


Reshaping College Mathematics 





Reshaping College Mathematics 
A project of the 

Committee on the Undergraduate Program in 
Mathematics 

Edited by 
Lynn Arthur Steen 



MAA Notes Series 

The MAA Notes Series, started in 1982, addresses a broad range of topics and themes of 
interest to all who are involved with undergraduate mathematics. The volumes in this 
series are readable, informative, and useful, and help the mathematical community keep 
up with developments of importance to mathematics. 

Editorial Board 
Warren Page, Chair 

Paul J. Campbell Frederick Hoffman 
Donald W. Bushaw 

Jane M. Day 

Richard K. Guy 

David A. Smith 

1. Problem Solving in the Mathematics Curriculum, Committee on the 
Undergraduate Teaching of Mathematics, Alan Schoenfeld, Editor. 

2. Recommendations on the Mathematical Preparation of Teachers, 
CUPM Panel on Teacher Training. 

3. Undergraduate Mathematics Education in the People’s Republic of 
China, Lynn A. Steen, Editor. 

4. Notes on Primality Testing and Factoring, by Carl Pomerance. 
5. American Perspectives on the Fifth international Congress in 

6. Toward a Lean and Lively Calculus, Ronald Douglas, Editor: 
7. Undergraduate Programs in the Mathematical and Computer 

8. Calculus for a New Century, Lynn A. Steen, Editor. 
9. Computers and Mathematics: The Use of Computers in 

Mathematical Education, Warren Page, Editor: 

Sciences: 1985-86, D. J. Albers, R. D. Anderson, D. 0. Loftsgaarden, 
Editors. 

Undergraduate instruction, D. A. Smith, G. J. Porter, L. C. Leinbach, 
R. H. Wenger, Editors. 

10. Guidelines for the Continuing Mathematical Education of Teachers, 
Committee on the Mathematical Education o f  Teachers. 

1 1. Keys to  Improved instruction by Teaching Assistants and Part-Time 
Instructors, Committee on Teaching Assistants and Part-Time 
Instructors, Bettye Anne Case, Editor. 

12. The Use of Calculators in the Standardized Testing of Mathematics, 
John Kenel/% Editor: 

13. Reshaping College Mathematics, Lynn A. Steen, Editor: 

First Printing 
0 1989 by the Mathematical Association of America 

Library of Congress Number 89-061338 

Printed in the United States of America 
ISBN-0-88385-062-1 



Reshaping College Mathematics 

.. PREFACE ............................................................................................... ..vu 

MATHEMATICAL SCIENCES .............................................................................. 1 
Curriculum Background 0 Current Issues 0 Curricular Principles 0 Building Mathematical 
Maturity 0 Core Requirements 0 Teaching Mathematical Reasoning 0 How Much Theory? 

Sample Majors 0 Mathematical Sciences Minor 0 Examples of Successful Programs 0 IDe- 
partmental Self-study 0 Discrete Methods 0 Applied Algebra 0 Numerical Analysis. 

CALCULUS ............................................................................................... 19 
Rationale 0 First Semester Calculus 0 Second Semester Calculus 0 Intermediate Mathematics 
Courses 0 Applied Linear Algebra 0 Multivariable Calculus 0 Differential Equations. 

CORE MATHEMATICS ................................................................................... 25 

COMPUTER SCIENCE ................................................................................... 29 

New Roles for Core Mathematics 0 Four Questions 0 Abstract Algebra 0 Analysis. 

A Growing Discipline 0 Introductory Courses 0 Intermediate Courses 0 Concentrations and 
Minors 0 Faculty Training 0 Computer Facilities 0 ACM Curriculum 78. 

MODELING AND OPERATIONS RESEARCH .......................................................... . 4 1  

Experience in Applications 0 Mathematical Modeling 0 An Undergraduate Modeling Course 
0 Operations Research 0 Introductory Operations Research 0 Elementary Modeling 0 Intro- 
ductory Stochastic Processes 0 References. 

STATISTICS .............................................................................................. .55 
Introductory Course 0 The Place of Probability 0 Alternative Arrangements 0 Instructor 
Preparation 0 Course Outline 0 Probability and Statistical Theory 0 Applied Statistics 0 

Probability and Stochastic Processes 0 Preparation for Graduate Study. 

DISCRETE MATHEMATICS ............................................................................. 61 
Introduction and History 0 Summary of Recommendations 0 General Discussion Needs of 
Computer Science 0 Syllabus 0 Preparation for Discrete Mathematics 0 Two Year Colleges 
and High Schools 0 The Impact on Calculus 0 Course Objectives 0 Sample Problems 0 

Textbooks 0 References. 

CALCULUS TRANSITION: FROM HIGH SCHOOL TO COLLEGE ................................... 85 
Problem Areas 0 Accelerated Programs 0 High School Calculus 0 Successful Calculus Courses 
0 Unsuccessful Calculus Courses 0 College Programs 0 Recommendations 0 References. 

CURRICULUM FOR GRADES 11-13 .................................................................... 91 
Issues of Apparent Consensus 0 Recommendation 0 Issues Requiring Further Study 0 Gifted 
Students 0 Greater Integration 0 Statistics & Discrete Mathematics 0 Twelfth Grade Math- 
ematics 0 Calculus Review 0 Deductive Reasoning 0 Calculators 0 Alternatives to Remedial 
Courses 0 Use of Standardized Test Scores 0 Geometry 0 Collaborative Efforts. 

MINIMAL MATHEMATICAL COMPETENCIES FOR COLLEGE GRADUATES ..................... . l o 3  
Recommendations 0 Mathematics for Coping with Life 0 Mathematics Appreciation. 

MATHEMATICS APPRECIATION COURSES .......................................................... 109 
Philosophy 0 Things to Stress 0 Things to Avoid 0 Course Organization 0 Examples of Topics 
0 Two-Year Colleges 0 Films 0 Classroom Aids 0 Survey Monographs 0 Collections of Essays 
0 Bibliography & References. 





Preface 

Calls for Change 

For over 35 years the Committee on the Undergrad- 
uate Program in Mathematics (CUPM) has helped pro- 
vide coherence to  the mathematics major by monitor- 
ing practice, advocating goals, and suggesting model 
curricula. This volume brings together various curricu- 
lum reports issued during the decade of the 1980’s. 
It provides a convenient reference for the mathe- 
matical community as it begins to reshape college 
mathematics in response to mounting demands for 
change. 

Many of the calls for reform have been expressed in 
published reports, for example: 

1989 Curriculum and Evaluation Standards for School 
Mathematics, published by the National Council 
of Teachers of Mathematics. 

1989 Everybody Counts: A Report to the Nation on 
the Future of Mathematics Education, published 
by the National Research Council. 

1988 Changing America: The New Face of Science 
and Engineering, published by the White House 
Task Force on Women, Minorities, and the 
Handicapped in Science and Technology. 

1987 The Underachieving Curriculum, published by 
the Second International Mathematics Study. 

1986 Towards a Lean and Lively Calculus, published 
by the Mathematical Association of America. 

1985 Integrity in the College Curriculum: A Report 
to the Academic Community, published by the 
Association of American Colleges. 

1984 Renewing US. Mathematics: Critical Resource 
for  the Future, published by the National Re- 
search Council. 

Other pressures for change are expressed in articles 
diffused throughout the literature on a wide range of is- 
sues, from remediation (too much) through Ph.D. pro- 
duction (too little), from students (greater diversity) to 
mathematics (greater applicability), and from technol- 
ogy (under-utilized) to pedagogy (too passive). What 
all reports have in common is the case they make for sig- 
nificant change in undergraduate mathematics to serve 
better the needs of students who will live and work in 
the twenty-first century. 

Background 
CUPM was established in 1953 to “modernize and 

upgrade” the mathematics curriculum arnd to halt what 
was even then decried as “the pessimislk retreat to re- 
medial mathematics.” At that time total enrollment in 
college mathematics courses in the United States was 
approximately 800,000; each year about 4,000 students 
received a bachelor’s degree in mathematics, and about 
200 received Ph.D. degrees. 

In its early years CUPM concentrated on proposals 
to strengthen undergraduate preparation for graduate 
study in mathematics. Spurred on by Sputnik and as- 
sisted by significant support from the National Science 
Foundation, the mathematical community in the United 
States matured rapidly from a servant discipline inden- 
tured to science and engineering to vigorous world lead- 
ership. By 1970 U.S. mathematics dlepartments pro- 
duced 24,000 bachelor’s and 1,200 doctoral degrees-a 
six-fold increase in less than twenty years. 

Then the bubble burst. As student, interest shifted 
from personal goals to financial security, and as com- 
puter science began to attract increasing numbers of 
students who in earlier years might have studied math- 
ematics, the numbers of mathematics bachelor’s degrees 
dropped by over 50% in ten years, as did the number 
of U.S. students who went on to a Ph.D. in mathemat- 
ics. In 1981, at the nadir of B.A. productivity, CUPM 
published a comprehensive report entitled Recommen- 
dations for a General Mathematical Sciences Program. 
Significantly, this report advocated not a strengthened 
program in traditional (pre-doctoral) mathematics, but 
a broad, innovative program in mathematical sciences. 

Although CUPM did not create the movement to- 
wards mathematical sciences, its 1981 report helped le- 
gitimize a process that was well under way. As a con- 
sequence, mathematics programs in 1J.S. colleges and 
universities are now dominated by variations on two 
paradigms that reflect the two phases of CUPM activ- 
ity. The first, a fading image of the CUPM recommen- 
dations of the 1 9 6 0 ’ ~ ~  focuses on core mathematics as 
preparation for graduate study in mathematics. The 
second, reflecting the broader objectives of CUPM’s 
1981 mathematical sciences report, focuses on math- 
ematical tools needed for a “life-long series of different 
jobs.” Most campuses support a mixed model repre- 
senting a locally devised compromise between these two 
standards. 
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Issues of the 1980's 
During the 1980's several issues emerged that had 

great bearing on the conduct of undergraduate mathe- 
matics. Pressure from the computer science community 
created a demand for a freshman or sophomore course 
in discrete mathematics. This posed issues of definition 
(what was to  be included?), level (how much maturity 
was required?), and articulation (where could it fit into 
the ubiquitous calculus sequence?). No single answer 
emerged, and experiments continue to determine locally 
optimal strategies for meeting this important new need. 

As American society moved towards greater concern 
with material well-being, pressure from many sources- 
not the least being from parents and schools in affluent 
districts-created enormous demand for high school cal- 
culus. Suddenly large numbers of students came to col- 
lege with uneven preparation that partially overlapped 
standard introductory college courses. Problems of ar- 
ticulation between high school leaving and college enter- 
ing became quite intense. The new Standards for school 
mathematics of NCTM promise to increase the diversity 
of student preparation in years ahead, as some districts 
adopt new programs and others retain old habits. 

From a different source-mostly from parents and 
public officials concerned with the quality of higher 
education-came calls for assessment and evaluation to  
ensure that all students receive certain minimal skills 
from their college study. Quantitative literacy (or "nu- 
meracy") joined the litany of demands generated by dis- 
cussions of "cultural literacy" and "competitiveness." 
Quantitative competence and mathematical apprecia- 
tion of students who do not study mathematics for pro- 
fessional reasons became-and still is-a major concern 
on college campuses. 

The Mathematical Association of America responded 
to each of these issues-discrete mathematics, school ar- 
ticulation, quantitative literacy-by a variety of studies, 
some under CUPM, some in cooperation with other or- 
ganizations. Issued at different times throughout the 
past decade, these studies supplement CUPM's com- 
prehensive recommendations for an undergraduate pro- 
gram with specific recommendations in areas of timely 
concern. They are all gathered in this volume, where 
together they provide a thorough airing of issues perti- 
nent to reshaping college mathematics. 

The More Things Change . . . 
Despite the many new issues that have arisen in re- 

cent years (e.g., desk-top workstations, changing demo- 
graphics, calculus reform), curriculum reports in this 

volume-which were generally written three to ten years 
ago-align remarkably well with contemporary calls for 
change that one hears at every professional meeting. 
Today's advice, by and large, is no different than yes- 
terday's. It is just being said with greater urgency. 

Here, for example, is a sample of recommendations 
to be found among the reports in this volume: 

ON GOALS: 

A mathematical sciences major should develop a 
student's capacity to  undertake intellectually de- 
manding mathematical tasks. 
A major in mathematical sciences should emphasize 
general mathematical reasoning as much as mastery 
of various subject matter. 
The instructor's central goal should be to teach stu- 
dents how to learn mathematics, expecting that stu- 
dents will correctly retain only a tiny portion of 
what was taught. 
A mathematical sciences curriculum should be de- 
signed around the abilities and academic needs of 
the average student, with supplementary work avail- 
able to attract and challenge more advanced stu- 
dents. 
College students must understand the historical and 
contemporary role of mathematics and be able to 
place the discipline properly in the context of other 
human intellectual achievement. 
Students should gain an ability to read and learn 
mathematics on their own. Such maturity is as 
much a function of how mathematics is learned as 
what is learned. 

ON TEACHING: 

Students should be led to discover mathematics for 
themselves, rather than merely being presented with 
the results of concise, polished theories. 
The approach to most topics should involve an in- 
terplay of applications, problem-solving, and theory. 
Applications should motivate theory so that theory 
is seen by students as useful and enlightening. 
Freshman courses in mathematics should be de- 
signed to  appeal to  as broad an audience as is aca- 
demically reasonable. 
In the first two years, theorems should be uaed 
rather than proved. The place for theoretical rigor 
is in later upper-level courses. 
The greatest challenge is that students enter college 
with much less mathematics than they used to, but 
they expect to leave with much more. 
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O N  COMPUTING: 

* Students should make full use of calculators and 
computers in all mathematics courses. 
All mathematical sciences students must be given 
an introduction to  the basic concepts of computer 
science. 

* Computing assignments should be used in most 
mathematics courses. 

O N  MODELING: 

Applications and modeling should be included in a 
nontrivial way in most college-level mathematical 
sciences courses. 
All students majoring in mathematics should un- 
dertake some real-world mathematical modelling 
project. 

O N  W R I T I N G :  

* Explaining a mathematical result in terms of a real- 
world setting involves the need to communicate in 
a precise and lucid manner. This aspect of a math- 
ematical scientist’s training should not be left to 
courses in other sciences or to on-the-job learning 
after graduation. 
Teachers of mathematics should employ strategies 
that encourage student reading, writing, and reflec- 
tion. 
Students should be asked to make formal oral and 
written presentations. A (non-original) paper serves 
the dual purpose of developing communication skills 
and introducing pedagogical flexibility. 

O N  STATISTICS: 

New knowledge has rendered a course devoted solely 
to  the theory of classical parametric procedures out 
of date. 

@ The traditional undergraduate course in statistical 
theory has little contact with statistics as it is prac- 
ticed and is not a suitable introduction to the sub- 
ject. 

O N  DISCRETE MATHEMATICS: 

0 Discrete mathematics at the intellectual level of cal- 
culus should be part of the standard mathematics 
curriculum in the first two years. 
Topics covered are less important than acquiring 
mathematical maturity and skills in using abstrac- 
tion and generalization. 
Mathematics majors should be required to take at  
least one course in discrete mathematics. 

O N  CALCULUS: 

* Students should learn the content of the full four 
years of high school mathematics before enrolling in 
calculus. 
Calculus in high school should be taught with the 
expectation that successful graduates would not re- 
peat calculus in college. 
Colleges need to provide individualized placement 
for students who have studied calculus in high 
school. 

O N  MINIMAL EXPECTATIONS: 

All college graduates should be expected to demon- 
strate reasonable proficiency in the mathematical 
sciences. 
College remedial courses should not be a rehash- 
and certainly not an accelerated rehash-of tradi- 
tional school courses. Students should find even re- 
medial courses fresh, interesting, iand significant. 

A Context for Reform 
One must wonder, after reviewing all the arguments 

produced by the various committees whose reports are 
contained in this volume, why so little has changed. 
Why did it take seven years from the time that CUPM 
urged in 1981 that all beginning courses must be taught 
in an effective and attractive manner for the community 
to take a hard look at calculus? Why is it only now 
rather than in 1981 that mathematicians are beginning 
to realize the importance of writing assignments-both 
to learn to write and to write to learn? 

Momentum may be one reason. In the early 1980’s 
there was very little support for educational change. 
The political agenda of the nation at  that time was not 
supportive of issues in science and mathematics edu- 
cation. All educational activities a t  the National Sci- 
ence Foundation were eliminated in 1980, only to be 
restored several years later. MAA and NCTM released 
separate reports (Prime 80, A n  Agenda for Action) into 
this thin atmosphere of uncertainty about science and 
mathematics education. It should not be surprising to 
find, ten years later, that most of the problems identi- 
fied in these reports are still evident today. 

Today, in contrast to 1980, many different organi- 
zations are working together for the improvement of 
mathematics education. The Nationill Academy of Sci- 
ences, the National Science Foundation, and many pri- 
vate foundations have joined with the several mathe- 
matical societies to work on a common plan for revi- 
talizing mathematics education. NOW, after a decade of 
talking, everyone is finally moving in the same direction. 
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A partial list of current activities that relate to col- 
lege mathematics reveals clearly the breadth of current 
support for reshaping college mathematics: 

* The Undergraduate Curriculum Initiative at  the 
National Science Foundation featured calculus re- 
form in its first wave of proposal solicitations. 

* The Mathematical Sciences Education Board and 
the Board on Mathematical Sciences at the National 
Research Council have jointly established the Com- 
mittee on Mathematical Sciences in the Year 2000 
to analyze collegiate mathematics and make recom- 
mendations for improvement. 
The Division of Mathematical Sciences at  the Na- 
tional Science Foundation is now supporting re- 
search experiences for undergraduates, and is plan- 
ning to add educational dimensions to many of its 
new initiatives. 

* The MAA Committee on the Mathematical Educa- 
tion of Teachers is working with NCTM and with 
the National Board for Professional Teaching Stan- 
dards to revise the recommendations for the math- 
ematical education of teachers of mathematics in a 
manner consistent with the new NCTM Standards. 
Both AMS and SIAM now have committees deal- 
ing with education, as well as liaison members on 
CUPM. 
The MAA Committee on the Undergraduate Pro- 
gram in Mathematics has subcommittees working 
on recommendations for calculus and other courses 

in the first two years, on the mathematical sciences 
major, on service courses, and on the role of sym- 
bolic computer system. 
MAA has recently published two volumes of papers 
dealing with calculus, one report on the role of com- 
puters in undergraduate mathematics, and one re- 
port on the continuing mathematical education of 
teachers. A report on discrete mathematics is forth- 
coming. 

The present volume provides wisdom to support 
these efforts. It reflects the best thinking of many ex- 
perienced mathematicians and teachers who have strug- 
gled with curricular questions facing college mathemat- 
ics as part of their work for CUPM and other MAA 
committees. Although certain sections are obviously 
dated (e.g., discussions of computing, reference lists), 
the central message of this volume provides a philoso- 
phy of instruction that is as valuable now as when it 
was written. 

We don’t need to look far for sound goals and objec- 
tives for college mathematics. Most of what we need can 
be found in this volume. What remains to be done-as 
much now as ever-is to find effective means of turning 
ideals into practice. 

Lynn Arthur Steen, Chair 
Committee on the Undergraduate 

Program in Mathematics 
St. Olaf College 
March, 1989 



Mathematical Sciences 

In 1981 the Committee on the Undergraduate Pro- 
gram i n  Mathematics (CUPM) published a major report 
entitled RECOMMENDATIONS FOR A GENERAL MATH- 
EMATICAL SCIENCES P R O G R A M .  This report comprises 
siz chapters that are reprinted here, with minor editing, 
as the first siz chapters of the present volume. Alan 
Tucker, Chairman of the CUPM Panel that wrote the 
1981 report, has written a new Preface to introduce this 
reprinting. 

1989 Preface 

In the eight years since the CUPM Recommendations 
on a General Mathematical Science Program appeared, 
issues in mathematics curriculum, such as calculus re- 
form and discrete mathematics, have become hot topics 
in the mathematics community and have even received 
extensive coverage in the popular press. The CUPM 
Panel on a General Mathematical Sciences Program had 
the luxury of working in comparative anonymity, al- 
though ten panel discussions at national and regional 
mathematics meetings gave the panel some professional 
visibility. The Panel’s basic goal was to  give long-term, 
general objectives for undergraduate training in math- 
emat ics. 

The 1960’s and 1970’s had seen a variety of spe- 
cialized appeals made to  college students interested in 
mathematics. For example, the discipline of computer 
science emerged as an exciting career for mathematics 
students. The earliest CUPM recommendations for the 
mathematics major were aimed at preparing students 
for doctoral work in mathematics. By the late 1970’~~ 
there was a sense that the mathematics major had lost 
its way, with upper-division enrollments in traditional 
core courses like analysis and number theory down by 
60% from their levels five years earlier and with indus- 
trial employers showing little interest in hiring mathe- 
matics majors. 

To put these recent events in perspective, the Panel 
obtained a historical briefing from Bill Duren (the 
founding chairman of CUPM). He recounted over a cen- 
tury of swings of the pendulum between the theoretical 
and the practical in American collegiate mathematics 
education, and between training for careers of the fu- 
ture and training in classical, old-fashioned methods. 

The Mathematical Sciences Panel sought to  find 
a common ground for the mathematics major which 

taught abstraction and application, emerging new prob- 
lem areas and time-tested old ones. The Panel sought 
to  persuade mathematicians that the curriculum in the 
mathematics major should be shared among the various 
intellectual and societal constituencies of mathematics. 
The challenge was to  be diverse without being superfi- 
cial. 

The most concrete consequence of the Panel’s work 
was its name, Panel on a General Mathematical Sci- 
ences Program. It asked that the mathematics major 
be renamed the mathematical sciences major-a change 
explicitly adopted by hundreds of colleges and univer- 
sities and implicitly adopted by the vast majority of 
institutions. The Panel recommended that first courses 
in most subjects should have a good dose of motivating 
applications, particularly linear algebra and statistics, 
and that one advanced course should have a mathemat- 
ical modeling project. This recommendation also seems 
to  have wide acceptance. There were several panel rec- 
ommendations that reflected trends already occurring 
but being resisted by some mathematicians: requiring 
an introductory course in computer science; not requir- 
ing linear algebra as a prerequisite for inultivariable cal- 
culus; encouraging weaker students to  delay core ab- 
stract courses until the senior year; and not requiring 
every mathematics major to take courses in real analysis 
and abstract algebra (i.e., other mathematics courses a t  
comparable levels of abstraction could1 be substituted). 

Although it was unhappy with calcxlus, the Mathe- 
matical Sciences Panel consciously avoided recommend- 
ing changes in calculus for fear that  the inevitable con- 
troversy and the complexity of such an undertaking 
would undermine acceptance of its basic recommenda- 
tions about the structure of a mathematics major. The 
Panel touched only lightly on the issue of discrete ver- 
sus continuous mathematics, recommending exposure 
to  “more combinatorially-oriented mathematics associ- 
ated with computer and decision sciences” (Tony Ral- 
ston’s provocative essays about discrete mathematics 
had not yet appeared). 

It was gratifying to  the Mathematical Sciences Panel 
that its report was well-accepted: all two-thousand 
copies printed have been sold (another two-thousand 
copies had been sent gratis to  department heads). In re- 
viewing the report for this reprinting, the only changes 
have been to add a few additional references On the 
other hand, there was one panel suggestion that has 
been ignored thus far and which merits consideration. 
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It concerns the “modest” version of abstract algebra 
(in Section 111) in which time would be spent sensitiz- 
ing students to  recognize how algebraic systems arise 
naturally in many situations in other areas of mathe- 
matics and outside mathematics (to keep algebra alive 
in their minds after they leave college). 

ALAN TUCKER 
SUNY at  Stony Brook 
March, 1989 

1981 Preface 

This report of the CUPM Panel on a General Mathe- 
matical Sciences Program (MSP) presents recommenda- 
tions for a mathematical sciences major. The panel has 
concentrated its efforts on general curricular themes and 
guiding pedagogical principles for a mathematical sci- 
ences major. It has tried to  frame its recommendations 
in general terms that will permit a variety of implemen- 
tations, tailored to  the needs of individual institutions. 
A prime objective of the original 1960’s CUPM cur- 
riculum recommendations for upper-level mathematics 
courses was easing the trauma of a student’s first year of 
graduate study in mathematics. This report refocuses 
the upper-level courses on the traditional objectives of 
general training in mathematical reasoning and mas- 
tery of mathematical tools needed for a life-long series 
of different jobs and continuing education. 

The MSP panel has tried to avoid highly innovative 
approaches to  the mathematics curriculum. The em- 
phasis, instead, has been on using historically rooted 
principles to  organize and unify the mathematical sci- 
ences curriculum. The MSP panel believes that the 
primary goal of a mathematical sciences major should 
be to develop rigorous mathematical reasoning. The 
word ‘rigorous’ is used here in the sense of ‘intellec- 
tually demanding’ and ‘in-depth.’ Such reasoning is 
taught through a combination of problem solving and 
abstract theory. Most topics should initially be devel- 
oped with a problem-solving approach. When theory is 
introduced, it usually should be theory for a purpose, 
theory to  simplify, unify, and explain questions of inter- 
est to  the students. 

CUPM now believes that the undergraduate major 
offered by a mathematics department at most Ameri- 
can colleges and universities should be called a Mathe- 
matical Sciences major. Enrollment data show that for 
several years less than half the courses, after calculus, in 
a typical mathematics major have been in pure math- 
ematics. Furthermore, applied mathematics, probabil- 
ity and statistics, computer science, and operations re- 

search are important subjects which should be incorpo- 
rated in undergraduate training in the general area of 
mathematics. 

Computer science has become such a large, multi- 
faceted field, with ties to  engineering and decision sci- 
ences, that it no longer can be categorized as a math- 
ematical science (at the National Science Foundation, 
computer science and mathematical sciences are dif- 
ferent research categories). A mathematical sciences 
major must involve coursework in computer science be- 
cause of the usefulness of computing and because of 
computer science’s close ties to mathematics. Under- 
graduate majors in mathematical sciences and in com- 
puter science should complement each other. 

The new course recommendations presented in this 
report do not, in most instances, replace past CUPM 
syllabi. They describe different approaches to  courses; 
for example, a one-semester combined probability and 
statistics course, or a multivariate calculus course with- 
out a linear algebra prerequisite. 

The work of the CUPM Panel on a General Math- 
ematical Sciences Program was supported by a grant 
from the Sloan Foundation. The chairmen of CUPM 
during this project, Donald Bushaw and William Lu- 
cas, deserve special thanks for their assistance. 

For information about other CUPM documents 
and related MAA mathematics education publications, 
write to: Director of Publications, The Mathematical 
Association of America, 1529 Eighteenth Street, N.W., 
Washington, D.C. 20036. 

ALAN TUCKER 
SUNY at Stony Brook 

Panel Background 

The CUPM Panel on a General Mathematical Sci- 
ences Program (MSP) was constituted in June, 1977 a t  
a CUPM conference in Berkeley. CUPM members de- 
cided that a major re-examination of the mathematics 
major was needed. The CUPM model for the math- 
ematics major contained in the 1965 CUPM reports 
on Pregraduate Training in Mathematics and a Gen- 
eral Curriculum in Mathematics in Colleges (revised in 
1972) was felt to be out of date. Following a six-month 
study, MSP reported to  CUPM that the CUPM mathe- 
matics major curriculum should be substantially revised 
and broadened to  define a mathematical sciences major. 
MSP was charged then with developing mathematical 
sciences recommendations. 

Five subpanels were created to  develop course rec- 
ommendations in: 
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The calculus sequence, 
Computer science, 
Modeling and operations research, 
Statistics, and 
Upper-level core mathematics. 

The MSP project has had the cooperation of curriculum 
groups in the American Statistical Association, the As- 
sociation for Computing Machinery, the Operations Re- 
search Society of America, and the Society for Industrial 
and Applied Mathematics. Graduate programs in the 
subjects covered by those societies draw heavily on un- 
dergraduate mathematics students, and except for com- 
puter science, undergraduate courses in these subjects 
are usually taught by mathematicians. Hence these cur- 
riculum groups had a major interest in the design of a 
mathematical sciences major. 

