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INTRODUCTION
RESOURCES FOR CALCULUS COLLECTION

Beginning with a conference at Tulane University in January, 1986, there developed in the mathe­
matics community a sense that calculus was not being taught in a way befitting a subject that was
at once the culmination of the secondary mathematics curriculum and the gateway to collegiate sci­
ence and mathematics. Far too many of the students who started the course were failing to complete
it with a grade of C or better, and perhaps worse, an embarrassing number who did complete it pro­
fessed either not to understand it or not to like it, or both. For most students it was not a satisfying
culmination of their secondary preparation, and it was not a gateway to future work. It was an exit.

Much of the difficulty had to do with the delivery system: classes that were too large, senior
faculty who had largely deserted the course, and teaching assistants whose time and interest were
focused on their own graduate work. Other difficulties came from well intentioned efforts to pack
into the course all the topics demanded by the increasing number of disciplines requiring calculus
of their students. It was acknowledged, however, that if the course had indeed become a blur for
students, it just might be because those choosing the topics to be presented and the methods for
presenting them had not kept their goals in focus.

It was to these latter concerns that we responded in designing our project. We agreed that there
ought to be an opportunity for students to discover instead of always being told. We agreed that the
availability of calculators and computers not only called for exercises that would not be rendered
trivial by such technology, but would in fact direct attention more to ideas than to techniques. It
seemed to us that there should be explanations of applications of calculus that were self-contained,
and both accessible and relevant to students. We were persuaded that calculus students should, like
students in any other college course, have some assignments that called for library work, some
pondering, some imagination, and above all, a clearly reasoned and written conclusion. Finally, we
came to believe that there should be available to students some collateral readings that would set
calculus in an intellectual context.

We reasoned that the achievement of these goals called for the availability of new materials, and
that the uncertainty of just what might work, coupled with the number of people trying to address
the difficulties, called for a large collection of materials from which individuals could select. Our
goal was to develop such materials, and to encourage people to use them in any way they saw fit.
In this spirit, and with the help of the Notes editor and committee of the Mathematical Association
of America, we have produced five volumes of materials that are, with the exception of volume V
where we do not hold original copyrights, meant to be in the public domain.

We expect that some of these materials may be copied directly and handed to an entire class,
while others may be given to a single student or group of students. Some will provide a basis from
which local adaptations can be developed. We will be pleased if authors ask for permission, which
we expect to be generous in granting, to incorporate our materials into texts or laboratory manuals.
We hope that in all of these ways, indeed in any way short of reproducing substantial segments to
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viii PROBLEMS FOR STUDENT INVESTIGATION

sell for profit, our material will be used to greatly expand ideas about how the calculus might be
taught.

Though I as Project Director never entertained the idea that we could write a single text that
would be acceptable to all 26 schools in the project, it was clear that some common notion of topics
essential to any calculus course would be necessary to give us direction. The task of forging a
common syllabus was managed by Andy Sterrett with a tact and efficiency that was instructive to
us all, and the product of this work, an annotated core syllabus, appears as an appendix in Volume
1. Some of the other volumes refer to this syllabus to indicate where, in a course, certain materials
might be used.

This project was situated in two consortia of liberal arts colleges, not because we intended to
develop materials for this specific audience, but because our schools provide a large reservoir of
classroom teachers who lavish on calculus the same attention a graduate faculty might give to its
introductory analysis course. Our schools, in their totality, were equipped with most varieties of
computer labs, and we included in our consortia many people who had become national leaders in
the use of computer algebra systems.

We also felt that our campuses gave us the capability to test materials in the classroom. The size
of our schools enables us to implement a new idea without cutting through the red tape of a larger
institution, and we can just as quickly reverse ourselves when it is apparent that what we are doing
is not working. We are practiced in going in both directions. Continual testing of the materials we
were developing was seen as an integral part of our project, an activity that George Andrews, with
the title of Project Evaluator, kept before us throughout the project.

The value of our contributions will now be judged by the larger mathematical community, but
I was right in thinking that I could find in our consortia the great abundance of talent necessary
for an undertaking of this magnitude. Anita Solow brought to the project a background of editorial
work and quickly became not only one of the editors of our publications, but also a person to whom
I turned for advice regarding the project as a whole. Phil Straffin, drawing on his association with
UMAP, was an ideal person to edit a collection of applications, and was another person who brought
editorial experience to our project. Woody Dudley came to the project as a writer well known for
his witty and incisive commentary on mathematical literature, and was an ideal choice to assemble
a collection of readings.

Our two editors least experienced in mathematical exposition, Bob Fraga and Mic Jackson, both
justified the confidence we placed in them. They brought to the project an enthusiasm and freshness
from which we all benefited, and they were able at all points in the project to draw upon an excellent
corps of gifted and experienced writers. When, in the last months of the project, Mic Jackson took
an overseas assignment on an Earlham program, it was possible to move John Ramsay into Mic's
position precisely because of the excellent working relationship that had existed on these writing
teams.

The entire team of five editors, project evaluator and syllabus coordinator worked together as
a harmonious team over the five year duration of this project. Each member, in turn, developed
a group of writers, readers, and classroom users as necessary to complete the task. I believe my
chief contribution was to identify and bring these talented people together, and to see that they were
supported both financially and by the human resources available in the schools that make up two
remarkable consortia.

A. Wayne Roberts
Macalester College
1993



THE FIVE VOLUMES OF THE
RESOURCES FOR CALCULUS COLLECTION

1. Learning by Discovery: A Lab Manual for Calculus
Anita E. Solow, editor
The availability of electronic aids for calculating makes it possible for students, led by good ques­
tions and suggested experiments, to discover for themselves numerous ideas once accessible only
on the basis of theoretical considerations. This collection provides questions and suggestions on 26
different topics. Developed to be independent of any particular hardware or software, these mate­
rials can be the basis of formal computer labs or homework assignments. Although designed to be
done with the help of a computer algebra system, most of the labs can be successfully done with a
graphing calculator.

2. Calculus Problems for a New Century
Robert Fraga, editor
Students still need drill problems to help them master ideas and to give them a sense of progress in
their studies. A calculator can be used in many cases, however, to render trivial a list of traditional
exercises. This collection, organized by topics commonly grouped in sections of a traditional text,
seeks to provide exercises that will accomplish the purposes mentioned above, even for the student
making intelligent use of technology.

3. Applications of Calculus
Philip Straffin, editor
Everyone agrees that there should beavailable some self-contained examples of applications of the
calculus that are tractable, relevant, and interesting to students. Here they are, 18 in number, in a
form to be consulted by a teacher wanting to enrich a course, to be handed out to a class if it is
deemed appropriate to take a day or two of class time for a good application, or to be handed to an
individual student with interests not being covered in class.

4. Problems for Student Investigation
Michael B. Jackson and John R. Ramsay, editors

Calculus students should be expected to work on problems that require imagination, outside reading
and consultation, cooperation, and coherent writing. They should work on open-ended problems that
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admit several different approaches and call upon students to defend both their methodology and their
conclusion. Here is a source of 30 such projects.

S. Readings for Calculus
Underwood Dudley, editor
Faculty members in most disciplines provide students in beginning courses with some history of
their subject, some sense not only of what was done by whom, but also of how the discipline has
contributed to intellectual history. These essays, appropriate for duplicating and handing out as
collateral reading aim to provide such background, and also to develop an understanding of how
mathematicians view their discipline.
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Preface

In the interest of making calculus more lively, this volume of projects can be used by an

instructor to give her students an opportunity to work with a mathematical problem that can be posed

easily, but which is impossible for most students to solve as part of an overnight homework assignment.

The projects are not intended to be for honors students, but are problems that a small group of typical

calculus students can solve given a reasonable amount of time and effort, with some timely guidance

from the instructor. Experience indicates that through applying themselves to projects of this kind

students develop a better notion of ways in which calculus can be used to solve realistic problems, have

the opportunity to look more closely at some of the important concepts of calculus, and gain a sense of

personal ownership of some piece of calculus. Some learn how to use the library effectively to find

mathematical sources, and all improve their ability to read and write mathematical material and to

cooperate with peers in the solution of a difficult problem. Finally, the experience of developing

solutions to problems which on the first reading seem inscrutable, increases the confidence of students.

The contents of the projects are distributed over the first year of a typical single-variable calculus

program, with some projects applicable to multivariable calculus. Some projects involve the application

or extension of a mathematical concept that is part of the content of the usual course, while others give

students the opportunity to examine an interesting application or theory somewhat tangential to the core

material. Each project is self-contained, including a brief statement of the problem for the students and

more thorough information for the instructor. The first item in the information for the instructor is an

abstract of the project in which we explain what makes this problem interesting, what we expect students

to learn from doing the problem, and some rationale for why we pose the problem as we do. A

description of prerequisite knowledge and skills for each project will help instructors determine where

that project could fit into a particular course. To further assist in determining proper placement of the

projects in your course, a recommended first-semester calculus syllabus is given in outline form with

projects of the first three sections of this volume included according to their prerequisite. (An annotated

syllabus for Calculus I and II worked out by colleges in the project can be found in the appendix of

Volume I of the Resources in Calculus set.) Each project description also identifies essential or

recommended library or computing resources. The bulk of information for the instructor is a section

containing one or more sample solutions. The solutions presented have been chosen to represent

approaches students may take on the particular project. They are not necessarily the most concise, most

elegant, or even the most intuitive for the instructor.
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Suggestions for Using This Volume

The nature of the projects in this volume is such that one student assigned to do a project alone

would often tend to just "get through" and not think deeply nor produce a report of high quality. A small

group of students tend to produce better work and show more individual learning. For this reason, we

encourage you to assign two or three students to produce a joint report over a period of one to three

weeks. Almost normal classroom and homework responsibilities can be continued during the duration

of the project, but we have found that the use of at least one class session to work individually with

student groups is often appropriate early in the period allotted to the projects. We also recommend that

intermediate, extra-class sessions be scheduled during which the instructor can meet briefly with a

representative from each group so that person can report the group's progress, ask questions and receive

appropriate guidance. For each problem, we have tried to warn the instructor as to where the students

tend to have difficulties, and what sort of hints or information might be appropriate to help them move

along. We have also included at least one example of a correct way to approach each problem. Some of

the projects will naturally lead more imaginative students to attempt general conjectures. For the projects

where we would expect this to happen, we have given some advice as to how much an instructor might

reasonably expect from an average student, and suggested questions which might challenge more

ambitious students.

We expect that most instructors will ask each student group to submit a written report in which

they (1) describe the problem as posed, (2) thoroughly explain their solution including all assumptions,

interpretations and important calculations, (3) cite any outside resources used, and (4) discuss any related

ideas or questions that have been raised by their examination of the problem. If you are not accustomed

to grading library research papers, it might be useful to seek assistance from a colleague in the

humanities to act as a second reader. You should grade the paper based on its mathematical

thoroughness and correctness as well as the quality of writing. If you prefer, you may ask each group to

give an oral presentation of their work to their peers instead of, or in addition to, submitting a written

report. In either case, it is advisable to have each group submit a draft or outline, including

bibliography, at least three or four days before the report is due. You can use these to insure that each

group is on track for successful completion.

It is useful to assign individual grades for group projects based on both the quality of the final

report and the quality of participation by each individual. One way to determine just how each individual

contributed to the final project is to tell the students that each of them will be required to submit a

confidential description of her or his contribution (and, possibly, the contributions of each other team

member). Another way of encouraging full participation by each team member is to conduct interviews

with a randomly chosen individual from each team in which that person must explain the team's work.

Finally, a word of caution. The experience of those who have taken the lead in projects of this

nature uniformly report that the expectations of students is a major impediment to change. They have

3



4 Problems for Student Investigation

been conditioned, after all, by twelve years experience to think that instruction in mathematics consists of

some explanation of "how to work these kinds" followed by a long list of exercises "of these kinds." At

least initially, many students resist being required to engage themselves in projects such as these and to

work cooperatively. We recommend, therefore, that you anticipate this initial resistance and consider

distributing a copy of or some variation of the following "Note to Students."



Note to Students

For many of you a group project will be a new experience. To help you take full advantage of

this activity, the following suggestions are offered.

• Get started immediately. You will not be able to complete the project on a last minute basis.

Portions of the project will move slowly and working in a group requires more time due to

scheduling difficulties.

• Read over the entire project carefully before you begin discussing or completing any portion of it.

• Initially, you may not know how to begin. Don't panic, a discussion with other group members

will usually generate some ideas.

• The procedure for solving a project is not as clear cut as it is for solving standard homework

problems. You will possibly need to make assumptions in order to simplify the problem. Justify

these assumptions and comment on how they mayor may not affect the final result.

• The final report should be thoughtful, well-written and neatly organized. It should summarize

your approach to the problem and present your conclusions with full explanation. The

mathematical detail of your work should also be presented in some fashion. (Depending on the

particular project, it might be part of the solution summary or included as an appendix to a less

technical document.)

• If any questions persist (e.g. Have we investigated all aspects of the project?) or there is lack of

clarity on some point (e.g. how much mathematical detail to include), be certain to discuss them

with your instructor before writing the final report.
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Syllabus for Calculus I

The intent of this syllabus is to concentrate on ideas rather than on manipulations, since

manipulations can be more conveniently carried out with the aid of a hand-held calculator or a computer

algebra system. After each topic, an estimated number of classes to cover the material is given in

parentheses. These estimates were made based on a total of 32 class periods for the course. The 32

classes in the syllabus are intended to provide time for testing, applications, and enrichment topics as

well as for the central ideas ordinarily covered in calculus. The projects from the first three sections of

this volume are noted within the outline according to their prerequisite. However, we encourage use of

the projects at other appropriate times as well. Annotated syllabi for Calculus I and II are contained in

Volume I of this collection of resource materials.

CALCULUS I: THE DERIVATIVE AND THE INTEGRAL

1. Introduction (1)

2. Functions and Graphs (4)

CruiseControl

3. The Derivative (10)

Security SystemDesign
Crankshaft Design
Valve CoverDesign
The Tape Deck Problem

4. Extreme Values (8)

Optimal Designofa SteelDrum
Finding the Most Economical Speedfor Trucks
DesignerPolynomials
Designing a PipelineWith Minimum Cost

5. Antiderivatives and Differential Equations (3)

Population Growth
DrugDosage

6. The Definite Integral (6)

Logarithms: You Figure It Out
Numerical Integration andErrorEstimation
An Integral Existence Theorem
A Fundamental Project
Inventory Decisions
TileDesign
Minimizing the AreaBetween a Graph andIts TangentLines
RiemannSums, Integrals, and AverageValues
The Ice Cream ConeProblem
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DERIVATIVES

The projects in this section require only knowledge of single-variable differential calculus. There

are two primary concepts which these projects address. First, many of the projects involve using the

derivative in some type of curve fitting application. This varies from a data fit ultimately aimed at

constructing an optimization problem in Finding the Most Economical Speedfor Trucks, to fitting data

according to critical and inflection points in Designer Polynomials, to using data to construct models of

technological equipment in Cruise Control, Security System Design and The Tape Deck Problem.

Second, there are applications of single-variable optimization techniques to the "real world" in Optimal

Design of a Steel Drum, Designing a Pipeline With Minimum Cost, Crankshaft Design, Valve Cover

Design and Finding the Most Economical Speedfor Trucks.

9





OptimalDesign ofa Steel Drum 11

Title:

Author:

Optimal Design of a Steel Drum

John Ramsay, College of Wooster

Problem Statement: A 55-gallon Tight Head Steel Drum is constructed by attaching 18 gage

(i.e..0428 inches thick) steel disks to the top and bottom of a cylinder created by rolling up a 20 gage

(i.e..0324 inches thick) steel sheet.

c ~

The vertical seam on the cylinder is welded together and the top and bottom are attached by a

pressing/sealing machine. The pressing/sealing process requires approximately ~~ inches from the

cylinder and ~ inches from the disk to be curled together and hence these inches are lost in the final

dimensions. In addition, the top and bottom are set down i inches into the cylinder. For clarification,

refer to the American National Standard (ANSI) specification diagram below.

1. 5/8 in

1+----22 1/2 in __-+1

+"5/8 in

3"'1 3/8 in

j
.._---------_...._-----_. ---_.

T

Steel can be purchased in coils (rolls) of any specified width. Construction costs can be

summarized as follows: 18 gage steel is 45 cents/square foot
20 gage steel is 34 cents/square foot
welding and pressing/sealing cost 10 cents/foot
cutting steel costs 2 cents/foot.

Is the ANSI specified drum the most efficient use of material in order to obtain the required 57.20

gallon minimum volume capacity of a 55 gallon drum? Fully justify your answer.
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Information for the instructor only:
Problem abstract: This project is designed to give students a more complete experience in applying

calculus to a realistic problem. As a result of beginning with unpolished information, students must do

almost everything in setting up the model, solving the problem and presenting their solution. While

strengthening their understanding of mathematical concepts involved in extrema theory, it will bring the

application of the material to life. The students must make decisions regarding the important aspects of

the construction of the drum and determine relevant costs before setting up and solving the optimization

model. Under most methods of construction the solution to the model will involve solving a cubic or

quartic equation.

Prerequisite skills and knowledge: Theory of extrema.

Essential/useful library resources: none

Essential/useful computational resources: Under most methods of construction the solution to

the model will involve solving a cubic or quartic equation and hence it will be necessary that they have

access to equipment suited for solving such equations (graphically or numerically).

Example of an acceptable approach: If we let r represent the original disk radius in inches and h

the original cylinder height, then 20 gage steel should be bought in coils of width hand 18 gage steel

should be bought in coils of width 2r. (Disks will be cut out of 2r by 2r squares, yielding some wasted

material in construction.) Total cost can be determined by the cost of steel on sides, top and bottom, the

cost of cutting pieces out of rolls, the cost of cutting out disks, the cost of welding the seam, and the cost

of pressing/sealing. We must convert the per foot costs to per inch costs:

45 cents/square foot = .3125 cents/square inch
34 cents/square foot = .2361 cents/square inch
10 cents/foot =.8333 cents/inch
2 cents/foot =.1667 cents/inch.

Hence

Cost =21trh(0.002361) + 2[(2r)2(0.003125)] + [h + 2(2r)](0.001667) + 2[21tr(0.001667)] +

h(0.008333) + 2[21tr(0.0.008333)].

We use that 57.20 gallons = 13,213 in3 (1 gal. =231 in3) and calculate the inner height and inner radius

of the completed drum as follows:

Height =h - sealing loss at top and bottom - end indention loss at top and bottom

h 2 13. 2 5.= - x 16 In. - x 8" in.

h 23.
= -8 m .
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Radius = r - sealing loss - end indention loss
3 . 5 . 11 .

=r-4 m. -8" m. = r- 8 Ill.

Thus we have the constraint 1t (r - ~1 )2 (h - 2i )= 13,213.

Solving, one gets a minimum at approximately r = 11 ~~ inches, h =40 {6 inches with cost = $12.73.

The ANSI specified drum uses r = 11~ + 1
81

= 12i inches and h = 34i + 1
83

= 36 inches with cost =

$12.78. The above solution yields a savings of $.05/drum.

Conjectures we expect that some students will make: Students will likely make a variety of

assumptions as to how much material is "lost" in the construction process.

Questions for further exploration: Students who quickly produce a good solution to the problem

could be encouraged to do sensitivity analysis on the cost function coefficients. Also, one can speculate

as to why steel drums and food cans do not seem to be constructed with dimensions which yield minimal

cost. For example, steel drums need to be easily portable and cans on shelves need to be visually

pleasing (the Jolly Green Giant doesn't look so good on a short, fat can). Interested students could do a

similar exercise with canned goods and speculate why particular shapes are chosen over the discovered

"most economical" can. It is interesting to note how much closer bulk food containers fit the "correct"

dimensions.

Special evaluation suggestions: One of the intentions of a problem such as this one is to have the

students analyze and justify the assumptions they have made in constructing their particular model. A

written or oral communication of this should accompany their solution.
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Title:

Author:

Problems for Student Investigation

Finding the Most Economical Speed for Trucks

John Ramsay, College of Wooster

Problem Statement: A trucking company would like to determine the highway speed that they

should require of their drivers. The decision is to be made purely on economical grounds, and the two

primary factors to be considered are driver wages and fuel consumption. Wage information is easily

obtained: drivers earn from $11.00 to $15.00 an hour, depending on experience. Incorporating the fuel

consumption question is much more difficult and the company has hired you as consultants in order to

solve the problem for them. Correctly assuming that fuel consumption is closely related to fuel economy

at various highway speeds, they have provided you with the following statistics taken from a U. S.

Department of Transportation study*:

MILES PER GALLON AT SELECTED SPEEDS

VEHICLE 50 mph 55 mph 60 mph 65 mph

Truck #1 5.12 5.06 4.71 #
Truck #2 5.41 5.02 4.59 4.08
Truck #3 5.45 4.97 4.52 #
Truck #4 5.21 4.90 4.88 4.47
Truck #5 4.49 4.40 4.14 3.72
Truck #6 4.97 4.51 4.42 #

#Due to laws controlling fuel injection, this vehicle could not be operated at 65 mph.

The company expects a written report with your recommendation. The report should include justification

for your conclusion.

Note: Though the report should include the mathematical detail of your work, the overall presentation

should not assume the reader has had experience with the techniques you employ.

* U.S. Department of Transportation. The Effect ofSpeed on Truck Fuel Consumption Rates, by E. M.
Cope. [Washington]: U. S. Department of Transportation, Federal Highway Administration, Office
of Highway Planning, Highway Statistics Division. 1974. (TD2.2:Sp3)
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Information for the instructor only:
Problem abstract: This project is interesting because it provides students with real data and asks

them to solve a realistic problem. Working from very little initial information and obtaining a pleasing

solution is very satisfying for students and will serve to boost confidence and help them see the relevance

of the mathematics involved. There are many useful skills involved in the project: library research

(possibly), data consolidation, curve fitting, optimization and communication of their solution.

Prerequisite skills and knowledge: Single variable theory of extrema. It would be very helpful if

the students have already had some experience with curve fitting using either linear regression or systems

of equations to develop polynomial functions which fit the given data. Students who have had no such

experience will need some guidance in this.

Essential/useful library resources: The statistical data has been taken from a U.S. Department of

Transportation Report prepared by the Federal Highway Administration. This document is a special

government publication and the title is indicated on the problem page. If the library at your institution

has this document, students could be directed to it in order to find the statistics rather than giving the data

to them in the problem statement. You should check your library first since most libraries only carry

partial government document collections.

Essential/useful computational resources: If polynomial fits are used, solving systems of

equations with more than two or three unknowns is difficult without some son of symbolic computation

software. If regression is used, then some statistical software would be helpful.

Example of an acceptable approach: The function relation between mpg and mph can be modeled

many ways. We include here a cubic polynomial fit and a linear regression fit.

1) To do a polynomial fit we need to obtain one mpg for each relevant mph. One way we can do this is

by computing the average mpg at each speed. This yields the data points

(50, 5.11), (55, 4.81), (60, 4.54), (65, 4.09).

Using computer algebra software we can solve the system of four equations that results from

plugging these four data points into the general cubic, y =ax3 + bx2 + cx+ d. The resulting cubic is

f(x) = -O.00028x3 + 0.0468x2 - 2.657x + 55.96.

2) If we do a linear regression on all data points we obtain

f(x) = 8.3356 - 0.06414x.

In either case we now need to incorporate f into a cost function. Let D represent distance traveled

(this turns out to be irrelevant), F represent cost of fuel per gallon, and W represent driver's hourly
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wage. Also note that x above represents speed. We obtain the following cost equation:

D D
Cost = W x + F /(x)

At the time of this writing, F = $1.00 was reasonable. (Students should be expected to determine

this value themselves.) Applying extrema theory to this with F =1 and W =11, 12, 13, 14, then 15

we get minimum cost at the speeds indicated in the following table:

Driver wage Ideal Speed
Cubic Fit Linear Fit

$11.00

$12.00

$13.00

$14.00

$15.00

59.8 mph

60.3 mph

60.8 mph

61.2 mph

61.5 mph

59.3 mph

60.7 mph

62.0 mph

63.2 mph

64.4 mph

Conjectures we expect that some students will make: Students are likely to make any of a

number of assumptions with regard to how to use the given data. For example, they may do the

averaging as above or they may solve the problem for each truck and either report all results or report

some form of average result. Also, they may decide to fix a specific driver wage rather than report on

several wages.

Questions for further exploration: For lighter weight trucks, mpg. figures are much higher.

Students could be asked to analyze the sensitivity of their solution to changes in data, particularly higher

miles per gallon figures.

References/bibliography/related topics: There are some statistics on fuel efficiency of small

trucks. The documents which contain this information are difficult to find but a government documents

reference librarian should be able to help students find what they need.

Special implementation suggestions: There are several difficult steps in this project. First, if the

students have not done or seen any curve fitting, it will take them some time to get comfortable with the

concept. Second, the cost function in this problem is not easy. Determining how to convert natural

variables (speed and driving time) to corresponding cost (driver total wages and total fuel costs) is

difficult. Finally, the role of distance traveled is likely to be a point of confusion. For these reasons, an

intermediate progress report is highly recommended.

Special evaluation suggestions: There are a wide variety of approaches to solving this problem.

Students should be expected to justify the chosen approach and its conclusions.
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Title:

Author:

Designer Polynomials

Charles Jones, Grinnell College

Problem Statement: For this project, imagine that you are a calculus instructor needing some

"nice" examples of functions for your class. Your purpose is to help the students understand the

relationships between polynomial functions and their graphs. In particular, you are interested in

quadratic functions, x2 + ex + d, cubic functions, x3 + bx2 + ex + d, and quartic functions, x4 + ax3 +
bx2 + ex + d, where a, b, c, and d all have integer values. Thoroughly answer the following questions,

giving complete justification for each result. Your final report will be evaluated based on mathematical

correctness; clarity of presentation; and correct use of the English language, including structure,

grammar and spelling.

A. Quadratic functions of the formj(x) =x2 + ex+ d.

(1) How many critical points are there for each choice of e and dl

(2) Are the critical points maxima, minima or neither?

(3) How should you choose e and d to insure that all critical points occur at integer values of x?

(4) What must the shape of the graph ofjbe?

B. Cubic functions of the form g(x) =x3 + bx2 + ex + d.

(5) How many inflection points are there?

(6) Produce examples where the inflection points and critical points all occur at integer values of x

where g(x) has: (a) 0 critical points,

(b) 1 critical point,

(c) 2 critical points,

(7) Write general rules for choosing b, e, and d to produce families of examples in question 6.

C. Quartic functions of the form h(x) =x4 + ax3 + bx2 + ex+ d.

(8) Choose a, b, e, and d so that h(x) has 3 critical points at integer values of x. Produce some

general techniques to generate a family of examples with 3 critical points, all at integer values of

x. (Hint: Rather than solving cubic equations to determine if there are 3 integer-valued roots,

start with the roots and produce the cubic equation. For example, given the roots 2, 3, and -1,

the equation is (x - 2)(x - 3)(x + 1) = 0 or x3 - 4x2 + x + 6 = 0.)
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Information for the instructor only:
Problem abstract: This project reverses the common textbook approach where the students are given

a polynomial function, then asked to find and classify critical points, inflection points, and graph the

function. The purpose of the project is two-fold: first, by working with functions and their derivatives

from a new perspective, the students should acquire a better appreciation of the relationships between

derivatives and properties of the graphs of functions. Second, this project should deepen each student's

understanding of functions on a more basic level because the student does not have the opportunity to

mechanically operate on a given formula for a function. Rather, the student is forced to first focus on

required properties of a function and then do some creative work to produce a specific formula that

satisfies those properties.

Prerequisite skills and knowledge: Students need algebra skills including knowledge of the

relationship between roots and linear factors of a polynomial. This project would fit well in a calculus

course after introductory work on finding critical points and inflection points using the derivative.

Essential/useful library resources: none

Essential/useful computational resources: None is essential; however, a graphing package could

be useful.

Example of an acceptable approach:

(1) f(x) =X2 + ex + d;fN(X) =2x + e. SOfN(X) =aif and only if x =--:{. There is always one critical

point for each choice of e and d; the choice of d does not affect the x coordinate of the critical point.

(2) The critical point must be a minimum. Several justifications are possible, for example, the second

derivative test.

(3) To insure that the critical point occurs at an integer value of x, e must be even. The value of d is

irrelevant.

(4) Its shape will always be a parabola opening upward.

(5) g(x) = x3 + bx2 + ex + d; g '(x) = 3x2 + 2bx + e; g N(X) = 6x + 2b. So, the one inflection point
-b

always occurs where x =T .

(6) All three parts of this question depend on g '(x) =3x2 + 2bx + e = O.

(a) No solutions: (2b)2 - 4(3)(e) < amust hold. This gives e > ~2. Further, from question (5), we

know that b must be a multiple of 3 if the inflection point is to have an integer value for x. One

particular example is b = -6, e = 38, d = 100, yielding the function given by g(x) =x3 - 6x2 +
38x + 100.
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(b) One solution: (2b)2 - 4(3)(e) = 0 must hold. This gives e = ~2. Again, we know that b must

be a multiple of 3. The critical point of any satisfactory function occurs at x =if~) =-f ' the

same x-coordinate as the inflection point. One particular example is g(x) =x3 - 6x2 + 12x +

100.

(c) Two solutions: (2b)2 - 4(3)(e) > 0 must hold. This gives e < ~2. Now, to insure that the

critical points occur at integer values of x, we need to think about the form of g'(x) =3x2 + 2bx

+ c =O. Since b must be a multiple of 3, we can let b =3k and the formula becomes 3x2 + 610:

+ c =O. If we were able to factor a 3 out of this equation, we would be closer to the goal; so let

e = 3m, and we get 3x2 + 6kx + 3m =0 or x2 + 2kx + m = O. We could use either of two

techniques to proceed from here; one would be to use the discriminant of the quadratic formula

and choose k and m so that (2k)2 - 4m is a perfect square, say p2. Then the two critical points

would be P"2 2k and P~22k . For example, if k =5 and m =9, then p = 8 and the critical

points are -1 and -9. If we choose d =50, we get a good example: g(x) =x3 + 15x 2 +27x +

50. The other approach is to pick two roots and then determine k and m. For example, let 6 and

-2 be the two roots. Then (x - 6)(x + 2) =x 2 - 4x - 12 = 0 yields k = -2, m = -12 and

b =-6, e =-36. Then if we choose d =50, we get a good example: g(x) =x3 - 6x2 - 36x +

50.

(7) The answers to this question are open-ended. For (a), one correct answer is to let b = 3k (k any

integer), e =3k2 + 1, and d =any integer. For (b), one correct answer is to let b =3k, e =3k2, and

d be any integer. For (c), either of the techniques described in (6c) would be a good reply.

(8) hex) =.x4 + ax3 + bx2 + ex + d; h '(x) =4x3 + 3ax2 + 2bx + e. If we choose to let a =4k, b =2m,

and e = 4n (k, m, n integers), then h '(x) =0 becomes 4x3 + 1210:2 + 4mx + 4n =x3 + 3kx2 + mx+

n = O. As mentioned in the hint, a general technique is to pick 3 roots at integer values, then

determine k, m, n, and hence, a, b, and e. The 3 roots picked will have to add to a multiple of 3

because the coefficient of x2 is 3k. For example, let the roots be -1,2, and 5. Then

(x + 1)(x - 2)(x - 5) =x3 - 6x2 + 3x + 10 =O.

Thus, k =- 2, m = 3, n = 10, and a =-8, b = 6, and e = 40. So a good example of a quartic

function with 3 critical points at integer values of x is hex) =.x4 - 8x3 + 6x2 + 40x - 15.

Conjectures we expect that some students will make: Coming up with "nice" examples is not

as simple as one might first think.

Questions for further exploration:

(9) Can you find an example with 3 critical points and 2 inflections points, where all critical and

inflection points occur at integer values of x? (This is a very difficult problem, you will do very
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well to make any progress on it. The following solution involved a few pages of algebra followed

by using a computer program to search for combinations of critical points and inflections points that

satisfied the algebraic requirements. This is the simplest example I know of: hex) =.x4 - 44x3 +
432.x2, which has critical points at x =0, 9, and 24; and inflection points at x =4 and 18. I would

be very pleased to hear of any examples you or your students may find.)

(10) For the quartic, hex) =x4 + ax3 + bx2 + ex + d, what possibilities are there with regard to the

number of critical points and the number of inflection points? Investigate, give examples, and

produce general rules where possible. For example, if there are two inflection points and two

critical points, must one of the critical points also be an inflection point? One example of this is hex)

=.x4 + 4x3 + 1, which has critical points at x =-3 and 0, and inflection points at -2 and O.
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Title: Cruise Control

Authors: Eric Robinson, John Maceli, Diane Schwartz,
Stan Seltzer, and Steve Hilbert, Ithaca College

Problem Statement: You have been hired as a mathematical analyst for a major car

manufacturer. A "cruise control" system is to be designed for a mid-size car. The problem is first

broken down into two parts: designing a system to convert real speed into recorded speed; and

designing a mechanical apparatus which either slows down or speeds up the car depending upon its

recorded speed and a "speed set." Your job is to solve the first part of the problem.

The solution to the problem of converting real speed into recorded speed is again split into two

stages. In the first stage, a metal pin is secured to the inside of the hub of the right front wheel of the

car. This pin registers one unit on a counter with each revolution of the wheel. (See Figure 1.)

READER
COUNTER UTRANSMITTER DISPLAY

TIMER
HUB

PIN

"
Figure 1

The counter is connected to a timer and a transmitter. In the second stage, the transmitter transmits the

total count (i.e. number of revolutions of the wheel) to a "reader" each second (hence the need for the

timer) and then the counter is cleared (i.e. set back to zero). The reader converts each such count into a

recorded speed and displays that speed on a digital speedometer.

The hub of the wheel has a radius of seven inches. Furthermore, the distance from the center of

the wheel to the ground is twelve inches.

A) Give a rule for a function which has as its input (domain) the real speed of the car and which has as

its output (range) the count that would appear on the counter each second for a car traveling at that

speed. Draw the graph of this function. Limit the domain of your graph to the interval [50, 60].

B) Give a rule for a function which has as its input the count per second that could be transmitted by

the transmitter and which has as its output the recorded speed of the car. Draw the graph of this
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function.

Problems/or Student Investigation

C) Explain how the functions in A) and B) should be combined to give a function that has as its input

the real speed of the car and as its output the recorded speed of the car. Carefully, draw the graph

of this function over the interval [50, 60].

D) Assume now that the cruise control device is about to be constructed. You, however, can see from

examining your results thus far that there might be a problem when the control is "set" at 55 mph.

Explain.

E) Two design alterations have been suggested to make the system better. One suggestion is to add

additional equally spaced pins around the hub of the wheel. (Say, for example, there would be 4

pins around the hub.) The formula the reader uses to convert the transmitted count into a recorded

speed would have to be changed, of course. The second suggestion would be to transmit the count

every 0.5 seconds instead of every second. How would the graphs in A), B) and C) change with

either of these suggestions? Would you recommend implementing either or both of these

suggestions? Why? Are there other improvements that you would suggest making? Support your

suggestions.

F) Suppose that the car manufacturer now wishes to devise an instrument that could keep track of the

total distance traveled while the cruise control is activated. How would you suggest that this be

done?
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Information for the instructor only:
Problem abstract: This project is designed for early use in Calculus 1. It serves as an application of

the concepts of composition of functions, piecewise - defined functions, and graphical analysis of

functions. The project also serves to motivate the concepts of limits and continuity. Most importantly,

the project forces the students to deal with a function as a device which determines a unique output for a

given input, rather than as just an algebraic formula.

Prerequisite skills and knowledge: Functions as represented by graphs and formulas,

composition of functions

Essential/useful library resources: none

Essential/useful computational resources: none

Example of an acceptable approach: The following table lists the correspondence between

clicks/second (that's 241t inches/second) and miles per hour.

Clicks/second

1
11
12
13
14
15

MPH

4.284
47.124
51.408
55.692
59.976
64.260

A) Using the above table, one can derive a formula using a piecewise definition or the greatest

integer (or least integer) function. The students should graph this step function.

B) Again, the above table can be used to give a piecewise definition or one could give a formula

such as

!(C) =Round (4.2840 * C)

where C is the clicks/sec and Round denotes the rounding to the nearest integer function.

C) Composing the answers to A and B yield another step function, not the identity. For

example, if the real speed of 54 mph is the input, the output will be 51 or 56 mph, depending

on decisions the student makes.

D) As discussed above, since 55 mph does not correspond to an integer number of clicks/sec.,
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the recorded output will not be 55 mph, regardless of the actual speed.

E) Increasing the number of pins causes uniform, but not monotonic, convergence of recorded

speed to actual speed (up to the precision of the recorded speed).

Shortening the transmission period will lessen the accuracy.

