistical ideas, but maintained an observational,

empirical point of view that preserved the ties between the subject and its application.

The Textbooks of Samuel Wilks: Foundations in Transition

In his 1937 textbook, [37], Samuel Wilks went beyond Rietz in formulating abstract mathematical axioms

for the theory of probability. Like Rietz's work, his took a frequentist approach to defining probability,

but outlined more completely the principles first given by von Mises. Wilks motivated his definitions

5From [1, p. 134], quoted in [3, p. 72]
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and axioms with empirical examples such as those illustrated by rolling dice and tossing coins, but his

assumptions had a more precise, mathematical quality that Rietz's lacked, and the reasoning that followed

them was more firmly grounded in the definitions than in experience.

Kolomogorov had published his measure-theoretic approach to probability four years before the ap-

pearance of Wilks's book, and while Wilks did not cite this work, he probably knew of it, and may

have been influenced by the model it provided of deductive, mathematical probability.6 By the late 1930s,

the abstract axiomatic approach to mathematics that Banach had felt compelled to explain in 1922 had

become more common in research and exposition. For example, in the mid 1930s, the group of French

mathematicians who eventually wrote under the pseudonym Nicolas Bourbaki began to discuss a joint

project that would \define for 25 years the syllabus for the certificate in differential and integral calculus

by writing, collectively, a treatise on analysis."7 The first volume of Bourbaki's on-going work appeared

in 1939 [4], and aimed at developing rigorously the fundamental theorems of mathematics from a set of

clearly formulated axioms. Wilks's Statistical Inference, with its attention to propositions and their logical
implications, while somewhat unusual for a statistics textbook, would not have startled readers becoming

increasingly accustomed to the style of mathematics that Bourbaki's work would soon come to epitomize.

Wilks based his theory of probability on three assumptions concerning objects he called populations.
A population K \consist[s] of a sequence of elements e1; e2; e3; : : : each element being characterized by k

numbers. Thus each element in K corresponds to a set of k numbers, and can be represented by a point in

k-dimensional variate space Sk , which will be regarded as Euclidean" [37, p. 3].
8 The elements represent,

for example, the outcomes of repeated tosses of a coin (k D 1), the height and weight of each child in a

population of school children (k D 2), or the results of throws of three dice (k D 3).

Probability does not treat all conceivable populations, and Wilks gave two assumptions that specified

the relevant sequences. For a givenK and a subset A of Sk , let nA equal the number of the first n elements

of K that lie in A. The first restriction on K, Wilks's Assumption I, postulated the existence of limn!1
nA

n
.

Wilks then defined this limit, denotedWA, to be the probability \that an element drawn at random from K

is represented by a point in A" [37, p. 3]. The second assumption required that the probabilities associated

with a population stay the same if a new population is formed by a random selection of elements from an
existing population, where a subsequence is selected randomly from a population K if the inclusion and

exclusion of elements does not depend on the value of the variate associated with the element. Following

the statements of his first two assumptions, Wilks proved what he called the additive property (or law)
of probability, appealing to the definition of probability: if A and B are mutually disjoint subsets of the

variate space, since nACB D nA C nB , we have WACB D WA C WB .

Assumption III postulated the existence of an almost-everywhere continuous probability density function
for a population associated with a continuous variate space. In the one-dimensional case, for a point x in

the variate space S , the probability density w.x/ is defined as

w.x/ D lim
.x2�x1/!0

WŒx1;x2�

x2 � x1

;

where Œx1; x2� is an interval containing x, andWŒx1;x2� is the probability that an element from the population

K belongs to Œx1; x2�. In other words, one assumes that for every x in S , this limit exists and defines a

function w.x/ that is continuous almost everywhere.

6American mathematicians could have learned of Kolmogorov's work through Henry Rietz's review in the Bulletin of the
American Mathematical Society [27], or through a research paper of Joseph Doob [8] that Wilks included in the bibliography
of his textbook. Wilks based his textbook on his lectures for an introductory graduate course in statistics. He may not have had

time to incorporate Kolmogorov's ideas into those courses by 1937, and his students would not necessarily have had sufficient

mathematical background in measure theory to understand them.
7From the records of the group's first meeting in [2, p. 28].
8In the vocabulary of von Mises, the sequences are called collectives, and the numbers associated with the elements are labels.
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For both the continuous and the discrete case, Wilks defined the distribution function W.x/ of the real

variable x associated with a one-dimensional variate. For a discrete distribution,W.x/ D Pr.x/
iD1 pi , where

pi is the probability that the variate takes on the value xi , for i D 1; 2; : : : ; r.x/, and r.x/ is the largest

integer for which xr.x/ � x. In the case of a continuous distribution, W.x/ D R x
�1

w.x/ dx [37, p. 6].

In addition to these three assumptions about populations, Wilks's axiomatic system consisted of four

fundamental operations|selection, mixture, partitioning, and conjunction|that expressed the rules for
combining probabilities. These rules allowed one to solve \problems of deriving probabilities of compound

events and contingencies from sets of simple probabilities." Such problems, in Wilks's view, made up the

central part of the calculus of probabilities. For example, \[t]he problem of finding the probability P6 of

throwing a 6 with a die," according to Wilks, \is not one in the calculus of probabilities, but, given P6, to

find the probability of getting a 12 in two throws of a die is such a problem" [37, p. 13]. The fundamental

operations on populations provided the means of solving these problems.

The operations each form a new population K0 from one or more given populations. In addition

to specifying the elements of K0 in terms of the elements of the original populations, they specify the

variate associated with K 0, and therefore the probability distribution of that variate. Thus each operation

consists of a description of the new set of elements, the new variate, and the means of determining the

probabilities associated with the new population. Assumption II, described above, explained selection. A
population formed by mixture has the same elements as K, but its variates are single-valued functions

of the variates of K. This operation provides a means of computing probabilities of compound events.

Conditional probabilities can be calculated using the operation of partitioning.
Given populations K 0 W .e0

1; e0
2; : : :/ and K00 W .e00

1; e00
2; : : :/, with K 0 characterized by the k0 variates

x0
1; : : : ; x0

k0
and K00 characterized by the k00 variates x00

1 ; : : : ; x00
k00
, the new population K W .e1; e2; : : :/ is

formed by conjunction from K0 and K00 if ei consists of e0
i and e00

i jointly, that is ei D .e0
i ; e00

i /. The

population K is characterized by the k D k0 C k00 variates x0
1; : : : ; x0

k0; x00
1; : : : ; x00

k00. If the variates of K0

are distributed independently of those in K 00, the probability density of K is the product of the densities

of K0 and K00. Otherwise, the density is given by the product of the marginal and conditional densities

according to the rules associated with the operation of partition.

Wilks's construction of a precise definition of a random sample illustrates the role these operations

played. In the framework of Statistical Inference, one thinks of a random sample of observations from a
population K as an element in a new population K� formed from K by the operations of selection and

conjunction. First, consider n populations Ka W .ea1; ea2; : : :/, a D 1; 2; : : : ; n, formed by selection from

K W .e1; e2; : : :/ with eai D e.i�1/nCa , where e.i�1/nCa is the Œ.i � 1/n C a�th element of K. For example

K1 W .e1; enC1; e2nC1; : : :/

K2 W .e2; enC2; e2nC2; : : :/

:::

Kn W .en; e2n; e3n; : : :/:

Now form K� by conjunction from K1; K2; : : : ; Kn, so that K
� W .e�

1 ; e�
2 ; : : :/ has elements e�

i that consist

of e.i�1/nC1; e.i�1/nC2; : : : ; e.i�1/nCn, jointly. For example,

e�
1 D .e1; e2; : : : ; en/

e�
2 D .enC1; enC2; : : : ; e2n/

e�
3 D .e2nC1; e2nC2; : : : ; e3n/:

Wilks called the elements e�
i random samples of n observations from K [37, p. 21]. If K has a one-

dimensional variate space, the variate associated with K� has values in n-dimensional Euclidean space,
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and a set of values for a particular element is called a sample On. Assuming K has a distribution, then

K� has a distribution f .x1; x2; : : : ; xn/. If each variate is independent of all the others, then

f .x1; x2; : : : ; xn/ D f 0.x1/f 0.x2/ � � �f 0.xn/;

where f 0.x/ is the distribution of x in K.

After explaining the concepts associated with random samples, Wilks applied them to the derivation

of the binomial distribution. As the context for his derivation, Wilks used the example of tossing a coin,

pointing out, however, that the derivation had an abstract meaning not associated with any particular

application. He began by supposing \a coin is tossed n times and this process is repeated indefinitely. We

get a population, each element being a sample, On W .x1; x2; : : : ; xn/, where each x can take on only the

values 1 or 0; 1 for a head, 0 for a tail" [37, p. 22]. In terms of his earlier discussion of random samples, the

population here is formed by selection and conjunction from the population associated with tossing a coin.9

The distribution of the population of samples is given by the product f .x1/f .x2/ � � �f .xn/, where f , the

distribution associated with the original binomial population, is given by f .1/ D p and f .0/ D 1 � p.

In order to find the distribution of the number of 1's in the samples, \[b]y the mixture principle, we

let ˛ be the number of 1's (a new variate) associated with each of these points" [37, p. 22]. Thus ˛ is

the variate associated with a population formed from the sample population by the operation of mixture.

This new population has the same elements as the sample population, but the value ˛ of the variate

associated with an element is the sum of the values associated with the corresponding element in the

sample population. The additive law then determines the distribution of ˛:

fn.˛/ D nŠ

˛Š.n � ˛/Š
p˛qn�˛ ; for ˛ D 0; 1; 2; : : : ; n;

and the derivation is complete. In this discussion, Wilks clearly relied on the axiomatic system that he had

established earlier in the text. He referred to the \population of samples" and its distribution, and both the

operation of mixture and the additive law entered into the computation of the probability function.

In these examples, Wilks made a more comprehensive effort to establish the foundations of probability,

and therefore the foundations of statistics, than Rietz had ten years earlier. Nevertheless, statistical methods

of inference remained the focus of his book. The probabilistic foundations occupied only one-fifth of the

work, while the rest concerned the estimation of distribution parameters and hypothesis testing. His book

appeared soon after the mathematical statistics community had formally established itself and as it was

beginning to define its discipline's place among other scientific fields. Just as the institutional structures

of the IMS and the Annals had revealed the community's desire to set itself apart from the statisticians

represented by the ASA, Wilks's textbook, with its technical, axiomatic reasoning, helped to emphasize the

mathematical nature of a discipline that, until recently, had been promoted primarily by social scientists.

In his introduction of the formal, theoretical approach to the foundations of probability that Wilks took

in this exposition, he indicated that the theory served to model observed phenomena. He would explain

this connection in more detail in his textbook of 1943, Mathematical Statistics [34]. There, however, his
theoretical framework would start with a different set of concepts and assumptions. In the meantime, some

of his other writings revealed that he was taking an interest in the role of mathematical theories as models

of physical phenomena. These writings suggest some reasons for the shift in his theoretical point of view

reflected in the 1943 textbook.

In 1936, Wilks wrote a review of the first volume of Statistical Research Memoirs, a periodical edited
by Jerzy Neyman and Egon Pearson that published papers prepared by members of the department of

9Strictly speaking, each On is actually the value of the variate associated with an element, while the elements themselves are

n-tuples of elements from the binomial population.
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statistics at University College, London.10 Wilks praised the editors for providing an outlet for research

on statistical theory, and observed that \[t]here is a definite need, particularly for academic purposes, of

systematically building the theory of statistical inference on a few clearly expressed principles; otherwise
problems which can be handled methodically by commonplace methods will continue to appear to require

fresh intuition for their solutions." [36, p. 762, emphasis added].

Two years later, in 1938, Wilks reviewed another work of Neyman that made progress toward meeting

that need. Lectures and Conferences on Mathematical Statistics presented the text of lectures Neyman had
given the previous year at the graduate school of the United States Department of Agriculture. Some of

the presentations had explained Kolmogorov's measure-theoretic framework for probability theory. \From

a mathematical standpoint," Wilks remarked, \this is perhaps the most elegant and logically self-consistent

theory of probability which has yet been devised" [35, p. 478{79]. The elements of the theory, as Wilks

noted, had come \from the empirical field," but, as \between any other theory of probability and its

application," there was a \gap which must be bridged by intuition, between this theory and its application to

actual observations" [35, p. 479]. Neyman's lectures warned of \the danger of confusing the mathematical

theory with actual empirical occurrences," and emphasized that \the mathematical theory of probability

should be considered as a model to assist in making successful predictions about phenomena in which

there is an element of `randomness' present" [35, p. 479].

This distinction between theory and \actual empirical occurrences" quite likely came to the attention of

Wilks again at the 1940 summer meeting of the IMS when Richard von Mises and Joseph Doob, another

member of the American mathematical statistics community, debated the relative merits of the frequentist

and the measure-theoretic approaches to probability.11 In his address, Doob promised that \[t]he formal and

empirical aspects of probability [would] be kept carefully separate" [9, p. 206]. To this end, he identified

two sets of questions that he referred to as Problem I and Problem II. The first focused on \setting up a
formal calculus to deal with (probability) numbers. Within this discipline, once set up, the only problems

will be mathematical. The concepts involved will be ordinary mathematical ones, constantly used in other

fields. The words `probability,' `independent,' etc. will be given mathematical meanings" [9, p. 206]. In

contrast, the questions of Problem II involved \finding a translation of the results of the formal calculus
which makes them relevant to empirical practice" [9, p. 206].

Reminding his audience that \[t]he classical probability investigators did not separate Problems I and

II carefully," he noted that the measure approach eliminated the empirical elements, \thus removing all

aspects of Problem II" [9, p. 206]. In the comments he made in the discussion that followed the two talks,

Doob noted that \[t]he principal objection the measure advocates have to the frequency approach is that

it is awkward mathematically" [33, p. 216]. He acknowledged, however, that von Mises's ideas had made

important advances in understanding some of the connections between the physical phenomena and the

probability model. As he put it, \the measure advocates consider the contribution of Professor von Mises'

approach to be a contribution to a solution of Problem II, not to Problem I, the mathematical problem"

[33, p. 217].

Doob's remarks may have persuaded Wilks that the frequentist approach did not adequately serve his

pedagogical purposes, for when his second textbook, Mathematical Statistics [34], appeared in 1943, it
contained none of the assumptions about populations or the fundamental operations that had occupied the

foundations of his earlier work. He seemed to have a clearer sense in 1943 of the role of an axiomatic

10Neyman, a Polish mathematician, had studied with Pearson's father, Karl Pearson, at the Galton Biometric Laboratory of

University College while on leave in 1925 from his posts as lecturer at the University of Warsaw and the Central College of

Agriculture. He met Egon Pearson there and in 1934 joined the Department of Applied Statistics at University College, a year

after Egon Pearson became its head. The two statisticians struck up a fruitful collaboration in the theory and methods of statistical

inference.
11According to [25, p. 473], Wilks attended this meeting, along with 41 other IMS members.
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structure in modeling the behavior of physical objects. Perhaps he had developed this point of view as he

reviewed works such as those of Neyman and Pearson, and as he encountered the ideas discussed by Doob

and von Mises. In the first chapter of Mathematical Statistics, Wilks discussed the same phenomena that
his 1937 work had modeled, describing \empirical sequences which arise from `randomizing' processes,"

such as tossing coins or drawing chips from a bowl, and seeking to isolate the features that could \be

abstracted into a mathematical theory" [34, p. 2].

The features he pointed out were just those that his populations and the assumptions about them had

idealized in Statistical Inference, and the discussion was reminiscent of that earlier work. For example,
repeated rolling of a die produces a sequence of numbers, each one having the value 1; 2; 3; 4; 5; or 6.

Representing that sequence of numbers by X1; X2; : : : ; Xn; : : :, Wilks defined the empirical cumulative
distribution function F n.x/ to be the fraction of the first n numbers in the sequence less than or equal to x.

He then noted that \[i]t is a matter of experience that as n becomes larger and larger Fn.x/ becomes more

and more stable, appearing to approach some limit, say F1.x/ for each value of x" [34, p. 2]. In the 1937

text, the assumption that in a population, limn!1 nA=n exists served to mathematize this phenomenon.

Here, Wilks did not postulate that limn!1 Fn.x/ exists. Instead he simply observed that in actual random

processes, Fn.x/ appeared to stabilize. His next comment echoed the ideas of the 1937 text even more
forcefully: \[i]f any subsequence of the original sequence is chosen `at random' (i.e., according to any

rule which does not depend on the values of the X 's) then a corresponding Fn.x/ can be defined for the

subsequence, and again we know from experience that as n increases, Fn.x/ for the subsequence appears
to approach the same limit for each value of x as in the original sequence" [34, p. 3]. This observation
reiterated Assumption II of the 1937 work.

In Statistical Inference, populations and the three assumptions about the limits of relative frequencies
comprised the mathematical model idealizing experience. In Mathematical Statistics, Wilks merely pointed
out what seems to happen in experience. As he noted, \[t]he matter of Fn.x/ appearing to approach

some function F1.x/ as n increases is purely an empirical phenomenon, and not a mathematical one"

[34, p. 3]. However, the empirical phenomenon suggested a way of modeling random processes. Wilks

did not base the model on the sequences themselves as he had in the 1937 text, but defined an object

that idealized the empirical cumulative distribution function instead. A non-decreasing, right-continuous

function F.x/ with limx!�1 F.x/ D 0 and limx!C1 F.x/ D 1 is called a cumulative distribution
function (c.d.f.). For any value of x, F.x/ gives the probability that its associated random variable X is

less than or equal to x: F.x/ D P r.X � x/.12 The function F.x/, then, is a purely mathematical object

with well-defined properties, that, while it models the empirical Fn.x/, does not depend on experience

for its meaning. Wilks made another assumption about the function P r , called the law of complete
additivity: \[l]et E 1; E2; : : : be a finite or enumerable number of disjoint point sets on the x-axis : : :

[then] P r.X 2 E1 C E2 C � � � / D P r.X 2 E1/ C P r.X 2 E2/ C � � �" [34, p. 6]. In this framework,
what had appeared as a theorem in Wilks's first text is thus formulated as an axiom.

After giving these preliminary definitions, Wilks next distinguished between two classes of distribution

functions, discrete and continuous, calling F.x/ a continuous c.d.f. if there exists a non-negative function
f with

F.x/ D
Z x

�1

f .�/ d�:

The function f is the probability density function of the random variable associated with F . A discussion

of the theory of the Stieltjes integral followed these definitions. This integral, as Wilks pointed out,

provided a common notation for both discrete and continuous distributions: P r.X 2 E/ D
R

E dF.x/ [34,

p. 17{23]. He had noted this fact in the 1937 work, but gave no discussion there of properties or results

12So the function P r is defined in terms of F . Wilks never defined random variable.
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associated with the Stieltjes integral. Its extended treatment in the second book emphasized the dependence

of statistics on mathematical theory.

Jerzy Neyman, whose use of measure theory had attracted Wilks's attention in 1938, noted in a review of

Mathematical Statistics that the book helped to fill a gap between the two categories in which most statistics
and probability texts fell. Many books describing statistical methods, according to Neyman, \frequently

ignor[ed] the basic ideas and the mathematics behind these methods, occasionally misinterpreting them,"

while others \deal[t] with mathematical theory of probability with only occasional glimpses on some

particular questions pertaining to statistical theory" [24, p. 41]. Wilks presented the fundamental ideas

of probability as a mathematical subject in the context of its relationship to statistical methods, and his

textbook provides a glimpse of the ideas that were becoming a central part of the training of American

mathematical statisticians. He himself taught the material of the book in an introductory graduate course

(like his earlier text, this one was based on his lecture notes for the course). Jacob Wolfowitz, who taught

mathematical statistics at Columbia University, also used Mathematical Statistics in his course [38, p.
177].

Wilks's two textbooks illustrate the transitional nature of the period between the founding of the Institute

of Mathematical Statistics in 1935 and the end of World War II. The mathematical statistics community had

formally established itself, but was just beginning to define its place amidst other scientific endeavors. In

the coming decade, the curriculum of statistics programs would become more standardized as members of

the mathematical statistics community discussed their concerns about undergraduate and graduate education

and their role and status relative to other research communities.

The changes Wilks made in his foundational systems between his first and second books demonstrated

that questions about the most appropriate approach were still unsettled. Indeed, some writers eschewed

such formal structures as those found in the works of Wilks. James V. Uspensky published a probability

textbook in 1937 based on his lectures at Stanford University [30]. He included many of the more recent

ideas of the theory but did not find it necessary to incorporate them into a formal, deductive system. In his

view, \modern attempts to build up the theory of probability as an axiomatic science [were] interesting in

themselves as mental exercises," but were not of fundamental importance to the subject [30, p. 8]. By the

end of the next decade, however, probability as an axiomatic science seemed to have gained a permanent

place in the mathematical literature. Harald Cram�er's 1946 textbook [6], which integrated that theory into

statistics, demonstrated that both subjects could be treated from the theoretical, axiomatic point of view

that had become standard in mathematical exposition.

Harald Cram�er and Measure-Theoretic Probability

Cram�er's Mathematical Methods of Statistics, combined in a single volume an exposition of the theoretical
mathematics of measure theory, its use in establishing the foundations of probability, and the applications

of probability to statistical methods of inference. One reviewer of the book, William Feller, hailed it as

an \unconventional" treatment that combined three topics not usually found in the same exposition. He

noted that \[t]he emergence of statistical theory and methodology as an exact science, firmly grounded in

mathematical probability, [was] only of recent date," and that \unified guiding principles and methods : : :

ha[d] not yet found expression in the textbook literature." Cram�er's work thus \close[d] a serious gap in

the literature and [would] greatly facilitate both teaching and research" [10, p. 136].

In his preface, Cram�er indicated that he intended the book to be \an exposition of the mathematical

theory of modern statistical methods, in so far as these are based on the concept of probability" [6, p. vii].

He devoted the first quarter of the book to some mathematical ideas, primarily the theories of measure and

integration. The next part, approximately one third of the book, comprised a discussion of random variables
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and particular probability distributions. The remainder of the book dealt with statistical inference, including

sampling distributions, significance tests, and estimation. Throughout the discussion, Cram �er \presented

with rigor," as one reviewer put it, \subjects usually developed in a mathematically questionable way"

[29, p. 734].