The MSP panel coordinated its work with the Na- 
tional Research Council’s Panel on Training in Applied 
Mathematics (chaired by P. Hilton, a member of MSP). 
The Hilton panel had a much broader mandate than 
the MSP panel. Its report addresses the unification 
of the mathematical sciences, the attitudes of math- 
ematicians, academic-industrial linkages, and society’s 
image of the mathematical sciences, as well as curric- 
ula. The Hilton report presented a limited number 
of general curriculum principles with the expectation 
that the MSP panel would develop fuller curriculum 
recommendations. The MSP panel recommendations 
have incorporated these principles (although the Hilton 
panel’s stress on differential equations has been dimin- 
ished). The MSP panel strongly endorses the Hilton 
report’s emphasis on the importance within mathemat- 
ics departments of proper attitudes towards the uses 
and users of mathematics and of a unified view that 
respects the content and teaching of pure and applied 
mathematics equally. 

While CUPM and the Hilton panel have been rec- 
ommending changes in the collegiate mathematics pro- 
gram, the National Council of Teachers of Mathemat- 
ics has been assessing priorities in school mathematics. 
The 1980 NCTM booklet, A n  Agenda for Action, rec- 
ommends “that problem solving be the focus of school 
mathematics in the 1980s . . . that  basic skills in math- 
ematics be defined to  encompass more than computa- 
tional facility.” Recent nation-wide mathematics tests 
administered to  students in several grades showed uni- 
formly poor performance on questions of a problem 
solving or application nature. Inevitably these mathe- 
matical weaknesses will become more of a problem with 
college students. 

The tentative MSP ideas for curriculum revision were 
discussed by panel members at sectional and national 

MAA meetings, a t  the PRIME 80 Conference, and indi- 
vidually with dozens of mathematics department chair- 
persons. The helpful criticisms received on these occa- 
sions played a vital role in shaping the panel’s thinking. 
It should be noted that several people: warned that a 
mathematical sciences major was unworkable because 
of the diversity of techniques and modes of reasoning 
in the mathematical sciences today. Others stated that 
student course preferences had already “redefined” the 
mathematics major along the lines being proposed by 
the MSP panel. 

Curriculum Background 
Many students today start mathematics in college at  

a lower level and yet have specific (but uninformed) ca- 
reer goals that require a broad scope of new topics of 
varying mathematical sophistication. Student changes 
are reflected in recent upper-level enrollment shifts and 
the explosion of new theory and applications in all 
the mathematical sciences. Uncertainties in curricu- 
lum produced by these developments have led the MSP 
panel to look for guidance from past CUPM curricu- 
lum development experiences and, farther back, from 
the traditional goals of the mathematics major before 
CUPM’s creation. No matter how great, the advances in 
the past generation, the traditional intellectual objec- 
tives of training in mathematics, defined over scores of 
years, should be the basis of any mathematical sciences 
program. 

Until the 19509, mathematics departments were pri- 
marily service departments, teaching necessary skills to 
science and engineering students and teaching mathe- 
matics to most students solely for its liberal-arts role as 
a valuable intellectual training of the mind. The average 
student majoring in mathematics at a better college in 
the 1930s took courses in trigonometry, analytic geome- 
try, and college algebra (including calciulus preparatory 
work on series and limits) in the freshman year followed 
by two years of calculus. While this program may today 
seem to have unnecessarily delayed calcdus, and subse- 
quent courses based on calculus, it did provide students 
with a background that permitted calculus to be taught 
in a more rigorous (i.e., more demanding) fashion than 
it is today. 

The mathematics major was filled out with five or 
six electives in subjects such as differential equations 
(a second course), projective geometry, theory of equa- 
tions, vector analysis, mathematics of finance, history of 
mathematics, probability and statistics, complex anal- 
ysis, and advanced calculus. Most mathematics majors 
also took a substantial amount of physics. Training of 
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secondary school mathematics teachers rarely included 
more than a year of calculus. In the early 19508, twenty 
years later, the situation had changed only a little; top 
schools did now offer modern algebra and abstract anal- 
ysis. 

In 1953, amid reports of widespread dissatisfac- 
tion with the undergraduate program, the Mathemati- 
cal Association of America formed the Committee on 
Undergraduate Program (CUP, later to be renamed 
CUPM). CUPM concentrated initially on a unified in- 
troductory mathematics sequence Universal Mathemat- 
ics, consisting of a first semester analysis/college alge- 
bra course (finishing with some calculus) followed by a 
semester of “mathematics of sets” (discrete mathemat- 
ics). CUPM hoped its Universal Mathematics would 
“halt the pessimistic retreat to remedial mathematics 
. . . (and) . . . modernize and upgrade the curriculum.” 

The first comprehensive curriculum report of CUPM, 
entitled Pregraduate Training for Research Mathemati- 
cians (1963), outlined a model program designed to pre- 
pare outstanding undergraduates for Ph.D. studies in 
mathematics. Emphasis on Ph.D. preparation repre- 
sented a major departure from the traditional mathe- 
matics program and was the source of continuing con- 
troversy. A more standard mathematics major curricu- 
lum was published in 1965 (revised in 1972), but many 
colleges also found it to be too ambitious for their stu- 
dents. 

For a fuller history of CUPM, see the article of W. 
Duren (founder of CUPM), “CUPM, The History of an 
Idea,” Amer. Math. Monthly 74 (1967), pp. 22-35. 

Current Issues 

In 1970, 23,000 mathematics majors were graduated. 
The numbers of Bachelors, Masters, and Doctoral grad- 
uates in mathematics had been doubling about every six 
years since the late 1950s. The 1970 CBMS estimate for 
the number of Bachelors graduates in mathematics in 
1975 was 50,000, but by the late 1970s only 12,000 were 
graduating annually. Enrollments in many upper-level 
pure mathematics courses declined even more dramat- 
ically in the 1970s as students turned to applied and 
computer-related courses. 

Yet while the number of mathematics majors is de- 
creasing, the demand for broadly-trained mathemat- 
ics graduates is increasing in government and indus- 
try. Mathematical problems inherent in projects to 
optimize the use of scarce resources and, more gener- 
ally, to make industry and government operations more 
efficient guarantee a strong future demand for mathe- 
maticians. These problems require people who, fore- 

most, are trained in disciplined logical reasoning and, 
secondarily, are versed in basic techniques and models of 
the mathematical sciences. In Warren Weaver’s words, 
these are problems of “organized complexity” as well as 
well-structured applied mathematics of the physical sci- 
ences. If mathematics departments do not train these 
quantitative problem-solvers, then departments in en- 
gineering and decision sciences will. 

The unprecedented growth of computer science as 
a major new college subject parallels the theoretical 
growth of the discipline and its ever-expanding im- 
pact on business and day-to-day living. The number of 
computer science majors now substantially exceeds the 
number of mathematics majors at most schools offering 
programs in both subjects. However, computer science 
has not “taken” students from mathematics, any more 
than science and engineering take students from mathe- 
matics. Rather, computers have generated the need for 
more quantitative problem-solvers, as noted above. 

The shortage of secondary school mathematics teach- 
ers nation wide has become worse than ever before. 
This shortage appears to be due in large measure to 
the greater attractiveness of computing careers to col- 
lege mathematics students (indeed high-paying com- 
puter jobs are currently luring many teachers out of the 
classroom). Although the training of future teachers 
should include course work in computing and applica- 
tions, such course work heightens the probability that 
these students will switch to careers in computing. 

On another front, pre-calculus enrollments have 
soared as the mathematical skills of incoming freshmen 
have been declining (a problem that concerned CUP in 
its first year). The mathematics curriculum may soon 
need to allow for majors who do not begin calculus until 
their sophomore year, as was common a generation ago. 

At universities, the decline in graduate enrollments 
has frequently over-shadowed the decline in undergrad- 
uate majors. Faced with heavy precalculus workloads, 
shrinking graduate programs, and competition from 
other mathematical sciences departments, university 
mathematics departments appear less able to broaden 
and restructure the mathematics major than most 
liberal-arts college mathematics departments. Many 
university mathematicians prefer to retain their current 
pure mathematics major for a small number of talented 
students. 

There are also several encouraging developments. A 
natural evolution in the mathematics major is occurring 
at many schools. Students and faculty have developed 
an informal “contract” for a major that includes tradi- 
tional core courses in algebra and analysis along with 
electives weighted in computing and applied mathemat- 
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ics (a formal "contract" major at one school is discussed 
below). 

Another important development is the emphasis on 
sys tem design, as opposed to mathematical computa- 
tion, in current computer science curricula. The Associ- 
ation for Computing Machinery Curriculum 78 Report 
delegates the responsibility for teaching numerical anal- 
ysis, discrete structures, and computational modeling 
to mathematics departments. This ACM curriculum 
implicitly encourages students interested in computer- 
based mathematical problem solving to be mathemat- 
ical sciences majors. The MSP panel has been careful 
to coordinate its work with computer science curricu- 
lum groups in order t o  minimize potential conflicts and 
maximize compatibility between computer science and 
mathematical sciences programs. 

Curricular Principles 

The goal of this panel was to produce a flexible set 
of recommendations for a mathematical sciences ma- 
jor, a major with a broad, historically rooted founda- 
tion for dealing with current and future changes in the 
mathematical sciences. The panel sought a unifying 
philosophy for diverse course work in analysis, algebra, 
computer science, applied mathematics, statistics, and 
operations research. 

Program Philosophy 

I. The curriculum should have a primary goal 
of developing attitudes of mind and analyti- 
cal skills required for efficient use and under- 
standing of mathematics. The development of 
rigorous mathematical reasoning and abstrac- 
tion from the particular to the general are two 
themes that should unify the curriculum. 

11. The mathematical sciences curriculum should 
be designed around the abilities and academic 
needs of the average mathematical sciences stu- 
dent (with supplementary work to attract and 
challenge talented students). 

111. A mathematical sciences program should use 
interactive classroom teaching to involve stu- 
dents actively in the development of new ma- 
terial. Whenever possible, the teacher should 
guide students to discover new mathematics for 
themselves rather than present students with 
concisely sculptured theories. 

IV. Applications should be used to illustrate and 
motivate material in abstract and applied 
courses. The development of most topics should 

involve an interplay of applications, mathemati- 
cal problem-solving, and theory. Theory should 
be seen as useful and enlightening for all math- 
ematical sciences. 

V. First courses in a subject should be designed to 
appeal to as broad an audience as is academ- 
ically reasonable. Many mat:hematics majors 
do not enter college planning to be mathemat- 
ics majors, but rather are attracted by begin- 
ning mathematics courses. Broad introductory 
courses are important for a mathematical sci- 
ences minor. 

Course Work 

VI. The first two years of the curriculum should 
be broadened to cover more than the tradi- 
tional four semesters of calculus-linear algebra- 
differential equations. Calculus courses should 
include more numerical methods and non- 
physical-sciences applications. Also, other 
mathematical sciences courses, such as com- 
puter science and applied probarbility and statis- 
tics, should be an integral part of the first two 
years of study. 

VII. All mathematical sciences students should take 
a sequence of two upper-division courses leading 
to the study of some subject(s) in depth. Rigor- 
ous, proof-like arguments are used throughout 
the mathematical sciences, and so all students 
should have some proof-orienled course work. 
Real analysis or algebra are natural choices 
but need not be the only possibilities. Proofs 
and abstraction can equally well be developed 
through other courses such as applied algebra, 
differential equations, probability, or combina- 
torics. 

VIII. Every mathematical sciences student should 
have some course work in the less theoretically 
structured, more combinatorially oriented math- 
ematics associated with computer and decision 
sciences. 

IX. Students should have an opportunity to un- 
dertake "real-world" mathematical modeling 
projects, either as term projects in an opera- 
tions research or modeling course, as indepen- 
dent study, or as an internship in industry. 

X. Students should have a minor in a discipline us- 
ing mathematics, such as physics, computer sci- 
ence, or economics. In addition, there should be 
sensible breadth in physical and social sciences. 
For example, a student interested in statistics 
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might minor in psychology but also take begin- 
ning courses in, say, economics or engineering 

might be: 

(heavy users of statistics). 
statiltics Applied / ] ‘ c u y v  Computer T i n g  

Probability Theory < Advanced fu\ ,Equ/ Differential 
Numerical Analysis 

REAL ANALYSIS 

Building Mathematical Maturity 

As noted in Principle I, a major in mathematical sci- 
ences should emphasize general mathematical reasoning 
as much as mastery of various subject matter. Implicit 
in this principle is that less material would be covered 
in many courses but that students would be expected to 
demonstrate a better understanding of what is taught, 
e.g., by solving problems that require careful mathe- 
matical analysis. 

This mathematical sciences curriculum would model 
the historical evolution of mathematical subjects: some 
problems are introduced, formulas and techniques are 
developed for solving problems (usually with heuristic 
explanations), then common aspects of the problems 
are examined and abstracted with the purpose of bet- 
ter understanding “what is really going on.” The dif- 
ference in this scheme between beginning calculus and 
upper-division probability theory would be primarily a 
matter of the difficulty of the problems and techniques 
and the speed with which the material is covered and 
generalized, i.e., a matter of the mathematical matu- 
rity of the audience. In the course of two or three years 
of such course work, there would be a steady increase 
in sophistication of the material and more importantly, 
an increase in the student’s ability to learn and orga- 
nize the ideas of a new mathematical subject. Students 
should be able to read and learn mathematics on their 
own from texts. The MSP panel feels that such matu- 
rity is a function of how a subject is learned as much as 
what is learned. 

All courses should have some proofs in class and, as 
the maturity of students increases, occasional proofs as 
homework exercises. In particular, students should ac- 
quire facility with induction arguments, a basic method 
of proof in the mathematical sciences. After review- 
ing performances of current students and programs of 
mathematics students 30 years ago, the MSP panel has 
concluded that many able students do not now have, 
nor were they previously expected to have, the mathe- 
matical maturity to take theoretical courses before their 
senior year. On the other hand, by the senior year, 
all students should be ready for some proof-oriented 
courses that show the power of mathematical abstrac- 
tion in analyzing concepts that underlie a variety of 
concrete problems. For example, part of a flowchart 
of courses leading to  a senior-year real analysis course 

Core Requirements 

The panel has found the question of whether to re- 
quire courses in algebra and analysis its most contro- 
versial problem. In light of the strongly differing opin- 
ions received on this subject, the MSP panel is making 
only a minimal recommendation (Principle VII) that it 
feels is reasonable for all students. Possible two course 
sequences besides a year of analysis or of algebra are: 
analysis and proof-oriented probability theory, analysis 
and differential equations, abstract algebra and (proof- 
oriented) combinatorics, applied algebra and theory of 
computation, or analysis and a topics-in-analysis semi- 
nar. While not a sequence, one course in analysis and 
one course in algebra also fulfill the spirit of this require- 
ment. Some departments will want to make stronger 
requirements. The issue of theory requirements is dis- 
cussed more fully below. 

Students should not be required to study a subject 
with an approach whose rationale depends on material 
in later courses nor should they be required to memorize 
(blindly) proofs or formulas. Some upper-level elective 
courses should always be taught as mathematics-for-its- 
own-sake, but an instructor should be very careful not 
to skip the historical motivation and application of a 
subject in order to delve further into its modern theory. 

The recommendation for interactive teaching (Prin- 
ciple 111) seeks to encourage student participation in 
developing new mathematical ideas. It constrains an 
instructor to teach at a level that students can reason- 
ably follow. Interactive teaching implicitly says that 
mathematics is learned by actively doing mathemat- 
ics, not by passively studying lecture notes and mim- 
icking methods in a book. Without needlessly slowing 
progress in class, an instructor should discuss how one 
can learn much from wrong approaches suggested by 
students. New mathematical theories are not divined 
with textbook-like compact proofs but rather involve a 
long train of trial-and-error creativity. 

Henry Pollak expressed this need in the Conference 
Board of Mathematical Sciences book, The Role of Az- 
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iomatics and Problem Solving in Mathematics (Ginn, 
1966): 

A carefully organized course in mathematics is 
sometimes too muchlike a hiking trip in the mountains 
that never leaves the well-constructed trails. The tour 
manages to visit a steady sequence of the high spots 
in the natural scenery. It carefully avoids all false 
starts, dead ends and impossible barriers and arrives 
by five o’clock every afternoon at a well-stocked cabin. 
. . .However, you miss the excitement of occasionally 
camping out or helping to find a trail and of making 
your way cross-country with only a good intuition and 
a compass as a guide. “Cross country” mathematics 
is a necessary ingredient of a good education. 

Further details about the course work recommenda- 
tions in Principles VI, VIII, and IX appear in later 
chapters of this report. Discussion of courses in dis- 
crete methods, applied algebra, and numerical analysis 
appears in the last section of this chapter. 

Teaching Mat hematical Reasoning 
Because a mathematical sciences major must include 

a broader range of courses than a standard (pure) math- 
ematics major, many mathematicians have expressed 
concern that it will be harder to  teach the average 
mathematics student rigorous mathematical reasoning 
in a mathematical sciences major. They believe that 
the major will develop problem-solving skills but that 
without more abstract pure mathematics, students will 
never develop a true sense of rigorous mathematical 
reasoning. The MSP panel thinks that a mathemati- 
cal sciences major with a strong emphasis on problem- 
solving is in keeping with time-tested ways of developing 
“mathematical reasoning.” The question of whether to  
require “core” pure mathematics courses, such as ab- 
stract algebra and real analysis, in any mathematical 
sciences major is discussed in the next section. 

Historically (before 1940), the main thrust of the 
mathematics major a t  most colleges was problem- 
solving. Most courses in the major could be classed 
as mathematics for the physical sciences: trigonometry, 
analytic geometry, calculus (first-year and advanced), 
differential equations, and vector analysis. Proofs in 
advanced calculus were symbolic computations. Proofs 
in number theory were, and still are, usually combi- 
natorial problems. The one abstract “pure” course in 
the curriculum was logic. A “rigorous” course did not 
mean an abstract course, “mathematics done right.” A 
rigorous course used to  mean a demanding, more in- 
depth treatment tbat required more skill and ingenuity 
from the student. The past curriculum surely had some 
faults, but its problem-solving and close ties to physics 

came from traditions that go back to  the roots of math- 
ematics. 

While problem solving may traditionally be the pri- 
mary way of teaching mathematical reasoning to un- 
dergraduates, the complexity and breadth of modern 
mathematics and mathematical scienceis require theory 
to help organize and simplify learning. Rigorous prob- 
lem solving should lead students to  appreciate theory 
and formal proofs. In a mathematical sciences major, 
theory should be primarily theory for a purpose, theory 
born from necessity (of course, this is also the historical 
motivation of most theory). Students may find theory 
difficult, but they should never find it irrelevant. 

Most courses in a mathematical sciences major 
should be case studies in the pedagogical paradigm 
of real world questions leading to  matlhematical prob- 
lem solving of increasing difficulty that forces some ab- 
straction and theory. As mentioned earlier, lower-level 
courses would concentrate on problem solving to build 
technical skills with occasional statements of needed 
theorems, while typical upper-level courses would con- 
centrate on problem solving to  build technical skills 
with occasional statements of needed ,theorems, while 
typical upper-level courses would emphasize the transi- 
tion from harder problem-solving to  theory. 

Instructors should resist pressures to  survey fully 
fields such as numerical analysis, probability, statistics, 
combinatorics, or operations research in the one cmrse 
a department may offer in the field. The instructor 
of such a course should give students a sense of the 
problems and modes of reasoning in the field, but after 
that, should be guided by the pedagogical model given 
above. All syllabi produced by MSP siubpanels should 
be viewed in this light. Most instructors will cover most 
of a suggested syllabus, but general pedagogical goals 
should always take precedence over the demands of in- 
dividual course syllabi. 

The MSP panel believes that for generations math- 
ematics instructors have used the paraldigm mentioned 
above to develop rigorous mathematical reasoning. Im- 
plicit in this paradigm is a unity of purpose between 
students and instructor. Most students like to start 
with concrete real-world examples as a basis for mathe- 
matical problem solving. They expect the problems to 
get harder and require more skill and insight. And they 
certainly appreciate theory when it  makes their work 
easier (although understanding formal proofs of useful 
theory requires maturity). Interactive t,eaching also be- 
comes natural: students are interested in participating 
in a class that  is developing a subject in a way that they 
can appreciate. 
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How Much Theory? 

This section summarizes arguments for and against 
requiring upper-level analysis and algebra courses of all 
mathematical sciences majors, and why the MSP panel 
made its "compromise" decision. 

Expecting controversy on several issues, the MSP 
panel organized sessions a t  national and regional MAA 
meetings to get input from the mathematics community. 
The main area of contention was how many courses to  
require in specific areas. The panel heard complaints 
that some areas were being neglected or that only one 
course in a certain area would be so superficial as to be 
worse than no course. However, most constituencies 
came to accept the need for compromise recommen- 
dations of limited exposure to several areas with stu- 
dents left to  choose for themselves an area to  study in 
greater depth. On the other hand, one important issue 
emerged on which a compromise position seemed to an- 
tagonize at least as many people as it pleased. This was 
the question of whether to  require an analysis and/or 
an abstract algebra course and, more generally, how 
much proof-oriented course work should be required in 
a mathematical sciences major. 

In the early 1970'~~ a majority of mathematics pro- 
grams required a t  least these two upper-level "core 
mathematics" courses for all students. Recently, de- 
clining enrollments in these courses and student prefer- 
ence for more applied or computing courses have forced 
many departments either to relax this requirement or 
to introduce a new applied track which does not require 
these two courses. People favoring the requirement of 
analysis and algebra argue that: 

0 Not requiring them would speed an already dan- 
gerous deterioration in the intellectual basis of the 
mathematics major; 
A major without a t  least analysis and algebra would 
be a superficial potpourri of courses-a major of no 
real value to  anyone, e.g., graduate study in statis- 
tics requires analysis and (linear) algebra; 
One cannot understand "what mathematics is 
about" without these two courses-a major with- 
out these two courses simply should not be offered 
by a mathematics department. 

People in favor of not requiring analysis and algebra 

With a more applied emphasis the mathematical 
sciences major will attract more good students, 
whereas requiring these courses would mean no 
change (except for new applied electives) from the 
1960s type of mathematics major that today at- 
tracts only a marginal number of students; 

argue that: 

Analysis and algebra are fine for some students 
but demand a mathematical maturity that many 
other undergraduates lack-these students memo- 
rize proofs blindly to  pass examinations and never 
take the follow-on courses needed to  appreciate the 
structure and elegance of these subjects; and 
Proofs and abstraction can equally well be devel- 
oped through other courses such as applied algebra, 
probability, differential equations, or combinatorics. 

Mathematicians must face the reality of a general 
change in the attitude of college students towards math- 
ematics. The popularity of science and mathematics in 
the 1960s drew more of the brightest students to mathe- 
matics and also motivated all students to work harder a t  
mathematics in high school. So the average mathemat- 
ics student was capable of handling a more theoretical 
mathematics program. 

Today, mathematics appears to  be getting no more 
than its traditional (smaller) share of bright students, 
and high school study habits are less good. However, al- 
most all of today's mathematics students still find a few 
subjects, pure or applied, particularly interesting and 
want to  study this material in some depth. Also by the 
senior year, the MSP panel believes that mathematics 
majors do have the mathematical maturity to  appre- 
ciate, say, a moderately abstract real analysis course. 
Examples of new approaches to  teaching analysis and 
other core mathematics courses appear in subsequent 
chapters. 

Since there was agreement on the importance of some 
theoretical depth, the MSP panel proposed the compro- 
mise of Principle VII, recommending "a sequence of two 
upper-division courses leading to  the study of some sub- 
ject in depth." Because of the lack of consensus on the 
analysis-algebra question, the MSP panel expects this 
issue to  be debated and modified at individual institu- 
tions. The faculty should not require courses that most 
students strongly dislike, nor should faculty shy away 
from any theory requirements for fear of losing majors. 
The faculty rather must motivate students to appreciate 
the value of some theoretical course work. 

Sample Majors 

This section presents two 12 semester-course math- 
ematical sciences majors. Many other sample majors 
could be given. The MSP panel believes that most ma- 
jors should be a "convexcombination" of the two majors 
given here. Major A contains much of a standard math- 
ematics major, while Major B is a broader program de- 
signed for students interested in problem solving. Both 



MATHEMATICAL SCIENCES 9 

majors should be accompanied by a minor in a related 
subject. 

The common core of all majors would be three 
semesters of calculus, one course in linear algebra, one 
course in computer science plus either a second com- 
puter course or extensive use of computing in several 
other courses, one course in probability and statistics, 
the equivalent of a course in discrete methods, modeling 
experience, and two theoretical courses of continuing 
depth. 

Mathematical Sciences Major A 

Three semesters of calculus 
* Linear algebra 

Probability and statistics 
Discrete methods 
Differential equations (with computing) 
Abstract algebra (one-half linear algebra) 
Two semesters of advanced calculus/real analysis 

* One course from the following set: abstract algebra 
(second course), applied algebra, geometry, topol- 
ogy, complex analysis, mathematical methods in 
physics 
Mathematical modeling 
Plus related course work: two semesters of computer 
science and two semesters of physics, to be taken in 
the first two years. 

Mathematical Sciences Major 

Three semesters of calculus 

B 

* Linear algebra 
Introduction to computer science 
Numerical analysis or second course in computer 

* Probability and statistics 
Advanced calculus or abstract algebra 
Discrete methods or differential equations 
Mathematical modeling or operations research 
Two electives continuing a subject with theoretical 

Subsequent sections in this report contain recom- 
mendations for discrete methods, applied algebra, and 
numerical analysis courses; for calculus, linear algebra, 
and differential equations courses; for upper-level core 
mathematics; for computer science; for modeling and 
operations research; and for probability and statistics. 

Major A is meant to  be close to the spirit of the major 
suggested by the NRC Panel on na in ing  in Applied 
Mathematics. That panel viewed differential equations 
as a unifying theme in the major. The proper mixture of 
Majors A and B (with appropriate electives) would also 

science 

depth. 

allow students to make statistics or operations research 
a unifying theme. 

The MSP panel feels that a set of courses similar to 
either of the above two majors, or a mixture thereof, 
would be reasonable for most mathematical sciences 
students. Some departments could offer several tracks 
for the mathematical sciences major. Special areas of 
faculty strength or student interest should obviously be 
reflected in the curriculum. 

Computing assignments should be used in most 
courses. When a liberal arts college mathematics de- 
partment teaches computer science, :such computing 
course work must frequently be counted within the col- 
lege limit of 12 or 13 courses permitted in one depart- 
ment. This regulation is assumed in Major B. However, 
the MSP panel believes that counting computer courses 
this way unfairly restricts a mathematical sciences ma- 
jor. One alternative is to list computer courses through 
the Computing Center. 

The one fundamental new course in these sample 
majors is discrete methods. As mentioned in Princi- 
ple VIII, the MSP panel feels that the central role of 
combinatorial reasoning in computer and decision sci- 
ences requires that some combinatorial problem solving 
should be taught in light of the three semesters devoted 
to analysis-related problem solving in the calculus se- 
quence. To this end, the modeling course should be 
heavily combinatorial if students have not taken a for- 
mal discrete methods course. 

Major A would be good preparation for graduate 
study in mathematics, applied mathematics, statistics, 
or operations research as well as many industrial posi- 
tions as a mathematical analyst or programmer. Ma- 
jor B would be good preparation for most industrial 
positions and for graduate study in applied mathemat- 
ics, statistics, or operations research (for such graduate 
study, both advanced calculus and upper-level linear al- 
gebra are usually needed). Representatives from many 
good mathematics graduate programs have stated that 
they would accept strong students with Major B-type 
training. 

Many computer science graduate programs would ac- 
cept Major B if the two electives were in computer sci- 
ence (although some other undergraduate computer sci- 
ence course deficiencies may still have to be made up in 
the first year of graduate study). In a computer science 
concentration within a mathematical sciences major, 
modern algebra might be replaced by applied algebra 
(see below for more details). Major B with an elec- 
tive in the theory of interest and a second probability- 
statistics course would be excellent preparation for ac- 
tuarial careers. Students interested in physical sciences- 
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related applied mathematics could modify either sam- 
ple major to get a good program. Both majors provide 
preparation for secondary school mathematics teach- 
ing, when supplemented with teaching methodology 
and practicum courses (theory courses must include al- 
gebra and geometry). 