F) One suggestion is to use a counter that does not get reset every second.
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Title: Security System Design

Authors: Steve Hilbert, John Maceli, Eric Robinson,
Diane Schwartz, and Stan Seltzer, Ithaca College

2S

Problem Statement: You are designing a security system for a hospital. The hospital keeps its

supply of drugs in a storeroom whose entrance is located in the middle of a 40 foot long hallway. The

entrance is a three foot wide door. The hospital wishes to monitor the entire hallway as well as the

storeroom door. You must decide how to program a detector to accomplish this. The detector runs on a

track and points a beam of light straight ahead on the opposite walL The beam reaches from the floor to

the ceiling. Think of the hallway as a coordinate line with the middle of the door at the origin and the

hallway to be watched as the interval [-20, 20]. You need to decide what x(t) is for t, where x(t)

represents the position of the beam at time t (in seconds).

storeroom
IXX)R

+- >-
mACK ,/

DEIECIDR

Figure 1

mACK

Figure 1 shows the beam pointing at the origin (i.e. the middle of the door, so if the detector was at

this position at some time T we would write x(T)=O). As another example x(5) =-15 would mean that

the beam is pointing at the part of the wall 15feet to the left of the middle of the door 5 seconds after the

detector starts.

Part1:

a) Draw a graph of x versus time for what you think is a good choice for x(t). Assume that t

ranges from 0 to 10 minutes. Be sure to elaborate on why you think this is a good choice.

b) The beam must stay on an object for at least one-tenth of a second in order to detect that object.

If the width of a person is 1 foot decide whether your answer to a) will detect a person standing
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anywhere in the hallway. Explain.

Problems for Student Investigation

c) For your answer to a) compute the longest time interval that the door will not be under

surveillance. Remember the door is 3 feet wide and assume that as long as the beam is hitting any part of

the door it is under surveillance.

d) Investigate whether an intruder could get to the door by walking down the hallway without

being detected by your system. Explain how she could do it and how likely you think it is. This may

inspire you to revise your answer to a).

e) What if the intruder is running?

Part2:

a) Find a rule (function) for x(t) for the first 10 minutes. This part of your report should include

any restrictions on possible rules for x(t) and reasons for these restrictions. For example, x(t) should

never be less than -20 because the hall only goes from -20 to 20.

b) The beam must stay on an object for at least one-tenth of a second in order to detect that object.

If the width of a person is 1 foot decide whether your answer to a) will detect a person standing

anywhere in the hallway. Explain.

c) For your answer to a) compute the longest time interval that the door will not be under

surveillance. Remember the door is 3 feet wide and assume that as long as the beam is hitting any part of

the door it is under surveillance.

d) Investigate whether an intruder could get to the door by walking down the hallway without

being detected by your system. Explain how she could do it and how likely you think it is. This may

inspire you to revise your answer to a).

e) What if the intruder is running?

Pan3:
Relate your answers from parts 1 and 2.
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Information for the instructor only:
Problem abstract: This is an open-ended project. The fact that there is no "right" solution is very

enlightening for many students who think that problem-solving consists of searching for a similar

problem that is worked out in the text.

This is a cyclical project. The students are asked to rethink their solution several times (e.g., parts

l a, lb, ld). They are also asked to approach the problem first on a geometrical level (part 1) and then on

a computational level (part 2). Hopefully, this project will cause the students to realize the power of

approaching a problem using both geometrical and computational techniques.

This project involves several mathematical concepts (depending on the students' approach): the

relationship between position and velocity, amplitude and period of functions (probably sine or cosine),

and sawtooth functions.

Prerequisite skills and knowledge: Derivatives, velocity as slope of the position function

EssentiaIluseful library resources: none

Essential/useful computational resources: none

Example of an acceptable approach:

Part 1: One answer would be a sawtooth wave with amplitude 20 and slope 10 or -10, where the

independent variable is time in seconds and the dependent variable is position in feet.

x

This scheme can always detect a person standing still under the assumptions in b). You may want

the students to make the corners rounded since an instantaneous change in velocity from -10 to 10 is

unrealistic; and if it could be done it would also be very hard on the detector.

There are obviously many other possible schemes. One type of alternative scheme is to have the

detector scan from the storeroom door to the end of the hallway at 10 ft/sec (or slower if a moving

person is to be detected) and then return to the storeroom door very rapidly (say 40 ft/sec) and spend a

few seconds scanning the storeroom door (since protecting the storeroom is our ultimate goal). Other

variations might include some sort of random behavior so the path of the detector would not be

predictable to an intruder.
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Parts 1d, 2d, and 4 are interesting since a person walking or running in the direction opposite the

direction of the scanner will not stay in the beam very long and so may not be detected (obviously all of

this depends on assumptions made concerning the speeds of the detector and the intruder).

Part 2: The students may opt to find a formula for their part 1 answer, but unless they used a sawtooth

or sine wave, the formula may be elusive. Another approach would be to use a sine function for its

computational simplicity, but it suffers from the disadvantage of moving most quickly at the storeroom

door (minimizing the protection of the storeroom) and lingering at either end of the hallway. The

students should discuss this type of disadvantage if they choose such a formula.

Part 3: This part could be very interesting if the students have an elaborate graphical solution to part 1

and a simple formula solution to part 2. Their pondering of this part should cause an appreciation of

approximations, piecewise-defined functions, and mathematical modeling in general. This part may also

be an excellent precursor of Fourier series.

Questions for further exploration:

1. For your answers to parts 1 and 2, describe how you could defeat your system given your

complete knowledge of the system. Be sure to supply details about how you would traverse the

hallway and the amount of time you spend to unlock, open and close the storeroom door.

2. Discuss how likely you think it would be for someone without knowledge of your system to be

able to defeat it.
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Title: Designing a Pipeline With Minimum Cost

29

Author: John Ramsay, College of Wooster

Problem Statement: A common problem encountered by the oil industry is determining the most

cost effective pipeline route in connecting various wells in an oil fertile area. The attached map is a

section of a U. S. Geographical Survey Contour Map of northeast Ohio with wetland(swamp) area

outlined for clarity. An existing oil well is located approximately at the point labeled B. If a new well is

to be dug at point A, a pipeline installation company must be directed as to where to lay connecting pipe.

In consultation with the installation company, the following information has been obtained:

-Straight, two-inch coated pipe must be used at a cost of $1.50/ foot.
·A maximum of two elbow joints may be used. Assume that the elbow joints may be fabricated
with any angle measure.

-In crossing normal terrain, installation cost is $1.20/ foot.
•Installation in the wetland area requires an additional Track Hoe at a cost of $60/ hour.
-In a 10 hour day, a Track Hoe can dig approximately 300 feet of trench.

Determine the pipeline route connecting the new well at A to the well at B which incurs the least cost.

Suggestions: First, solve the problem as if the wetland separating A and B were a rectangle, then

improve on this solution by modeling the wetland area more accurately. Also, reduce the number of

paths to consider before you begin modeling. For example, one need not consider a path around the

swamp to the north since it is further than the path around the swamp to the south and both traverse only

normal terrain.
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Information for the instructor only:
Problem abstract: This project is a more realistic version of a common textbook problem. It is

surprising how quickly such a problem becomes extremely difficult. If the wetland in question cannot be

approximated with a fairly simple polygon, a reasonable cost equation is hard to find. In this particular

case, a rectangular or general trapezoidal shape can be used and both yield interesting results. Students

will need to address the complexity of modeling a seemingly simple problem and should learn a great

deal about making assumptions, sifting through given information and considering the many cases which

must be dealt with in applied problems. We note that this becomes an excellent two-variable optimization

problem if the elbow joint restriction is lifted.

Prerequisite skills and knowledge: Theory of extrema. If the two elbow joint restriction is lifted,

the problem becomes a two-variable optimization.

Essential/useful library resources: none

Essential/useful computational resources: The solution will probably involve solving a system

of equations involving square roots, which quickly reduce to quadratics and hence a calculator would be

sufficient. However, a graphical or symbolic computation tool would be useful.

Example of an acceptable approach: Following the suggestion, we first model the swamp with a

rectangle.

400
--,-
250TA

•

1000

1
Clearly there is no point in moving west from point A. Cutting through the swamp in a northeast

direction is also clearly not least expensive. Finally, laying pipe around the swamp to the north is further

than laying pipe around the swamp to the south. Hence, from point A, we must move south along the

swamp or begin cutting through the swamp in a southeasterly direction. We make the following notes

for future reference:



32 Problems for Student Investigation

Notel: The cost of laying pipe around the swamp to the south is (1.50 + 1.20) x (1000 + 400 + 150) =

$4185.00.

=

Note 2: The cost of laying a straight line of pipe from A to B is (1.50 + 1.20 + 2.00) x...) 8502 + 4002

... $60/hour additional track hoe=$4415.25. (The additional $2.00 III the cost per foot comes from 30 feet/hour

$2.OO/foot.)

There are two reasonable models depending on whether we exit the swamp on the south side or

the east side. If we let x denote the distance along the west bank before cutting across the swamp and y

denote the distance covered along the exiting bank after exiting the swamp we can see the two models as

follows:

250
A

l100-y

250
A

x x

y

Route Model 2

1000-x \ B
150

40~0~_yt::::==:::.J
400

Route Model 1

Y
B

'--- ~ 150

1000-x

Route Modell: A quick look at the diagram for this route shown above lets us assume, without loss of

generality, that y =O. Hence, the cost is given by

cost =2.7x + 4.7...) (850- x)2 + 4002 o::; x ::; 850.

(x < 0 implies a northward initial direction and 850 < x < 1000 will always be more expensive than

x =850 as more pipe will be laid on normal terrain and through the wetland. The minimum in this case

occurs at x = 569 with associated cost $3834.

Route Model 2: Unless y =0 or y =400, this route violates the two elbow joint restriction. For any x,

y = 0 yields a route clearly more expensive than the route of Note 2 above and y = 400 forces x to be

1000 and we have the route of Note 1 above. Hence this model contributes no new information.

However, a full solution to the two variable optimization problem is included here in case the instructor

chooses to lift the two elbow joint restriction.
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The cost in this case is 2.7x +4.7~(1000- x)2 + (400 - y)2 + 2.7y + (2.7)(150). This has a

critical point at x = 1000, y = 400 (partials do not exist). There are no critical points inside the region

o:::; x :::; 1000, 0 :::; y :::; 400. One can show that when x =0 the cost is minimal for y =0 and when

y =0 the cost is minimal when x ""719.

One must consider the boundary of the domain region. If x =1000, we minimize the resulting

function ofy to gety =400. Similarly, ify =400 we minimize to get x = 1000. This is simply the route

of Note 1 above and the associated cost is $4185. Ifx =0 the cost achieves its minimum value of $5467

when y =O. On the other hand, if y =0 the cost is minimal for x =719. The associated cost in this case

if $4644. We conclude that Route Model 2 has minimal cost $4185 when x = 1000, y = 400. That is,

we avoid the swamp entirely.

Thus, in the rectangular model we should go south from A 569 feet, then angle directly to B for a

total cost of $3834.

If we model the swamp more accurately, the problem begins to get even more complicated. Take

the following model, for example:

550
1000

• B

In this case, we obtain

cost =2.7(550 + 680 - x) + 4.7..Jx2 + 2502 - 2x(250)cos(36°)

which has a minimum at x = 305. This yields a cost of $3340, the least found so far! Note that the

solution to the rectangle model above covers the other set of possible paths relevant to this model. Also
--,

note that, as before, there is a discontinuity at x =O. When we compute the cost of going around the

swamp in this direction we get 2.7(250 + 680 + 550) =$3996, clearly not the minimum.

Conjectures we expect that some students will make: It is not likely that students will consider

the discontinuity question addressed above. One would like, however, for them to see that the path

around the swamp needs to be calculated separately in many cases.
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Questions for further exploration: The same problem, using points C and D is a much more

challenging one. It is quite open ended as far as what might be a "best" path. Students will need to

make a number of assumptions in order to get at this one.

Special implementation suggestions: If students try to model the swamp with non-polygonal

shapes, they will have great difficulty. They should either be told this at the outset or their progress

should be monitored to keep them from running into this problem.
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Title:

Author:

Crankshaft Design

Steve Boyce, Berea College

Problem Statement: In a reciprocating internal combustion engine, each piston is housed in a

cylinder and attached to the rim of the crankshaft by a connecting rod as indicated in the figure below.

The piston moves back and forth in the cylinder, and, in response, the crankshaft rotates.

p

Among the factors which determine the stress on certain engine parts are the speed and

acceleration of the pistons. This seems plausible in the case of a connecting rod, for example, since

force is proportional to acceleration and one of the main forces exerted on a connecting rod comes

directly from its linkage to the piston. One common indication of this relationship between stress and

piston motion is the warning "red line" found on tachometers in some sports and racing cars. A

tachometer displays engine speed measured in revolutions per minute (rpm's) of the crankshaft. To push

an engine past its "red line" rpm level is to risk serious damage due to excessive stress on pistons,

connecting rods and the linkages between the connecting rods and the pistons and the crankshaft. In this

problem you are asked to investigate various aspects of the relationship between crankshaft rpm's,

piston speed and acceleration, connecting rod length and crankshaft radius.

1) In a certain automobile, suppose a 60 miles per hour cruising speed results from the crankshaft

rotating counterclockwise at the constant rate of 3000 rpm's. If the radius of the crankshaft is 1 inch

and the length of the connecting rod is 4 inches, find the piston's maximum and minimum velocity

(in feet/second accurate to the nearest hundredth) and acceleration (in feet /sec2 accurate to the nearest

whole number).

2) Is the piston motion in part (a) sinusoidal? That is, can the motion be described by a function of the

form x(t) =A + Bsin(Ct + D) for appropriately chosen constants A, B, C and D? [x(t) is the x

coordinate of P in feet after t seconds.]

3) a) In designing an engine, a decision must be made as to how long the connecting rods should be. Is

it better to have them as short as possible or longer? How much longer?

b) One question that arises in this connection is how changing the connecting rod length would affect

piston velocity and acceleration. Assuming the crankshaft's rotational velocity and radius hold
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constant at 3000 rpm's and 1 inch respectively, investigate the relationship between connecting

rod length and maximum absolute value of piston velocity and acceleration.

c) Do your results suggest any conclusions regarding ideal connecting rod length?

d) What other factors seem likely to have an important bearing on the question of connecting rod

length?

4) Another design question concerns the radius of the crankshaft and what's gained or lost as it changes

size. Assuming the crankshaft speed is 3000 rpm's and the connecting rod length is 4 inches, find

the maximum absolute value of piston velocity and acceleration if the crankshaft radius is doubled to

2 inches. If you assume the engine can generate approximately the same average piston speed

regardless of the crankshaft radius, what trade-off does your result suggest is involved in making

the crankshaft radius larger? That is, would the larger radius seem more appropriate for a dump

truck or a race car? Why?
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Information for the instructor only:
Problem abstract: The goals of this project are to involve students in (a) geometric and trigonometric

modeling; (b) the use of a computer and numerical estimation in performing max/min calculations that

would be difficult to carry out analytically; (c) the use of a computer in investigating the effect of

parameter variation; (d) the real-world interpretation of modeling results; (e) the clear and carefully

reasoned written/oral explanation of analysis, conjecture and speculation related to an open-ended

problem. While the problem statement does not pretend to be representative of the complexity involved

in engine design, it is hoped that engaging it might at least tickle the student imagination--even for those

heretofore totally uninformed about engines--regarding some possible interfaces between design

questions and calculus.

Prerequisite skills and knowledge: This project can be assigned any time after students have been

introduced to the first and second derivatives as velocity and acceleration and to the use of a software

package capable of generating 2-dimensional graphs and enabling one to estimate with reasonable

accuracy the maximum and minimum values of the first and second derivatives of a given function.

However, without some additional knowledge (for example, familiarity with parametric equations) most

students will find this project very challenging. Analytic work can lead to some nice insight, especially

in part (3). For that purpose, it would be necessary to obtain (either by hand or through use of a

computer algebra system) a derivative formula requiring the differentiation of sine and cosine functions

and use of the chain rule. Reaching an appropriate conclusion in part (4) would be facilitated by some

acquaintance with the concept of torque, at least to the extent of understanding that the strength of the

turning effect on the crankshaft increases as the radius of the shaft increases.

Essential/useful library resources: none

Essential/useful computational resources: It is essential to have a software package which can

be used to estimate with reasonable accuracy the maximum and minimum values of the first and second

derivatives of a given function. It would be useful but not essential to have software capable of

generating 2-dimensional graphs and obtaining simplified formulas for derivatives.

Example of an acceptable approach:

1) The stumbling block in part (1) may well be finding an appropriate function model for the piston's

motion. To do so, first note that t seconds after beginning from (1,0) the point Q in Figure 1 has

coordinates (cos(100nt),sin(100m)) since 3000 revolutions per minute is equivalent to one revolution

every 1/50 of a second.
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.--.--.. Q(cos(lOO1tt), sin(lOO1tt»

Figure 1

p

It follows that x(t), the x coordinate of P in feet after t seconds, is given by

x(t) = (cos(1001tt) + the length of RP) / 12

= ~(cos(lOO1tt) +~16 - sin(lOO1tt)2 )
12

(by the Pythagorean Theorem).

As one would expect, a graph of the first two periods of xU), shown is Figure 2, has a sinusoidal
appearance.

.5

,040'-- --'-- --' -'-- --'

Figure 2

While the rest of part (1) is straightforward in concept, hand calculation of the derivatives and their

zeroes would be a daunting task. It is a good time to use an available software package to obtain

estimates of the maxima and minima of the velocity and acceleration. One-period velocity and

acceleration graphs and extrema estimates are given below.
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Figure 3: velocity

7000

-11000
Figure 4: acceleration

39

Vmax = 26.99 ftls at t =.0157

Vmin =-26.99 ftls at t =.0043

Amax = 6,169 ft/sec? at t =.01

Amin =-10,281 ftlsec2 at t =0 and .02.

2) The appearance of the graphs in Figures 2 and 3 and the fact that x(t) is generated by uniform circular

motion suggest that the piston's motion is sinusoidal. So it is interesting to note that this is not actually

the case. This is apparent from the graph of the second derivative which indicates that the curvature of

x's graph is greater at its relative minima than at its relative maxima. Alternatively students might note

that if x were sinusoidal then x " would be also since x(t) =A + B sin(Ct + D) implies that x" (t)= -e2B

sin(Ct + D); it is clear from the lack of symmetry about the x-axis that x " does not have this form.

Another explanation might be based on a table of values for x and the observation that small increments

in t cause greater changes in x(t) near 0 and .02 than they do near .01.

3) The most likely approach is to estimate, with computer assistance, maximum absolute values for the

velocity and acceleration of

x(t) = 112 (cos(1001tt) + -IL2 - sin2(l001tt) )

for various values of the connecting rod length L. The following table contains such estimates for

integer values ofL from 2 (the smallest possible L value) to 7 along with the first period times when they

occur.
L IVI max fls t IAI max f/s2 t

2 29.41 .00376, .01624 12,337 0, .02
3 27.61 .00407, .01593 10,966 0, .02
4 26.99 .00430, .0157 10,281 0, .02
5 26.7 .00440, .0156 9,870 0, .02
6 26.54 .00450, .0155 9,595 0, .02

7 26.45 .00456, .01544 9,399 0, .02
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These calculations suggest that both IVI max and IAI max decrease as L increases, but at a decreasing

rate. In fact, the IVI max figures look suspiciously like the beginning of a convergent sequence. It is not

beyond strong first year students to uncover parts of the following argument showing that IVI max does

converge to 1()()1t/12 "" 26.18 ft/s:

x'(z) = .l.-(-lOO1tSin(lOO1tt) ­
12

501tsin(2001tt) J () f( L) h= S t + t, were
~L2 - sin2(lOO1tt)

1. 501tsin(2001tt)
s(t) = -·-lOO1tsm(lOO1tt) andf(t, L) = - ~ .

12 12 L2 - sin2(1001tt)

501t
Note that If(t,L)1 ~ ~ = M(L).

12 L2-1

It follows that

s(t) -M(L) ~x'(t) ~ s(t) + M(L),

and taking the maximum of all parts with respect to t yields

max (s(t» - M(L) ~ max x'(t) ~ max (s(t» + M(L).

Since

lim M(L) = 0, we have lim max x(z) = lim s(t) = -1001t/12 "" 26.18.
L~oo L~oo L~oo

A similar (but messier) argument can be used to show that

lim max x"(t) = lim s '(t) =(lOO1t)2 / 12 "" 8225.
L~oo L~oo

With or without the convergence arguments, the results of numerical experimentation (see, for

example, those reported in the table above) are enough to suggest that (1) if piston velocity and

acceleration were the only considerations, then the longer the connecting rods the better; (2) velocity and

acceleration are most sensitive to changes in L when L is near its minimum value of 2; and (3) after a

while, further increases in L yield only very small reductions in piston velocity and acceleration.

Examples of other factors which would influence any decision about connecting rod length include

engine block size and weight (the longer the connecting rods, the bigger and heavier the block must be)

and strength of the connecting rods (the longer the connecting rods, the greater is their tendency to flex

under a load).

When the crankshaft radius doubles from 1 to 2 inches while all other factors are held constant,

the piston velocity and acceleration more than double:
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radius

1
2

L

4
4

IVI max fls

26.99
58.8

IAI max f/s2

10,281
24,674

41

4) Looked at another way this means that if the engine is able to generate about the same average piston

speed, then the crankshaft rotational speed will diminish as the radius increases. Since it is crankshaft

rotation that is translated by the transmission and differential into movement in automobiles and trucks,

diminished rotational speed translates into diminished vehicular speed-all other factors being equal!

If speed is lost as crankshaft radius increases, what is gained? The answer is the torque since the

crankshaft radius is the approximate length of the arm on which the force applied through the connecting

rods acts. A reasonable expectation based on this analysis is that truck crankshafts would in general

have larger radii than their counterparts in race cars.
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Title:

Author:

Valve Cover Design

Steve Boyce, Berea College

Problems for Student Investigation

Problem Statement: A device similar to the one pictured below is sometimes used within a

larger assembly of mechanical parts to periodically cover and uncover valve openings.. As the circular

shaft turns counterclockwise, a rigid connecting rod QP causes the valve cover to move back and forth

between A and B.

A P B

This project considers two questions related to the design of such an assembly. First, for a

given shaft radius and connecting rod length, how far to the left and right would the valve cover move?

Second, it may be important to estimate the stress on certain parts. In the case of the connecting rod, for

example, one preliminary step would be to estimate the acceleration of the valve cover as it moves

between A and B. This stress-acceleration connection seems plausible since force is proportional to

acceleration and one of the main forces exerted on the connecting rod comes from its linkage to the valve

cover.

Suppose the shaft rotates at the constant rate of 60 revolutions per minute, the radius of the shaft

is 1 inch, the connecting rod is 4 inches long and the horizontal axis on which the valve cover moves is 3

inches below the center of the shaft. In particular, assume that the connecting rod length and the location

of the valve cover axis are well matched in the sense that there is no binding as P passes back and forth

between the third and fourth quadrants. Estimate the extreme left and right positions of P, the maximum

absolute value of the valve cover's velocity and acceleration and the time at which each occurs. Also

estimate the valve cover's velocity as P passes through the y-axis. Discuss any interesting or surprising

features you observe in P'S motion. How would it differ if the shaft's rotation were clockwise instead of

counterclockwise? Give all answers in units involving inches and seconds accurate to the nearest

hundredth at least.
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Information for the instructor only:
Problem abstract: The goals of this project are the involvement of students in geometric and

trigonometric modeling requiring use of a spliced function, the use of the computer and numerical

estimation in performing max/min calculations that would be difficult to carry out analytically, the real­

world interpretation of modeling results, the use of computer/calculator-generated graphs in developing a

model and investigating its properties, the use of one-sided limits in determining limiting velocity and

acceleration at a cusp, and the clear and carefully reasoned written or oral explanation of project work.

While the problem statement does not pretend to be representative of the complexity involved in actual

design, it is hoped that the element of realism will stimulate a sense of purpose and provide a context for

motivating and reflecting on the meaning of a modeling effort.

Prerequisite skills and knowledge: This project can be assigned any time after students have been

introduced to interpretation of first and second derivatives as velocity and acceleration and to the use of a

software package capable of generating 2-dimensional graphs and enabling one to estimate with

reasonable accuracy the maximum and minimum values of the first and second derivatives of a given

function. However, without some additional knowledge (for example, familiarity with parametric

equations), most students will find this project very challenging. It is helpful, but not necessary, to

obtain a derivative formula (either by hand or through use of a computer algebra system) requiring the

differentiation of sine and cosine functions and use of the chain rule.

Essential/useful library resources: none

Essential/useful computational resources: It is essential to have a software package that can be

used to generate 2-dimensional graphs and to estimate with reasonable accuracy the maximum and

minimum values of the first and second derivatives of a given function. It may be useful (but is not

essential) to have software capable of obtaining simplified formulas for derivatives.

Example of an acceptable approach: It would be surprising if students did not experience some

difficulty in getting the modeling underway. A likely (possibly with some instructor assistance) and

constructive first draft effort at modeling the valve cover's motion would begin with the observation that

t seconds after beginning from (l,0), the point Q in Figure 1 has coordinates (cos(21tt), sin(21tt».
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A

Figure 1

B

Since the figure given in the problem statement encourages focus on the fourth quadrant, it may

at first seem that after t seconds the x coordinate of P in inches should be given by

x(t) =length of SR + length of RP.

Thus, using the Pythagorean Theorem, we have

x(t) =COS(27U) + ...}16 - (sin(2nt) + 3)2

If this is the expectation, then the graph of x(t) shown in Figure 2 should produce a surprise: P appears

to stay entirely in the fourth quadrant moving back and forth between Sand A.

Figure 2
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Reflection at this point should suggest to students that a different formula is required to describe

the valve cover's motion when it passes into the third quadrant - the square root term should be

subtracted rather than added. This gives rise to the following splice function; the domain shown is for

the first full period given that Q begins at (l,0) with P in the fourth quadrant:

{
cos(21tt)+~16-sin(21tt)+3)2 for 0 s t ~ 0.25 or 1.25 s t ~ 2

x(t) =
cos(21tt) - ~16 - sin(21tt)+ 3)2 for 0.25 ~ t ~ 1.25.

A graph of the negative branch of this function (when the square root term is subtracted and Pis

held in the third quadrant) is shown is shown in Figure 3 and the superposition of the two, yielding a

graph of the splice function, is given in Figure 4.

o

-4
Figure 3

5

-5
Figure 4

While finding extreme values for P's position, velocity and acceleration is straightforward in

concept, carrying the calculations through by hand would be quite difficult. It is a good time to turn to

an available software package for assistance. Extreme values of the position function (to the nearest ten

thousandth) of 4 and -4 occur at t "" 0.8975 and 0.6025 respectively. Computer-generated graphs of

velocity and acceleration for the positive branch (when the square root is added) and estimates of their

extreme values are given below in Figures 5 and 6.
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10

IVI max " 18.85 at t "" 0.25

Figure 5: velocity

Problems for Student Investigation

1a

IAI max " 73.59 at t '"" 0.0998

Figure 6: acceleration

The velocity function in this model does not actually take on a maximum absolute value since, as

Figures 2 and 5 suggest, the derivative of the positive branch is undefined at t = 0.25. However, with

computer assistance, students should be able to find good approximations for the two one-sided limits:

lim x'(t) '"" -18.8496 '"" -61t and lim x'(t) "" 6.2832 = 21t.
t~.25- t~.25+

Obtaining these figures by hand would be, as one would expect, relatively difficult. For the

negative branch of the splice function, the situation with respect to extreme values is identical except that

the absolute value of the acceleration is taken on at t"" .502 and the values of the one-sided limits of the

derivative at .25 are reversed.

Of special interest are the transition points between the two branches of the splice function; i.e.,

the points in time, t =.25 and t = 1.25, when P is passing through the y-axis, Figure 4 gives the
appearance of a "smooth" transition from one branch to the other. If we let vp and vn denote velocity on

the positive and negative branches respectively, then evidence for this "smoothness" can be found by

discovering, with computer assistance, that

lim vp(t)= lim vn(t)""-61tand lim vn(t)= lim vp(t ) = 21t.
t~.25- t-7.25+ t~1.25- t~1.25+

It may seem surprising that P'S speed in passing through the y-axis is different when moving to

the left as opposed to the right. A reason for this lack of symmetry can be discovered by visualizing P'S

movement through one entire period; in other words, through two revolutions of the shaft. In



Valve CoverDesign 47

particular, note the difference in the orientation of the connecting rod when t approaches .25 from the left

as opposed to when t approaches 1.25 from the left. This observation may prompt the conjecture that if

the shaft were rotating clockwise rather than counterclockwise, then we should be able to observe that

lim vp(t)= lim vn(t)~-21tand lim vn(t)= lim vp(t)=61t.
t-".75- t-",75+ t-,,1.75- t-"1.75+

That this is indeed the case may be discovered by computer- assisted investigation of the

model in case the rotation is clockwise. Since clockwise rotation results in the point Q having

coordinates (cosf-Znr), sin(-21tt)) =(cos(21tt), -sin(21tt)) after t seconds, the only alteration required

in the splice function is to replace sin(21tt) wherever it occurs by -sin(21tt).
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Title:

Author:

The Tape Deck Problem

Matt Richey, St. Olaf College

Problems for Student Investigation

Problem Statement: Most cassette tape decks (and VCRs) have a counter which changes as the

deck operates. However, most people are unaware of the relationship between the value of the counter

and the time that the tape has been playing (the elapsed time). The purpose of this problem is to

investigate this relationship.

PartI

Collect data and derive a formula expressing time elapsed (t) as a function of counter reading (x).

That is, determine a functionfso that t =f(x) provides a reasonable "fit" to the collected data. You will

need to give considerable attention as to how to measure a good "fit."

Part II

One can model the data more accurately if the derivative of time with respect to counter reading is

considered. Recall that the derivative :~ =!,(x) can be approximated by the change in t divided by the

change in x: !,(x) ~ /),t .
/).x

Go back to your VCR to collect data and derive a formula expressing /),t as a function of x.
/).x

Now determinefand compare it to the function found in Part 1. Which "fits" the data more accurately?

Again, be certain to carefully describe how you have measured the accuracy of the "fits."
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Information for the instructor only:
Problem abstract: The goals of this project are to investigate and develop a mathematical model of an

everyday phenomenon. Ideas encountered can include empirical investigation and data collection, curve

fitting, solving simultaneous equations, approximating the derivative, and solving and setting up

differential equations. This problem is well-suited for empirical investigation. Since most students will

either own or have easy access to a cassette deck or a VCR, many will probably recognize the problem.

Most will have the initial impression that the relationship between the elapsed time and the counter is

(more or less) linear. As it turns out, it is quadratic. This problem has the benefit that it presents a

nonlinear phenomenon which is easily studied by first-year calculus students. The students can conclude

empirically that the relationship is quadratic and then apply basic modeling techniques to explain why.

The advantage of considering the derivative approximation in Part II is that the relationship at this level is

in fact linear, so the curve fitting process is greatly simplified.

Prerequisite skills and knowledge: The prerequisites for this project are minimal. It can be done

on an empirical level by students early in a calculus course. It also makes an excellent modeling project

for students recently exposed to the derivative.

Essential/useful library resources: none

Essential/useful computational resources: A computer algebra system (CAS) would be quite

useful but not necessary.

Example of an acceptable approach:

Pan!:

The students should begin this problem by simply going out and collecting data. Looking at the

time versus counter relationship, the following table of values should be representative of what they

might obtain.

time=t
o
5
10
15
20
25
30
35
40
45

end

counter =X

0000
0374
0692
0973
1227
1462
1680
1886
2080
2265
2343
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It is important at this point for the students to clearly state for what it is they are looking. The

statement of the problem asks for the time, t, as a function of the counter reading, x. Thus, this data

with t = time as a function of x = counter reading, and not the inverse relation, needs to be plotted

accurately. Note that in this table, data was collected at a constant time interval. It would certainly be

possible, and in fact better, to collect data at constant counter reading intervals. A plot of the data reveals

that the relationship between the counter and the time is not linear. At this point, the students can begin to

formulate some conjectures as to what form of curve best fits this data. A reasonable guess would be

some sort of polynomial fit, although certainly other types of guesses are reasonable.

If a CAS is not available, then there are several ways to proceed. Since the relationship clearly is

not linear, the next simplest place to look is at a quadratic fit. This means that the function takes the form

t(x) = M + Bx + C. The problem for the students will be to determine values for A, Band C. It will be

interesting to see how students approach this problem. Most should notice that since teO) =0, it is fairly

evident that an acceptable value for Cis O. The decision as to how to solve for the other values should

be rather difficult for most students. One way to find appropriate values for A and B would be to use
two pairs of points (xl' t I ) and (x2, t2) and solve the simultaneous equations

Solving for A and B can be a bit sticky, but it is not an extremely difficult task and it does give the

students practice with simultaneous equations. Using, for example, the points (374,5) and (2080,40),

one gets A =.00000344373 and B = .0120678. It would probably be prudent to repeat this procedure

several times with different pairs of points in order to get several options for A and B. Doing so could

possibly lead them into the study of matrix equations and linear algebra.

If the students have access to a computer algebra system which has some kind of curve fitting

capability, then this would be a good place to use it. For example, using Mathematica with the data

above and trying a quadratic fit, one gets

t(x) = .00469058 + .0120537x + .00000345143x2.

If one tries a cubic fit, then the quadratic part of the answer is essentially the same and the coefficient of

the x3 term is on the order of 10- 14. Similar results hold for higher order fits. Thus with a CAS, the

curve fitting part of the problem is quite simple.

Whatever the approach, the students should now verify that their function does in fact "do the

job." Perhaps the best way for them to do this is to go back to the deck from which they got their data

and check that the function does give acceptable values. What is "acceptable" is up to them, although

they should be expected to discuss the term in their report. Since we are dealing with timing cassette

tapes, an error on the order of one second is probably fine. In any case, this is a point with which the
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students should grapple. Another way to verify the correctness of the quadratic fit would be to consider

the derivative t'(x) and try to approximate it. If the relationship is in fact quadratic, then the derivative,

of course, should be linear. This approach is, in fact, what is expected in Part II.

PartII:

As given in the problem statement, approximate the derivative with

['(x) "" D.t .
~

In order to obtain values for this approximation, they will need to choose a value for L\xwhich is small

enough to yield a reasonable approximation to the derivative, but large enough to allow a reasonable

measurement of Si. For the example, with the cassette deck used earlier, a value of L\x = 10 works well.

The results of their measurements should look something like the data in the following table.

x

1-10
100-110
200-210
300-310
400-410
500-510

1000-1010
1100-1110
1200-1210
1300-1310
1400-1410
1500-1510
2000-2010
2100-2110
2200-2210

D.t
(seconds/counter unit)

L\x
.731
.766
.810
.856
.908
.953

1.151
1.209
1.250
1.283
1.325
1.369
1.565
1.603
1.644

From a plot of this data it is not hard to believe that the relationship betweenj(z) and x is linear.

There will naturally be more error of measurement here because of the difficulty of accurately timing

these relatively short intervals. To approximate this with a line, the students will likely just choose two

ordered pairs and find the slope and y-intercept for the line through these. Again, it would probably be a

good idea to try various combinations in order to see which line works "best." The students could also

carefully plot the table values on graph paper and hand-fit the "best" line through them. Also, some

students might have knowledge of linear regression or have a CAS which will find the best line in that

sense. In any case, the students should be able to get an approximation for ['(x) of the form!,(x) ""

ax + b or I(x) =i x2 + bx. For the data above and using linear regression, one gets

['tx) = .0004176188x + .7355622
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!(x) = .0002088094 x2 + .7355622x.

Converting the units from seconds to minutes gives !(x) =.000003480157x2 + .01225937x which

agrees quite closely with the previous results.

No matter how the equation for!(x) is found, at this point the students must address the accuracy

of their approximation. This is a valuable exercise because it introduces the students to the ideas of

model verification and error. Using the data above and the formj'(z) =.000003480157x2 +. 01225937x,

the students could obtain something like:

x =counter
0000
0374
0692
0973
1227
1462
1680
1886
2080
2265
2343

t =actual time
o
5
10
15
20
25
30
35
40
45

end

!(x) =projected time
o

5.072
10.150
15.223
20.282
25.362
30.418
35.500
40.556
45.621
47.829

error (minutes)
o

.028

.150

.223

.282

.362

.418

.500

.556

.621

percentage error
o

0.6
1.5
1.5
1.4
1.5
1.4
1.4
1.4
1.4

Notice that for this example the percentage error is consistently 1.5 or less. It is surprising how

well a quadratic polynomial models this phenomenon.

Conjectures we expect that some students will make: It is hoped that students will engage the

problem of choosing an appropriate function for a curve fit and will make a variety of conjectures about

the data in this process. Some students will have had experience with linear regression and may go to

that immediately in determining the time as a function of counter.