In order to establish a rigorous axiomatic system for probability theory, Cram�er described the concepts

of Lebesgue measure and the Lebesgue integral. He then turned to the more general non-negative additive

set functions on the Borel sets, and to the Lebesgue{Stieltjes integral. In particular, he considered bounded,

non-negative, countably additive set functions on the Borel sets of R. Any such set function P corresponds

to a unique (up to additive constant), non-decreasing point function F.x/ with the property that for any

interval .a; b�,

F.b/ � F.a/ D P Œ.a; b��:

The function F is right-continuous, and its discontinuity points form at most an enumerable set [6, pp.

50{51].

After giving these results, Cram�er narrowed his focus to those set functions for which P.R/ D 1. In

this case, he specified F as F.x/ D P Œ.�1; x��, and noted that 0 � F.x/ � 1, limx!�1 F.x/ D 0,

and limx!C1 F.x/ D 1. Either P or F could be used to define what Cram�er called a distribution, P

referred to as the probability function of the distribution, while F was called the distribution function. If
F has a derivative, f , it is called the probability density or the frequency function of the distribution [6,
p. 57].

A chapter explaining the Lebesgue{Stieltjes integral and deriving some of its properties followed the

discussion of distributions, after which Cram�er extended all of these concepts to cases involving Euclidean

space Rn for arbitrary n. Three chapters treating Fourier integrals, matrices, determinants, and quadratic

forms, and \miscellaneous complements" (including Stirling's formula, orthogonal polynomials, and the

gamma and beta functions) concluded the first section of the text. The next section used these mathematical

ideas to formulate an axiomatic system for probability theory.

In an approach that resembled the introductory chapter of Wilks's 1943 text, Cram�er began this

second section with a discussion of what he called random experiments|experiments for which one's

knowledge lacks the precision necessary to make exact predictions about the results, but that exhibit a

quantifiable regularity over many repetitions. He then devoted several pages to explaining how to formulate

a mathematical theory that modeled \some group of observable phenomena," such as random experiments.

This process, as he described it, involved \choos[ing] as [a] starting point some of the most essential and

most elementary features of the regularity observed in the data." Axioms of the theory give these features

a simplified and idealized form. \From the axioms, various propositions are then obtained by purely

logical deduction, without any further appeal to experience," and the system of propositions constitutes

the mathematical theory [6, p. 145]. In other words, one first singles out the essential aspects of some

physical phenomenon, formulating definitions and axioms that model those features. Then, independently

of the empirical observations that motivated the axioms, one deduces propositions according to logical,

mathematical reasoning.

Cram�er chose the notions of random experiment, random variable, and probability as his essential,
elementary features for the theory of probability. He observed that each repetition of a random experiment

produced a result that could be described by a certain number of real quantities. Modeling this observation,

he defined a random variable as a vector in Rk having associated with it a non-negative, countably additive

set function P with P.Rk/ D 1. For a Borel set S in Rk , \P.S/ represents the probability of the event

(or relation) � 2 S" [6, p. 152].

These ideas, together with a brief discussion of functions of random variables, constituted the chapter

Cram�er called \Fundamental Definitions and Axioms." Summarizing the contents of the chapter, he noted
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that he had \laid the foundations for a purely mathematical theory of random variables and probability

distributions" [6, p. 164]. The following chapters worked out the details of this theory, and then used

the results for the purposes of statistical inference. Cram�er thus placed the ideas of statistics within

an axiomatic, mathematical framework. He first explained how probability theory could be treated as a

branch of mathematics, and then made it clear, as mathematician Mark Kac put it in a review of the

book, \that the mathematical methods and techniques of statistics are but a part of the mathematical

apparatus of probability theory." As a result, his book highlighted the close connection between statistics

and mathematics. On the other hand, \he emphasize[d] with equal clarity that the problems and motivations

of statistics are peculiarly its own" [19, p. 39]. Thus he pointed out the distinctiveness of the discipline

and reinforced the boundaries that mathematical statisticians had drawn around it.

A professor using Cram�er's textbook in a university course on mathematical statistics would have

had to be familiar both with the mathematics of measure theory and integration and with the theory and

practice of statistical inference. Such a professor would most likely have been found among the members

of the American mathematical statistics community. This community had come together in the 1920s and

1930s, drawing most of its originial members from the mathematical research community. They argued

that the teaching and practice of their discipline required sophisticated mathematical training that went

beyond any basic courses given to most social scientists, the primary users of statistics (see, for example,

[28]). Mathematical statisticians in the 1940s made this argument even more forcefully [16]. Cram�er's

book certainly supported the claim. As he presented it, however, mathematical statistics was not simply a

subfield of probability|the discipline's distinctiveness went beyond its ties to mathematics. The decade in

which Cram�er's text appeared found the American mathematical statistics community working to establish

separate departments of statistics in universities. Just as the Annals and the IMS had given the community
some independence from the ASA and the social scientists, these departments would help establish its

disciplinary autonomy from mathematics, and further establish statistics as an independent discipline.

Addressing Today's Questions: Voices from the Past

Cram�er, like Wilks and Rietz before him, made his choices about the foundations of probability in part

because of the broader concerns of a disciplinary community. He and the others wrote their books in the

context of the emergence of the mathematical statistics community in the United States.13 That community

of researchers worked very explicitly from the late 1920s through the 1940s to set their discipline apart

from those it bordered, particularly from the social sciences where the ideas of statistics had first been

used in the United States.

The increasing emphasis on abstraction and axiomatic reasoning in the texts analyzed here reflected

the growth of the mathematical statistics community and its efforts to establish a boundary between its

discipline and the social sciences. That is not to say that any direct link of cause and effect necessarily

existed between the changes in these textbooks and the emergence of the community. Complicated factors

combined to influence both. For example, on the one hand, the push toward axiomatization had shaped

developments of various mathematical subjects since the late 1800s. As part of the mathematical culture of

the early twentieth century, high standards of rigor and the striving for simple, complete systems of axioms

surely had an influence on probability theory that transcended the emergence of the mathematical statistics

community. On the other hand, while the issues surrounding the education of mathematical statisticians

shaped the growth of that community in important ways, those issues emerged in conjunction with ideas

about the role of statistics in government and industry and with the creation of professional structures of

support for mathematical statistics such as the Annals and the IMS. Thus the community emerged and

13Recall that Cram�er, though Swedish, produced his 1946 textbook for an American publisher.
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grew not only as the knowledge and pedagogy of its technical aspects advanced and because of changes in

social connections and institutions, but also as a result of the interaction between the institutional structures

of the discipline and its technical content.

Today's teachers of introductory statistics face choices about the content of their courses: what concepts

to emphasize, how much formal probability theory to cover, what use to make of technology, for example.

Their choices are shaped in part by their understanding of what is central to the subject and their perceptions

of which explanations and pedagogical tools make the material most accessible to their students. If the

factors shaping teachers' choices were merely matters of centrality and effectiveness, teachers would

agree about the best choices. Indeed, statisticians in recent years seem to have achieved widespread

concensus about \the guiding principles" for making those choices [23, p. 162]. However, many teachers of

introductory statistics are not statisticians, but psychologists, economists, sociologists, and mathematicians,

among others. Guided by their perceptions of the place of statistics in their own disciplines, they may choose

differently.14 Mathematicians conceiving of statistics as a subdiscipline of mathematics may emphasize

probability theory, derivations of formulas, or proofs about distributions. A psychologist using statistical

methods to analyze data may focus on particular tests and how to apply them.

These different perspectives and choices overlap; they are not mutually exclusive. Still, they are to some

degree in conflict with one another (why else would various departments at colleges and universities want

to expend their resources to offer their own introductory courses, tailored to their particular disciplines?).

The voices of the past heard here do not speak directly to that conflict. Rietz, Wilks, and Cram�er faced

different options, taught different students, had different goals. Certainly, as today's teachers do, they

structured the probabilistic foundations of their texts with attention to what seemed to them of central

importance to the subject. Their choices were surely shaped by a desire to teach and explain with clarity.

Yet the emergence and development of the community to which they belonged suggest that concerns about

the place of that community in the larger academic and scientific world played some role in the changing

approaches Rietz, Wilks, and Cram�er took to presenting the ideas of probability.

An understanding of the past can illuminate the present. The professional, institutional, and social milieu

of Rietz, Wilks, and Cram�er may differ significantly from that in which today's teachers of statistics work.

Still, their experiences point out the importance of context. They speak to the relevance of underlying

concerns and assumptions about the place of statistics in the broader intellectual endeavor. They call

today's teachers to consider those assumptions and to make decisions about teaching that are informed by

an awareness and understanding of their own presuppositions and priorities.
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IV
History of Mathematics and Pedagogy

Life is good for only two things, discovering mathematics and
teaching mathematics.

|Simeon Poisson
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Introduction

There are many references for activities that incorporate general multiculturalism into the classroom (e.g.,

[4, 21, 29]). There are also numerous \women in mathematics" courses that focus on history and equity

issues. Yet, except for a few sources such as [19], [23], [24], [26], and [27], sources that discuss women

and minorities in mathematics do not include related activities for the classroom that contain significant

mathematical content, and those that do are mainly aimed at the middle grades or high school level. This

is unfortunate since students benefit from the inclusion of the achievements of women and minorities in

mathematics classes, as \the result is that students will see mathematics as a discipline that transcends

culture, time, and gender, and as a discipline for everyone, everywhere." [19, page xi]

Since there were only a handful of known women and minority mathematicians before the last 200 years,

an effective study of them must focus on recent history. Projects that include such recent history are harder

to create because of scarce resources for the classroom, but they are beneficial because students more readily

identify with these mathematicians for the reasons stated in the next section. After examining the importance

of incorporating the achievements of women and minority mathematicians into classrooms, we will discuss

the methodology of historical projects about mathematicians and their mathematics. Then we will explore

the implementation of these projects and the inclusion of some women and minority mathematicians as

we give examples related to three living mathematicians: Andrew Wiles, Carolyn Gordon, and David

Blackwell.

Importance of Incorporating Women's and Minorities' Achievements into Classrooms

Many students never learn about women and minority mathematicians although research shows that this

is beneficial to all students, including white males [5, page 248]. Since interviewers often ask women and

minority mathematicians specific questions related to the common themes which emerge from their lives

and work, and these themes are particularly engaging for students, the availability of this information and

the openness of these mathematicians about their personal struggles allows students to readily identify with

them.

183
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Common Themes

1) While subtle gender or racial discrimination can be as devastating to the career of a mathematician as

overt discrimination, the support of family, teachers or mentors (male or female) at any stage of the

educational process can help overcome these difficulties.

2) The number of women and minority mathematicians has greatly increased in recent years, probably at

least in part due to increased educational opportunities.

3) Most early women mathematicians did not marry. More recently, many successful women mathemati-

cians have balanced a career and family.

4) Successful mathematicians have diverse styles, and many of them struggle with mathematics in much

the same way students do.

When we included the achievements of women and minority mathematicians into an introductory class

for non-majors, one student sent an unsolicited e-mail message stating: \I think it is wonderful that you

are spending time in class discussing the discrepancies between men and women in the world of math and

sciences. I think it is very informative and very important so thanks!"

We will now discuss the importance of including information related to the above themes in the

classroom, and the reasons why women and minority mathematicians are particularly well suited for the

introduction of these themes.

Importance of Including Mentoring Issues

Students relate personally to mentoring issues, and including them encourages the students to reflect on their

own mathematical experiences, which is especially useful for math-phobic students and future teachers.

As one student commented in evaluations: \The stereotypes that some women encountered as a woman

practicing mathematical sciences are quite real to me. My father never encouraged me to succeed in math;

it was always okay if I did not do my best in math. He felt that math was a subject that men naturally

excelled in, leaving women to literature and sentence structure."

While white male mathematicians have also benefited from mentoring experiences, they are less likely to

discuss this fact in interviews, because interviewers do not usually ask them questions related to mentoring.

However, interviewers do generally ask women and minorities questions related to the support of teachers,

family and mentors, and so including women and minorities in the classroom is a natural way to introduce

the importance of mentoring in mathematics.

Importance of Including Living Role Models

Including some living mathematicians and women and minority mathematicians in historical projects allows

students to examine issues related to the historical progression of mathematicians, such as the number of

women and minority mathematicians and the ability of women mathematicians to balance a successful

career and family life. In addition, our students identify more easily with living mathematicians and, in

the case of women students, women mathematicians, so it is important to include them. Over the course

of two years, five introductory classes were asked which mathematician they most identified with. While

more than half of the mathematicians we studied were no longer living, a higher percentage of students in

every class identified with a living mathematician. In addition, even though we studied an equal number

of white female and white male mathematicians, along with several minority male mathematicians, in

each class a disproportionately higher number of women students identified with women mathematicians.

These facts are not surprising since people often identify with those who share common experiences and

characteristics.
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Importance of Including Mathematicians with Diverse Styles

Exploring the diverse styles of mathematicians in the classroom is especially rewarding for a number

of reasons. One student reflected, \Learning about mathematicians and their styles helps you appreciate

all the hard work they did to make your life easier." Not only do students appreciate and identify with

these mathematicians, but including mathematicians who have different mathematical styles encourages

students to reflect on how they do mathematics and helps to improve their self-confidence. As one student

commented, \I have also never studied mathematicians before. Studying them made me realize that even

they struggle with math. This made me feel better about my own struggles." In addition, numerous students

have told us that studying the diverse ways mathematicians conduct research helped them to begin thinking

of themselves as mathematicians.

While there are white male mathematicians who have discussed their mathematical styles and struggles

in interviews, in-depth information related to the way they do mathematics is more often found in interviews

about women and minority mathematicians.

Importance of Including Mathematics

Students relate to the above themes which arise naturally from the lives and work of women and minority

mathematicians, and so including some of these mathematicians into classrooms allows students to identify

with them, which in turn helps them in their own studies. However it is a disservice if we reduce these

mathematicians only to their gender or race. As Julia Bowman Robinson once said \What I really am

is a mathematician. Rather than being remembered as the first woman this or that, I would prefer to be

remembered as a mathematician should, simply for the theorems I have proved and the problems I have

solved." [7, page 271] Women and minority mathematicians should be discussed in the context of their

mathematics, as advocated by Robinson. Not only does this help students view these women and minorities

as real mathematicians, but it also helps students relate to the mathematics. As one student noted,

Seeing the individuals in the mathematician section gave me a glimpse of the people in math. This

was the most interesting to me. It showed the personal side of math. I think people see math as the

most impersonal and generic of the subjects. This is far from the case. By seeing the work these

people do I have a new respect for the math that makes much of life possible. If all people were

to see these examples and applications, they would think the same.

Historical Project Methodology

When we first incorporated historical projects about an individual's life story and mathematics into class-

rooms, students created presentations and in some classes they also wrote a paper. While students found

their projects interesting and rewarding, they were passive listeners during other presentations and did not

effectively learn the related mathematics, even though they were responsible for the material on quizzes

and tests. We then incorporated a classroom worksheet component, and this aspect has been extremely

successful at engaging the class. Students find it rewarding to create a classroom activity sheet that is

designed to engage the class with material they have presented. This type of assignment benefits the entire

class and is especially appropriate for courses aimed at future teachers.

A worksheet assignment is also appropriate for courses that have been designated as \writing intensive"

by the university. Students end up writing a significant amount because part of the assignment is for students

to include information about their mathematician as related to the segment themes. In addition, this gives

students a chance to encounter issues related to teaching and grading in a creative format. Since they create
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the worksheets themselves, and then hand it out to the rest of the class, they develop an ownership of

the material and a pride in their writing not usually seen in writing designated courses. In some courses,

we have replaced the paper component of the historical project with the worksheet assignment in order to

ensure that the workload of the students does not increase.

Since these are meant as long term projects, students need to begin the projects early in order to

have time to master the material. If they do not allow for this, they may present material they do not

understand. Some students who have worked hard in order to understand the mathematics may present

the material too quickly. In order to ensure an effective learning environment, we repeatedly expose the

students to the mathematics. The class completes pre-readings on the mathematics so that they will have

been exposed to it before the presentations. We also review the material after each presentation in order

to correct any historical or mathematical inaccuracies and reinforce the material. Students complete the

classroom worksheets and are also responsible for the material on tests.

Including Women and Minorities in Historical Projects

Historical projects that incorporate the achievements of women and minority mathematicians can be im-

plemented in a variety of levels of college courses. It is easy to incorporate women and minorities into

historical projects because of the abundance of interviews that have been published recently. Because our

students easily relate to the information contained within these interviews, these projects work extremely

well. It is sometimes more challenging to incorporate the related mathematics because of a lack of class-

room resources designed to do so. Here we will discuss how to incorporate these projects into several

different kinds of classes.

Projects in an Introduction to Mathematics Course

In an introductory class for non-majors, we created a three-week segment calledWhat is a Mathematician?
that is designed to expose students to a survey of topics in mathematics, the mathematicians who worked

on these topics and the historical context. We assigned each group of two students a mathematician to be

studied closely. If there were an odd number of people in the class, we asked for a volunteer to work alone.

We chose the mathematicians in order to expose the students to specific mathematical content and a variety

of research styles. We selected a range of mathematicians from the 1700s until today. We included women

and minority mathematicians for the reasons outlined in the first section; it was easy to find women and

minority mathematicians whose mathematics related to the course goals.

Because this assignment required a significant amount of time outside of class, we gave the students

the resources [15] they would need in order to complete their projects so that they would not also have

to search out useful references. In addition to reducing the workload, this ensured that the students used

quality references.

Since this was an introductory class, we did not expect the students would have the mathematical

maturity needed to determine the depth of mathematics appropriate for the class. Hence, we created a

specific list of mathematics questions that related to each mathematician [13]. We asked the students to

answer these questions and also asked the groups to include information related to issues of diversity,

influences, support, barriers, and the mathematical style of their mathematician.

Students prepared Microsoft PowerPoint presentations and classroom worksheets in order to engage the

rest of the class with mathematics related to their mathematicians. Students learned the material themselves

in order to teach it to the rest of the class.

We gave the students presentation and worksheet checklists [14, 17] so that they had guidelines to

follow. Since this was a teaching assignment, students graded the worksheets that they had created after
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the students completed them. We gave them suggestions for improvement which included suggestions from

other students. Because this course is designated \writing intensive," the students were expected to revise

and improve the worksheet they designed.

As the class learned about the mathematics and the mathematicians from the student presentations, we

highlighted the validity and success of diverse styles and the changing role of women and minorities over

time.

Projects in a Modern Algebra Course

Each student in our Modern Algebra course was assigned a mathematician and mathematics to present to
the rest of the class [9]. The course had many women students. Since women often relate more easily to

women mathematicians, it was worthwhile to include women in the list of mathematicians. In addition, it

was easy to do so, because there are numerous women who have done important work in this area. We

chose topics that complemented course material and exposed the class to more current topics than are often

presented in standard Modern Algebra courses, such as Sophie Germain and her work on Fermat's Last
Theorem, Marjorie Lee Browne and her work on the matrix groups O(n) and U(n), and Emmy Noether and

the ascending chain condition on sets and rings. While there is not normally enough time to cover these

types of topics in this course, historical projects allow students to explore them without taking too much

class time. Students presented biographies and mathematics after the related prerequisite course material

was covered in class. For example, Sophie Germain's work on Fermat's Last Theorem was presented after

modular arithmetic was covered in class.

Projects in a Women and Minorities in Mathematics Course

Presentations, worksheets and papers based on student projects were used to run a senior level seminar

class on women and minorities in mathematics [8, 10]. The three assignments were divided up according

to when the mathematician was born: (1) the 18th and 19th centuries, (2) between 1900 and 1925, and

(3) after 1925. We gave the students references and directed questions for the first project, but as the

students became more independent, with our guidance they chose their own mathematicians, found their

own references and decided what mathematics they wished to focus on. Many future high school teachers

took this class. This was an especially useful activity for them because as teachers they will routinely

decide the level of mathematics that is appropriate for their classrooms. Most of the students were very

motivated to study the related mathematics, perhaps because the methodology engaged them and they

enjoyed the interdisciplinary nature of the subject area. The course was successful, and it ran a second

time by student request.

Modeling the Worksheet Process in the Introduction to Mathematics Class

As students in the introductory mathematics course worked on their projects outside of class, in class we

began the What is a Mathematician? segment by contrasting the diverse mathematical styles of Andrew
Wiles and Carolyn Gordon.

We chose mathematicians whose research could be incorporated into a classroom without needing

much background, and we specifically chose living mathematicians so that students would be forced to

confront the commonly preconceived notion that mathematics is a dead field, with issues resolved long

ago.

We chose AndrewWiles, a white male mathematician, in order to take advantage of NOVA's The Proof
video [25] on his solution of Fermat's Last Theorem. The video is extremely well done and addresses
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his influences, support, barriers, and mathematical style. In addition, there are many resources available

to help incorporate his mathematics into classrooms [30]. Students viewed this video and then answered

questions about Andrew Wiles related to the segment themes [16]. The next day, they compared their ideas

with a worksheet that modeled a write-up of these themes and engaged them with related mathematics

[11].

Since the video mentioned the fact that Sophie Germain was the only woman to work on Fermat's

Last Theorem, and there were virtually no women seen in the video, we then examined detailed statistics

on women and underrepresented minorities in mathematics [28, 32].

We wanted to contrast Andrew Wiles with a woman mathematician whose mathematics could be

incorporated into the classroom. While we could have chosen Sophie Germain, we wanted to choose a

living mathematician, so Sophie Germain was assigned to students instead. In addition, we wanted to

choose as a model a woman who worked with many people, in order to contrast her with Andrew Wiles'

solitary style, and we also wanted someone who was interested in gender issues, as we wanted to introduce

the class to these issues. There are many possible choices of women mathematicians who satisfy these

criteria, who also can be assigned as student projects.

We chose Carolyn Gordon, a well-known and respected geometer. While she is best known for her

groundbreaking work on hearing the shape of a drum, she continues to do research as a leader in the

related field of spectral geometry. Since there are only a few resources available for Carolyn Gordon and

creativity is needed in order to engage students with ideas related to her mathematics, it is better to use

her mathematics as a model for the class rather than as a student project topic. Carolyn Gordon satisfied

our other criteria because she has many co-authors and is involved in AWM (Association for Women in

Mathematics), and because she agreed to be interviewed for the worksheet so we could obtain information

related to the segment themes. The contrasting styles of Carolyn Gordon and Andrew Wiles make them

excellent choices for the beginning of the What is a Mathematician? segment.