Many smaller schools are being forced to offer a pro- 
gram in the spirit of Major B because almost all of 
B's courses have the needed enrollment base of students 
drawn from outside mathematics. 

The courses involving numerical analysis, probabil- 
ity and statistics, discrete methods, and modeling all 
can be designed as lower-level or upper-level courses. A 
large amount of flexibility is possible in "repackaging" 
the mathematical sciences material. For example, a 
Computational Models course (see the 1971 CUPM Re- 
port on Computational Mathematics) could cover some 
numerical analysis along with a little applied probabil- 
ity and statistics to be used in simulation modeling. 
A quarter system institution would have even greater 
flexibility in implementing this major. 

Mathematical Sciences Minor 
Just as a mathematical sciences major should be ac- 

companied by a minor in a related subject, so also do 
many other disciplines encourage their students to have 
a minor, or double major, in mathematics. At some col- 
leges, as many as half the mathematics majors have an- 
other major. Unfortunately, while mathematical meth- 
ods are playing an increasingly critical role in social 
and biological sciences and in business administration, 
students are generally ignorant or misinformed in high 
school and early college years about the importance of 
mathematics in these areas. 

The result is that many students either do not realize 
the value of further course work in the mathematical sci- 
ences until their junior or senior year, or their poor high 
school preparation forces them to  take a year of reme- 
dial mathematics before they can begin to learn any of 
the college mathematics they need. For such students, 
a traditional six to eight course minor in mathematics, 
starting with (at least) three semesters of calculus, is 
not feasible. When students in the social and biolog- 
ical sciences come to realize the value of mathematics 
in the junior year, they have frequently had only one 
semester of calculus, or perhaps a year of calculus with 
probability. 

The MSP panel believes that these students would be 
well served by a six to eight course mathematical sci- 
ences minor consisting of two semesters of calculus, one 
semester of (calculus-based) probability and statistics, 

one semester of introductory computer science, plus two 
to four electives chosen from courses such as numerical 
analysis, discrete methods, linear algebra, differential 
equations, linear programming, mathematical model- 
ing, and additional courses in calculus, probability or 
statistics, and computer science. Such a minor could 
easily be completed in three semesters. It has little 
prerequisite structure so that students can immediately 
pick courses based on personal interests rather than ini- 
tially "mark time" waiting to complete the calculus se- 
quence. 

Such a minor has several important points in its fa- 
vor. First of all, this minor is a collection of useful 
mathematical sciences courses which present concepts 
and techniques that arise frequently in the social and 
biological sciences. While this minor lacks the math- 
ematical depth of the traditional type of mathematics 
minor, it nonetheless introduces students to important 
modes of mathematical reasoning. Second, such a mi- 
nor will be attractive to students because it enhances 
employment opportunities and prospects for admission 
to graduate or professional schools. Third, after the 
exposure to interesting mathematical sciences topics, 
some students will want to study these subjects further 
in graduate school, either in a mathematical sciences 
graduate program or as electives in other graduate pro- 
grams. Fourth, this minor will bring more students into 
mathematical sciences courses, making it possible to of- 
fer these courses more frequently. Conversely, offering 
more mathematical sciences courses each semester will 
make a mathematical sciences minor, as well as the reg- 
ular mathematical sciences major, more attractive to 
students. In addition, when more students are taking 
mathematical sciences courses and finding out how use- 
ful mathematics is, the campus-wide student awareness 
of the value of mathematics will increase. 

Examples of Successful Programs 
Proper curriculum is the heart of a mathematical 

sciences program, but there are many non-academic as- 
pects that also must be considered. A wide variety of 
course offerings is not as important as the spirit with 
which the general program is offered. This section dis- 
cusses salient features of some successful mathematics 
programs. "Successful" means attracting a large num- 
ber of students into a program that develops rigorous 
mathematical thinking and also offers a spectrum of 
(well taught) courses in pure and applied mathemat- 
ics. Successful programs typically produce 5% to 8% of 
their college's graduates, although nation wide, mathe- 
matics majors constitute only about 1% of college grad- 
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uates. Faculty and student morale is uniformly high in 
these programs. As one would expect, teaching and re- 
lated student-oriented activities consume most of the 
faculty’s time in such successful programs, and there 
is little faculty research. The professors’ pride in good 
teaching and in the successes of their students leaves 
them with few regrets about not publishing. The set of 
programs mentioned here is only a sampling of success- 
ful programs that have come to the attention of this 
CUPM panel. More detailed information about these 
mathematics programs is available from individual col- 
leges. 

Saint Olaf College, a 2800-student liberal arts college 
in Northfield, Minnesota, has a contract mathematics 
major. Each mathematics student presents a proposed 
contract to  the Mathematics Department. The contract 
consists of at least nine courses (college regulations limit 
the maximum number of courses that can be taken in 
one department to  14). The department normally will 
not accept a contract without a t  least one upper-level 
applied and one upper-level pure mathematics course, 
a computing course or evidence of computing skills, 
and some sort of independent study (research program, 
problem-solving proseminar, colloquium participation, 
or work-study ). 

Frequently a student and an advisor will negotiate a 
proposed contract. For example, a faculty member will 
try to persuade a student interested in scientific com- 
puting and statistics that some real analysis and upper- 
level linear algebra should be included in the contract by 
showing that this material is needed for graduate study 
in applied areas, and in any case a liberal arts education 
entails a more broadly based mathematics major. Con- 
versely, a student proposing a pure mathematics con- 
tract would be confronted with arguments about not 
being able to appreciate theory without knowledge of 
its uses. In the end, the student and the faculty mem- 
ber understand and respect each other’s point of view. 

This understanding of each other’s interests natu- 
rally carries into the classroom. Also, the contract ne- 
gotiations “break the ice” and make students more at  
ease in talking to faculty (and encourage constructive 
criticism). The Mathematics Department offers minors 
in computing and statistics, but the attractiveness of 
a contract major in mathematics leads most students 
interested in these areas eventually to become mathe- 
matics majors. 

Lebanon Valley College, a small (1000-student) lib- 
eral arts college in Pennsylvania, has only five math- 
ematics faculty but its Department of Mathematical 
Sciences offers majors in Mathematics, Actuarial Sci- 

ence, Computer Science, and Operatioris Research. The 
course work in the mathematics graduate preparation 
track involves a problem seminar, Putnam team ses- 
sions, and formal and informal topics courses (because 
of the limited demand in this area). All mathematical 
sciences majors must take a rigorous 25 semester-hour 
core of calculus, differential equations, linear algebra, 
foundations, and computer science. Most courses are 
peppered with applications and computing assignments. 

The mathematics faculty are heavily involved in re- 
cruiting students by attending College Fairs and College 
Nights and by visiting regional high schools to explain 
to students and counselors the many diverse and at- 
tractive careers in the mathematical nciences, and the 
importance of mathematics in other professions. As a 
result of this effort, 10% of the incoming Lebanon Val- 
ley freshmen plan majors in the mathlematical sciences 
(the national average is 1%), and 7% of Lebanon Valley 
graduates are mathematical sciences majors. Many stu- 
dents are initially attracted by the major in actuarial 
science (an historically established profession) and then 
move into other areas of applied and pure mathematics, 
but this pattern may change with the newly established 
computer science major. 

Once the faculty have the “students’ attention,” they 
work the students hard. The students respond posi- 
tively to the demands of the faculty for three reasons. 
First, known rewards await those who do well in math- 
ematics (besides the obvious long-term rewards, the de- 
partment awards outstanding students with member- 
ship in various professional societies in the mathemat- 
ical sciences). Second, a personal sense of intellectual 
achievement is carefully nurtured starting in the fresh- 
man year with honors calculus for mathematics majors. 
Finally, as at  St. Olaf, a continuing (dialogue between 
students and faculty allows students l,o help shape the 
mathematics program. In fact, students interview can- 
didates for faculty positions and their irecommendations 
carry great weight. The department keeps in close touch 
with alumni by sending each one a personal letter every 
other year with news about the department and fellow 
alumni. 

Nearby Gettysburg College has a special vitality in 
its mathematics program that comes from an interdis- 
ciplinary emphasis. The department :has held joint de- 
partmental faculty meetings with each natural and so- 
cial science department at Gettysbyg to discuss com- 
mon curriculum and research interests. Several inter- 
disciplinary team-taught courses havc been developed, 
such as a course on symmetry taught jointly by a math- 
ematician and a chemist. An interdepartmental group 
organized two recent summer workshops in statistics 
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which drew faculty from eight departments. Mathe- 
matics faculty have audited a variety of basic and ad- 
vanced courses in related sciences to learn to  talk the 
language of mathematics users. Mathematics faculty 
bring this interdisciplinary point of view into every 
course they teach, giving interesting applications and 
showing, say, how a physicist would approach a certain 
problem. Needless to  say, a large number of mathemat- 
ics majors a t  Gettysburg are double majors. 

Frequently a separate computer science department 
with its own major spells disaster for the mathematics 
major a t  a college. But Potsdam State College (in the 
economically depressed northeast corner of New York) 
has possibly the greatest percentage of mathematics 
graduates of any public institution in the country-close 
to  lo%-despite competition from a popular computer 
science major. The most striking feature to  a visitor 
to  the Potsdam State Mathematics Department is the 
great enthusiasm among the students and the sense of 
pride students have in their ability to think mathemat- 
ically. (While it is hard to  measure objectively these 
students’ mathematical development, leading techno- 
logical companies, such as Bell Labs, IBM, and General 
Dynamics, annually hire several dozen Potsdam math- 
ematics graduates.) 

Classes have a limited amount of formal lectures. 
Most time is spent discussing work of the students. The 
emphasis on giving students a sense of achievement is 
due in large part to  experiences of the Potsdam chair- 
man when he taught in a Black southern institution. 
By instilling self confidence, he had helped able but ill- 
prepared students excel in calculus and even saw some 
go on to  good mathematics graduate programs. The de- 
partment has various awards for top students, a very ac- 
tive Pi Mu Epsilon chapter, publications about careers 
in mathematics and successes of former students, and 
a large student-alumni newsletter. Upper-class mathe- 
matics students are used to tutor (and encourage) be- 
ginning students. They also communicate their enthu- 
siasm about mathematics to  friends and teachers back 
home. As a result, half the incoming Potsdam freshmen 
sign up for calculus (although few departments require 
it). 

The computer science major a t  Potsdam State is 
viewed by the mathematics faculty as a great asset to  
the Mathematics Department. The computer science 
major helps attract good students to  Potsdam who of- 
ten decide to  switch to, or double major with, mathe- 
matics. Also the computer science program offers career 
skills and needed mathematical breadth. Numerical 
analysis, operations research, and modeling are taught 
in computer science (the Mathematics Department has 

had to limit severely their upper-level electives in or- 
der to  keep class size down and preserve small group 
seminars). 

As noted at the start of this section, the preced- 
ing mathematics programs represent only a small sam- 
pling of the excellent programs in this country. Sev- 
eral women’s colleges offer fine programs worth noting. 
For example, the Goucher College Mathematics Depart- 
ment has integrated computing in almost all courses and 
has a broad curriculum in pure and applied mathemat- 
ics; and the Mills College Mathematics Department has 
successfully promoted the critical role of mathematics 
for careers in science and engineering. The cornerstone 
of Ohio Wesleyan’s excellent mathematics program is 
an innovative calculus sequence (with computing, prob- 
ability, and diverse mathematical modeling). Georgia 
State University, an urban public institution with a 
highly vocational orientation, has a Mathematics De- 
partment that has broken out of the typical low-level 
service function mode to  offer a fine, well-populated 
mathematical sciences major. While research and grad- 
uate programs often dominate concerns about the un- 
dergraduate mathematics major at universities, math- 
ematics faculty at many universities work closely with 
undergraduate majors in excellent unified mathematical 
sciences programs. Three such institutions are Clemson 
University, Lamar University (Texas), and Rensselaer 
Polytechnical Institute. 

Most universities today have separate departments 
in computing and mathematical sciences. To counter 
this division, the University of Iowa and Oregon State 
University have developed unified inter-departmental 
mathematical sciences majors. The MSP panel strongly 
endorses such inter-departmental majors. At some uni- 
versities, most of the mathematical sciences, outside 
of pure mathematics, have been housed in one depart- 
ment. Although the MSP panel prefers a unified mathe- 
matical sciences major (ideally in one department), sev- 
eral of these non-pure mathematical sciences depart- 
ments have good undergraduate programs that may 
be of interest to  other institutions: the Mathemati- 
cal Sciences Department at Johns Hopkins University, 
the Mathematical Sciences Department at Rice Univer- 
sity, and the Department of Applied Mathematics and 
Statistics at the State University of New York a t  Stony 
Brook. 

Departmental Self-study and Publicity 

The MSP panel urges all mathematics departments 
to engage in serious self-study to  identify one or more 
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major themes to  emphasize in their mathematical sci- 
ences programs: an interdisciplinary focus in cooper- 
ation with other departments; an innovative calculus 
sequence (integrating computing, applications, etc.); a 
work-study program or other individualized learning 
experience; special strength in one area of the math- 
ematical sciences (pure or applied); or a track directed 
towards employment in a regional industry (such as 
aerospace, automative, insurance). Some colleges have 
successfully developed a multi-option major, but usu- 
ally such programs are the outgrowth of successful one- 
theme programs that slowly added new options (for ex- 
ample, the multiple-major mathematical sciences pro- 
gram at Lebanon Valley College, mentioned in the pre- 
ceding section, started with just an Actuarial Science 
option). The MSP panel’s advice is first to  do one thing 
well. 

A departmental emphasis should be consistent with 
the general educational purposes of the whole institu- 
tion and the academic interests of the high school gradu- 
ates who have historically gone to  that institution. It is 
very risky to  design a mathematical sciences program 
about a theme that the mathematics faculty find at- 
tractive and then to  try to  recruit a new group of high 
school students to  come to  the institution for this pro- 
gram. Note that a thematic emphasis does not mean 
that basic parts of the mathematical sciences program 
discussed earlier in this chapter can be neglected. 

Following a departmental self-study and implemen- 
tation of its recommendations for new courses or de- 
velopment of industrial work-study contacts, etc., it is 
next necessary to  publicize the mathematics depart- 
ment’s program with brochures and visits to regional 
high schools and College Fairs. Virtually all mathemat- 
ics departments with large programs (where mathemat- 
ical sciences majors constitute over 4% of the school’s 
graduates) have extensive publicity programs. Such 
publicity should emphasize the general usefulness of 
mathematics in the modern world, whether a student 
is a prospective mathematical sciences major or minor 
or an undecided liberal arts student. 

High school guidance counselors often do not realize 
that there are other attractive mathematics-related ca- 
reers outside straight computing. Counselors tend to  be 
afraid of mathematics because of their own personal dif- 
ficulties with the subject. Some counselors have been 
known to discourage students from taking more than 
the minimum required amount of high school mathe- 
matics with the warning that students risk getting poor 
grades in (hard) mathematics courses and thus hurting 
their chances of college admission. 

College faculty trying to  publicize the value of math- 

ematics and its study at their institution should seek the 
cooperation of local associations of the National Coun- 
cil of Teachers of Mathematics, which have long been 
working to  promote interest in mathematics in the high 
schools. 

New Course Descriptions 
Finite structures are used throughout the mathemat- 

ical sciences today. Two new basic courses about finite 
structures belong in the mathematical sciences curricu- 
lum, one addressing combinatorial aspects and one ad- 
dressing algebraic aspects. Another topic, numerical 
analysis, has become more important with the growth 
of computer science. This section describes a numeri- 
cal analysis course that is more applied and a t  a lower 
level than the previous CUPM numerical analysis rec- 
ommendations (Course 8 in the CUPM report A Gen- 
eral Curriculum for Mathematics in Colleges.) 

Discrete Methods Course 

This course introduces the basic techniques and 
modes of reasoning of combinatorial problem solving 
in the same spirit that calculus introduces continuous 
problem solving. The growing importance of computer 
science and mathematical sciences such as operations 
research that depend heavily on combinatorial methods 
justifies at least one semester of combinatorial problem 
solving to  balance calculus’ three semlesters of analysis 
problem solving. 

Unlike calculus, combinatorics is not largely re- 
ducible to  a limited set of formulas and operations. 
Combinatorial problems are solved primarily through 
a careful logical analysis of possibilities. Simple ad 
hoc models, often unique to  each different problem, are 
needed to  count or analyze the possiblle outcomes. This 
need to  constantly invent original solutions, different 
from class examples, is what makes the discrete meth- 
ods course so valuable for students. 

Like calculus, combinatorics is a subject which has a 
wide variety of applications. Many of them are related 
to  computers and to  operations research, but others re- 
late to  such diverse fields as genetics, organic chemistry, 
electrical engineering, political science, transportation, 
and health science. The basic discrete methods course 
should contain a variety of applicatiolns and use them 
both to  motivate topics and to  illustrate techniques. 

The course has an enumeration part and a graph 
theory part. These parts can be covered in either or- 
der. While texts traditionally do enumeration first, the 
graph material is more intuitive and hence it seems nat- 
ural to  do graph theory first (as suggested below). 
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With the right point-of-view, many combinatorial 
problems have quite simple solutions. However, the 
object of this course is not to show students simple 
answers. It is to teach students how to discover such 
simple answers (as well as not so simple answers). The 
means for achieving solutions are of more concern than 
the ends. Learning how to solve problems requires an 
interactive teaching style. I t  requires extensive discus- 
sion of the logical faults in wrong analyses as much as 
presenting correct analyses. 

Since the course should emphasize general combina- 
torial reasoning rather than techniques, a large degree 
of flexibility is possible in the choice of topics. The 
course outline given below contains many optional top- 
ics. Some of the core topics, such as the inclusion- 
exclusion formula, might also be skipped to allow the 
course to be tailored to the interests of students. 

COURSE OUTLINE 

I. Graph Theory 
A. Graphs as models. Stress many applications. 
B. Basic properties of graphs and digraphs. Chains, 

paths, and connectednesq isomorphism; pla- 
narity. 

C. Trees. Basic properties; applications in search- 
ing; breadth-first and depth-first search; span- 
ning trees and simple algorithms using spanning 
trees. Optional: branch and bound methods; 
tree-based analysis of sorting procedures. 

Chromatic number; coloring 
applications; map coloring. Optional: related 
graphical parameters such as independent num- 
bers. 

E. Eulerian and Hamiltonian circuits. Euler cir- 
cuit theorem and extensions; existence and non- 
existence of Hamiltonian circuits; applications 
to scheduling, coding, and genetics. 

D. Graph coloring. 

F. Optional topics: 
a. Tournaments 
b. Network flows and matching 
c. Intersection graphs 
d. Connectivity 
e. Coverings 
f. Graph-based games 

11. Combinatorics 
A. Motivating problems and applications. 
B. Elementary counting principles. Tree diagrams; 

sum and product role; solving problems that 
must be decomposed into several subcases. Op- 
tional: applications to complexity of computa- 
tion, coding, genetic codes. 

C. Permutations and combinations. Definitions 
and simple counting; sets and subsets; binomial 
coefficients; Pascal’s triangle; multinomial coef- 
ficients; elementary probability notions and ap- 
plications of counting. Optional: algorithms for 
enumerating arrangements and combinations; 
binomial identities; combinations with repeti- 
tion and distributions; constrained repetition; 
equivalence of distribution problems, graph ap- 
plications. 

D. Inclusion/ezclusion principle. Modeling with 
inclusion/exclusion; derangements; graph color- 
ing. Optional: rook polynomials. 

E. Recurrence relations. Recurrence relation mod- 
els; solution of homogeneous linear recurrence 
relations; Fibonacci numbers and their applica- 
tions. 

F. Optional topics: 

a. Generating functions 

b. Polya’s enumeration formula 

c. Experimental design 

d. Coding 

The preceding course outline is for either a one- 
semester or a two-quarter course. A two-quarter course 
has a natural structure, covering enumerative material 
in one quarter and graph theory plus designs in another 
quarter. There are several books available for part or 
all of the discrete methods course. It is anticipated that 
as this discrete methods course becomes more widely 
taught, many more books will become available and the 
exact nature of the syllabus will evolve. 

There are several obvious places where a computer 
can be used in this course: ways of representing graphs 
in a computer and performing simple tests (e.g., connec- 
tivity); asymptotic calculations in enumeration prob- 
lems; network flow algorithm; and algorithms for enu- 
merating permutations and combinations. The peda- 
gogical problem is that computer programming takes 
time away from problem-solving exercises, possibly too 
much time if a school’s computer operation runs in a 
batch processing mode. 

A more advanced second course in combinatorics 
may also be considered. This course can treat core top- 
ics in the discrete methods course in greater depth, and 
some of the optional topics. Other important topics are 
Ramsey theory, matroids, and graph algorithms. The 
course could concentrate on combinatorics or on graph 
theory, or could be a topics course which varies from 
year to year. Some of the texts listed below would be 
suitable for this second combinatorics course. 
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COMBINATORICS & GRAPH THEORY TEXTS 
1. Bogart, Kenneth, Introductory Combinatorics, Pit- 

2 .  Brualdi, Richard, Introductory Combinatorics, Else- 

3. Cohen, Daniel, Basic Techniques of Combinatorial 

4. Liu, C.L., Introduction to Combinatorial Mathemat- 

5. Roberts, Fred, Applied Combinatorics, Prentice- 

6. Tucker, Alan, Applied Combinatorics, J. Wiley lz 

GRAPH THEORY TEXTS 

man, Boston, 1983. 

vier-North Holland, New York, 1977. 

Theory, J. Wiley & Sons, New York, 1978. 

ics, McGraw Hill, New York, 1968. 

Hall, Englewood Cliffs, New Jers., 1984. 

Sons, New York, 1980. 

1. Bondy, J. and Murty, V.S.R., Graph Theory with 
Applications, American Elsevier, New York, 1976. 

2.  Chartrand, Gary, Graphs as Mathematical Models, 
Prindle, Weber, and Schmidt, Boston, 1977. 

3. Ore, Oystein, Graphs and Their Uses, Math. Assoc. 
of America, Washington, D.C., 1963. 

4. Roberts, Fred, Discrete Mathematical Models, Pren- 
tice-Hall, Englewood Cliffs, New Jersey, 1976. 

5. Trudeau, Robert, Dots and Lines, Kent State Press, 
Kent, Ohio, 1976. 

C o MB IN AT o RIC s TEXTS 
1. Berman, Gerald and Fryer, Kenneth, Introduction 

to Combinatorics, Academic Press, New York, 1969. 
2.  Eisen, Martin, Elementary Combinatorial Analysis, 

Gordon-Breach, New York, 1969. 
3. Vilenkin, N., Combinatorics, Academic Press, New 

York, 1971. 
4. Street, A. and Wallis, W., Combinatorial Theory: 

A n  Introduction, Charles Babbage, 1975. 

Applied Algebra Course 

(Editorial Note in 1989 reprinting: This course is 
now called Discrete Structures and is usually now 
taught a t  the freshman level. The course discussed here 
is more advanced and intended for the sophomore-junior 
level.) 

A traditional time for an applied algebra course is 
in the junior year-when students would be ready for a 
modern algebra course. However, as noted above, many 
students will not be ready for algebraic abstraction un- 
til senior year. The course builds on experiences in be- 
ginning computer science courses that have implicitly 
imparted to  students a sense of the underlying algebra 
of computer science structures, and formally presents 
topics like Boolean algebra, partial orders, finite-state 
machines, and formal languages that will be used in 

later computer science courses. At thle same time, this 
course can also be very rewarding to  regular mathe- 
matics majors who should appreciate ithe new algebraic 
structures such as formal languages and finite state ma- 
chines that are so different from the structures in the 
regular abstract algebra course. Substantial class time 
should be spent on proofs with special emphasis on in- 
duction arguments. This course is just as mathemati- 
cally sophisticated and capable of developing abstract 
reasoning as abstract algebra, but the topics stress set- 
relation systems rather than binary-operation systems. 
Indeed the abstract complexity of the basic structures 
is much greater in applied algebra, but this complexity 
precludes the construction of logical pyramids built of 
simple algebraic inferences common to many areas of 
abstract algebra. 

This course is an advanced version of the lower- 
division B3 Discrete Structures course in ACM Cur- 
riculum 68. The B3 course was the source of much 
dissatisfaction because it contained ii huge amount of 
material, and it required too great mathematical matu- 
rity for a lower-division course. The recent ACM Cur- 
riculum 78 recommends that the B3 course be treated 
as a more advanced course and that it, should be taught 
in mathematics departments rather than computer sci- 
ence departments. The B3 course was the subject of 
several papers a t  meetings of the ACM Special Inter- 
est Group in Computer Science Education (SIGCSE); 
see the February issues (Proceedings of SIGCSE annual 
meeting) of the SIGCSE Bulletin in 1973, 1974, 1975, 
1976. 

The B3 course contained both applied algebra and 
discrete methods. The MSP panel recommends that a 
separate full course be devoted to  discrete methods (see 
the discrete methods course description earlier in this 
Section). Because some computer science courses may 
devote a substantial amount of time introducing some 
of the topics in the above applied algebra syllabus, the 
exact content of this course will vary substantially from 
college to college. For this reason the syllabus outline 
was kept brief. At some colleges, applied algebra will 
still have to be combined with discrete methods in one 
course (the computer science major may not have the 
time for two separate courses). The applied algebra 
part of such a combined course would, in most cases, 
concentrate on topics 1, 2,  3, 4, 6 in the syllabus. Many 
of the discrete structures texts listed below cover both 
applied algebra and discrete methods. 

COURSE TOPICS 

A. Sets, binary relations, set functions, induction, basic 
graph terminology. 
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B. Partially ordered sets, order-preserving maps, weak 

C. Boolean algebra, relation to  switching circuits. 
D. Finite state machines, state diagrams, machine ho- 

E. Formal languages, context-free languages, recogni- 

F. Groups, semigroups, monoids, permutations and 

G. Modular arithmetic, Euclidean algorithm. 
H. Optional topics: linear machines, Turing machines 

and related automata; Polya’s enumeration theo- 
rem; finite fields, Latin squares and block design; 
computational complexity. 

orders. 

momorphism. 

tion by machine. 

sorting, representations by machines, group codes. 

APPLIED ALGEBRA TEXTS 

1. Dornhoff, Lawrence and Hohn, Frantz, Applied 
Modern Algebra, Macmillan, New York, 1978. 

2. Fisher, James, Application- Oriented Algebra, T. 
Crowell Publishers, New York, 1977. 

3. Johnsonbaugh, Richard, Discrete Mathematics, 
Macmillan, New York, 1984. 

4. Korfhage, Robert , Discrete Computational Struc- 
tures, Academic Press, New York, 1974. 

5. Liu, C.L., Elements of Discrete Mathematics, Mc- 
Graw Hill, New York, 1977. 

6. Preparata, Franco and Yeh, Robert, Introduction 
to Discrete Structures, Addison-Wesley, Reading, 
Mass., 1973. 

7. Prather, Robert, Discrete Mathematical Structures 
for Computer Sciences, Houghton Mifflin, Boston, 
1976. 

8. Stone, Harold, Discrete Mathematical Structures 
and Their Applications, Science Research Asso- 
ciates, Chicago, 1973. 

9. Tremblay, J. and Manohar, R., Discrete Mathemat- 
ical Structures with Applications in Computer Sci- 
ences, McGraw Hill, New York, 1975. 

Numerical Analysis Course 

In any elementary numerical analysis course a bal- 
ance must be maintained between the theoretical and 
the application portion of the subject. Normally, such 
a course is designed for sophomore and junior students 
in engineering, mathematics, science, and computer sci- 
ence. Students should be introduced to  a wide selection 
of numerical procedures. The emphasis should be more 
on demonstrations than on rigorous proofs (however, 
this is not meant to  slight necessary theoretical aspects 
of error analysis). At least one or two applied problems 
from each of the major topics should be included so that 

students have a good understanding of how the art of 
numerical analysis comes into play. 

The course outline below presents a good selection of 
topics for a one-semester course. Error analysis should 
be continuously discussed throughout the duration of 
the course so as to  stress the effectiveness and efficiency 
of the methods. Alternative methods should be con- 
trasted and compared from the standpoint of the com- 
putational effort required to  attain desired accuracy. 