Questions for further exploration: A very interesting but much more difficult problem is to show

that the relationship is, in fact, quadratic. A project which included addressing the problem could be

done by strong students after some exposure to differential equations. A solution is included here.

The students must look more closely at how a tape deck operates. A rough schematic of the

essentials of a tape deck appears in Figure 1.
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Research on the students' part should reveal that the key facet of the operation of a tape deck is

that the tape must be pulled across the tape head at a constant rate of 1~ inches per second. Thus the two

reels must tum at varying rates during the course of a tape being played. Early on, when most of the

tape is still on the reel on the left, the right wheel (the take-up reel) turns rather quickly since it has a

relatively small radius. Later on, when more time has passed, the radius of the take-up wheel is larger

and hence it can tum much more slowly. Thus the rate of rotation mirrors the rate of change of x as a

function of t, i.e., when t is small, the rate is large and when t is large the rate is small. This might lead

one to guess that the counter is related to the turning of the take-up reel. This turns out to be the case.

Some observation should reveal that the counter effectively counts the revolutions of the wheel. More

precisely, if w represents the number of revolutions of the wheel, then x =kw where k is a constant

dependent on the deck. This relationship can be discovered very simply, for example, by more data

collection and a plot of x versus w. Therefore the question can be rephrased as: Why is the time t

quadratic in w?

It is also necessary to incorporate into the problem the constant tape speed of 1 ~ inches per

second. Since the tape is moving at a constant rate, the length of tape on the reel is proportional to the

time elapsed. Thus the question could be rephrased again as: Why is the length L of tape on the take-up

reel quadratic in the number of revolutions w? This rephrasing of the question is essential. In all

likelihood, most students will not discover it on their own. If so desired, the instructor could lead them

through this argument either in a class discussion or with a handout.

There are at least two ways to show why the length L is quadratic in w. One way is to observe

that the length of the tape times the thickness of the tape is simply the area A of the tape on the reel.

Letting Robe the radius of the hub of the take-up reel and R1 be the width of the section of the reel with

tape on it, this area is A = 1t((R1 + Ro)2 - R ~) = 1t(Rr+ 2RIRo) (Figure 2).
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Figure 2
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Figure 3

Now R 1 is just the thickness of the tape 't times the number of revolutions w. Putting all of this together,
one gets

L = Air = (1t(wt)2 + 2(w't)Ro)/'c= 1t'tw2 + 21tRow.

Another way to derive the quadratic relationship is to model the derivative C;;. This approach

could serve as an introduction to differential equations. It would fit in nicely if the students have already

approximated the derivative as a way of finding a formula for j(x). If they have done so, then it would

be natural to investigate why : is linear in x or equivalently why c:t is linear in w.

One way to begin is to ask how a little change in rotation affects the change in L, that is, find t1L

versus ~w. One might notice that as the wheel turns, more tape is added on to the outer edge, i.e., the

circumference. We obtain the approximation

t1L ",. 21tR(w)~w

where R(w) is the radius of the entire reel after w revolutions (Figure 3).

£:JM
R(w)

This is a reasonable approximation because if ~w is small, then R =R(w) is essentially constant.

In the above notation R =R1 + Ro and so R =tw + Ro. Thus

or, letting ~w ~ 0,
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From this one gets L = 1t'tw2 + 2rrRow (note that the constant of integration must be 0). Since t = LIS

where S = 1 ~ inches per second and w = xlk where k is a constant of proportionality, we obtain

1t't 21tRt(x) =-x2 + __0 x
Sk2 Sk

as the equation relating t and x. In both derivations of t(x) there are several assumptions. For example,

one must assume that the speed of the tape is exactly 1 ~ inches per second. Surely it isn't, all tape decks

vary the speed somewhat (the wow and flutter). Also, it is assumed that the tape winds up on the reel

with constant compression. That is, the tape near the center is not wound any more tightly than the tape

near the outer edge.

Special implementation suggestions: Beware: some of the newest tape decks and VCR models

use an electronic counter which is related to time elapsed in a linear fashion. Students should be led

away from such machines.





ANTIDERIVATIVES AND DEFINITE INTEGRALS
(PRE-FUNDAMENTAL THEOREM)

The projects in this section have been separated from the following section primarily because of

the break that occurs between semesters or quarters in most calculus sequences. The first two projects of

this section, Population Growth and Drug Dosage, are the only ones to use antiderivatives directly,

although the last project, A Fundamental Project, gives the students the opportunity to discover the

relationship between antiderivatives and area by means of "area functions." In both Population Growth

and Drug Dosage, students need to be able to solve v: =kyo Thus, appropriate placement in a specific

course will depend on when students in that course are familiar with the derivative of the natural

exponential function. The other three projects, Logarithms: You Figure It Out, Numerical Integration

and Error Estimation, and An Integral Existence Theorem all involve students deeply in Riemann sums

and/or numerical integration. These projects are appropriate for late in a Calculus I course or early in

Calculus II.
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Title:

Author:

Population Growth

Wayne Roberts, Macalester College

Problem Statement: It is common to assume that a population will grow at a rate that is

proportional to its size; that is, the larger the population, the larger its growth rate. If we denote

population size by p and time by t we have a population growth model1!f =kp (model 1). Solutions to

this differential equation are of the form pet) = Poekt, where Po is the initial (t = 0) population. The

constant k is assumed to be a characteristic of the population under consideration, higher for rabbits than

for people, for example. Used in the context of human population growth, model 1 is called the

Malthusian Law, in honor of Thomas Malthus (1766-1834), author of an influential essay on

overpopulation.

A second model of population growth was published by Raymond Pearl and Lowell Reed. They

contended that it was absurd to try to predict population with any equation whose value continues to

increase without bound; that the population of any confined geographic area must have an upper bound,

say M, beyond which the population will not grow. Specifically, they hypothesized certain conditions

for a satisfactory model:

1. Asymptotic to a line pet) =M when t~ +00.

2. Asymptotic to a line pet) =0 when t~ -00.

3. A point of inflection at some point t =a and p = ~.

4. Concave upward to the left of t = a and concave downward to the right of t = a.
5. Slope is never zero for any value of t.
6. Values of pet) varying continuously from 0 to M as t varies from -00 to +00.

A mathematical model which fits these conditions can be derived along the lines of model 1.

Assume that there is an upper bound M beyond which the population will never grow, and that the rate

of growth of pet) is proportional to the product of the population p and the difference M - p. (Note that
M

this term will have very little influence for small values of p as it will be near 1 but will have a dampening

effect for p near M as it will benear 0.) Model 2 can thus be written as : = kp [ M MPJ. Note that

when the population is small, the population growth rate is close to that of model 1, but as the population

size gets close to M, its growth rate becomes very small. Solutions to this differential equation are of the
Mpo " beat

form pet) = (M ) kt : Pearl and Reed used the equivalent equation pet) = t in their
Po + - Po er 1 + ce"

model.

Below is a set of questions concerning each model. Your task is to answer these questions and

submit a written report of your findings.
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(A) Modell:

(1) Verify that the equation for pet) in model 1 does satisfy the differential equation for model 1.

(2) Use the data in Table 1 below to find a good choice for the constant k in model 1. Be careful to

explain how you used the data in the table, what assumptions you made, and describe any

limitations of your equation for p(t) under model 1.

(3) Make a new column in table 1 listing predicted population under model 1. Describe how well your

version of model 1 fits the population data from table 1.

(4) According to modell, what will be the population of this country in 2000? in 201O?

(5) How well does model 1 work and why?

(B) Model 2:

(6) Verify that the equation for p(t) does satisfy the differential equation.

(7) Verify that the two forms of the equation for p(t) are equivalent.

(8) Pearl and Reed, beginning at 1780 and using the data for 1790, 1850 and a different figure for 1910

(91,972,266), published a population equation, p(t) = 29303~~·~3133951. See if you can
0.014854+e .

obtain the same equation using the same data points. Then check to see how well this function fits

the data.

(9) Pearl and Reed came to the conclusion that the maximum population for our country is

197,274,000. How do you think they got this value? Is it correct?

(10) Pearl and Reed identified 1914 as the year in which the U.S. population curve would turn from

concave up to concave down. How do you think they reached this conclusion?

(11) Using the data that has accumulated since Pearl and Reed did their work, try your hand at finding

the parameter values to best fit model 2 to the data. State your resulting population equation, your

predicted maximum population and the year in which the concavity of the population curve

changes.

Table 1: U.S. Population
year population
1790 3,929,214
1800 5,308,483
1810 7,239,881
1820 9,638,453
1830 12,860,702
1840 17,063,353
1850 23,191,876
1860 31,443,321
1870 38,558,371
1880 50,189,209

(taken from The World Almanac, 1992)
year population
1890 62,979,766
1900 76,212,168
1910 92,228,496
1920 106,021,537
1930 123,202,624
1940 132,164,569
1950 151,325,798
1960 179,323,175
1970 203,302,031
1980 226,542,203
1990 248,709,873
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Information for the instructor only:
Problem abstract: This project gives students an opportunity to consider a realistic application of

mathematics to an important social issue. The notion of fitting a curve to a set of data and using the

resulting equation of the curve to predict other (future) values of the data will be a new one for most

students.

Prerequisite skills and knowledge: This project can be assigned any time after students have been

introduced to antiderivatives and the solution of separable differential equations.

Essential/useful library resources:
(1) "On the rate of growth of the population of the United States since 1790 and its mathematical

representation," Proceedings of the National Academy of Sciences, Vol. 6, No.6, June 15, 1920,
pages 275-288.

(2) A section on population growth in any calculus text.

Essential/useful computational resources: A CAS with computational and graphing capabilities

would be helpful to the students.

Example of an acceptable approach: I address below only those questions that are not

straightforward.

(2) If we choose 1790 as the beginning (t = 0), and try 1900 (t = 110), we get 3.9 =Po eO , and

76.2 = Po e11Ok• It follows that Po= 3.9 and ek = 1.0274; so pet) = 3.9 (1.0274)t. Or if we

choose 1850 (t = 60) and 1910 (t = 120), we get 23.2 =Poe60k and 92.2 =Po el 20k
. If we note

that e60k =23.2 ,then we can say that 92.2 =Po [e60k]2 =Po [23.2J2. It follows that Po = 5.84.
Po Po

We then find that ek = 1.023, so pet) =5.84 (1.023)t, Obviously, students may make other

choices, but you should be sure that they consider what might be better choices of data points.

(3) Here, it would also be useful if they plot their curve and the data points on the same coordinate

system for comparison. Their new table should have the following headings:

year population model 1

(4) Using the second equation in (2), we get for the year 2000 p(210) = 692.3 million people. For

2010, we getp(220) =869.1 million people.

(5) Modell doesn't work very well because it grows very rapidly (hence the term "exponential growth"

in common language) with an ever-increasing rate of growth.

(7) Multiply the numerator and denominator of the first equation by ekt•

Then a =k, b =MM!:°po ' and c =M~ Po .

(8) When students try to solve the resulting system of three equations in three variables, they will find it

very challenging, even with the use of most CAS's. They should at least check the given data
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points to see if the given parameter values do give population results very close to the tabulated

values ...they do. To solve the resulting system of equations:

3,929,214 = b
c + e- lOa '

b
23,191,876 = c + e-70a '

b
91,972,266 = c + e-130a '

it is best to first choose two pairs and for each pair, divide one by the other, thus forming a system

of two equations in variables a and c, eliminating b. Then after some algebraic manipulation, divide

one of those by the other, eliminating c and yielding one equation in a, which can be solved using

logarithms after some algebraic manipulation. The rest is relatively straightforward algebra. The

result of my calculation wasp(t) =0.01485~~3~~~~.0313383t' which is reasonably close to Pearl

and Reed's result and almost fits the three data points exactly. The system can be solved with Maple

V . ldi () 2930499.0 Thi fi h d I
yie mgp t = 0.01485326825 + e-O.03133829349t . IS ItS t e ata exact y.

(9) They divided the numerator and denominator ofpet) by 0.014854 and then evaluated the limit ofpet)

as t increases without bound.

(10) I'm not sure how they found it, but I would encourage students to calculate the second derivative

and find its roots. A CAS may be helpful in calculating the derivatives and finding any roots of the

second derivative, but Maple, at least, needed some help. Clearing the denominator of the second

derivative equation first does the trick. Maple then yields 134.3 (1914!). Alternatively, use of the

"evalf" function on the second derivative at specific times near 1914 (t = 134), also supports Pearl

and Reed's claim. It is quite useful to plot the function to scale and see where it seems to change

concavity...this may be what Pearl and Reed did, by hand. It plots quite nicely with Maple. Do

you have any better ideas?

(11) Again, the results will depend on the data points students choose to find values for the parameters

in model 2. They should show a plot of their version of model 2 with the actual data points from

the table. To answer the other parts of this question, students should use some of the techniques

developed in answers to previous questions.

Conjectures we expect that some students will make: We hope that most would recognize the

large number of factors that could be considered in this sort of modeling.

Questions for further exploration:

(12) Suppose that your projected maximum population were reached. What would be the population



Population Growth 63

density of our country and how would it compare to the population density of other countries?

(13) Pearl and Reed included arguments about the number of calories needed to sustain various

populations, the food calories produced in various countries, etc. How have their arguments held

up? Can they be modified to look reasonable again?
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Title: Drug Dosage
(The idea for this project came from UMAP module unit 72, "Prescribing Safe and

Effective Dosage" by Brindell Horelick and Sinan Koont.)

Authors: Diane Schwartz, John Maceli, Eric Robinson,
Stan Seltzer, and Steve Hilbert, Ithaca College

Problem Statement: The concentration in the blood resulting from a single dose of a drug

normally decreases with time as the drug is eliminated from the body. In order to determine the exact

pattern that the decrease follows, experiments are performed in which drug concentrations in the blood

are measured at various times after the drug is administered. The data are then checked against a

hypothesized function relating drug concentration to time.

concentration

I
I
I
I
I

\J
t

new dose given

Figure 1

The simplest function to hypothesize as a model of drug concentration is a linear one: that is, we

might start by assuming that the concentration of the drug in the blood is a linear function of the time

since the dose was administered.

Suppose a single dose of a certain drug is administered to a patient at time t = 0, and that the

blood concentration is measured immediately thereafter, and again after four hours. The results of two

such experiments are given in Table 1.

Data:

Concentration at time t = 0:
Concentration after 4 hours:

Experiment 1

1.0 mg/ml
0.15 mg/ml

Table 1

Experiment 2

1.5 mg/ml
0.75 mg/ml
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A. For this part, assume that the function describing concentration as a function of time is linear. Each

data set in Table 1 represents a different drug and a different initial dose. For eachdata set:

1) Sketch a graph of the concentration function, that is, graph the level of concentration vs.

time. Assume concentrations are measured in milligrams per milliliter, and time is

measured in hours.

2) Predict the time when the blood becomes free of the drug, assuming no further doses are

administered.

3) Describe the rate at which the drug is eliminated. Does the rate of elimination seem to

depend on any other quantity (e.g. level of concentration)?

4) Predict what the graph of concentration level vs. time would look like if further doses of

the drug were administered every six hours for forty-eight hours.

5) Predict what would happen to the concentration level of the drug if it were administered

every six hours indefinitely.

B. Now assume that the rate at which the concentration is decreasing at time t is proportional to the

concentration level at time t. This idea can be modeled by a differential equation, namely:

q;; = -ky

where y is the concentration of the drug in the blood at time t, and k is a constant. Using the same

data sets as in part A, solve the differential equation, and answer questions 1 to 5 above. [In fact,

this model, Model B, has been shown in clinical tests to be the more accurate one.]

C. A problem facing physicians is the fact that, for most drugs, there is a concentration below which

the drug will be ineffective and a concentration above which the drug will be dangerous. [See

Figure 2.]

Figure 2
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1) Suppose that for the drug in experiment 2, the minimum effective level is 0.45 mg per ml

and the maximum safe level is 2.15 mg per ml. If the dose in the experiment is given

every six hours, will the appropriate concentrations be maintained? Indefinitely?

Explain. If the answer is no, can you achieve a satisfactory long-run level just by

adjusting the time between doses? Just by adjusting the dose? (Assume there is a simple

way to tell just how much substance must be administered in order to raise the

concentration by any given amount. That is, you can answer this question by specifying

how much the concentration of drug in the blood needs to beraised by each dose.)

2) Answer the same questions assuming the minimum effective level is 0.5 mg per ml, and

the maximum safe level is 1.65 mg per ml.
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Information for the instructor only:
Problem abstract: This project deals with functions as models of drug concentration levels. The

students deal with the functions graphically and in terms of upper and lower bounds, not as formulas to

be mechanically manipulated. Also, this project introduces numerical series in a concrete context.

Convergence and divergence are introduced by constructing graphs of dosage levels, whose values at the

times when dosages are given are the partial sums of geometric series. The issues of convergence and

the limit of a converging series become meaningful in the context of avoiding dangerous drug levels.

Prerequisite skills and knowledge: Familiarity with the exponential function. Ability to solve y

=-ky. Geometric series. The students will be able to compute the limit of the geometric series if they

have that skill. The alternative is to have them observe the apparent limit by looking at the graph of the

sequence of partial sums (which they are required to construct anyway).

Essential/useful library resources: none

Essential/useful computational resources: none

Example of an acceptable approach:

A. Linear model.

1) The students should draw a segment of a straight line connecting the given two points.

The graph shouldn't extend below the t-axis.

2) For each experiment, the students could simply set the linear function equal to 0 and

solve. For experiment 1, they should obtain t = 4 / (0.85) "" 4.7. For experiment 2,

t =8. These values could also be predicted from a carefully drawn graph.

3) The rate at which the drug is eliminated is simply the slope of the line segment. This rate

is constant (hence independent of other quantities) until the drug is eliminated. This

question may cause some students to question this linear model.

4) In experiment 1, the drug is completely eliminated before the next dose is administered.

Hence, the students' graphs should have period 6.

In experiment 2, the drug is not eliminated before the next dose is administered, so each

line segment starts 0.375 units higher than the previous one. Hence, the graph of the

function satisfiesJCt + 6) =JCt) + 0.375.
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5) In experiment 1, the function is periodic with period 6.

In experiment 2, the concentration level would grow indefinitely.

B. For experiment 1, y = exp(±In(0.15)).

For experiment 2, y = 1.5exp(± In(0.5»).

1) By hand or by computer, the students should be able to sketch these easily.

2) Hopefully, some students will change the question to predict when the concentration level

goes below some measurable threshold.

3) The students should all realize the rate is varying with the level of concentration.

Hopefully, they will realize the answer is furnished by the given differential equation,

y'=-ky.

4) and 5) For both experiments, since the drug is never eliminated during the 6-hour

period between doses (in experiment 1, about 94.2% is eliminated; in experiment 2, about

47% is eliminated), each peak amount (amount immediately after a new dose is

administered) is higher than the previous peaks. However, the concentrations at the

peaks are the partial sums of a geometric series. For example, in experiment 2, the peaks

converge to approximately 2.32.

If the students have not yet seen series, this problem should serve as excellent motivation for the

concepts of partial sums and convergence.

C. 1) In the original experiment 2, with a new dose every 6 hours, the treatment is always effective

(the lowest value as t ~ 6- is approximately 0.53 mg/ml). However, since the peaks

approach 2.32, this treatment is unsafe.

There are several approaches the students might take to adjusting the time between doses. One

method would be to calculate when the initial dose decreases to the 0.5 mg/rnl level and

readminister then. Next, calculate when this new concentration of 2 mg/ml will decrease to

0.5 mg/ml. Thus, after the first cycle of treatment, one can make the concentration periodic

with values in the range 0.5 to 2.0.
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If the student tries for all the time intervals, including the first, to be the same length, the

interval of t = 4 In(0.3) / In(0.5) "" 6.948 works. The lowest concentration (as t ~ 6-) is

0.45 and the peaks converge to approximately 2.14. If the students try this method, they will

almost surely need to know how to compute the limit of a geometric series, since the limiting

value of the peaks is so close to 2.15.

If the students try to just adjust the dose, they should be successful. For example, a dosage of

about 1.3 mg/ml will have a minimum value above 0.45 and the peak values will converge to

about 2.011.

2) Since the range of acceptable values has width of only 1.65 - 0.5 = 1.15, it's impossible to

have an acceptable dosage pattern by just adjusting the time (leaving the dosage at 1.5). It is

possible to adjust the dosage if the first dose is larger than the others. For example, a first

dose of 1.6 mg/ml, followed by booster doses of approximately 1.0343 mg/ml will keep the

concentration level in the 0.56 to 1.6 range.

Questions for further exploration: The following question is interesting and quite open-ended.

Arguments may be based on statistical techniques such as hypotheses testing.

D. A patient in a certain clinic has been taking the drug XL37 regularly for several months. He has

experienced some health problems which he attributes to the drug. The maximum safe level of

XL37 in the blood stream is known to be 2.0 mg per ml. The patient has been tested periodically

for concentration of XL37 in his blood, and the level found has been consistently between 1.9 and

1.95 mg per ml. The patient wishes to initiate a malpractice suit against the clinic, claiming that he

has been administered an overdose of the drug.

1) Taking the point of view of the lawyer defending the clinic, argue why the patient's claim

is not correct.

2) Taking the point of view of the attorney for the patient, argue why there is evidence of an

overdose.

3) As judge in the case, what further information would you like to see before deciding this

case?

Special implementation suggestions: There is a lot of merit in giving this project before

introducing series of any kind. This project serves as a good introduction to the amazing idea that an

infinite series can have a finite sum.
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Title:

Author:

Logarithms: You Figure It Out

Matt Richey, St. Olaf College

Problems for Student Investigation

Problem Statement: One often sees the natural logarithm function defined as

Ix 1
lnx = - dt.

1 t

Suppose that all you know about the definite integral is that it is defined as the limit of Riemann sums

and represents the (signed) area under the curve. Your project is to derive as many of the standard

properties of the logarithm function as you can using only its definition as an integral and properties that

you derive.

Following is a sketch of the derivation of the formula In a- I =-In a using the above definition:

ia-
1

1 Ia 1 iI/a1 II 1We must show - dt =- - dt. Rewriting yields - dt = - dt. For geometric clarity we
1 t It 1 t at

assume a < 1 and consider the following picture:

a 1

The left-hand side of the equation corresponds to the area on the right and the right-hand side to that on

the left. We calculate a Riemann sum using n equal subintervals and left-hand endpoints for each

interval.

J" 1- dt:
1 t

l-1
Subinterval widths are _a_.

n

(l-l)
Function evaluation points are 1+ l : a for j =0,... ,n - 1.

n

n-I

The corresponding Riemann sum is RI =L
j=o

[
1 J
--1 1

": '1 . (~-1)
+J'--n
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f
l 1

- dt:
a t

Subinterval widths are 1- a .
n

F · I" . (1- a) f . 0 1unction eva uanonpoints are a +J' or J = ,... ,n - .
n

n-l

Th d· R' . ~(l-a) 1e correspon mg Iemann sum IS R2 = £...J --. . (I-a)
. n a+J'--J=O n

PartI: Complete the above proof by:

a) Verifying that the two Riemann sums R l and R2 are in fact the same and explain the

significance of this,

and

b) Discuss the case a ~ 1.

Part II: Derive as many of the standard properties of the logarithm function as you can using only the

definition of a Riemann sum.

Suggestion: Before attempting to prove a general relationship, it might be useful to try out your

method using specific values for a, b, and n.
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Information for the instructor only:
Problem abstract: The goals of the project are to gain familiarity with Riemann sums and with the

logarithm function. Also, this project will give students experience with developing and writing

convincing mathematical arguments. This project gives students a chance to work with two apparently

dissimilar and often troublesome concepts, logarithms and Riemann sums. There is ample opportunity

for them to investigate the relationship between these topics using examples and special cases. Also,

there are several ways to derive these properties from the definition above. Finally, the students are

expected to present convincing arguments (proofs) for the validity of the familiar properties of the

logarithm. This should give them experience writing about mathematics. This project could easily be

done in two weeks or less in groups of 2 or 3 students.

Prerequisite skills and knowledge: An understanding of the elementary theory of integration up

through Riemann sums. The Fundamental Theorem of Calculus is not needed. This project could be

done in a first semester course right after the integral is introduced, or early in the second semester.

Essential/useful library resources: none

Essential/useful computational resources: none

Example of an acceptable approach: Part I is included simply to get the students on the right

track. In a), one simply multiplies the terms in the sum R1 by q to yield the terms in the sum R2'a

Students should then discuss that the two integrals must be equal if their upper sums are equal for all n.

In b), it is probably sufficient to note the following picture indicates that the case a> I is analogous to

a < 1.

a

If one wants to be slick, just set b =~ and apply case I to b.

Part II is where the real work begins. The "standard" properties of the logarithm that the problem

refers to include:
In ab =Ina + In b
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In alb =In a -In b

lnab=b Ina

73

where a, b > O. Most students will probably start with the first property, since it is one with which they

are most familiar. Written in terms of integrals it becomes

rab ! dt = ra ! dt + rb ! dt.
J1 t J1 t J1 t

The key observation is that for any a, b > 0

rab ! dt = ra ! dt + Jab ! dt.
J1 t J1 tat

Hence one must prove

J
ab 1 f,b 1

- dt = - dt.
a tIt

Some students might have a difficult time seeing that this is the way to rephrase the question. However,

if they are encouraged to pick values for a and b and to draw pictures, then it is not unreasonable to

expect that they will discover this formulation,

If they have not done so already, now is a good time for students to choose some specific values

for a and b. For example, with a = 3 and b = 5, the problem is to show that for y = 1, the area under the
x

curve from x = 1 to X = 5 is the same as the area under the curve from x = 3 to x = 15. These areas seem

to be very close if not, in fact, equal (the second one is 3 times as long but only 1/3 times as tall). Since

the students are told that area is defined using Riemann sums, they will probably calculate a Riemann

sum for each region. A standard way to do so would be to use n equal subdivisions of each interval and

to pick the left-hand endpoint to determine the height of each rectangle. Using the intervals [1, 5] and

[3, 15] and 5 subintervals, it is easy to see that in the first case that Llx = 1 while in the second case

D-x' =3. For the interval [1, 5], one gets the partition 1 < 2 < 3 < 4 < 5 and a Riemann sum of

1 + ~ + ~ + ~ + k. For the interval [3, 15], one gets the partition 3 < 6 < 9 < 12 < 15 and a

Riemann sum of (3)t + (3) ~ +(3)~+ (3)1
12 + (3 )115 , The important observation here is that not only

are the sums the same, but the area of the ith rectangle is the same in each case. This fact could be easily

overlooked if the students calculate without looking for a pattern. By repeating this procedure with

different values of a, b, and n, the students should be able to see what is happening in the general case.

When [1, b] is divided into n equal subintervals each of length Llx = b -1 and [a, ab] is divided into n
n

equal subintervals of length Sx' = ba- a, then Llx' = atsx. If c, is the left-hand endpoint of the ith
n

subinterval of [1, b], then it is not to hard to see that C'j, the left-hand endpoint of the ith subinterval of
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[a, ab], is c i =aci. Thus the area of the ith rectangle for the interval [1, b] is 6.x which equals the area
Cj

of the ith rectangle for the [a, ab] interval, namely ~' =aL1x. Note that there is no reason to use the left-
C j ac,

hand end point in this argument. If ci is the sampling point of the ith subinterval of [1, b], then choosing

c'i =ac, as the sampling point of the ith subinterval of [a, ab] will insure that the area of the ith rectangle

is the same in each Riemann sum.

To conclude that the areas under the curve are equal, the students must explain how the area is

defined as the limit (as the mesh of the partition goes to 0) of Riemann sums. Since for each value of LU

and Lix' =atsx, the Riemann sums can be chosen to be the same for both regions, the areas must be

equal. Granted, there are a few more points that technically need mentioning. For example, one must

note that the function is integrable over the intervals in order to know that any sequence of Riemann

sums whose mesh goes to 0 will converge to the value of the integral.

Once it has been established that In ab =In a + In b and In a- l =-In a, it is a simple observation

that In alb =In air) =In a -In b. It is somewhat more difficult to prove In ab =b In a. A natural place to

start would be to try to prove that In am =m In a where m is an integer. For example, In a2 =In a-a =
In a + In a. Considering m = 2,3,4 ..., most students should be able to come up with a convincing

argument for the case where m ~ 0 even if they don't know how to use induction properly. If they do

know induction, then they have an excellent opportunity to use it here. It follows immediately that even

if the exponent is a negative integer, then In am =m In a. The next case one might consider is when the

exponent is rational, that is, to prove
!!!. m

ln c- = -Ina
n

where m and n '# 0 are integers. This can be done using the properties that have already been

established. Since m is an integer, In am1n = mIn al/n. Since n In a l /n =In «al/n)n) = In a it follows

that In a l /n = lin In a and hence In am/n =m In a.
n

A proof of the general exponent rule for logarithms, In ab =b In a where b is any real number, is

probably beyond the reach of most calculus students. One way do so, if the students have gotten this

far, would be to observe that since In x and aX are continuous functions, so is In as. Then one could

take bn to be a sequence of rational numbers which converge to b and then say that since In abn ~ In ab

and bn In a -7 b In a (as n ~ 00), it follows that b In a =In abo

It is fun to try to prove the exponent rule for logarithms independently of the other rules, using

only Riemann sums. Partition [1, a] into n subintervals using 1 =xQ ~ Xl ... ~ Xn = a and partition

[1, ab] using 1= x8 ~ xf, .. ~ x~ = ab . Again the problem is to arrange it so that the ith rectangle in

the Riemann sum is the same in each case. Let ci be the sampling point for [xi> xi+d and use c~ as the

sampling point for [xy, xy+I]' Since it is hoped that
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J,
a 1 J,ab

1
b - dt = - dt,

I tIt

it would be very nice if one could choose ci so that

This is true if and only if ci satisfies
I

(
b b J-x· I-X' b-I

C. - z+ l
l - •

b(xi+1 - xi)
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In this form it certainly will not be obvious to most calculus students that ci E [Xi, Xi+I]. One could look

at some special cases. If b = m = 1,2, ..., then
I

(
X!"ll -x!"l Jm-I

C. - l+ l
l-

m(xi+1 -Xi)

I

(

m-I m-2 m-2 m-I J-IX· I + X· I x·+···x· IX' + X· m-_ l+ l+ l l+ l l

m

For m =2, this becomes

That is, ci can be chosen as the midpoint of each interval. For other values of m it becomes harder to see

that Ci is between Xi and xi+ I. For example, with m =3 one gets

which can be rewritten as

View the right-hand side as a function of ci. Letting ci =xi> one sees that

while for ci =xi+l
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From the Intermediate Value Theorem, there must be a choice for ci between xi and xi+l which makes

the quantity exactly 3. A similar analysis works for higher values of m. If b is not a natural number,

then the situation is a little stickier. One way of establishing the existence of a value ci E [xi, Xi+d so

that

would be to rewrite it as

and use the Mean Value Theorem with y =xb. This argument works for any real value of b if one

"knows" the derivative of xb is bxb- 1.

Conjectures we expect that some students will make: This has been covered in the text of the

sample solution.

Questions for further exploration: A nice project with which to follow this one would be to

estimate with error the values of In x for, say, x = 2 or x = e. This could be a useful project to do before

a formal introduction to numerical integration techniques. Since the students are already thinking in

terms of Riemann sums, the process of simply estimating the value of In x should be quite

straightforward. However, they will probably not be too familiar with the idea of an error bound. The

key here is that since the integrand l/x is a decreasing function, left Riemann sums will always

overestimate the integral while right Riemann sums will always underestimate the integral. Thus one can

use the difference between these two sums as an error estimate. This is intuitive enough for students to

discover on their own. Using this approach, students should be able to get a start on deriving error

estimates for the value of the integral.

Special implementation suggestions: The sketch of proof given in the problem statement is given

in order to "jump start" the students. Honors students or groups which will receive a lot of instructor

assistance could be given the definition and Part II only. Another option, which would give the students

experience with Riemann sums, would be to ask the student to prove as many of the properties as

possible independently of each other using only Riemann sums. Doing so, the students might discover

the arguments similar to the ones above and at the same time gain more confidence in their ability to work

with Riemann sums. A class meeting about halfway through, where the students could present

preliminary results, would be helpful.
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Title:

Author:

Numerical Integration and Error Estimation

Steve Boyce, Berea College

Problem Statement: Among the many concepts encountered in introductory calculus, the

definite integral is perhaps the most difficult. Intricacies of the definition may seem unimportant once

introduction of the Fundamental Theorem encourages thinking about the integral in terms of the

computational short cut

l~(x)dx =F(b) - F(a) where F'(x) =f(x).

However, problems are soon encountered if one confuses this result with the meaning of the integral.

For example, the integrals

cannot be evaluated using the Fundamental Theorem because neither integrand has an antiderivative

which can be expressed in terms of elementary functions. This does not mean that the integrands have

no antiderivatives; part of what the Fundamental Theorem guarantees is that every continuous function is

the derivative of some function. What it does mean, roughly, is that you have no way to express the

antiderivatives as simple combinations of well-known functions and, more importantly here, no

convenient way to evaluate them at the limits of integration.

Two questions emerge from these observations. First, how can a given integral be evaluated in

case an appropriate antiderivative cannot be found? Second, what assurance is there that the integral

even has a value if the antiderivative cannot be found? That is, what assurance is there that the integral

exists or, equivalently, that the function is integrable? Attempts to address the first question lead down

the path of numerical integration in search of methods that can be used to estimate integral values to

as many decimal places as desired. This is analogous to the use of Newton's Method to estimate zeros

of functions. Pursuing the second question leads to existence theorems, statements guaranteeing the

existence of the integral for certain classes of functions. In this project you will address the first

question, that of numerical integration.

PartI: For the special class offunctions which are both continuous and monotone on [a, b]:

a) Invent a numerical integration method that can be used to evaluate definite integrals to any prescribed

accuracy. A central feature of your method should be a formula for calculating an upper bound on the

error. Exploit the fact that you are restricting your attention to the class of continuous and monotone
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functions.

f°.1
b) As a check on its precision, use your method to approximate aX dx to within 0.001. Determine the

actual error of your method in your approximation.

c) How many additions wonld yonr method require to approximate L~5dx to within Om? To within

0.0001? To within 0.000001?

d) By comparison, answer the three questions in part (c) using Simpson's Rule instead of your method.

How do you explain the differences?

ej How could your method be used to approximate f:X3 -2x)dx?

Part II: Define Un and Ln to be the upper sum (largest Riemann sum for any particular value of n) and

lower sum (smallest Riemann sum for any particular value of n), respectively, and (for any particular

value of n) let Sn represent any Riemann sum for a functionfon [a, b]. Justify the following three

observations:

You should find it helpful to use the following version of the definition of the definite integral:

Definition: Letfbe a continuous function on [a,b]. For each positive integer n, divide [a,b] into n

subintervals, each with width b - a, such that a =Xo < Xl < x2 < ...< xn =b. In each subinterval
n

[Xi-I>Xi], choose a point ci and form the Riemann sum

If lim Sn exists and has the same value no matter how the c/s are chosen, then we say the integral off
n~oo



Numerical Integration andError Estimation

from a to b exists and is equal to lim Sn.
n~oo

79

This particular definition of the definite integral is probably not the same as the one in your

calculus text, but for continuous functions all forms of the definition that you are likely to encounter are

equivalent.
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Information for the instructor only:
Problem abstract: The primary goal is to involve students in experiences that suggest the fundamental

importance of understanding the definite integral as the limit of a sequence of sums. Sub-goals include

involving students in experiences that lead to the discovery and use of an error bound result, and an

appreciation of the weakness of an error bound that is inversely proportional to n as opposed to a higher

power of n.

Prerequisite skills and knowledge: This project can be assigned any time after students have been

introduced to the definition of the definite integral. Some exposure to numerical integration and error

bounds would be helpful, but it is not essential. Students not acquainted with Simpson's Rule will need

consult the literature to find an expression for its error bound and examples of its use.

Essential/useful library resources: David Smith's paperback Interface: Calculus and the

Computer, (Saunders, 1984) is a wonderful source of projects related to numerical integration.

Essential/useful computational resources: none

Example of an acceptable approach:

PartI

a) Students may use any number of methods. Most likely are upper sum, lower sum and midpoint.

b) Sincef(x) =x and [a, b] =[0, 0.1],

If(b) - f(a)! b - a = (0.1)(0.1) ::; o. 00 1 when n ~ (0.1)(0.1) = 10.
n n 0.001

Using the upper sum as an approximator with n = 10 yields

b-a 1 2 10 1
(f(xl) + !(x2)+"'+f(xn»- - = (-+-+...+-)- = 0.0055.

n 100 100 100 100

Since the Fundamental Theorem can be used to see that the integral's true value is 0.005, the actual error

in this approximation is 0.0005 -less than the prescribed 0.001.

c) Sincef(x) = x5 and [a, b] = [0, 1],

b-a 1 1
I!(b) - f(a)I-- =-::; E when n ~-.

nnE

It follows that when the error tolerance "E" is specified as 0.01, 0.0001 or 0.000001, the corresponding



Numerical Integration and Error Estimation

required values for n are 100, 10,000 and 1,000,000 respectively.
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d) The error bound for Simpson's Rule can be used in similar fashion to establish a linkage between the

error tolerance "E" and the required number of terms, n:

(b - a)5 maxlt<4) (X)I ~ 120 ,; E when n ;, ~ 120 .