Selections from the Andrew Wiles and Carolyn Gordon Worksheets

An informal style of writing is used in our worksheets on Andrew Wiles and Carolyn Gordon in order to

encourage students to identify with the mathematicians and not be intimidated by the mathematics. As part

of this informal style, we do not use a formal reference system, but we do give students a list of references

at the end of each worksheet and comment on how we used them (see Appendix A).

Here we present the mathematical style section of the Andrew Wiles worksheet that we give to our

students (see [11] and [25]).

Mathematical Style (from the Andrew Wiles Worksheet)

Andrew Wiles describes mathematical research as follows:

Perhaps I could best describe my experience of doing mathematics in terms of entering a dark mansion.
One goes into the first room, and it's dark, completely dark. One stumbles around bumping into the
furniture, and gradually, you learn where each piece of furniture is, and finally, after six months or so,
you find the light switch. You turn it on, and suddenly, it's all illuminated. You can see exactly where
you were. Then you move into the next room and spend another six months in the dark. So each of
these breakthroughs, while sometimes they're momentary, sometimes over a period of a day or two,
they are the culmination of --- and couldn't exist without --- the many months of stumbling around in
the dark that proceed them.

Andrew Wiles needs intense concentration in order to do mathematics. He reads books or articles to see how
similar problems have been solved and he tries to modify other people's techniques to complete his own research.
He uses by-hand calculations in order to look for patterns. When he is stuck on a problem, he tries to change it
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into a new version that is easier. Sometimes he must create brand new techniques to solve a problem and he is not
sure where these come from. If he is stymied, he plays with his children or walks by the lake in order to relax and
allow his subconscious to work.

While Andrew Wiles worked alone in secrecy for seven years, working with others has still been important to
him. For example, before he publicized his proof of Fermat's Last Theorem, he first explained it to Nicholas Katz.
After he could not fix the fundamental error later found in his proof, he called in Richard Taylor to help him. The
two eventually fixed the problem. Hence, we see that while Wiles likes working alone, collaborative efforts have
also been essential to his mathematics.

Andrew Wiles is a devoted and persistent mathematician. Even though he had no idea whether he could ever
find a complete proof, especially because a proof of Fermat's Last Theorem might have required methods well
beyond present day mathematics, he never gave up.

We wanted the students to engage the related mathematics. In the case of Andrew Wiles, it was easy

to engage students with activities from NOVA's website [30]. For example, we used an activity where

students demonstrate the Pythagorean Theorem by cutting out and matching up the relevant squares. Since

the rest of the worksheet [11] was adapted from NOVA's website, we will not present it here.

Creating good classroom activities at the proper level can be a challenge if classroom resources on

the mathematician and related mathematics are not available, as was the case with Carolyn Gordon's

mathematics. Sometimes creativity is needed in order to engage the students. Here we present an in depth

look at selections from the Carolyn Gordon worksheet and the activities we created to engage our students

(see [12] and Appendix A).

Gender Issues (from the Carolyn Gordon Worksheet)

During the entire time that she was an undergraduate, and during her first couple of years as a graduate student,
Carolyn Gordon never met another woman mathematician. In addition, her mathematics courses consisted almost
exclusively of men. Yet she was not aware that this was an issue that bothered her until she attended a conference
and went to an AWM gathering during her third year in graduate school. When she walked into that room full of
women mathematicians, she was shocked by the experience and recognized her previously unacknowledged sense
of isolation.

Today she balances a successful research and teaching career at Dartmouth College with her family. She is
married to a mathematician, David Webb, and they have a daughter. In addition, she is heavily involved in AWM.
Carolyn Gordon sees how AWM has helped women who have encountered barriers and active discrimination, both
firsthand and through the experiences of friends and colleagues. She has seen the importance of role models, and
has become one herself, mentoring many women students and young faculty.

Mathematical Style (from the Carolyn Gordon Worksheet)

Even though she is a geometer, she describes herself as being ``terrible" at visualization and also as having a bad
memory. While she is good with numbers, she says that this skill does not help in her research.

The following story also gives us insight into her mathematical style. The breakthrough that led to her research
on hearing the shape of a drum occurred during her talk at a conference when a member of the audience asked her
a related question. David Webb said that the question ``was like a cold shower. It really made us sit up and think
about this." Afterwards, the pair spent days making models and checking to see if they worked. Carolyn Gordon
recalls, ``We got these huge [paper] castles. They took up our living room."

According to Carolyn Gordon, sometimes she needs to step away from a problem and let her subconscious
work. Then, while she is partially occupied with something else, new ideas will come to her. She compares the
process of doing research to being in a maze. ``Sometimes, when you are completely lost, you have taken a wrong
turn, and you must back away and try a new direction. Other times, you will reach a door, find a way to open it,
and discover that you have made progress and entered a deeper, more significant part of the maze."
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Mathematics (from the Carolyn Gordon Worksheet)

During the 19th century, Auguste Comte, a French philosopher, hypothesized that the chemical composition of
stars would always be beyond the reach of scientists. He was incorrect, and soon afterwards scientists developed
the related field of spectroscopy. In spectroscopy, the pitches at which a molecule rings are used to attempt to
identify the structure. Given a set of vibration frequencies, an important research topic is to ask what can be
inferred about the object's composition.

In 1966, mathematician Mark Kac asked a related question about whether one can always hear the shape
of a drum. In other words, if you close your eyes and listen to differently shaped drums being played, Mark Kac
wanted to know if you could distinguish the shape by the sound or vibration frequencies you hear. A mathematical
drum is not a standard musical instrument; it is any shape in the plane that has an interior and a boundary, such
as a circle, a square, or a triangle. The interior vibrates with each strike while the boundary frame remains rigid.
Imagine that we had a machine that could tell us the exact frequency of the sound of the drum vibrations. Then
we could check and see whether the machine could always distinguish the sounds of differently shaped drums.

In 1911, Hermann Weyl proved that one can always hear the area of a mathematical drum. It makes sense
that we can hear the area since the bigger the area of the drum, the lower the tone. Later, in 1949, Subbaramiah
Minakshisundaram and Ake Pleijel proved that one can always hear the length of the boundary, or the perimeter of
the drum. It was then thought that the sound of a drum might determine its shape, and Mark Kac asked whether
this was true.

The problem challenged researchers. Finally, in the spring of 1991, Carolyn Gordon, her husband David Webb,
and Scott Wolpert, the audience member that we previously mentioned, came up with the answer: No! One can
sometimes, but not always hear the shape of a drum. They found two mathematical drums that have different
shapes, but still had the same vibration frequencies, therefore making exactly the same sound.

Figure 1. Carolyn Gordon and husband David Webb with their drums in 1991.

Printed with permission of Washington University.

Mathematicians would not have been satisfied with experiments to show that the drums sound the same because
calculations and experiments cannot be exact and a very small frequency difference could escape experimental
detection. Instead, Carolyn Gordon and her collaborators used mathematics to prove that her drums sounded the
same without actually testing them in real-life. Later on, physicists created the drums and tested them in real life.
They found that the drums sounded nearly the same with an error attributed to the experimental procedures.
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Classroom Activities (from the Carolyn Gordon Worksheet)

Worksheet Diagram 2 Worksheet Diagram 3a and 3b Worksheet Diagram 3c

Figure 2. Drums for Classroom Activities. Reprinted with Permission of Ivars Peterson.

1) Cut along the boundaries of the sound-alike drums in Diagrams 3b and 3c (see Figure 2) which are duplicate
copies of Diagram 3a. If the drums in Diagrams 2 and 3a have the same shape, then you will be able to
place one on top of the other. Place Diagram 3b on top of Diagram 2 above, and try to move Diagram
3b (via rotating, translating or flipping it around) so that it matches Diagram 2. Question: Do these figures
have the same shape?

2) Take Diagram 3c (the one with the dashed lines marked on it) and cut this drum along the dashes. Notice
that you will have 5 pieces total. Try to fit these cut pieces onto Diagram 2. Notice that you won't be able
to do so. In fact, no matter how you might cut Diagram 3c (don't try this now), you won't be able to fit it
onto Diagram 2. This contradicts the fact that they must have the same area in order to sound the same.
Let's try and resolve the apparent conflict by investigating the accuracy of the models represented. Identify
which piece does not fit properly onto Diagram 2 above. Put a star on this piece on Diagram 3a and also
put a star on this piece on Diagram 3b, which is the drum that you cut out along the boundary but left in
one piece.

3) Take Diagram 3b and compare it to the drum Carolyn is holding (see Figure 1). Compare the piece that you
starred with the same piece on Carolyn's drum. Notice that the vertical edge next to the part that Carolyn is
holding is the same length as the vertical edge opposite it, but that this is not true of your starred piece and
its opposite edge. The drum that Carolyn is holding is drawn correctly, but the starred piece on Diagrams 3a
and 3b was not correctly drawn to scale and it is this error in scaling that causes the contradiction in 2). In
Diagram 3a above, try to fix the problem piece and edge so that it is drawn to scale by adding to Diagram
3a to show how you would have drawn the piece. Take one of the other similar but correctly scaled pieces,
place it on top of the problem piece and trace the correctly scaled piece in order to fix the problem piece.

The point of this exercise is to have you engage the models instead of just hearing about them (no pun
intended). There are dangers in relying on models since it is difficult to create physical models representing abstract
figures with precisely determined sides. These models were found on a webpage that discussed Carolyn Gordon's
solution of the problem and the physicists' work that followed. The drums in the picture of Carolyn Gordon and
David Webb are drawn correctly, and they have the same area and perimeter, but are shaped differently. If you
close your eyes and listen to them being played, you cannot tell that they have different shapes, since they sound
exactly the same.

Carolyn Gordon's research answers Mark Kac's question, but it raises many new issues. For example, now that
we know that one cannot hear every property of a drum, what properties besides its area and perimeter really are
audible? In addition, we know a great deal more about the vibrations of sound than about the vibrations of light.
In the field of spectroscopy, we hope to recover the chemical composition of stars from their vibration fingerprints.
Carolyn Gordon's research on hearing the shape of a drum is a small step in this direction. It also shows us that
a mathematical proof does not need to be constructive and that there is not always just one conclusion that can
be reached from a complete set of measurements.
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Student Reactions to the Andrew Wiles and Carolyn Gordon Worksheets

Students report that they enjoy the worksheets and the activities and that they find these extremely helpful

as models for their own worksheet. Students respond well to the openness of Andrew Wiles and Carolyn

Gordon about their mathematical styles and struggles, including Carolyn Gordon's feelings about gender

issues in mathematics. The statistics on women and minorities then feel more personal to them. In order

to cultivate this identification with gender issues, students read an article on the web called Fifty-Five
Cultural Reasons Why Too Few Women Win at Mathematics [22].

At the beginning of the semester, students were asked to define mathematics. Since many of them

reported that mathematics is the study of numbers or equations, these activities force them to re-examine

their notion of what mathematics is. Student presentations begin during the week following the introduction

of these worksheets. Once students have confronted their preconceived notions about mathematicians and

mathematics, the rest of the mathematician segment is ordered so that we move forward in time to trace

the historical progression of mathematics and the changing roles of women and minorities.

Applying the Worksheet Process across a Variety of Courses:

Using the Example of David Blackwell

We will discuss some ideas for incorporating David Blackwell and his mathematics into two different

levels of college courses.

David Blackwell is considered to be one of the greatest African-American mathematicians [31], and

yet, perhaps because he is still alive, resources on minorities in mathematics that are designed for use in

the classroom do not include him. This is unfortunate since students relate to Blackwell's openness about

racial issues and his mathematical style. In addition, Blackwell has done work in several fields such as

game theory, Markov matrices, statistics and probability, and so ideas related to his mathematics can easily

be incorporated into a variety of levels of classes [18].

Figure 3. David Blackwell. Printed with permission.

David Blackwell Project in an Introduction to Mathematics Course

David Blackwell is the first living mathematician presented in this class as a student project. Students

enjoy learning about him and his mathematics enough that they report this in their evaluations.

After class discussions on strategies for zero-sum games, where there is a clear winner and loser, we

wanted to expose the students to the complexity of other types of games. In one interview [1, pages 25{26],
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David Blackwell discusses the Prisoner's Dilemma and its relationship to the arms race with the Soviet

Union, so we created a list of related mathematics questions for the students to answer in their project.

Directed Mathematics for David Blackwell

What is game theory?

What is the Prisoner's Dilemma? How does this relate to what David Blackwell worked on? What matrix of payoffs
represents the Prisoner's Dilemma?

If a person is deciding what to do, why does it make sense (when looking at the possible cases) for him to confess?

What are the applications of game theory to real life?

We provided the students with the resources that they would need to complete this project (see Appendix

B). Students do struggle with the idea of a selfish strategy in the Prisoner's Dilemma, as opposed to a

cooperative strategy. In one class, a student struggling with these ideas stated, \If I were a criminal and

was going to rob a bank with someone, then I would make sure that he was honest and that I could

trust him not to turn me in." When we pointed out the student had just used the words \criminal" and

\honest" in the same sentence, the class laughed and then re-examined their beliefs. The arms race with the

Soviet Union, which David Blackwell discussed in the interview mentioned above, is especially effective

at helping students differentiate between the various strategies.

Sample Student Worksheet for David Blackwell

The following classroom worksheet was completed by students Ross Bryant and Zachary Lesch-Huie from

the Fall 2001 Introduction to Mathematics course. This worksheet is a nice response to the assignment.
Since they used our Andrew Wiles and Carolyn Gordon worksheets as models, they turned in a list of

references with comments (see Appendix C) instead of using a formal reference system. We have left the

worksheet in the form turned in by the students in order to provide a true sample of student work as they

handed it out to the rest of the class, including the minor errors contained within.

Introduction (from the David Blackwell Student Worksheet)

David Blackwell is the first truly contemporary mathematician the class will study. Historical accounts of person's
lives are doomed to appear hazy with age. Blackwell is interesting for this reason, because he is the only person
thus far whose actions are not obscured by time. We have been able to look over Blackwell's own words through
interviews to get a personal perspective on his incredible life and work. For one so accomplished, Blackwell certainly
comes across as a man who is truly humble, genteel, staggeringly intelligent, and deeply in love with his work.
At an early age Blackwell discovered an ability and love of math, and with the support of family and teachers
he eventually rose to become the honored expert in statistics and professor at the University of Berkeley that he
is today. His main interest has always been investigating and teaching set theory and probability theory. He has
also made significant contributions to Bayesian statistics and game theory. Blackwell has been awarded the von
Neumann Prize by the Operations Research Society of America, and in 1986, he received the most prestigious
award in the field of statistics, the R.A. Fisher Award. He also has the distinction of being the first African-American
mathematician elected to the National Academy of Sciences in 1965. In this report, we will explore these aspects
of Blackwell's life: influences and support, issues of race, mathematical style, and game theory.

Influences and Support (from the David Blackwell Student Worksheet)

Blackwell traces his mathematical abilities to his grandfather. While Blackwell never knew him, he was inspired by
his legacy: it was in the library of books that his grandfather left to his family that Blackwell found his first algebra
book. He also remembers an uncle who could add three columns of numbers in one step. His parents were quite
supportive of his math and had hopes that he would become a grade school teacher. His ability however, would see
him surpass these aspirations in ways his parents never dreamed of. In high school his mathematics club advisor
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would give the students problems from the School Science and Mathematics journal and submit their solutions.
Blackwell was published. Blackwell entered college at the tender age of 16 and achieved a BA in a mere 3 years. It
was during his graduate studies at Illinois University that Blackwell met his most important mathematical influence
Joe Doob. It was Doob who directed Blackwell's research and steered him in the direction of probability theory.
Later, in 1945 Blackwell claims he got started in statistics after listening to one lecture by Abe Girshick. At the
time of the lecture Dr. Abraham Girshick was an already famous mathematician, but Blackwell thought that he
had caught a mistake in his lecture. Blackwell wrote to him describing the error. Though the supposed error turned
out to be unfounded, the newcomer impressed Girshick, and the two began a partnership. They wrote a book on
statistical theory which was published in 1954.

Racial Issues (from the David Blackwell Student Worksheet)

When one reads of Blackwell's childhood it becomes clear how hard his family tried to shelter him from the prejudice
of early twentieth-century America. The family had had their share of difficulty; the reason his fast-adding uncle
never went to school was because his grandfather feared he would be mistreated because of his race. Though
the grade school Blackwell attended in Centralia, Illinois was integrated, there were two segregated schools in the
same town. Blackwell makes clear he didn't feel discriminated against early on, but this was a result of his parent's
protection. Still, racist culture continued as a presence in Blackwell's life. Even when he had proved himself as a
brilliant mathematical student there was tension. When he was being considered for membership in the Institute of
Advanced Study it was customary for members of the Institute to be appointed honorary members of the faculty
at Princeton. Princeton objected to a black man being an honorary member of their faculty. The Director of the
Institute objected on Blackwell's behalf, and Princeton backed down. Even this struggle was only partly known to
Blackwell at the time. Says Blackwell: ``Apparently there was quite a fuss over this, but I didn't hear a word about
it." Even after Blackwell received his Ph.D. from Illinois (at age 21) his aspirations were limited by the culture of
racism. ``It never occurred to me to think about teaching in a major university since it wasn't in my [racial] horizon
at all." Blackwell fired off 105 applications, one to every black college at the time. He accepted the first offer he
got, from Southern University in Louisiana, and later moved to Clark College in Atlanta, and finally to Howard
University in Washington, D.C., the top Black institution at the time. In 1950 Blackwell took a leave of absence
to work at the RAND Corporation. In 1954, he was asked to join the faculty of the University of California at
Berkeley. The position was similar to one he had been interviewed for some years before, when his race had been
an issue.

Mathematical Style (from the David Blackwell Student Worksheet)

Blackwell describes himself as a mathematical dabbler. ``I've worked in so many areas | I am sort of a dilettante."
To some this may imply that he lacks the ability to focus, but this is simply not the case. He is in fact well
known for presenting his theorems in elegantly clear ways. Perhaps this is because of his slightly different way
of appreciating math. For example, instead of describing the process of math technically, he uses more common,
almost sentimental language to describe his own mathematical aesthetic. ``There is beauty in mathematics at all
levels" he explains. ``The whole subject [is] just beautiful." Blackwell is also one of the voices of a radical type
of statistics known as Bayesian statistics. Whereas ``Classicist" statisticians see probabilities as entirely objective,
Bayesians believe that there is always a suspected set of probabilities in the mind of the experimenter. When tackling
a math problem, Blackwell finds that his main motivation is for understanding, a desire particularly meaningful to
him. ``I am not interested in doing research and I never have been. I'm interested in understanding, which is quite
a different thing," he says. This rather broad desire often places Blackwell in a wide range of mathematics (which
accounts for his wide range of contributions), filling in ``holes" in certain theories so that his understanding can
be ``rounded out." By no means does this limit him to working alone. In fact, MathSciNet showed 90 published
papers with Blackwell's name on them many of them were with one or more partners. Indeed, in his search for
understanding, Blackwell finds both working alone and with others helpful.

The Math (from the David Blackwell Student Worksheet)

It was while working at RAND and Girshick that Blackwell first began working with statistics and probability
theory. These areas of interest led him into the field of game theory, the subject that he is perhaps best known
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for. Game theory is a branch of statistics in which game-like situations are ``played" out with specific objectives.
``The decision making options of the players are then statistically analyzed." Blackwell applied game theory most
famously to old-style pistol duels. If two armed people are advancing on one another, when should they shoot?
While Blackwell investigated the problem, a RAND economist consulted him about drawing up a budget proposal
for the coming Cold War years. Was war imminent or not? The economist wanted to know. If so, they should
begin budgeting for a short-term solution to the Soviet ``problem." Blackwell's hypothetical ``duelists" had just been
placed in the context of World War 3. Blackwell, of course could not provide an answer, but found the problem
none-the-less troubling. RAND saw the real-world application of game theory as a means to outwit their political
opponent. However, game theory is for the most part much more benign, and can be used to understand and
explore methods of decision-making and problem solving. Consider the classic game theory scenario called ``The
Prisoner's Dilemma."

The Prisoner's Dilemma (from the David Blackwell Student Worksheet)

Imagine that two criminals, Zach and Ross, have raided a farmer's grain silo in a fiendish attempt to make off with
the farmer's sweet, sweet sorghum. The two are apprehended by the police as they leave the scene of the crime,
separated at the station house, and shaken down by the coppers. Each crook has to choose whether or not to
confess and implicate the other. If neither man confesses, they both will serve one year on a charge of possessing
illicit sorghum. If each confesses and implicates the other, both will go to prison for 10 years. However, if one
crook confesses and implicates the other and the other crook does not confess, the one who has ratted out his
accomplice with go free, while the other crook will rot in the pokey for 20 years on the maximum charge.

The strategies of the ``players" or crooks are: confess or don't confess.
The payoffs (in this case, penalties) are the sentences served.
In game theory, data is expressed in a ``payoff table" (or payoff matrix). Here is the payoff table for the

Prisoner's Dilemma:

Ross

Confess Don't Confess

Confess 10, 10 20, 0

Zach

Don't Confess 0, 20 1, 1

Both crooks choose one of the two strategies. Or, Zach chooses a column and Ross chooses a row. The two
numbers in each cell represent the years in jail for the prisoners when those two strategies are chosen. In each cell
(a,b), ``a" represents the amount of jail time for Zach, and ``b" represents the amount of jail time for Ross.

Solution: One must go inside the mind of the prisoner. Zach might think: ``Two things can happen, Ross can
rat or clam up. If Ross confesses, I get 20 years if I don't confess, 10 years if I do, so in that case it's better to
confess. Then again, if Ross stays quiet, and I do too I get a year; but in that case, if I do confess I can go free.
Either way, it's best if I confess. So I'll confess." One can assume that Ross' line of thinking will go the same way.
So if they both act ``rationally" and confess they both go to prison for 10 years, putting up with horrible abuse and
all for a sack of sorghum. Here's the thing, if they had both acted ``IRRATIONALLY," and kept quiet, they could
have gotten off with one year each, and in minimum security too. When both prisoners confess, they have fallen
into what is called Dominant Strategy Equilibrium. Because each crook chooses the option with the best payoff,
they choose the ``dominant" strategy. But in this case these dominant strategies have made both the prisoners
worse off. This is an interaction that can be applied to many aspects of modern life. Arms races, pollution, over
hunting, etc., are all instances where (it seems) the individually rational action leads to horrible results for each
person.