An optional approach to  this course would emphasize 
a full discussion (with computer usage) of one procedure 
for each course topic (after the computer arithmetic in- 
troduction). A sample of five such procedures is: 
1. The Dekker-Brent algorithm (see UMAP module 

2. A good linear equation solver involving LU-de- 

3. Cubic spline interpolation. 
4. An adaptive quadrature code. 
5. The Runge-Kutta-Fehlberg code RKF4 with adap- 

Weekly assignments should include some computer 
usage; in total, four or five computer exercises for each 
major topic. Students should do computer work for 
larger applied programs in small groups. However, 
the concept of utilizing %armed" programs with mi- 
nor modifications should be stressed. Such an approach 
nicely brings out the strong interdependence between 
computers and numerical analysis yet does not over- 
emphasize the efforts necessary to  program a problem. 
An interactive computer system using video terminals 
is ideal for this course. Microcomputers and even hand- 
held calculators can also be used effectively. One or two 
applied homework problems from each of the main top- 
ics keep students aware of the balance that is necessary 
between the art and the science of numerical analysis. 
Prerequisites for this course should be a year of calculus 
including some basic elementary differential equations 
and a computer science course. 

For schools on a quarter system, two quarters should 
be a minimal requirement and the above material would 
be more than ample. One should spend the first quar- 
ter on numerical solutions of algebraic equations and 
systems of algebraic equations and the last quarter on 
the other topics. 

COURSE OUTLINE 

A. Computer arithmetic. Discretization and round-off 
error; nested multiplication. 

B. Solution of 4 single algebraic equation. Initial dis- 
cussion of convergence problems with emphasis on 
meaning of convergence and order of convergence; 

No. 264). 

composition. 

tive step determination. 



Newton’s method, Bairstow’s method; interpola- 
tion. 

C. Solution systems of equations. Elementary matrix 
algebra; Gaussian methods, LU decomposition, it- 
erative methods, matrix inversion; stability of algo- 
rithms (examples of unstable algorithms), errors in 
conditioned numbers. 

D. Interpolating polynomials. Lagrange interpolation 
to  demonstrate existence and uniqueness of interpo- 
lating polynomials and for calculation of truncation 
error terms; splines, least squares, inverse interpo- 
lation; truncation, inherent errors and their propa- 
gation. 

E. Numerical integration. Gaussian quadrature, 
method of undetermined coefficients, Romberg and 
Richardson extrapolation (for both integration and 
differentiation), Newton-Cotes formulas, interpolat- 
ing polynomials, local and global error analysis. 

F. Numerical solution of ordinary differential equa- 
tions. Both initial value and boundary value 
problems; Euler’s method, Taylor series method, 
Runge-Kutta, predictor-corrector methods, multi- 
step methods; convergence and accuracy criteria; 
systems of equations and higher order equations. 

If this course has an enrollment of under 25 students, 
non-standard testing can be considered, such as a take- 
home midterm. At the end of the term, instead of the 
traditional three hour examination, each student can 
write an expository paper exploring in greater depth 
one of the topics introduced in class or investigating 
a subject not included in the work of the course, ei- 
ther approach to include computational examples with 
analysis of errors. (Since most of the students will not 
have had previous experience in writing a paper, topics 
may be suggested by the instructor or must be approved 
if student devised; scheduled conferences and prelimi- 
nary critical reading of papers guard against disastrous 
attempts or procrastination.) Some examples of final 
projects are: spline approximations; relaxation meth- 

ods; method of undetermined coefficients in differen- 
tiation and integration; least squares approximations; 
parabolic (or elliptic or hyperbolic) partial differential 
equations; numerical methods for multi-dimensional in- 
tegrals; multi-step predictor-corrector methods. 

NUMERICAL ANALYSIS TEXTS 
1. Cheney, Ward and Kincaid, David, Numerical 

Mathematics and Computing, Brooks/Cole, Mon- 
terey, Calif., 1980. 

2. Conte, S. and DeBoor, C., Elemmtary Numerical 
Analysis, McGraw Hill, New York, 1978. 

3. Gerald, Curtis F., Applied Numerical Analysis, 2nd 
Edition, Addison-Wesley, Reading, Mass., 1978. 

4. Forsythe, G.E. and Moler, C.B., Computer Solu- 
tions of Linear Algebraic System,s, Prentice-Hall, 
Englewood Cliffs, New Jersey, 1967. 

5. Hamming, R.W., Numerical Methods for Scientists 
and Engineers, 2nd Edition, McGraw Hill, New 
York, 1973. 

6. James, M.L.; Smith, G.M.; Wolford, J.C., Ap- 
plied Numerical Methods for Digital Computation, 
Harper & Row, New York, 1985. 

7. Ralston, Anthony and Rabinowitz, Philip, First 
Course in Numerical Analysis, McGraw Hill, New 
York, 1978. 

Panel Members 
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DON KREIDER, Dartmouth College. 
WILLIAM LUCAS, Cornell University. 
FRED ROBERTS, Rutgers University. 
GAIL YOUNG, Case Western Reserve. 
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Calculus 

This chapter contains the report of the Subpanel on 
Calculus of the CUPM Panel on a General Mathemat- 
ical Sciences Progmm, reprinted with minor changes 
from Chapter 11 of the 1981 CUPM report entitled 

SCIENCES PROGRAM. 
RECOMMENDATIONS FOR A GENERAL MATHEMATICAL 

Rationale 

The Calculus Subpanel was charged with examining 
the traditional calculus sequence of the first two years 
of college mathematics: two semesters of single-variable 
calculus; one semester of linear algebra; one semester 
of multivariable calculus. In approaching this task, the 
subpanel considered syllabi through which this sequence 
is implemented at various colleges and universities, the 
syllabus for the Advanced Placement Program in Calcu- 
lus, and alternatives to  calculus as the entry-level course 
in the mathematical sciences, for example, finite math- 
ematics or discrete methods. 

The subpanel eventually came to  the conclusion that 
the rationale for certain parts of the traditional calcu- 
lus sequence remains valid, although some restructuring 
and increased flexibility are warranted to reflect the dif- 
fering mathematical requirements of the social and bi- 
ological sciences and, increasingly, of computer science. 
The general recommendations of the subpanel are thus: 
1. To make no substantive changes in the first semester 

of calculus; 
2. To restructure the second semester around model- 

ing and computation, although leaving it basically 
a calculus course; 

3. To branch to three independent courses in the sec- 
ond year: 
a. Applied Linear Algebra, 
b. Multivariable Calculus (in dimensions 2 and 3), 
c. Discrete Methods. 

Descriptions of the first and second semesters of calcu- 
lus, applied linear algebra, and multivariable calculus 
are given below. The discrete methods course is dis- 
cussed in the first chapter, “Mathematical Sciences.” 

The subpanel views its recommendations as conser- 
vative. Tony Ralston has argued, for example, that 
calculus need not be the entry-level course in the math- 
ematical sciences and that a course in discrete methods 
is a reasonable alternative, better serving some areas 

such as computer science (see “The Twilight of the Cal- 
culus,” which appeared under the title “Computer Sci- 
ence, Mathematics, and the Undergraduate Curricula 
in Both” in the American Mathematical Monthly, 88:7 
(1981) 472-485). In his view, to  ignore discrete meth- 
ods, even in the first two years of college mathematics, 
would be absurd in this day. 

The subpanel does not disagree with the general 
sense of this position. On the other hand, the sub- 
panel feels that the language, spirit, and methods of 
traditional calculus still permeate matlhematics and the 
natural and social sciences. To quote Ralston himself, 
“The calculus is one of man’s great intlellectual achieve- 
ments; no educated man or woman should be wholly 
ignorant of its elements.” Perhaps the time is not far 
off when calculus will be displaced as the entry-level 
course, but it has not arrived yet. 

The place for rigor. The subpanel believes 
strongly that, in the first two years, theorems should 
be used rather than proved. Certainly correct state- 
ments of theorems such as the Mean Value Theorem 
or 1’HGpital’s Rule should be given; but motivation, as 
long as it is recognized as such, and usage are more im- 
portant than proofs. The place for theoretical rigor is in 
later upper-level courses. In this rega.rd, the subpanel 
agrees with the program philosophy outlined in the first 
chapter, “Mathematical Sciences.” 

First Semester Calculus 
The first semester of calculus, especially, contains a 

consensus on essential ideas that are important for mod- 
eling dynamic events. This course has evolved through 
considerable effort in the mathematical community to 
present a unified treatment of differential and integral 
calculus, and it serves well both general education and 
professional needs. It is historically rich, is filled with 
significant mathematical ideas, is tempered through its 
demonstrably important applications, and is philosoph- 
ically complete. Most syllabi for its teaching cover the 
usual topics: 
A. Limits and continuity. 
B. Differentiation rules. 
C .  Meaning of the derivative. Applications to curve 

sketching, maximum-minimum problems, related 
rates, position-velocity-acceleration problems. 

D. Antidifferentiatwn. 
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E. The definite integral and the Fundamental Theorem 
of Calculus. 

F. Trigonometric functions. 
G. Jogarithmic and ezponential functions. Including a 

brief exposure to first-order, separable differential 
equations (with emphasis on y' = ky). 

The first (and second) calculus courses should be 4- 
or 5-credit hour courses. If less time is available, top- 
ics will have to be pushed later into the calculus se- 
quence, with some multivariate calculus material left 
for an analysis/advanced calculus course. Mathemat- 
ics courses should not rush trying to  cover unrealistic 
syllabi. 

It might be desirable to add more non-physical sci- 
ences examples to C (e.g., a discussion of the use of 
the word "marginal" in economics), although serious 
modeling examples should be postponed to the second 
semester. Integration as an averaging process can be in- 
cluded in El but applications and techniques (numerical 
or algebraic) of integration are better left to the second 
semester. Exponential growth and decay are important 
concepts that must be emphasized in G. 

Second Semester Calculus 
There does not appear to be much slack or fat in the 

first semester of calculus. I t  is in the second semester, 
therefore, when numerical techniques, models, and com- 
puter applications can be introduced. Unlike the first 
semester of calculus, the second semester does not en- 
joy the same consensus on either its central theme or its 
content. I t  tends to be a grab bag of "further calculus 
topics"-further techniques of integration, more appli- 
cations of integration, some extension of techniques to 
the plane (parametric equations), sequences and infi- 
nite series, and more differential equations. Each of 
these topics is, in isolation, important at some stage in 
the training of scientists and mathematicians. But it is 
less clear that packaging them in this way and having 
them occupy this critical spot in the curriculum is justi- 
fied today, given the pressing needs of computer science 
and the non-physical sciences. 

From time to time it has been urged that multi- 
variable calculus should be started during the second 
semester. But few institutions have implemented this 
suggestion. And the subpanel believes that, in the 
meantime, higher priorities for the second course have 
materialized in the form of applications and computing. 

The subpanel considered recommending branching in 
the curriculum after the first semester of calculus, with 
students advised to take courses more directly relevant 
to their career goals. But it finally concluded that there 

are still substantial reasons for keeping students in one 
"track" through the first two courses. In most Ameri- 
can colleges, a "choice" in the second course would re- 
quire most students to  be thinking seriously about ca- 
reer goals within a few weeks of arriving on campus as 
freshmen. This does not strike us as realistic nor in the 
best interests of liberal education. Moreover, we con- 
tinue to  feel that many of the ideas and technical skills 
arising in the second calculus course are reasonable to 
include a t  this point in the curriculum. Thus, the final 
conclusion is that a restructuring and change of empha- 
sis in the second semester calculus course is preferable 
to its replacement. 

The Calculus Subpanel recommends the following 
changes in the second calculus course: 

A. 

B. 

C. 

D. 

E. 

An early introduction of numerical methods. Imple- 
mented through simple computer programs. Solv- 
ing one (or a system of two) first-order differential 
equation( s ) .  

Techniques of integration. General methods such as 
integration by parts, use of tables, and techniques 
that extend the use of tables such as substitutions 
and (simple) partial fraction expansions; less em- 
phasis should be placed on the codification of special 
substitutions. 

Numerical methods of integration. Examples where 
numerical and "formal" methods complement each 
other, e.g., evaluating improper integrals where sub- 
stitutions or integration-by-parts make the integral 
amenable to efficient numerical evaluation. 

Applications of integration. Illustrate the "setting 
up" of integrals as Riemann sums. The emphasis 
should be on the modeling process rather than on 
"visiting" all possible applications of the definite in- 
tegral. 

Sequences and series. These topics should have sub- 
stantially changed emphasis: 
1. Sequences should be elevated to independent 

status, defined not only through %lased formu- 
las" but also via recursion formulas and other 
iterative algorithms. Estimation of error and 
analysis of the rate of convergence should ac- 
company some of the examples. 

2. Series should appear as a further important ex- 
ample of the idea of a sequence. Power series, as 
a bridge from polynomials to special functions, 
should figure prominently. Specialized conver- 
gence tests for series of constants can be de- 
emphasized. 

3. Approximation of functions via Taylor series, 
and estimation of error, accompanied by im- 



plementation of such approximations on a com- 
puter. 

F. Differential equations. Should be treated with less 
(but not zero) emphasis on special methods for solv- 
ing first-order equations and constant coefficient 
linear equations (especially the non-homogeneous 
case). More valuable would be: vector field inter- 
pretation for first-order equations, numerical meth- 
ods of solution, and power series methods for solv- 
ing certain equations. Applications should arise in 
mathematical modeling contexts and both “closed 
form” and “numerical” solutions should be illus- 
trated. 

The new second course in calculus does not differ rad- 
ically in content from the traditional second semester 
course. It is a conservative restructuring that can be 
taught from existing textbooks and based on modest 
modifications of many existing syllabi. But the intended 
change in “flavor” and emphasis should be more dra- 
matic. About twelve lectures (of the usual 40 lectures) 
must be modified substantially to  achieve the desired 
computer emphasis. Numerical algorithms will thus 
figure prominently, along with the formal techniques 
of calculus. Concepts not usually in a calculus course 
such as error estimation, truncation error, round-off er- 
ror, rate of convergence, and bisection algorithms will 
be included. The theme for the course will be “calcu- 
lus models.” Consideration of even a few UMAP-type 
models would be enough to  change the nature of the 
course significantly and to provide the intended “tying 
together” of the traditional calculus topics that are in- 
cluded in the course. 

A syllabus for the course could be constructed by 
starting with the second calculus course described in the 
CUPM report, A General Curriculum for Mathematics 
in Colleges (revised 1972), or with the Advanced Place- 
ment BC Calculus Syllabus. Topics to  be diminished or 
omitted include: emphasis on special substitutions in 
integrals, l’H6pital’s rule except as it arises naturally in 
connection with Taylor series, polar coordinates, vector 
methods, complex numbers, non-homogeneous differen- 
tial equations and the general treatment of constant- 
coefficient homogeneous linear differential equations. 
Many of these topics will appear in examples but will 
not be emphasized in themselves. 

Intermediate Mat hematics Courses 

Although the Calculus Subpanel recommends retain- 
ing a single track for students during their first year, it 
just as strongly recommends that three different courses 

be available from which students choose (with advis- 
ing) their intermediate mathematics courses. Two of 
these courses, whose descriptions follaow, are Applied 
Linear Algebra and Multivariable Calcdus. The third, 
Discrete Mathematics, is described in the first chapter, 
‘Mathematical Sciences.” 

Applied Linear Algebra 

For a large part of modern applied mathematics, lin- 
ear algebra is at least as fundamental as calculus. It is 
the prerequisite for linear programming and operations 
research, for statistics, for mathematic,al economics and 
Leontief theory, for systems theory, for eigenvalue prob- 
lems and matrix methods in structures, and for all of 
numerical analysis, including the solution of differential 
equations. The attractive aspect about these applica- 
tions is that they make direct use of wh,at can be taught 
in a semester of linear algebra. The course can have a 
sense of purpose, and the examples can reinforce this 
purpose while they illustrate the theory. 

A number of major texts have arrived a t  a reasonable 
consensus for a course outline. Their outlines are well 
matched with the needs of both theory and application. 
Applications can include such topics ars systems of lin- 
ear differential equations, projections and least squares. 
But the subpanel strongly recommends that more sub- 
stantial applications to linear models should be a cen- 
tral part of the construction of the course. Many differ- 
ent applications of this kind are accessible and can be 
found in the texts mentioned. Thus, no  rigid outline is 
required. The development of the suhject moves nat- 
urally from dimension 2 to  3 to  n, and although that 
is an easy and familiar step, it nevertheless represents 
mathematics a t  its best. The combination of impor- 
tance and simplicity is almost unique ‘to linear algebra. 
Linear programming is an excellent final topic in the 
course. It brings the theory and applications together. 

The changes in this course are ones of emphasis that 
recognize that the course must be more than an in- 
troduction to  abstract algebra. Abstraction remains a 
valuable purpose, and linearity permits more success 
with proofs than the epsilon-delta arguments of calcu- 
lus. However, the main goal is to  emphasize applica- 
tions and computational methods, opening the course 
to the large group of students who nleed to use linear 
algebra. 

TEXTS 

1. Hill, Richard, Elementary Lineo.r Algebra, Aca- 

2. Kolman, Bernard, Introductory Linear Algebra with 
demic Press, New York, 1986. 

Applications, Macmillan, New York, 1979. 



22 RESHAPING COLLEGE MATHEMATICS 

3. Rorres, Chris and Anton, Howard, Applications of 
Linear Algebra, John Wiley & Sons, New York, 1979 
(paperback supplementary text). 

4. Strang, Gil, Linear Algebra and Its -Applications, 
3rd Edition, Harcourt Brace Jovanovich, San Diego, 
1988. 

5. Tucker, Alan, A Unified Introduction to  Linear Al- 
gebra, Macmillan, New York, 1988. 

6. Williams, Gareth, Linear Algebra with Applications, 
Allyn and Bacon, Boston, 1984. 

Multivariable Calculus 
This is the traditional multivariable calculus course 

a t  many colleges and universities. It is not a new course, 
but for many schools it would represent a movement in 
the direction of “concrete” treatment of multivariable 
calculus rather than the more recent elegant treatments 
making heavy use of linear transformations and couched 
in general (high dimensional) terms. The course be- 
gins with an introduction to  vectors and matrix alge- 
bra. Topics include Euclidean geometry, linear equa- 
tions, and determinants. The remainder of the course 
is an introduction to multivariable calculus, including 
the analytic geometry of functions of several variables, 
definitions of limits and partial derivatives, multiple and 
iterated integrals, non-rectangular coordinates, change 
of variables, line integrals, and Green’s theorem in the 
plane. 

Differential Equations 

The Calculus Subpanel has considered the place of 
differential equations in the curriculum. It recommends 
that the topic be treated at two levels: 
1. Through methods and examples involving differ- 

ential equations, spiraled through the calculus se- 
quence, and 

2. Through a substantial course in differential equa- 
tions, available to  students upon completion of the 
first-year calculus sequence and applied linear alge- 
bra. 

We note here topics in differential equations that are 
part of the preceding courses: 

Solutions of y‘ = ky occur in the first semester of 
calculus. Exponential growth and decay are dis- 
cussed. 

# Solution of second order linear differential equa- 
tions are included in the second semester of calcu- 
lus. Oscillating solutions occur as examples. In ad- 
dition, geometrical interpretations (direction field), 
numerical solutions and power series solutions are 
included. 

Applied Linear Algebra includes the solution of lin- 
ear constant coefficient systems of differential equa- 
tions using eigenvalue methods. 

Although the Calculus Subpanel has not recom- 
mended a full course in differential equations in the cal- 
culus sequence of the first two years, it has suggestions 
for a subsequent course. Such a course should not be 
a compendium of techniques for solving in closed form 
various kinds of differential equations. Libraries are full 
of cookbooks; one hardly needs a course to use them. 
What is important is to  develop carefully the models 
from which differential equations spring. Modeling ob- 
viously means more than an application such as: 

According to  physics, the displacement z ( t )  of a 
weight attached to  a spring satisfies 2”-bz’+kz  = 
0 .  Solve for z ( t )  given that b = 2, k = 3, z(0) = 

For a more serious approach to  applications, we refer to 
the art  forgery problem a t  the beginning of Braun (see 
below) or indeed almost any of the models discussed in 
the suggested texts. 

The meaning of the word “solution” must be scru- 
tinized. Different viewpoints must be introduced- 
numerical, geometric, qualitative, linear algebraic and 
discrete. 

A possible syllabus for a differential equations course 
is: 
A. First-order equations. Models; exact equations; ex- 

istence and uniqueness and Picard iteration; numer- 
ical methods. 

B. Higher-order linear equations. Models; the linear al- 
gebra of the solution set; constant coefficient homo- 
geneous and non-homogeneous; initial value prob- 
lems and the Laplace transform; series solutions. 

C. Systems of equations and qualitative analysis. Mod- 
els; the linear algebra of linear systems and their so- 
lutions; existence and uniqueness; phase plane; non- 
linear systems; stability. 

Since some of these topics will have already been 
introduced in courses from the calculus sequence, there 
may be time for a brief discussion of partial differential 
equations and Fourier series. Existence and uniqueness 
theorems are included here only because of the light 
they or their proofs might shed on methods of solution 
(e.g., Picard iteration). 

TEXTS 

1, z’(0) = 0. 

The course can be taught using any of the many 
reasonable differential equations texts with a modest 
amount of applications, supplemented by: 

Braun, Martin, Differential Equations and Their 
Applications, Second Edition, Springer-Verlag, New 



York, 1978. 

Braun remains the only text to  build extensively on 
applications, but i t  has the serious drawback that it 
is based on single-variable calculus and avoids linear 
algebra. 

A somewhat radical alternative is a theoretical course 
involving more qualitative or topological analysis em- 
phasizing systems of equations. The subpanel does not 
suggest a syllabus, but refers instead to  V.I. Arnold, Or- 
dinary Differential Equations, MIT Press, Cambridge 
(paperback), 1978. 

This course would have applied linear algebra and 

multivariable calculus as prerequisites1 and could be 
taken a8 early as the second semester of the sophomore 
year if the two prerequisites were taken concurrently the 
previous semester. 

Subpanel Members 

DON KREIDER, CHAIR, Dartmouth Colllege. 
ROSS FINNEY , Educational Development Center. 
JOHN KENELLY, Clemson University. 
GIL STRANG, MIT. 
TOM TUCKER, Colgate University. 





Core Mathematics 

This chapter contains the report of the Subpanel on 
Core Mathematics of the CUPM Panel on 0 General 
Mathematical Sciences Program, reprinted with minor 
changes from Chapter 111 of the 1981 CUPM report en- 
titled RECOMMENDATIONS FOR A GENERAL MATHE- 
MATICAL SCIENCES P R O G R A M .  

New Roles for Core Mathematics 
In the 1960’s CUPM extensively examined curricu- 

lum in core mathematics-upper division subjects that 
comprise the trunk from which the other specialized 
branches and applications of mathematics emerge. It 
reviewed and revised its recommendations in 1972. 
See the Compendium of CUPM Recommendations pub- 
lished by the Mathematical Association of America, es- 
pecially the 1972 revision of the General Curriculum 
for Mathematics in  Colleges. With the current restruc- 
turing of the mathematics major into a mathematical 
sciences major, new questions have been raised about 
core mathematics curriculum. These questions concern 
the role of core mathematics in a mathematical sciences 
major as much as syllabi of individual courses. This 
chapter focuses on four questions that were addressed 
to  the Core Mathematics Subpanel by the parent Panel 
on a General Mathematical Sciences Program. 

The members of this subpanel represent a variety 
of institutions, public and private, liberal-arts colleges, 
and research-oriented universities. All the members 
have seen at their institutions a divergence of the math- 
ematics major from its form during their own under- 
graduate training, as career opportunities for mathe- 
matics majors have changed. In part, the members 
lament the passing of the mathematics program that 
nurtured their love of mathematics. At the same time 
they acknowledge the challenge of the diversity of the 
present and future. They realize that it is not now 
realistic for CUPM to recommend a core set of pure 
mathematics courses to  be taken by all mathematical 
sciences majors in every institution. 

While the mathematics major has generally broad- 
ened towards a mathematical sciences major, it is still 
possible for an institution, large or small, to elect to re- 
tain a traditional pure mathematics major, alone or in 
conjunction with an  applied mathematics major. But 
it is clearly more appropriate to work within current 
realities to  fashion a unified mathematical sciences ma- 
jor with diminished pure content, a major incorporating 

both breadth and selective depth. (If size warrants, the 
unified major can have several tracks, one for prepa- 
ration for graduate study in mathemakics.) This sub- 
panel is concerned with the role in a mathematical sci- 
ences major of upper-level core mathematics courses, 
and more generally with appreciation of the depth and 
power of mathematics. 

A prime attribute of a person educated in mathemat- 
ical sciences is his or her ability to  respond when con- 
fronted with a mathematical problem, whether in pure 
mathematics, applied mathematics, 01’ one which uses 
mathematics that the person has not seen before. Our 
students should be prepared to function as profession- 
als in areas needing mathematics not by having learned 
stock routines for stock classes of probl.ems but by hav- 
ing developed their ability in problem solving, modeling 
and creativity. This general pedagogical theme, that 
was stressed throughout the first chapter “Mathemati- 
cal Sciences,” guided the thinking of t,he Core Mathe- 
matics Subpanel. 

The report of the Core Mathematics Subpanel is 
meant to be supportive rather than directive. What 
an individual department does should reflect its con- 
stituency of students, their needs, their numbers, and 
the goals, character and size of the institution. 

Four Questions 

QUESTION 1: Is there a minimal Jiet of upper-level 
core mathematics (algebra, analysis, topology, geom- 
etry) that every mathematical sciences major should 
study? 

ANSWER: No. There is no longer a common body 
of pure mathematical information that every student 
should know. Rather, a department’s program must be 
tailored according to its perception of its role and the 
needs of its students. Whether pure mathematics is re- 
quired of all in some substantial way; whether it is used 
as an introduction to  advanced work of applied nature 
or as a completion to  an applied program; or whether 
pure mathematics is simply one track in a collection of 
programs in a large department will be an institutional 
option. Departments must recognize this fact, establish 
their programs with a clear understanding of objectives 
that are being met, and be prepared to share and ex- 
plain these perceptions with their students. The limited 
resources of smaller departments must be exploited with 
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great efficiency and wisdom. Such departments may 
face a difficult decision of whether to  abandon certain 
traditional branches of mathematics entirely in order to 
offer courses and tracks best suited to their students. 

The underlying problem is that  students enter college 
with much less mathematics than they used to, but they 
expect to leave with more. There is a wide span of 
preparation among entering college students, they want 
an education that is specific to  chosen career goals, and 
the levels of mathematical and computational skills and 
sophistication that accompany these goals have risen. 
Core courses such as abstract algebra and analysis are 
valuable for continuing study in many fields, but they 
are not essential for all careers. 

The Core Mathematics Subpanel and the parent 
Mathematical Sciences Panel jointly recommend that 
all mathematical sciences students take a sequence of 
two courses leading to the study of some subject in 
depth (see the first chapter, “Mathematical Sciences”). 

QUESTION 2: Should there be major changes in the 
content or mode of instruction of upper-level core math- 
ematics courses? 

ANSWER: While there will continue to  be some stu- 
dents who plan to  move toward a doctorate in pure, 
or applied, mathematics and an academic career, the 
mathematical sciences major is seen by most students as 
preparation for immediate employment or for Masters- 
level graduate training in areas outside of mathemat- 
ics (but where mathematical tools are needed). Thus 
mathematics departments can no longer view their 
upper-division courses as a collection of courses that 
faculty wish they had had prior to  admission to gradu- 
ate school. Rather, departments must offer pure math- 
ematics courses that are compatible with the overall 
goals of a mathematical sciences major, courses that 
are intellectually and pedagogically complete in them- 
selves, courses that are both the beginning and the end 
of most students’ study of the subject. The main objec- 
tive in such courses now is developing a deeper sense of 
mathematical analysis and associated abstract problem- 
solving abilities. In these courses students learn how to 
learn mathematics. 