180n4 180n4 180E

Corresponding to the "E" values 0.01, 0.0001 and 0.000001 are n values ( rounded-up integer values)

of 3, 10 and 29.

Why the big difference? The principal reason is the difference between nand n4 in the two error

bounds. One error bound is proportional to the fourth power of the subinterval widths while the other is

proportional to their first power. It follows that as n increases and the subinterval widths become small,

one error bound (the one for Simpson's Rule) decreases much more rapidly than the other.

e) The problem here is that f(x) =x2 - 2x is not monotone on [0,2]. However,fis decreasing on [0, 1]

and increasing on [1,2]; that is, the function is monotone on each of two subintervals whose union is

[0, 2]. So the problem can be overcome by expressing the original integral as the sum two integrals, one

from ato 1 and the other from 1 to 2.

PartII

There are two key insights students need to achieve, with or without instructor assistance. One is that

observation c) means that, for a given partition, the difference between the upper and lower sums

provides an upper bound on the error involved in approximating the integral by the value of any Riemann

sum associated with that particular partition. Second, limiting consideration to monotone functions leads

to a very simple expression for this error bound. If, for example,fis increasing on [a, b], then the

upper and lower sums are easy to form since the maximums off occur at the right endpoint of each

subinterval and its minimum values at the left endpoint:

As a result, all but two terms cancel when the lower sum is subtracted from the upper sum:

Un-Ln = (f(xn)-f(xo))b-a = (f(b)-f(a))b-a. This expression changes only in sign if j' is
n n

decreasing on [a, b], so in either case we obtain Un - Ln =If(b) - f(a)1 b - a.
n

Questions for further exploration: (1) A very pleasing extension of these ideas can be seen in the

way approximations from the midpoint and trapezoidal rule~ (as opposed to the upper and lower sums)
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can be combined to establish an error bound for functions whose concavity does not change on [a, b].

See the Smith book mentioned above, Chapter 26. (2) The project following this one would give

students a chance to use the strategy of assuming a special hypothesis (that the functions are monotone in

this case) as part of a conjecture-proof investigation. The central goal of that project is to lead students to

think more carefully about what the integral definition actually says and what must be accomplished to

show that the definition is satisfied.

References/bibliography/related topics: Interface: Calculus and the Computer by David Smith

(Saunders, 1984)

Special implementation suggestions: For this project it seems particularly important to schedule a

progress report soon after the student group has begun its work. If the group seems not to be on a

productive track, it may be enough to point out the significance of II(c), and with that motivation suggest

they examine Un - Ln in hopes that something useful will emerge. If there is confusion about what

"useful" means in this context (i.e., about the meaning error bound), consulting the literature for the

statement and use of the error bound for Simpson's Rule - a job which needs to be done eventually

anyway - should be helpful.

Since II(c) can now be seen to mean that

J
b

b-a
a/(X)dx-Sn s I/(b)- /(a)l-

n
- ,

it follows that any Riemann sum can be used to approximate the integral as long as n is large enough to

make the error bound at least as small as the specified error tolerance. Students seem most likely to

choose either the upper or the lower sum; it would be especially pleasing to have a group suggest using

the average of those two.
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Title:

Author:

An Integral Existence Theorem

Steve Boyce, Berea College

Problem Statement: Among the many concepts encountered in introductory calculus, the

definite integral is perhaps the most difficult. Intricacies of the definition may seem unimportant once

introduction of the Fundamental Theorem encourages thinking about the integral in terms of the

computational short cut

L~(X)dx = F(b) - F(a) where F'(x) = f(x).

However, problems are soon encountered if one confuses this result with the meaning of the integral.

For example, the integrals

cannot be evaluated easily using the Fundamental Theorem because neither integrand has an

antiderivative which can be expressed in terms of elementary functions. This does not mean that the

integrands have no antiderivatives; part of what the Fundamental Theorem guarantees is that every

continuous function is the derivative of something. What it does mean, roughly, is that you have no way

to express the antiderivatives as simple combinations of well-known functions and, more importantly

here, no convenient way to evaluate them at the limits of integration.

Two questions emerge from these observations. First, how can a given integral be evaluated in

case the appropriate antiderivative cannot be found? Second, what assurance is there that the integral

even has a value if the antiderivative cannot be found? That is, what assurance is there that the integral

exists or, equivalently, that the function is integrable? Attempts to address the first question lead down

the path of numerical integration in search of methods that can be used to estimate integral values to

as many decimal places as desired. Pursuing the second question leads to existence theorems,

statements guaranteeing the existence of the integral for certain classes of functions. For example, an

existence theorem usually stated (without proof) in introductory calculus texts is this:

Theorem: If'j is continuous on the closed interval [a, b]. then f.~(x) dx exists.

In this project you will prove the integral existence theorem for the special class of functions

which are both continuous and monotone on [a, b]. This task has a theoretical focus in which the

definition of definite integral plays a starring role. You should find it helpful to use the following
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version of the definition.

Problems for Student Investigation

Definition: Letfbe a continuous function on [a, b]. For each positive integer n, divide [a, b] into n

equal-width subintervals, [xi-I' xil, such that a =xQ < xl < x2 < ...< xn =b. In each subinterval

[xi-I> Xi], choose a point ci and form the Riemann sum

If lim Sn exists and has the same value no matter how the c/s are chosen, then we say the integral off
n~oo

from a to b exists and is equal to lim Sn.
n~oo

This definition of the definite integral is probably not the same as the one in your calculus text,

but for continuous functions all forms of the definition that you are likely to encounter are equivalent.

Also, it will be helpful to you if you know how to apply what is often called the "Squeeze" or the

"Pinching" Theorem.

Part I: Define Un and Ln to be the upper sum (largest Riemann sum for any particular value of n) and

lower sum (smallest Riemann sum for any particular value of n), respectively. Let Sn represent any

Riemann sum for a functionfon [a, b]. Verify the following:

c) 1~(X)dx-Sn '" u, - Ln­

Remember that the functionf you are dealing with is monotone!

Part II.; For the special class of functions which are both continuous and monotone on [a, b], prove the

integral existence theorem.
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Information for the instructor only:
Problem abstract: The primary goals are to involve students in experiences that suggest the

fundamental importance of understanding the definite integral as the limit of a sequence of sums and

illustrate the strategy of assuming a special hypothesis (that the functions are monotone in this case) as

part of a conjecture-proof investigation. The central goal is to lead students to think more carefully about

what the integral definition actually says and what must be accomplished to show that the definition is

satisfied.

Prerequisite skills and knowledge: This project can be assigned any time after students have been

introduced to the definition of the definite integral.

Essential/useful library resources David Smith's paperback Interface: Calculus and the Computer

(second edition; Saunders, 1984) is a wonderful source of projects related to numerical integration.

Chapters 24 and 25 contain material related to this project.

Essential/useful computational resources: none

Example of an acceptable approach: Because of their lack of experience with proof, students will

almost certainly have difficulty translating the definition of definite integral into a tentative plan for

showing that the definition is satisfied in the case of monotone functions; that is, in first identifying a

statement that begins, "It would be enough to show ...." If initial student efforts produce nothing but

frustration, it should be helpful to lead them to the point of understanding that it would be enough to

show the following: "If {Sn} and {Tn} are any two sequences of Riemann sums, where n represents

the number of subintervals, then the limits of {Sn} and {Tn} as n approaches infinity both exist and have

the same value."

Once this plan is in place, observation I a) suggests a very geometric, visual explanation as to

why Sn and Tn are forced arbitrarily close together as n increases. It implies that both Sn and Tn are in

the closed interval [Ln, Unl. That is, the distance between Sn and Tn is no greater than Un - Ln, so there

is motivation to examine what special form this difference might have in the case of monotone functions.

Alternatively, this point might be reached from observation (1) by an inequality argument:

L n s Sn ~ Un and -Un ~ -Tn ~ -Ln

~ -(Un-Ln) s (Sn- Tn) ~ (Un-Ln)

~O~ISn-Tnl~(Un-Ln)'

The argument can be concluded by observing that for monotone functions,

I I b - a
U'; -Ln = feb) -f(a) -n-'

and citing the Squeeze Theorem.
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References/bibliography/related topics: Interface: Calculus and the Computer by David Smith

(second edition, Saunders, 1984).

Special implementation suggestions: This problem could be assigned to students who had

successfully completed the project preceding this one. It could be done by individuals instead of small

groups.

Special evaluation suggestions: You will need to be careful in how you judge students' success

on this project because few will have had previous experience in writing good mathematical proofs. You

may want to allow them to correct and resubmit their proofs after you have first evaluated them.
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Title: A Fundamental Project

Author: Charles Jones, Grinnell College

Problem Statement: This project deals with "area functions" defined as follows: Given a

function f, define a new (area) function F by F(x) =area bounded by the t-axis (horizontal axis), the

vertical lines t = constant and t = x, and the graph of y = f(t). (See Figure 1.)

y

14

3x 2.51.5 2

Figure 1

F(x) is
this area

10.5o

6

2+---+----+----+---I----I--+----+--..t

4

8

12

10

Problem l: Suppose f(t) = 2t + 3. Define F(x) to be the area bounded by t = l, t = x, the t-axis and

Y =f(t).

(a) Graph y =f(t) and compute F(4).

(b) Compute F(l).

(c) Find a general formula for F(x) , if x ~ 1.

This project also deals with derivatives. In particular, you will need to compute, approximately,

the derivative of a function, call it g, by calculating the difference quotient,

g(x + ~x) - g(x)

~x

for various small values of Sx (both positive and negative). By noting the values of the difference

quotient for values of & near 0, you will make an educated guess of the value of the derivative.



88 Problems for Student Investigation

Problem 2: Refer to Figure 2 for a table of values for a function g and graphs of y =g(x) on three

different domains. Sketch the tangent line to the graph at x =2, and compute the derivative

of g(x) there by the above method. Does your educated guess agree with the slope?

x g(x) 1.5

3.000000 -0.244021
2.500000 1.073081
2.100000 -0.556379
2.050000 -0.677281
2.010000 -0.745782
2.005000 -0.752552 0.5
2.001000 -0.757682
2.000500 -0.758305
2.000100 -0.758801
2.000050 -0.758862
2.000000 -0.758924
1.999950 -0.758986
1.999900 -0.759048 -0.5
1.999500 -0.759540
1.999000 -0.760151
1.995000 -0.764899 -1
1.990000 -0.770476
1.950000 -0.800943
1.900000 -0.804763
1.500000 0.041805
1.000000 1.009297

1.9 1.95 2 2.05 2.1 -0.745 1.99 1.99 2 2 2.01

-0.6 -0.75

-0.6
-0.755

-0.7
-0.76

-0.765
-0.75

-0.
-0.775

Figure 2

The following "fundamental problems" tie together the concepts of area functions and

derivatives.

Problem 3: Refer to Figure 3 for a table of values of a functionf and graphs of y =f(t) on three different

domains. Define F(x) to be the area bounded by t = 1, t = x, the t-axis, and the graph of

y = f(t).
(a) Sketch a region whose area is F(3).
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(b) Write the difference quotient for F '(3).

(c) Sketch the region whose area is represented by the numerator of the difference quotient if At" =0.5.

(d) Approximate the value of the difference quotient for F'(3) when At" = 0.5 by approximating the
numerator by the area of a trapezoid.

(e) Approximate the values of the difference quotient for several small values (positive and negative) of

At". Note: When At" is negative, the value of the difference quotient numerator will be the negative
of an area.

(0 Use your approximations to guess the value of F '(3). How is this related to f?

x f(x)

4.000000 5.020588
3.500000 5.685944
3.100000 5.471896
3.050000 5.408569
3.010000 5.353071
3.005000 5.345844
3.001000 5.340017
3.000500 5.339286
3.000100 5.338701
3.000050 5.338628
3.000000 5.338554
2.999950 5.338481
2.999900 5.338408
2.999500 5.337822
2.999000 5.337089
2.995000 5.331202
2.990000 5.323788
2.950000 5.262292
2.900000 5.180223
2.500000 4.365468
2.000000 3.163337

5.5

5.45

5.4

0.5 1

5.35

5.35

5.3

5.34

5.33

1.5 2 2.5 3 3.5 4

2.9 2.95 3 3.05 3.1 2.99 3 3 3 3.01

Figure 3

Problem 4: Based on your work in problem 3, make a general rule for the relationship between F' andf.

Write a few sentences in your own words justifying your rule. Don't worry about this being

a formal proof; instead, concentrate on convincing the reader your rule seems plausible.



90 Problemsfor StudentInvestigation

Information for the instructor only:
Problem abstract: The goal of this project is to have students discover the Fundamental Theorem of

Calculus and explain why their version is a plausible result. This project can be assigned any time after

the definition of the derivative, and it should be completed before the Fundamental Theorem is covered in

class.

Prerequisite skills and knowledge: The students should know how to find the area of a trapezoid,

have ability to use the definition of the derivative, and possess a willingness to deal with functions not

given by formulas.

Essential/useful library resources: none

Essential/useful computational resources: None are needed for the original project; however,

use of the section "Special implementation suggestions" requires some type of computer with a program

to compute function values.

Example(s) of an acceptable approach:

1. f(t) =2t + 3. F(x) =area bounded by t = 1, t =x, the t-axis, and y =f(t).

(a) x =4, F(3) =16 + 12 - 4 =24

(b) x = 1, F(l) = 0

(c) Area =width [height 1 ; height 2] = (x -1)[ (5 + 2;) +3]

=(x -1)(4 +x) =x2 + 3x -4.

2. The function used in this problem is given by the formula g(x) = to + sin(x2 + 1).

So, g'(2) = /0 + 4 cos(5) "" 1.234647742.

A sample solution follows:

~

1.0

0.1

0.01

0.001

0.0001

0.00005

-0.00005

-0.0001

Value of difference quotient

0.514903

2.02545

1.3142

1.242

1.23

1.24

1.24

1.24
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3 (b) D
'f'J: . Area bounded by t = 3, t = 3 + Ax,y = f(t),t - axis

. 1 lerence quotient = --------'----------.:=---=--'-'------
I1t

5.685944; 5.338554 (0.5)

(d) =5.5122490.5
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(e) .6.L
0.1

0.01

0.001

0.0001

0.00005

-0.00005

-0.0001

Difference quotient

5.405225

5.3458125

5.3392855

5.3386275

5.338591

5.3385175

5.338481

Since f(x + Ax) gets close to f(x) as Ax ~ 0, this average height goes to f(x).

(f) Guess: The average of the difference quotient when Ax = 0.00005 and Ax = - 0.00005 is

5.33855425. This appears to bef(3)!

4. When you compute the difference quotient F, the numerator is the average of the heights, f(x) and

f(x + 11x). You then multiply by the width, 11x, to get the area of the trapezoid. However, the

denominator of the difference quotient is also Ax; so, the quotient is just the average height,

f(x) + f(x + I1x)
2

Thus, F'(x) =f(x).

This is the type of argument I would hope to see. Note that no mention is made of the

continuity off, and that students will consider ''1(x + Ax) gets close tof(x)" reasonable.

Questions for further exploration: Modify the functions given to have negative values.

Special implementation suggestions: Instead of dealing with a table of function values, an

interactive computer program to serve as a "black-box" function would work nicely.





APPLICATIONS OF INTEGRATION

This section includes those projects which are relevant to the material covered in the middle third

of a standard calculus sequence. Actually, the first project, Inventory Decisions, is a one variable

max/min problem and could probably be done much sooner by honors-level students or as a classroom

project. It is put in this section as it is probably more accessible to most students after they have some

familiarity with the average value of a function. There is a wide variety of applications of integration in

this set of projects. Students can have the opportunity to see an artistic application in Tile Design (an

application quite different from those typically encountered in calculus), a challenging but more standard

geometric application in The Ice Cream Cone Problem, or an application to a mathematical question in

Minimizing the Area Between a Graph and Its Tangent Lines. Further applications are found in Riemann

Sums, Integrals, and Average Values where students are given practice in deriving integral formulas for

applications by taking limits of Riemann sums. Two projects from the previous section are also

appropriate at this point in the course. Population Growth is a nice application of the derivative of the

natural exponential function and Drug Dosage can be used as an introduction to series.
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Title: Inventory Decisions

Author: Steve Boyce, Berea College

Problem Statement: A computer services firm regularly uses many cartons of computer paper.

They purchase the cartons in quantity from a discount supplier in another city at a cost of $22.46 per

carton, store them in a rented warehouse near company grounds and use the paper gradually as needed.

There is some confusion among company managers as to how often and in what quantity paper should

be ordered. On one hand, since the supplier is providing out-of-town delivery by truck, there is a basic

$360 charge for every order regardless of the number of cartons purchased, assuming the order is for no

more than 3,000 cartons (the truck's capacity). This cost has been used by some managers as an

argument for placing large orders as infrequently as possible. On the other hand, as other managers have

argued, large orders lead to large warehouse inventories and associated costs of at least two kinds that

should be considered. First, they claim, whatever money is used to pay for paper that will only sit in the

warehouse for a long time could instead, for a while at least, be allocated to some profit producing

activity. At the very least such money could be accumulating interest in a bank account. This loss of

investment opportunity and associated earnings is referred to as the "opportunity cost" resulting from the

investment in paper inventory. Secondly, the company has to pay rent for the warehouse. While other

company property is stored there as well, the managers agree that a fraction of the rent equal to the

fraction of the warehouse space occupied by paper should be viewed as part of the cost of storing paper.

These latter two costs, collectively referred to as the inventory "holding cost" and estimated to be 18

cents/carton/week, have been used to justify claims by some that paper orders should be smaller and

placed more frequently. In hopes of resolving the confusion, the managers have hired you as a

consultant.

After talking more with various company personnel, asking many questions and inspecting

company records, you have accumulated the following summary notes. Use them along with additional

modeling and analysis as the basis for a report to the managers recommending in what quantity and how

often paper should be ordered.

sage rate WI c ange In any sigru icant wai .

Week No. Week No. Week No. Week No. Week No. Week No.
1 150 10 152 19 149 28 150 37 151 46 152
2 149 11 150 20 150 29 147 38 148 47 151
3 150 12 149 21 150 30 152 39 150 48 148
4 151 13 149 22 150 31 150 40 150 49 150
5 153 14 150 23 150 32 151 41 149 50 150
6 150 15 150 24 152 33 148 42 152 51 151
7 148 16 150 25 150 34 151 43 150 52 147
8 150 17 151 26 148 35 150 44 149
9 150 18 150 27 151 36 150 45 147

Note 1: Company data on the number of cartons used per week is shown below. No one seems to

think u '11 h .fi
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Note 2: We should not let the paper supply run out. Managers agree that a work stoppage would be

disastrous for customer relations, so paper would be purchased from a local source rather than allowing

a stoppage to occur. The best local price is $46.90 per carton compared to $22.46 from the usual

discount supplier.

Note 3: The discount supplier is very reliable about providing quick delivery. When an order is placed

in the morning, she has never failed to deliver before 5 P.M. the same day. It seems safe to count on

this. So in modeling, for simplicity, we can assume that the new order arrives just as the last stored

carton is used.

Note 4: Managers seem to agree that the goal in deciding how much and how often to order should be

to minimize average weekly cost associated with the purchase and storage of paper. Average weekly

cost has three constituents: purchase cost ($22.46 x number of cartons ordered/week), delivery cost

($360 x number of orders/week), and holding cost. When pushed to be more precise about holding

cost, manager consensus was that average holding cost/week should be measured as 18

cents/carton/week x the average inventory between orders (i.e., the average number of cartons stored in

the warehouse from the time one order arrives to the time the next order arrives).

Note 5: It probably will simplify modeling and analysis to assume that the inventory level (the number

of boxes stored) and time are continuous rather than discrete variables. That is, instead of assuming the

time and inventory variables can only take on integer values representing weeks and boxes, assume they

can take on any non-negative real number values. That way, if the usage rate is assumed to be constant

(seems reasonable in view of the data in Note 1 above), the inventory level can be modeled as piecewise

linear, as indicated in the sketch:

inventory

level

time
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Information for the instructor only:
Problem abstract: The goals of this project are to involve students in (a) developing and using a

simple but fundamental "lot size" model that appears often in inventory theory; (b) applying max/min

analysis in a relatively realistic setting; (c) using graphs to investigate the properties of the model; (d) the

clear and carefully reasoned written/oral explanation of project work; (e) using the model, once

developed, to investigate post-optimality questions. In addressing one post-optimality question given in

"Questions for further exploration," a clear advantage can be seen in using derivative analysis to locate an

absolute minimum as opposed to simply estimating the location of the minimum using graphics software

or a graphing calculator.

Prerequisite skills and knowledge: This project can be assigned any time after students have been

introduced to the use of the derivative in max/min analysis. It is recommended, but not absolutely

necessary, that it be given to students after they understand the use of the integral to find the average

value of a continuous function.

Essential/useful library resources: none

Essential/useful computations resources: It would be helpful if students can use a computer or

calculator to generate 2-dimensional graphs.

Example of an acceptable approach: As suggested in Note 5 of the problem statement, the

modeling assumptions imply that inventory level L is piecewise linear. This is indicated in Figure 1

where R represents the constant paper usage rate in cartons/week, Q the amount to be ordered and t the

time in weeks.

inventory
level

Q

/ L=Q-RI

...-Q ---I~" ...-Q--....~.. ...-Q--~
R R R

Figure 1

Time in
weeks
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It is apparent from the figure that how much to order and how often to order are not independent

decisions. Ordering Q implies that orders should be placed every Q/R weeks. Our task is to find the

best value for Q; that is, we are to find the value of Q which minimizes A, the average weekly cost of

purchasing and storing paper. The key step in doing so, and the primary modeling task left to the

students, is to formulate a functional expression for the average weekly cost. The suggestion in Note 4

is to view A as the sum of three parts: A = purchase cost/week + delivery cost/week + holding

cost/week. If students have difficulty with this, one suggestion which might be useful without revealing

all would be to visualize A as (the average cost/cycle) x (the number of cycles per week) where "cycle"

means the time, Q/R, between order arrivals. The purchase cost and delivery cost per cycle are clearly

22.46Q and 360, respectively. The average holding cost per week, according to Note 4, should be

viewed as 0. 18Q/2 since the average value of the inventory over a cycle is given by

The average holding cost per cycle, then, is (0.18Q/2)(Q/R) =0.18Q2/2R since each cycle contains Q/R

weeks.

Students not acquainted with the integral may have to argue (or be persuaded) that from the

graph, it is intuitively reasonable to accept (Q + 0)/2 as the average value of inventory. For those

acquainted with the integral as the limit of a sum, but not with its use in averaging continuous variables,

this would be a good occasion for consulting the literature or, probably with instructor assistance,

developing a derivation. In either case, it should be interesting to see how students respond, prior to

prompting, to the necessity of finding the average value of a continuous variable.

To complete the formulation, students need to exploit the connection between period and

frequency; that is, they need to understand that one order arriving every Q/R weeks is equivalent to R/Q

arrivals per week. Given this, and the fact that notes 1 and 5 make it reasonable to assume R = 150, we

have the following expression for average weekly cost:

The graph of this function is shown in Figure 2.
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Figure 2

All that remains, except for the questions raised in notes 6 and 7, is to locate the absolute

minimum of A(Q) on (0,3000]. (It should be clear to students why it is not necessary to consider Q
values larger than 3000.) From the graph it is clear that the minimum we seek must lie at the derivative's

only zero. Since

A'(Q) = -54,~00 + 0.09 =0 when Q= 54,000 ~ 775,
Q 0.09

it follows that the best amount to order, Q*, and the best time spread between orders, T*, are given by

Q* ~ 775 cartons and T* =Q*/R ~ 5.16 weeks.

Questions for further exploration:

Question 1: The supplier is considering increasing the delivery charge. How sensitive are the

questions we are examining to changes in this parameter? That is, if the delivery charge is increased by

a factor of p for some p >1 - so that the new charge is 360p - how will the optimal (best) decisions

regarding when and how much to order change in response?

Question 2: The supplier is considering a new policy that would provide quantity discounts. Instead

of charging a flat $22.46/carton, they may begin charging $22.46/carton if less than 500 cartons are

ordered, $21.96 if the order falls between 500 and 1500 and $21.46 from 1500 to 3000. If they do

institute this change, would it make any difference in the optimal decisions regarding how much and

when to order? How would average weekly cost be affected?
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A more general expression for the average cost is

Problemsfor Student Investigation

where C is the purchase cost/carton, K is the delivery cost and H is the holding cost/carton/week. Since

, -RK H ~2RKA Q= -2-+- = 0 only when Q = --,
Q 2 H

the average cost function has only one critical point. And, since A '(Q) is negative to the left of the

critical point and positive to the right, it follows that

Q* =~2RK and T* = Q * =~ 2K .
H R RH

It is now clear that if K is replaced by pK, then both Q* and T* will increase by a factor equal the square

root of p. This kind of insight is extremely unlikely to develop, short of some Kepler-like inductive

effort, if the cost minimum is estimated numerically one example at a time.

One effective way to investigate question 2 is to graph the three average cost functions associated

with the three prices being considered by the supplier. Graphs of AI, A2 and A3 are shown in Figure 3

where

54000 .
Al (Q) = 3,369 + ' +.09Q If 0 s Q< 500

Q

54000 .
A2(Q) = 3,294+ ' +.09Q If 500 ~ Q< 1500

Q

A3(Q) = 3,219 + 54,000 +.09Q if 1500 S; Q s 3000.
Q

Since the three differ only in the term representing average purchase cost per week - a term which does

not depend on Q- their absolute minima will all occur at the same value of Q. The three graphs and the

analysis carried out above for the $22.46 case make it clear that the best values of Q for AI, A2 and A3

are 500, 775 and 1500 respectively.
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3700

$22.46 per carton

I
$21.96 per carton

$21.46 per carton

30001SODSOD
33aaL--~~_----1..._--:-='=-=-_--'--- -=-=,"=-=-_

o

Figure 3

Also clear from the graph is the fact that of the three associated average weekly costs, A3(1500) is the

least. It follows that the new Q* is 1500 cartons and the new T* is Q*/R = 1509/150 = 10 weeks.

While Q* and T* almost double, the change in average weekly cost .from A2(775) to A3(1500) represents

a little less than 1.3% improvement.

Special implementation suggestions: The instructor is strongly encouraged to include the two

questions for further exploration in the assignment if at all possible. They are not included in the

problem statement here only because they will likely require extra effort and guidance beyond that of

most problems in this volume.



102

Title: Tile Design

Problems for StudentInvestigation

Author: John Ramsay, College of Wooster
(adapted from MAPLE: Calculus Workbook Problems and Solutions, distributed by the University of

Waterloo)

Problem Statement: A manufacturer of floor tiles has hired you as a consultant to design a new

square floor tile. The company is prepared to provide for two colors in the tile but lacks the equipment

necessary to have more than three simple regions for the colors. Through the grapevine, you have

learned that the manufacturer likes symmetry and dislikes linear patterns. Following is an example of an

acceptable tile design and corresponding floor pattern given to you by the manufacturer.

First, the manufacturer would like to know the relative amount of the two colors (percentage of

tile devoted to each color) in the given example so that cost estimates (which depend on how much of

each color) can be made. Model the given tile with two functions in order to estimate the areas. You

must justify your approach fully. Second, use a graphing utility to design three other tile patterns which

result in "pleasing" floor patterns. (For example, you might want to produce a design which yields a

floor pattern of intersecting circles.) Submit a written presentation of your designs and the

corresponding floor patterns for review by the manufacturer. You should also indicate the relative

amounts of the two colors for each of your patterns.
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Information for the instructor only:
Problem abstract: This is a project which allows for a great deal of creativity on the part of the

students and combines mathematics with art in a way that most calculus students do not have the

opportunity to see. As a result of the mathematical, artistic and communication (oral and/or written)

skills required in the project, it will provide an opportunity for all students in the group to contribute in a

significant way. The project could be given to one group of students or could be a class project with

several groups presenting "rival" proposals.

Prerequisite skills and knowledge: Integration to find area between curves

Essential/useful library resources: none

Essential/useful computational resources: There is more flexibility in design if a computer

graphing package and software for numerical or symbolic integration are available. However, these are

not essential.

Example of an acceptable approach: A nice way to model the given design and generate other

designs is to use curves which pass through the origin and through the point (l, 1). Then the area

between the curves will be exactly the fraction of the tile devoted to the inner color. The given design

can be roughly modeled by y = x2 and y ~ v: on the interval [0,I]. This yieldsi~~x - x2
) dx = ~.

That is, 33% of the area is inside the curves.

One can achieve a pattern of intersecting circles by creating a design using the equations (x - 1)2

+ y2 =1 and x2 + (y - 1)2 =1, again over the interval [0,1]. This yields

it~I- (x _1)2 - (1- ~I-x2
) ]dx = : - (1- :) = 0.57. Hence, 57% of the total tile area is inside the

curves.

Note: Students may use other means of finding areas. If you do not want this you may have to direct

the students to using integration.

Questions for further exploration: A good open question related to this problem is to find a

nonlinear design which will require the same amount of each color. There are many models to work

from here. Students who find the project particularly interesting could also consider patterns created by

alternating two tiles of different design (checkerboard style). Also, the two color limit could be lifted.

Special implementation suggestions: Students may need help getting started on this problem,
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either a discussion with the group at the outset as to how to approach the problem or the addition of some

suggestions and/or hints as part of the problem statement. For example, students may not think to

integrate to find area if not directed to do so. Thus, if you want to be certain the students use integration,

you may have to specify so. Students may also need some help in thinking of using functions and their

graphs to model the given design and to create new designs. Also, be prepared for a possible negative

reaction or two. Most students have not had to do more than textbook-type problems, much less a

project such as this one. A few may argue that this is not an appropriate assignment in a mathematics

course. No doubt, there are instructors who feel the same way, but most who have used the project

(both students and instructors) have enjoyed it immensely.

Special evaluation suggestions: The intent of this project is not only to have the students apply

mathematics to the particular problem but also to present the designs they have created in a convincing

way. Evaluation of the project should include consideration of the quality of the final presentation, and

students should be aware of this from the outset.
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Title:

Author:

Minimizing the Area Between a Graph and Its Tangent Lines

Steve Boyce, Berea College (problem suggested by R.C. Buck)

Problem Statement: Given a function f defined on [0, 1], for which of its non-vertical tangent

lines T is the area between the graphs of f and T minimal? Develop an answer for three different

nonlinear functions of your own choosing. Choose no more than one function from a particular class of

functions (egs: polynomial, radical, rational, trigonometric, exponential, logarithmic). Carefully explain.
the reasoning leading to your conclusions. Looking back at your results, try to formulate and then verify

any conjectures or generalizations they suggest. (Hint: stick to functions whose concavity doesn't

change on [0,1].)
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Information for the instructor only:
Problem abstract: Although the basic problem can be very simply stated, it invites several extensions

involving various degrees of challenge. The examples students are asked to produce require multi-step

solutions involving finding the equation of the tangent line at a general point, (c,f(c», expressing the

area A between the f and its tangent line as a function of c, and minimizing A (c) on an appropriate

interval. The examples students are most likely to choose will all result in c = 1/2 being the optimal

location. This invites the conjecture that the tangent line at c = 1/2 always traps the minimum area.

Possible extensions described below include the search for counterexamples and the verification that

under certain conditions on f, c =1/2 is the best location.

Prerequisite skills and knowledge: This project can be assigned any time after students have

been introduced to the derivative applied to max/min analysis and the integral applied to finding the area

between curves. For some of the possible extensions, it is necessary to understand the concavity/second

derivative linkage and desirable to have access to software capable of numerical integration and root

finding.

Essential/useful library resources: none

Essential/useful computational resources: none

Example of an acceptable approach: First, an example is presented using a function which seems

typical of the kind students are likely to select. Following this example, several possible directions for

project development are described and illustrated. Which, if any, of these directions is pursued depends

on student initiative and insight and on choices the instructor makes regarding how much to include in

the problem statement and what suggestions to offer once student work is underway.

Example 1: Suppose f defined by fix) =-vi is selected as one of the three functions. The line tangent to

! at (c,u) has the equation tc(x) =2~ x + !j ,and the area between! and tc ' as a function of c, is

given by A(c) = r\tc(X) - !(x)]dx = If": + {C -~. To finish, it is necessary to find where AJo 4\'c 2 3

achieves its minimum value on the interval (0,1]. Since A '(c) =- _~ + ~r: = _~ (- ~ + c) =°
S"\[ c3 4" c 4"\[ c3

only when c =~, this value of c provides the only critical point. It is evident from the First Derivative

Test that c =~ is the absolute minimum on (0,1].

That c =~ locates the area-minimizing tangent line is not a peculiarity of this particular example.

It is shown below using both analytic and geometric arguments that c =i is always the best location
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provided the second derivative exists and is always positive or always negative on (0,1). The

accessibility of these arguments makes it tempting to prompt students, if they require it, to conjecture the

result and attempt its proofs. For some students, selecting three functions and clearly communicating

reasoning which identifies the best tangent lines may be a good stopping point. For others, it may seem

more appropriate to view the three examples as an invitation to generalization, conjecture and attempted

verification.

Since the functions students seem most likely to choose have no inflection points on (0,1), the

most natural conjecture is that c =iis always the best location. (This conjecture would be less likely if

[0,1] were replaced by [0,21t] in the problem statement!) For this reason, you may want to prompt

them, via restatement of the problem or mid-project conference, to examine or search for a

counterexample.

If students are to search for a counterexample, it is a good opportunity to encourage a graph

sketching investigation, at least initially, as opposed to a focus on function formulas. The challenge is to

show the conjecture false by sketching a graph, such as the one shown in Figure 1, for which c =~ is

clearly not the optimum location.

L

K

1/2

Figure1

1

Students may not be able to find a function formula that provides a counterexample even if they

have discovered or been shown a convincing graph. But the computations involved in verifying that a

given function and tangent point do actually provide a counterexample can be sufficiently interesting that

an instructor may wish to assign them as part of the project. Two such examples are given below, one

of which does not assume familiarity with the calculus properties of trigonometric functions. In both

examples, computer or calculator assistance is almost essential for finding intersection points of the

function graph and various tangent lines, and it is at least convenient for evaluating some of the definite
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integrals that arise.

Problemsfor Student Investigation

Example 2: The graphs in Figures 2 and 3 suggest that for the functionl(x)=sin(21tX), the tangent line at

x = 0.4 traps less area than does the tangent line at x = 0.5. If the instructor were to identify sin(21tX)

as the source of a counterexample, some graph sketching might lead students to identify a value in the

neighborhood of 0.4 or 0.6 as a target for an attempt at analytic verification.

3

-3
Tangent line at x =0.5

Figure 2

3

-3
Tangent line at x =0.4

Figure 3

Since ['(0.5) = -21t, the equation of the tangent line at (0.5,0) is y =-21tX + 1t, and the area between the

graphs ofI and the tangent line is given by

1

2i
2

(-21tX + 1t - sin(21tX))dx = 1t - ~ "'.9342.
o 2 1t

For the other tangent line, given by y =-5.0832x+2.6211, the analysis is more difficult because the line

intersects the graph ofI in two points, 0.4 and 0.70431. Since the tangent line is below the graph ofI
on (0.70431,1] and otherwise on or above it, the area between the two graphs is

i
o.70431 il
(-5.0832x + 2.6211- sin(21tX))dx + (sin(21tX) + 5.0832x - 2.6211)dx ", 0.68266.

o 0.70431

Example 3: This example is similar except that the function is a polynomial, I(x) =-16x3 + 24x2 - 8x +
1. Figures 4 and 5 show the graphs ofI and two tangent lines, one located at x =0.5 and the other at x
=0.6. The equation of the tangent line at (0.5,1) is y =4x - 1, so the area between the two graphs can

be seen to be
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J
0.5 Jl

(-16x3 + 24x2 - 8x +1- 4x + l)dx + (4x -1 + 16x3 - 24x2 + 8x -1)dx = 0.5.

° 0.5
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3

-1
Tangent line at r =0.5

Figure 4

3

-1
Tangent line at x =0.6

Figure 5

For the other tangent line, the equation is y =3.52x - 0.728 and the points of intersection withf are

located at x =0.6 and x =0.3. It follows that the area betweenfand the tangent line is

J
0.3 . (

(-16x3 + 24x2 - 8x +1- 3.52x +7.28)dx + J( (3.52x-. 728 + 16x3 - 24x2 + 8x -1)dx = 0.3992.