Class Exercises (from the David Blackwell Student Worksheet)

1. Break the class in half. Then break each half into pairs. Each member of a pair is a ``player" in The Prisoners'
Dilemma. One half of the class' prisoners are ``separated" and cannot communicate with one another. The
other half of the class has a chance to talk together before they make a decision. Write down whether you
can talk with your partner or not.

2. Given the circumstances of the payoff table, what will you choose to do, confess or hold out? Why?
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3. Relate this information with what you learned about the nature of the Prisoners' Dilemma and Dominant
Strategy Equilibriums at the end of the presentation.

We encourage the rest of the class to be skeptical learners as they are reading the worksheet and

completing the activities, and we ask them for suggestions for improvement. This is especially important

because even though we ask students to turn in preliminary responses to the mathematics questions and

thematic issues in order to receive feedback before their presentations, errors may still appear in the

presentations and worksheets. While this student worksheet contains only some minor errors, in some

other cases students present or hand out work containing major errors. Hence, it is essential for the

instructor to go over the mathematics and correct any historical or mathematical inaccuracies after each

presentation.

David Blackwell Project in a Women and Minorities in Mathematics Course

David Blackwell and his mathematics can also be incorporated into higher level classes. In the Women
and Minorities in Mathematics course, mathematical questions and resources were given to students for
the first paper assignment in the course that included mathematicians born before 1900. Since David

Blackwell was born in 1919, he was a possible choice for the second paper assignment, which focused on

mathematicians born between 1900 and 1925. We chose this time frame because both women and minority

mathematicians were just beginning to gain acceptance but shared common issues in the context of society

at the time. Since we wanted students to develop their own research skills, with our help, they chose their

own mathematician, found their own references and decided what mathematics they wished to focus on.

One student chose David Blackwell. Since he has published over 90 papers and books in various areas

of mathematics, there were many possible related mathematical topics to choose from. She chose to discuss

the idea of a Markov matrix, which was the topic of Blackwell's doctoral thesis [2], and she also chose to

explore a paper of Blackwell's called The Big Match [3], in which Blackwell looks at an infinite game,
that is, a game with an infinite numbers of moves. Since Blackwell also discusses infinite games in [6,

pages 46{47], this was a good choice for a topic. The student created a presentation, classroom activity

sheet and a paper [20]. In the process she learned a lot of mathematics along with the context of the

thematic issues.

Student Responses to David Blackwell Projects

Students admire Blackwell's attitudes about racial issues and his mathematical style [1, 6] and they enjoy

learning about him and his mathematics. In the Introduction to Mathematics class, where each student
wrote about a mathematician that he or she related to, one female student commented:

I never thought that I could relate my mathematical style to a famous mathematician because first

of all I didn't really think that I had a mathematical style. Doesn't having a mathematical style

assume that one is greatly interested in mathematics? Well, not in my case. Math really has not

been one of my strong points. Although I am interested in solving problems, I'm more concerned

with understanding what I'm learning. I finally found a mathematician that I can identify with and

that person is David Blackwell.

Conclusion

Projects that incorporate the mathematical achievements of women and minorities into the classroom pro-

vide a rich mathematical environment for examining beliefs about what mathematics is and the diverse
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ways that people can be successful at doing mathematics. Because most women and minority mathemati-

cians that we know about lived within the last 200 years, there are not as many resources that bring their

mathematics into the college classroom in a meaningful way as there might be for earlier mathematicians.

Yet the inclusion of the recent mathematical achievements of women and minorities is important, not only

to ensure that these mathematicians are remembered for their mathematics instead of just their race or gen-

der, but also because students relate to these mathematicians. With creative planning, their achievements

can be incorporated into the classroom, and the result can be rewarding for all students.

One student from the Women and Minorities in Mathematics class, who planned to become a high
school mathematics teacher, commented that this was one of the few classes in the department that he

could walk away from and actually say, \I will use this in my classroom." Another student commented

that this course should be taken by both math majors and future teachers, while a third student commented

that she felt the projects helped her in advancing her ability to do research and speak about math, and

that \it was very encouraging." Students from this class are now teaching in the middle grades and high

school and have reported successful implementation of projects on women and minority mathematicians

in their own classrooms.

One Introduction to Mathematics student commented, \Some students might say that learning about
present and past mathematicians is useless, however, I learned that not all mathematicians sit at a desk

doing equations. Some, such as Gordon, work on drums, while others, such as Blackwell, work with

theories such as game theory." Another student reflected, \I thought that it was great that my mathematical

style was so close to hers. It made me appreciate her way of thinking better, as well as my own way of

thinking. I had never before really labeled my train of thought, but because of our studies I am aware of

the way my mind works, and I find it very handy when I come across difficulties that I must deal with.

Thanks!" The strength of this reaction is exactly the reason that we use these projects. This is the kind of

response that we hope for in all of our students.
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Appendix A: References and Comments on How We Used Them for Carolyn Gordon

We do not use a formal reference system for worksheets, but we do give students a list of references at

the end of each worksheet and comment on how we used them in designing the worksheet. We gave the

following references to the Introduction to Mathematics class at the end of the Carolyn Gordon worksheet.

Cipra, Barry (1992), \You can't always hear the shape of a drum," Science, March 27, 1992,
Volume 255, No. 5052, p. 1642{1643.

This magazine article had an overview of the problem and a description of the reaction to Wolpert's

question, their model building, and transatlantic work.

Cipra, Barry. (1997a). You can't always hear the shape of a drum [On-line].

Available: http://www.ams.org/new-in-math/hap-drum/hap-drum.html

This is a great website that I used to find an overview of the history and solution of the problem.

Gordon, Carolyn and David Webb, \You Can't Hear the Shape of a Drum," American Scientist,
January-February, 1996, Volume 84, No. 1, p. 46{55.

This magazine article had a great summary of the solution of the problem, and some information

about the authors. They recently received The Chauvenet Prize for writing this article, given for an

outstanding expository article on a mathematical topic by a member of theMathematical Association

of America.

Mathscinet search on Carolyn Gordon. (2001) [On-line].

Available: http://www.ams.org/mathscinet

I used this site to find her published papers and collaborators.

Personal communication with Carolyn Gordon (2001).

Peterson, Ivars. (1997a). Ivars Peterson's MathLand: Drums that sound alike [On-line].

Available: http://www.maa.org/mathland/mathland 4 14.html

I used this site to find the pictures in Figure 3 and 4, and it also contained information about the

physicists who made the drums and performed experiments to show that they sounded the same.

Weintraub, Steven. (1997). What's new in mathematics: June 1997 cover [On-line].

Available: http://www.ams.org/new-in-math/cover/199706.html

This website contains the pictures of Carolyn Gordon and David Webb holding their drums. It also

contains links to an animated picture of the frequency and waves when the drums are struck.

I could not find information in books about Carolyn Gordon.

Appendix B: References Provided to the Students for David Blackwell

We gave the following resources to the students assigned to David Blackwell in the Introduction to
Mathematics class.
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Albers, D. and Alexanderson, G. eds., Mathematical People: Profiles and Interviews, Birkh �auser,
Boston,1985, p. 19{32.

DeGroot, Morris. \A Conversation with David Blackwell," Statistical Science, 1 (1986) 40{53.

O'Donnell, Michael. The Prisoner's Dilemma: A Fable [online] (1998).

Available: http://www.classes.cs.uchicago.edu/classes/archive/1998/fall/CS105/Project/node2.html

Williams, Scott. David Blackwell | Mathematicians of the African Diaspora [online] (2002).

Available: http://www.math.buffalo.edu/mad/PEEPS/blackwell david.html

Young, Robyn. \David Blackwell" in Notable Mathematicians : From Ancient Times to the Present
p. 62{64.

Appendix C: Reference Section from the Student Worksheet

Students Ross Bryant and Zachary Lesch-Huie submitted the following references at the end of their David

Blackwell worksheet.

Albers, D. and Alexanderson, G. eds., Mathematical People: Profiles and Interviews, Birkh �auser,
Boston, 1985, p. 19{32.

This gave us background insight on Blackwell's life as a young man as well as Blackwell's feelings

about working on the Prisoner's Dilemma for the RAND corporation and the relationship to the

arms race with the Soviet Union.

DeGroot, Morris. \A Conversation with David Blackwell," Statistical Science, 1 (1986) 40{53.
This interview revealed Blackwell's personal experiences and dreams as a young man. He also

discusses his mathematical techniques and inspirations.

O'Donnell, Michael. The Prisoner's Dilemma: A Fable [ online] (1998).

Available: http://www.classes.cs.uchicago.edu/classes/archive/1998/fall/CS105/Project/node2.html

This website focused on Tucker and the Prisoner's Dilemma and is where we got most of our

information on this subject and its significance.

Williams, Scott. David Blackwell | Mathematicians of the African Diaspora [online] (2002).

Available: http://www.math.buffalo.edu/mad/PEEPS/blackwell david.html

We learned all about Blackwell's research and game theory at this website.

Young, Robyn. \David Blackwell" in Notable Mathematicians : From Ancient Times to the Present
p. 62{64.

This selection helped in giving us a general overview of Blackwell's life and some insight regarding

his work with the theory of duels and game theory in general.
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Introduction

An undergraduate survey course in the history of science presents numerous opportunities to discuss the

role of mathematics in scientific developments, especially with regard to physics and astronomy. These

courses are most commonly taught in a history department, or a history of science department. Although

there may be some modest prerequisites in terms of science and mathematics, these are history courses,

not mathematics courses, and it is usually inappropriate to treat mathematics topics in rigorous detail, and

especially inappropriate to evaluate student solutions of mathematics problems as part of the course grade.

But no such course can be considered complete without some reference to mathematics. Some description

of the possibilities for treating mathematics within a history of science course may be beneficial for teachers

of more mathematically oriented history courses, who may derive some ideas for incorporating history of

science into their mathematics presentations.

Restricting attention to the last 200 years leaves no shortage of topics, but increases the difficulty

of providing accurate but comprehensible explications of the mathematical issues. Historians of science

may approach topics from a more philosophical standpoint, or indulge in more hand-waving, than some

teachers of mathematics would find agreeable. Mathematicians may find that a history of science survey

course is too much of a romp through the decades and centuries, flitting from one topic to the next

without ever getting to the details. The following are examples of treatments of mathematical topics in the

history of science classroom, assuming students have a basic understanding of algebra and geometry. An

acquaintance with the major ideas of calculus is sometimes helpful as well. A few useful references are

provided, without any attempt at completeness.

Celestial Mechanics

This topic looms large in any history of science course that covers the work of Kepler and Newton in the

seventeenth century, but it is also an important topic for the period after 1800. A survey of the period from

Newton to Laplace is probably necessary to set the stage, culminating in Laplace's nebular hypothesis and

the issue of the long-term stability of the solar system. This can lead into discussions of what it means

to solve a differential equation with specified initial conditions, and the extreme difficulty of solving the

3-body problem. One can then race through the nineteenth century to get to the work of Henri Poincar�e,

201
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possibly pausing to comment on the discovery of Neptune, or for a little hand-waving on perturbation

theory. The payoff is that Poincar�e's celestial mechanics provides an entry into the modern theory of

chaos. Fortunately there are excellent popular accounts of this that are quite appropriate for such a course.

The books by Ruelle and Ekeland [12, 3] are especially recommended. A mathematics instructor can

readily supplement the approach sketched here with more technical details on topics such as differential

equations and convergence of infinite series.

Electromagnetism

Any discussion of the developing comprehension of electromagnetism in the nineteenth century will nat-

urally emphasize the work of both Michael Faraday and James Clerk Maxwell. The usual account is that

Maxwell translated Faraday's nonmathematical intuitions into mathematical notation, specifically into the

language of partial differential equations. But Maxwell himself put the matter in a slightly different way:

\As I proceeded with the study of Faraday, I perceived that his method of conceiving the phenomena was

also a mathematical one, though not exhibited in the conventional form of mathematical symbols" [10,

p. ix]. This can give rise to interesting class discussion on the nature of mathematics and how important

symbolic notation is to the subject. To delve deeply into the particular case of Faraday and Maxwell

requires considerable background in both electromagnetic phenomena and in vector analysis, but even

general consideration of the issue is worthwhile.

Quaternions

Mention of vector analysis in connection with Maxwell's theory of electromagnetism is an anachronism. If

one looks into Maxwell's work one finds that he expresses his famous equations in terms of quaternions.

The history of this topic is intriguing, and there is a good source [1] for the story of the rise and fall

of quaternions in mathematical physics and the triumph of vector analysis. The technical details are

formidable, but there are enough fascinating characters involved (Hamilton, Gibbs, and Heaviside, to name

only three) to keep the interest of a general audience. Starting with a brief recall of complex numbers,

quaternions are readily described for this audience, and the failure of the commutative law can lead to

a fruitful exploration of general algebraic systems. The particular problem that plagued Hamilton, \why

can't I multiply triples?" and the provocative answer that an associative multiplication of n-tuples is only

possible for n D 1, 2, or 4, is worth mentioning, even though the details (essentially the Frobenius theorem;

see [7, pp. 326{329]) may be beyond the scope of the course. On the other hand, for the instructor of a

course where such details are appropriate, a discussion of the history of quaternions can serve to humanize

this abstract material and link it with developments outside mathematics.

Statistical Mechanics

The nineteenth-century development of the kinetic theory of gases is an excellent vehicle for exploring

how physicists learned to understand the behavior of large collections of particles even when knowledge

of the behavior of individual particles is minimal. More generally, it is an illuminating example of the

importance of model-building in physics, and some of the ways in which the mind-set of a physicist may

differ from that of a mathematician.

In the nineteenth century physicists began to model gases as collections of tiny particles moving at

high speed. Here is an appropriate example for a history of science class, using nothing more than simple
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algebra. (See [9, pp. 205{206], or other elementary physics books, for more details). Assume that we have

N identical molecules of mass m in a cubical box of side a. Let us further suppose that the molecules

all travel with the same velocity v and that one third of the molecules bounce back and forth between

top and bottom of the box, another one third bounce back and forth between front and back, and the last

third bounce back and forth between the right and left sides. Finally, let us assume that no molecule ever

hits another molecule. Using Newton's laws, and defining the pressure in terms of the force exerted by

the molecules as they bump into the sides of the box, one can derive Boyle's Law: there is an inverse

relation between pressure and volume. Given the drastic simplifying assumptions many mathematicians

would be skeptical that this derivation means anything at all, but physicists generally find it encouraging.

It should be emphasized that this is only the beginning, that nineteenth-century physicists proceeded to

complicate the model by making more and more realistic assumptions. They partitioned the molecules of a

gas into a richer array of classes and employed concepts such as the mean-free path (the average distance

a molecule travels before hitting another molecule). Nevertheless the simple model above displays the

core triumph of statistical mechanics: large scale behavior of matter as observed in experiments can be

explained theoretically by the behavior of invisible particles.

The degree to which one might wish to explore this topic in more detail depends on the mathematical

knowledge of the class. Some mention of Brownian motion and Einstein's role in explaining this is

appropriate. Further commentary on conceptual issues in statistical mechanics can be found in the books

by Ruelle and Ekeland earlier mentioned [12, 3]. Richard Feynman [4] is a good source for insight into

how the thinking of physicists often differs from that of mathematicians.

Special Relativity

This topic is usually a highlight of any history of science course that reaches the twentieth century.

Einstein's recasting of the world picture has retained its power to surprise. Fortunately many of the basic

arguments, such as those on simultaneity, are accessible with simple algebra, as shown by Einstein's own

popular account [2]. Additional details can be worked up to suit the instructor and the class. Good source

materials abound. Friedrichs [5] shows how to reach E D mc2 using only simple vector analysis to treat

the physics of momentum and energy. Taylor and Wheeler ([13], a superb book) have nice treatments of

the Lorentz transformation, invariance of interval, and of Minkowski's spacetime approach. There is an

opportunity to delve deeper into transformational geometry if desired. Minkowski's world-lines and light-

cones are readily described in simple cases in two dimensions. It may be worth pausing on Minkowski's

use of the square root of �1 in his formulation, which again raises issues of physicist versus mathematician

and the significance to be attached to mathematical notation. Students may enjoy debating whether the

square root of �1 in relativity and elsewhere in physics can possibly have true physical significance or

whether it is merely a shorthand convenience.

General Relativity

Here, alas, the mathematics becomes very hard, but the topic is so important that hand-waving is excusable

where necessary. An appealing geometric approach is to begin with the idea that by a suitable change of

reference system you can \explain" forces. If you are driving a car with the steering wheel on the left and

make a sharp turn to the right you feel a force pushing you into the car door. It certainly feels real in

your reference frame. But from the point of view of a physicist observing you from a fixed point on the

earth this is a fictitious force, explained by your turning; that is, accelerating. Einstein applied a similar

approach to the force of gravity, noting in a famous thought experiment that an observer in a box falling
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freely in a gravitational field would feel no force of gravity at all. In other words, a gravitational field can

be removed by transformation to a proper accelerated system.

Again Taylor and Wheeler's book is an excellent source [13, p. 184]. They give a neat two-dimensional

analogy of Einstein's four-dimensional spacetime which seems to help student understanding. Consider two

people, A and B , a certain distance apart on the equator of a sphere. If A and B both travel due north they

will find themselves drawing closer and closer together. We can interpret this either as the action of some

mysterious force or as merely the effect of the curvature of the sphere. As Taylor and Wheeler emphasize,

Einstein's theory of gravity is a local theory. Abandoning Newton's single but unrealizable Euclidean

reference frame extending throughout space, Einstein argued that gravitational physics should be done using

many local reference frames fitted together, thus making up the global structure of spacetime. Mathematical

sophisticates may use this as the jumping off point for delving into the intricacies of differential geometry

or differential topology, but almost all students can at least appreciate the basic issues involved. At the

least one can discuss the advent of non-Euclidean geometry in the early nineteenth century and its role in

Einstein's work.

Quantum Theory

In pondering the theory of relativity, both special and general, it is not hard to fall into the illusion that one

is engaging in a purely mathematical exercise. The aesthetic satisfaction of relativity often appeals greatly

to those who enjoy mathematics, to the extent that they may feel it must be true, simply from reading about

it. Care should therefore be taken to explain that relativity is grounded in experimental facts, without which

the theory would have no standing in physics. Quantum theory presents the mathematical aficionado with

a different problem. Here the experimental facts seem much more constraining, and merely reading about

the theories that explain the facts does not provide the same degree of confident belief as in relativity. (I

speak for myself, but suspect I am not alone.) It is hard to develop an intuition about the quantum nature

of the world, and indeed some knowledgeable physicists have stated that it is useless to try. The world

simply is this way. Some more attracted to mathematics than to physics can find this disconcerting, and it

is one factor contributing to the difficulty of using quantum theory as a vehicle for teaching mathematics

or history of mathematics.

Another factor is the abstruse nature of the mathematics involved, to which no real justice can be done

in an undergraduate history of science survey. Nevertheless, it is important to attempt to convey a few

essential points, especially the distinction between Schr �odinger's wave mechanics and Heisenberg's matrix

mechanics. One can explain that Schr�odinger's approach was in the mainstream tradition of employing

partial differential equations in mathematical physics, going back to the eighteenth-century work of Euler

and D'Alembert on the vibrating string. Possibly one can even convey something about the meaning of an

eigenvalue for a differential equation. In any case, it should be emphasized that Schrödinger's wave equation

seemed to promise, vainly as it turned out, that one could retain a visual intuition regarding the behavior

of an electron. Heisenberg's approach, on the contrary, explicitly disclaimed pictorial representation and

instead relied on encapsulating observable quantities in matrices, a mathematical novelty for most physicists

in the 1920s. Here one can take the opportunity to say something about the nineteenth-century roots of

matrices in the work of Cayley and others.

There is also an opportunity here to say something about the influence on physics of two great

mathematicians of the late nineteenth and early twentieth centuries: Henri Poincar �e, a blindingly brilliant

lone investigator, and Felix Klein, an institution builder par excellence. In the early parts of their careers they

were working on the same research problems in the theory of automorphic functions. This competition was

resoundingly won by Poincar�e, and helped to turn Klein's energies more towards administration, pedagogy,
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and history. Poincar�e's influence on quantum theory was directly intellectual: his work on perturbation

theory in celestial mechanics was important to several of the young quantum theorists, notably Heisenberg.

Klein meanwhile had established at G �ottingen the preeminent mathematics department of that era. This

department trained notable physicists, including Max Born and Arnold Sommerfeld, and also provided the

institutional base permitting David Hilbert to flourish. Hilbert's 1924 book with Richard Courant, Methods
of Mathematical Physics, was a key source for the mathematics of quantum mechanics, especially the

analysis of partial differential equations with boundary values. A discussion of Poincar�e and Klein can go

in many mathematical directions, touching on topics in geometry, algebra, and analysis.

Jammer [8] provides a history of quantum theory up to about 1930, touching on a variety of physical,

mathematical, and philosophical issues and referencing all the original papers. Guillemin [6] covers more

recent developments, but with much less detail. One result of considerable interest, Bell's theorem of 1964,

is given a charming and mathematically elementary exposition by McAdam [11].

Conclusion

The foregoing examples have been intended to give an idea of how mathematical topics may arise in a

history of physical science course covering the 1800s and 1900s. There are two primary ways in which

these cases may be useful for an undergraduate instructor teaching a history of mathematics course with

a strong technical component, or teaching a mathematics course with a strong historical component. First,

they may be a source of problems for practicing mathematical techniques being covered in the class. This

will vary markedly with the specific course and the background of the students. Second, they offer a way

of explaining where certain mathematical ideas have originated, or have found significant use. This may

placate the student who is not content to contemplate mathematics purely for its own sake, and may help

to convey the important fact that mathematics is not an entirely independent intellectual discipline. Indeed,

these episodes can open up profound debate on the nature of mathematics, and the features that distinguish

it from and yet make it applicable to the sciences. A mathematics instructor will likely have limited time

to digress from technical details to consider such broad questions, but where such time is available one or

more of the topics discussed here can offer avenues for stimulating exploration.
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Introduction

One of the challenges of developing a history of mathematics course is deciding what material to cover. The

history of mathematics is far too broad a subject to cover in a year-long course, much less a one-semester

course. Some options might be to focus on topics such as ancient mathematics, the history of the calculus,

great moments in mathematics, great people in mathematics, and so forth. Any course developed must also

take into account the audience and intent of the course. Are the students math majors or education majors?