There is always a continuing need to re-examine the 
nature and content of any course. Some courses carry 
baggage that may be there largely for historical reasons. 
A frequent example of this is the traditional course in 
differential equations which is populated by isolated dis- 
coveries of the Bernoulli clan (and lacking in discussion 
of numerical methods). Instructors are slow to discard 
topics that have a strong aesthetic appeal (for the in- 
structors) but are no longer important building blocks 

in the field. Syllabi and approaches in pure matheniat- 
ics courses must be adapted to  changing constituencies 
with a careful balance of learning new concepts and 
modes of reasoning and of using these constructs, a 
balance of “listening” and “doing.” Students should 
emerge from a course feeling that they have become 
junior experts in some topics: they should know facts 
and relationships, know some of the “whys” behind this 
mathematics. 

It would be desirable for courses to  be structured 
with review stages that require reflection by students of 
what analysis to  use to  solve a problem. The courses 
need to  contain assignments that ask for short proofs of 
results and for application of concepts and techniques 
from one problem to another (apparently unrelated) 
problem. Proper judgment in the selection of a method 
of analysis is the key both to constructing mathematical 
proofs and to  problem solving in applied mathematics; 
nurturing this ability is the critical challenge to  instruc- 
tors. Students should be required to  present material 
both orally and in writing on a regular basis. Since 
students do not have to know a standard body of theo- 
rems for graduate study, the course content in algebra, 
analysis, topology and geometry can vary according; to 
faculty interests and possible ties with stronger quanti- 
tative areas of an institution (e.g., physics or biology). 

The density of proofs in an upper-level course is al- 
ways a controversial issue. It is traditional to  feel tlhat 
one objective of such a course is to  teach students how to 
construct proofs. However, this skill comes slowly and 
seldom arouses the same pleasure in students as it does 
in instructors. Some proofs are needed in any upper- 
level mathematics course to knit together the enlire 
structure that is being presented, but one should priob- 
ably aim at piecewise rigor rather than a Landauesque 
totality. Students’ mathematical maturity will develop 
as much, and it will be far less painful. 

The preceding pedagogical goals in core mathemiat- 
ics must accommodate the reality that courses such as 
abstract algebra may only be offered in alternate years 
and that two-semester sequences or courses with core 
mathematics prerequisites will be difficult to schedule. 
With a broad mixture of students in infrequently-offered 
courses, instructors must be sensitive to  the discourage- 
ment some students may feel in the presence of more 
sophisticated seniors. 

QUESTION 3: How can the full scope of mathemaiics 
be conveyed to students? Should this be done b y  one- 
semester survey courses that cover a range of fields? 

Students pursuing specific career goals 
in mathematical sciences and those taking upper-level 

ANSWER: 
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mathematical “servicen courses need to be made aware 
of the depth and breadth of mathematics and the 
greater mathematical maturity that their subsequent 
careers may demand. Mathematical survey courses do 
not appear to  be the answer. They will not be able to  
move beyond vocabulary and notation to give any sense 
of global structure in any of the fields covered. 

Physicists seem to  have been remarkably successful 
in communicating some understanding about the “big 
picture” to  their students and laymen through exposi- 
tory articles that treat highly technical subjects by pre- 
senting only a projection or shadow of the true struc- 
ture, but doing so in a way that does not seem to offend 
their consciences. Similar approaches should be possi- 
ble in mathematics using expository American Mathe- 
matical Monthly, Mathematics Magazine, or Scientific 
American articles. Following the reading of such an 
article, a (once-a-week) class would discuss concepts, 
technicalities and applications in the article plus addi- 
tional examples. Natural topic areas are complex analy- 
sis and two-dimensional hydrodynamics; number theory 
and public key cryptography; calculus of variations and 
soap films; queueing theory and, say, toll road design. 

More traditional ways of projecting the wide-ranging 
nature of mathematics are by rotation of courses and by 
providing seminars, extracurricular mathematical ac- 
tivities, summer work opportunities, and by reference 
and linkages to  mathematics in courses in other depart- 
ments. This breadth should also give a sense of the 
rapidly changing nature of uses of mathematics and of 
the need of learning how to learn mathematics. 

QUESTION 4: Should pure mathematics courses be 
postponed for most students until the senior year to fol- 
low and abstract from more applied courses earlier in 
the curriculum? 

ANSWER: Many mathematical sciences students who 
prefer problem solving to theory appear to have con- 
siderable difficulty in their sophomore or junior years 
with abstract core mathematics. For these students, 
core mathematics may better wait until a senior year 
“capstone” course(s) that  builds on maturity developed 
in earlier problem solving courses. This course (prefer- 
ably year-long if only one such course is required) in 
a subject such as analysis or abstract algebra would 
build a student’s capacity (and appetite) for abstraction 
and proof and for solving complex problems involving a 
combination of analytical techniques. The course would 
seek depth rather than breadth. The course should link 
abstract concepts with their concrete uses in previous 
courses, such as integration concepts used in limiting 
probability distributions. It should illustrate in several 

ways the power and usefulness of mathematical abstrac- 
tion and generalization. 

There are two important provisos about senior-year 
courses. First, when core courses cannot be offered ev- 
ery year, they obviously must be accessible to most 
juniors. Second, the mathematicalby gifted student 
(whether a mathematics major or not) must be able 
to  take such senior core courses in the sophomore year 
without needing applied prerequisites that other stu- 
dents naturally take before the core course. Such gifted 
students today are often directed towards popular ca- 
reers such as engineering or medicine and by their se- 
nior year would be too immersed in professional training 
to take the pure mathematics course that would reveal 
their mathematical research potential. 

It is worthwhile recalling that before 1950 few col- 
leges offered regular courses in abstract algebra, topol- 
ogy, or up-to-date advanced calculus. The 1950’s and 
1960’s were memorable in mathematics education, but 
today’s students must be viewed as in the historical 
mainstream rather than as slow in learning to  handle 
abstractions. 

Individual institutions will differ greatly in the de- 
sign of such senior courses. As noted in the discussion 
of Question 2, these courses should require oral and 
written student presentations. The spirit of this recom- 
mendation could be achieved with a year-long course in 
a subject such as differential equations or combinatorics 
that begins with applications and lealds to  abstraction 
or a course that begins with abstraction and leads to 
applications. 

Sample Course Outlines 

In this section we discuss two approaches to  the fun- 
damental upper-level core subjects of abstract algebra 
and analysis. We suggest an ideal treatment and then 
a more modest version that is appropriate for most cur- 
rent mathematical sciences students. The descriptions 
are stated in terms of student objectives. 

The philosophy behind each of the course descrip- 
tions is that the student needs a working understanding 
of the subject far more than a detailed intensive and 
critical knowledge. The instructor’s central goal is to 
teach the student how to learn mathematics, expecting 
that students will correctly retain only a tiny portion 
of what was taught, but that when they need to  refresh 
their knowledge, they will be far better able to  do so 
than if they had never taken the course. Proofs are not 
of major importance, but in both approaches students 
should be able to understand what the hypotheses of 
a theorem mean and how to check them. They should 



28 RESHAPING COLLEGE MATHEMA= 

also be able to  detect when seemingly plausible state- 
ments are false (and should be shown counterexamples 
to  such statements; e.g., integrals that should converge 
but do not). 

Abstract Algebra I (Ideal) 

B. Study the class of continuous maps from a region in 
Rn into Rm, and the special properties of maps in 
class C’ and C”. 

C .  Study integration of continuous and piecewise ‘con- 
tinuous functions over appropriately chosen sets, 
bounded and unbounded, and then extend this to 

A. 

B. 

C. 

D. 

E. 

Give the student a guided tour through the algebraic 
“zoo,” so that he or she knows what it means to 
be a group, a ring, a field, an  associative algebra, 
etc. Include associated concepts such as category, 
morphism, isomorphism, coset, ideal, etc. 
Show the student useful ways for generating one al- 
gebraic structure out of another, such as automor- 
phism groups, quotient groups, algebras of transfor- 
mations, etc. 
Give the student an understanding of the basic 
structure theorems for each of the algebraic sys- 
tems discussed, as well as an  understanding of their 
proofs. 
Give the student experience in using the preceding 
ideas and constructions and seeing how these ideas 
arise in other branches of mathematics (analysis, 
number theory, geometry, etc.). 
Show the student how algebra is used in fields out- 
side of mathematics, such as physics, genetics, in- 
formation theory, etc. 

Abstract Algebra I1 (Modest) 
A. Combine parts of A and B of Course I by show- 

ing students a t  least two different types of algebraic 
structures and several instances in which such an 
algebraic structure evolved or is constructed out of 
another mathematical structure. The goal is for a 
student t o  be able to  recognize when a situation has 
aspects that lend themselves to an algebraic formu- 
lation; e.g., rings out of polynomials. 

B. Describe part of the theory for one of the structures 
introduced in A and illustrate several of the deduc- 
tive steps in the theory. Students should see the 
nature of tight logical reasoning and the usefulness 
of algebraic concepts, as well as come to appreciate 
the cleverness of the theory’s discoverers. 

C. Discuss a t  least one application of algebra outside 
of mathematics. 

D. Assign students a variety of problems which re- 
quire recognition of algebraic structures in unfamil- 
iar forms, proof of small deductive steps, and use of 
theory in B. 

Analysis I (Ideal) 
A. Give the student a working knowledge of point set 

topology in Rn and analogous concepts for a metric 
space. 

integration with respect to set functions. 
D. Extend to the theory of differential forms and de- 

velop a relationship between differentiation of forms 
and the boundary operator, via Stokes’ theorem. 

Analysis I1 (Modest) 

A. Give the student a glossary of terms in point set 
topology, appropriate also to  a metric space and ap- 
plied to R”, and practice in their meanings. (Do not 
prove inter-relations, but state them clearly.) 

B. Introduce the class of C” maps from Rn into .Rm, 
and discuss a few problems involving such functions, 
each motivated by a concrete “real” situation. Solve 
each of the problems by stating and illustrating the 
appropriate general theorems, and in a few cases, 
sketching part of the proofs. 

C. Discuss integration in terms of measurement ,and 
averaging, extend this to  Rn, and explain briefly 
techniques of numerical integration. At all stages 
give attention to improper integrals. 

D. Extend the notion of function to differential forms, 
illustrated with physical and geometric examples. 
Motivate Stokes’ theorem as the analogue of the 
fundamental theorem of calculus, and arrive art a 
correct formulation of i t  without proof. Illustrate 
the theorem with examples, including some invdv- 
ing the geometric topology of surfaces; if students’ 
background is appropriate, examples in physics (hy- 
drodynamics or electromagnetism) should be given. 

An analysis course can also be given an “advanced 
calculus” emphasis including topics such as Fourier se- 
ries and transforms, special functions, and fixed-point 
theorems, with applications of these topics to differen- 
tial equations. For further discussion of this approach, 
see versions one and three of Mathematics 5 in the 
CUPM recommendations for a Genera2 CurricuZum in 
Mathematics for Colleges (revised 1972). 

Subpanel Members 

PAUL CAMPBELL, CHAIR, Beloit College. 
LIDA BARRETT , Northern Illinois University. 
R. CREIGHTON BUCK, University of Wisconsin. 
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Computer Science 

This chapter contains the report of the Subpanel on 
Computer Science of the CUPM Panel on a General 
Mathematical Sciences Program, reprinted with minor 
changes from Chapter I V  of the 1981 CUPM report en- 

MATICAL SCIENCES PROGRAM. 
titled RECOMMENDATIONS FOR A GENERAL MATHE- 

A Growing Discipline 

Computer Science is a new and rapidly growing sci- 
entific discipline. It is distinct from Mathematics and 
Electrical Engineering. The subject was once closely 
identified in mathematicians' minds with writing com- 
puter programs. In the beginning, however, computer 
scientists concentrated on the discipline's mathemati- 
cal theories of numerical analysis, automata, and re- 
cursive functions, as well as on programming. In the 
past decade, theories developed to understand problems 
in software design (compilers, operation systems, struc- 
tured programs, etc.) have blossomed. These theories 
involve the analysis of complex finite structures, and in 
this sense have a strong mathematical bond with the 
finite structures common in operations research and di- 
verse areas of applied mathematics. 

More importantly, these computer science theories 
are needed by analysts who design algorithms for com- 
plex problems in the mathematical sciences. For this 
reason, all mathematical sciences students must be 
given an introduction to  the basic concepts of computer 
science. Further, facility in computer programming is 
required of all mathematical sciences students so that 
they can perform practical computations in mathemat- 
ical sciences courses and in subsequent mathematical 
sciences careers. 

Although only one-third of the country's colleges 
and universities now have computer science depart- 
ments, the number of students currently majoring in 
computer science taught in a computer science depart- 
ment (approximately 50,000 students) is greater than 
the number of all majors in mathematics, mathemati- 
cal sciences, and applied mathematics. The computer 
science recommendations in this chapter are designed 
for institutions where computer science is taught in a 
mathematical sciences department or in a mathemat- 
ics department. When a separate computer science 
department exists, that  department's diversity of com- 
puter science offerings will enhance a mathematical sci- 

ences major. A mathematical sciences undergraduate 
program and a computer science undergraduate pro- 
gram should complement one another to the advantage 
of both departments and their students (for example, 
see the description of the interaction at Potsdam State 
in Chapter I, "A General Mathematical Science Pro- 
gram"). 

Introductory Courses 

The foundation for a computer science component in 
a mathematics department is a one-year introductory 
sequence. Courses CS1 and CS2, prolposed in the As- 
sociation of Computing Machinery Curriculum 78 (see 
last section of this chapter), are excellent models for 
this year sequence. The Subpanel on Computer Science 
endorses the objectives of these two courses, and rec- 
ommends that all mathematical sciences majors should 
be required to  take the first course and strongly encour- 
aged to  take the second course in this sequence. If the 
second course is not required, substantial use of com- 
puters should be an integral part of other mathematical 
sciences courses. 

The primary emphasis in the first 'course should be 
on: 

Problem solving methods and algorithmic design 

Implementing problem solutions in a widely used 

* Techniques of good programming i~tyle, and 
Proper documentation. 

and analysis, 

higher-level programming language, 

Lectures should include brief surveys of the history of 
computing, hardware and architecture, and operating 
systems. 

The second course should include at least one major 
project. The course should cover topics such as recur- 
sive programming, pointers, stacks, queues, linked lists, 
string processing, searching and sorting techniques. 
The concepts of data  abstraction and algorithmic com- 
plexity should be introduced. Proofs of correctness may 
also be discussed. 

Good design and style in programming should be em- 
phasized throughout both courses: the use of identi- 
fiers to indicate scope, modularity, appropriate choice 
of identifiers, good error recovery procedures, checks 
for integrity of input, and appropriate commentary and 
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documentation. Of course, efficient algorithms and cod- 
ing should also be stressed. There is a strong tendency 
among students to  worry only about whether their pro- 
grams run correctly. Through class lectures and care- 
ful grading of programming assignments, the instructor 
must teach the students the importance of good design, 
style, and efficiency in programming. 

A source of useful commentary about introductory 
computer science courses is the SIGCSE (Special Inter- 
est Group on Computer Science Education) Bulletin. 
The bulletin is published quarterly, and issue #1 each 
year, which contains papers presented at the SIGCSE 
annual meeting, is especially valuable. 

Most introductory texts have many sample projects. 
In addition, the following three texts are good general 
sources of computer projects. 
1. Bennett, William R., Scientific and Engineering 

Problem-Solving with the Computer, Prentice-Hall, 
Englewood Cliffs, New Jersey, 1976. 

2. Gruenberger, Fred and Jaffray, G., Problems for 
Computer Solution, John Wiley & Sons, New York, 
1965. 

3. Wetherall, Charles, Etudes for Programmers, Pren- 
tice-Hall, Englewood Cliffs, New Jersey, 1978. 

Mathematicians teaching introductory computer sci- 
ence often emphasize numerical computation in pro- 
gramming assignments. At the introductory level, the 
computer science issues involved in numerical computa- 
tion are quite simple, Assignments requiring symbolic 
manipulation and data  organization present more sub- 
stantive programming problems and, in general, require 
more thought. The following is a sample assignment 
that could be given late in the first course: 

Write a program which obtains a five-card 
poker hand from some source (terminal, input 
deck, or file), prints the hand in a reasonably 
well-formatted style, and determines whether or 
not the hand contains a pair, three of a kind, a 
straight, a full house, etc. 

Intermediate Courses 

Intermediate-level computer science courses building 
on CS1 and CS2 should address basic underlying issues 
in computer science. In describing computer science 
in the first two years, the ACM Curriculum 78 report 
states that the student should be given “a thorough 
grounding in the implementation of algorithms in pro- 
gramming languages which operate on data structures 
in the environment of hardware.” Thus these courses 
should develop general topics about algorithms, con- 

cepts in programming languages, data  structures, and 
computer hardware. 

The intermediate-level courses should be taught by 
a computer scientist, that  is, by an  individual who has 
significant graduate-level training in computer science 
(see below). 

The Subpanel on Computer Science, in concurrence 
with ACM curriculum groups, strongly rejects the idea 
of a set of courses that each address a specific pro- 
gramming language, e.g., a sequence of advanced FOR- 
TRAN, COBOL, RPG, and APL. The argument for 
such a sequence is usually based on the employability 
of students completing it. If indeed this argument is 
valid, and there is some question about that ,  it is a short 
range benefit. Students completing such a sequence will 
soon find that the lack of underlying concepts will put 
them at a severe disadvantage. However, i t  may be ac- 
ceptable, resources permitting, to  have one “vocational” 
elective course that studies a second higher-level lan- 
guage such as COBOL. Of course, it is also natural to 
discuss new programming languages in several interme- 
diate (and advanced) computer science courses. How- 
ever, the new language would not be the focus of the 
course, but rather a tool used in learning and illust,rat- 
ing fundamental concepts. 

The role of numerical and computational mathernat- 
ics in computer science has diminished in recent years. 
While the ACM Curriculum 68 treated numerical anal- 
ysis as part of core computer science, today numeirical 
mathematics is considered by most computer scientists 
to  be simply another mathematical sciences field that 
has overlap with computer science. Numerical math- 
ematics is very important in a mathematical sciences 
major, but it is not a part of the computer science com- 
ponent . 

Following the CS1 and CS2 courses, the ACM Cur- 
riculum 78 specifies six additional courses in core com- 
puter science. 

CS3 Introduction to  Computer Systems 
CS4 Introduction to Computer Organization 
CS5 Introduction to File Processing 
CS6 Operating Systems and Computer Architecture 
CS7 Data Structures and Algorithm Analysis 
CS8 Organization of Programming Languages 
The syllabi of these courses are given at the end of 

this chapter. Ideally, all six of these courses would be 
offered. A concentration or a minor in computer sci- 
ence would commonly consist of CS1 and CS2, followed 
by two of CS3, CS4, and CS5, and two of CS6, CS7, 
and CS8. For the purposes of a mathematical scieiices 
program, it may be justified to  place more emphasis on 
the software oriented areas. This would imply, if there 
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was difficulty in offering all six courses, that  CS3, CS5, 
CS7, and CS8 would be most useful. Then CS3, CS5, 
CS7, and CS8 would be offered once a year, and CS4 
and CS6 offered as topics courses every other year. 

At many schools, it may not be feasible to  offer at 
least four of these intermediate courses in computer sci- 
ence on a regular basis. Then one can combine parts of 
these intermediate courses to provide a significant offer- 
ing in two courses above CS1 and CS2. In this case, only 
two computer science courses, one elementary and one 
intermediate, would be offered each semester. One ap- 
proach would be to  combine topics from CS5 and CS7 
into one course, and topics from CS3, CS4, and CS6 
into the other. This would yield two courses with the 
following sort of syllabi (for more details about these 
topics, see the ACM Curriculum 78 syllabi a t  the end 
of this chapter): 
Al .  Algorithms for Data Manipulation 

1. Algorithm design and development illustrated in 
areas of sorting and research (25%) 

2. Data structure implementation (30%) 
3. Access methods (25%) 
4. Systems design (15%) 
5. Exams(5%) 

1. Basic logic design (15%) 
2. Number representation and arithmetic (10%) 
3 .  Assembly systems (35%) 
4. Program segmentation and linkage (15%) 
5. Memory management (10%) 
6. Computer systems structure (10%) 
7. Exams (5%) 

A2. Computer Structures 

This approach focuses on data  structures and soft- 
ware issues that relate to operating systems. An al- 
ternative approach could concentrate on programming 
languages and algorithms involved in computer systems 
performance. This theme could be realized by combin- 
ing topics in CS3, CS5, and CS8 into one course, and 
topics in CS4, CS6, and CS7 into the other course. This 
would yield two courses with the following syllabi: 
B l .  Language Types and Structures 

1. Assembly systems (25%) 
2 .  Program segmentation and linkage (15%) 
3. Language definition structure (10%) 
4. Data types and structures (15%) 
5. Control structures and data flow (20%) 
6. Access methods (10%) 
7. Exams (5%) 

1. Basic logic design (20%) 
2 .  Algorithm design and analysis (20%) 
3. Procedure activation algorithms (15%) 

B2. Algorithms for Computer Systems 

4. Memory management (15%) 
5. Process management (15%) 
6. Systems design (10%) 
7. Exams (5%) 

It is important to  note that an individual wishing to 
go on from these courses to  advanced .work in computer 
science may have to  make up, as deficiencies, areas in 
core computer science that are not represented in these 
condensed pairs of courses. 

Concentrations and Minors; 

A computer science concentration i n  a college mathe- 
matics department can be defined as an option within a 
mathematical sciences major or as a “stand-alone” mi- 
nor. A computer science minor should consist of about 
six courses, ACM Curriculum 78 couirses CS1 and CS2 
plus four intermediate courses. 

A computer science concentration within a mathe- 
matical sciences major has three components: 

A. Mathematics: 5-plus courses; 
B. Computer Science: 4-6 courses; 
C .  Applied Mathematics: 3-plus courses. 

A. The mathematics component would include 
the three semester freshman-sophomore “calculus se- 
quence” plus linear algebra. As recommended in Chap- 
ter I, “A General Mathematical Sciences Program,” any 
mathematical sciences major should contain upper-level 
course work of a theoretical nature, typically algebra or 
advanced calculus. In a major with a computer science 
concentration, algebra is the natural area. Specifically, 
the applied algebra course given in Chaper I would be 
excellent for the computer science concentration. The 
course’s syllabus incorporates most of the topics of the 
ACM 78 discrete mathematics course (required of com- 
puter science majors). A small department could offer 
applied algebra and standard abstract algebra courses 
in alternate years. Logic and automata theory are at- 
tractive electives in the mathematics component if a 
mathematics department wishes to focus on more the- 
oretical aspects of computer science. 

It should be noted that several computer science ed- 
ucators have questioned the reliance on calculus as the 
basic mathematics for future computer scientists; ACM 
Curriculum 78, for instance, requires a (freshman) year 
of calculus. They advocate a mathematics component 
based on discrete mathematics with only one semester 
of calculus (taught, say, in the junior year). See A. Ral- 
ston and M. Shaw, “Curriculum 78--Is Computer Sci- 
ence Really that Unmathematical?”, Commzlnications 
A C M 2 3  (1980), pp. 67-70. 



32 RESHAPING COLLEGE M A T H E M A T ?  

B. The computer science component would include 
ACM Curriculum 78 courses CS1 and CS2 plus two to 
four intermediate courses, as described in the preceding 
section. The syllabi of ACM Curriculum 78 core courses 
are given at the end of this chapter. 

C .  The applied mathematics component should in- 
clude a course in numerical analysis and a course in 
probability and statistics. The third applied mathe- 
matics course would be discrete methods, which would 
cover the combinatorial material in the ACM Curricu- 
lum 78 discrete mathematics course in greater depth, in- 
cluding operations-research-related graph modeling (see 
Chapter I for a full description of this course). The 
CUPM Mathematical Sciences Program panel recom- 
mends that all mathematics departments should offer 
a discrete methods course. Other good courses for the 
applied mathematics component are ordinarily differen- 
tial equations, mathematical modeling, and operations 
research. The 1971 CUPM Report on Computational 
Mathematics describes courses in computational mod- 
els, in combinatorial computation, and in differential 
equations with numerical methods; these courses com- 
bine topics from a variety of mathematical sciences and 
computer science courses and hence are particularly at- 
tractive to  small departments. 

In either the computer science concentration or mi- 
nor, all six computer science courses are needed for 
future graduate study in computer science. Incoming 
graduate students with less preparation are commonly 
required to  make up undergraduate course deficiencies. 

Faculty Training 

For the foreseeable future, the dominant factor af- 
fecting computer science instruction a t  all institutions, 
but particularly at smaller colleges and universities, will 
be the extreme shortage of qualified computer scientists 
in academe. At smaller colleges and universities it may 
therefore be effectively impossible to  hire a computer 
scientist to teach core computer science courses. Among 
the possible solutions to  this problem are: 
1. Using adjunct faculty to  teach computer science 

2. Using existing (non-computer science) faculty to 

The first solution is acceptable for some courses. Al- 
though one cannot build a program with adjunct fac- 
ulty and although staffing courses with adjunct faculty 
is never as desirable as using full-time faculty (e.g., stu- 
dent advising is a particular problem), this is a feasi- 
ble way to  get computer science courses taught when 
such faculty exist in the local community. However, 

courses. 

teach computer science courses. 

since so many smaller colleges are located away firom 
the metropolitan areas where most technical and scien- 
tific employers of such adjunct faculty are found, this 
solution will not be useful to  most smaller institutions. 

A crucial point that must be emphasized when using 
existing non-computer science faculty (i.e., mathemati- 
cians) to  teach computer science courses is that com- 
puter science cannot be treated like most other new 
mathematics course topics which mathematicians will 
(quickly) learn as they teach it. Mathematicians un- 
trained in computer science are very likely to teach 
computer science badly, hurting both the students and 
the mathematics department’s reputation. Therefore, 
if a current mathematics faculty member is to  be used 
to  teach computer science, especially beyond the first 
course, he or she must first acquire some formal educa- 
tion in computer science. 

The most plausible approach to  such computer sci- 
ence training is through some program of released time. 
The pertinent questions about the training are: how 
long? where? and how financed? 

Assuming that the mathematician who is to be 
trained is, a t  most, familiar with programming in a 
high-level language, then full-time study for one year is 
the minimum period needed to acquire the background, 
knowledge, and experience necessary to  teach several 
of the intermediate-level core computer science courses. 
Since one year is also the maximum period which would 
be administratively or financially feasible, this shoiild 
be viewed as the canonical period for faculty training 
in computer science. Part-time study over a longer pe- 
riod or a succession of summers can also be considered. 
However, both because the needs to  train faculty in 
computer science are pressing and because intermittent 
study is almost always less effective than continuous 
study, at least one faculty member in a mathematics 
department should have completed a one-year program 
of full-time study in computer science. 

The most logical place at which to  study computer 
science for the purpose of becoming able to teach it is a t  
a university with undergraduate and graduate (prefer- 
ably Ph.D.) programs in computer science. Although 
there are exceptions, the current level of computer sci- 
ence instruction in American colleges and universities is 
so uneven that only a t  such institutions can one be rea- 
sonably assured of an atmosphere in which there will be 
the necessary broad understanding of the principles of 
computer science. Such an atmosphere is particularly 
important for an academic mathematician preparing to 
teach the subject. 

Another possibility which should be mentioned is for 
the faculty member to  spend one year a t  one of those 
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(relatively few) major industrial firms with good in- 
house training programs in computer science. An addi- 
tional attraction to  this idea is that it might be possible 
to  arrange an exchange in which a member of the firm 
taught at the college for a year. 

Methods of financing such a program of faculty train- 
ing in computer science are fairly obvious: 

Through released time at full pay from the mathe- 
matician’s home institution. 
Through grants from current, and hopefully new, 
federal programs; officials of both the MAA and 
ACM are currently pressing NSF to provide more 
funds for this purpose. 
Through grants from private foundations; individ- 
ual institutions and departments may be more ef- 
fective than professional associations in obtaining 
such private funds. 
Through corporate sponsorship of participation in 
in-house training programs or academic-corporate 
exchanges. 