° 0.3

Even though 0.5 is not always the best location, if students' examples suggest to them that it

"usually" is, then there may be some sparks of curiosity (waiting to be fanned) as to when it is

guaranteed. There are at least two lines of reasoning, one geometric and the other analytic, that might

lead students to discover the significance of the second derivative.

The geometric route is closely associated with efforts to sketch graphs for which 0.5 is not best.

After seeing counterexamples like Figure 1, students might be asked: "Why can't you sketch a

counterexample in which the graph off is never above any of its tangent lines?" Something like the

following argument might emerge: In Figure 6, consider the graph of a functionf and two of its tangent

lines, EC and FB where FB's point of tangency is (0.5,/(0.5)). Since all points off are on or below

both tangent lines, the region betweenf and either of the two lines can be divided into five subregions,

Al through A5 (see Figure 6). Let A(f,EC) and A(j,FB) represent the areas betweenfand the lines EC

and FB respectively. It is clear from the figure that A(j,EC) =Al + A2 + A4 + A5 and A(f,FB) =Al +

A3 + A4 + A5. It follows that A(f,EC) - A(j,FB) = A2 - A3 = (the area of triangle AEF) - (the area of
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triangle ABC) which must be positive since the two triangles are similar and FB's point of tangency is

its midpoint.

E

F

B

c

1/2
Figure 6

1

The analytic argument grows out of an effort to generalize the approach given in Example 1.

After having worked through their three examples, students might be asked: "To what functionsf can

you apply the same basic method for showing that e = 1/2 is the best location? The area calculation is

clearly easier if the graph offon [0,1] is either entirely above or entirely below each tangent line (except

for the point of tangency). So assume that about f for starters, and try to apply the same reasoning.

What additional properties, if any, do you need to assumefhas to make the method work?" Something

like the following argument might emerge: The equation for the tangent line offat (e,j(e» is Y =f(e) +

F(e)(x - e). Since we can assume without loss of generality that the graph offis never above its tangent

line, the area between the two graphs, A(e), is given by

A(c) = l~f(C)+ !,(c)(x-c) - f(x»dx

x
2

1 11

= (f(e)x +!'(e)("2 - ex»10 - of(X)dx

=f(e) + !'(e)(~- e) -1~(X)dx.
2 0

Assuming j'" exists, it follows that A '(e) =j'(e) +f"(e)(i - e) +j'(e)(-l) =f"(e)(i - e) =0 only when
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c = ~ or ["(e) =0. If we make the additional assumption thatj'" is never zero on (0,1), then the only

interior critical point is c =i. Since previous assumptions aboutjimply j" (x) < 0, the First Derivative

Test can be applied to conclude that c =i is the location of the absolute minimum.

One difficulty students may perceive in generalizing their approach to the examples is that without

knowingf, they have no hope of knowing how to perform the integration L~(x) dx which arises in the

expression for A(e). As a way of raising the same issue in a less abstract setting, it may be useful to

assign an example in which the antiderivative ofjis not an elementary function.

2
Example4: Supposej(x) =ex . Then the equation of the line tangent at (c,j(c» is

2 2 2
Y = 2c eC x + (1 - 2c ) eC •

Since j is never below any of its tangent lines,

At this point students may realize that since the remaining integral is simply a constant and the next step

is to calculate the derivative of A, it is never necessary to calculate the integral's value - whatever it is,

its derivative is zero. To finish, note that

, 2 2 2 22 1
A (e) =(l - 4e) eC + (c + 1 - 2c ) 2c eC = (1 - 2c)(l + 2c ) eC =°only when e =2" '

and apply the First Derivative Test.

Conjectures we expect that some students will make: It would be nice to see students

conjecture that e =i will always minimize the area and then make some attempt at determining the

conditions necessary to prove their conjecture.

Questions for further exploration: Pursuing a full or even partial solution to the c =i conjecture

is a good exercise for strong students. A discussion of this is included in the section "Example of an

acceptable approach."
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Title: Riemann Sums, Integrals, and Average Values

Authors: Eugene Herman and Charles Jones, Grinnell College

Problem Statement: The goal of this project is for you to develop and explain the use of

Riemann sums in application problems. The focus of your writing should be on clear descriptions and

justifications of your methods. There will be three groups of questions for you to consider.

Question Group 1 • Average Temperature

When we say, "The average temperature today was 60 degrees," we clearly intend the single number 60

to represent the entire range of temperatures for the day. It is not so clear, however, how this number is

to be computed. If we have a finite sample of temperatures, we can simply compute their average. For

example, from the table of hourly temperatures (see Figure 1) in Des Moines, Iowa, on June 10, 1990,

we can compute the average temperature by adding the 24 numbers and dividing by 24.
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7 a.m. ... 68 =~
8a.m. ... 70 ... 80.c
9 a.m. ... 76 =~

10a.m. ... 79 <Il

11a.m. ... 81
~
~ 75...

12p.m. ... 83 I:)J)
~

1p.m. ... 86 -e
2p.m. ... 86 .5
3 p.m. ... 89 ~ 70...
4 p.m. ... 89 .a=Sp.m. ... 83 ...

~

6p.m. ...67 c. 65E7p.m. ... 70
~8 p.m. ... 70

9p.m. ...69
6010p.m. ... 67

11 p.m. ...67
12a.m. ... 67

Time in hours between 0 and 24

Figure 1

Question la) Compute this average. How would you compute the average temperature if the

temperatures were recorded every half-hour instead of every hour? Explain why this average will

usually not be the same as the average of the hourly temperatures.

Our intuition suggests that measuring the temperature more often should lead to a better estimate
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of the average temperature. So let's take this idea to the limit. Suppose the temperature at time t in hours

(0 ~ t ~ 24) is T =J(t) in degrees Fahrenheit. (See the graph in Figure 1.) If the temperature is

measured n times in 24 hours, say at times tl' t2' ---, tn, the average of these temperatures is

Suppose the times ti are equally spaced so that ti - ti_1 =IJ.ti =:4 Then

1 n 1 n
- LJ(ti) = - LJ(ti )lJ.ti
n i=1 24 i=1

which has the form of a Riemann sum multiplied by 1/24.

(1)

Question lb) The graph in Figure 1 represents the temperature function J whose values at each hour

are exactly the temperatures in the table. Use the graph to compute the Riemann sum ofJwith n =6 and

f evaluated at right endpoints of subintervals. Then multiply by 1/24. (The answer should be close to,

but not equal to, your answer in 1a.) If you had used n =24 instead of n =6, you would have gotten

exactly the answer in 1a; explain why.

Question Ic), Give a careful argument to explain why

1
24

_1 J(t)dt
24 0

should be the true average temperature over the 24-hour time period. Use Riemann sums and limits in

your argument.

This group of questions addressed a special case of the more general concept of the average of a

function, which is used in the remaining two groups of questions. The average of a functionJ on the

interval [a, b] is

_1_ f~(X)dx.
b-a

a

(2)



114 Problemsfor Student Investigation

Question Group 2 a Velocity and Distance

Question 2a) Approximate the average velocity and the distance traveled of an object whose velocity

function is described by the table in Figure 2.
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3.000
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Figure 2

Question 2b) Suppose you are given the velocity vct) of an object at all times t, where a s. t s: b.

Assume vet)~ 0 for all t. Use Riemann sums and limits, as in question group 1, to derive a formula for

the distance traveled. Explain and justify your derivation. Also describe how the concepts of distance

and area are related. (This should follow from your derivation.)

Question 2c) The average velocity, according to formula (2), is

_1_ f~Ct)dt.
b-a

a

Use the formula you derived in question 2b to explain why average velocity is also equal to f':..s/f':..t

(change in position divided by change in time).

Question Group 3 - Mass and Center of Mass

We consider a straight rod of length L. We will assume that the density p of the rod varies only along its
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length, so we will measure p in units of the form mass/length (e.g., grams/em). We denote position on

the rod by x (with O'::;;x .::;;L), so p=p(x) is defined on the interval [0, L].

Question 3a) Approximate the mass of the rod whose density is described by the table in
Figure 3.

10

8

x p(x)

0.000 1.000 6
0.500 2.933
1.000 3.819 p(x)
1.500 3.532 4
2.000 3.486
2.500 5.332
3.000 9.441
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Question 3b) Use Riemann sums and limits to explain why the mass, M, of the rod is given by

L

M ~f p(x) dx.

o

Question 3c) From question 3b, M = area under the graph of p between x = 0 and x = L. On the

graph of p in Figure 3, draw the rectangles whose area corresponds to the Riemann sum you computed

in question 3a.

Question 3d) A rod made of a homogeneous material, that is, one for which p is a constant function,

has a particularly easy to find center of mass: the midpoint of the rod. We can also use the notion of

average value to compute the center of mass; we simply find the average x coordinate. Compute this

average,

L

~fXdxL '
o
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and verify that it is the midpoint.

To see how to find the center of mass when the rod is made of a nonhomogeneous material, we

return to our initial example of temperatures. Notice that when you averaged the 24 numbers in the table

of Figure 1, there were only 13 distinct numbers. So we can group equal numbers together to compute

the average as follows:

4 1 2 5 2
67 . 24 + 68 . 24 + 69 . 24 + 70 . 24 + ... + 89 . 24

We refer to the coefficients ~,~, ...,~ of the 13 distinct temperatures as their relative weights. Note
24 24 24

that these weights add to ~1 = 1. More generally, to average numbers YI, ..., Yk with relative weights

WI, ... , Wk, respectively, we compute

k k

.LYiWi, where .L wi = 1.
i=l i=l

(3)

Let's apply this idea to finding the center of mass of a finite number of objects strung out along an x axis

at locations Xl, ... , Xk and having mass ml, ... , mi, respectively. A reasonable relative weight to assign
k k

to the location Xi is simply the relative mass mi where m =Lmi' Note that L mi =1. The center of
m i=l i=l m

mass is thus
k

" m·x= LJXi ~.
i=l

(4)

Question 3e) Approximate the center of mass of the rod whose density is described by the table in

Figure 3.

Question 3f) Use Riemann sums and limits to derive a formula for the center of mass of a rod made of

a nonhomogeneous material. Explain and justify your derivation. (As in question 3b, you are given the

density function p.)
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Information for the instructor only:
Problem abstract: This project is designed to give students practice in deriving integral formulas for

applications by taking a limit of Riemann sums. The particular problems addressed were chosen to be

accessible to all students, not just those with some specific background in science. Although the

problems may appear to be easy, students do not find them so. In textbooks, they are rarely asked to

produce and defend their own derivations of integral formulas. Each group of questions starts with a

concrete computational question that should help them begin thinking about Riemann sums.

Prerequisite skills and knowledge: The definite integral as a limit of Riemann sums; at least one

application, such as a volume formula found by taking a limit of approximating Riemann sums.

Essential/useful library resources: none

Essential/useful computational resources: any calculator

Example of an acceptable approach: The most crucial questions are lc, 2b, 3b, and 3f. In all of

these, we hope to see a reasonably complete Riemann sum argument of the type they have seen in the

textbook and in class. For example, an acceptable answer to 2b might be the following.

Divide [a, b] into n equal subintervals with endpoints a = to < t1 < ... < tn = b. So

b-at. - t. = t1t =--
l l-l n

If M is small, v will not change much on each subinterval. So the distance traveled during such a short

time period will be approximately V(ti)t1t (distance = rate· time). So the total distance will be

approximately
n

LV(ti)M.

i=l

By the definition of the integral,
n b

lim ~ v(ti)t1t =f v(t)dt.
n~oo L..J

i=l a

Also, the approximations
n

L v(ti)t1t

i=l

get closer to the exact distance as n ~ 00. So, the exact distance equals
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An acceptable answer to question 2c might simply be

f.bV(tldt is the distance traveled, Ss.

Problems for Student Investigation

The change in time, Ilt, is b - a. So, _1_ f:(t)dt = !:is .
b - a Ilt

a

Questions for further exploration:

1. In question 2c you were asked to explain why

f
b

1 Ils
-- v(t)dt = - .
b-a tlt

a

Use the Fundamental Theorem of Calculus to explain why this equality is true.

2. The desired formula in answer to question 3f is

is the mass in question 3b. Rewrite this formula for center of mass in the form

~ l
L
x w(xldx, where ~ ~ lLW(Xldx =1. (5l

That is, find the function w. Express w(x) in terms of p(x) and the average value of p. Use the

discussion of weighted averages in question 3 and the formula in question 3d to give a plausibility

argument for (5).

References/bibliography/related topics: All the usual integral formulas for application.

Special evaluation suggestions: On the exam covering this material, give a question that requires a

limit of Riemann sum argument to derive an integral formula to solve a concrete problem which cannot

be solved by any integral formula the students already know.
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Title:

Author:

The Ice Cream Cone Problem

Matt Richey, St. Olaf College

Problem Statement: You are to place a sphere of ice cream into a cone of height 1.

(1) What radius of the sphere will give the most volume of ice cream inside the cone (as opposed to

above the cone) for a cone with a base angle of 30°?

(2) What percent of this sphere of most volume lies inside the cone?

You will need to be thoughtful in choosing the variables which will best help you answer this

question. When you have determined the optimal radius, be sure to make an accurate drawing of your

sphere in the cone to insure the reasonableness of your result.

1

Figure 1
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Information for the instructor only:
Problem abstract: This is essentially a complicated maximin problem, and a rather silly application of

techniques that are very important in solving more realistic problems in which one needs to optimize

some geometric relationship between unlike objects. Students will find this project difficult because they

will have to determine from sketches expressions involving more than one variable, and then compute

with those expressions. In order to make progress, they will have to choose to let some of the variables

act as parameters, at least temporarily. In the process of completing this project, they will develop their

skills with problems involving geometric relationships, algebraic and trigonometric calculations,

optimization, tangent lines, and volumes of solids of revolution. They will have to pose and solve a

chain of smaller problems, employing a variety of known calculus techniques, to obtain solutions to the

stated questions. One other important aspect of this project is that the students could choose approaches

that are technically correct, but if followed, make it impossible to answer the question at hand. They will

need to be warned about this, and it will be important for them to confer with you regularly so that you

can provide appropriate guidance.

Prerequisite skills and knowledge: This project can be assigned to students any time after they

have studied the derivative and the definite integral up through solids of revolution.

Essential/useful library resources: none

EssentiaIluseful computational resources: A computer algebra system with a graphics package

would be useful.

Example of an acceptable approach: (A more general problem statement is suggested below as (1)

under the heading "Questions for further exploration." Responses for the alternative problem statement

are provided here. These alternative statement responses have been placed in braces {...} along with the

solution to the original problem statement.)

The intended meaning of "volume inside the cone" is the volume of the sphere from its bottom up

to a plane level with the top of the cone. To derive the formula for this volume the students should

define the desired portion of the sphere as a solid of revolution and use the standard textbook approach.

(This is a good place for the students to be more general in approach than they usually are: at the

beginning it is not clear how they are going to need to use this formula, so they should try to find a

general formula now and specialize it later.) If they let the sphere have radius "r" and denote the distance

from the bottom of the sphere to the plane as "b," they then need the volume of the solid defined by x =
.....j r2 - (y - r)2 revolved about the y-axis as y goes from 0 to b. (See Figure 2.)
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From this it follows that V(b) = fb 7«~r2- (y - r)2) 2dy ~ 7< [rbL ! b 3]. Deriving this formula

y=O

for the volume of a partial sphere, with b as the independent variable and r as a parameter, is important

because some of the later computations can become quite complicated without it. (You might choose to

give this formula to the students.) Now, the cone could be described by the rotation of the line y =kx

about the y-axis, but it is more useful for this problem to describe it using the base angle of the cone,

30°. {In attacking the alternative problem call the base angle 2a, with 0 s a s ¥- .}
We can accurately picture the resulting object in two dimensions, as shown in Figure 3, with "H"

as the height of the center of the sphere from the bottom of the cone. The two diagrams in Figure 3

illustrate that the center of the sphere might be above or below the top of the cone. (The students may

need help to see that the most reasonable interpretation of the sphere "sitting inside the cone" is not that it

is sitting on the lip of the cone but that the sphere is touching the side of the cone tangentially, as shown

in Figure 3.) Intuitively, one of the two parameters rand H is free with the value of the second being

determined by the other. Also, the value of the variable b will need to be described in terms of rand H.

{Intuitively, two of the three parameters r, a, and H are free with the value of the third being determined

by the other two. Also, the value of the variable b will need to be described in terms of r, a, and H.}

T
H

1
Figure 3 I

H

1
I

Students may believe at first that the expression for b depends on whether the center of the sphere is

above or below the top of the cone. They will find that this is not so; the expression for b is the same in

either case. With a base angle of 30°, the important relations are:
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r =H sin(l5°) ~ 0.2588H and b = r + 1 - H = H(sin(l5°) - 1) + 1 ~ 1 - 0.7412H.

(You may need to encourage students to use sketches and trigonometry to derive these relations.)

{With an arbitrary a, the important relations are

r = H sinu and b = r + 1 - H = H(sina - 1) + 1.}

Using the formula for the volume of the spherical section inside the cone, eliminating band r, they

should get

V(H) ~ n[(0.2588H)(l- 0.7412H)2_~1 - 0.7412H)3] =n [0.2779H3 - 0.933H2 + H - i ].
{ V(H) = n[(H sina)(H(sina - 1) + 1)2- i (H(sina - 1) + 1)3].}

The students should now determine the possible values of H. Intuitively, b ~ 2r, since once the

sphere is completely inside the cone its radius and volume will only get smaller. From this it follows that

H ~ 1 + ~ 15° ~ 0.7944 { H ~ 1. } , so H has a lower bound. In addition, the condition that
sm 1 + sino;

the sphere be tangent to the inside of the cone imposes an upper bound on H. If we define "s" as the

slant height of the cone then it follows thatH= (150)= 2~150) ~ 1.0718{H=_s-=~2 } is
cos cos cosa cos a

the last value at which the cone and the sphere are tangent. Hence, 0.7944 ~ H ~ 1.0718 { 1. ~
1 + smu

H ~~} gives the domain of the inside volume function. (Students may also need your guidance in
cos a

determining these bounds.) Knowledge of the domain is important because there are two critical points

of the volume function and only one of them is in the domain interval.

It is quite easy to calculate V'(H) ~ 1t[0.8337H2 - 1.866H + 1], yielding the critical points: He ~

1.3492 or 0.8890. The first of these falls outside of the domain we just calculated, so the critical point

giving the sphere of maximal volume should be He = 0.889 units. The second derivative test quickly

verifies this, as would a plot of V(H). It quickly follows that the radius of the sphere with maximal

volume inside the cone is re~ 0.2301 units; yielding a volume inside the cone of approximately 0.0426

cubic units, or 83.4% of the total volume of that sphere.

{With ex as a parameter, the Maple CAS could do the computations, but gave the results in a form that

made it impossible to determine the critical points. Below is a fairly thorough sequence of equivalent

forms of V'(H), finally arriving at a form which is most useful in determining critical points.

V'(H) = 1t[sina(H(sina - 1) + 1)2 + 2Hsina(H(sina - 1) + 1)(sina - 1)

- (H(sina - 1) + 1)2(sina - 1)]
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=7t [2Hsina(H(sina - 1) + 1)(sina - 1) + (H(sina - 1) + 1)2]

=7t [2H2sina(sina - 1)2 + 2Hsina(sina - 1) + H2(sina - 1)2 + 2H(sina - 1) + 1]

=7t[H(sina - 1)[H(2sin2a - sino - 1) + 2(sina + 1)] + 1]

=7t[H(sina - 1)(H(2sin2a - sinn - 1)) + 2Hsin2a - Hsina - H + Hsuic: - H + 1]

=7t[H(sina - 1)(H(2sin2a - sino; - 1)) + H(2sin2a - sino; - 1) + H(sina - 1) + 1]

=7t[(H(sina - 1) + 1)(H(2sin2a - since - 1) + 1)].
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Setting V'(H) =0 yields two critical points: H = 1. and H = . 1 . 2 For
1 - smn 1 + smu - 2sm a

the first candidate, since 1 - sine ~ 1 - sin2a = cos-«, it follows that this value of H is outside the

domain of V since H ~ --.l-2 . For the second critical point, H ~ 1. , since 1 + sino; - 2sin2a ~
cos a 1 + since

1 + sino, Also, H ~ _1_ , since cos2a ~ cos2a + sino; = 1 + sinu - 2sin2a. Hence the desired
cos-o;

critical point is He = . 1 . 2 . The typical first or second derivative tests do not work very
1 + smn - 2sm a

nicely in determining whether He is a maximum or a minimum. However, if students observe that V(H)

is a cubic polynomial in H and remember the shape of a cubic with a positive third-degree term, it

follows that He' being the lesser of the two critical values, yields a local maximum value of V(H). They

will need to verify that the coefficient ofH3 is positive, but this can be done pretty quickly:

V(H) =1t[(Hsina)(H(sina -1) + 1)2-* (H(sina -1) + 1)3]

=1t[H3(sina(sina - 1)2 - *(since - 1)3) + H2(2sina(sina - 1) - (sino; - 1)2)+ H - *].
So, for He to give the desired maximum value of V(H), it is only necessary that sinctsinn - 1)2

- ~ (sino; - 1)3 = (sine - 1)2(~ sinn + t) be positive. This condition holds because sinn ~ 0 for 0 < a

~ r' So the dimension of the sphere which gives the most volume of ice cream inside the cone for a

cone with fixed base angle 2a is re= He sine = . sina . 2 . And that completes the alternate
1 + smu - Zsin a

problem!}

Conjectures we expect that some students will make: There is more to this problem than ice
cream.

Questions for further exploration:

(1) A more general and more difficult problem statement is: You are to place a sphere of ice
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cream into a cone of height 1. What radius of the sphere will give the most volume of ice

cream inside the cone for a cone with a fixed base angle, 2a? The solution to this one is

given along with the stated problem solution.

(2) If you allow the base angle to vary, what is the closest that the center of the sphere of most

volume will get to the bottom of the cone?

Here we need to find a minimum value of He with a as the variable. Having found that

1 . dH (a) 4 sino, cosa - cosa . .
He = 2 ,It follows that e = 2 2' Setting this to 0, we get

1 + sin a - 2sin a do. (l + sinu - 2sin a)

cosa(4 sino - 1) =0. So He has critical points at cosa =°and since =~. If cosn =0, then a =f and

dH (a) . 1 1 1 8
Hc and d~ are not defined. If smn =4"' then H c = 1 + sinn _ 2sin2a = 1 + 1_ 2 [ 1]2 = 9'

4 4

To verify that this is the minimum of Hc' the students could use either the first or second derivative test.

This result is a pleasant surprise; there is no reason to expect such a "nice" rational number.

Notice also that the radius of the lowest sphere of maximal volume is r = H sino; = [ ~ ] [ ~ ] = ~ . Hence

the bottom of the lowest sphere of maximal volume is H - r = ~ - ~ = ~ units above the vertex of the

cone.

(3) What is the limiting behavior of He as a approaches°and I?

As a gets close to 0, He approaches 1 and you get a very small sphere almost completely

enclosed within the cone. As a gets close tOI' He gets very large and you get a very large sphere (the

radius gets arbitrarily large) almost completely outside of the cone.

(4) If you allow the base angle to vary, is the sphere with maximal volume inside the cone ever

centered exactly at a height of 1?

It quickly follows that H = 1, b = r = sinn, and V'(H) =1t[(sin2a)(2sina - 1)]. Hence, if a =
30° (2a = 60°), the sphere of maximal inside volume has its center at a height of 1. In this case 50% of

the sphere is inside the cone.

(5) This problem could be done in two dimensions: you could place a parabola inside an angle.

(If you place a circle inside an angle, you run into the interesting problem that there is no

simple closed form expression for the area of the circle inside the triangle.)

References/bibliography/related topics: This project is clearly related to others that seem more

rooted in applied mathematics: designing a phonograph needle to get the best contact with a record
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groove; designing a ball point pen; others where we need to optimize some relationship between

different-shaped objects. A student interested in engineering would profit from finding and reading

information about such applications.

Special implementation suggestions: The instructor or a teaching assistant will likely need to give

considerable attention to students working on this project. There are many places where students could

have trouble with the algebra or trigonometry required for this project, especially in its alternative form.

It will require a group of students with perseverance to complete this successfully. There are a few

places where it would be appropriate for you as the instructor to require that students verify with you the

correctness and appropriate form of intermediate results. Otherwise, they could spend too much time

fruitlessly spinning their computational wheels. I would suggest that you at least have them confirm

their results on the formulas V(H) and V'(H) before moving on. You may need to give them some

guidance to insure they make reasonable progress. I have made parenthetical comments where I thought

guidance to bemost appropriate. As I noted in the description of the solution, a computer algebra system

with graphics capability might prove useful at times, but students need to realize that most computer

algebra systems do computations in forms that are often not most useful to us: they should not depend

on a CAS to enlighten them, only to help them check out ideas and calculations.





MULTIVARIATE CALCULUS

The following projects are ones whose prerequisites include topics usually covered in a

multivariate calculus course. All of the projects heavily use functions of several variables, partial

derivatives, and/or multiple integration. The first two projects involve applications of multivariate

extrema theory to various settings. Waste Container Construction applies the theory to a specific "real

world" problem while Own Your Own Function of Two Variables uses extrema theory to analyze

functions of two variables. The Three Cylinder Intersection Problem is primarily an exercise in

visualizing a surprisingly difficult and intriguing 3-dimensional solid. Both Own Your Own Function of

Two Variables and Three Cylinder Intersection Problem require students to evaluate double integrals.

Finally, students can be exposed to the classic "steepest ascent" optimization algorithm in Gradient

Method Optimization.

Projects from previous sections that are also appropriate in a multivariate calculus course are

Designing a Pipeline With Minimum Cost, Crankshaft Design, and Valve Cover Design. Designing a

Pipeline With Minimum Cost becomes a multivariate optimization problem if the two elbow joint

restriction is removed, while the other two projects can be handled nicely using parametric equations.
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Title:

Author:

Waste Container Construction

John Ramsay, College of Wooster

Problem Statement: Locate a waste container (trash dumpster) in your area, study its

construction and determine its volume. Given the general shape, volume and method of construction of

the inspected container, determine the dimensions such a container should have in order to minimize the

cost of construction (material and labor). You should maintain the volume and basic shape of the

original container.

The following facts will help you in calculating costs:

-The sides, back and front are to be made from 12 gage (0.1046 in. thick) steel sheets which cost

66¢/sq. ft.

-The base is to be made from a 10 gage (0.1345 in. thick) steel sheet which costs 84¢/sq. ft.

-Lids are ordered separately and cost approximately $40.00 regardless of dimensions.

-Cutting the steel sheets to the correct size is done with a shearing machine which works like a

giant meat cleaver. Thus, the length of the cut does not change the overall cost of construction.

The same is true for bending the sheets.

-Welding costs approximately 15¢/ft. for material and labor combined.

The final report should include:

- a description of the entire process

- the location and a sketch of the model waste container

- all details of construction-ignoring any detail in the model must bejustified

- justification of any assumptions made to simplify and commentary on how those assumptions

mayor may not affect the final result

- a recommendation as to whether or not it is worth changing the current dimensions.

Show all your work in solving the problem and explain your conclusions completely.
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Information for the instructor only:
Problem abstract: This project is designed to give students the opportunity to complete a problem

from its beginnings. It will force students to consider the conflict between modeling a real problem

closely and maintaining a mathematical model which is solvable. The need to make construction

assumptions and modeling simplifications is an important experience that most calculus students do not

get. In addition it gives them the opportunity to see the mathematics they have studied applied to a "real

world" problem.

Prerequisite skills and knowledge: Multivariate theory of extrema.

Essential/useful library resources: none

Essential/useful computational resources: Under most methods of construction the solution to

the model will involve solving a nonlinear system of equations and hence it will be necessary that

students have access to equipment suited for solving such equations (symbolically, graphically or

numerically).

Example(s) of an acceptable approach and/or actual student work: Included here are

solutions to two standard container types. There are many other shapes and sizes manufactured. More

complicated shapes create much more complicated solutions and also require further assumptions on

fixed dimensions. The second example gives some sense of these complications and assumptions. In

the examples presented, all parts other than the sides and base of the container are ignored assuming that

these parts will not change significantly (if at all) without relatively large changes in the overall

dimensions. Students should be expected to list all such extraneous points and comment on why they

have been included or not.

Example 1:

,
'----------

Volume = 162 ft:)

y

The front and back are each a single sheet while each side is made up of two sheets. These two

sheets are equal in size and are attached down a seam in the middle of the side of the container. All

vertical seams require an extra I inch overlap from the side sheet and horizontal seams (attaching the

base) use 1 inch from the upright sheet.



Waste Container Construction 131

area of base sheet:

area of front sheet:

area of back sheet:

area of half of side:

We obtain the following expression for cost:

cost =0.84.xy + 0.66[2y(z + 11
2)

+ 4~ + {2)(z + 112)] + 0.15(2y + 2.x + 6z) + fixed cost

subject to the constraint: xyz = 162.

We obtain the solution x = 6.5 ft. (78 in.), y = 6.5 ft. (78 in.), z = 3.84 ft. (46 in.) with variable

cost = $111.79. This is not far from the 72 in. by 72 in. by 54 in. dimensions of one of the models

currently manufactured and the cost savings is quite modest as the modeled variable cost of the current

container is $112.5l.

It is important to note that containers which involve slanted tops or front require further

assumptions on the problem. Angles formed and/or altitudes of triangular sheets of steel will need to be

fixed in order to keep the problem from becoming too complicated to solve. The next example illustrates

this:

Example 2:

The following sketch gives the dimensions of a slanted front waste container.

\

~

S£t~//

3.8ft

Volume
3

= 96.5 .ft

Note: In this example we do not have the overlap at the seams.

We will assume the angle at the top, front is to remain fixed at 50° due to handling requirements.

Then we label the container as follows:
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where 1.3z comes from sin(50°) == ~

We obtain

\
~,

/
/

y

z

Problems/or Student Investigation

cost =0.84xy + 0.66[XZ + 2(yz + ~ 0.83z· z) + 1.3z· X] + O.l5[2y + 2x + 2z + 2(1.3z)]

subject to the constraint: xyz +i (0.83z)zx =96.5.

Combining by eliminating y yields

81.06 127.38 28.95
cost = 1.1694xz +-- + + 0.5655z +-- + 0.3x.z x xz

This function has a minimum of $73.96 at x =5.6 ft. (67 in.), y =3.5 ft. (42 in.), Z =3.5 ft. (42

in.). The given container had a cost of $74.50, hence very minimal savings would be achieved.

Conjectures we expect that some students will make: Students will likely include other parts

of the container in their model. (For example, lids, lift pockets, base supports, etc...)

Questions for further exploration: As demonstrated above, if non-rectangular sheets are involved

the problem becomes much more challenging.

Special implementation suggestions: Firstly, the intent here is for students to determine the

general shape from a waste container that they locate. They should indicate the location of the container

so that verification of the accuracy of their model can be made, if necessary. Secondly, finding the

solution of the system of partial derivatives may require substantial effort and care even with the help of a

technology tool. Students should be warned to check each other's computations at this stage to eliminate

errors. Finally, it needs to be clear to the students that they are to consider all the detail of the container

and its construction.

Special evaluation suggestions: One of the intentions of a problem such as this one is to have the

student analyze and justify the assumptions they have made in constructing their particular model. The

written or oral presentation of their solution should include those assumptions. One possibility is to have
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students approach the problem as if they had been hired as a consulting firm. They then submit a written

report of their findings in language that a person without knowledge of calculus could understand as well

as a second document detailing the mathematics.



134 Problems for Student Investigation

Title: Own Your Own Function of Two Variables

Authors: Eugene Herman and Anita Solow, Grinnell College

Problem Statement: Select one of the four functions given by the expressions below (or use one

selected by your instructor), and investigate its behavior thoroughly by all the means at your disposal. In

particular, find its

(a) absolute maximum and minimum values;
(b) local maximum and minimum points and saddle points;
(c) double integral;
(d) average value.

Do as much as you can by hand and as much as you can by computer. Compare results that you get

both ways to confirm that they agree. Where you cannot find exact answers, approximate. Check that

your numerical results are reasonable. For example, use a graph to confirm visually the local and

absolute extrema, saddle points, and average value.

In your report, you may omit routine details of the computations, but you must include all of the

following: responses to parts (a)-(d) and explanations of how you found them; at least one graph and a

discussion of how it supports your answers; comparisons of results obtained by computer with results

obtained by hand.

1. f(x, y) = 2x2y + xy2 - 6.xy, -1 ::;'x::;' 3 and -1 ::;.y::;. 3.

2. I(x, y) = 3 -Jx + y + 4 - 2 Ix - {y ,0 ~ x ~ 6 and 0 ~ y ~ 6.

3. I(x, y) = sin x + sin y + sin(x +y), 0::;.x::;' 2It and 0 ::;. y ::;. 2It.

4. I(x, y) =xe-(x2 + y2)/8, -6 ~ x ~ 6 and -6 ~ y ~ 6.
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Information for the instructor only:
Problem abstract: This project gives students an opportunity to employ all the skills and

understanding they have developed in their study of functions of two variables. It is a very flexible

project in that they need only go as far in their hand computations as they can, and they require only the

most basic features of a graphing package for functions of two variables. For example, if the algebra

required to find the critical points is too hard for them, their graph is likely to guide them to these points;

if the software will only compute approximations to a double integral, that is good enough. A crucial

part of the project is the requirement that they check that their results are reasonable and that they

compare results obtained by more than one technique. This is a good test of students' depth of

understanding.

Prerequisite skills and knowledge: Absolute and local maxima and minima for functions of two

variables on a rectangle; double integrals over a rectangle; experience in using a graphing package for

functions of two variables.

Essential/useful library resources: none

Essential/useful computational resources: Any graphing package for functions of two variables.

Example of an acceptable approach: For all four functions, all four questions can be answered

completely using only hand techniques. However, many students will have difficulty finding the critical

points or the double integral. Here is an abbreviated version of a student report for function 3.

y

2.00

-2.00

3. f(x, y) =sin x + sin y + sin(x + y)
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Find the critical points:*=cos x + cos(x + y) =0

:~ = cosy + cos(x + y) = O.

Problems for StudentInvestigation

Either note that cos x = cos y (and hence x = y or x = 21t - y), or use the picture or a numerical routine to

guess that the critical points are at (~, ~), (x,x), and (5;, 5;) and confirm by plugging into the critical

point equations. The discriminant at (1t,1t) is zero, although (1t,1t) looks like a saddle point in the

picture. Depending on the definition you use, (1t,1t) is either indeterminate or a saddle point (since every

neighborhood of (1t,1t) contains points (x, y) where f(x, y) > f(1t,1t) and points (x, y) where

f(x, y) < f(1t ,1t». At (~, ~),f has a local and absolute maximum; at (.s:-, S:-),f has a local and

absolute minimum. The absolute maximum and minimum values are ±3-13. (Along the boundary,
2

If(x, y) I ::;; 2.) The double integral and the average value of f are zero. The symmetries in the

expression for f and in the graph off suggest this conclusion.

Questions for further exploration: Build a model of the graph of the function out of any materials

you like (clay, paper, string, straws, etc.). Use this model to demonstrate and confirm your

conclusions, such as the absolute and local extrema. Mark the key features on your model.

Special implementation suggestions: Change the project from year to year by replacing the

functions with new ones.

Special evaluation suggestions: This project is a good test of students' knowledge of functions of

two variables and could be used as a take-home portion of an exam on this subject.
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Title:

Author:

Three Cylinder Intersection Problem

John Ramsay, College of Wooster

Problem Statement:
a) Investigate the solid enclosed by the three cylinders x2 + y2 = 1, x2 + z2 = 1 and y2 + z2 = 1.

Carefully sketch anddescribe the solid and compute its volume.

b) What happens to the solid described in a) if the radii of the cylinders are varied? Before considering

the general case x2 + y2 = a2 , x2 + z2 = b2, and y2 + z2 = c2; you may want to investigate some

specific cases such as a =b = c= 2 and/or b = c = 1, a > 1 or a < 1. Again you should describe the

solids in question in whatever way seems appropriate and at least set up the integrals which give their

volume.
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Information for the instructor only:
Problem abstract: This problem, though simply stated, is quite a challenge in three dimensional

visualization. It is intended as a means of pushing students to improve their ability to visualize a

complex solid and communicate their "picture" to others. It is particularly well suited for encouraging

group interaction. The volume calculation is included primarily to assist in forcing a clear understanding

of the solid.

Prerequisite skills and knowledge: An introduction to quadric surfaces and multiple integration

with cylindrical coordinates.