Will this be a general education course or a course for the mathematics major? These questions need to

be answered before one can start to choose a focus for the course.

The United States Military Academy (USMA) at West Point, New York, does not have a standing

history of mathematics course. So when I proposed a history of mathematics course to be offered only

once, I wanted it to be unique. Given that the Academy has a long and important history, especially as

the first engineering school in the nation (founded 1802), I wanted my students to get a feel for how

mathematics has been an integral component of the Academy for over two hundred years. The course I

devised is entitled The History of Mathematics from the West Point Perspective. This course uses the history
of the USMA, the Department of Mathematical Sciences, and the mathematics curriculum to motivate the

mathematical topics covered. I will discuss how the topics were chosen, as well as student assignments

that merge concepts in the history of mathematics with the history of the institution and its faculty.

General Design of a Course

Every school and mathematics department has a rich and interesting history, including important faculty

members, both past and present, that students should be aware of. For example, private schools usually

were founded by some prominent person or group for a specific purpose. Many state institutions started

out as land grant or normal schools that have since evolved or changed focus over the years. Issues such

as these can be looked at early in the course. From there, following the history of curricular change at

your institution will provide topics for you to cover in a history of mathematics course. The net can be

cast even wider to include historical events in your city or state which are of relevance to mathematics

and the history of your institution.
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For example, an early unit might cover Euclidean geometry since this topic was an integral component

of a classical curriculum. This can lead to some interesting discussions about what education is for and

how that has changed over time, as well as discussions of the role of philosophy in mathematics. A unit

on the calculus might include when and how that topic was brought into the curriculum. Later units may

cover computers or electives such as topology, based on when they were introduced into the curriculum and

why. Along the way, a look at faculty members and their work lets the students experience mathematics

as a vibrant, evolving discipline.

This is just a brief introduction to give a feel for how the course might be organized. This type of

history course can be used at any institution. If you choose to conduct a more traditional history course,

or feel that you do not have enough material or time to develop a full course of this nature, the history

of your department and institution can be incorporated either as a thread running through the course, or

as a special unit. In addition, many of the topics and ideas can be incorporated into a traditional history

of mathematics course or regular math course as anecdotes or special assignments. The best way to get

started is to make friends with your librarian and archivist. They have old books and papers that possibly

no one has shown an interest in for years, if ever, and would love to share their knowledge and expertise.

The Course at West Point

The USMA was one of the first schools in the nation to break away from the traditional classical curriculum

of ancient languages and Euclidian geometry aimed at educating gentlemen and the clergy, and to focus

on a course of study that would be beneficial to future engineers who, as Army officers, would help

build the infrastructure of the United States. To this end, and to this day, every cadet takes a heavy dose

of mathematics. By the second decade of the nineteenth century, West Point was teaching calculus and

descriptive geometry. Since English-language text books on these topics were rare, many important texts

used throughout the United States in the nineteenth century were originally written by USMA staff for use

at the Academy. Given this rich mathematical tradition, I developed a course that used the history of the

Academy as a point of departure. The history of the Academy, its faculty and curriculum would be the

warp and woof onto which topics in the history of mathematics would be woven.

What follows is a detailed description of my course at USMA. Keep in mind that the topics I have

chosen are based on the history of the Academy and its mathematical curriculum. I have provided them

to give you a framework to build your own course upon.

Course title: The History of Mathematics from the West Point Perspective

Course description

This course will explore the history of mathematics and related topics as they have impacted USMA

through its curriculum, texts and faculty. The history of the Academy, and in particular the Department

of Mathematical Sciences, will be used as a point of departure to study topics such as the history of the

calculus, engineering drawing, geometry and descriptive geometry, calculating and mathematical devices,

computers and their uses, and topics in modern mathematics. We will also look at original mathematical

sources to gain an understanding of the evolution of mathematical thought.

Texts

Great Moments in Mathematics Before 1650, Howard Eves, MAA, 1983

Great Moments in Mathematics After 1650, Howard Eves, MAA, 1983



18. Using the History of Your College and Department to Build a History of Mathematics Course 209

History of West Point, Theodore Crackel, University Press of Kansas, 2002

Selected readings

Since this course is open to sophomores1 and above, I chose texts that are easy to use. I want my

students to have good general references that they might use after the course is over. Eves' books provide

nice stand-alone chapters. This is beneficial since not all of the standard topics usually found in a history

of mathematics course are covered. The students can read the other chapters if they are interested. Eves

provides good general introductory material to a topic that can then be supplemented by selected readings,

as well as problems at the end of each chapter. William Dunham's Journey Through Genius or The
Mathematical Universe would be good books along these lines. For the history of the Academy, I am
lucky enough to have a wonderful book that covers many academic topics as well as the general history

of West Point. Many colleges do have book length histories. If not, there may be articles in the alumni

magazine or school newspaper of relevance. Again, the archives of your school will also have material

you can use.

Course Topics

To organize the course, I wrote a rough chronology of USMA and the Department of Mathematical Sciences

including the mathematics taught at various times. I then included the topics in the history of mathematics

that corresponded to these stages. This gave me a rough outline of what topics in the history of the

department and mathematics to cover and in what order. For example, at the founding of the Academy,

what were other colleges in the United States teaching? This lead to two discussions, the first being

traditional classical curriculum being taught at schools like Harvard, which lead into units on Euclidian

Geometry and algebraic solutions to equations. Second, in our case, how was the curriculum that was

being taught at USMA different from that of other colleges, which included units on descriptive geometry

and surveying. When and how the calculus is added to the curriculum will naturally lead to a unit on the

history of the calculus. If your institution once had a class in fluxions taught before calling it calculus, all

the better.

Near the end of the semester, a unit or several short units can be created around the first electives

taught. When did topology first come into the curriculum? statistics? computer science? Since these courses

are comparatively recent, records of their inclusion in the curriculum should be easier to find. Also, some

of the original teachers of those topics, and maybe even early practioners, may still be around for you

to utilize. If your school has a large teacher training program, you may want to look at how the training

of mathematics teachers and what is taught in school mathematics has changed over time. Many good

social-political discussions may arise here.

At every point, discussions about the books and teaching methods used are relevant. See if your

library archives have copies of old texts or information about teaching faculty or methods. Students love to

compare \old school" to \new school". Old exams, especially entrance exams are goldmines of problems

and discussions, and are usually in your library archives. You will find that the old texts are usually harder

and the methods less interactive and more focused on rote memorization.

The hardest part of making the syllabus for this history course was scheduling, which depended on

when guest speakers could come and other such restrictions. As you will see below, I was able to include

most of the major topics in the history of mathematics, albeit at a fairly cursory level. Since you will be

combining two lines of inquiry in one course, the depth that you can go into may be limited. However, if

1All students at USMA take calculus their first year, so I was able to assume a certain level of mathematical knowledge.

Based on the background of your students, you will have to choose a course such as calculus as a prerequisite, or choose topics

that they have had experience with.
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your school has historically had a strong tradition in a certain area of research or teacher training, your

course could be narrower in scope while focusing more deeply on these topics. Since my goal was to let

the students see how history affected what was taught at USMA, my course was very general and broad

based. This can be seen in my course outline below.

Topics Outline

I. Founding of the Academy (1801{approx. 1817)

A. Engineering Corps and the state of engineering c. 1800

1. Mathematical training c. 1800|the classical approach

a. Euclid's Elements

b. Philosophy and the Greeks

c. Solving equations and the Islamic scholars

d. Surveying

2. Early texts at USMA

a. Hutton and algebra|the English influence

b. Vauban and engineering drawing

II. Thayer's Academy (1817{approx. 1900)

A. Ecole Polytechnique and French mathematics

(Thayer Collection at USMA library|Fred Rickey)

a. Fluxions and calculus

b. Mechanics

c. Geometry (Davies' texts)

d. Descriptive Geometry (Monge, Olivier, Crozet)

B. Teaching and learning at the Academy

III. The 20th Century

A. Calculating and Mathematical Devices

1. From the slide rule to the TI-89

2. Computers

a. History

b. Introduction at USMA

c. Uses

3. Mathematical Modeling

B. Electives at USMA

1. Introduction at USMA (majors)

2. Operations Research (faculty guest lecturer)

3. Modern mathematics (faculty guest lecturer)
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Guest Lecturers and Presentations

As mentioned above, any faculty members who have been around a while are a wealth of information.

Invite them to come in as a guest lecturer to talk about either their research or the evolution of the

department. Your history department may have someone familiar with the founding and early history of

your institution, so invite them in early on. Also seek out mathematicians, historians and historians of

mathematics from outside your school to give special lectures. Give the students reading material about

the topic of the lecture and the lecturer ahead of time. In particular, if the guest lecturer has a published

paper on the topic they will be speaking about, let the students read that. Getting the students familiar with

some of the recent literature in the history of mathematics is an important and often neglected component

of a history course. Below is a list of the guest lectures planned for my course. You will notice a mix of

faculty members, former faculty members, and outside experts. I feel this mix is beneficial. In particular,

former faculty members, especially retired ones, are usually eager to come back.

Guest Lectures

The Thayer Collection of the USMA Library,
Fred Rickey, USMA

George Baron: West Point's 0th Professor,
Fred Rickey, USMA

Alden Partridge at West Point,
Dick Jardine, Keene State College (formerly of USMA)

The History of Discrete Dynamical Systems,
Dick Jardine, Keene State College

Charles Davies: Text Book Author at West Point,
Amy Ackerberg-Hastings, Anne Arundel Community College

Thomas Jefferson's Other Academy: the Founding of the University of Virginia,
Adrian Rice, Randolph-Macon College

Mathematics on the Plain (the mathematical walking tour of West Point),
Chris Arney, College of St. Rose (former department head, USMA Dept. of Mathematical Sciences)

The History of Slide Rules and Other Calculating Devices,
Peggy Aldrich Kidwell, Smithsonian Institution

History of Computing at West Point,
COL Eugene Ressler, USMA

West Point's 200 at 200,
Chris Arney, College of St. Rose

A Short History of Operations Research,
LTC Darrel Henderson, USMA

I wanted my course to be as interactive and student motivated as possible. In order to do this, at the

start of many lessons, I had a student present a short biography (ten minutes at most) of a person relevant

to that day's topic. In relation to the above discussion on guest speakers, the biography of the day for

the class meeting prior to the guest lecture could be of the speaker. That student could also introduce

the speaker at the lecture. Opening any of these guest lectures to the whole college is wonderful for the

students and the department.

For the short biographical presentations I had a prepared list of names, both from the history of

mathematics and Academy history, which is longer than the number of lessons so that students have some
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choice in who they research. I make sure ones that are essential to the course are covered. This list may

include more recent or even living mathematicians depending on the focus of your course. I recommend

that you include a few members of your department who are active researchers in one or more of the

areas you will cover. This gives the students a connection to the department and a feel for the activity of

mathematics, as well as the realization that mathematics is an evolving subject.

I asked each student to turn in a short electronic copy (we are avid users of PowerPoint slides at the

Academy) of their presentation which I then published on the course website for future reference. This list

may also provide ideas for any research projects the students are asked to do.

Below is a partial list of persons of relevance to the West Point course.

List of Subjects for Daily 10 Minute Biography

Euclid Thayer* Davies*

Aristotle Mahan* Church*

Archimedes Fermat Bledsoe*

al-Khowarizmi Descartes Von Neumann

J. Williams* Newton Turing

W. Barron* Leibniz V. Bush

G. Barron* Cauchy G. Hopper

Mansfield* Monge Current research faculty members

G. Hutton Olivier Guest lecturers

Vauban Crozet

* denotes people specific to USMA history.

Note that my list includes a mix of big name mathematicians and names specific to USMA history, as

well as lesser known mathematicians. I feel it is important to let students see a broad picture of who does

mathematics and the diversity of endeavors that are considered part of mathematics. The final assignment

of the term was for each student to seek out a mathematician (from West Point or anywhere else), interview

them, and present to the class a short biography of that person and their research. Again, this is to involve

each student in the current aspects of mathematics and its ongoing history.

In Class

I think one of the hardest parts of teaching a history of mathematics course for those of us accustomed

to teaching straight mathematics courses is what to do in class. We can no longer simply lecture on the

new material, go over questions, or have the students work in groups while we look over their shoulders.

A successful history course depends on lively and interactive discussions and activities.

There are three aspects to achieving this. First, the instructor must do reading in addition to the assigned

readings for the class in order to add depth and diversity to the discussion. The most interesting classes that

I have been in, in any field, were the ones in which the instructor brought information from other sources

to the discussion. I also felt inspired by their commitment and breadth of knowledge. This is especially

interesting in a history course if this additional information is controversial or promotes a different view

from the one in the course reading.

Second, and related to the above, the instructor needs to have interesting questions to ask during class.

Of course, the instructor should do the readings well ahead of the students. When doing this, compile a

list of questions, of all styles, difficulty and abstraction. Some of these can be given to the students before
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they do the reading, others can be asked in class. The more the questions ask the students to interpret or

evaluate the material, the livelier the discussion. Also encourage your students to make their own list of

questions. Asking them to lead part of the discussion makes for a more interactive course, as well as taking

the pressure off of you and giving them a sense of ownership of the course. On many days I started the

discussion by simply asking them what they thought was interesting in the reading. I was often surprised

by what they chose. My genuine curiosity about their thoughts lead to wonderful discussions, though they

may have differed from my planned discussion topics.

Prior to the start of the semester, I emailed the students enrolled in the course and asked them a few

questions. I asked why they enrolled in the course and what they hoped to get out of it. This made me

aware of their goals and helped me focus the in-class discussions. I also asked them if they had any

particular topics they were interested in. I then took this into consideration when finalizing the syllabus.

In the few cases when a topic a student was interested in didn't fit into the syllabus or might not be of

interest to the whole class, I suggested they look into that topic for their term-end project.

The third path to success is diversity. Though discussion is important, there are many in-class activities

to make the course interesting and interactive. These activities again help give the students a sense of

ownership in the course. Below is a list of possible activities. Many of these activities can be combined

with or used as graded events such as papers. Again, providing an introductory reading prior to class

allows the class to get more out of the planned activity and discussions. It was very clear to me that the

days that I had my students actually try to do problems using old methods were the most enjoyable and

engrossing for them.

Class Activities

Debate different sides of an issue

Read/discuss original sources

Work with old texts

Examine old mathematical devices and models

Read/discuss current research or history articles

Solve problems, either old problems or current ones using old techniques

Videos (followed by discussions): Archimedes Palimpsest, Fermat's Last Theorem (Nova), Great Theorems

(MAA)

Poster presentations

Research presentations

Guest lectures

Field trips (if you are lucky enough to have a science museum nearby)

Time lines

Old entrance exams (these are always eye opening for students)

Assignments

As mentioned above, many of these topics are also wonderful assignments. Any history course should

include the student doing their own research. I advocate large and integrated projects. This might include a

major paper with a presentation. Term-end projects give the students the chance to research a topic in depth

and explore many styles of expression. Also, several smaller research projects (such as the biographical

presentations mentioned above) allow the students to explore several areas that interest them. This also

allows you in some sense to turn the teaching over to the students. Below is a list of possible research

ideas. Any of these can be used for papers, presentations or timelines. In any course of this type, I assign



214 IV. History of Mathematics and Pedagogy

research projects of varying length. In this course, I assigned one term paper with presentation, and three

shorter assignments. These shorter assignments included an interview, a book review and a biography. I

also assigned short homework sets from the book to make sure they were getting their hands dirty with

the mathematics. You will choose assignments based on the length of your course, your focus and your

audience.

List of Research Topics

Topics in the history of mathematics

Topics in related fields such as physics and astronomy

Topics in current mathematics

Biographies

Topics related to your institution

Societal/Cultural/Ethnomathematical topics

Philosophy of mathematics

Applied mathematics

Critical book or article reviews

Most influential mathematician

Compare/contrast schools of thought/eras/geographical differences in mathematics

Interview a current researcher or faculty member

Mathematics and art/architecture/music

Evaluation of old texts

Report on attending a mathematical conference

Evaluate a history of mathematics website

Mathematical devices or teaching aides

A history course, in fact any course, runs much more smoothly when the instructor and students are

exploring ideas that interest them. So pick a style and focus for your course that you are interested in.

That does not mean it has to be one that you are well versed in. A history course is a wonderful venue

for you and your students to explore together. Let them tell you what topics they are interested in and

incorporate that into your syllabus. And do not be afraid to say \I'm not familiar with that area, let's find

out together." There is no reason you could not even present a term paper along with your students!

The Results

The course was very diverse. The various guest lectures, campus and library tours, and video/discussions

were welcome changes to the students' (and my) routine. The \regular" class days were diverse as well. On

some days we only discussed West Point history, on others we only discussed the history of mathematics,

and some days we drew the two together. The student presentations did give the students ownership in the

course. As the course progressed, the students were just as likely to refer to what they had learned from

each other as to what I had presented.

Several of the students voiced to me that they had only been marginally interested in taking a history of

mathematics course. However, the added component of learning something of the history of the Academy

is what really caught their interest.2 As the semester progressed, the word got out about the course, and

2In the end of term survey, a few commented that they ended up being more interested in the mathematical parts of the course,

as opposed to the Academy history.
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other students are now interested in taking the course the next time it is offered. When my students talked

to other students about the course, they were truly proud of \their course."

Conclusion

Many students graduate from college with little or no knowledge of the history of the institution from which

they graduate. They also learn very little about the department they are studying in, the people they are

learning from and what they do. One way to address these issues in a mathematics department is through

a course that combines the history of the department and university with the history of mathematics. The

history of your department and school are often untapped treasures. Exploring these will give both you

and your students a new view of mathematics, how it is practiced, and the part your school has played in

this most human of human endeavors.
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Protractors in the Classroom: An Historical Perspective

Amy Ackerberg-Hastings

Anne Arundel Community College

Introduction

The view of mathematics presented in the school supplies aisles of discount stores revolves around concrete

aids: flash cards, rulers, protractors, graph paper, and the like. These inexpensive objects, although snapped

up by the general public, are often completely foreign to the daily lives of contemporary mathematicians and

mathematics educators. Meanwhile, parents, students, and teachers might assume their classroom tools have

some sort of eternal existence outside of historical context. However, beneath surface appearances, there

are links between mathematical teaching aids and professional mathematics. The history of mathematics

can reveal such commonalties. For example, at the turn of the twentieth century, E. H. Moore required

students to prepare graphs on squared paper, easing computation and revealing the ever-present relationship

between abstract principles and concrete applications, when he advocated a \laboratory method" of teaching

mathematics. [19] [33, pp. 318{319, 327] Yet, the connection between Moore, whose primary reputation

was as a research mathematician, and the ubiquitous graph paper of today's elementary mathematics

classroom is no longer recognized by many teachers and mathematicians. Similarly, the lowly protractor

has a history that transcends abstract mathematics, applied sciences, and mathematical pedagogy and that

deserves to be more widely known. Aspects of this story may assist those teachers who are trying to

communicate mathematical ideas to students who may not have a background in abstract reasoning but

who do have protractors wedged in their backpacks. Therefore, the purpose of this chapter is to provide

an overview of the history of the protractor, incorporating suggestions for applying this story to classroom

activities at a variety of academic levels.

The Protractor: A Biographical Sketch

The origins of the protractor are somewhat murky, which is typical for the history of many drawing and

measuring instruments. Sighting instruments such as quadrants and astrolabes were commonly marked

by degrees well before the sixteenth century. (See Figures 1 and 2 for examples.) Around 1590, English

mathematical practitioners began to suggest that such a \divided circle"|with the pinhole sights removed|

could be employed along with a plotting board to replace the rhumb and compass method for reading

a ship's course at high latitudes. Thomas Blundeville (fl. 1560{1602) described a semicircular divided

instrument for this purpose; he called it the \Mariners Flie" in an appendix to his 1589 Briefe Description of
Universal Mappes & Cardes. This short treatise led David W. Waters, a historian of navigational practice, to

217
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Figure 1. Brass quadrant by Henry Sutton, c. 1660. Negative number p-63375-a. Catalogue number 320152. Courtesy
of the Smithsonian's National Museum of American History.

Figure 2. Brass planispheric astrolabe by Georg Hartmann of Nuremberg, 1537. Negative number 79-1769. Catalogue
number 336117. Courtesy of the Smithsonian's National Museum of American History.
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Figure 3. Theodolite by Fauth and Company, c. 1874{1887. Negative number 75-7235. Catalogue number 334950.
Courtesy of the Smithsonian's National Museum of American History.

deem Blundeville the inventor of the protractor, although the concept of dividing an arc for use in measuring

angles was apparently on the minds of several mathematical practitioners. [5] [37, p. 212] Indeed, the direct

influence of Blundeville's treatise is unclear, for William Barlow (1544{1625), John Davis (1552{1605),

and other English writers were also championing the use of the plotting board together with instruments for

laying out and measuring angles. By the 1610s, sailors generally had adopted this method for navigating

short voyages. Meanwhile, the triangulation technique for surveying land promoted from 1533 by Gemma

Frisius (1508{1555), the Flemish astronomer and mathematician who taught Gerhardus Mercator, also

depended on accurate measurement of angles. Over the next century, mathematical practitioners engaged

in surveying gradually developed the theodolite and transit to accomplish triangulation. (See Figure 3 for

the version of this instrument that was typical by the nineteenth century.) During the same period, surveyors

began to use cartographic drawing tools, including the protractor, to record their triangulated measurements

on portable charts. [2, pp. 7{26] [15, p. 120] [36] [37, pp. 64, 122, 211{212, 218{219, 347]

In general, then, early modern European mathematical practitioners used mathematics|broadly defined

|to transform the techniques employed in surveying, navigation, and related arts over the course of the

seventeenth century. Mathematicians, engineers, and craftsmen relied upon mathematical instruments for

precision; they in turn used these recorded observations to increase the body of theoretical knowledge.