Computer Facilities 

Facilities to  support computing in mathematical sci- 
ences instruction can be provided in a variety of ways, 
ranging from one large centrally administered system to 
many small personal computing devices. The suitabil- 
ity of a particular means depends not only upon its in- 
tended applications, but also upon factors such as cost, 
ease of use, and local politics. At present, computing 
services in most colleges and universities are provided 
by a large centralized facility, the Computing Center. 
Growing numbers of institutions, however, are begin- 
ning to  decentralize computing on campus. Three cur- 
rent modes of providing service are discussed below: 

Centralized facilities 
* Departmental computers 

Personal computers. 
There is a fourth mode that is primarily a form of access 
to  centralized or departmental computers: 

The second half of this section discusses the cost and 
ease of implementation of various applications with dif- 
ferent types of computing facilities. 

It should be noted that it is possible for an institu- 
tion to  form a consortium with nearby schools to op- 
erate a common central computing facility or to buy 
time (and services) from commercial computing centers. 
This option allows an institution to  have a mix of com- 
puting, using large computers for problems requiring 

Terminals 

great speed or memory size, such as “number crunch- 
ing,” and smaller computers for student programs and 
other instructional purposes. 

CENTRALIZED FACILITIES 

Historically, so-called “economies of scale” encour- 
aged the development of increasingly larger computers; 
and of increasingly larger organizations to  administer 
them. Such computer systems are caplable of providing 
a great variety of services with a low cost for each ser- 
vice. In addition, the organizations .which administer 
these systems can play an important, role in develop- 
ing and supporting instructional uses of computing on 
campus. 

On the other hand, the very size of such facilities 
and the organizations that administer them create cer- 
tain problems. First, large systems have a high unit 
cost, in the range of half a million to several million 
dollars; replacing or enhancing such i3 system involves 
a major administrative decision. Second, instructional 
users of such systems must often compete with other 
powerful and better-financed constituencies; either sep- 
arate facilities are needed to  reduce competition among 
instructional, research, and administrative uses of the 
computer, or policies are needed to  allocate the services 
provided by a single facility. And third, large organiza- 
tions can be bureaucratic and inflexible. 

DEPARTMENTAL COMPUTERS 

For the last ten years minicomputers have provided 
an alternative to  a large centralized facility. Lower unit 
costs (around $100,000 or less) and the possibility of 
local control have made it attractive for academic and 
administrative departments to  acquire facilities of their 
own. Such facilities can be tailored t.0 a department’s 
needs and can provide almost as many services as a 
large centralized system. 

Minicomputers, however, are not necessarily the an- 
swer to every department’s computiing needs. First, 
there is the question of which services they will provide. 
Second, there are hidden costs associated with admin- 
istering any computer facility: personnel are needed to 
operate and maintain the facility and to provide tech- 
nical assistance to  users. Small departments run the 
risk of diverting attention from their primary task of 
teaching mathematics to  the subsidiary task of manag- 
ing such an enterprise. One way to  deal with such hid- 
den costs is for departments to contract with a central 
campus organization to  manage their facilities. Third, 
there are inconveniences for students faced with using, 
and first learning to  use, several different departmental 
systems. Of course, this difficulty can be overcome by 
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requiring departments to purchase compatible systems 
and by interconnecting all systems. 

Many academic computing specialists expect inter- 
connected departmental computers to become the dom- 
inant means of academic computing in the next decade. 

PERSONAL COMPUTERS 

The recent development of personal microcomputers 
provides another alternative for instructional comput- 
ing. Very low unit costs (one or two thousand dollars) 
make computing possible for departments otherwise un- 
able to afford or gain authorization for large facilities. 
Microcomputer facilities suffer from many of the same 
problems as minicomputer facilities. In addition, mi- 
crocomputers are limited in the services they provide, 
are slower than their large competitors, and may not 
be designed for rugged use by large groups of students. 
Still they can prove quite adequate for elementary ap- 
plications. Further, by being less intimidating and more 
exciting than larger computers, they can play a role in 
overcoming a student’s ‘‘computer anxiety.” 

TERMINALS 

Terminals are used for remote, interactive access to 
large computers. Some have small memories and prim- 
itive editing capabilities. Departments often have a 
greater choice in selecting terminals to connect to  com- 
puter systems than they do in selecting the systems 
themselves. Cost, speed, and durability are primary 
factors influencing the selection of a terminal. By these 
criteria, video terminals are preferable. The availability 
of graphical output and local editing features are other 
factors to  consider when choosing terminals. Hard-copy 
(printing) terminals are more expensive and tend to be 
slower than video terminals, but they do provide users 
with a permanent record of their work, and so some 
printing terminals are necessary (medium or high speed 
printers can be used in conjunction with video termi- 
nals to provide this record). Video terminals may also 
be used in conjunction with television monitors to pro- 
vide classroom displays of computer output. For such 
output to be visible in a large classroom, either many 
monitors must be provided or the video terminals em- 
ployed must use larger, and hence fewer, characters in 
their display. 

Applications 

The suitability of a particular computing facility de- 
pends most upon its intended applications. The rest of 
this section discusses the most common academic uses 
of computers and how well different types of computing 
facilities serve these uses. 

INTRODUCTORY PROGRAMMING 

Any of the three types of facilities can serve as a vehi- 
cle for teaching beginners to  program and for introduc- 
ing computational examples into elementary mathemat- 
ics courses. Such uses typically involve large numbers of 
students writing relatively simple programs. Larger fa- 
cilities tend to  provide a greater choice of programming 
languages, although modern languages such as PAS- 
CAL and PL/I are becoming increasingly available even 
on microcomputers. Larger machines tend to  be faster 
also; even though use of such machines is shared, stu- 
dents will find that they process simple programs much 
faster than microcomputers. Costs, however, tend to be 
roughly equal for simple interactive computing on the 
three types of facilities-around $2.00 per hour. These 
costs can be reduced significantly by using larger ma- 
chines in a noninteractive, batch-processing mode. This 
mode of use, while predominant in the past, is becom- 
ing less popular as minicomputers and microcomputers 
make a more responsive computing environment avail- 
able and affordable. 

ADVANCED PROGRAMMING 

Advanced programming is more distinguished from 
introductory programming in its requirements for more 
sophisticated languages and for facilities to handle large 
programs. Microcomputers at present do not meet 
these requirements; the languages they provide are 
quite restrictive, and large programs exceed their ca- 
pacity. Execution times and costs for large programs 
tend to be lowest on large machines under batch pro- 
cessing, but minicomputers are becoming competitive 
both in price and speed. 

P R O G R A M  DEVELOPMENT A N D  M A I N T E N A N C E  

Program development is influenced heavily by the 
computing environment in which it occurs. Corive- 
nient interactive editing capabilities accelerate the task 
of writing and correcting a program; microcomputers, 
with almost instantaneous response, do a particularly 
good job of editing. Facilities for file storage enable 
program development to be spread over several ses- 
sions. Large machines provide less expensive storage 
and much faster retrieval of information; they also fa- 
cilitate sharing programs among users and provide cen- 
tralized backup. Microcomputer facilities can distribute 
the costs of file storage by requiring users to  purchase 
individual floppy disks, but unless a centralized store 
is provided through a network, sharing information can 
be difficult. 

GRAPHIC s 

One of the primary attractions of personal microcom- 
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puters is their ability to  generate graphic displays and 
to  enable users t o  interact with these displays. Larger 
systems, unless specifically tailored to graphic applica- 
tions, tend to  have primitive graphic facilities a t  best. 

APPLICATION PACKAGES 

Application packages available for various machines 
provide aids for numerical and symbolic computations. 
Typical areas of application include statistics, linear 
programming, numerical solution of differential equa- 
tions, and algebraic formula manipulation. Such pack- 
ages are more widely available on larger machines. 
Large computations often require an unacceptably long 
time on microcomputers (several hours) and may ex- 
ceed the memory size of small computers. 

MISCELLANEOUS APPLICATIONS 

Word processing systems facilitate production of 
course notes, research papers, and term papers. If good 
word processing facilities are available, they are likely 
to  quickly generate heavy faculty use. Simple word 
processing software is available for personal computers, 
but a minicomputer (or powerful $5,OOO-plus microcom- 
puter) is needed for good mathematically-oriented word 
processing software, such as the UNIX system. Large 
computers often have poor word processing capabilities. 

Data base systems are of more use in the social 
sciences than in the mathematical sciences, but can 
be used to  provide real data  for analysis in statistics 
courses. Such systems require a centralized file store on 
a larger computer. 

Real-time data  acquisition is of interest in the natural 
sciences. They can also be used to  provide real data for 
mathematical analysis. Dedicated microcomputers are 
better suited to  laboratory instrumentation than are 
shared machines. 

ACM Curriculum 78 

The following computer science course syllabi are re- 
produced from the ACM Curriculum 78 Report in Com- 
munications of ACM, March 1979, pp. 147-166. (Copy- 
right 1979, Association for Computing Machinery, Inc.) 
They provide eight core courses for a computer science 
major. 

CS1. Computer Programming I 

OBJECTIVES: 

To introduce problem solving methods and algo- 

To teach a high-level programming language that is 
rithm development; 

widely used; and 

To teach how to design, code, debug, and docu- 
ment programs using techniques of good program- 
ming style. 

COURSE OUTLINE: 

The material on a high-level programming language 
and on algorithm development can be taught best as an 
integrated whole. Thus the topics should not be cov- 
ered sequentially. The emphasis of the 'course is on the 
techniques of algorithm development and programming 
with style. Neither esoteric features of a programming 
language nor other aspects of computers should be al- 
lowed to  interfere with that purpose. 

TOPICS: 

A. Computer Organization. An overview identifying 
components and their functions, machine and as- 
sembly languages. (5%) 

B. Programming Language and Progrcrmming. Repre- 
sentation of integers, real, characters, instructions. 
Data types, constants, variables. Arithmetic ex- 
pression. Assignment statement. Logical expres- 
sion. Sequencing, alternation, and iteration. Ar- 
rays. Subprograms and parameters. Simple I/O. 
Programming projects utilizing concepts and em- 
phasizing good programming style. (45%) 

Techniques of problem 
solving. Flowcharting. Stepwise refiinement. Simple 
numerical examples. Algorithms foi: searching (e.g., 
linear, binary), sorting (e.g., exchitnge, insertion), 
merging of ordered lists. Examples taken from such 
areas as business applications involving data manip- 
ulation, and simulations involving games. (45%) 

C. Algorithm Development. 

D. Ezaminations. (5%) 

CS2. Computer Programming I1 

OBJECTIVES: 

* To continue the development of discipline in pro- 
gram design, in style and expression, in debugging 
and testing, especially for larger programs; 
To introduce algorithmic analysis; and 
To introduce basic aspects of string processing, re- 
cursion, internal search/sort methods and simple 
data structures. 

PREREQUISITE: CS 1. 

COURSE OUTLINE: 

The topics in this outline should be introduced as 
needed in the context of one or more projects involv- 
ing larger programs. The instructor may choose to be- 
gin with the statement of a sizable project, then utilize 
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structured programming techniques to develop a num- 
ber of small projects each of which involves string pro- 
cessing, recursion, searching and sorting, or data struc- 
tures. The emphasis on good programming style, ex- 
pression, and documentation, begun in CS1, should be 
continued. In order to  do this effectively, it may be 
necessary to  introduce a second language (especially if 
a language like Fortran is used in CS1). In that case, 
details of the language should be included in the outline. 
Analysis of algorithms should be introduced, but at  this 
level such analysis should be given by the instructor to 
the student. 

Consideration should be given to the implementa- 
tion of programming projects by organizing students 
into programming teams. This technique is essential 
in advanced level courses and should be attempted as 
early as possible in the curriculum. If large class size 
makes such an approach impractical, every effort should 
be made to have each student's programs read and cri- 
tiqued by another student. 

TOPICS: 

A. Review. Principles of good programming style, ex- 
pression, and documentation. Details of a second 
language if appropriate. (15%) 

Control flow. 
Invariant relation of a loop. Stepwise refinement of 
both statements and data structures, or topdown 
programming. (40%) 

B. Structured Programming Concepts. 

C. Debugging and Testing. (10%) 
D. String Processing. Concatenation. Substrings. 

Matching. (5%) 
E. Internal Searching and Sorting. Methods such as 

binary, radix, Shell, quicksort, merge sort. Hash 
coding. (10%) 

F. Data Structures. Linear allocation (e.g., stacks, 
queues, deques) and linked allocation (e.g., simple 
linked lists). (10%) 

G. Recursion. (5%) 
H. Ezaminations. (5%) 

CS3. Introduction to Computer Systems 

OBJECTIVES: 

To provide basic concepts of computer systems; 
a To introduce computer architecture; and 

To teach an assembly language. 

PREREQUISITE: CS 2. 

COURSE OUTLINE: 

The extent to which each topic is discussed and the 
ordering of topics depends on the facilities available 

and the nature and orientation of CS4 described below. 
Enough assembly language details should be covered 
and projects assigned so that the student gains expe- 
rience in programming a specific computer. However, 
concepts and techniques that apply to a broad range of 
computers should be emphasized. Programming meth- 
ods that are developed in CS1 and CS2 should also be 
utilized in this course. 

TOPICS: 

A. Computer Structure and Machine Language. Mem- 
ory, control, processing and 1/0 units. Registers, 
principal machine instruction types and their for- 
mats. Character representation. Program con- 
trol. Fetch-execute cycle. Timing. 1 / 0  Operations. 
(15%) 

B. Assembly Language. Mnemonic operations. S,ym- 
bolic addresses. Assembler concepts and instruction 
format. Data-word definition. Literals. Location 
counter. Error flags and messages. Implementation 
of high-level language constructs. (30%) 

C. Addressing Techniques. Indexing. Indirect Address- 
ing. Absolute and relative addressing. (5%) 

D. Macros. Definition. Call. Parameters. Expansion. 
Nesting. Conditional assembly. (10%) 

E. File I/O. Basic physical characteristics of 1/0 and 
auxiliary storage devices. File control system. K/O 
specification statements and device handlers. Data 
handling, including buffering and blocking. (5%) 

F. Program Segmentation and Linkage. Subroutines. 
Coroutines. Recursive and re-entrant routines. 

G. Assembler Construction. One-pass and two-pass as- 
semblers. Relocation. Relocatable loaders. (5%)1 

H. Interpretive Routines. Simulators. Trace. (5%) 

(20%) 

I. Ezaminations. (5%) 

CS4. Introduction to Computer Organization 

OBJECTIVES: 

To introduce the organization and structuring of the 
major hardware components of computers; 
To understand the mechanics of information trans- 
fer and control within a digital computer system; 
and 
To provide the fundamentals of logic design. 

PREREQUISITE: CS 2. 

COURSE OUTLINE: 

The three main categories in the outline, namely 
computer architecture, arithmetic, and basic logic 'de- 
sign, should be interwoven throughout the course rather 
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than taught sequentially. The first two of these areas 
may be covered, at least in part, in CS3 and the amount 
of material included in this course will depend on how 
the topics are divided between the two courses. The 
logic design part of the outline is specific and essential 
to  this course. The functional, logic design level is em- 
phasized rather than circuit details which are more ap- 
propriate in engineering curricula. The functional level 
provides the student with an understanding of the me- 
chanics of information transfer and control within the 
computer system. Although much of the course mate- 
rial can and should be presented in a form that is inde- 
pendent of any particular technology, it is recommended 
that an actual simple minicomputer or microcomputer 
system be studied. A supplemental laboratory is ap- 
propriate for that  purpose. 

TOPICS: 

A. 

B. 

C. 

D. 

E. 

Basic Logic Design. Representation of both data 
and control information by digital (binary) signals. 
Logic properties of elemental devices for processing 
(gates) and storing (flipflops) information. Descrip- 
tion by truth tables, Boolean functions and timing 
diagrams. Analysis and synthesis of combinatorial 
networks of commonly used gate types. Parallel and 
serial registers. Analysis and synthesis of simple 
synchronous control mechanisms; data and address 
buses; addressing and accessing methods; memory 
segmentation. Practical methods of timing pulse 
generation. (25%) 
Coding. Commonly used codes (e.g., BCD, ASCII). 
Parity generation and detection. Encoders, de- 
coders, code converters. (5%)  
Number Representation and Arithmetic. Binary 
number representation, unsigned addition and sub- 
traction. One’s and two’s complement, signed mag- 
nitude and excess radix number representations and 
their pros and cons for implementing elementary 
arithmetic for BCD and excess-3 representations. 

Computer Architecture. Functions of, and commu- 
nication between, large-scale components of a com- 
puter system. Hardware implementation and se- 
quencing of instruction fetch, address construction, 
and instruction execution. Data flow and control 
block diagrams of a simple processor. Concept of 
microprogram and analogy with software. Prop- 
erties of simple 1/0 devices and their controllers, 
synchronous control, interrupts. Modes of commu- 
nications with processors. (35%) 
Ezample. Study of an actual, simple minicomputer 
or microcomwter svstem. (20%) 

(10%) 

F. Ezaminations. (5%) 

CS5. In t roduc t ion  to File Process ing  

OBJECTIVES: 

To introduce concepts and techniques of structuring 

To provide experience in the use of bulk storage de- 

To provide the foundation for appllications of data 

data  on bulk storage devices; 

vices; and 

structures and file processing techniques. 

PREREQUISITE: CS 2. 

COURSE OUTLINE: 

The emphasis given to  topics in this outline will vary 
depending on the computer facilities available to stu- 
dents. Programming projects should be assigned to give 
students experience in file processing. Characteristics 
and utilization of a variety of storage devices should be 
covered even though some of the devices are not part of 
the computer system that is used. Algorithmic analysis 
and programming techniques developed in CS2 should 
be utilized. 

TOPICS: 
A. File Processing Environment. Definitions of record, 

file, blocking, compaction, database. Overview of 
database management system. (5%;) 

Physical characteristics of se- 
quential media (tape, cards, elk.). External 
sort/merge algorithms. File manipulation tech- 
niques for updating, deleting and inserting records 
in sequential files. (30%) 

C. Data Structures. Algorithms for manipulating 
linked lists. Binary, B-trees, B*-trees, and AVL 
trees. Algorithms for transversing and balancing 
trees. Basic concepts of networks (plex structures). 

Physical characteristics of disk, 
drum, and other bulk storage devices. Algorithms 
and techniques for implementing inverted lists, mul- 
tilist, indexed sequential, and hierarchical struc- 
tures. (35%) 

E. File I /O .  File control systems and utility routines, 
1/0 specification statements for allocating space 
and cataloging files. (5%) 

B. Sequential Access. 

(20%) 
D. Random Access. 

F. Ezaminations. (5%) 

CS6. Opera t ing  Sys t ems  & Corn],. Archi tec ture  

OBJECTIVES: 

To develop an understanding of the organiza- 
tion and architecture of comr>ute:r svstems a t  the 
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register-transfer and programming levels of system 
description; 
To introduce the major concept areas of operating 
systems principles; 
To teach the inter-relationships between the oper- 
ating system and the architecture of computer sys- 
tems. 

PREREQUISITES: CS3 AND CS4. 

COURSE OUTLINE: 

This course should emphasize concepts rather than 
case studies. Subtleties do exist, however, in operating 
systems that do not readily follow from concepts alone. 
It is recommended that a laboratory requiring hands-on 
experience be included with this course. 

The laboratory for the course would ideally use a 
small computer where students could actually imple- 
ment sections of operating systems and have them fail 
without serious consequences to other users. This sys- 
tem should have, a t  a minimum, a CPU, memory, disk 
or tape, and some terminal device such as a teletype of 
CRT. The second best choice for the laboratory experi- 
ence would be a simulated system running on a larger 
machine. 

The course material should be liberally sprinkled 
with examples of operating system segments imple- 
mented on particular computer system architectures. 
The interdependence of operating systems and archi- 
tecture should be clearly delineated. Integrating these 
subjects a t  an early stage in the curriculum is particu- 
larly important because the effects of computer archi- 
tecture on systems software has long been recognized. 
Also, modern systems combine the design of operating 
systems and the architecture. 

TOPICS: 

A. Review. Instruction sets. 1/0 and interrupt struc- 
ture. Addressing schemes. Microprogramming. 

B. Dynamic Procedure Activation. Procedure activa- 
tion and deactivation on a stack, including dynamic 
storage allocation, passing value and reference pa- 
rameters, establishing new local environments, ad- 
dressing mechanics for accessing parameters (e.g., 
displays, relative addressing in the stack). Imple- 
menting non-local references. Re-entrant programs. 
Implementation on register machines. (15%) 

Design methodologies such as 
level, abstract data  types, monitors, kernels, nuclei, 
networks of operating system modules. Proving cor- 
rectness. (10%) 

(10%) 

C. System Structure. 

D. Evaluation. Elementary queueing, network models 
of systems, bottlenecks, program behavior, and sta- 
tistical analysis. (15%) 

E. Memory Management. Characteristics of the hier- 
archy of storage media, virtual memory, paging, :peg- 
mentation. Policies and mechanisms for efficiency of 
mapping operations and storage utilization. Mem- 
ory protection. Multiprogramming. Problem of 
auxiliary memory. (20%) 

F. Process Management. Asynchronous processes. Us- 
ing interrupt hardware to  trigger software procedure 
calls. Process stateword and automatic SWITCH 
instructions. Semaphores. Ready lists. Implement- 
ing a simple scheduler. Examples of process con- 
trol problems such aa deadlock, product/consumers, 
readers/writers. (20%) 

G. Recovery Procedures. Techniques of automatic and 
manual recovery in the event of system failures. 

(5%) 
H. Ezaminations. (5%)  

CS7. Data Structures and Algorithm Analysis 

OBJECTIVES : 

To apply analysis and design techniques to  non- 
numeric algorithms which act on data structures; 
To utilize algorithmic analysis and design criteria 
in the selection of methods for data  manipulation in 
the environment of a database management system. 

PREREQU SITES : C S 5. 

COURSE OUTLINE: 

The material in this outline could be covered sequen- 
tially in a course. It is designed to  build on the founda- 
tion established in the elementary material, particularly 
on that material which involves algorithm development 
and data  structures and file processing. The practical 
approach in the earlier material should be made more 
rigorous in this course through the use of techniques 
for the analysis and design of efficient algorithms. The 
results of this more formal study should then be in- 
corporated into data management system design deci- 
sions. This involves differentiating between theoreti- 
cal or experimental results for individual methods and 
the results which might actually be achieved in systems 
which integrate a variety of methods and data struc- 
tures. Thus, database management systems provide 
the applications environment for topics discussed in ithe 
course. 

Projects and assignments should involve implemen- 
tation of theoretical results. This suggests an alterna- 
tive way of covering the material in the course; namely, 
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to treat concepts, algorithms, and analysis in class and 
deal with their impact on system design in assignments. 
Of course, some in-class discussions of this impact would 
occur, but at various times throughout the course rather 
than concentrated at the end. 

TOPICS: 

A. Review. Basic data structures such as stacks, 
queues, lists, trees. Algorithms for their implemen- 
tation. (10%) 

B. Graphs. Definition, terminology, and property (e.g., 
connectivity). Algorithms for finding paths and 
spanning trees. (15%) 

C. Algorithms Design and Analysis. Basic techniques 
of design and analysis of efficient algorithms for in- 
ternal and external sorting/merging/searching. In- 
tuitive notions of complexity (e.g., NP-hard prob- 
lems). (30%) 

D. Memory Management. Hashing. Algorithms for 
dynamic storage allocation (e.g., buddy system, 
boundary-tag) , garbage collection and compaction. 
(15%) 

Integration of data structures, 
sort/merge/search methods (internal and external) 
and memory media into a simple database manage- 
ment system. Accessing methods. Effects on run 
time, costs, efficiency. (25%) 

E. System Design. 

F. Ezaminations. (5%) 

C S8. Organization of Programming Languages 

OBJECTIVES: 

To develop an understanding of the organization of 
programming languages, especially the run-time be- 
havior of programs; 
To introduce the formal study of programming lan- 
guage specification and analysis; 
To continue the development of problem solution 
and programming skills introduced in the elemen- 
tary level material. 

PREREQUSITES: CS2; RECOMMENDED: CS3, CS5. 

COURSE OUTLINE: 

This is an applied course in programming language 
constructs emphasizing the run-time behavior of pro- 
grams. It should provide appropriate background for 
advanced level courses involving formal and theoretical 
aspects of programming languages and/or the compila- 
tion process. 

The material in this outline is not intended to be 
covered sequentially. Instead, programming languages 

could be specified and analyzed one at a time in terms 
of their features and limitations based on their run- 
time environments. Alternatively, desirable specifica- 
tion of programming languages could bc: discussed and 
then exemplified by citing their implementations in var- 
ious languages. In either case, programming exercises 
in each language should be assigned to emphasize the 
implementations of language features. 

TOPICS: 

A. Language Definition Structure. Formal language 
concepts including syntax and basic characteristics 
of grammars, especially finite state, context-free, 
and ambiguous. Backus-Naur Form. A language 
such as Algol as an example. (15%) 

B. Data Types and Structures. Review of basic data 
types, including lists and trees. Constructs for 
specifying and manipulating data types. Language 
features affecting static and dynamic data storage 
management. (10%) 

C. Control Structures and Data Flow. Programming 
language constructs for specifying program con- 
trol and data transfer, including DO . . . FOR, DO 
. . .WHILE, REPEAT . . .UNTIL, BREAK, subrou- 
tines, procedures, block structures, and interrupts. 
Decision tables, recursion. Relationship with good 
programming style should be emphasized. (15%) 

D. Run-time Consideration. The effects of run-time 
environment and binding time on various features 
of programming languages. (25%) 

E. Interpretative Languages. Compilartion vs. inter- 
pretation. String processing with language features 
such as those available in SNOBOL, 4. Vector pro- 
cessing with language features such as those avail- 
able in SPL. (20%) 

F. Lezical Analysis and Parsing. An introduction to 
lexical analysis including scanning, finite state ac- 
ceptors and symbol tables. An introduction to pars- 
ing and compilers including push-down acceptors, 
top-down and bottom-up parsing. (10%) 

G. Ezaminations. (5%) 

Subpanel Members 

ALAN TUCKER, CHAIR, SUNY-Stony Brook. 
GERALD ENGEL, Christopher Newport College. 
STEPHEN GARLAND, Dartmouth College. 
BERT MENDELSON, Smith College. 
ANTHONY RALSTON, SUNY-Buffalo. 





Modeling and Operations Research 

This chapter contains the report of the Subpanel on 
Modeling and Operations Research of the CUPM Panel 
on a General Mathematical Sciences Program, reprinted 
with minor changes f rom Chapter V of the 1981 CUPM 
report entitled RECOMMENDATIONS FOR A GENERAL 
MATHEMATICAL SCIENCES PROGRAM. 

Experience in Applications 
This chapter is concerned with mathematical model- 

ing and associated interactive and experienceoriented 
approaches to teaching mathematical sciences. Math- 
ematical modeling attempts to involve students in the 
more creative and early design aspects of problem for- 
mulation, as well as provide them with a more complete 
exposure to how mathematics interfaces with other ac- 
tivities in solving problems arising outside of mathemat- 
ics itself. Model building is a major ingredient of opera- 
tions research and the contemporary uses of mathemat- 
ics in the social, life and decision sciences. In addition 
to being important in their own right, these newer uses 
of mathematics provide a rich source of suitable materi- 
als for interaction and modeling which complement the 
many modern and classical applications of mathematics 
in the physical sciences and engineering. 

This chapter is intended to assist mathematics fac- 
ulty in implementing the main panel's recommendation 
that mathematical sciences majors should have sub- 
stantial experience with mathematical modeling. Sub- 
sequent sections discuss the modeling process in some 
detail; provide specific suggestions for conducting stu- 
dent projects, applications-experience-related courses 
and other such programs, along with general recommen- 
dations concerning modeling courses at different lev- 
els; explain the field of operations research and the re- 
quirements for graduate study. The final two sections 
present outlines for four courses in operations research 
and modeling, and a compendium of resources and ref- 
erences for modeling courses. 