Essential/useful library resources: none

Essential/useful computational resources: The entire problem can certainly be worked by hand,

although some of the integration is quite complicated. A symbolic or numerical integration package (for

multiple integrals) might help but the primary importance is in set-up, not computation. A good 3-d

graphics package is also helpful but not at all necessary.

Example of an acceptable approach: Describing the simplest case, a =b =c = 1 is by no means

trivial. The shape is somewhat spherical; in fact, traces along x =0, y =°and z =°are unit circles.

However, the solid bulges out to a "vertex" at the eight points (±~ ' ±~ ' ± ~ ) forming seams in

the planes y =±X, z =± x and z =±y. The traces in these planes are not circles as they pass through the

above points as well as the units on the coordinate axes. A sketch of the y =x trace is given here:

(1 1 1)
...[2'...[2'...[2

( 1 1 0)
...[2'...[2'

Figure 1

There are 12 four sided (curved sides) concave faces formed, each spanning one of the

equators. A first octant view of the solid is given in Figure 2.
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Figure 2
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A useful perspective, especially in setting up the volume integrals, is a birds-eye view. Viewing

from atop the z axis on the intersection of the cylinders x2 + z2 =1 and y2 + z2 = 1 yields Figure 3

below. The solid formed by the intersection of these two projects onto the square [-1,1] x [-1,1]. The

shading lines in the figure indicate which cylinder is forming the top of the solid in question. If we now

add in the third cylinder, it simply reduces the square projection to a circular projection as seen in Figure

4 below.
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Figure 3

I I

·2 2x + Z = I

Figure 4

The volume is obtained from the integral
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(This result confirms that the volume is are slightly larger than a unit sphere.)

In the volume calculation, we let erange from 0 to~ using symmetry. We have x2 + z2 = I and

y2 + z2 = I intersecting along y =x. For y < x, x2 + z2 = I has a smaller z coordinate than does y2 +
z2 = 1 and hence is the upper bound for the solid over that region. The situation is reversed for efrom

~ to i but in this particular case symmetry allows us to perform only one of the integrals.

Another interesting way to describe the solid is to begin with the cube with vertices ( ± f2' ± f2'
± f2)' Note that all the edges of this cube are on the surface of the desired solid. For example:

(x, f2' ~), -f2 ~ x ~ f2 satisfies x2 + z2 ~ I, y2 + z2 =1, x2 + y2 ~ I and is thus on the boundary

of the solid. The solid is then obtained from the cube by rounding the faces out to the units on the axes.

This will cause an inward cusping along the edges of the cube while through the vertices the trace will be

as described in Figure 1 above. Tracing at the center of each face is in one of the coordinate planes and

hence must be a unit circle.

The more general cases simply modify the work already performed in the first part. A few

comments on these is all that will be included here as there are so many directions that could be pursued.

If one of the cylinders has a radius significantly larger than the other two, this cylinder will have

no impact on the solid whatsoever as it will completely contain the solid described by the two smaller

ones (see Figure 5).

I I I I

Figure 5

I I
I I

I I
I I

I I
I I

I I
I I I I I I I I

Figure 6

Begin with the case a = b = c = 1 and allow a to increase while band c remain equal to 1. The
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change in the solid is simply in a stretching in the size of faces described by the band c cylinders and a

shrinking in the size of the faces described by the a-cylinder. It is easiest to visualize this by looking at

Figure 3 and imagining the circle increasing in size (see Figure 6). When the radius, a =~ , the

a-cylinder will just touch the band c-cylinder intersection point lying on the xy-plane. At this point, the

a-cylinder has become too large to play any role in the enclosed solid, as was noted in Figure 5.

The volume computation in the b =c =1, 1 < a s; f2 case is complicated only slightly. As the

a-cylinder increases in size, the region above e=0 to~ is still bounded by x2 + z2 = 1 but the bound

of the region in the xy-plane is no longer r = 1. As a increases, the initial boundary (beginning at e= 0

will be the straight line from (1,0,0) to (l, 1,0) and, depending on a, will then move to the circle x2 + y2

=a2. (A sketch of this planar region is given below.)

z

(0, 1,0)

(1,0,0)

Ia ,
I

I,,
, I

/------e---- - - - - - ' ..

a <-J2

x (I,~,O)
0, 1,0)

Figure 7

The volume can be computed as follows:

12"""": 1."2 1t 1."2

f
lf'Va--If 'VI-X- J- faf'VI-X-

V = 16 dz dydx + 16 4 r dzdrd e.
o 0 0 COS-l(~) 0 0

Please see discussion of the general case below with regards to the evaluation of these integrals and

further discussion of the general case.

Conjectures we expect that some students will make: Many students will find the special case

a =b =c = 1 sufficiently difficult and may stop there. Some may consider only cases a =b =c. Some

may assume symmetry in each octant (which is correct) but not realize that two separate integrals are

required to compute the volume in each octant. (One with the z integral 0 to --J 1 - x2, the other z integral

oto --J 1 - Y2 . )
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Questions for further exploration: Classifying the problem for all a, band c is quite a chore,

though accessible to strong students who turn on to the problem. The integrals on the more general

cases are also quite interesting. For example, in the volume integrals given above for the case b =c = 1,

1 ~ a ~ -fl, the first integral can be done by hand but the second requires a numerical approximation

technique. Students could use a numerical integration package to study the integral for various values of

a, noting that when a = 1, V = 4.6863 (done in part a)) and when a ~ -v., volume is simply determined

by the intersection of two cylinders. A similar problem arises for b =c =1, a < 1 with volume given by

Special implementation suggestions: Students will very likely need some help getting going on

this one. They should be encouraged to obtain a thorough understanding of the solid and some

suggestions at the beginning may be required to prod them on and also to help them see the complexity

involved in providing a complete description. However, once they have begun to get the picture, they

should be able to progress independently. A check of their work in part a) is highly recommended

before they move on to the more general cases in part b).

Special evaluation suggestions: Students' ability to visualize three dimensional objects is greatly

varied and this problem relies heavily on this skill. Evaluation should be done with the understanding

that even the simplest case will be quite challenging for many students.

A sketch could be required but it is not an easy thing to produce. Try it yourself!
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Title:

Author:

Gradient Method Optimization

John Ramsay, College of Wooster

Problem Statement: Techniques and algorithms for optimizing linear functions of several

variables are widespread and very effective. On the other hand, algorithms for optimizing nonlinear

problems are much harder to come by and those that exist are not nearly as effective as their linear

counterparts. The general approach for nonlinear optimization problems is to follow an approximation

algorithm similar to Newton's method for finding zeros of functions of one variable. Recall that

Newton's method gives us a means of successively stepping from one approximation of the desired zero

to a (hopefully) better approximation. A single formula gives both the direction to move (left or right)

and the distance (step size) to move. We need to make similar decisions in creating an algorithm for

solving nonlinear optimization problems involving more than one independent variable. Given an

approximation to the extremum, we must determine how to choose a better approximation by choosing a

direction and a step size. For functions of several variables, direction means a vector and step size,

representing a distance, is a positive real number. We want an algorithm of the form xi+l = Xi + Ai Pi

where Xi is the old approximation, xi+l is the new approximation, Ai represents step size and Pi is a unit

vector in the desired direction. In the formula, xi> xi+l and Pi are vectors and Ai is a positive real

number (see Figure 1).
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One of the oldest methods using this approach is Cauchy's method. [1847, CR. Academy of Science,

Paris, 25, pp 536-538] Based on the fact that the gradient points in the direction of the most rapid

increase, Cauchy's method uses the gradient to determine the direction and then does a one dimensional

optimization problem (a regular one variable max/min) in that direction to determine the step size. The

one variable function can be obtained by parametrizing the curve along the surface in the direction of the

gradient.

Part I: Find a book which discusses Cauchy's method and write down an algorithm which will perform

the method easily. You will find discussions on Cauchy's method, also known as the "gradient method"

or "steepest ascent method," in most introductory operations research or mathematical programming

books.

,
Part II: Use your algorithm to do the following problems: (You can easily check your answers in the

first two using ordinary multivariate max/min techniques in order to be certain you have created an

algorithm that works.) In your report, include a discussion on what criterion you used for determining

when to stop.

1. Find the minimum of f(x,y) =4x2 + 4y2 - 8x - 12y +1.

2. Find the maximum off(x,y) = 8x + 12y - 6x2 - 8y2 - 1.

3. Find and identify all extrema of x4 + y6 -x2 - 4y2 _x2y2.
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Information for the instructor only:
Problem abstract: Multivariate calculus students often fail to see the value of the gradient. Nonlinear

optimization is an accessible, important application which can provide students a better understanding of

the gradient as well as a deeper appreciation of its importance in other areas of mathematics and its

applications. This project is intended to accomplish both of these goals. By discovering the algorithm

themselves for specific examples (two of which can easily be visualized), students will need to see the

gradient in the context of defining a curve along a given surface. This geometric construction should

help them obtain ownership of the concept.

Prerequisite skills and knowledge: Students need to be familiar with multivariate calculus

material, in particular, they will need to understand vectors and the gradient. Also, they will need to

derive a parametrization of a curve along a surface in the direction of a given vector or do a Lagrange

multiplier optimization.

Essential/useful library resources: Students will need access to introductory texts on

mathematical programming or operations research in order to find a discussion of Cauchy's method.

Essential/useful computational resources: Programming in some form (Pascal, C, Maple,

Mathematica, etc.jis necessary to avoid extensive computation.

Example of an acceptable approach: One possible algorithm follows:

**

Definef
Compute j', andfy
Set initial values xo' YO

unitgrad = <fX<xi'Yi),f/xi'Yi»
1

xU) =Xi + t (unitgrad[ 1])

y(t) =Yi + t (unitgrad[2])

A=the value of t which minimizes/maximizesf(x(t),y(t))

xi+l =Xi + A (unitgrad[1]), Yi+l =Yi + A (unitgrad[2])

print xi+l' Yi+l,f(xi+l' Yi+l)

go to **.

Note: Rather than the one variable min/max described in this algorithm, one could do a Lagrange

multiplier optimization onfwith the gradient direction line as a constraint. This is not an easy problem

and will require a very powerful tool to solve whenfx andfy are complicated.
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Solutions

(a) One iteration from any starting point (except the min., which has grad =0) yields the minimum of

this circular paraboloid: x = 1,Y = 1.5,f(1, 1.5) =-15.

(b) Iterations from most initial points approach but never reach the maximum of this elliptical paraboloid.

If one of the coordinates is correct in the initial point, the exact answer will bereached in one step:

(c) Not so easy to do by hand! (Do not expect students to find the exact values.)

The local max is at (0,0).

Four local minimums occur at

which are approximately

Four saddle points occur at

( + ~ !13+{2f7 + ~ It +{2f7 )
- \I 24 ,- \I 12 '

(±1.07492, ±1.14495).

_4fLf: _~
( 0, ± -\I 3 ) and (± -\I 2 ,0),

which are approximately (0, ±1.07457) and (±O.70711,0).

Note: The first coordinate in the minimums and the nonzero coordinates in the saddle points are only so

close by coincidence. They are really different.

References/bibliography/related topic: Here are a few of the many references for Cauchy's

Method:

Winston, Wayne, Operations Research, Applications and Algorithms, Second Edition, PWS-Kent,

1991.

Taha, Hamdy, Operations Research, An Introduction, Fifth Edition, Macmillan, 1992.

Giordano and Weir, A First Course in Mathematical Modeling, Brooks/Cole, 1985.

Special implementation suggestions: It is important that students put together the Cauchy

algorithm. A tendency is to have a computer do a monster Lagrange multiplier on the problem which is

not the intent at all. In fact, it is hoped that 2(c) cannot be solved in this manner. An intermediate

meeting with the instructor to verify that a reasonable algorithm has been obtained is strongly

recommended. Also, students may be unable to determine how to parametrize a curve in the direction of

the gradient unless they have seen similar computations in class. If this has not been done, a quick

discussion with the group may be in order.
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"The calculus ... is much more than a technical tool: it is a collection of abstract mathematical

ideas which have accumulated over long periods of time. The foundations and central concepts are not

today what they were in the seventeenth, eighteenth, or even in the nineteenth centuries and yet, in a

sense, the unifying power and richness of its field of application depends not only on what the calculus

is now but on all the concepts which have contributed in one way or another to its evolution ... Although

there are many themes, some complementary and some contrasting, they all contain a common element

of conflict, the conflict between the demands of mathematical rigor imposed by deductive logic and the

essential nature of the infinitely great and the infinitely small perpetually leading to paradox and

anomaly." (Baron, pp 1-3)

Following is a collection of projects designed to give students some exposure to how

mathematics was done in the past: Archimedes' Approximation of tt, Archimedes' Determination of the

Area of a Circle, Archimedes' Determination of the Surface Area of a Sphere, Cavalieri's Integration

Method, and Zeno's Paradoxes all foreshadowed the modern notions of limit, differentiation and/or

integration. Newton's Investigation of Cubic Curves provides an interesting glimpse at some of the

techniques used by Newton in the late seventeenth century. Archimedes wrote proofs which left out a

number of details: like most mathematicians he did not record what he considered obvious. However,

what was obvious to Archimedes is not necessarily obvious to a calculus student or even a mathematician

today. Archimedes had a different and less sophisticated set of mathematical "tools" available to him, but

he proved himself a master of the tools at his disposal. Key tools he did not possess were algebra and

the modern notions of limit, differential or integral calculus, and the theory of infinite series. Today, we

describe the numbers used in calculus as "real numbers," consisting of the union of two disjoint sets

called the rational numbers (those that can be written as fractions) and irrational numbers (those that

cannot be written as fractions). Archimedes did not have knowledge of set theory or the theory of real

numbers, but he did make extensive use of Eudoxus' theory of proportions in much of his work. One

example of his use of the theory of proportions is his contention that, given two circles, it must be true

that the ratio of the circumference to the diameter of one is equal to the ratio of the circumference to the

diameter of the other: ~: =~:. We would make the equivalent statement that the circumference of any

circle is equal to the diameter of the circle multiplied by the number 1t; C =tid, or ~ =1t for any circle.

These are some of the hardest projects in the volume: students are required to read and understand

derivations and proofs which were built using mathematical tools that are either archaic or lacking in rigor

by today's standards. Further, we are all challenged any time we attempt to follow the thoughts of great

thinkers, and these projects give students the opportunity to carryon conversations with some of the great

minds in the history of science and mathematics.

147
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Zeno's paradoxes indicate that mathematicians of Archimedes' time had not resolved the question

of whether they would consider time and magnitude to be infinitely divisible or made up of some smallest

elements (infinitesimals). Archimedes, and many of his contemporaries, avoided the philosophical

conflicts pointed out in Zeno's paradoxes by assuming that he could carry out certain geometrically-derived

processes "as many times as necessary." Archimedes successfully applied that assumption in many of his

impressive derivations and proofs. The guidelines for his approach are summarized below: (Baron, pages

34 & 35)

"1. Any finite quantity, however small, can be made as large as we please by multiplying it by a

great enough number; or, given two unequal magnitudes a and b (b < a) there exists,

(i) a number n such that nb > a (Euclid's Elements..Book V, definition 4),

(ii) a number n such that n(a - b) > y, where y is any magnitude whatsoever of the same

kind (The Axiom of Archimedes, On the Sphere and Cylinder, Book I).

2. Any finite quantity can be made as small as we please by repeatedly subtracting from it a quantity

greater than, or equal to, its half; or given two unequal quantities, a and b (b < a), there exists a

number n, such that a(1 - p)n < b, where p >1/2 (Euclid's Elements, Book X, Proposition 1)."

Cavalieri, in the Middle Ages, tended to describe planar regions or solid objects as capable of

being accurately described as a summation of a large number of very thin slices. This agrees with the

intuitions of most beginning students, but does not address the philosophical conflicts pointed out in

Zeno's paradoxes any better than Archimedes' approach. Cavalieri and even Newton and Liebniz

approached their work with a tacit assumption of indivisibles rather than infinite divisibility. I find that

for most students the limit notion (basically a nineteenth century refinement of the assumption of infinite

divisibility) upon which calculus is based is less natural than either the assumption of the existence of

indivisibles or the assumption that we can make quantities as small (or as large) as necessary. In this our

students and our mathematical ancestors seem to agree.

Newton's Investigation of Cubic Curves is very different from the others in this section in that

most of what is included in the primary project statement uses the same tools and ideas with which

modem calculus students are comfortable. However, there are further explorations suggested that will

lead students into the very unfamiliar but accessible area of affine changes in coordinates.

Special implementation suggestions:

You could assign these projects to a few small groups in a class. These topics could be the

subject of a series of class discussions, in which each topic was briefly presented by the students who

had done that particular project. In the end it would be useful for all students to seek to determine the

common and unique insights of each of the different persons and/or methods and to pursue questions

that were answered or raised by each of the different approaches. Hopefully they will gain a better

understanding of the fundamental importance of the definitions of the derivative as the limit of a

difference quotient and of the definite integral as the limit of a Riemann sum.

Consideration of our mathematical ancestors' efforts to deal with' the very small and the very
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large might lead some students to be interested in studying non-standard analysis, as developed by the

American mathematician Abraham Robinson and others, but that's another project, probably as part of a

later course.

Historical Projects Bibliography:
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Title: Archimedes' Determination of the Area of a Circle

Authors: Mic Jackson and Sarah Angley, Earlham College
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Problem Statement: Archimedes wrote proofs which left out a number of details: like most

mathematicians he did not record what he considered obvious. However, what was obvious to

Archimedes is not necessarily obvious to a mathematician today. Inclusion of some additional details

would have made his works much easier for us to follow. Archimedes had a different and less

sophisticated set of mathematical"tools" available to him, but he proved himself a master of the tools at

his disposal. In this particular proof, he used the assumption that processes could be carried on

indefinitely (his way of avoiding the notion of infinity), theorems from Euclidean geometry, and a form

of proof known as reductio ad absurdum. Key tools he did not possess were algebra, modern notions of

limit, differential or integral calculus, and the theory of infinite series.

Your task is to justify the 16 statements highlighted in bold face in Archimedes' proof that the

area of a circle is equal to nr2. To justify in this case means to provide the details that Archimedes left

out so that the proof is more easily readable. Show how each statement follows from known definitions,

axioms and/or theorems and from previous statements in this proof. You will need to make geometrical

arguments and use some of your knowledge of infinite series to understand Archimedes. In each case,

be sure you explain what Archimedes meant and why he felt the phrase was necessary .
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Replication of Archimedes' determination of the area of a circle.
(Adapted from "Measurement of a Circle," The Works ofArchimedes, by T.L. Heath)

Proposition 1: The area of a circle is equal to the area of a right triangle in which
one of the legs has the same length as the radius of the circle and the other leg has
the same length as the circumference.

Let circle 0 be the given circle and K the area of the triangle described. (Note that the triangle
with area K shown in Figure 1 is not to scale.)

H

E

D

c

Figure 1

Then, (*) if the area of circle 0 is not equal to K, it must be either greater than K or

less than K. (*Example of an acceptable justification: The Trichotomy Property states that if two

quantities are compared, then either they are equal or one must be greater than the other.)

CaseI Assume that the area of circle 0 is greater than K.

Inscribe a square ABCD inside circle 0 (see Figure 1). Bisect the arcs AB, BC, CD and DA, and

connect the points on circle 0 with straight line segments to form a regular octagon. Then bisect (if

necessary) these eight arcs,

(1) and continue this until the sides of the inscribed regular polygon subtend segments

of the circle, the sum of whose areas is less than the difference of the area of circle
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o and the area K.

(2) We can conclude that the area of the inscribed regular polygon is greater than K.

Now, let AE be any side of the inscribed regular polygon, and ON the perpendicular drawn to AE

from the center O. Then

(3) ON is less than the radius of circle 0 and therefore ON is less than one of the legs of the

given right triangle with area K.

(4) Also the perimeter of the inscribed regular polygon is less than the circumference

of the circle. Therefore, the perimeter of the inscribed regular polygon is less than the other leg

of the triangle with area K.

(5) Therefore the area of the inscribed polygon is less than K.

(6) Our hypothesis has led to a contradiction.

(7) Thus the area of circle 0 is not greater than K.

Case II Assume that the area of circle 0 is less than K.

HG
T ~---r---:::::::~".....:::::::::::::=-----...,

F

Circumscribe a square about circle 0, and let T be the vertex of the square where the two adjacent sides

which touch circle 0 at points E and H intersect. Let A be the point where the bisector of arc EH

intersects arc EH and draw the tangent line to circle 0 at point A. Notice that line OA passes through

point T. Let F and G be the points where the tangent line through A intersects the square.

Then

(8) the angle TAG is a right angle.

(9) Therefore, TG > GA and TG > GH.

(10) It follows that the area of triangle FTG is greater than half the area of region

TEAH (where EAH is the path along the arc of circle 0).

(11) Similarly, if we bisect the arc AH and draw the tangent at the point of bisection,
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that tangent will cut off more than one-half of the area of region GAB.

(12) If we continue this process, we will eventually arrive at a circumscribed regular

polygon for which the spaces intercepted between it and the circle are together

less than the difference of area K and the area of circle O.

(13) Thus the area of that circumscribed regular polygon will be less than K. Now, since

the perpendicular from 0 on any side of the circumscribed regular polygon is equal to the radius of

the circle, while the perimeterof that polygonis greater than the circumference of the circle,

(14) it follows that the area of the circumscribed regular polygon is greater than K.

(15) Therefore the area of the circle is not less than K.

(16) Since then the area of the circle is neither greater nor less than K, it is equal to it.
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Information for the instructor only:
Problem abstract: Archimedes' determination that the area of a circle was equal to that of a right

triangle with height the radius of the circle and base the circumference of the circle is a classic

mathematical work. His work here provides an excellent example of a reductioad absurdum proof, the

standard form of rigorous proof used by mathematicians from the time of the Greeks to the 17th Century.

His work also involves carrying out a process"as many times as necessary," a sort of informal passing

to the limit. Although the result is well known, attempting to replicate Archimedes' thoughts will prove a

challenge to the reading and mathematical skills of all students.

Prerequisite skills and knowledge: high school geometry, form of reductio ad absurdum proofs.

Essential/useful library resources: See the bibliography in the introduction to Historical Projects.

EssentiaIluseful computational resources: none

Example of an acceptable approach:

(1) and continue this until the sides of the inscribed regular polygon subtend segments of the circle, the

sum of whose areas is less than the difference of the area of circle a and the area K.

(Keep up the process of bisecting arcs, yielding an 8-gon, a 16-gon, a 32-gon, ... The area of these

regular n-gons keeps increasing, but the incremental increase is getting smaller. Although

Archimedes did not have our understanding of convergent infinite series, he did postulate that the

area of any inscribed polygon must be less than the area of the circle; and since the polygons were

increasing in area, he reasoned that the increase must be getting arbitrarily small as n increased. In

effect the n-gon "fills" more of the circle as n increases.)

(2) We can conclude that the area of the inscribed regular polygon is greater than K.

(The difference in the areas of the circle and polygon is less than the difference in the areas of the

circle and the triangle. [(c - p) < (c - t)] ->P > t)

(3) ON is less than the radius of circle a
(it doesn't reach the circle).

(4) perimeter of the inscribed regular polygon is less than the circumference of the circle

(the straight line is the shortest distance between two points, so each edge of the polygon has length

less than the corresponding arc of the circle).

(5) Therefore the area of the inscribed polygon is less than K.

(Each side of the polygon is the base of an isosceles triangle with height ON and the polygon is made

up of "2n" of these triangles. The area of the polygon is the sum of the areas of these 2n triangles

and is equal to the area of a triangle with height ON and base the perimeter of the polygon. The area

of this triangle is clearly less than the area, K, of a triangle with base the perimeter of the circle and

height the radius of the circle.)

(6) Our hypothesis has led to a contradiction.
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(The hypothesis resulted in two incompatible conclusions, that the area of the polygon is both less

than and greater than K.)

(7) Thus the area of circle 0 is not greater than K.

(Making the assumption that the area of the circle is greater than K led to a contradiction.)

(8) the angle TAG is a right angle.

(Tangent lines are perpendicular to the radius at the point of tangency, and line segment OA is the

radius to the circle through point A.)

(9) Therefore, TG > GA and TG > GH.

(TG > GA because TG is the hypotenuse of the right triangle TAG, while GA is a leg of that same

triangle. Now, construct segment GO, note that it equals itself. Note also that segment GH is

tangent to the circle at point H, so angle GHO is a right angle. Segments AO and HO are equal,

being radii of the circle. Hence, triangle GOA is congruent to triangle GOH. So GA =GH because

they are corresponding parts of congruent triangles. Finally, TG > GH.)

(10) It follows that the area of triangle FTG is greater than half the area of region TEAH.

(Consider triangles TAG and GAH. Both have the same height, the perpendicular distance from

point A to line TH; but TAG has a larger base than GAH, so the area of triangle TAG is greater than

the area of triangle GAH. If we double the area of TAG, we get exactly the area of triangle FTG.

And if we add the area of TAG to the area of GAH, we get one-half the area of TEAH. Having

added equal quantities to both sides of an inequality, the inequality remains: The area of FTG > 1/2

the area of polygon TEAH and hence 1/2 of the area of the desired region TEAH.)

(11) Similarly, if we bisect the arc AH and draw the tangent at the point of bisection, that tangent will

cut off more than one-half of the area of region GAH.

(We can go through an argument identical to that made for items 8, 9 and 10.)

(12) If we continue this process, we will eventually arrive at a circumscribed regular polygon for which

the spaces intercepted between it and the circle are together less than the difference of area K and

the area of circle O.

(In Figure 2 below, notice that the initial error consists of 4 regions identical to the region TEAH,

which resembles a triangle with a curved base. After completing the construction described above,

the total error in approximation consists of 8 regions identical to region GAH, another "triangle"

with a curved base.
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T H G H

E

Figure 2

Since the error in the new approximation is less than half the previous error, Archimedes knew by

axiom that he could repeat the construction as described until the error of approximation was as

small as he wanted/needed it to be. (Today we might say something like "If P(x) <i ' then for any

E > 0, then there exists a counting number N such that if n > N then p(n)(x) < E.") Notice that our

first polygonal approximation of a circle was a square (4 sides), the second a regular octagon

because we bisected each of four equal arcs. The next polygonal approximation will be formed by

bisecting each of eight equal arcs, and constructing tangents at each point where the bisector meets

the circle. The vertices of the resulting regular 16-gon will be the points where the tangent lines

intersect. And so on...)

(13) Thus the area of that circumscribed regular polygon will be less than K.

(It is closer in area to the circle than K.)

(14) It follows that the area of the circumscribed regular polygon is greater than K.

(As before, K is the area of the triangle with base the perimeter of the circle and height the radius of

the circle. The area of the polygon is equal to the area of a triangle with the same height and a

larger base. So the area of the polygon is larger than K.)

(15) Therefore the area of the circle is not less than K.

(The assumption that the area of the circle is greater than K lead to two contradictory conclusions.)

(16) Since then the area of the circle is neither greater nor less than K, it is equal to it. (Application of

the Trichotomy Property.)

References/bibliography/related topics:

(1) "On the Sphere and the Cylinder," "The Sand Reckoner," "Quadrature of the Parabola," all by

Archimedes, and "Anticipations by Archimedes of the Integral Calculus;" in Heath's, The Works of

Archimedes.

(2) A number of the sections in "Greek Mathematics," Chapter 1, in Baron's book are interesting and
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would help develop the student's mathematical sophistication.

Problemsfor StudentInvestigation

Special implementation suggestions: The instructor will likely need to help students recall

relevant geometry (e.g. at 9 and 10). Also, please see the implementation suggestions in the introduction

to Historical Projects.
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Title: Archimedes' Approximation of 1t

Authors: Mic Jackson and David May, Earlham College
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Problem Statement: In this classic work, Archimedes used the "compression method," where

he showed that the actual value of the ratio of the circumference of a circle to its diameter (n) must be less

than a certain geometrically derived sequence of values and greater than another geometrically derived

sequence of values. By doing so, he was able to come up with an approximation of 1t that was the best

until relatively recent times. Archimedes also used the assumption that these geometrical processes could

be carried on indefinitely (his way of dealing with the notion of infinity), Eudoxes' theory of proportions

(his way of dealing with the problem of the existence of irrational numbers), and a form of proof known

as reductio ad absurdum. Anyone attempting to follow Archimedes' work needs to be competent with

the rules and concepts of proportion which were characteristic of ancient Greek mathematics. Some are

listed below.

a b a a2 abc a a3
(1) If -=-, then -=-. (2) If -=-=-, then -=-.

b c c b2 b c d d b3

a m b p a mp
(3) If -=- and -=-, then -=-.

b n c q c nq

a cab b d a+b c+d
(4) If - =- then (a) - = - (b) - =- (c) -- = --

b d ' c d' a c' b d'

a--b c-d a c
(d) -- = -- if a > b, (e) --=-- if a > b,

b d a-b c-d

(f) a+b =c+d, (g) _b_ =.s.; (h) a-b = c-d.
a c a-b c-d a c

a cab b d a+b c+d
(5) If - > -, then (a) - > -, (b) - < - (c) -- > --,

b d c d a c, b d

(d) a-bb > C-dd, (e)_a_<_c_, (f) a+a b < c+c d,
a-b c-d

(g) b < d (h) a - b > c - d; (i) if also c > d, then a > b.
a-b c-d' a c

(6) If a > b, and c is "any magnitude homogeneous with a and b," then a > a + c .
b b+c

Your task is three-fold:

(1) Justify the numbered statements in the following work. Show how each statement follows from

known definitions, axioms and/or theorems and from previous statements. You will need to make

use of your knowledge of geometry, proportions and infinite sequences.
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(2) Extend Archimedes' approximation one step further by finding the upper and lower bounds for It

using regular inscribed and circumscribed 192-gons. You may use decimal approximations in your

calculations if you are uncomfortable working with fractions (Archimedes had no choice).

(3) You should also consider the question of how his work foreshadows our current notion of limit.
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Proposition: The ratio of the circumference of any circle to its diameter is less than 3

~ but greater than 3 ~~ .

(Adapted from The Works ofArchimedes, by T.L. Heath, pages 93 to 98)

Part!
Let segment AB be the diameter of circle 0, let segment AC be tangent to circle 0 at point A,

and let L AOC be trd of a right angle. Then it follows that:

(1)
OA -f3 265
AC = -1 > 153 and (2)

[Hint: Archimedes used a rather complicated method based on continued fractions to compute his

approximations of -f3. You should show the validity of item (1) using trigonometry, but you are

welcome to consult with your instructor if you want to see how Archimedes did it.]

o

First, draw segment OD bisecting L AOC and meeting segment AC in point D. Now,

(3) g~ =g~ [Hint: This result is Proposition 3 in the 6th book of Euclid's Elements.

You should look it up and be sure you understand his proof.]

(4) CO+OA CA
OA =DA (5)

CO+OA
CA

OA
=AD (6) OA 571

AD > 153

(8)
OD2
-->
AD2

349450
23409

1
OD 5918

(9) DA >153
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Second, let segment OE bisect L AOD, meeting segment AD in point E.

(10)

(12)

(14)

DO DE
OA =EA

1
OA 1162"8
AE > 153

1
OE 1172"8
EA > 153

(11)

(13)

DO+OA OA
DA =AE

2 (1162 1) 2+153 2
OE 8->
EA2 1532

1373943 33
64

23409

Third, let segment OF bisect L AOE and meet segment AE in point F.

(15)

(17)

OA 1162k +1172~ 2334}
AF > 153 = 153

1
OF 2339 4
FA > 153

(16)
2 (2334 1) 2+153 2

OF 4->
FA2 1532

15472132 16
= 23409

Fourth, let segment OG bisect L AOF, meeting segmentAF in point G.

(18)

1 1
OA 2334 4 + 2339 4
AG > 153

4673~
=153

Now LAOe, which is one-third of a right angle, has been bisected four times, and it follows that LAOG

is i8 th of a right angle. Construct LAOH on the other side of segment OA equal to LAOG, and let the

ray GA produced meet segment OH in H. Then LGOH is 2~ th of a right angle. Thus GH is one side

of a regular polygon of 96 sides circumscribed about circle O.
1

OA 46732And, since AG > 153 ,while AB=2(OA) and GH=2(AG), it follows that

1 1
AB 4673 2 46732

(19) perimeter of 96-gon > (96)(153) = 14688 .

(20)

1 1
14688 6672: 6672:

But = 3+-- < 3+-- =
4673~ 4673~ 4672~

Therefore the circumference of the circle (being less than the perimeter of the polygon) is less than

3t times the diameter AB.
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Part II
Let segment AB be the diameter of circle 0, and let segment AC which meets circle 0 in point

C make L CAB equal to one-third of a right angle. Construct segment Be. Then
AC -f3 1351 BA 2 1560

(1) CB =-1 < 780 and (2) BC =T = 780'

B o A

[This has the same justification as item (3) in Part 1.]

MDB - MCd - MlDd

. AC AB
It IS also true that Cd =Bd .

(5)

(7)

First, let segment AD bisect LBAC and meet segment BC in point d and circle 0 in point D. Construct

segment BD. Then

(3) LEAD =LdAC = LdBD (4) LBCA and LBDA are both right angles.

AD BD AC
(6) DB = Dd = Cd

(8)
AB+AC BA+AC AD
Bd+Cd = BC =DB

AD 1560+1351 2911
(9) DB < 780 = 780

(10) (11)
AB 3013 ~

and BD <----no

Second, let segment AE bisect LBAD, meeting circle 0 in point E; and construct segment BE. Then we

prove, in the same way as before, that

(12) AE BA+AD
EB = BD

3013 ~ + 2911
< 780

5924 ~
= 780

(5924 ~ )(13)
=

(780)(~)

1823
= 240 .
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(13) (14)

9
AB 1838 11
BE < 240

Third, let segment AF bisect L BAE, meeting circle 0 in point F. Construct segment BF. It follows

that

(15)
AF BA+AE 3661 tt (3661 tt)( ~ )
FB = BE < 240 = (240)( ~~ )

1007
=66"

(16)
AB 2 10072+662 1018405
BF2 < 66 2 = 4356

(17)
AB 1009 ~
BF < 66

Fourth, let LBAF be bisected by segment AG meeting circle 0 in point G. Construct segment GB.

Then

(18)
AG [_ BA+AE"] 2016 ~
GB - BF J < 66

1
AB 20174"
BG < 66(20)

BG 66
(21) AB > 2017 1

4

Note that because LBAG is the result of the fourth bisection of LBAC it is equal to :8 th of a right angle.

Thus the angle subtended by BG at the center of circle 0 is i4 th of a right angle. Therefore BG is a side

of a regular inscribed polygon of 96 sides. It follows from (21) that

(22) perimete~~f 96-gon > 6336 and (23) 6336 > 3 ~~ .

2017 ~ 2017 ~

Therefore the circumference of circle 0 must be greater than 3 ~~ times its diameter.

10 circum 1
(24) Thus 3 71 < diam < 3 "7 .
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Information for the instructor only:
Problem abstract: Archimedes' approximation of 1t using inscribed and circumscribed regular

polygons is a classic mathematical work accessible to typical calculus students. His work here provides

an excellent example of the way that Greek mathematicians dealt with what we might call the limit notion.

His approximation involves carrying out a process "as many times as necessary," providing a sort of

informal passing to the limit. Although we have much better approximations of 1t, his was one of the

best until relatively recent times. In addition, attempting to replicate Archimedes' thoughts and

calculations will provide a challenge to the reading and mathematical skills of all students.

Prerequisite skills and knowledge: high school geometry and algebra, including the theory of

proportions.

Essential/useful library resources: See the bibliography in the introduction to Historical Projects.

Essential/useful computational resources: All of the calculations can be done by hand or with a

typical scientific calculator.

Example of an acceptable approach: I have not included an example of the mathematical

justifications students would need to make because most of the details Archimedes left out have been

supplied; the students will need to see and describe the connections between steps. However, I have

included some important notions in the References and related resources section. Below is an

acceptable example of their extension of Archimedes' approximation, using decimal approximations.

I. Circumscribed

Fifth, let OP bisect angle AOG. Then ~~ =G~tO > 9349i~~3769

( 4673 -21)2+1532
OG2 OA2+AG2

Note that GA2 = GA2 > 1532 =
21865011 ~

23409
OG 4676.003769

so GA > 153

d
GO+AO

an GA >
4676.003769 + 4673.5

153

So, angle AOP is the result of the fifth bisection of the angle AOe and is equal to ;6th of a right angle.

Now make angle AOQ =angle AOP on the other side of OA. Then angle POQ =:8th of a right angle

and PQ is one side of a regular 192-gon circumscribed about circle O.

S
. OA 9349.503769 AB OA
mce AP > 153 and PQ =AP , we have
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AB 9349.503769 or perimeter ~~he 192-gon < 3.141984936.
perimeter of the 192-gon > (153)(192)

II. Inscribed

Fifth, let AH bisect angle BA G, and construct BH.