As an aid for measurement, the protractor was a key part of these developments, gaining a name as well

as a standard shape and the formal enunciation of its functions between 1600 and 1700. For example, in

his navigational journal for 1612{1613, the famous explorer, William Baffin, characterized the device's
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function as \protracting," from the medieval Latin for \extending" or \prolonging." [23] [37, pp. 277{278]

This word and the activity of setting off and measuring plane angles had become permanently linked by

the time Edward Phillips wrote this definition for his 1658 dictionary, The New World of English Words:
\Protractor, a certain Mathematical instrument made of brasse, consisting of the scale and semicircle, used
in the surveying of Land." Indeed, the 180-degree format most familiar to contemporary American students

was established as most convenient and popular early on. Yet, even though numerous influential manuals

on mathematical instruments appeared in the seventeenth century, the authors of these works almost always

ignored even relatively recent drawing instruments such as the protractor to focus on the more glamorous

sector and quadrant|Edmund Gunter, who wrote De sector & radio in 1623, is one of the most familiar
names in this regard. (One exception was Giovanni Pomodoro's 1603 book, Geometria practica, which
contained the first illustration of a full range of drawing instruments. [31])

Even though young university men across Europe were studying instruments as part of their mathematics

curriculum as early as 1626 [36, pp. 193{198, 287], modern textbooks in practical geometry or any other

subject did not exist before publishing and education both became more affordable and widespread during

the Industrial Revolution. It is not known whether protractors are depicted in any of the surviving student

notebooks|where dictated lessons were recorded|scattered throughout American and European archival

repositories. By the eighteenth century, students and their instructors could be exposed to protractors through

practical geometry manuals that often served as production guidebooks as well. French books were some

of the most notable of the period, including S�ebastien Le Clerc's 1690 Trait �e de g�eom�etrie theorique et
pratique: a l'usage des artistes, Nicolas Bion's 1709 Trait �e de la construction et des principaux usages des
instruments de mathematique, and Alexis Clairaut's 1741 Elemens de geometrie. The makers of drawing
instruments, meanwhile, began to experiment with less expensive materials, such as animal horn, and to

include small protractors in the sets of instruments they sold to surveyors. They no longer had to mark the

divisions on protractors by hand after Jesse Ramsden invented the dividing engine for mechanical marking

in 1773. [13] [21]

The books by Le Clerc, Bion, and Clairaut all contained verbal descriptions as well as illustrations

of the protractor. For example, after proving the elementary constructions and demonstrating propositions

with practical utility such as dividing the line into parts and making similar plane figures, Bion explained

how to design and use all of the mathematical instruments that existed during his lifetime. He noted that the

protractor could be employed to make angles, to replicate a given angle, to inscribe a regular polygon in a

circle, and to draw a regular polygon upon a line. [4, pp. 25{28] (Regular polygons were the fundamental

unit of military fortifications; early engineers often worked on military projects.)

Throughout the nineteenth century in Europe and the United States, a clear distinction was drawn

between the mathematical practice of workmen and the mathematics taught in college in order to impart

mental discipline. Thus, books explaining protractors and other drawing instruments were mainly targeted

toward children and mechanics. Artisans transformed some protractors into specialty tools; protractors

were a standard part of the engineering drawing toolkit until computer-aided drawing became universal in

the second half of the twentieth century. By the end of the nineteenth century, protractor measurement was

taught in American junior high schools as part of students' early exposure to geometry. The remaining

sections of the chapter will deal with these aspects of protractor history in additional detail.

Research and Reflection Project. Search for protractors in the catalog entries on \Epact: Scientific

Instruments of Medieval and Renaissance Europe" or in the collections database of the Museum of the

History of Science, Oxford. [14] [26] Ask students to discuss how the protractors in these collections

are similar to and/or different from the familiar, semicircular, plastic form. How does the craftsmanship

involved in making instruments reflect on mathematics as a human activity? (See the Smithsonian's

\Educator's Toolkit" for additional guidelines on teaching with historical artifacts. [34]) If middle school
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students can agree that these tools have visible beauty, try challenging them to start looking for the abstract

beauty in mathematics.

The Protractor and Practical Geometry

Nineteenth-century college and high school courses in basic plane and solid geometry were highly structured

and formal in the United States. Students memorized proofs from textbooks based on Euclid's Elements of
Geometry and repeated them to the instructor during classroom recitations. If the students were permitted
to use aids to prepare the figure accompanying each proof, they were limited to ruler and compass. In

the second half of the nineteenth century, we find occasional explanations of protractors included in

the first wave of \reform" textbooks aimed at secondary school students. For example, Thomas Hill,

president of Harvard University, discarded the formal structure of Euclid in his 1863 A Second Book of
Geometry: Reasoning Upon Facts, written for thirteen- to eighteen-year-olds. Hill's treatise as a whole was
a hodgepodge of abstract geometrical principles, classical logic, and instrumental constructions. Although

he used mental reasoning to develop the Pythagorean Theorem, he spent the second half of this textbook

arguing that students should use concrete aids when they needed geometry in their daily lives. Therefore,

he explained how readers could construct their own protractors by dividing a 60-degree arc into fourths

and then into fifths, probably drawing on earlier manuals similar to the one by Bion. [18, pp. 61{68] In

general, though, protractors were commonly employed in the teaching only of practical geometry, which

often took place in settings more informal than college recitations, such as common school classrooms,

mechanics' institutes, or homes. Practical geometry textbooks usually resembled Charles Davies's 1846

Elements of Drawing and Mensuration Applied to the Mechanic Arts. This textbook, prepared \for the
instruction and use of practical men," asked readers to use protractors to bisect lines, erect perpendiculars,

and construct triangles. [11, pp. 38{52]

Protractors could also be found in the surveying textbooks written by Davies and others for the American

engineering schools. These institutions were modeled on European military academies which, like the

colleges, catered to a select group mainly composed of young, upper-class men. These students generally

were first taught the abstract, proof-based form of Euclidean geometry and then introduced to the applied

disciplines. In engineering courses, the students learned to lay off angles with semicircular protractors while

preparing technical drawings, and they used circular protractors with navigational charts. [12, pp. 21{34,

165{168] [35, p. 156] Mass production, a wider range of inexpensive materials, and universal public

education finally paved the way for the protractor to enter the school classroom at large in the twentieth

century. Some twentieth-century high school textbooks even included a protractor inside their covers. [16]

[17] [22] [29] By the 1920s, schoolteachers also had models they could use at the blackboard, such as a

fiberboard version (fifteen inches in diameter) sold by the Eugene Dietzgen Company. Nevertheless, many

twentieth-century high school geometry teachers isolated protractor measurement from their treatment of

formal proof if they included these devices at all. (The author, for instance, was admonished that true

mathematics students did not resort to protractors at the outset of her own high school geometry course in

1985.)

Activity. Challenge students to divide a straight angle into 180 degrees. After they try on their own,

distribute instructions for constructing a protractor from Hill's Second Book of Geometry. (See Appendix
1.) Those involved in \writing across the curriculum" programs may wish to deconstruct the directions as

a sample of expository writing: Are the instructions clear? For what audience were they written? Are the

students able to understand and follow the steps? From a mathematical standpoint, do the students think

it is \cheating" to use a mechanical aid to trisect the angle? Discuss with prospective secondary teachers

whether dividing the angle is an appropriate topic for a high school geometry class.
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Marketing the Protractor

In the nineteenth and early twentieth centuries, there were hundreds of instrument makers and dealers in

Europe and North America. They sold their wares to engineers, architects, surveyors, machinists, colleges,

and schools. In order to stand out from their competitors, most firms published catalogs. These booklets

contained advertisements, pictures and descriptions of instruments, prices, and sometimes even information

on the history or creator of the instruments. [6] [7] [20] [25] In these catalogs of instruments, protrac-

tors could be found in cases of drawing instruments, packaged with dividers, pens, pencils, and rulers.

Protractors were also sold separately. They were made from sterling silver, animal horn, plastic, or paper.

Like mathematical instruments in general, the items of best quality came from England, Germany, and

Switzerland. In addition to semicircular and circular protractors, several English makers produced rectan-

gular ivory or wooden protractors that could fit in a mechanic's pocket next to a ruler but still contained

all 180 degrees marked around three edges. (See Figure 4.)

Figure 4. Ivory rectangular protractor sold by William Y. McAllister, c. 1836{1853. Negative number 72-9870.

Catalogue number 310743. Courtesy of the Smithsonian's National Museum of American History.

Although many of their finer mathematical instruments would continue to be imported from Europe

into the twentieth century, nineteenth-century Americans did turn some of their creative attention to the

protractor|which could be manufactured in the United States after William J. Young developed the first

American dividing engine for mechanically marking degrees around 1830. Several inventors filed for

patents on their designs and improvements: seven between 1790 and 1873, and forty-nine from 1875 to

1900. For example, the draftsman's protractor was patented on February 21, 1887, by Alton J. Shaw,

an apprentice of Samuel Darling, who manufactured machinists' measuring tools in association with the

Brown & Sharpe Manufacturing Company of Providence, Rhode Island. (See Figure 5.) The draftsman's

protractor consisted of two pieces of sheet steel fitted together on a grooved edge; the square frame around

this reversible protractor could be placed against a T-square. Darling added a vernier, which read to an

accuracy of five minutes, through a patent granted on December 2, 1890. The eight-and-one-half-inch

protractor was sold from 1887, when it cost $6.50 plus $1.25 for the morocco leather and velvet case,

to at least 1952, with its price at $17.50 in the late 1930s. [1] [9] Thus, the draftsman's protractor was

relatively expensive for an individual drawing instrument. The drafter who purchased it, however, would

have felt he was making a lifetime investment in his toolkit.

Most of the protractors sold in the twentieth century, however, were inexpensive semicircular instru-

ments that were not expected to last forever. Some of these were also invented by Americans, such as the

\contact goniometer" patented by Samuel Louis Penfield (1856{1906) in 1900. (See Figure 6.) Penfield

was the head of the mineralogy department at Yale's Sheffield Scientific School. [30] [38] He developed

several pieces of apparatus for solving crystallographic problems, including a six-inch protractor printed on

a rectangular piece of paper along with a ruler, three foot-to-the-inch scales, and a diagonal scale. Penfield

affixed a celluloid arm to an eyelet at the center of his goniometer. The Central Instruments Corporation of

Chicago sold this protractor from, at latest, 1909 (when it was priced at 80 cents) to at least 1950 (when
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Figure 5. The Brown & Sharpe Draftsman's Protractor, with case and instruction sheet, 1887{1890. Negative number
2000-11239-7a. Catalogue number 336072. Courtesy of the Smithsonian's National Museum of American History.

Figure 6. Goniometer patented by Samuel L. Penfield and sold by Central Instruments Company, c. 1909-1950.
Negative number 83-5935. Catalogue number 1982.0147.02. Courtesy of the Smithsonian's National Museum of

American History.

it cost 65 cents). William C. Marshall, formerly of the Sheffield Scientific School, required the instrument

for students using his 1912 Elementary Machine Drawing and Design textbook. [24, p. 8]

In its 1909 catalog, the Keuffel and Esser company sold xylonite (an early plastic made of cellulose

nitrate) semicircular protractors in a range from 45 cents for a five-inch semicircular protractor to $5.50 for

a model with a ten-inch diameter and beveled edge. (See Figure 7.) In addition, merchants and individuals

could purchase a brass semicircular protractor for as little as 9 cents, one made from horn for 14 cents, or a

protractor printed on cardboard or tracing paper for 20 cents. [7, pp. 174{175, 214{215] Like other plastic

products from the early twentieth century, any surviving \xylonite" protractors are highly unstable. They
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Figure 7. Plastic semicircular protractor, Keuffel and Esser, c. 1909{1936. Negative number 83-13954. Catalogue
number 1982.0386.05. Courtesy of the Smithsonian's National Museum of American History.

may be warped, yellowed, and brittle. More recent plastics are chemically inert and just as popular|by

the 1990s, the Safe-T Company was reporting that it alone sold millions of protractors every year.

Team Teaching Opportunity. The development of the mathematical instrument trade in the United States

mirrors the broad outlines of American history. Throughout the late nineteenth and early twentieth centuries,

American industrialists, artists, and political and social leaders increasingly asserted American economic

and technological power on the world stage. This period was characterized by emphasis on individual

improvement, system, and efficiency. Prospective middle school mathematics teachers could work with

social studies, history, and English instructors to develop lesson plans bringing together the mathematics

and science, technology and industry, literature, and politics of the Second Industrial Revolution and

Progressive Eras.

Research Project. Although much of the history of the protractor remains to be written, substantial

information is readily available on a number of other mathematical, engineering, and commercial instru-

ments. For instance, secondary students could report on the origins and development of the slide rule,

transit, astrolabe, electronic calculator, cash register, or computer.

The Protractor and Educational Standards

If American students of formal geometry did not need all of those inexpensive school protractors, then

who did buy them? The number of college students trained in surveying or civil engineering remained

relatively small through the end of the nineteenth century, but the system of public elementary and secondary

schooling was established during this time period and served an ever-larger percentage of the population.

Educators and mathematicians moved fairly quickly to attempt to standardize classroom practice and

curriculum. Although leaders disagreed on how and when to teach arithmetic, algebra, and basic plane and

solid geometry, they reached an early and lasting consensus that practical geometry instruction belonged

in junior high schools and that protractors were clearly appropriate tools for these classes.

This consensus is evidenced by the American educational reports and standards that have appeared since

the late nineteenth century. For example, the Mathematics Conference of the Committee of Ten, convened

by the National Educational Association in 1893, determined that systematic geometry instruction should

begin at age ten, noting, \This course should include among other things the careful construction of plane

figures, both by the unaided eye and by the aid of ruler, compasses and protractor; the indirect measurement
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of heights and distances by the aid of figures carefully drawn to scale; and elementary mensuration, plane

and solid." [28, p. 110] Ten years later, J. C. Packard listed the following tools required for each pupil

in a class beginning the study of geometry: ruler, compasses, scissors, drawing board, protractor, parallel

ruler, squared paper, T-square, and a triangle of 60 and 30 degrees. [10, p. 409] A committee organized

by the Mathematical Association of America in 1923 stated that students in grades 7 through 9 should

learn intuitive geometry, including the \direct measurement of distances and angles by means of a linear

scale and protractor." The students would leave protractors behind when they learned formal proof-based

plane and solid geometry in grades 10 through 12. [27, pp. 22, 32{42] Even as late as 2000, the National

Council of Teachers of Mathematics Measurement Standard for grades 6 through 8 recommended that

teachers show students how to determine \benchmark" angles by sight and then teach them how to use

protractors to measure angles directly to a precision of one-half degree. [32, pp. 242{243]

Debate. Ask undergraduate students to take sides on whether secondary school geometry students should

be allowed to use protractors. It may be helpful to draw the constructions necessary in the proof of

a theorem with a protractor and then repeat the process by developing an unmeasured diagram so the

students can begin to weigh the strengths and weaknesses of each technique. After they research and

prepare their positions, hold a formal debate in class. As a related issue, discuss computer software,

graphing calculators, and other instructional aids. Do these tools help or hinder understanding?

Conclusion

The story of the protractor is generally a narrative of applied mathematics. The instrument originated

in navigational and surveying practice around 1600. It proved as well to be a useful tool for drawing

geometrical objects that represented concrete situations, such as the components of machines. By the

nineteenth century, protractors were discussed in most manuals that covered practical geometry, surveying,

and civil engineering. Instrument makers and dealers sold various types of protractors to professionals

whose work relied upon mathematical instruments and to students who were first learning about geometry

and its applications. In the twentieth century, protractors were a standard component of the introduction to

geometry provided to children of middle school age. Although historians still must address the numerous

gaps that remain in the history of the protractor, such as how the object was used in vocational classes

and for instruction in the visual arts, many of the primary sources described in this chapter are available

through university and rare book libraries for faculty or student research and can also be used to enrich

understandings of mathematics. Indeed, simply through familiarizing themselves with the history of the

protractor presented here, mathematicians, education professors, and teachers can develop an appreciation

for the material culture of mathematics and determine how to exploit these objects as pedagogical aids.

Who knew those ubiquitous back-to-school sales could inspire the use of history of recent mathematical

activities to teach mathematics?

Discussion. This chapter thus raises the age-old question of where|or whether|to draw the line be-

tween pure and applied mathematics. After all, major \pure" mathematicians such as Carl Friedrich Gauss

were very interested in dividing the circle because they knew angular measure was essential to the \ap-

plied" disciplines of astronomy, navigation, and surveying. Thus, the construction and use of mathematical

instruments, including the protractor, represent an intersection between practical and theoretical concerns.

Mathematics majors and teaching candidates alike can benefit from considering this aspect of the history

of modern mathematics as a step toward working out their own definitions of what mathematics is and

who mathematicians are.
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Appendix

Thomas Hill, A Second Book of Geometry, Boston, 1863, pp. 63{64.

184. The formation of a protractor. |Take a piece of hard, smooth card, draw a fine, straight line, as AB

(see Fig[ure 8]), and with a convenient radius, say three inches, draw the arc BC. Measure carefully the

arc B of 60ı by having the compasses, while yet unaltered from the radius with which you drew the arc,

step from B to C. Divide the arc as accurately as possible into four equal arcs of 15ı each, and set off two

such arcs beyond C, so as to make the whole arc 90ı. Divide each arc of 15ı carefully into three equal

parts, which will each be 5ı. Divide each also into five parts, each of which will be 3ı. By stepping over

the whole arc with the compasses open for three degrees, first stepping over it lightly to make sure that

twenty steps will exactly make 60ı, and then with a heavier step, so as to leave footprints; repeating this

heavier stepping from each point of division of the 5ı arcs, you can divide the prolonged arc into 90 equal

degrees. The first divisions, starting from B, will give 3, 6, 9, 12, 15, 18, 21, &c. The second, starting

from the 5ı point, will give 2, 5, 8, 11, 14, 17, 20, &c. The third, starting from the 10ı point, will give 1,

4, 7, 10, 13, 16, 19, 22, &c.; and these three series evidently embrace all numbers. Mark each fifth point

with a longer mark, and number them from B towards C.

Figure 8. Diagram of divided arc from Thomas Hill, A Second Book in Geometry (Boston, 1863), p. 63.

185. The graduated arc and its centre . . . is called a protractor, and may be found for sale, engraved

on wood, ivory, or brass. It is used for measuring angles, and also for drawing angles of a given size.
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Introduction

The nineteenth century saw an enormous expansion in American mathematics education. Publicly funded

elementary or common schools were established, first in the northern states and then throughout the coun-

try. By the second half of the century, public high schools also were becoming usual. The extension of

engineering education, much of it modeled after the �Ecole Polytechnique in Paris, also encouraged math-

ematics instruction. At the same time, improvements in printing, cheaper paper, and the national markets

created by railroads made it possible to supply students in the new schools with relatively inexpensive,

uniform textbooks.

Several teachers and former teachers sought to supply the new schoolrooms with texts. Publishers such

as A. S. Barnes & Company of Hartford and Appleton's of New York developed and marketed entire

series of books [1, 18, 24]. Authors were mindful both of information included by their competitors and of

requirements of school committees and newly established state boards of education. To remain competitive,

many arithmetic textbooks came to include a discussion of the relatively recently formulated metric system

of weights and measures. Discussions of the metric system in these books well illustrate the difficulty of

making new mathematical structures part of the educational canon.

The Origins of the Metric System

In the wake of the revolution of 1789, French citizens called for uniform weights and measures through-

out their country. With the approval of the National Assembly and subsequent national governments, a

commission of the Paris Academy of Sciences and its successor, the Institute of France, developed totally

new units for measuring distance, volume, weight, angles and even time. These units were interconnected.

Units of one quantity, such as length, increased by powers of ten (millimeters, centimeters, decimeters,

meters). The liter was the volume of a cube 10 centimeters on a side. One kilogram was the weight of one

liter of water at a standard temperature. No such simple relations exist in English weights and measures

among units of length (inches, feet, yard, miles) or among units of length, volume and weight. In short,

the French introduced not only national standards, but a system of standards. This system survives today,

in modified form, as the metric system.

229
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The United States Constitution explicitly grants the federal government the power to regulate weights

and measures, without specifying what units are to be used. In a 1790 report, ignored by Congress,

Secretary of State Thomas Jefferson proposed that the country either adopt weights and measures based

on English use or introduce new units which were decimal multiples and submultiples of one another.

Some information about the metric system was soon available from almanacs and encyclopedia articles,

but almost all commerce was carried out in British units. Great Britain established non-metric national

standards of measurement in 1824 and the U.S. followed suit in 1834. The U.S. Coast Survey soon supplied

both custom houses and the states with standard pounds, yards and bushels [14].

Introducing the Metric System in American Textbooks

From colonial times, many arithmetic textbooks published in the United States included tables of weights

and measures. Some school districts required that students memorize such tables. Thus Ohio teacher Joseph

Ray (1807{1855) [20] entitled the final chapter of his popular textbook Ray's Arithmetic, First Book simply
\Tables." Here Ray explained: \In the schools of some of the larger cities where this book is extensively

used, the pupils studying it are required to learn the tables. For the use of such schools, the following

pages have been inserted." [29, p. 81]. Ray's tables suggest the complexity of the weights, measures and

coinage then in use. They included English money, Troy, apothecaries' and avoirdupois weights; volume

measures for crops, for liquids, and for solids; measures of length and surface area; units of time; and

angular measure.

A few textbook authors included mention of metric units in their tables. One of the first to do so was

the Boston school teacher and school superintendent Frederick Emerson (1788{1857). In the third and

most advanced part of his North American Arithmetic (1834), Emerson discussed not only the weights and
measures of the United States, but those of several foreign nations. He devoted considerable attention to

French units of measure, these \being more nicely adjusted than those of any other country" [13, p. 250].