Learning and doing mathematics is a rather individ- 
ualized and personal activity. The typical classroom 
lecture in which students are passive spectators has ob- 
vious limitations. Students need supervised hands-on 
experience in problem solving and constructing rigor- 
ous proofs. A large variety of alternate teaching tech- 
niques and special programs have been developed in at- 
tempts to meet this need. These include problem solv- 

ing approaches using materials from pure and applied 
mathematics, such as the methods of G. P6lya and R.L. 
Moore. Problem solving teams for ccimpetitions such 
as the Putnam contest and special departmental prac- 
tica exist in many colleges. Special courses or seminars 
on modeling, case studies, and project-oriented activ- 
ity are becoming more common, as are mathematics 
clinics and consulting bureaus. Co-op and work-study 
programs, summer internships, and various other stu- 
dent exchanges have been successfully implemented at 
some inst it utions. 

The Modeling Subpanel believes that applications 
and modeling should be included in a nontrivial way in 
most college-level mathematical sciences courses. Con- 
cern with applications has been an important historical 
force and a major cultural ingredient in the develop- 
ment of all mathematics. Further, thie Modeling Sub- 
panel strongly recommends that all mathematical sci- 
ences students should obtain first-hand, experience with 
realistic applications of mathematics from the initial 
stage of model formulation through interpretation of 
solutions. This can be done in a project-oriented mod- 
eling course in one of the alternate out-of-class modes 
mentioned above. Such an experience yields insight into 
the place of mathematics in the larger realm of science. 
It provides an appreciation for the need for interdisci- 
plinary interaction and the limits of specialization. It 
offers a chance for individuals to make use of their own 
intuition and creative abilities, to sense the great joy of 
personal accomplishment, and to develop the confidence 
to confront similar problems after graiduation. Finally, 
such experience may assist students in choosing careers 
and fields for future study. 

Mathematical Modeling 

Modeling is a fundamental part of' the general sci- 
entific method and is of primary importance in ap- 
plied mathematics. A model is a simpler realization 
or an idealization of some more complex reality cre- 
ated for the purpose of gaining new knowledge about 
a real situation by investigating properties and impli- 
cations of the model. Models may take many differ- 
ent forms, from physical miniatures to pure intellectual 
substitutes. Study of a model will hopefully provide un- 
derstanding and new information about real phenomena 
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which are too complex, excessively expensive, or impos- 
sible to analyze in their original setting. 

We tend to take the amazing effectiveness of models 
for granted today. The reader should give a moment's 
thought to the following examples. One can learn a 
great deal about a proposed aircraft from wind tun- 
nel experiments before building a costly prototype, and 
one can learn much about flying an existing airplane 
from a computer-aided cockpit simulator. Simple com- 
puter simulations can provide insights into the complex 
flow or queueing behavior of traffic in a transportation 
system. Theoretical studies about elementary particles 
have provided new insight into fundamental physical 
laws and have guided subatomic experimentation. 

Real World Mathematical 
Problem Model 

t 
I 

Mathematical 
Solution 

Interpretation 
in Original Settin; 

A Simple Model of Mathematical Modeling 

Figure 1 

The process of mathematical modeling can be simply 
represented with the diagram in Figure 1. One begins 
with a problem which arises more or less directly out 
of the "real world." One builds an abstract model for 
purposes of analysis, and this frequently takes a math- 
ematical form. The model is solved in this abstract 
setting. The solution is then interpreted back into its 
original context. Finally, the analytical conclusions are 
compared with reality. If they fall short of matching 
the real situation, then modifications of the model may 
be called for, and one proceeds around this cycle again. 
One often proceeds back and forth within a cycle and 
makes successive iterations about this figure many times 
before arriving at a satisfactory representation of the 
real world. 

The creation of new knowledge via this modeling 
route is at the heart of theoretical science and applied 
mathematics. We will use the word "modeling" to de- 
scribe the complete progress illustrated in Figure 1. Fre- 
quently this term is used only for the model formulation 
step (the top arrow in the figure). A full discussion of 
the four steps in this modeling paradigm follow. Addi- 
tional steps refining the modeling process are sometimes 
inserted; for example, see Figure 2. 

First consider the downward pointing arrow on the 

right side from Urnathematical model" to "mathemati- 
cal solution." This is the deductive activity of finding 
solutions to well-formulated mathematical problem. It 
is usually the most logical, well-defined and straight- 
forward part of modeling, although not necessarily the 
easiest. It is often the most immediately pleasing, el- 
egant, and intellectual part. This "side" of the "mod- 
eling square" is the one covered best in standard a p  
plied mathematics courses. Unfortunately, most teach- 
ing of applied mathematics is confined to discussing just 
model-solving mathematical techniques, with superfi- 
cial treatment of the other three sides of the square, 
whereas these other sides often involve much more ccre- 
ativity, interaction with other disciplines, and commu- 
nication skills. 

END BEGIN 

INTERPRET RESULTS PROBLEM 
OF ANALYSIS PRESENTATION 

I 

ANALYSIS OF 

IN0 
SPECIALIZATION 

PREPARATION FOR 

I I MODIFICATION OF MODEL . REp!~t?%?~l!oN 

I I I I 

A Refined Model of Mathematical Modeling 

Figure 2 

The bottom arrow in Figure 1 is concerned with 
translating or explaining a purely mathematical result 
in terms of the original real world setting. This involves 
the need to communicate in a precise and lucid man- 
ner. (Inexperience in this skill, according to many em- 
ployers, is a serious shortcoming in mathematics gradu- 
ates). This aspect of a mathematical scientist's training 
should not be left to courses in other sciences or to on- 
the-job learning after graduation. 

In describing the meaning of a mathematical solution 
one must take great care to be complete and honest. It 
is dangerous to discard quickly some mathematical so- 
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lutions to  a physical problem as extraneous or having no 
physical meaning; there have been too many historical 
incidences where “extraneous“ solutions were of fun- 
damental importance. Likewise, one should not select 
out just the one preconceived answer which the “boss” 
is looking for t o  support his or her position. A deci- 
sion maker frequently does not want just one optimal 
solution, but desires to  know a variety of “good” solu- 
tions and the range of reasonable options available from 
which to  select. 

There is an  old adage to  the effect that bosses do 
not act on quantitative recommendations unless they 
are communicated in a manner which makes them un- 
derstandable to  such decision makers. This communi- 
cation can often be a difficult task because of the tech- 
nical nature of the formulation and solution, and also 
because large quantities of data  and extensive computa- 
tion may need to  be compressed to  a manageable size for 
the layman to  understand in a relatively limited time. 
If mathematical education gave more attention to  this 
aspect of mathematical modeling, there might be wider 
recognition and visibility of mathematicians in society 
beyond the academic world! 

A major step in real world modeling is to  validate 
models critically and to  check out solutions against the 
original phenomena and known results. This step, rep- 
resented by the left upward arrow in Figure 1, may in- 
volve experimentation, verifying, and evaluating. Two 
major criteria for evaluating a model are simplicity and 
accuracy of prediction. Questions about the range of 
validity, sensitivity of parameters errors resulting from 
approximations, and such should be investigated. In 
many cases, a modeling project will simply confirm from 
another perspective properties that are already believed 
to be true. The real gain from modeling activity occurs 
when the modeling leads to discovery of new knowledge 
(which subsequently is confirmed by other methods). 

Modern mathematics education rarely involves itself 
with this left hand side of the modeling process, except 
perhaps for an occasional “eyeballing” of an answer or 
in projects undertaken by a mathematics or statistics 
consulting clinic. By omitting this activity, mathemati- 
cal education misses an opportunity to  become involved 
with real-world decision making, judgmental inputs, the 
limitations of its mathematical tools, and other more 
human aspects of science, as well as the reward of wit- 
nessing the acceptance of a new theory. 

Finally, consider the top arrow in Figure 1 which 
represents the heart of the modeling activity. The con- 
struction of an  abstract model from a real situation is 
the really creative activity and an important compo- 
nent of all theoretical science. Building models involves 

translating into mathematics, maintaining the essential 
ingredients while filtering out a great amount of excess 
baggage, and arriving a t  realistic and manageable intel- 
lectual limitations. The three basic elements of a model 
are: 
1. A logical mathematical structure such as calculus, 

probability, or game theory; 
2. An appropriate interpretation of the variables in 

that structure in terms of the given problem; and 
3. A characterization with the structure of all laws and 

constraints pertinent to  the problem. 
To build such a mental construct, one must concep- 
tualize, idealize and identify propert,ies precisely. A 
model builder must carefully balance the tradeoffs be- 
tween coarse simplifications and unnecessary details- 
often the effects of such tradeoffs are n.ot apparent until 
subsequent validation (three steps later in the modeling 
process). 

This initial part of modeling is clearly the most es- 
sential and valuable part of the whole ]process. It is usu- 
ally the most difficult part. Eddington said “I regard 
the introductory part of a theory as the most difficult, 
because we have to  use our brains all of the time. Af- 
terwards we can use mathematics.” ]Model building is 
an art, and must be taught as such. 

An Undergraduate Modeling Course 
This section discusses various approaches to design- 

ing mathematical sciences courses concentrating on the 
modeling process. The resources list,ed a t  the end of 
this chapter contain a wealth of additional information 
on models, the modeling process and specific modeling 
courses as well as references to  supplementary materials 
which the reader may find useful in c’ourse design. 

Practitioners in the physical or social sciences or en- 
gineering have an instinctive feeling of what the mod- 
eling process is all about, even if they are not able to  
articulate it well. Modeling is an important part of 
their work-a-day activity. For the most part, however, 
they prefer to leave the analysis and structure of the 
modeling process itself to  workers in other disciplines, 
like mathematics, or to  philosophers of science who are 
trying to understand the abstract thieories underlying 
these results and how scientists get their results. 

How does one go about acquiring experience in real- 
world modeling? The wrong place to  start is looking at  
big models in the scientific literature which are broad 
in scope and the epitome of their kind. Indeed, one 
could probably learn more about sculpting by looking 
a t  the pieces that Michelangelo discarded than by look- 
ing a t  the Pieta. The mathematical techniques with 
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which one is familiar will be a primary limiting factor 
in understanding models. Another factor is that real- 
world problem areas have their own peculiar “empirical 
laws” and “principles” which are commonly known to 
specialists in an area but are not easily accessible to the 
casual reader. 

Apprentice modelers need some help and guidance 
in selecting model areas for study which will build their 
modeling skill without discouraging progress. The ideal 
way to do this within the college curriculum is to begin 
the modeling process as early as possible in the stu- 
dent’s career and reinforce modeling over the entire pe- 
riod of study. That is, the modeling process should be 
an integral part of the curriculum. Most mathematics 
departments, for a variety of reasons, are not prepared 
to give modeling such a major emphasis. For them, a 
more reasonable approach is to design a course specifi- 
cally around the modeling process. 

Efforts to emphasize the modeling process in under- 
graduate courses on a broad scale began in the 1960’s 
and were promoted mainly by engineers, operations re- 
searchers and social scientists. Extensive discussions of 
modeling in mathematics courses developed later. The 
modeling process has been brought into the classroom 
in many ways but two particular approaches are worth 
describing in some detail. 

First there is the case study approach in which the 
modeling process is described in a series of examples 
that are more-or-less self-contained. The examples se- 
lected by the instructor are designed to bring out the 
basic features of the modeling process as well as to in- 
form the students about basic models within a disci- 
pline. An excellent early example is You and Technol- 
ogy: A High School Case Study Tezt developed by the 
engineering departments of the PCM Colleges (Chester, 
PA), edited by N. Damaskos and M. Smyth. 

The second approach applies “hands-on” experience 
to problems that may only be vaguely described. This 
approach is sometimes called “open-ended” or “experi- 
ential,” because it is not clear a t  the outset what kind 
of a model will be successful in analyzing a problem, 
or indeed whether a particular problem is well-posed in 
any sense. An interesting sidelight on this approach to 
teaching the modeling process is that the models pro- 
posed by students for a particular problem depend not 
only on the students’ breadth of knowledge but, as much 
as anything else, on time constraints and computer (and 
other) resources available. Engineers popularized the 
experiential approach in the early sixties with the high 
school program Man Made World, mostly as a means of 
exposing students a t  an early stage to engineering as a 
profession (a text of the same name was written for this 

program by J. Truxal, et al., McGraw-Hill publisher). 
A range of courses emphasizing the modeling process 

is clearly possible between the case study approach and 
the experiential approach. 

It is important to note that the scope of the engineer- 
ing approach to modeling is much broader than just, the 
technical aspects of the problem a t  hand. In designing 
a solution to a problem, engineers must take into ac- 
count time constraints and build into their models pre- 
scribed economic and other technical constraints as well 
as consideration of the impact of their design on soci- 
ety. Engineers do not build elaborate models to explain 
the fundamental workings of nature nor do they seek 
the best possible solution to a problem in the absence 
of the proposed application of that solution. In spite 
of these differences, there is obviously a large overlap 
between the engineering and mathematical approaches 
to modeling. 

We now characterize the components of a modeling 
course in a way that readers should find useful in de- 
signing a course to fit their own local needs. The Table 
on pp. 46-47 organizes much of this information for easy 
reference. There are six basic aspects of teaching mod- 
eling that must be considered: 
1. Prerequisites. For whom is the course intended? 
2. Effort level. How long-a few weeks, a semester, a 

year? 
3. Course format. Experiential or case study ap- 

proach? Team or individual work? Instructor’s role. 
Communication skills used. 

4. Resources available. Computer system, remote ac- 
cess, good software packages (students should be- 
come familiar with using some major software pack- 
age). Access to expertise in fields considered. A p  
propriate handouts to keep students progressing. 

5 .  Source of problems. Real-world or contrived? 
Open-ended or can student answer all questions by 
looking them up in the literature? 

6. Technical thrust. What technical areas should the 
course emphasize, or avoid? Continuous or discrete 
models? Deterministic or stochastic? Role of com- 
puter programming. 

We now expand a little on two of these compo- 
nents, effort level and course format. The level of effort 
devoted to a modeling course can range from “mini- 
projects,” using a team approach to short projects 
within an established course, to major projects which 
last an entire year. The mini-project format requires 
a great deal of organization and preparation to make 
it work. See Borrelli and Busenburg ‘‘Undergradu- 
ate Classroom Experiences in Applied Mathematics” 
(UMAP Journal, Volume 1, 1980) for one approach to 
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structuring a mini-project program, together with its 
pro’s and con’s. The one-semester case study course, 
judging from its popularity, is the best understood and 
trusted of modeling courses. There are good textbooks 
and a great many modules written for use in such a 
course (see list at end of chapter). 

While most case studies texts on mathematical mod- 
eling are designed for upper-level courses, the text You 
and Technology (mentioned above), supplemented with 
modules, can easily be adapted for use in a freshman 
case studies course. Such a course might also present 
an opportunity for students to see the fundamental 
differences between engineering and mathematical a p  
proaches to modeling (this issue is treated nicely in 
You and Technology). An extensive outline is provided 
below for a special custom-made, lower-level modeling 
course. 

Experiential modeling courses are not used as often 
as case study courses. Since the experiential approach is 
typically used on open-ended problems where the out- 
come is difficult to predict in advance, this approach 
is especially risky for a mathematics instructor who is 
teaching a modeling course for the first time. Neverthe- 
less, experiences of various colleges over the last several 
years show that the experiential approach is feasible and 
that, whatever happens, students and instructors find 
it a rewarding experience. Several successful formats 
for experiential modeling courses have emerged. All 
seem to use the team approach with occasional guid- 
ance by consultants, as needed. It should be noted that 
many industrial employers treat such experiential mod- 
eling as job-related experience in assessing a student’s 
job qualifications. References at the end of this chap- 
ter contain descriptions of the well-known Mathematics 
Clinics in Claremont and other experiential modeling 
courses (interested readers can write directly to Harvey 
Mudd College for first-hand advice). 

We close this Section with some important general 
points to keep in mind when designing any modeling 
course. 

To encourage initiative and independent work, stu- 
dents should have access to, and be responsible for 
using, support resources such as documentation of 
software and previous student projects. 
If high standards are imposed on writing of re- 
ports, then these reports deserve some exposure; 
they should not just be shoved in filing cabinets and 
forgotten. Instructors should encourage students to 
seek publication of a paper based on their reports, if 
warranted, or an article in the campus newspaper. 
Abstracts of recent reports should be made avail- 
able to students early in a modeling course. When 

students know their work will get exposure, they are 
motivated to write good reports. 
It is valuable to integrate the modeling process into 
the curriculum as widely as possible and not just as 
an add-on special course with no connection to any 
other mathematical sciences course. 
A problem with most modeling courses is that the 
material in them quickly becomes dated. When stu- 
dents discover that they are working on the same 
projects or models as their classmates did last year, 
they lose enthusiasm. What is needed is a format 
for automatically updating the matlerial. A constant 
flow of real-world problems, as come into a mathe- 
matics consulting clinic, is a great advantage. 

Operations Research 

Operations research is a mathematic a1 science closely 
connected to mathematical modeling. Although some 
notable contributions were made prior to 1940, oper- 
ations research grew out of World War 11. The analy- 
sis of military logistics, supply and operational prob- 
lems by scientists from many different disciplines gen- 
erated the techniques and approaches that evolved into 
modern operations research. This sub-ject studies com- 
plex systems, structures and institutions with a view 
towards operating such multiparameter systems more 
efficiently within various constraints, such as scarce re- 
sources. Operations research analyse:! are used to op- 
timize current activities and predict ifuture feasibility. 
The complexity of its problems has made operations 
research heavily dependent on high-speed digital com- 
puters. It is now used in fields in which decisions were 
traditionally made on the basis of less quantitative ap- 
proaches, such as “experience” or merle hunches. There 
is frequently a major concern with “people” as well as 
“things,” and the man-system interface in a complex 
social activity. Major national concerns such as produc- 
tivity, environmental impact and energy supply have a 
large operations research component. 

The approach in operations research is multidis- 
ciplinary in nature, and uses common sense, data, 
and substantial empiricism (heuristics) combined with 
new, as well as repackaged traditional, mathematical 
methodologies. The principal mathematical theories of 
operations research are mathematical programming and 
stochastic processes. Major topics in these theories are 
mentioned in the operations research course contents in 
the next section. Operations research l n a s  major overlap 
with the fields of industrial engineering, management 
science, mathematical economics, econometrics and de- 
cision theory. 
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Anatomy of a Modeling Course 

Ingredients Background and Source Material Remarks 

PREREQUISITES: 
Lower Division. Single variable cal- 
culus, a science course with lab, some 
computing. 

Upper Division. Multivariable calcu- 
lus, linear algebra, computation and 
some computer programming, basic 
prob/stat., some diff. eqns., a science 
course with lab. 

EFFORT LEVEL: 
Partial Course. Recommended min- 
imum of 2 weeks out of a 3 hour 
course preceded by a tooling up pe- 
riod. 

Full Course. May be designed to fit 
into special options, either to give 
job-related training or introduction 
to modeling process with important 
models in a discipline. 

COURSE FORMAT: 
Case Study. The modeling process 
presented via examples that are 
more-or-less self-contained. 

Ezperiential. Hands-on approach to 
open-ended projects incorporating the 
modeling process. Some possibilities 
are: 
1. Problem-centered Course. Class 
divided into teams to  work on a se- 
quence of projects and share experi- 
ence. 

2. Mathematics Clinic, Consulting 
Group. Intensive, industry-supported 
team effort on a single project, usu- 
ally for one year. 

9. Research Assistance. Students aid 
faculty in research work. 

4. Mini-projects. Team approach on 
short projects within an established 
course. 

Case study approach most likely. See, 
e.g., "You and Technology" or suit- 
able UMAP modules. 

For experiential approach and case 
study approach consult appropriately 
noted reference. 

Mini-projects are a possibility here. 
See Borelli and Busenberg. Format of 
mini-projects can be effectively struc- 
tured. See Becker, et al., "Handbook 
for Projects." 

Many possibilities exist for modeling 
courses for a full semester-see items 
below. For a discussion of pros and 
cons, see Borelli and Busenberg. 

Material selected from modules, text- 
books, conference proceedings, or 
journals. 

Needs highly experienced instructor 
to select and present the projects and 
watch over progress of the teams. 
Class size limited by instructor's en- 
ergy. See Borelli and Busenberg for 
more details. 
Composition of team is critical. See 
Claremont Clinic Articles for details. 
Because of time constraints, able sup- 
port staff must be readily available. 

MIT has a highly organized program 
which does this. Mostly, however, it's 
catch-as-catch-can. The Institute of 
Decision Science, Claremont Men's 
College, has developed a classroom 
approach to such work. 

See Borelli and Busenberg. 

If the team approach is selected t,hen 
there can be some flexibility in these 
prerequisites. 

If modeling course is not required., 
then some thought must be given as 
to how students can be attracted to 
such a course: descriptions in reg- 
istration packets, posters, note to 
advisor, etc. 

Important that mini-project work not 
be simply added to standard load of 
the host course-it should replace: 
some required work; e.g., an exam. 

Format of instruction can seriously 
affect the student's interest as well as 
his capacity for effective work-see 
"Format" section below for possibili- 
ties. 

Advanced students can be asked 
to lecture on material that is well 
enough organized. 

Internships, work-study programs not 
appropriate for inclusion here. 

Oral presentation and written reports 
are emphasized. Most demanding of 
instructor's time. 

Team communication skills highly 
emphasized in Clinic program and is 
crucial to success. Team has main 
responsibility for work, instructor 
advises. Student handbook a t  Cla.re- 
mont Clinic (by Handa) available on 
request. 

A danger here is that the success of 
the faculty member's research may 
take precedence over the impact on 
the students' education. Students" 
needs could get lost in the shuffle. 

Emphasizes writing skills, highly 
structured activity; see "Handbook 
for Projects" by Becker, et al. 
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Ingredients 

Anatomy of a Modeling Course 

Background and Source Material Remarks 

RESOURCES AVAILABLE: 
Computer. Good access to  a high 
level computer (preferably with time- 
sharing capability) having good soft- 
ware packages is very important for 
the success of most modeling courses. 

Ezperienced Consultants. Access to 
knowledgeable colleagues, experts in 
local industrial firms, and talented 
computer center personnel are all 
helpful in keeping a team’s progress 
from faltering. 

Supplemental Materials. Handouts on 
how to work in a team on projects, 
or where to go for help, etc., lessen 
the student’s feeling of abandonment 
when working on projects. 

SOURCE O F  PROBLEMS: 
Real World. Open-ended problems 
submitted by local industrial firms 
or government agencies which are of 
current interest to them, or problems 
from current research of colleagues. 

Contrived. Open-ended problems 
pulled from a variety of sources: from 
technical journals, suggestions from 
colleagues, books, etc. 

Case Studies. Reasonably well self- 
contained descriptions of completed 
projects or problems. 

TECHNICAL THRUST: 
Discrete-OR. Problems whose models 
involve discrete structures, program- 
ming, or optimization within discrete 
settings. Also interpolation with fi- 
nite structures in continuous settings. 

Continuous. Problems whose models 
involve differential or integral equa- 
tions, continuous probabilities, or op- 
timization within continuous setting. 

Computer. Problems with main goal 
the production of software either a t  
the systems level or solvers for a class 
of equations in continuous settings, 
along with error analysis of same. 
For DEC users, the IMSL package is 
a good all-around one to have avail- 
able on the system. 

A successful, long-term program de- 
pends to a large extent on the Direc- 
tor’s ability to secure willing assis- 
tance from able consultants. 

For project work, see the Handbooks 
by Becker, et al., Handa, Seven and 
Zagar, and for computer graphics, 
Saunders, et  al. (all were developed 
a t  Harvey Mudd College and are 
available on request). 

See Borelli and Spanier for a descrip- 
tion of one effective method of re- 
cruiting sponsored projects from in- 
dustry. MIT has a highly organized 
way of advertising current research 
of its faculty and laboratories and 
whether undergraduates can play a 
role or not. 
The modeling books in the references 
are good sources of problems. 

Good sources in modules, proceedings 
of conferences on case studies and 
books. 

Computer graphics capabilities and 
knowledgeable (and accessible) con- 
sultants at the computer center add 
not only a professional touch but also 
help teams live within their time con- 
straints. 
Be sure that consultants help is ac- 
knowledged by the students in all 
written reports, even if it is only of a 
casual nature. 

Used only in experiential type model- 
ing courses. 

Used mostly in experiential type 
modeling course. 

Used only for case study type of 
modeling course. 

Deterministic and istochastic methods 
are both possibditi’es here. 
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There are many opportunities for mathematical sci- 
ences majors to  pursue graduate studies or find employ- 
ment in operations research and related fields. Indus- 
trial mathematicians in all fields find themselves faced 
with operations research problems from time-to-time. 
Thus it is important for mathematical sciences students 
to have some exposure to  operations research and its 
applications, and also knowledge of its career possibil- 
ities. This classroom exposure to  operations research 
can occur in conjunction with undergraduate model- 
ing experience or in a specific course on operations re- 
search. The current relevance and naturalness of this 
subject are immediately clear to  students, and realistic 
projects at various levels of difficulty are readily avail- 
able. An interesting article by D. Wagner about opera- 
tions research appeared in the American Mathematical 
Monthly (82, p. 895). Students should also be referred 
to the booklet Careers in Operations Research, avail- 
able from the Operations Research Society of America, 
428 Preston Street, Baltimore, MD 21202. 

A student interested in graduate work in operations 
research should have a solid preparation in undergrad- 
uate core mathematics: calculus, linear algebra, real 
analysis, plus courses in probability, introductory com- 
puter science and modeling. A course in operations re- 
search itself is more important as a way to  learn if one 
likes the field than as a prerequisite for graduate study. 
A substantial minor in a relevant area outside mathe- 
matics (as recommended for all mathematical sciences 
majors in the first chapter, “Mathematical Sciences”) is 
important. This outside work should include a sampling 
of quantitative courses in the social sciences, business, 
or engineering (if available). Experience solving some 
problems involving substantial computer computation 
and an exposure to nontrivial algorithms are also desir- 
able. 

At some institutions, mathematics departments are 
now preparing to  offer an operations research course for 
the first time, while other institutions may have many 
operations research courses offered in mathematics, eco- 
nomics, business, industrial engineering and computer 
science. In either extreme and situations in between, 
mathematical sciences students are best served by some 
form of interdepartmental cooperation, or at  least co- 
ordination of offerings. If a mathematics department 
is planning to  offer an operations research course when 
none previously existed a t  the institution, mathematics 
should work closely with other interested departments. 

In planning this first course, mathematicians could 
seek contacts with local industry to  obtain practition- 
ers as visiting lecturers. On the other hand, an in- 
troductory operations research course can be taught 

by most college mathematics professors with appropri- 
ate attitudes if they are willing to  undertake some self 
study. Indeed, faculty without formal operations re- 
search training who are going to  teach such a course 
should be strongly encouraged to  learn about the iield 
by attendance at short courses, participation in a de- 
partment seminar on the subject, or by sabbatical leave 
(or other released time) at universities or industrial lab- 
oratories with operations research activities. 

Course Descriptions 
Four sample courses on operations research and mod- 

eling are described below. Only more general remarks 
are given for the courses in operations research and 
stochastic processes since these have become fairly stan- 
dardized in recent years. More specific details are pro- 
vided for an elementary-level modeling course using idis- 
Crete mathematics and for a more advanced modeling 
course using continuous methods. These are merely il- 
lustrations of the wide variety of different sorts of mod- 
eling courses which can be taught. The 1972 CU:PM 
Recommendations on Applied Mathematics contain a 
detailed description of a physical-sciences oriented mod- 
eling course. Such a modeling course continues to  be 
very valuable and in no way should be considered dat,ed. 
Many basic intermediate-level courses in the physical 
sciences are also excellent modeling courses, from the 
point of view of a mathematical sciences major. 

Introductory Operations Research 
Much of the material in an introductory operati’ons 

research course for undergraduates has become fairly 
standard. The course covers primarily deterministic 
methods. Most publishing companies have good intro- 
ductory operations research texts (the text title may 
be Linear Programming, the course’s main topic). The 
level of this course can vary depending on the prerequi- 
sites and student maturity. It is normally an upper-level 
offering with a prerequisite or corequisite of linear al- 
gebra. Calculus and probability should be required if 
stochastic models are also included. 