AH BA+AG 2017 ~ + 2016 ~ 4033.416667
Then H B = B G < 66 = 66 ,.. 61.11237374.

AB2 AH2+BH2 (2017 ~ + 2016 ~)2 + 66
2

Hence --2 = 2 < 66 2 ,.. 3735.722224.
BH BH

So~~ < 61.12055484, and~~ > 0.01636110802. Since angle BAH is the result of the fifth bisection

of angle BAC it is i6th of a right angle; and angle BOH is isth of a right angle. So BH is a side of a

regular 192-gon.

Hence perimeter ~~he 192-gon > (192)(0.01636110802) "" 3.14133274.

C
So 3.14133274 < d < 3.141984936.

Note that this is a slight (one decimal place) improvement on Archimedes' result:
C

3.1408450704 < d < 3.1428571429.

Conjectures we expect that some students will make: Perhaps magnitudes are made up of

infinitesimal elements.

Questions for further exploration:

(1) Archimedes' made a number of other significant determinations, most of which can be found in the

library resources listed. A bright student would gain from tackling one on her own. Most students

could gain from reading about Archimedes' and his accomplishments. Archimedes did not talk about

limits in the modern sense, but his notion of repeating a process an indefinite number of times

foreshadows modern limit theory. An eager student would profit from reading more about this topic.

(2) A calculus founded on the notion of infinitesimals, rather than accepted limit theory, known as "non­

standard analysis," (see Henle and Kleinberg) could provide the unusually bright and motivated

student with some food for thought.

(3) The history of the calculation of 1t is filled with new, strange and/or interesting mathematics; a

useful study for a good student. She could start with An Introduction to the History ofMathematics,
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fifth edition, by Howard Eves, pages 85-89, 96.
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References/bibliography/related topics:

(1) "On the Sphere and the Cylinder," "The Sand Reckoner," "Quadrature of the Parabola," all by

Archimedes, and "Anticipations by Archimedes of the Integral Calculus;" in Heath's, The Works of

Archimedes.

(2) A number of the sections in "Greek Mathematics," Chapter 1, in Baron's book are interesting and

would help develop the student's mathematical sophistication.

(3) A lengthy series of articles entitled "The History of Zeno's Arguments on Motion," by Florian

Cajon, the American Mathematical Monthly published during the year of 1915 gives thorough

coverage of the philosophical problems related to the very small and the very large.

(4) There is an interesting discussion of the number 1t as a limit in Differential and Integral Calculus,

Volume I, Second Edition, by R. Courant, pages 44-46. This brief article begins: "A limiting

process which in essence goes back to classical antiquity is that by which the number 1t is defined.

Geometrically 1t means the area of the circle of radius 1. We therefore accept the existence of this

number 1t as intuitive, regarding it as obvious that this area can be expressed by a (rational or

irrational) number, which we then simply denote by 1t. However, this definition is not of much

help to us if we wish to calculate the number with any accuracy. We have then no choice but to

represent the number by means of a limiting process, namely, as the limit of a sequence of known

and easily calculated numbers. Archimedes himself used this process in his method of exhaustions,

where he steadily approximated to the circle by means of regular polygons with an increasing

number of sides fitting it more and more closely." Courant goes on to give a recursion formula for

the area of the inscribed regular polygon and defines the area of the circumscribed regular polygon

based on that formula. He argues that 1t is the limit of both of these areas, and that Archimedes'

method is closely related to our current concept of integral.

(5) The Compression Method (Baron, pages 37-38): "It is however, in the use which he makes of the

compression method that Archimedes demonstrates the full power and elegance of the exhaustion

techniques and it is here that their relation to the Cauchy-Riemann integral is most clearly exhibited.

The method consists essentially in the establishment through some specialized geometric

construction, of a monotonically ascending sequence, In, and a monotonically descending sequence,

Cn, between which lies the magnitude S whose value is to be investigated. The terms In and Cn

consist of the perimeters, surface areas or volumes of inscribed and circumscribed figures

respectively and the relation I] <12< 13< ... < In < S < Cn < Cn-l < ... < C2 < Cl is validated by a

whole series of important convexity lemmas such as: (1) of lines which have the same extremities

the straight line is the least; (2) lines (and surfaces) are concave in the same direction provided that

all straight lines formed by joining any two points on the line (or surface) lie on the same side of the

line (or surface); (3) if two lines (or surfaces) which have the same extremities be concave in the
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same direction then that line (or surface) which is either wholly or partly enclosed within the other is

the lesser of the two. By means of the particular construction adopted for In and Cn it is now

shown that the difference Cn - In can be made less than any assigned magnitude or that the ratio

Cnl/n can be made less than the ratio of the greater of any two assigned magnitudes to the lesser by a

suitable choice of n. It is now necessary to determine some quantity K, such that In < K < Cn for

all values of n. We have thus, In < S < Cn and In < K < Cn. Hence either S =K or S > K or

S < K. The proof is completed by reductio ad absurdum. (i.e., assume S > K and show that

assumption that leads to a contradiction. Do the same with S < K. Since S is neither greater than

nor less than K, it follows that S =K.)

(6) One wonders why Archimedes stopped at the 96-gon; certainly, his process could be iterated

further. See the algebraic formulas below, which some think Archimedes used to compute his

approximation of 1t (from Eves, p96):

(a) If sk denotes the length of one side of a regular polygon of k sides inscribed in a circle of radius

r, then s2n =~ 2r2- r~ 4r2
- sn2

.

(b) If Skdenotes the length of one side of a regular polygon of k sides circumscribed about a circle
. 2~n

of radius r, then S2n = ~ .
2r + 4r2+S 2n

(c) IfPk: and Pk denote, respectively, the perimeters of the regular polygons of k sides inscribed in

and circumscribed about the same circle, then P2n =p
2
p;'Pn ,andp2n = -VPnP2n'

n Pn
(7) Archimedes used two different approximations of -fj (one too large and one too small) as the basis

for his upper and lower bounds for n. He gave no indication of where those fractions came from.

Archimedes may have used the following approach for the approximations of roots. (Dijksterhuis,

pages 229-238)

{3 [add zero] = 1 + (-{3 - 1) [write as a fraction]

= 1 + ~ [rationalize the denominator of the new fraction]

'-13 - 1

= 1 + 1 [remove integer part from denominator]
'-13+

2

= 1 + ~ I [write as a fraction]
" 3-11 + -2-

1= 1 + 1 [rationalize the denominator of the new fraction]

1 + [ 2 ]
'-13 - 1

1= 1 + 1 [add zero]
1 + -=-=--

'-13 + 1



Archimedes'Approximation of n 169

1 +
1=

1
1

+
2 + (,..J3 - 1)

= ..... ,

but we've seen that -f3 - 1 before, on the first line. From the first and most recent lines,

{3-1= 11 '
1 +--~--

2 + CV 3 - 1)

so we can replace that last -fj - 1, giving

{3-1= 1
1

1

again, giving

{3-1 =

1 + 1
2 + C'.J3 - 1)

1

1
1

1 +------~-----­
2 +

1 + 1
2 + C'.J3 - 1)

1
1

and so on, for as long as we have the patience or need to do this. But there is a clear pattern taking place
before eyes, namely, a repeated fraction with a repeating of l's and 2's.
We can say

1 + ({3 - 1) = {3 = 1 +

1

1 + 1
2 +

1 + 1
2 + c'.J3 - 1)

We can make approximations of {3 by truncating the continued fraction; and we can make them as
accurate as we wish by extending the continued fraction. So the first will be -fj "" 1, too small because

we have left off the positive fraction. The second approximation is -fj "" 1 + t = 2 , too large because

we made the denominator of the fraction smaller, making the fraction itself larger.

The third is {3 "" 1 + _1-1 = ~, too small.
1 + 2"

1

J::: 19The fifth approximation is "'13 "" 1 +--~-1-- = 11 ' too small.
1 + 1

2 +--1
1 + 2"
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1+--
2 + L

1

Continuing in this manner, we get the seventh: {3 "" ~~ ,small; the eighth: {3 "" ;~ ,large; the ninth:

{3 "" 21~~ ' small, and one of the approximations Archimedes used; the tenth: {3 "" 32~' large; the

eleventh: {3 "" 95~i, small; and the twelfth: {3 "" 1~iOl , large and the other approximation that

Archimedes used. The same algorithm can be used to approximate {2 and roots of other positive

integers.

(8) Eudoxus developed the theory of proportions used by Archimedes and his contemporaries. This

theory is considered by some to be equivalent to modem theory of real numbers (see Stillwell, p 39

and Kline, pp 68-73.); at the very least, it is interesting to see how the theory of proportions

allowed the Greeks to get past the difficulties caused by the discovery of incommensurable

magnitudes (basically, irrational numbers are not the products of rational numbers).

Special implementation suggestions: See the implementation suggestions in the introduction to

Historical Projects. For this project, you may want to consider giving Archimedes' work as a reading

assignment for the whole class with lecture/discussion the following day. You could then ask all the

students to complete the extension of his approximation. This would be a fairly efficient way of

familiarizing students with one of the classic works and persons of mathematics.
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Title: Zeno's Paradoxes

Authors: Charles Jones, Grinnell College
Mic Jackson and Will Carter, Earlham College
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Problem Statement: Calculus is not merely a technical tool: it is "a collection of abstract

mathematical ideas which have accumulated over long periods of time." Although there are many themes

in the development of calculus, they all contain the common element of "the conflict between the

demands of mathematical rigor imposed by deductive logic and the essential nature of the infinitely great

and the infinitely small perpetually leading to paradox and anomaly." (Baron, pages 1-3)

Zeno of Elea described a number of paradoxes, including The Dichotomy, Achilles and the

Tortoise, The Arrow, and The Stadium, which seem to prove the impossibility of motion by using an

impeccable chain of logic. In each paradox, Zeno made a tacit assumption either that time and space

could be infinitely divided or that they were made up of indivisible elements. (Many Greeks called these

indivisible elements atoms; today we tend to call them infinitesimals.) He then showed that motion was

impossible under either assumption. "Neither the infinite divisibility of the straight line nor the line as an

infinite set of discrete points seemed to permit rational conclusions about motion." (Kline, page 992) At

any rate, these paradoxes proved sufficient to frighten mathematicians away from using the idea of

"infinity" until the seventeenth century. (Hooper, page 235)

Mathematicians have developed rigorous answers to these paradoxes only in relatively recent

times. It should be noted that none of the answers are satisfactory to all mathematicians. The most

commonly accepted answers have to do with infinite series and the definition of the derivative as an

instantaneous rate of change.

Your assignment:

1. Search in your science library to find a statement of The Dichotomy and of The Arrow. You may

want to start with some of the references cited above. Another good reference is Cajori. Your instructor

has complete citations for each reference. For each paradox, try to determine whether Zeno made the

assumption of infinite divisibility or the assumption of the existence of indivisible elements. Write a

modem interpretation of each paradox: convince a rational person who had never studied the derivative

or infinite series to agree that motion is in fact only an illusion, regardless of which initial assumption is

made.

2. Complete the following exercises.

a. (1) What is [110] m , for m = 1,2,3, 1O? What if m -7 co']

(Hint: Consider larger values of m.)
(2) Repeat (al) for (O.5)m.

(3) Repeat (a1) for (O.9)m.

(4) Repeat (a1) for (1.1)m.

b. (1) Simplify (1 - x)(1 + x + x2 + ... + xn).
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+ x2 + ... + xn) where:

(3) x =0.9, and n =9,

(Hint: Try (1 - x)(l), (1 - x)(1 + x), (1 - x)(l + x + x2), (1 - x)(1 + x + x2 + x 3), etc.,

to see the pattern.)

(2) What answer did you get? How can you use this to represent the sum

1 + x + x2 + ... + xn in a manageable way?

c. Using your answers to exercises (a) and (b2), evaluate (1 + x
1 1

(1) x = 10 ' and n = 9, (2) x = 2:' and n = 9,

1 1(4) x=1.1,andn=9, (5) x=lO,andn~oo, (6) x=2:,andn~oo,

(7) x = 0.9, and n~ 00, (8) x = 1.1, and n~ 00.

3. The argument of the Dichotomy implies that a runner in a 100 meter race never crosses the finish line.

Zeno's reasoning was that the runner must reach the first halfway point (50 meter mark). From there,

our runner must reach the second halfway-to-the-finish point (75 meter mark). Then, our runner must

reach the third halfway-to-the-finish point. This continues indefinitely; there are an infinite number of

these halfway-to-the-finish points, and there is a positive distance between any two of them. Since the

distance between consecutive halfway-to-the-finish points is positive, the time required to go from one

point to the other is also positive. So, our runner never reaches the finish line since the time required is

the sum of infinitely many positive quantities. This interpretation of the Dichotomy is used in the

following problems; assume the runner travels at a constant speed of 10 m/sec.

a. Using information from exercise 2c, explain why the runner can reach the finish line. When

does the runner cross the finish line?

b. How far from the finish line is the (1) 10th halfway-to-the-finish point?
(2) the 20th?

(3) the 100th ?

c. Which of the halfway-to-the-finish points occurs during the final Cdoo)th second of the race?

4. The following exercises are optional.

a. Explain Achilles and the Tortoise, assuming that Achilles runs 10 times as fast as the tortoise,

and the tortoise has a 900 meter head start.

b. Come up with questions analogous to exercises 3a through 3c for this paradox, and answer them

using what you learned in exercises 2a through 2c.

Your report will be evaluated for mathematical correctness, thoroughness and clarity, as well as

for the normal criteria of any written submission. Be sure to cite any library resources you use.
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Information for the instructor only:
Project abstract: This project is designed to introduce students to infinite series and some early

history of how humans dealt with the notion of infinity. It is one that naturally encourages young

students to discuss and debate their perceptions of the world. We recommend assigning this project

before dealing with series in class; the only nonalgebraic concept they need is an understanding of the

notation m ~ 00. The purposes of the project are to allow students to experiment with the key idea of

series (that the sum of a series is the limit of the sequence of partial sums) before they are given the

formal definitions, to see series in the interesting context of Zeno's paradoxes, and to consider how

series and the definition of the derivative as an instantaneous rate of change provide answers to Zeno's

paradoxes.

Newton, Leibniz, Euler and other mathematicians involved in the early development and

exploitation of the calculus all approached their work with the assumption of the existence of

infinitesimals, basically ignoring the philosophical problems pointed out by Zeno and others. As

paradoxes and inconsistencies were encountered in the exploitation of the derivative and integral,

Cauchy, Weierstrass, and others argued for a theoretical foundation upon which a consistent theory

underlying calculus could be developed. The axiomatization of the real number system, and hence the

rigorous theory which underlies calculus, is based on the modern notion of limit which is related to the

assumption of infinite divisibility. Until quite recently infinitesimals were dead as a theory but an

American mathematician, Abraham Robinson, articulated a consistent calculus based on the assumption

of infinitesimals around 1960. (See Henle and Kleinberg or Hurd and Loeb.)

Because it is difficult to find clear descriptions of the four paradoxes, I've included descriptions.
below from different sources. You may want to give some form of these descriptions to your students

and ask them to try to rewrite the paradoxes for a modern audience as part 1 of their assignment.

Dichotomy
Cajori, page 2 - You cannot traverse an infinite number of points in a finite time. You must
traverse the half of any given distance before you traverse the whole, and the half of that
again before you can traverse the whole, and the half of that again before you can traverse
it. This goes on ad infinitum, so that (if space is made up of points) there are an infinite
number in any given space, and it cannot be traversed in a finite time.
Eves, page 288 - If a straight line segment is infinitely divisible, then motion is impossible,
for in order to traverse the line segment it is necessary first to reach the midpoint, and to do
this one must first reach the one-quarter point, and to do this one must first reach the one­
eighth point, and so on, ad infinitum. It follows that motion can never even begin (if space
is infinitely divisible).

Achilles and the Tortoise
Cajori, page 2 - Achilles must first reach the place from which the tortoise started. By that
time the tortoise will have moved on a little way. Achilles must then traverse that, and still
the tortoise will be ahead. Achilles is always nearer, but never catches up to the tortoise (if
space is infinitely divisible).

Arrow
Cajori, p2 - This third argument against the possibility of motion through a space made up
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of points is that an arrow in any given moment (where moment is the smallest amount of
time) of its flight must be at rest in some particular point.
Eves, page 288 - If time is made up of indivisible atomic instants, then a moving arrow is
always at rest, for at any instant the arrow is in a fixed position. Since this is true every
instant, it follows that the arrow never moves.

Stadium
Cajori, p3 - suppose there are three parallel rows of oints lined u as shown in Figure 1.

IAII~IA3IMI AIA2A3M

IB11 B21 B31 B41 IB11 B21 B31 B41

ICIIC21C31c41 ICllc21c31C41

Figure 1 Figure 2
Of these row B is immovable, while rows A and C move in opposite directions with equal
velocity so as to come into the positions represented in Figure 2. The movement of row C
relative to row A will be double its movement relative to row B, or in other words, any
given point in row C has passed twice as many points in row A as it has in row B. It
cannot, therefore, be the case that an instant of time corresponds to the passage from one
point to another.
Assume that there is some smallest instant of time. Begin with twelve bodies of equal size
lined up as shown in Figure 1, then allow the described movement for one instant. The fact
that the movement of row A relative to row C is double that of row A to row B implies that
the supposedly smallest instant of time could be halved.

Prerequisite skills and knowledge: Good algebraic skills and an understanding of the notation

m~oo.

Essential/useful library resources: See the bibliography in the introduction to Historical Projects.

Essential/useful computational resources: None are required, although a scientific calculator

might save the students some time.

Example of acceptable solutions: For problem (1) students should give for each of the paradoxes:

an acceptable statement, assuming that you have not furnished one; a description of which assumption

was made; an accurate interpretation of the situation using clear narrative and explanatory diagrams

where helpful; and an explanation why the described situation under the given assumption leads to the

conclusion that motion is impossible.

For problems 2 and 3, we've included sample solutions:

(2a1) [11
0

] 1=0.1, Llo] 2=0.01, Llo] 3=0.001, and Llo] 10=0.0000000001.

It appears that as m gets arbitrarily large, Llo] m gets arbitrarily small,

or as m ~ 00, Llo]m ~ O.
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(2a2) [!] 1 = 0.5, [!] 2=0.25, [!] 3=0.125, [!] 10= 1d24 = 0.000976562.

It appears that as m gets arbitrarily large, BJ m gets arbitrarily small,

or as m -7 00, [!] m -7 O.

(2a3) (0.9)1 = 0.9, (0.9)2 = 0.81, (0.9)3 = 0.729, (0.9)10 = 0.34868.
It appears that as m gets arbitrarily large, (0.9)m gets arbitrarily small,
or as m -7 00, (0.9)m -7 O.

(2a4) (1.1)1 = 1.1, (1.1)2 = 1.21, (1.1)3 = 1.331, (1.1)10 =2.6.
It appears that as m gets arbitrarily large, (1.1)m gets arbitrarily large,
or as m -7 00, (1.1)m -7 00.

(2b1) (l-x)(l) = (I-x),
(1 -x)(l + x) = 1 -x2,

(l-x)(l +x +x2) =1-x3,

(l-x)(l +x +x2 +x3) = 1 -x4.
The pattern is (1 - x)(l + x + ... + xn) = 1 - x(n+1).
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(2b2) This is the key step:

(l - x) (l + x + x2 + ... + xn) = 1 - x(n+1) implies 1 + x + x2 + .,. + xn = l_x<n+l)
1 -x

(2c) Using the result of b2, we can quickly evaluate each sum for the given value of x and n.

(2c 1) 1 - (0.1)(10) = 0.9999999999 = 1.111111111
1 - (0.1) 0.9

(2c2) 1 - (0.5)00) = 0.9990234375 = 1.998046875
1 - (0.5) 0.5

(2c3) 1 - (1.9)00) = 0.6513215599 6.513215599
1 - (0.9) 0.1

(2c4) 1 - (1.1)(10) = -1.59374246 = 15.9374246
1 - (1.1) -0.1

(2c5) A 1 - (O.1)(n+l) -----'" .L=-.Q = 10 = 1 111
s n -7 00, 1 _(0.1) ---, 0.9 9 . ...

(2c6) As n -7 00, 1 - (0.5)(n+1) -7 .L=-.Q = 2
1 - (0.5) 0.5

(2c7) As n -7 00, 1 - (0.9)<n+ 1) -7 .L=-.Q = 10
1 - (0.9) 0.1

1 - (l,1)(n+l) -7~ =00
(2c8) As n-7 00

, 1-(1.1) -0.1

(3a) Exercises 2c5-7 show that the sum of an infinite sequence of numbers which become

arbitrarily small can equal a finite number. Our runner travels half the remaining distance in each instant:

hence, the distance she travels is (0.5) + (0.5)2 + (0.5)3 + (0.5)4 + ... + (0.5)n which approaches 2 - 1 =

1 (= the length of the race) as n increases without bound.

(3b) Since the distance remaining to the finish line is 100 meters minus the distance traveled. So

the distance remaining is 100m times {1- [(0.5) + (0.5)2 + (0.5)3 + (0.5)4 + ...+ (0.5)n]} = 100m times
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{I - [ 1 -/~·~t;;I) -I]}, where n is the number of the current halfway-to-the-finish-point.

. 1 - (0.5)0 1)
(3b1) 100m nmes (1- [ 1 _ (0,5) -1]) ~ 0.09765624 meters.

An easier way of doing this is [~] 10 x 100 ~ 0.0976562 meters.

[
1] 20(3b2) "2 x 100 ~ 0.0000953 meters

(3b3) [~] 100 x 100 ~ 7.9 x 10-29 meters

(3c) At 10 meters per second our runner could cover 0.01 meters, or 1 centimeter, during the final

( 1 )th [1] n1000 second of the race. So we need to find an integer n such that "2 x 100 ~ 0.01, or 2n ~

10000: a little experimentation shows that this inequality is true if n ~ 14. So every halfway-to-the­

finish point after the fourteenth occurs during the final (I~OO) th second of the race!

(4a) By the following reasoning, Achilles can never catch the tortoise. Call the tortoise's starting

position point 1. By the time Achilles reaches point 1, the tortoise has moved to another position, call it

point 2. By the time Achilles reaches point 2, the tortoise has moved to another position, call it point 3;

this continues indefinitely. During the positive amount of time Achilles takes to move from point n to

point n+l, the tortoise also moves some positive distance, to point n+2. Since there are an infinite

number of these points, Achilles never catches the tortoise. Assume that the tortoise runs 10 meters per

minute.

(4b) Some analogous questions (without answers).

a. Using information from exercise 2c, explain why the Achilles can and does catch the tortoise.

b. How far from the tortoise is Achilles when Achilles is at (1) point 10 ?
(2) point 20 ?
(3) point 100 ?

c. Which of Achilles' points occur during the final (l~OO) th minute of the race?

Conjectures we expect that some students will make: One of these assumptions, infinite

divisibility or existence of indivisibles, must be correct, the other incorrect.

Questions for further exploration: Do some similar work with the Arrow or the Stadium.

References/bibliography/related topics: the other historical projects, convergence of infinite

series

Special implementation suggestions: See the implementation suggestions in the introduction to

Historical Projects.
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Title: Archimedes' Determination of the Surface Area of a Sphere

Authors: Mic Jackson and Krista Briese, Earlham College
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Problem Statement: In this particular proof, Archimedes used the assumption that certain

processes could be carried on indefinitely (his way of dealing with the notion of infinity), Eudoxes'

theory of proportions (his way of dealing with the problem of the existence of irrational numbers), and a

form of proof known as reductio ad absurdum. One example of his use of the theory of proportions is

his contention that, given two circles, it must be true that the ratio of the circumference to the diameter of

one is equal to the ratio of the circumference to the diameter of the other: cz = ~:. We would make the

equivalent statement that the circumference of any circle is equal to the diameter of the circle multiplied by

the number 1t; C = ted, or ~ = 1t for any circle. Hence, anyone attempting to follow Archimedes' work

will also need to be competent with the rules and concepts of proportion which where characteristic of

ancient Greek mathematics. Some are listed below:

a b a a2 abc a a3
(1) If-=-, then -=2"' (2) If-=-=-, then -=3'

b c c b b c d db
a m b p a mp

(3) If - = - and - = -, then - = -
b n c q c nq

a cab b d a+b c+d
(4) If - = - then (a) - = - (b) - =- (c) - = --

b d' c d' a c' b d'
a-b c-d a c

(d) --=-- ifa>b, (e) --=-- ifa>b,
b d a-b c-d

(f) a+b =c+d, (g) _b_=_d_, (h) a-b =c-d.
a c a-b c-d a c

a cab b d a+b c+d
(5) If - > -, then (a) - > -, (b) - < - (c) -- > --,

b d c d a c, b d

(d) a-bb > C-dd, (e) _a_<_c_, (f) a+a b < c+c d,
a-b c-d

(g) _b_ < .s.; (h) a - b > c - d; (i) if also c > d, then a > b.
a-b c-d a c

(6) If a > b, and c is "any magnitude homogeneous with a and b," then a > a +c .
b b+c

Your task is to justify the 13 statements highlighted in bold face in Archimedes' proof that the surface

area of a sphere is equal to 41tr2. To justify in this case means to provide the details that Archimedes left

out so that the proof is more easily readable. You need to show how each statement follows from

known definitions, axioms and/or theorems and from previous statements in this proof. You will need
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to make geometrical arguments and use some of your knowledge of proportions and infinite series to

understand Archimedes. In each case, be sure you explain what Archimedes meant and why he felt the

phrase was necessary.
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Archimedes' determination of the surface area of a sphere.
(Adapted from The Origins of the Infinitesimal Calculus, by Margaret Baron, pages 38-41. 1)
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PART I

In trying to determine the surface of a sphere Archimedes' basic plan was to find a circle whose area was

identical to the surface area of a given sphere. He began with a maximal circular cross-section of the

sphere and inscribed within that circle, which we will call circle S, a regular polygon of n sides

(Figure A). He then rotated the circle S and regular n-gon about a diameter (AC in the figure). He

considered the solid resulting from the rotation of the n-gon to be made up of successive conicalfrusta

(BXYZ is a cross section of such a frustrum.), and approximated the surface area of the sphere with the

sum of the surface areas of all the conical frustra.

At---t--J---+---f-------l---+---t---+--+---=!C

Figure A

He next determined the area of each conical frustra by constructing for each a circle of equal area (Figure

B). Finally, he replaced the sum of all of these circular areas with the area of a single circle.

1 Adapted with the permission of Macmillan Publishing Company, a Division of Macmillan, Inc. from THE ORIGINS

OF THE INFINITESIMAL CALCULUS by Margaret Baron. Copyright ©1969 Pergamon Press.
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Figure B

Problems for Student Investigation

To see how Archimedes replaced each conical frustrum with a circle of equal area, consider that if

the radii of the frustrum are Sa and Sb and the slant height is h then

(1) the surface area of a single conical frustrum is 1th(sa + sb).

Thus (sa + sb)h =(R1)2 , and R1 =-V h(sa + Sb). Hence, adding all surface areas of all the conical

frustra,

n-l
(2) the surface area of the inscribed solid is 1t I R r 2 = 1t R 2,

r=1

where R =~ n-l ~IR r
2 =

r= 1

n-l ~I h(sr + Sr+l) =
r=1

SI S2 S3 S4 Sn-l B C
(3) It follows from similar triangles that cl = c2 = c3 = c4 = ... = cn-l = h'

Now (from Figure A), if d is the diameter of the circle in which the regular n-gon is inscribed, then
n-1

d =2 L, Cr.
r=1

BC
(4) Using rules of proportion, we get h =

n-l
2 I Sr

r=1
d

n-l
(5) It follows that 2h I Sr =d-B C, and R = ~ d·BC (the radius of a circle whose area is

r=1

identical to the surface area of the inscribed solid). Since Be < d it follows that R < d, and

(6) the surface area of the inscribed solid is less than that of the circle with radius d.

It is useful to recall that d is the diameter of circle S in which we inscribed the regular n-gon. We

are now considering a circle whose area is 4 times greater than that of the original circle S.
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PART II

Having produced a lower bound for the surface area of a sphere in Part I, Archimedes determined

here to produce an upper bound. He circumscribed a regular n-gon about the circle S and then considered

this n-gon as inscribed in a circle S' with diameter d' (d'> d).

(7) The surface area of the solid circumscribed about circle S can be written down

immediately as equal to the area of a circle with radius R'= ~d"B 'C' .

A' C'
f-t-'-'----------'---------t-~

Figure C

(8) In triangle A 'B 'C', A 'P =P B' and A '0 =OC', hence B 'C' =2PO =d. Finally,

since B 'C' =d,

(9) the surface area of the circumscribed solid is greater than that of the circle with

radius d.

PART III

Archimedes' last step in many of his demonstrations is a proof by reductio ad absurdum; what

follows is fairly typical. Let Snand S'n denote the surface areas of the inscribed and circumscribed

solids (formed by the rotation of a regular n-gon) respectively, and hn and h 'n denote the slant height of

each conical frustrum. Finally, let S denote the surface area of the sphere and K the area of a circle with

radius d.

(10) It follows that Sn < S < S'n and Sn < K < S'n.

x K
(A) Assume that S < K. Let x and y be such that y < S .

S'n h'n2 x
(11) There exists a counting number n be such that -S =~ <

n n Y
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Hence, ~: < ~ , which is impossible since s; > K and s; < S.

(12) So it must not be true that S is less than K.

x S s; h'n2 x
(B) Assume that S > K. Let x and y be such that y < K· Let n be such that Sn = h

n
2 < Y

Hence, ~: <i 'which is impossible since S'n > Sand Sn < K. So it is not possible for S to be

greater than K.

(C) (13) Since S <. K and S l-K, then S =K must hold, and the surface area of a sphere

of diameter d is equal to the area of a circle with radius d.
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Information for the instructor only:
Problem abstract: This problem provides a good example of Archimedes' use of geometry and

proportions and his assumption that he could continue a process "as long as necessary." In this case the

process involved circumscribing and inscribing regular n-gons about a circle. He employed the

"compression method" in which he demonstrated that the desired value lay between a lesser

monotonically increasing sequence and a greater monotonically decreasing sequence. (See the

introduction to Historical Projects.) Without addressing the actual values of the sequences and tacitly

assuming the convergence of both as obvious, he made good use of Eudoxus' theory of proportions to

establish the desired result. As usual, he made no mention of 1t, but stated his result in terms of its

relationship to known values.

Prerequisite skills and knowledge: high school algebra (including theory of proportions), high

school geometry, convergent sequences, infinite series.

Essential/useful library resources: See the bibliography in the introduction to Historical Projects.

Essential/useful computational resources: none

Example of an acceptable approach:

(1) the surface area of a single conical frustrum is 1th(sa + Sb)

The surface area of a right circular cone with base radius R and slant height L is 1t RL. The surface

area of a frustrum of that cone is the surface area of the cone less the surface area of the part cut

away.

Figure D

Considering the conical frustrum formed by the rotation about its centerline of the emboldened

trapezoid in Figure D, we find

Ai= 1t ar -1t (a - h)r' = 1t a(r - r') + 1t hr' = (by similar triangles) 1t .lz., (r - r') +1t hr' = 1t her + r').r - r
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n-l

(2) the surface area of the inscribed solid is n L R r
2 =n R2,

r=1

Problems for Student Investigation

~
-1

where R = LR r
2 =

r=1

n-1

L h(sr+Sr+1) =
r=1

For the 12-gon in Figure A, there are n =6 conical frustra; the sum of their surface areas will give

the surface area of the inscribed solid. Further, the pattern for this particular example will hold for

any value of n, so it will be easy to move to a general expression. From the above result for the

surface area of a frustrum it follows that the surface area for the particular example is

A =nh(so+sl) + tthis;+S2) + nh(s2+s3) + nh(s3+s4) + nh(s4+ss) +nh(ss+S6)
S

= nh(O+SI) + nh(sl+s2) + nh(s2+s3) + nh(s3+s4) + nh(s4+Ss) +nh(ss+O) = 2nh'L Sr.
r=1

(3) It f 11 f "1 . 1 h SI S2 S'2 S4 Sn-l Bet 10 ows rom sInn ar tnang es t at - =- = ::..l. =- = ... = =-.
ci C2 C3 C4 Cn- l h

Again, if we consider the particular example in Figure A, the result is easily generalizable to any n­

gon. Establishing the particular results is messy enough.
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Q

A

B'

Q'

c

Figure A'
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BC
(4) Using rules of proportion, we get h =

First, we need to establish which triangles are similar and why, Since the inscribed polygon is regular

it follows that LB 'PP' is congruent to LP 'QQ', which implies that segment PB' is parallel to segment

P'Q, and that LPAIX2 == LQA2X3, and finally that MAIX2 - ~QA2X3' The same reasoning can be

applied to show: MAXI - MAIX2 - ~QA2X3 - MA3X4 - A5A4Xs. Further, LACB == LABB'

because they are inscribed angles cutting off equal arcs, so ~CAB - MAX I, and to all the other

triangles listed above. The list of equal ratios immediately follows,

n-l

2I S r
r=l

d

If ace h a + c ace Thi li li f 1 'b =d =l' t en b + d = b = d =r IS genera izes to any 1St 0 equa ranos.

n-l

(5) It follows that 2h Isr =d,BC, and R =-V d,BC .
r=l
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Cross-multiply the proportion in (4) and then apply the fact that R =
n-l

2h I sr from (2).
r=1

(6) The surface area of the inscribed solid is less than that of the circle with radius d.

R2 = d·BC < d 2 ; hence7tR2<1td 2 •

(7) The surface area of the solid circumscribed about circle S can be written down immediately as equal

to the area of a circle with radius R'= ~d'.B 'C' .

Follow arguments (1) through (5) for circle 0 ',

(8) In triangle A 'B 'C', A 'P = PB' and A '0 = OC', hence B 'C' = 2PO = d.

In Figure C, M 'PO ~ M 'B'C' and side A '0 is half of side A 'C', so all other corresponding sides

are in the same proportion. Note that PO is the radius of circle S.

(9) the surface area of the circumscribed solid is greater than that of the circle with radius d.

Since B 'C' = d < d', it follows that the surface area of the circumscribed solid [1t (R ')2 =

n td' )(B 'C')] is greater than the area of the circle with radius d. [ned' )(B 'C ') = n (d' )(d) > n-d 2]

(10) It follows that Sn < S < S'n and Sn < K < S'n.

This restates the results of from Parts I and II.

S' h' 2
(11) There exists a counting number n such that S n = h n2 <!.

n n Y
It is reasonable that hn "> bn and (hn ')2 > hn2 for all n > 2. The intuitively obvious but actually

tricky argument here is that the positive difference hn' - hn gets arbitrarily close to 0 as n increases

and that ~:; gets arbitrarily close to 1. I guess that is what Archimedes basically reasoned. So if

~ is a fixed value greater than 1 it follows that if we continued Archimedes' process, we would

h' 2
eventually construct regular inscribed and circumscribed n-gons such that h n2 <!.

n Y

(12) So it must not be true that S is less than K.

The assumption that S < K led to a false conclusion.

(13) Since S 1. K and S i- K, then S =K must hold.

This follows from the trichotomy property which says that if we have two magnitudes Sand K,

then exactly one of the following statements is true: S =K, S < K, or S > K.
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Conjectures we expect that some students will make: Archimedes did not talk about n, but

ratios of magnitudes, why?

Questions for further exploration: Archimedes made a number of other significant

determinations, most of which can be found in the library resources listed. A bright student would gain

from tackling one on her own. Most students could gain from reading about Archimedes and his

accomplishments.

A calculus founded on the notion of infinitesimals, rather than currently accepted limit theory,

known as "non-standard analysis," (see Henle and Kleinberg) could provide the unusually bright and

motivated student with some food for thought.

References/bibliography/related topics: A lengthy series of articles entitled "The History of

Zeno's Arguments on Motion," by Florian Cajori, the AmericanMathematical Monthly published during

the year of 1915 gives thorough coverage of the philosophical problems related to the very small and the

very large.

Eudoxus developed the theory of proportion used by Archimedes and his contemporaries. This

theory is considered by some to be equivalent to modern theory of real numbers (see Stillwell, page 39);

at the very least, it is interesting to see how the theory of proportions allowed the Greeks to get past the

difficulties caused by the discovery of incommensurable magnitudes which basically showed the

existence of numbers (called irrational) that are not the products of rational numbers.

Special implementation suggestions: See the implementation suggestions in the introduction to

Historical Projects.
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Newton's Investigation of Cubic Curves

Jeffrey Nunemacher, Ohio Wesleyan University

Problem Statement: This project explores a portion of the classification of cubic curves, which

was carried out by Isaac Newton in the late seventeenth century. The general cubic curve in two

variables is defined by the equation

ax3 + bx2y + exy2 + dy3 + ex2 + ixy + jy2 + mx + ny + p =° (1)

where a to p are real constants. We assume that at least one of the initial coefficients a to d is nonzero so

that the curve is a legitimate cubic. There are many more varieties of cubics than of quadratics (ax 2 +

bxy + cy2 + dx + ey + f =0) which turn out to be conic sections usually, although the degenerate cases

of single lines, two parallel or intersecting lines, single points, and the null set can also occur. Newton

classified nondegenerate cubics into 72 different species according to their asymptotic behavior.