Emerson described the metre, litre, are (an area measure), stere (a volume measure) and gramme and their

multiples and submultiples as interrelated units. Emerson's example may well have inspired rival textbook

author Charles Davies to mention the metric system as well. Davies (1798{1876) taught at West Point from

1816 to 1837, and prepared a full series of texts that ranged from arithmetic to calculus and descriptive

geometry [17]. In the version of his University Arithmetic, that was copyrighted in 1859, Davies discussed
several measured quantities including length, surface area, volume, weight, and time. For each quantity,

Davies described units used to measure it. Thus, for example, in talking about distance, Davies mentioned

the inch, foot, yard, and French \metre." Talking about weight, he mentioned the avoirdupois pound, the

apothecaries' pound and the \kilogramme." He did not, however, try to talk about systematic relationships

between units of the metric system [11, p. 383{406). Similarly, Dana Colburn, a teacher in Connecticut

and Rhode Island, included in his Arithmetic and Its Applications (1862) all the units in Ray's Arithmetic,
First Book. He then added a note on the metre and its multiples, the gramme and its multiples, and French
money, commenting that the metric units were \often referred to in this country, especially in scientific

works" [7, p. 40{41]

Metric Units Made Legal

By the 1860s, several American reformers believed that the metric system should be used in the United

States. For example, John A. Kasson (1822{1910), a Vermont-born Iowa lawyer and Republican activist,

thought that metric units would ease international affairs. Appointed First Assistant Postmaster by President

Lincoln, Kasson learned of the complex system of fees used to compute charges for international mail.

Mindful that the U.S. was losing money in these transactions, Kasson called for an international conference
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of postal officials that would standardize rates and procedures. Meeting in Paris in May, 1863, the delegates

recommended that international mail be weighed in metric units, a practice soon widely adopted. Kasson

attended the conference as the American representative. Later, as a member of the House of Representatives,

Kasson advocated legislation to make the metric system legal in the U.S. During the same period, a

committee of the American National Academy of Sciences recommended that the country adopt a decimal

system of weights and measures, and Parliament voted to legalize metric units in Britain. Kasson drew this

evidence together, and in 1866 his legislation legalizing metric weights and measures passed both houses

of Congress without discussion and was signed into law by President Johnson. Soon the Office of Weights

and Measures was preparing metric standards for distribution to the states. Metric units were now legal,

though not mandatory, in the U.S. [19].

The Committee on Coinage, Weights and Measures of the U.S. House of Representatives also sought

to encourage instruction about the metric system in the schools. In a resolution of February 2, 1867,

the committee \observed with gratification the efforts made by the editors and publishers of several

mathematical works, designed for the use of Common Schools and institutions of learning, to introduce

the METRIC SYSTEM of Weights and Measures, as authorized by Congress, into the system of instruction

of the youth of the United States, in its various departments." Hoping \to extend further the knowledge of its

advantages, alike in public education and in general use by the people," it specifically asked Charles Davies

\to confer with Superintendents of Public Instruction, and teachers of Schools, and others interested in a

reform of the present incongruous system, and by lectures and addresses to promote its general introduction

and use" [10, no page number [inside cover]). Never one to ignore congressional authorization, Davies

promptly prepared a short pamphlet outlining the metric system, which was published that very year. He

also extended the discussion of the metric system in his University Arithmetic and Practical Arithmetic.
Other textbooks incorporated the metric system in several different ways. The well-known Cincinnati

author Horatio N. Robinson died in 1867, and his publisher arranged to have an account of the metric

system by another author appended to his books [22, 23]. Two college professors, Edward Olney of

the University of Michigan and Shelton P. Sanford of Mercer University in Georgia, added their own

appendices [26, 32]. Such appendices were not confined to books on arithmetic. For example, in his Plane
Trigonometry and Functional Analysis, Alfred H. Welsh included appendices on mensuration, surveying,
angle measurement, and the metric system. Welsh thought study of the metric system would prepare his

high school students for their physics course and, more generally, that \It needs no seer to assure us that

the metric system is that of the future. . . " [33, p. 9]. Other authors incorporated the metric system into

the text of their books, either in special chapters on the subject [28, p. 89{95] or in chapters on weights

and measures [12, p. 198{233; 27, p. 191{193]. Metric units also were incorporated into books for those

needing to master business arithmetic. Thus David White Goodrich, a former \lightning calculator" for the

Erie Railway, included metric measures in the chapter on standard measurement at the end of his book,

The Art of Computation, Designed to Teach Practical Methods of Reckoning with Accuracy and Rapidity
(1873). Goodrich's brief account of metric units began with the prescient comment, \As Congress has

authorized the use of this system in the United States, it is possible that it may gradually creep into general

use. It is so simple and comprehensive, and so extensively used in scientific measurements, that we are

glad to give its general features" [15, p. 81].

A few authors even went so far as to present metric measures before English common measures. For

example, in 1879 William F. Bradbury (1829{1914), an Amherst College graduate, a former mathematics

teacher and the headmaster of Cambridge Latin School in Cambridge, Massachusetts, published a new

edition of an arithmetic by James S. Eaton. Bradbury had been an advocate of the metric system for some

time and Bradbury's Eaton's Practical Arithmetic reflects this. Metric measures were treated as part of
the section on decimal arithmetic, and the book includes a full set of problems on measuring areas and

volumes using metric units. In the following chapter, Bradbury discussed \customary" units of measure,
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though he omitted Troy and apothecaries' weights from the usual tables. He also included a section on

reducing customary measures to the metric system [3].

The Unitarian minister Thomas Hill and high school mathematics teacher George A. Wentworth took a

similar approach in their book, A Practical Arithmetic (1882). In the preface, they confidently predicted that
\The Metric System in a few years will be in common use, and will supersede other systems, as dollars and

cents have superseded pounds, shillings, and pence" [16, p. iv]. Hill and Wentworth incorporated metric

units in much of their book, even before discussing the metric system as a whole in the ninth chapter.

Tables and problems using older units of measure were confined to the final chapter.

Organizations and Objects|The American Metrological Society and the Metric Bureau

In 1873, a small group of metric enthusiasts, most of them from New York and New England, joined

together to form the American Metrological Society and to advocate general adoption of the metric system.

Early members of the society included Columbia University President Frederick A. P. Barnard, William F.

Bradbury, Amherst College librarian Melvil Dewey, and the secretary to the state of Connecticut's board

of education, Birdsey G. Northrop. These men firmly believed that students should learn about the metric

system from objects as well as textbooks. As Northrop put it \The metric tables are given in nearly every

series of Arithmetics. But when only the tables are used, the impression is vague and the figures are soon

forgotten. The object itself always makes a clearer and more lasting impression than any verbal description

of it" [25, p. 45]. In 1864, even before the legalization of the metric system in the U.S., the General

Assembly of the state of Connecticut had recommended that metric weights and measures be taught along

with established units in the public schools of the state. Northrop, who held his position in Connecticut

from 1867 to 1883, arranged by the mid-1870s for the manufacture and distribution at cost to Connecticut

teachers of rules of several lengths that were divided metrically on one side and in inches on the other.

With his annual report for 1877 he distributed a chart of the metric system copyrighted by A. & T. W.

Stanley of New Britain early the previous year. It showed a meter divided to centimeters and millimeters

next to a yard divided to inches and eighths of an inch. Below these was a general account of the metric

system, above them scenes from the Philadelphia Centennial Exposition of 1876, described in metric units.

Northrop also arranged to have metric scales made by the Fairbanks Scale Company of St. Johnsbury,

Vermont, exhibited in the Connecticut educational exhibit at the Centennial.

Melvil Dewey and William Bradbury believed that there was a more general market for metric teaching

devices. In March of 1876, Bradbury applied for a patent for an \improvement in devices for teaching the

metric system." Bradbury's invention was a wooden cube, 10 centimeters on a side, that was designed to

weigh exactly one kilogram. It fit snugly into a metal box that held exactly one liter of water. Bradbury

received patent 176,735 for this invention on May 2, 1876. A few weeks earlier, Dewey left his position

at Amherst to set up business in Boston. Dewey was a great believer in increasing efficiency, be it through

decimal classification of books, spelling reform, or the use of metric weights and measures. He established

the Library Bureau to distribute card catalogs and other library supplies, the American Metric Bureau to

sell apparatus and charts for teaching the metric system, and the Spelling Reform Association to promote

simplified spelling. The American Metric Bureau sold not only meter sticks and other rules, charts of

the metric system, metric scales, and Bradbury's demonstration apparatus, but metric volume measures

made by the Shakers of Sabbathday, Maine, metric weights, centigrade thermometers, and a wide range

of metric stationery|a total of some 323 items by 1877. Publications of the American Metric Bureau

included not only introductions to the metric system, but a journal entitled The Metric Bulletin (later The
Metric Advocate). These publications adopted some of Dewey's simplified spelling|the French gramme,
metre and litre became the gram, meter and liter. Some products of the Metric Bureau were offered by
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better-known instrument makers such as J. W. Queen & Company of Philadelphia [19, 34].

Dewey asked the American Metrological Society to cooperate with his efforts to introduce metric

teaching apparatus into the schools. A committee of the society duly prepared a circular addressed \To the

Teachers of the United States" calling for instruction in the metric system that was illustrated by suitable

apparatus. F. A. P. Barnard was pleased to report at the May, 1878, meeting of the society that New Jersey

had appropriated $2000 to supply objects for teaching the metric system to every public school in the

state [2, p. 66, 71, 99]. However, the attention of the metrological society seems to have shifted away

from teaching devices to matters such as standard time, and a survey of other volumes of its Proceedings
reveals no similar later announcements.

In addition to influencing textbooks, teachers and teaching apparatus, metric advocates encouraged

nineteenth-century colleges to make knowledge of the metric system a requirement for admission. In April,

1876, the American Metrological Society sent a circular to 350 colleges urging that the metric system be

used in the classroom and that the schools report whether it was being used. By mid-May, 16 colleges

had replied. Eight reported that knowledge of the metric system was required for admission, and 5 others

expected to require such knowledge soon [2, p. 58{63]. In 1890, Florian Cajori found that some knowledge

of the metric system was required for admission to Yale, Princeton, Cornell, and the University of Texas,

but mentions no such requirement for West Point, Harvard, or several other colleges. Metric units were

taught at 41 of 45 normal schools Cajori surveyed and at nearly all of 91 academies, institutes and high

schools which responded to his queries [6].

Cajori also commented that several abstruse topics had generally been dropped from elementary arith-

metic textbooks, and noted approvingly that \at least one new subject has been quite generally and, we

think, appropriately introduced into our books|the metric system" [6, p. 109]. To be sure, in 1887 the

Boston School Board had voted to exclude the metric system|along with methods for taking cube roots,

techniques for finding volumes and surface areas of various solids, and certain commercial topics|from

the required course in arithmetic. However, Cajori looked forward to the time when \this country will

wheel in line with the leading European nations and adopt this [the metric] system to the exclusion of the

wretched systems now in use among us" [6, p. 359].

Second Thoughts

The change Cajori envisioned did not come to pass. Alterations in textbooks, meter sticks, liter blocks,

college requirements and the propaganda of the American Metrological Society proved insufficient to

bring about general use of metric units. The United States had a large population, a stable government,

and relatively homogeneous weights and measures throughout the country. France had no such uniformity

when metric measures were introduced there except in the case of timekeeping, and the metric calendar

did not long endure. Other European nations that adopted the metric system also had diverse measures

and/or small populations. Moreover, neither Great Britain nor the United States made metric measurements

mandatory.

At the same time, some authors campaigned actively against metric units. One surprising source of

opposition came from the University Convocation that met annually at the State University of New York

in Albany. In the summer of 1866, the Convocation appointed textbook author Charles Davies, soon to be

authorized by Congressional committee to teach the metric system, along with two regents of University,

to prepare a report on \what measures, if any, the Convocation should adopt in regard to a Uniform

System of Weights and Measures" [9, p. 5] Davies was to collect materials for the report; the committee

expected to find unanimously in favor of introducing the metric system into general use. On further

examination, however, the committee, especially Davies, developed doubts about the wisdom of this idea.

On reporting this to the University Convocation in 1869, the committee was discharged and replaced by a
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new committee made up of Davies, Hale and another textbook author, James B. Thomson. Thomson took

no part in the proceedings of the committee, but by the summer of 1870 Davies had prepared a lengthy

report outlining several objections to the introduction of metric weights and measures. Appended to the

report were comments of John Adams and John Herschel on appropriate units of measurement.

Davies raised thirteen specific objections to the metric system. Most of these might be summarized as

objections to change|a new system would supersede familiar measures; require people to abandon the

tried and true, learn a new language and become used to new prices; require restatement of surveys and

property records; and obliterate existing senses of distance, area and volume. At the same time, Davies,

like Herschel, believed that common measures reflected familiar concepts such as the length of the foot.

He also objected to the small size of the gram and the length of the meter that were the base units of the

system, and preferred to give distinct units distinct names (inch, foot, yard, mile) rather than distinguishing

them by prefixes. Finally, Davies cited the advantages of remaining connected to Britain, both because of

its industrial importance and because English was the language most widely spoken in the United States.

It would be a shame, he argued, to abandon \short, sharp Saxon words, for their equivalents expressed in

a foreign language" [9, p. 49]. In order to suggest the foreign origins of metric units, throughout this book

he used the French spellings gramme, metre and litre|in his 1867 pamphlet on the metric system he had

spelled these words gram, meter and liter.

Clearly, at least for Davies, introducing the metric system into the American classroom was about far

more than simplifying calculations. Further obstacles to the introduction of metric units came from three

quite different sources, none of which can be discussed fully here. First of all, from 1864 the Scottish

astronomer Charles Piazzi Smyth argued on the basis of extensive measurements of the Great Pyramid

of Giza that the ancient Egyptians had designed that building using a unit of length very similar to the

British inch [5]. Smyth found a small but vocal number of disciples in the United States, who believed

strongly in the ancient and indeed Biblical if not God-given character of British measures, in contrast to

those proposed by republican France. This group, organized as the International Institute for Preserving and

Perfecting Weights and Measures, waged an active campaign against the metric system in the 1880s and

1890s [8]. Second, some engineering societies, mindful of the value of the non-metric standards they had

established, objected to the use of metric units in manufacturing and building [21]. Finally, mathematicians

worked to rationalize the curriculum taught in American schools, changing arithmetics that had become

small compendia for the aspiring merchant into textbooks for masses of young children. Among the topics

easily discarded were discussions of little-used units of measure|including metric units. To give one

small example, in 1895 William F. Bradbury, that metric advocate and inventor of metric demonstration

apparatus in the 1870s, copyrighted an arithmetic textbook entitled Sight Arithmetic. Some problems in
this book have problems using weights and measures, but there are no tables of units of measure and none

of the units used in problems are metric [4]. It is ironic that these reforms, which were designed in part by

mathematicians who were fully aware of the international status of their discipline, and which accompanied

the establishment of a community of American research mathematicians of international renown, led in

part to the disappearance from arithmetic textbooks of what have come to be international standards of

measurement [30, 31].

In the 1970s, after Great Britain decided to adopt metric units, several American reformers once again

turned their attention to metric reform. Many of the arguments from that decade show curious echoes of

the discussion I have just described.

Implications for the Classroom

Most of the papers in this volume describe ways in which discoveries and events in the history of mathemat-

ics have been used to illuminate mathematics teaching. What are the implications of the nineteenth-century
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discussion of the metric system for twenty first-century teaching? As one who is not a teacher by pro-

fession, I cannot answer this question with authority. I would suggest two themes that emerge from this

story that teachers might wish to emphasize in discussing many aspects of the history of mathematics

teaching. First of all, the content of mathematics textbooks is and has long been influenced by factors

external to mathematics. Social and economic needs, the laws of the United States, the policies of various

government bodies and reform groups, and the business considerations of textbook authors and publishers

all helped determine what, if anything, was available for American students to learn about the metric sys-

tem. What some believed was most rational was not necessarily what was taught. Second, evidence of the

incorporation of new ideas into the classroom can come not only from printed and manuscript sources but

from objects. Particularly in the second half of the nineteenth century, educational theories that encouraged

object learning, improvements in transportation and manufacturing, and the growing number of schools in

the U.S. combined to provide a market for devices like those used in teaching metric units. Even when

metric units were not adopted, that market remained. Both historians and mathematicians are usually better

trained in the study of printed sources than in the examination of objects. However, particularly in an era

when visual culture has come to play such a large role in our lives, paying attention to objects and their

context is both useful and instructive.
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21
Some Wrinkles for a History of Mathematics Course

Peter Ross

Santa Clara University

Introduction

In teaching an upper-division history of mathematics course using a traditional text|recently I used Howard Eves'

An Introduction to the History of Mathematics, Sixth Edition, 1990|I found it helpful to incorporate several wrinkles
in the course. Aside from enlivening the course they permit the inclusion of some recent history, as my examples

below illustrate. This inclusion is especially useful in teaching with a traditional text such as Eves, where one is

hard-pressed to get to even 18th century mathematics in a single term. I will discuss three such wrinkles, each of

which involves some recent history of mathematics:

� Using a handout \Some Questions to Whet your Appetitle" in class on the first day;
� Starting class with an historical fact for that date;
� Showing a biographical video for an outstanding modern mathematician.

Some Questions to Whet your Appetite

To start the course with gusto, I passed out in the first class meeting a list of sixteen questions, distributed as

follows: Mathematical People (8), Mathematics (5), Mathematical History (3). Students worked in class on the

questions individually or with their neighbors for twenty minutes or so, then we discussed possible answers at the

end of class. (Students did not hand in their answers.) The complete list of (slightly-modified) questions is in the

appendix. I discuss below each of the ten questions that involve some recent history, and I include some students'
responses and comments, along with several observations of my own.

Which three mathematicians are generally considered (e.g., by G. H. Hardy) to be the greatest ever?

Many students suggested Euclid while a couple said Fibonacci. One person said Newton but no one named Gauss or

Archimedes. (One student later recalled that she was \stunned" that the last three were considered to be the greatest.)

Later in the course I used the following related quotation from Felix Klein, \The most eminent mathematicians, as

Archimedes, Newton, Gauss, have always uniformly included both theory and applications." [1]

Which 20th century mathematician (he died in Germany in 1944) is considered the most influential of that
century?

Einstein was given as an answer, but not Hilbert. In fact, only a few students had even heard of David Hilbert.

Later in the course I had occasion to refer back to some of the questions on the first-day list. This occurred for the

above question when I discussed Hilbert's famous address to the International Congress of Mathematicians in 1900,

in which he presented twenty-three open problems for the next century.

Many mathematicians were also famous scientists. Which were important philosophers?

237
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Students liked this question as it was open-ended, and they had some good answers such as Newton, Descartes, and

Leibniz. Plato and Einstein were also given as answers. One student who had had three philosophy courses asked,

\Weren't most mathematicians philosophers anyway?"

Name an important woman mathematician in history.

The class found this question interesting but the only name given was Sophie Germain, by a student who had heard

of her in a mathematics education course. No student had heard of Emmy Noether when I mentioned her. A woman

student later told me privately that she thought it was \pathetic" that most of the class, including herself, couldn't

name a single woman mathematician. In suggesting term projects in a history of mathematics course it is tempting

not to single out the work of women mathematicians, since too little is known about early women mathematicians

like Hypatia while the work of more recent women mathematicians appears to be too sophisticated and challenging.

But there are good biographies of both Emmy Noether and Sofia Kovalevskaya, for example, and some of their

mathematics is accessible to better students.

In the last decade the most famous open problem in mathematics was solved.

a. What was the conjecture (now a theorem)?
b. Who first formulated it, and about when?
c. Who proved the conjecture?

Several students correctly answered parts a and b, but no one could recall Andrew Wiles' name. Near the end of the

course we saw in class about half, due to time constraints, of the PBS NOVA special \The Proof" (of Fermat's Last

Theorem) [2]. Students found it quite engrossing, and said they would have liked to have seen the whole hour-long

video. They seemed quite impressed with Wiles' dedication and passion for mathematics, which was most apparent

in the touching moment in the video when he was on the verge of tears and couldn't speak.

You met the Fundamental Theorem of Calculus in freshmen calculus.

a. What does the Fundamental Theorem of Arithmetic say?
(No, you didn't see it in grade school!)

b. What does the Fundamental Theorem of Algebra say?
(No, you probably didn't see it in high school!)

Several students knew the answer to part a from our transition course that involves abstract algebra and number

theory. No one knew the answer to part b, but students felt that it was important to know; the adjective \Fundamental"

may have had some influence here. I found it a bit difficult to explain the Fundamental Theorem of Algebra briefly

on the first day of the course. However, it was helpful to have planted the seed, so that much later I could mention

the Fundamental Theorem of Algebra when we encountered complex solutions to cubic and quartic equations and,

near the end of the course, Gauss' work.

Which theorem of high school geometry is the most significant, in the sense of having the widest applications
and generalizations (even to infinite-dimensional spaces)?

Students later said that this was a \tough" question, but someone did get Pythagoras' Theorem after I gave a

hint. Initial answers given included SAS, AAS, and even \completing the square"! One student chose proofs and

generalizations of Pythagoras' Theorem for her term project, which turned out to be an excellent choice as the topic

is both content-rich and accessible.

Name one of the three famous geometrical problems from antiquity that involved using Euclidean tools. (All
three were shown much later to be impossible to solve.)

One student answered squaring the circle, but trisecting a general angle and duplicating the cube were not mentioned.

The significance for the history of mathematics of the three classical problems didn't become apparent to students

until much later in the course, but including the question on the first day was helpful as an \advance organizer."

Give the approximate century in which the following subjects were first developed:
a. calculus b. linear algebra c. group theory
d. analytic geometry e. Euclidean geometry f. non-Euclidean geometry
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This was the most difficult question, with only part e getting plausible answers. Yet every student had had courses in

at least four of the six subjects, thus indicating how small a role history plays in our traditional mathematics courses.

One student later told me that she had \totally guessed" answers to this question, but it was OK to include it so that

students could see how little of mathematical history they knew. It is somewhat surprising that mathematics majors

know exact dates like 1066, 1492, and 1861 from their history courses, yet not know even the millennia in which

geometry and calculus were developed!

Why is there no Nobel prize in mathematics?