Actually, according to his scheme there should be 78 species; Newton missed six which were found by

later authors. Although it is too complicated to look carefully at his complete classification, we can learn

quite a bit by using calculus and algebra to redo a portion of his investigation. Proceed as follows:

1) To get an idea of the range and beauty of cubic curves, draw graphs of the famous curves

listed below which have occurred in particular geometric or algebraic settings (and thus acquired names).

You will find it useful to use a computer algebra package which can solve such equations for y in terms

of x and then produce a graph of the result. However, be careful with the folium; you will need to do a

parametric plot to get at this one properly. Be sure that your graph shows all features of the curves; you

may need to zoom outwards to see the global picture.

a) y(1 + x2) = 1, the witch of Maria Agnesi;

b) y2(2 - x) =x3, the cissoid of Diocles;

c) x3 + y3 =1, the Fermat curve for n =3;

d) x3 + y3 - 3xy =0, the folium of Descartes.

2) Consider the special case y =f(x) =ax3 + bx2 + ex + d, where a '* 0, b, e, and d are fixed

real numbers. Determine the possible shapes for the graph in terms of appropriate functions of

coefficients. It will be helpful to consider the solutions of!,(x) =0. Sketch the various possibilities.

3) In the same way explore the shapes of the curves xy =f(x) =ax3 + bx2 + ex + d for a '* O.

Again determine the shapes in terms of the coefficients. You will need to decide when the equationf(x)

=°has three positive or three negative solutions.

4) Continue your look at special cases by considering curves of the form y2 =f(x) =ax 3 + bx2 +
ex + d for a '* 0. This time you should find five quite different shapes depending on the nature of the



Newton's Investigation ofCubic Curves 189

roots of f(x). Two of them look very similar but there is a crucial difference (what?). Find simple

examples of each type, e.g., y2 =x3 - x for the case of three distinct real roots. Sketch a graph of each

shape.

5) Newton was able to reduce the general cubic equation (1) to one of four simpler types of

equations by a suitable change of coordinates. These four types are:

a) y = f(x) = ax3 + bx2 + ex + d;

b) xy =f(x) =ax3 + bx2 + ex + d;

c) y2 = f(x) = ax3 + bx2 + ex + d;

d) xy2 + ey =f(x) =ax3 + bx2 + ex + d.

As you see, the first three types are those which we studied in parts 2) - 4). The first two types each

contribute one species to the 78 species of nondegenerate cubic curve, the third type five species, and the

fourth type the remaining 71 species.

Given the results of parts 2) and 3) above, you may be surprised that Newton counted these

curves as contributing only one species each to his catalog. The reason lies in the fact that "bumps" can

be smoothed out by a linear change of coordinates, which Newton allowed, so they cannot be

distinguished within his classification scheme. As an example, start with the curve y =x3 - x and

perform the change of variables x' =x, y' =y + x. Sketch the curve in the original x, y coordinates and

in the new x', v: coordinates. What do you observe?

6) We have studied the first three types of cubic curves in parts 2-4. The fourth type is quite

complicated in general, but notice that it is possible to solve for y in terms of x. Newton did this by

multiplying through by x and then completing the square. Make any general statements possible about

this fourth type of cubic. For example, how many points on the curve can lie above each x value? How

many intervals on the x-axis can have no points above them? How many asymptotes are possible?

Another way for the curve to be degenerate (aside from having no cubic terms) is if the defining

equation factors nontrivially into a product of terms, e.g., xy2 +Y =x3 -x, which factors as (x + y)(1 +
xy -x2) =O. Give a complete list of the types of cubic curves which are degenerate in this way.

Finally, use a computer to explore the nature of the type d) cubic. Try to find examples which

have 1,2,3, and 4 branches. Can you find ten substantially different examples?
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Information for the instructor only:
Problem abstract: Curves are one of the glories of elementary mathematics. Calculus students

encounter lines and the conics but the next most complicated case, that of cubics, is rarely dealt with.

One reason, of course, is that the cubic case is much more complicated, but a good deal of the difficulty

can be swept away with the enlightened use of a computer. The goal of this project is to examine

Newton's classification of cubics in so far as this is reasonable to do with elementary algebra, a

computer, and some thought. The student will deal with a complex problem which has a pleasing

solution involving many pretty pictures. For a complete catalog of the possible graphs (except for the six

which Newton missed) see his paper mentioned in the bibliography.

Prerequisite skills and knowledge: For parts 1, 2, 3 and much of 5, it suffices to have a

knowledge of calculus at the curve sketching level together with reasonable facility with a symbolic

manipulation computer package (or a graphing calculator). Part 4 requires nothing but high school

algebra, but the calculations will make more sense if the student has seen the reduction of the general

quadratic in two variables to the standard conics using rotations and translations. It would be very

reasonable to assign only parts 1-3 and 5 in a first year calculus class.

Essential/useful library resources: none

Essential/useful computational resources: This project requires the use of a graphing and

symbolic algebra package.

Example of an acceptable approach:

1. These curves are sketched below. For the case of the folium (Figure 4) some care is needed

in solving for y in terms of x. The usual algebraic solution of a cubic in terms of roots involving

complex numbers is not suitable for drawing a real graph. A good equation solver will recognize this

"irreducible" case and employ a trigonometric solution. Most students will not have encountered this use

of trigonometry before and are likely to ask for an explanation. Consult an older book on the theory of

equations, such as [3], or a good mathematical encyclopedia. An alternative which may make better

sense to more advanced students is to use y = tx to put the folium in parametric form. Most graphing

tools will produce the proper graph from the parametric form x = t 3 ~ 1 ,y = t 33: 1 .



Newton's Investigation of Cubic Curves 191

(1) (2)

;(2- x) = x3

(3) \

x3+y=l

\

2. The shape is completely determined by the discriminant off "(r), D =4b2 - 12ac. The curve

has two humps if D > 0 (Figure 6) and no humps otherwise (Figure 5). The sign of a controls the

direction in which the curve approaches +00. Notice that we require that a ~ 0 so as to have a legitimate

cubic. This curve is sometimes known as a cubical parabola.

(5)

y= x3 (D::;;0)

(6)

y =x3 - x (D > 0)

3. For this class of cubics there are three general shapes depending on d and the number of

positive or negative roots of the equationf(x) = O. If d = 0 the graph is the union of a parabola and the

y-axis (Figure 7). If d'# 0 the graph is known as the trident of Descartes or Newton. It has an

asymptote at x = 0, two humps if f(x) = 0 has three positive or three negative roots (Figure 9), and no

humps otherwise (Figure 8). It is interesting to find conditions on the coefficients which guarantee this

root condition. First note that a necessary condition is that the discriminant D oif" is positive. Let r < R

denote the roots ofr(x) (when D > 0). Thenf(x) will have three real roots iff(r) andf(R) have opposite

signs. Another approach is to use the discriminant of the cubic f, which is discussed in [3]. In this case

the roots will have the same sign if r > 0 and d andf(r) have the opposite signs or if R < 0 and d and

f (R) have opposite signs. The sign of a, of course, has the same effect on the graph as in problem 2

above.
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(7)

xy =i3 (including the y-axis) xy =(x- 1)(x- 2)(x- 3)

4. The shapes are classified by the number and location of the roots of j(x). There are five

cases: case 1: 1 real and 2 complex roots (Figure 10), case 2: 1 real root of multiplicity three

(Figure 11), case 3: three distinct real roots (Figure 12), case 4: 1 real root of multiplicity two with

another of multiplicity one which is greater than the root of multiplicity two (Figure 13), case 5: 1 real

root of multiplicity two with another of multiplicity one which is less than the root of multiplicity two

(Figure 14). These five cases can be determined from the coefficients as follows. We use the same

notion as in problem 3 above. Then case 1 occurs when D < 0; case 2 when D =0; case 3 when D > 0

andj(r) andj(R) have opposite signs (recall that rand R denote the roots of j '(x)); case 4 when D > 0

andj(r) =0; and case 5 when D > 0 andj(R) =O. Simple examples of the five situations are indicated

below the appropriate figure.

(13)
--+~I-+--

(10)

Figure 11 is known as the semicubical parabola. The graphs in Figures 10 and 13 look quite similar, but

Figure 13 has an isolated point in addition to the main part of the curve.

5. This needs no explanation.

6. There are many species of cubic curves of type d) (71 in all). Newton studied these curves by

completing the square to obtain the equation

(xy + eJ2)2 =g(x) =ax4 + bx3 + cx2 + dx + e2J4. (2)

He then divided these curves into classes according to the sign of the leading coefficient a and further

broke the classes into genera and species according to the behavior of the roots of g(x) =O. We give

some representative examples below. We obtained some of these examples by choosing simple values

for the coefficients in equation (2) and others by selecting particular values for parameters in Newton's
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paper [4]. In some cases drawing a good graph requires zooming out to get the big picture or zooming

in to see details. It is easy to miss a branch of the curve or an asymptote if the wrong scale is used. See

Figure 23 below.

None of these curves can have more than two points above any given x value, since the original

curve is quadratic in y. There are intervals on the x-axis with no corresponding (real) y values when

g(x) < O. This can happen on at most three intervals, since g has at most four real roots.

The degenerate cases (which are not counted in the 78 species) are any union of a conic with a

line, a point with a line, or of three lines, some of which may coincide. Two of these are drawn below

as Figures 25 and 26. Notice that a single point, which is a degenerate case for a quadratic curve, is not

one for a (legitimate) cubic. Neither is the null set.

Any cubic of type d) will have from one to three asymptotes. Finding the asymptotes of a

general algebraic curve seems to be a lost art. One needs to look in an older book, such as [5], to find

the theorem that completely specifies them. Suppose that the curve is defined by an nth order polynomial

equation f(x, y) = 0, and letfk(x, y) denote the pure k-th order part off so thatf = f n + fn-l + .... Iff

has ax + by as a simple factor so thatfn = (ax + by)gn-l' then the curvef= 0 has the asymptote

(ax + by)gn-l (b, -a) + fn-l (b, -a) =O.

Iffn has ax + by as a repeated factor and ax + by is also a factor offn-l so thatfn = (ax + by)2gn_1

andfn_l = (ax + by)hn_2, then the curve has the pair of asymptotes

(ax + by)2gn_1(b, -a) + (ax + by)hn-1(b, -a) + f n-2(b, -a) =O.

Finally, iffn has ax + by as a repeated factor butfn_l does not have ax + by as a factor, then there is no

asymptote of the form ax + by = c for any constant c. Notice that the top three!k's are necessary for a

complete determination of the asymptotes, but the very top one f n suffices to specify the (at most n)

possibilities. The proof of this theorem relies on the notion of points at infinity-a line is an asymptote

to a curve if and only if it is tangent to the curve at infinity. See [5, p. 7]. In the cubic case, at most

three asymptotes are possible.

Newton's full classifications scheme shows that it is not possible to have more than four

branches in any cubic curve. Examples of curves with these four possibilities are given below along

with examples of other interesting shapes which occur for cubics of type d). Compare Figures 21 and

22 and Figures 24 and 25. In Figure 22 it is necessary to use several digits of accuracy for {8 to obtain

the graph shown, which has a node.
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(18)

xy2 - 2.45y=x3 - 5x2 + 8.75x - 6.25

(17)

/~

"""

xy2 + y=x3

(16)
/

xy2+ y =-x3

(15)

(19)
o

(21)

xy2 + 1.73y=_x3 + 2:?- + .25x - 2

/
/

(24)(23)

""xy2 + 2.45y = _x3 - 5.x2 + 8.75x - 6.25 xy2 + lly= x' -1O.x2 + 35x- 50

(22)

xy2 + lOy =x3 -10:?- + 35x- 50
(degenerate)

x3 + .x2y- -0/ - y3 -x + Y =0
(degenerate)
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Questions for further exploration:

I. The following could be added to problem 5:

5.b) Obtain Newton's reduction to the four simpler types as follows. Rename x, y as u, v to

avoid confusion with the coming transformations and consider the function defining (1)

h(u, v) =au3 + bu2v + cuv2 + dv3 + eu2 + iuv + jv 2 + mu + nv + p,

where at least one of a to d is nonzero. Let k(u, v) = au3 + bu2v + cuv2 + dv2 denote the purely cubic

portion of h. It is reasonable to work first with k, since it determines what the possible asymptotes are

(although lower degree terms affect whether the possibilities are indeed asymptotes), and Newton based

his classification on this asymptotic behavior.

Show that k(u, v) is always divisible by some linear term mu + nv, where m and n are real

constants, such that either

(i) k(u, v) = (mu + nv)3, or

(ii) k(u, v) = (mu + nv)(ru2 + suv + tv2) , for real constants, r, x, and t with mu + nv not

dividing the second factor.

Let x = mu + nv be a new coordinate. In case (i) let y = pu + qv be any other coordinate which is

independent of x, i.e., so that it is possible to solve for u and v in terms of x and y. Then in the x, y

coordinate system k(u, v) reduces to x3. In case (ii) again let y =pu + qv but show that a particular

choice of p and q results in a coordinate system x, y so that k(u, v) reduces to xy2 - ax3 for some real

constant a.

The final step in the reduction is to make some of the other terms in h vanish. Show that further

linear transformations or translations can be performed to arrive at a), b), or c) in case (i) and d) in case

(ii). This proves that the general cubic equation can be reduced to one of these four simplified types.

Solution:

The algebra here can be extremely unpleasant if approached blindly. But if tackled from the

proper point of view, this simplification can be performed with only a few elementary calculations. We

follow the approach of Brieskorn in [2, p. 91]. Students may well need some additional explanation for

this part beyond that written in the problem statement. To achieve this considerable simplification of the

general cubic, Newton allowed a general affine change of coordinates. The orthogonal transformations

which can be used to reduce conics to their standard forms do not suffice to simplify cubics.

We begin by considering the pure cubic form k (u, v). To see that k (u, v) has the stated

factorization, set z =ulv. (If v is absent, this first part of the reduction is unnecessary.) There is at least

one real root z of the resulting cubic in one variable, so u - zv divides k(u, v) by the factor theorem. If it

divides it once or three times, this factor will do as mu + nv. If it divides k(u, v) twice, use the linear

quotient as mu + nv.

When k is a perfect cube (case i)), y can be chosen to be any other linearly independent
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coordinate, but in case ii) a calculation is necessary to determine an appropriate y to yield the

result xy? - ax2. We set y equal to pu + qv and compute y2 - ax2 in terms of u and v. Here p, q, and

a are to be determined. For y2- ax2 to be equal to ru2 + suv + tv2, three equations need to be satisfied:

p2 - am 2 = r, pq - mna = s/2, and q2 - an2 = t. Then p = ± ...j r + am 2 and q = ± ...j t + an2

(temporarily we allow p and q to be complex), so that ± ...j r+ am2 ...j t + an2 - mna = s/2. Squaring

gives (r + am2)(t + an2) = (s/2 + mna)2, hence (m2t + n2r)a - mnsa = s2/4 - rt. This equation can be

solved for a so long as m2t + n2r- mns '# O. But this condition is equivalent to the requirement that mu

+ nv does not divide ru2 + suv + tv2. To see that p and q can be chosen to be real, notice that pq - mna

=s/2 implies that one of p or q is real if the other is. Otherwise, both are pure imaginary, but in that case

a factor of -1 can be removed from ru2+ suv + tv2 and included in the mu + nv term, which now makes

p and q real. Thus we have shown that appropriate real constants p, q, and a always exist in case ii).

Hence there is always a suitable linear change of coordinates to simplify the pure cubic part of equation

to one of the two forms ax3 (in our approach a turns out to be 1) or .xy2 - ax3.

To arrive at Newton's four types, another transformation must be performed to remove some of

the lower degree terms. If lex, y) =ax3 + py2 + qxy + ry plus lower degree terms in x , then let x ' =

x - m and y' = kx + y - n. Direct substitution into / shows that if p '# 0 then suitable choices of m, k,

and n can be made to cause the x y' and y' terms to vanish, which produces an equation of type c). Ifp

=0 but q '# 0, then y' can be made to disappear, which yields type b). If both p and q are zero, the

equation is already of type a). On the other hand, iflex, y) =.xy2 - ax3 + py2 + qxy + ry plus terms of

lower degree in x, then a translation x' =x - m, y' =y - n can be chosen to remove the y' and x y '

terms. Thus we conclude that it is always possible by an affine transformations to reduce the general

cubic (1) to one of the four types a) to d).

II. Special plane curves have always had an enthusiastic following among amateur and professional

mathematicians. An attractive treatment of several special curves can be found in Simmons [7]. In

particular, note his treatment of the folium of Descartes as a parametrized curve and as a polar curve (pp.

512,548). These techniques, together with simply solving for y as a function of x, give three useful and

complementary approaches to the study of this beautiful curve. Note also Simmons' description of how

certain special curves can be used to solve famous geometric problems of antiquity (p. 493). Other good

references for special curves are Stillwell [8] and Brieskorn [2]. A useful order treatment of curves,

which also partly classifies quartic curves, is Salmon [6].

It is possible for an industrious student to examine Newton's complete classification of cubics.

The best way to do this is to look at Ball's commentary [1], which explains what is going on in

(somewhat) modern language and at the same time to look at the pictures in Newton's paper [4].

Newton's criteria for the classification are the nature of the asymptotes and the extremal behavior

of the curves. This scheme was criticized by later authors, since it resulted in so many different cases.

Actually, Newton showed a way to simplify the classification with an (unproved) remark in his paper.
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He claimed and later authors proved that each cubic is a projective image of one of the five species of

cubic of type c). In more modern language his assertion is that every irreducible cubic is isomorphic as a

curve in real projective space to one of these five species. Working in projective space amounts to

adding points at infinity and enlarging the group of permissible transformations from the affine group,

which Newton used, to an appropriate larger one, the projective linear group. It has been noted earlier

that adding points at infinity allows one to deal with asymptotes as ordinary tangent lines. It is also clear

that branches of a curve which share a common asymptote will be joined with the addition of these extra

points, so this device will reduce the number of branches.

Another simplification occurs if the curves are viewed as complex curves, or putting both ideas

together, as curves in complex projective space. In this more general space the number of distinct types

of irreducible cubics reduces to three, one with a cusp, one with a node, and the third nonsingular.

Newton's study dealt with the finite real portions of these curves. By looking at the "entire curve" later

mathematicians achieved this tremendous simplification.

All three types of complex projective cubic curves turn out to be connected; i.e., they have

exactly one branch. In fact, topologically they are either a sphere, a sphere with two points identified, or

a torus. In real projective space a cubic curve has either one or two branches, as can be seen by

examining the five species of type c). In the ordinary real plane Newton's full classification scheme

shows that no cubic curve can have more than four branches. I know of no way to deduce this

maximum of four without examining the 78 cases.

A good general reference for the ideas discussed in the last several paragraphs is Stillwell [8] (see

pages 69, 80, 208, 231). For an excellent modern but reasonably elementary discussion of plane

curves, projective geometry, and the beginnings of algebraic geometry, see Brieskorn [2].
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Cavalieri's Integration Method

Mic Jackson, Earlham College

Problems for Student Investigation

Problem Statement: Bonaventura Cavalieri (1598-1647), a student of Galileo, was one of the

key figures in the development of infinitesimal methods. His techniques were based upon the work of

Archimedes and provided ideas and methods which were important in the later development of the

infinitesimal calculus by Newton and Leibniz. You will need to read this document carefully, being sure

that you understand why each statement is true, given Cavalieri's assumptions. I have asked you to

demonstrate why certain statements are true. To demonstrate in this context means to use geometry,

algebra, and/or deductive logic to provide a conclusive argument that a certain statement is true. You will

need to read carefully, think deeply and test your ideas. It will help your understanding of Cavalieri's

methods if you try to relate them to your own understanding of the use of Riemann sums in determining

areas. When you are finished you should have a greater appreciation of the power and sophistication of

the modem definition of the definite integral.

In addition, in your final report, you should describe any questions which you have not been able to

resolve and any new insights you have gained through studying Cavalieri's work. Your report should

not be more than 6 double-spaced pages, including diagrams and bibliography. Your work will be

evaluated for mathematical correctness, thoroughness and clarity, as well as for the standard criteria of

any written submission. You may need to use library resources; be sure to cite those you do use.
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Cavalieri's Integration Method:
(Adapted from The Origins of the Infinitesimal Calculus, by M. E. Baron, pages 122-135.1 )

In most of his work, Cavalieri assumed that a planar region was made up of an indefinite number of

equidistant parallel straight lines and that a solid was made up of an indefinite number of equidistant

parallel planes. He sometimes used the analogies of a garment being made up of parallel threads woven

together or of a book being comprised of parallel leaves. For plane (solid) figures he defined a regula to

be a line (plane) drawn through a convenient vertex parallel to a "base" as the starting point of his

integration. In Figure 1 below, the base of the planar region is the line BC and the regula is the line EO.

The related planes form the base and regula in Figure 2. He then imagined moving the regula parallel to

itself until it came into coincidence with the base of the object. He treated the intercepts (lines or plane

sections) of the regula with the original plane (or solid) figure as indivisibles which "taken together"

form the planar region or solid.

E A o E A o

-C

f \
I \

B C B
~prel ~pre2

In his systematic integration method, Cavalieri derived the relation between the areas (or volumes)

of two planar regions (or solids) from the ratio of the summations of the line (or surface) indivisibles. In

doing so, he made use of the notion of the infinite only in an subsidiary way. His technique did not

apply to all planar or solid shapes, but only to those shapes that could be described by what we would

call a power function. He used the concept of powers of lengths of line elements to reduce the process

of calculating area or volume to that of finding the sums of the powers of the lengths of line elements in a

triangle taken parallel to a given regula. Consider Figure 3.

E D

/
a =AB

/ y=HF

/ L=GF
/ b=BC

,/
/' x=BF

C Figure 3
F

A....--------....-----7"I

B .....--=~ ---L ----I

If we take segment AB as the regula and segment CD as the base of rectangle ABCD, then let EF, drawn

parallel to AB, cut the curve in H and the diagonal BD in G. Then according to Cavalieri's assumption:

1 Adapted with the permission of Macmillan Publishing Company, a Division of Macmillan, "nc. [rom THE ORIGINS
OF THE INFINITESIMAL CALCULUS by Margaret Baron. Copyright ©1969 Pergamon Press.
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areaofregionHBCD _ 'fHF _ .Lx
area of region ABCD - 'f AB - 'f a'

(1. Explain how this follows from Cavalieri's assumption.)

To understand what is meant by the powers of lengths of line elements, assume the curve BHD in

Figure 3 is of the form ~ = [~J n with the origin at point B and other magnitudes named as shown.

Recognition of certain similar triangles then allows us to say that ~ = [~J n

(2. Show that the last statement follows from the assumption of the form of curve

BHD.)

area of region HBCD _~
After some careful algebra we can conclude that the ------'='-----

area of region ABCD - L an .

(3. Do that algebra.)

Cavalieri also proved that the volume of the solid formed by rotating region HBCD about line BC

can be expressed as a ratio of the volume of the solid formed by rotating rectangle ABCD about line BC:

solid formed by rotating region HBCD _ U _L L2n

solid formed by rotating rectangle ABCD - L a2 - L a2n .

(4. Demonstrate why this is so.)

Since he knew how to find the area of rectangle ABCD (and the volume of the cylinder formed by

rotating rectangle ABCD about line BC), Cavalieri could find the area of this planar region HBCD

defined by any of these special curves (and the volume of the solid formed by rotating region HBCD

about line BC) by using the sums of the powers of the lengths of the line elements of triangle BCD.

Using a rather ingenious approach that involved geometric notions of congruence, similarity and

equality, and algebraic results with binomial coefficients, he was able to determine the sums of the

powers of lines of a triangle up to and including L L9 (See Table 1 below). He concluded that

~ l'f l and n i ...'" = -1 1 a = an n IS a positive integer,
LJ an n+

form l~ndx for n a positive integer.

He was thus able to draw up a table of integrals of the

PART OF CAVALIERI'S TABLE OF INTEGRALS:

function ratio of areas ratio of volumes ratio of ? ratio of ??
1 1 1 1

Y =X 2 3 4 5

y =x2 1 1 1 1
3 5 7 9

y =x3 1 1 1
4 7 10

...
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Interpreted in ways we can understand, the first column of Cavalieri's table of integrals gives the

proportion of the area of the unit square taken up by the region to the right of and below the curve of

y =xn. (This would be curve BHD in Figure 3.) Since we know the area of the unit square we can use

the table to find the area of a class of planar regions. The second column gives the proportion of the

volume of the solid region form by rotating the lower right region about the line y =0 to the volume of

the cylinder formed by rotating the unit square about the line y =O. Since we know how to calculate the

volume of a cylinder we can find the volume of a class of solids of revolution. Columns beyond the

first two have no physical interpretation.

CAVALIERI'S INGENIOUS APPROACH

~ 1We will reconstruct Cavalieri's proof that La
5

= 6" ' assuming that he has already shown

that I~: = n~1 for n =I, 2, 3 and 4. Consider the parallelogram ABeD (Figure 4); divide it into two

congruent triangles with diagonal BD and into four congruent parallelograms by lines EF and GH which

meet at M. Then draw segments PQRS and P'R'Q'S' parallel to and equidistant from EF. Then let PQ

=Q'S' = a, QR =Q'R' =band RS =R'P' =a-b.

GA Br----......,....---~.

D H

Figure 4

L (a+ b)5 + L (a - b)5 is the summation of the fifth-powers of the line indivisibles making
ABME BFM

up the top half of ABCD. It is true that (a + b)5 + (a - b)5 = 2a5 + 20a3b2 + lOa!J4 .

(5. Demonstrate that this last equation is true.),

It follows that L (a + b)5 + L (a - b)5 = L 2a5 + L 20a3b2 + L lOab4.

ABME BFM AGME GBM GBM

(6. Explain why this equation makes sense.)

Similarly for the bottom half of ABCD,
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L (a + b)5 + L (a - b)5 = L 2a5 + L 20a 3b2 + L IOab4.
MFCD EMD MFCH DMH DMH

Considering the entire parallelogram ABCD, given that parallelogram AGME is congruent to

parallelogram MFCH and that triangles GMB and HMD are also congruent, it follows that

L 2PR5 = L 2a5 + L 40a3b2 + L 20ab4.
ABCD AGHD GBM GBM

(7. Demonstrate that this last equation is true.)

Because he had already shown that ~: ~ n ~ 1 for a = I and n ~ I through 4, Cavalieri was able to

conclude that L b2 = ~ L a2 = ~ L a2 and L b4 = 110 L a4 .
GBM GBFM GBCH GBM GBCH

(8. Explain why these equations make sense.)

From this it follows that L 2RS5 = L 2a5 + ~o L a5 + ;~ L a5 = 33
2

L a 5.

ABCD AGHD GBCH GBCH AGHD

(9. Demonstrate that this last equation is true.)

The sum of the fifth powers of the line indivisibles for the entire parallelogram is LAB 5.

ABCD

Since AB =2a, then AB5 =32a5 and L AB5 = 32 L a5,

ABCD AGHD

it quickly follows that L RS5 = ~ LAB 5.
ABCD ABeD

(10. Demonstrate that this is true.)

Cavalieri thus proved that ~5 =~ for a and L defined as shown in Figure 5.
£..p5

Figure 5



Cavalieri's Integration Method 203

Information for the instructor only:
Problem abstract: This library research and writing project provides small groups of students the

opportunity to wrestle with one of the difficult problems of science; that of whether matter and time are

made up of "smallest" pieces or infinitely divisible. Cavalieri's indivisible techniques are based upon

two distinct and complementary approaches which he designated by the terms collective and distributive.

Under the collective approach the sums, L Land L M, of the line (or surface) indivisibles for two

figures PI and P2 are first obtained separately and then used to establish the ratio of the areas (or
Ll::- a measure of PI a ..

volumes) of the figures themselves. If, for example, L M = b' then measure of P2 = b' ThIS IS

the method employed in this project.

This project does not address the well-known theorem ascribed to Cavalieri, but the students may

run into it in other sources, so it is important that they realize that the principles stated in this theorem are

not employed in the method discussed here. Cavalieri's principles are fundamental to the "distributive

technique," which "was developed primarily in order to meet the philosophic objections which Cavalieri

felt might be raised against the comparison of indefinite numbers of lines and planes." (Baron, page 126)

These principles are: (l) areas enclosed by two planar regions are equal provided that any system of

parallel lines cuts off equal segments in each; and, (2) volumes enclosed by two solid figures are equal

provided that any system of parallel planes cuts off equal planar regions in each. A corollary of these
. . I . th if I: • f di L d M L a h measure of P I

pnncip es IS at 1 lor every pair 0 correspon mg intercepts an 'M = b' t en measure of P2 =

5. Cavalieri only used this method in a small number of cases where Eis constant for each pair of

intercepts. However, mathematicians in the seventeenth century developed this method into a valuable

means of integration by geometric transformation.

Prerequisite skills and knowledge: The students will need to know geometric formulas for area

and volume of some basic figures, high school algebra, the binomial theorem, and should have had an

introduction to the Riemann definition of the definite integral.

Essential/useful library resources: See the bibliography in the introduction to Historical Projects.

Essential/useful computational resources: none

Example of an acceptable approach:
. area of region HBCD _ L HF _ il ..

1. Explain how area of region ABCD - LAB - L a follows from hIS assumption.

He considered each planar region to be made up of its line indivisibles. Hence, each area

is simply the sum (in some infinite sense) of the line indivisibles. The equal ratios follow

from the fact that if x =y and m =n then .£ = l .m n
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2. Show that ~ =[~] n follows from the assumption of the form of the curve BHD.

Triangle BGF is similar to triangle BCD; hence,~ = ~. So ~ =[E] n =[~J n .

area of region HBCD ~
3. Do the algebra to show that area of region ABCD = L an .

Remembering that "a" is constant, the given relationship allows us to see that, for the kth
n

line indivisible, l.k= [flfJ n = (Lk) . Now the question is whether a summation of all ofa a n
a

those line indivisibles will preserve the equality. Note the likely student error of arguing
00 00 n

that~ Yk =~ (Lk) ,which is true, but not what we need. (I am being a bit cavalier
£...J a £...J an
k=l k=l

with my infinite series here, but so was Cavalieri!) We have to approach it a bit

differently. Since Yk = (Lk)n it follows that Yk =a (Lk)n = (Lk)l
n

holds for each line
a an an cf-

indivisible.

Hence -.L..l =
'I,a

4 D tr t h solid formed by rotating region HBCD =U =I, L
2n

is true.
. emons a e w y solid formed by rotating rectangle ABCD "" ""

/-J a2 /-J a2n

According to the argument in 3, the ratio of areas of the circles for the kth indivisibles,

which will be the surface indivisibles in this case, will be 1tY~ = Yk; = (Lk
2n)2n

. The
1ta a a

rest also follows from 3.

5. Demonstrate that (a + b)5+ (a - b)5 = 2a5+ 20a3b2 + lOa!J4 is true.

If the students will simply expand the binomials and combine like terms, this works out

pretty easily.

6. Explain why L (a + b)5 + L (a - b)5 = L 2a5 + L 20a3b2 + L lOab4 makes sense.
ABME BFM AGME GBM GBM

This seems a bit strange, but 1 guess that's why mathematicians have considered it

ingenious. I <would hope that students would argue along the following lines. The

relationship justified in argument 5 is true for each line indivisible in parallelogram

ABFE. So if we add all the line indivisibles, the equality of those sums must also hold.
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Now why did Cavalieri make the summations over only the regions shown? Clearly

ABME is made up of line indivisibles of the form (a + b) and BFM is made up of line

indivisibles of the form (a - b). On the right side of the equality, there are no magnitudes

(a + b)5 or (a - b)5, so we don't need to sum over regions ABME or BFM. In the planar

region AGME, only line indivisibles of length "a" are present, so it is reasonable to sum

the a5 term only there. In triangle GBM, only line indivisibles of length "b" are present,

but "a" is a constant magnitude, so it is reasonable to sum products of powers of "a" and

"b" in GBM.

205

7. Demonstrate that L 2PR5 =
ABCD

L 2a5 + L 40a3b2 + L 20ab4 is true.
AGHD GBM GBM

Adding the summations for regions ABFE and EFCD, we get on the left side of our

equation: L (a + b)5 + L (a - b)5 + L (a + b)5 + L (a - b)5, which can
ABME BFM CDMF DEM

be written as L (PR5 + RS5) because ABME == CDMF and BFM == DEM. Further,
ABCD

sinceABD == CDB, it follows that L PR5 = L RS5, and we can write the left side
ABD CDB

as L 2PR5, which is the same as L 2PR5. If we combine the expressions for the
ABD ABCD

areas of the top and bottom of ABeD, on the right side of the equation we get

L 2a5 + L 20a3b2 + L lOab 4 + L 2a5 + L 20a3b2 + L lOab 4.
AGME GBM GBM MFCH DMH DMH

Since AGME == MFCH and GBM == DMH, it follows that we can write the right side as

L 2aS + L 40a3b2 + L 20ab4.
AGHD GBM GBM

8. Explain why these make sense: L b2 = ~ L a2 = ~ L a2 and L b4 = 110 L a4 .
GBM GBFM GBCH GBM GBCH

Apparently to Cavalieri terms like "b2" meant that one was to take each line indivisible,

find the length "b" on it, and then square that magnitude. Then add up all those squares.

I think his reasoning must have been something like this: For the first equation, the

magnitude b2 averages ~ a2 over GBM (based on his earlier work that yielded the table in

the narrative). Also, b2 averages ~ a2 over GBFM since no b-Iength is added to any line

indivisible by attaching triangle BFM. Finally, the area of GBCH is twice that of GBFM.

Similar reasoning allows the conclusion that b4 averages ~ a4 over GBFM and 110 a4 over

GBCH.
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9. Demonstrate that L 2RSS = L 2aS +~ LaS + ;~ LaS = 33
2 L as is true.

ABCD AGHD GBCH GBCH AGHD

From argument 7, concerning the sum of a3b2 over GBM, a is constant, so a3 is too.

Hence, from argument 8, over GBCH a3b2 averages a3 times i a2 or ~ as. Likewise,

over GBCH ab4 averages 11
0

as. The second expression in the equation follows

immediately. Finally, since AGHD == GBCH, we can conclude that

L 2RSS = 332 LaS.
ABCD AGHD

10. Demonstrate that L RSS = ~ LABS is true.
ABCD ABCD

This follows immediately from L 2RSS =332 L as and LABS
ABCD AGHD ABCD

=32 :LaS.
AGHD

Conjectures we expect that some students will make:

(1) Students may accept indivisibles as "truth." Cavalieri's approach to them will seem equivalent

to the Riemannian definition of the definite integral.

(2) Some may be troubled by questions such as those stated below. Encourage them to follow up

on their ideas.

Questions for further exploration:

(1) Prove that ~n = ~ 1 for n =6 using Cavalieri's method.
£..pn n

(2) How did Cavalieri resolve the problem of "jagged edges" if his indivisibles had any thickness?

(3) How thick were the lines/planes used to cut the planar/solid regions? Did Cavalieri perceive that

they had some infinitesimal thickness, or did he assume that they could be arbitrarily thin?

(4) How did Cavalieri actually carry out infinite summations of indivisibles?

References/bibliography/related topics:

(1) See library sources above and in the introduction to Historical Projects.

(2) There are a number of related historical projects in this volume.

Special implementation suggestions:

See the implementation suggestions in the introduction to Historical Projects.
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The authors of this volume have assembled a collection of projects students will

find lively and stimulating. They can be used by the average calculus student, and

are solvable with guidance and instruction from the teacher.

Some of the projects cover a variety of calculus topics for the first year of a typical

single-variable calculus program, while others are applicable to multivariable cal­

culus. The subject matter is as diverse as the prerequ isites. Some of the material

involves concepts you would expect to find in any calculus course, while other

material will lead the student to examine an interesting application or theory that

is tangential to the core material. Several projects involve maxima and minima

applications, others grapple with concepts such as surfaces and Riemann sums,

and still others encourage expansions on the work of Newton and Arch imedes.

Students will learn how to use calculus to solve real problems, how to use the

library to find mathematical sources, how to read and write mathematical materi­

al, and how to cooperate with their peers in the solution of a difficult problem.

Learning that they can solve what at first seems an inscrutable mathematical

problem can only increase their mathematical confidence.

Each project is self-contained, including a brief statement ofthe problem for the

students and more thorough information for the teacher. The detailed information

provided by the authors will lessen the amount of time such a project might

require of the teacher.

IS BN 0-88 385 -086 -9
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