Most students did not even know that there was not a Nobel Prize in mathematics. This question provoked the most

discussion after class ended. As students were walking out the door I gave them a copy of my one-page article \Why

Isn't There a Nobel Prize in Mathematics?" [3] This question is a nice springboard to the Fields Medals, which in

turn can lead to discussions of very recent history of mathematics.
Including the \questions to whet your appetite" in the first class meeting might not have had a dramatic effect

on the rest of the course. But, they did stimulate student interest and let students know that there was much worth

learning in the history of mathematics. And, many of the questions and their answers were useful for referring to

later in the course when we encountered the related topics.

Beginning Class with an Historical Item for that Date

About once a week I started class with an interesting or significant historical fact involving that very date. Here are

several examples I have used when I taught the course in the spring:

� April 9, 1810 Laplace announced his central limit theorem.

� April 30, 1633 Galileo forced by the Inquisition to recant his support of the Copernican Theory.

� May 1, 1631 Fermat got his law degree.

� May 3, 1831 Cayley called to the Bar.

� May 29, 1832 Almost certain he would die in a duel the next day, Galois wrote all night on the solvability

of polynomial equations and groups of substitutions.

� May 30, 1832 Galois was mortally wounded in the duel and died of peritonitis the next day.

� June 4, 1919 Emmy Noether at age 37 finally received the right to teach at G�ottingen.

� June 7, 1954 Alan Turing committed suicide because he was persecuted by the British government for his

homosexuality.

I usually amplified the above bits of information, for example, by explaining what the central limit theorem

was or by giving some background information on modern mathematicians like Noether and Turing. In this manner

I could insert more recent history into the course as well as give students the feeling that mathematics is a living

subject.

I should acknowledge here that the above examples were taken from the unpublished 133-page \A Calendar of

Mathematical Dates" that V. Fred Rickey kindly sent me. This calendar includes a number of birth dates and death

dates, some of which are quite informative. Here are two such that could be used in class:

� April 21, 1951 Michael H. Freedman was born in Los Angeles. In 1986 he received a Fields Medal for his

proof of the four-dimensional Poincar�e conjecture.

� April 26, 1920 Srinavasa Aaiyangar Ramanujan died at age 32. This self-educated mathematician, who was

discovered by G. H. Hardy of Cambridge, is remembered for his notebooks crammed with

complicated identities.

Fred Rickey's History of Mathematics Page on his home page at the United States Military Academy [4] has a

wealth of other information that is useful for teaching a history of math course.

As a wrinkle on a wrinkle I'd like to mention that beginning a class with a mathematical instead of an historical

item can also be valuable. Here is an amusing example that I used after hearing it at a number theory talk given by

Carl Pomerance.

Proof that there are infinitely many composite numbers. Suppose that there are finitely many. Multiply them

together, but do not add 1!
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Showing Biographical Videos

There are several excellent PBS and MAA videotapes or DVDs that chronicle the life and work of outstanding

modern mathematicians. I mentioned above \The Proof" involving Andrew Wiles and his proof of Fermat's Last

Theorem. Two other PBS videos that I would recommend for a history of math course are \A Brilliant Madness,"

an American Experience documentary on John Nash, and \The Man Who Loved Numbers," a NOVA special on

Ramanujan. Information about all three videos, including how to order them, can be found at the PBS website. The

MAA Bookstore website [5] also has some video documentaries worth showing, such as \N is a Number, A Portrait

of Paul Erdős."

Instructors who do show one or more of these tapes might want to first get up to snuff on the person profiled.

For example, for Nash one can read Sylvia Nasar's illuminating biography [6] or, if pressed for time, just read my

four-page review of this book [7].

Conclusion

Of course there are many other ways than the three wrinkles above for incorporating recent history of mathematics

into a traditional course. One way is to encourage students towards topics involving it in their choice of term projects.

Student projects that did involve 19th or 20th century mathematics in my course were Determinants and Matrices,

How Probability Can Help You, The Gauss-Bonnet Formula, How Big Is Infinity?, Ramanujan's Math & His Genius,

and The origins of probability: Why winners avoid Las Vegas.

Incorporating recent history into a general history of mathematics course is difficult. But the payoff is well

worth it, even if it is at the expense of some traditional topics. Students can easily learn older history on their

own later by consulting references such as their textbook or the NCTM's yearbook on Historical Topics for the

Mathematics Classroom [8], or by visiting the St. Andrews website [9]. But learning recent history is difficult since

the mathematics itself is demanding, and since much recent history is not yet well-researched or summarized in

readable form. Thus, including some of it in a history of math course may be more valuable than just covering

additional traditional topics. Finally, including some recent history helps to dispel the popular misconception that

mathematics is a dead subject.

Appendix

Some Questions to Whet your Appetite

Mathematical People

1. Which three mathematicians are generally considered (e.g., by G. H. Hardy) to be the greatest ever?

2. Name one of the two main inventors/discoverers of calculus.

3. Who was the most prolific mathematician ever? Hint: He did not name the number e after himself.

4. Name the mathematician after whom our .x; y/ coordinate system is named.

5. Which 20th century mathematician (he died in Germany in 1944) is considered the most influential of that

century?

6. Name the two founders of probability theory.

7. Many mathematicians were also famous scientists. Which were important philosophers?

8. Name an important woman mathematician in history.

Mathematics

9. In the last decade the most famous open problem in mathematics was solved.

a. What was the conjecture (now a theorem)?

b. Who first formulated it, and about when?

c. Who proved the conjecture?
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10. You met the Fundamental Theorem of Calculus in freshmen calculus.

a. What does the Fundamental Theorem of Arithmetic say? (No, you didn't see it in grade school!)

b. What does the Fundamental Theorem of Algebra say? (No, you probably didn't see it in high school!)

11. What key axiom of Euclidean geometry fails in non-Euclidean geometry?

12. What theorem of high school geometry is the most significant, in the sense of having the widest applications

and generalizations (even to infinite-dimensional spaces)?

13. Name one of the three famous geometrical problems from antiquity that involved using Euclidean tools. (All

three were shown much later to be impossible to solve.).

Mathematical History

14. What is the name of our numeral system, and why did it get this name?

15. Give the approximate century in which the following subjects were first developed:

a. calculus b. linear algebra c. group theory

d. analytic geometry e. Euclidean geometry f. non-Euclidean geometry

16. Why is there no Nobel prize in mathematics?
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Teaching History of Mathematics Through Problems

John R. Prather
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Introduction

As teachers, we are always looking for ways to actively engage our students in the learning process. One

approach in a history of mathematics course is to have students work on a historically motivated set of

problems which are independent of the other requirements of the course. These problems are described,

and the effects on the class are discussed.

In devising my history of mathematics course, I had in mind three goals. First, in addition to having a

sense of how mathematics was developed, it is important that students see how mathematics is developed.
A history of mathematics class seemed an excellent place for students to learn the process involved in

creating mathematics. Second, the class should broaden the students' views of mathematics. In particular,

they should see a significant amount of mathematics that is not motivated by geometry, algebra, or calculus.

Third, they should understand that mathematics is a dynamic, live subject that has not all been done

already. I still remember taking Calculus III, and thinking to myself, \How much more math could there

be?" Hopefully, the students would not come out of this class thinking the same thing. To address these

goals, I developed an extensive list of problems, and required students to spend at least three hours each

week working on the problems between class meetings.

In general, the problems selected satisfy two criteria: They are easily stated, and they lead to mathemat-

ical ideas of historical importance. While I bend these rules slightly for particularly interesting problems,

almost all of the problems on the list meet these two criteria. The list itself currently contains over two

hundred problems. It includes problems that are relatively easy, problems that are relatively hard, problems

that are impossible, and problems that are still open. Students are not told which are which. The problems

are from a broad array of topics, including a number of problems from recent history. In addition to

seeing problems of a historical nature, the students get a sense of the kind of problems that present-day

mathematicians consider.

The Class

I hand out the list of problems on the first day, and students are expected to begin working on them from

that point on. In addition to the problems, they are given reading assignments and more standard \do it

like they did it" homework exercises. Each class meeting they are required to turn in these more standard

homework exercises, but I do not grade them except to see that the students made an effort. In addition,
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they must attach a cover page. On it they must state that they did the required readings (from [1]) and

that they spent the required time on the problem set (one or two hours depending on the day that the class

meets). I trust that they are honest, and give them credit for doing this work if they say that they did it. If

they did not do it, I deduct an appropriate number of points from their homework grade. On their cover

page, they must also write approximately half a page about the problems on which they worked, and on

the progress they made or did not make. This half page is not graded, but I do read it, and make comments

or suggestions about how they might attack individual problems.

Usually we spend about a quarter to a half of each class period discussing the problems, but I carefully

avoid giving out solutions. Instead, I talk more generally about the problems, and give them an opportunity

to share the progress they have made with the rest of the class. The rest of each class session is spent

discussing either the history or the mathematics that the students encountered in their reading for the

session. For the most part, I try to let student interest drive the discussions. If we will encounter the

solutions to problems on which students are working in the readings, I try to warn the students, and allow

them to do those readings at a later date.

The Problems

The problems themselves are organized by topic. Within topics, they are organized around a major problem.

Preceding each of these major problems is a set of similar questions which are designed to facilitate the

students' understanding of the major problem. They may also give some insight into how to attack the

major problem. Listing all of the topics covered here would be too cumbersome, but suffice it to say that

there are problems relating to arithmetic and different bases, lots in number theory, some in geometry,

some in the development of algebra, a few relating to calculus and linear algebra, a few in probability and

statistics, and several in discrete mathematics. I am always looking for more.1

To give an example of how the list is constructed, here is a set of problems leading to the impossible

problem of trisecting an angle with a compass and straightedge. You should notice that there is no indication

of when the difficulty increases.

1. Using only a straightedge and a compass, bisect a given line segment.

2. Using only a straightedge and a compass, bisect a given angle.

3. Using only a straightedge and a compass, trisect a given line segment.

4. Using only a straightedge and a compass, trisect a given angle.

Perhaps the problems that work the best are the ones in number theory, and the ones in discrete

mathematics. In these two areas, there are lots of problems where students can generate examples, make

conjectures, and possibly even prove some results. Even difficult problems can be attacked with very few

tools. Many of these problems, like the ones mentioned below, lead to ideas that are still being developed

to this day. As a result, students not only get a sense of the process involved in solving a mathematical

problem, they see mathematics that is still being developed.

Having taught this class now on four separate occasions, one particular problem has emerged as a clear

favorite. Currently it is number 66 on the list, and it states:

A number is said to be perfect if the sum of its proper divisors is equal to the number. For

example, the proper divisors of 6 are 1, 2 and 3, and 1 C 2 C 3 D 6. So 6 is perfect. On the other

hand, the proper divisors of 12 are 1, 2, 3, 4 and 6, and 1 C 2 C 3 C 4 C 6 D 16 ¤ 12. So 12 is

not perfect. Can you find another perfect number?

1If you would like to obtain a current copy of the complete set, please contact me at prather@ohiou.edu. I would be happy

to provide them.
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A related problem follows this, and asks simply, \How many perfect numbers are there?" By trial and

error, students quickly find that the next such number is 28. At this point, they get hooked. They attempt

to find the third perfect number. When trial and error fails miserably, they typically test multiples of 6 and

28. Unfortunately, the next perfect number is not a multiple of the earlier ones. Now at this point, they

start to feel a bit frustrated, but they have already spent so much time on the problem that few will give

up. In class, I will usually tell them that with perseverance, they will find the next one, but never give

them any hint as to how they might do it. They will then either go back to pure trial and error (which

will work in about two weeks), or they will start to guess at patterns. Sometimes they noticed that both 6

and 28 are triangular, which cuts down significantly on the time. Many will restrict their attention to only

numbers that end in a 6 or 8, and almost none will be trying odd numbers. Two students found the key

characterization (i.e., that all even perfect numbers have the form 2n�1 .2n � 1/) based only on the first

two perfect numbers. One way or another, however, they will eventually determine that the next perfect

number is 496.

By now they are ready to start looking for patterns. In fact, if they ask, I tell them not to attempt

to find the fourth perfect number by trial and error. Of course, they are in no mood to do that anyway.

After looking at the three numbers for a while, most students will find the characterization above. Usually,

however, they write it in a different form, often 2n�1.1 C 2 C 22 C � � �C 2n�1/. Some will have difficulty

writing down any general formula even though they see the pattern. Using this formula, they will find

the next perfect number 8128. Still, they will be bothered when they find out that the formula does not

always yield a perfect number. For example, if n D 4, the formula yields 120. Fairly quickly, they realize

that n must be prime in the formula. They are almost there, but then they find out that when n D 11, the

formula yields 2; 096; 128 which is not perfect. With a little more thought, they realize that the second

factor above must be prime for the formula to work, and they have successfully characterized the even

perfect numbers.

At this point most students tire of this problem, and move on. Many, however, start to ask more

questions which lead to some very recent mathematical work. They will ask if there are any odd perfect

numbers | a problem which is still open. I think it surprises them that no one knows the answer to this

question. They will also ask about how one can tell if numbers of the form 2n � 1 are prime. This leads

to a discussion of the difficulty of determining whether or not a number is prime. One can easily discuss

cryptography at this point. In addition, I mention Mersenne primes and the role that computers are playing

in the search for large prime numbers. On rare occasions, students will attempt to prove the result, but to

date none have succeeded.

A short aside here may be in order. Since I do not force students to work on any particular problem, I

do not ask the students to prove all of their results. Typically, the students that I have are not quite ready

to take that step anyway, and they would probably become frustrated if this issue were pushed too hard.

After all, most have only had Calculus I or II when they take this class. Rather than forcing this issue, I

let the students decide how far they will push a particular problem. I do, however, discuss issues related

to proof, and prove many results myself (especially when students ask about problems that are not on my

list). Hopefully, the simple fact that I always ask \why?" will motivate them to do the same when they

approach problems outside of school. On the other hand, if the course had more sophisticated students,

having them prove their results might be desirable.

Another problem that often gets students interested is the K �onigsberg Bridge Problem [2, pp. 573{580].

It is stated as follows:

A town in Prussia in the 18th century called K�onigsberg consisted of four areas divided by a

river and connected by seven bridges. If we label the areas A, B, C and D, two of them (say A

and B) were in the middle of the river. North of A and B was C and south was D. A and C were
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connected by two bridges; A and D were connected by two bridges; A and B were connected by

one bridge; B and C were connected by one bridge; and, finally, B and D were connected by one

bridge. Is it possible for a person to start at one point, walk across each bridge once, and return to

the starting point without walking across any bridge more than once?

This is another problem that students enjoy because it allows them to get a handle on it without really

knowing much mathematics. After trying for a while, most students will conclude that it is not possible

to create such a path. Many will even identify the reason it is not possible. In the process, however, most

will \abbreviate" their work, and will start to represent the land masses as points. In addition, they will

start to consider other maps, and ask themselves why it is possible to find what is now referred to as an

Euler circuit in some, but not in others. This creates an opportunity to discuss more recent developments

in combinatorics and optimization. One would rarely have an opportunity to discuss such topics if the

course were taught in a more chronological manner. As I develop the problem list further, I would like to

add more problems of this type.

I would like to briefly mention two other problems that give the students a clearer understanding of

what mathematicians might be working on today. One is the set of problems which asks the students to

consider Fermat's Last Theorem, and some related results. I like this problem because of the recent proof

by Andrew Wiles. It sends students a clear message that the fact that no one has ever been able to do

something, does not mean it is impossible. The other problem is the four color problem [3]. Again, this

is a good problem where students can generate a lot of examples. Some will even look at the problem in

terms of graphs in order to isolate key features. Now while this problem is beyond them, it does eventually

give me an opportunity to discuss how computers might be used in a proof. Once again, the fact that the

result was proved recently gives students a perspective on mathematics as a dynamic, changing field.

Effects of the Problems

Using these problems has many benefits. First, and foremost, the students genuinely enjoy working on

these problems. While they are expected to put a significant amount of time and energy into the problems,

there is no pressure on them to get a correct answer. After a short period the students become genuinely

engaged. Even students who would otherwise just \put in their time" see other students asking interesting

questions in class, and become involved themselves. In fact, the class as a whole becomes invigorated, and

the problems drive the class meetings. At the beginning of each class, the students are asked about their

progress, and this discussion sets the tone for the rest of the class. The energy generated by the problems

carries over into later class discussions about history or other mathematics. Moreover, students become

accustomed to asking the question \Why?" in all of the work that they do for the class.

Through the problems, the students also have the opportunity to work \like mathematicians." In the

course of working on these problems, the students create examples, test conjectures, and revise them. More

mathematically mature students could be encouraged to try to prove their results. After going through this

process, the students end up with a strong sense of what mathematicians do, even if they are doing it at a

fairly elementary level. One other nice result that comes from this process is that students encounter actual

problems that cannot be solved quickly. Unlike most algebra or calculus classes, there are no examples to

follow. The students are left totally on their own, and they see problems that take them days to solve. As

a result, the students gain a clear understanding that just because they cannot solve a problem in fifteen

minutes does not mean that they cannot solve it at all. On top of that, they are pleasantly surprised when

they find that they can actually solve difficult problems without much assistance.

Another benefit is that students see a huge variety of problems. Not only do they see the problems that

they work on themselves, they see most of the problems that other students in the class are working on.
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They also see a lot of problems that are still unsolved. The idea that mathematics is still developing, and

will continue to develop is a powerful concept. In fact, it is that understanding that will motivate many

of them to pursue studies and careers in mathematics. Most of the students in this class are pre-service

teachers. Hopefully, when they teach their own classes, they will have the tools necessary to convey to

their students the idea that mathematics is a broad and vibrant field.

Improvements

While I am quite happy with the problems as they stand, there can always be improvements. The most

obvious improvement would be the addition of more problems. In particular, it would be nice to have

even more modern problems. One major issue with the inclusion of current problems is that they often

are difficult to state. For example, the Riemann hypothesis is an important problem that would be nice for

them to see, but just stating the problem requires a significant amount of complex analysis. Similarly, it

is difficult to effectively state problems exploring the idea of an uncountable set. Many other interesting

current problems share this difficulty. A second issue is that while there are many nice problems in some

areas of mathematics like graph theory, too many similar problems can keep students from getting an

adequate breadth of experience. Students will sometimes gravitate to particular kinds of problems, and it is

good to make sure that they eventually \run out." That way, without officially stopping them, the students

will be forced to look at other types of problems.

Conclusion

I have been thrilled with the results of this course. The students all work hard, and learn a lot. Even more

interesting, they all learn different things. They start to understand the process of creating mathematics, get

an idea of what mathematicians are working on today, and encounter many different problems that they

would not otherwise see. Many students have told me that this class is the best, or one of the best classes

that they have had as an undergraduate. Moreover, the students seem to retain much of what they learn in

this class. Often in higher level classes, students will say, \Didn't we see this in History of Math?" It is

at these times in particular that I realize that the effort that both they and I have gone through has been

worthwhile.
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Appendix: Sample Student Work

After students have spent the required time outside of class, they must write a paragraph describing the

work they have done. Two examples of student work are given below. I have chosen these two because of

how well they describe the process that most of the students go through. Certainly, not all students give

this much detail.

The first student was working on perfect numbers.
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I think I may have found the pattern for perfect numbers. After looking through past results

and reading the Fundamental Theorem of Arithmetic, I came up with some new ideas. I attached

the summary of my work. Also, when reviewing for the test, I almost ended up reading the entire

book over, so that definitely helped.

First: I already knew this:

6 D 1 C 2 C 3

28 D 1 C 2 C 4 C 7 C 14

496 D 1 C 2 C 4 C 8 C 16 C 31 C 62 C 124 C 248

Second: I noticed there was one prime factor of each number and 1 such as

6 D 1; 3

28 D 1; 7

496 D 1; 31

Third: If you add these two factors together for each number, you get

6 D .1 C 3/ D 4 D 22

28 D .1 C 7/ D 8 D 23

496 D .1 C 31/ D 32 D 25

You must be able to multiply a power of 2 by something to reach one of these numbers. That's

when the F T of A gave me a clue. Since these numbers so far are not primes, they must be

expressed as a product of primes.

Fourth: If you divide the prime factor into the number, you get this

6 � 3 D 2

28 � 7 D 4

496 � 31 D 16

so 6 must be 2�something etc. 28 must be 22�something etc.
BUT I NEED A PRIME FACTOR OF SOME SORT!

So trial and error led me to

2 .n � 1/ D 2n � 2 D 6

2n D 8

n D 4

this is not right!

22 .n � 1/ D 4n � 4 D 28

4n D 32

n D 8

this is not right!

but some more trial and error (with a lot of things I would be embarrassed to show you) led

me to using 2 powers of 2, 1 even and 1 odd.

Result:

2
�

22 � 1
� D 2 � 3 D 6

22
�

23 � 1
� D 4 � 7 D 28

24
�

25 � 1
� D 16 � 31 D 496

so if this is right the next number would be 26
�

27 � 1
�

D 64 � 127 D 8128

So if this is right, GREAT. I can work on some different things. Although, through my experi-

ments, I noticed some neat things I would like to explore.

The second student worked on the K�onigsberg Bridge Problem.

For my first hour, I began working on the K�onigsberg bridge problem. I began by drawing a

map of what the area might look like. This in itself is somewhat difficult because the directions are
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not detailed. Not everyone's interpretation of the map will be the same. After labeling the regions

and bridges, I began trial and error. I was quick to realize that I should document each combination

I try. As I was trying the combinations, Bridge 5 seems to be a trouble area. Once you cross that

bridge, it seems you need to cross it a second time to get back to where you started from.

For my next two hour period, I decided to work again on the bridge problem. After some time,

I started to draw lines around the path because I could no longer visualize [it] in my head. I found

several ways to complete the problem using one bridge twice. I recreated my map on the computer

to better visualize. I noticed a problem with region B. It only has three bridges and all connect

to a different region. In many of my trials, if I start in B, I can get out, in, and out again. I need

one more bridge to get in again. However, if I start elsewhere, I get in, out, and in region B, but

I need to finish in another region. At this point, I am beginning to think there is no way to solve

this problem. My notes are a disaster. Interestingly enough, my father was curious about what I

was doing. So I explained it, and he tried his hand at it. After half of an hour, or so he gave up

saying he had to go back to work.

In both of these cases, the students are going through similar processes. Both did a lot of experimentation

at first, but after getting a handle on the problem realized that they needed more general ideas. After a

number of failures, both also had some success. This is exactly the process that mathematicians go through

when confronting unsolved problems.
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