An operations research course can be a “pure math- 
ematics” course which stresses the fundamental prop- 
erties of systems of linear inequalities, basic geometry 
of polyhedra and cones, discrete optimization and com- 
plexity of algorithms. Most operations research courses, 
however, emphasize the many applications which can be 
solved by linear programming and related techniques of 
combinatorial optimization. Such courses usually de- 
vote some time to  efficient algorithms and practical mu- 
merical methods (to avoid roundoff errors), as well as 



MODELING & OPERATIONS RESEARCH 49 

basic notions of computational complexity. While prob- 
lem solving and modeling are important, a first oper- 
ations research course should cover some topic in rea- 
sonable depth and not be merely a collection of simple 
techniques and routine applications. 

COURSE CONTENT 

The course should start with a brief discussion of the 
general nature, history and philosophy of operations re- 
search. Some of the older texts such as Introduction to 
Operations Research by C. Churchman, R. Ackoff and 
E. Arnoff, Wiley, 1957, and Methods of Operations Re- 
search by P. Morse and G. Kimball, Wiley, 1951, de- 
vote extensive space to  history. The instructor should 
not spend much time on history a t  the beginning of 
a course but instead should weave it into discussions 
throughout a course. 

The first half of the course in usually devoted to lin- 
ear programming: its theory, the simplex algorithm, 
and applications. The course then continues on to  a se- 
ries of special linear programming problems, such as op- 
timal assignment, transportation, trans-shipment, net- 
work flow, minimal spanning tree, shortest path, PERT 
methods and traveling salesperson, each with its own 
algorithms and associated theory. Basic concepts of 
graph theory are normally introduced in conjunction 
with some of the preceding problems. If time per- 
mits, elementary aspects from decomposition theory, 
dynamic programming, integer programming, or non- 
linear programming may be included. 

It is difficult to  find space in an introductory opera- 
tions research course for even a small sampling of prob- 
ability or stochastic models. If possible, it is better to 
include this material in a second course. Similarly, there 
is usually little time available to discuss game theory, 
except possibly for showing that two-person, zero-sum 
games are equivalent to  a dual pair of linear programs. 
Game theory is probably best treated in a separate 
“topics” course. 

Elementary Modeling Course 

The following course on mathematical modeling and 
problem solving is intended for freshmen and sopho- 
mores with a solid preparation in high school math- 
ematics. The primary objective is to provide lower- 
level students with a first-hand experience in forming 
their own mathematical models and discovering their 
own solution techniques. A secondary goal is to  intro- 
duce some of the concepts from modern finite math- 
ematics and illustrate their applications in the social 
sciences. The instructor might supplement these main 
themes with brief discussions of some important recent 

mathematical developments and indicate the current 
relevance of mathematics to  contemporary science and 
policy making. 

The course should maintain an open-minded and 
questioning approach to problem solving. Much of the 
class time should be devoted to  student discussions of 
their models and how to improve them. Students should 
be asked to make formal oral and written expositions. 
Many of the topics coveredare also suit,able, with proper 
adjustments, for upper-level courses or for lower-level 
“mathematics appreciation” courses. (Readers inter- 
ested in the latter courses should coneult the 1981 Re- 
port of the CUPM Panel on Mathematics Apprecia- 
tion, reprinted later in this volume.) Nlot all of the top- 
ics mentioned below can be covered in any one course, 
and frequent changes in course content are necessary to 
maintain the originality of problems. 

No one current textbook appears appropriate for this 
course, although a simpler “prepackage:d” version of this 
course could use the high-school-oriented text You and 
Technology with supplementary modules. The course 
described below is an example of how various sources 
can be assembled (as handouts or on library reserve) to 
form a modeling course, in this instarnce emphasizing 
modeling in the social sciences. 

COURSE CONTENT 

Overview and Patterns of Problem Solving. Intro- 
duction to  the nature of modeling and problem solv- 
ing. The role of science, engineering and social sci- 
ences in making and implementing new discoveries. 
The nature of applied mathematics ,and the interdis- 
ciplinary approach to  problems. Illustrations of prob- 
lems solved by quick insight rather )than by involved 
analysis. Many books have chapters on modeling and 
problem solving; also see Patterns of’ Problem Solving 
by M. Rubinstein, Prentice-Hall, 1975, or “Foresight- 
Insight-Hindsight” by J. Frauenthal and T. Saaty, in 
Modules in Applied Mathematics, vol. 3 (W. Lucas, ed- 
itor), Springer-Verlag. 

A large variety of 
problems related to undirected and directed graphs and 
network flows can be assigned and discussed a t  the out- 
set with no hint of any theory or technical terms. At 
a later stage, a lecture can be devoted to  theory to  de- 
velop a common vocabulary. The language and general 
approach of systems analysis can be developed. The 
four-color theorem can be discussed. References are 
Applied Combinatorics, by F. Roberts, Prentice-Hall, 
1984, Graphs as Mathematical Models by G. Chartrand, 
Prindle, Weber and Schmidt, 1977, and Applied Com- 
binatorics by A. Tucker, Wiley, 1980. 

Graph and Network Problems. 
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Some lecture time can be spent illustrating how 
graphs are applied: to  simplify a complex problem, 
such as Instant Insanity (Chartrand, p. 125 or Tucker, 
p. 355), or the more difficult Rubik’s Cube (Scientific 
American, March, 1981); for purely mathematical pur- 
poses, such as to  prove Euler’s formula V - E + F = 2 
and use it in turn to prove the existence of exactly five 
regular polyhedra; or to  examine R. Connelly’s flex- 
ing (nonconvex) polyhedra (Mathematical Intelligencer, 
Vol. 1, No. 3, 1979). The analogy between transporta- 
tion, fluid flow, electric and hydraulic networks can be 
illustrated (see G. Minty’s article in Discrete Mathemat- 
ics and Its Applications Proceedings of a Conference a t  
Indiana University, ed. M. Thompson, 1977). 

Enumeration Problems. (Tucker, 2nd ed., Chapter 
5 or Roberts, Chapter 2.) Some practical uses can be 
covered briefly, e.g., to  probability problems or the Pi- 
geonhole Principle. Computational complexity and its 
application to hard-to-break codes can be discussed. 

Value and Utility Theory. Expected utility versus 
expected value; St. Petersburg paradox; construction of 
a money versus utility curve: axioms for utility; assess- 
ing Coalitional Values (see module by W. Lucas and L. 
Billera in Modules in  Applied Mathematics, vol. 2, W. 
Lucas, editor, Springer-Verlag). 

Conflict Resolution. Some three-person cooperative 
game experiments and analysis; the Prisoner’s Dilemma 
for two or more persons (H. Hamburger in Journal of 
Math. Sociology 3, 1973); illustrations of equilibrium 
concepts; two-person zero-sum games, e.g., batter ver- 
sus pitcher (Economics and the Competitive Process by 
J.  Case, NYU Press, 1979, p. 3; also see The Game of 
Business by John McDonald, Doubleday, 1975, Anchor 
paperback, 1977, and Game Theory: A Nontechnical 
Introduction by M. Davis, Basic Books, 1970). 

A Discrete Optimization Problem and an Algorithm. 
Possible topics are the complete and optimal assign- 
ment problems (UMAP module 317 by D. Gale), or the 
marriage problem (D. Gale and L. Shapley, American 
Mathematical Monthly 69, 1962, p. 9). 

See chapters on simulation in many 
books and “Four-Way Stop or Traffic Light? An Illus- 
tration of the Modeling Process” by E. Packel (in Mod- 
ules in Applied Mathematics, vol. 3, W. Lucas, editor, 
Springer-Verlag). Additional ideas from Inventory The- 
ory, Scheduling Theory, Dynamic Programming, and 
Control Theory, e.g., lunar landing, can be included. 

Projects and Mini-projects. At least one significant 
project type activity should be pursued over several 
weeks by the whole class by means of a sequence of 

Simulation. 

graded exercises and class discussions. Some of the t o p  
ics listed above can be treated in this mode. Other suit- 
able topics are: the Apportionment Problem (Fair R e p  
resentation by M. Balinski and H. Young, Yale Press); 
measuring power in Weighted Voting situations (W. 
Lucas in Case Studies in Applied Mathematics MAA, 
1976); Cost Analysis (C. Clark in same Case Studies 
on harvesting fish or forests); some simple topics from 
statistics such as Asking Sensitive Questions, module by 
J. Maceli (in Modules in  Applied Mathematics, vol. 2, 
W. Lucas, editor, Springer-Verlag); and Social Choice 
Theory and Voting (Theory of Voting by R. Farquhar- 
son, Yale, 1960). 

In addition to  the class project, teams of two or 
three students can spend a few weeks on a mini-project. 
Many of the topics above can be applied to a local prac- 
tical problem. Scheduling, inventory and optimal al- 
locations are good topics, as are gaming experiments, 
simulations and elementary statistical studies. More 
theoretical topics, ranging from walking versus running 
in the rain to designing the inside mechanism of the 
Rubik’s Cube are also possible. Some attempt at dis- 
cussing possible implementation of a mini-project re- 
sult, e.g., with a campus administrator, is encouraged 
in order to  show the practical difficulties of implement- 
ing mathematically optimal procedures. 

Introductory Stochastic Processes 

The purpose of this course is to  introduce the stu- 
dent to the basic mathematical aspects of the theory of 
stochastic processes and its applications. This course 
can equally well be offered under such alternate titles as 
Applied Probability or Operations Research: Stochas- 
tic Models. Stochastic processes is a large and growing 
field. This course will lay background for further learn- 
ing on the job or in graduate school. 

The prerequisite for this course is a t  least the equiv- 
alent of a full course of post-calculus probability incllud- 
ing the following topics: random variables, common 
univariate and multivariate distributions, moments, 
conditional probability, stochastic independence, c:on- 
ditional distributions and means, generating functions, 
and limit theorems. Such a course is fairly traditional 
now, but if most students have had just the integrated 
statistics and probability course suggested by the Statis- 
tics Subpanel, then the beginning of the stochastic pro- 
cesses course would have to  be devoted to  completing 
the needed probability background. It is also desirable 
for students to  have some experience with basic matrix 
algebra and with using computer terminals. 

The course should slight neither mathematical the- 
ory nor its applications. It is better to  cover few topics 
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with a full discussion of both theory and applications 
to  survey theory alone or to  cover only applications. 
The course emphasizes problem solving and develops an 
acquaintance with a variety of models that are widely 
used. Stochastic modeling and problem formulation are 
different activities that  should be treated in a modeling 
course. If many students do not subsequently take a 
modeling course, then the instructor should consider 
allocating some time (assuming course time did not 
also have to  be devoted to  probability) to  a module 
on stochastic modeling in business or government (see 
list of modules below) or to a real problem at the local 
college, e.g., modeling the demand for textbooks in the 
bookstore or utilization of campus parking spaces. 

Computers should be used in this course in two ways: 
0 As a computational aid to  perform, for example, 

matrix calculations needed in Markov chain theory; 
and 
As a simulation device to  exhibit the behavior of 
random processes. 

Understanding randomness is difficult for undergradu- 
ates and discussion of data  accumulated in simulation 
studies can help overcome students’ deterministic bi- 
ases. 

COURSE CONTENT 

Bernoulli process; Markov chains (random walks, 
classification of states, limiting distributions); Poisson 
process (as limit of binomial process and as derived 
via axioms); Markov processes (transition functions 
and state probabilities, Kolmogorov equations, limiting 
probabilities, birth-death processes). 

These basic topics have numerous applications that 
should be an essential feature of the course. In addition, 
some applied topics can be covered such as quality con- 
trol, social and occupational mobility, Markovian deci- 
sion processes, road traffic, reliability, queueing prob- 
lems, population dynamics or inventory models. In- 
structors can find these and other applications in the 
many good texts on stochastic processes. Also see the 
modules and modeling texts listed at the end of this 
chapter. 

Continuous Modeling 
A primary goal of a continuous modeling course is 

to present the mathematical analysis involved in sci- 
entific modeling, as for example, the derivation of the 
heat equation. The course should also give an introduc- 
tion to  important applied mathematics topics, such as 
Fourier series, regular and singular perturbations, sta- 
bility theory and tensor analysis. A few advanced t o p  
ics can be chosen from boundary layer theory, nonlinear 

waves and calculus of variations. The course should give 
a solid motivation for more advanced courses in these 
topics. A (non-original) paper on a topic of interest 
to  the students serves the dual purpose of developing 
communication skills and introducing pledagogical flex- 
ibility. 

A course on continuous modeling usually has as a 
prerequisite a course in differential equations, although 
the modeling can be taught concurrently or integrated 
in one course, using a book such as Martin Braun’s 
Differential Equations and Their Appkations (second 
edition), Springer-Verlag, 1978. Continuous modeling 
problems frequently involve concepts from natural sci- 
ences. In this case, it is important that either an appro- 
priate background is required of students or the techni- 
cal essentials are adequately introduced in the course. 

The texts by Lin and Segal and by Haberman (see 
below) are well suited for this course. Selections from 
the two-volume Lin and Segal text can be used to pro- 
vide a solid basis for physics and engineering modeling 
using both classical subjects, such as fluids, solids and 
heat transfer, and modern subjects, such as fields of bi- 
ology. The text’s broad coverage probably includes an 
introduction to an area of expertise of the instructor to 
which he or she can bring personal research insights. 

A course which requires a little less sophistication 
can be designed around Haberman’s book. This text’s 
topics in population dynamics, oscillations, and traffic 
theory require less scientific background than topics in 
mechanics and mathematical biology, lbut still provide 
an excellent basis for modeling discussions. For exam- 
ple, population dynamics provide a good introduction 
to  dynamical systems. Topics in regular and singular 
perturbation theory can be presented in the context of 
oscillations. Traffic theory provides a vehicle for intro- 
ducing continuum mechanical modeling in which the 
processes are readily appreciated by students. Here the 
“microscopic” processes involve cars amd drivers, and 
interesting models are obtained by car-following theory. 
Traffic flows also involve partial differential equations 
and shock waves. 

References on Modeling 

Modules 

A.  MODULE WRITING PROJECTS 
Claremont Graduate School (Department of Mathemat- 
ics): 

A Fractional Calculus Approach to a Simplified Air 
Pollution Model for Perturbation Analysis. 
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Continuous-system Simulation Languages for DEC- 
10. 

* Free Vibrations in the Inner Ear. 
* Modeling of Stellar Interiors. 

Subsurface Areal Flow Through Porous Media. 
Variance Reduction for Monto Carlo Applications 

Voting Games and Power Indices. 
Involving Deep Penetration. 

Mathematical Association of America’s Committee on 
the Undergraduate Program in Mathematics Project, 
Case Studies in Applied Mathematics (designed espe- 
cially for open-ended experiential teaching). 

Measuring Power in Weighted Voting Systems. 
A Model for Municipal Street Sweeping Operations. 

* A Mathematical Model of Renewable Resource Con- 
servation. 

* Dynamics of Several-species Ecosystems. 
* Population Mathematics. 

MacDonald’s Work on Helminth Infections. 
Modeling Linear Systems by Frequency Response 
Methods. 
Network Analysis of Steam Generator Flow. 

* Heat Transfer in Frozen Soil. 

Mathematical Association of America Summer 1976 
Module-writing Conference (at Cornell University De- 
partment of Operations Research): 

* About sixty modules covering virtually all areas of 
application, such as biology, ecology, economics, en- 
ergy, population dynamics, traffic flow, vibrating 
strings, and voting. 
Selected modules from this conference along with 
MAA applied mathematics case studies (ii) above 
were published by Springer-Verlag (New York, 
1983) in four volumes, edited by William Lucas. 

Rensselaer Polytechnic Institute (Department of Math- 
ematical Sciences), published in Case Studies in Mathe- 
matical Modeling, by W. Boyce, Pitman, Boston, 1981: 

Herbicide Resistance. 
* Elevator Systems. 
* Traffic Flow. 

Shortest Paths in Networks. 
Computer Data Communication and Security. 
Semiconductor Crystal Growth. 

State University of New York at Stony Brook (Depart- 
ment of Applied Mathematics and Statistics): 

A Model for Land Development. 
A Model for Waste Water Disposal, I and 11. 
A Water Resource Planning Model. 
Man in Competition with the Spruce Budworm. 

* Smallpox: When Should Routine Vaccination be 
Discontinued. 

Stochastic Models for the Allocation of Fire Com- 
panies. 

B. MODULES DEVELOPED BY INDIVIDUALS 
Undergraduate Mathematics Application Project 
(UMAP): UMAP has several hundred modules cov- 
ering all areas of application. Selected modules ap- 
pear in the UMAP Journal (four issues a year), 
published by Birkhauser-Boston. UMAP catalogue 
available by writing to: UMAP, Educational De- 
velopment Center, 55 Chapel Street, Newton, MA 
02160. 

c. PROCEEDINGS OF MODELING CONFERENCES 

1. Discrete Mathematics and Its Applications, Pro- 
ceedings of a Conference at Indiana University, ed. 
M. Thompson, 1976. 

2. Mathematical Models in the Undergraduate Cur- 
riculum, Proceedings of Conference a t  Indiana TJni- 
versity, ed. D. Maki and M. Thompson, 1975. 

3. Proceedings of Summer Seminar on Applied Mathe- 
matics, ed. M. Thompson, Indiana University, 1!)78. 

4. Mathematical Models for Environmental Problems, 
Proceedings of the International Conference a t  the 
University of Southampton, 1976. 

5 .  Proceedings of Conference on Environmental Mod- 
eling and Simulation, Environmental Proteciion 
Agency, 1976. 

6. Proceedings of a Conference on the Application 
of Undergraduate Mathematics in the Engineer- 
ing, Life, Managerial and Social Sciences, ed. P. 
Knopp and G. Meyer, Georgia Institute of Technol- 
ogy, 1973. 

7. Proceedings of the Pittsburgh Conferences on Mod- 
eling and Simulations, Vols. 1-9 (1969-78), Instru- 
ment Society of America. 

8. Proceedings of the Summer Conference for College 
Teachers on Applied Mathematics, University of 
Missouri-Rolla, 1971. 

9. Information Linkage Between Applied Mathematics 
and Industry, ed. P. Wang, Academic Press, 19’76. 

Articles on Teaching Modeling 
1. J. Agnew and M. Keener, A Case-study Course 

in Applied Mathematics Using Regional Industries, 
American Mathematical Monthly 87 (1980). 

2. R. Barnes, Applied Mathematics: An Introduction 
Via Models, American Mathematical Monthly 84 
(1977). 

3.  C. Beaumont and R. Wieser, Co-operative F’ro- 
grammes in Mathematical Sciences a t  the Univer- 
sity of Waterloo, Journal of Co-operative Education 
11 (1975). 
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4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

J. Becker, R. Borrelli, and C. Coleman, Models for 
Applied Analysis, Harvey Mudd College, 1976 and 
revised annually. 
R. Borrelli and J. Spanier, The Mathematics Clinic: 
A Review of Its First Seven Years, UMAP Journal 
2 (1981). 
R. Borton, Mathematical Clinic Handbook, Clare- 
mont Graduate School, 1979. 
J. Brookshear, A Modeling Problem for the Class- 
room, American Mathematical Monthly 85 (1978). 
E. Clark, How To Select a Clinic Project, Harvey 
Mudd College, 1975. 
C. Hall, Industrial Mathematics: A Course in Real- 
ism, American Mathematical Monthly 82 (1975). 
L. Handa, Mathematics Clinic Student Handbook: 
A Primer for Project Work, Harvey Mudd College, 
1979. 
J. Hachigian, Applied Mathematics in a Liberal 
Arts Context, American Mathematical Monthly 85 
(1978). 
E.  Rodin, Modular Applied Mathematics for Begin- 
ning Students, American Mathematical Monthly 84 
(1977). 
R. Rubin, Model Formulation Using Intermedi- 
ate Systems, American Mathematical Monthly 86 
(1 979). 
M. Seven and T. Zagar, The Engineering Clinic 
Guidebook, Harvey Mudd College, 1975. 
D. Smith, A Seminar in Mathematical Model- 
building, American Mathematical Monthly 86 
(1979). 
J .  Spanier, The Mathematics Clinic: An Innovative 
Approach to  Realism Within an Academic Environ- 
ment, American Mathematical Monthly 83 (1976). 

Books on Mathematical Modeling 
For further references, see Applications section of A Ba- 
sic Library List, Mathematical Association of America, 
1976. 

A. 

1. 

2. 

3. 

4. 

5. 

GENERAL MODELING 

J. Andrew and R. McLone, ed., Mathematical Mod- 
eling, Butterworth, 1976. 
R. Aris, Mathematical Modeling Techniques, Pit- 
man, 1978. 
E. Beltrami, Mathematics for Dynamic Modeling, 
Academic Press, 1987. 
E. Bender, An Introduction to Mathematical Mod- 
eling, Wiley, 1978. 
G. Carrier, Topics in Applied Mathematics, Vol. I 
and 11, MAA summer seminar lecture notes, Math- 
ematical Association of America, 1966. 

6. C. Coffman and G. Fix, ed., Constructive Ap- 
proaches to  Mathematical Models, Academic Press, 
1980. 

7. R. DiPrima, ed., Modern Modeling of Continuous 
Phenomena, American Mathematical Society, 1977. 

8. C. Dym and E. Ivey, Principles of Mathematical 
Modeling, Academic Press, 1980. 

9. B. Friedman, Lectures on Applications-oriented 
Mathematics, Holden-Day, 1969. 

10. F. Giordano and M. Weir, A First Course in Math- 
ematical Modeling, Brooks/Cole, 1!985. 

11. P. Lancaster, Mathematics Models of the Real 
World, Prentice Hall, 1976. 

12. D. Maki and M. Thompson, MathLematical Models 
and Applications, Prentice Hall, 1976. 

13. F. Roberts, Discrete Mathematical Models, Prentice 
Hall, 1976. 

14. T. Saaty, Thinking with Models, AAAS Study 
Guides on Contemporary Problems No. 9, 1974. 

B. MODELING IN VARIOUS DISCIPLINES 

Mathematical modeling is such an integral part of 
physics and engineering that any text in these fields 
is implicitly a mathematical modeling book. 
1. 

2. 

3. 

4. 

5.  

6. 

7. 

8. 
9. 

10. 

11. 

12. 

13. 

P. Abell, Model Building in Sociology, Shocken, 
1971. 
R. Aggarwal and I. Khera, Management Science 
Cases and Applications, Holden-Day, 1979. 
R. Atkinson, et al., Introduction to  Mathematical 
Learning Theory, Krieger Publishing, 1965. 
D. Bartholomew, Stochastic Models for Social Pro- 
cesses, Wiley, 1973. 
M. Bartlett, Stochastic Population Models, 
Methuen, 1960. 
R. Barton, A Primer on Simulation and Gaming, 
Prentice Hall, 1970. 
S. Brams, Game Theory and Pollitics, The Free 
Press, 1975. 
C. Clark, Mathematical Bioeconom,ics, Wiley, 1976. 
J. Coleman, Introduction to Mathematical Sociol- 
ogy, Free Press, 1964. 
P. Fishburn, The Theory of Social Choice, Princeton 
University Press, 1973. 
J. Frauenthal, Introduction to Population Modeling, 
UMAP Monograph, 1979. 
H. Gold, Mathematical Modeling of Biological Sys- 
tems, Wiley, 1977. 
S .  Goldberg, Some Illustrative Ezamples of the 
Use of Undergraduate Mathematics in the Social 
Sciences, Mathematical Associatiion of America, 
CUPM Report, 1977. 
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14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 
25. 

M. Gross, Mathematical Models in Linguistics, 
Prentice Hall, 1972. 
R. Haberman, Mathematical Models, Mechanical 
Vibrations, Population Dynamics and %fit Flow, 
Prentice Hall, 1977. 
F. Hoppensteadt, Mathematical Theories of Popu- 
lations: Demographics and Epidemics, SIAM, 1976. 
J. Kemeny and L. Snell, Mathematical Models in the 
Social Sciences, MIT Press, 1973. 
C. Lave and J. March, An Introduction to Models 
in the Social Sciences, Harper and Row, 1975. 
C. Lin and L. Segal, Mathematics Applied to Deter- 
ministic Problems in the Natural Sciences, Macmil- 
Ian, 1974. 
D. Ludwig, Stochastic Population Theories, 
Springer, 1974. 
J. Maynard-Smith, Models in Ecology, Cambridge 
University Press, 1974. 
B. Noble, Applications of Undergraduate Mathe- 
matics t o  Engineering, Mathematical Association of 
America, 1976. 
M. Olinik, An Introduction to Mathematical Mod- 
els in the Social and Life Sciences, Addison Wesley, 
1978. 
E. Pielou, Mathematical Ecology, Wiley, 1977. 
H. Pollard, Mathematical Introduction to  Celestial 

Mechanics, Mathematical Association of America, 
1977. 

26. J. Pollard, Mathematical Models for the Growth of 
Human Populations, Cambridge University Press, 
1973. 

27. D. Riggs, The Mathematical Approach to  Physiolog- 
ical Problems, Macmillan, 1979. 

28. T. Saaty, Topics in Behavioral Mathematics, MAA 
summer seminar lecture notes, Mathematical Asso- 
ciation of America, 1973. 

29. H. Scarf, et al., Notes on Lectures on Mathematics 
in the Behavioral Sciences, MAA summer seminar 
lecture notes, Mathematical Association of Amer- 
ica, 1973. 

30. C. von Lanzenauer, Cases in Operations Reseawh, 
Holden Day, 1975. 

31. H. Williams, Model Building in Mathematical Pro- 
gramming, Wiley, 1978. 
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ROBERT BORRELLI, Harvey Mudd College. 
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Statistics 

This chapter contains the report of the Subpanel on 
Statistics of the CUPM Panel on  a General Mathemat- 
ical Sciences Progmm, reprinted with minor changes 
f rom Chapter VI of the 1981 CUPM report entitled 
RECOMMENDATIONS FOR A GENERAL MATHEMATICAL 
SCIENCES PROGRAM. 

Introductory Course 

Statistics is the methodological field of science that 
deals with collecting data,  organizing and summariz- 
ing data, and drawing conclusions from data. Although 
statistics makes essential use of mathematical tools, es- 
pecially probability theory, it is a misrepresentation of 
statistics to  present it as essentially a subfield of math- 
ematics. 

The Statistics Subpanel believes that an introduc- 
tory course in probability and statistics should con- 
centrate on data  and on skills and mathematical tools 
motivated by the problems of collecting and analyzing 
data. The traditional undergraduate course in statisti- 
cal theory has little contact with statistics as it is prac- 
ticed and is not a suitable introduction to  the subject. 
Such a course gives little attention to data collection, 
to analysis of data  by simple graphical techniques, and 
to checking assumptions such as normality. 

The field of statistics has grown rapidly in applied 
areas such as robustness, exploratory data  analysis, 
and use of computers. Some of this new knowledge 
should appear in a first course. It is now inexcusable to 
present the two-sample t-test for means and the F-test 
for variances as equally legitimate when a large litera- 
ture demonstrates that  the latter is so sensitive to  non- 
normality as t o  be of little practical value, while the 
former (at least for equal sample sizes) is very robust 
(e.g., see Pearson and Please, Biometrika 62 (1975), pp. 
223-241, for an effective demonstration). However, the 
Statistics Subpanel does not believe that a course in 
“exploratory data  analysis” is a suitable introduction 
to statistics, nor does it advocate replacing (say) least 
squares regression by a more robust procedure in a first 
course. But it does think that new knowledge renders 
a course devoted solely to  the theory of classical para- 
metric procedures out of date. 

While the Statistics Subpanel prefers a two-semester 
introductory sequence in probability and statistics, en- 
rollment data  shows that most students take only a sin- 

gle course in this area. The course proposed below gives 
students a representative introduction to  both the data- 
oriented nature of statistics and the makhematical con- 
cepts underlying statistics. These broad objectives raise 
several issues that require preliminary comment. One 
year of calculus is assumed for this course. The course 
should use Minitab or a similar interactive statistical 
package. 

The Place of Probability 

Probability is an essential tool in several areas of the 
mathematical sciences. It is not possib1.e to  compress a 
responsible introduction to probability and coverage of 
statistics into a single course. The Statistics Subpanel 
therefore recommends that probability topics be divided 
between the courses on probability anti statistics, dis- 
crete methods, and modeling/operations research as fol- 
lows: 

* Probability and statistics course: Axioms and basic 
properties; random variables; univariate probability 
functions and density functions; moments; standard 
distributions; Laws of Large Numb’ers and Central 
Limit Theorem. 
Discrete methods course: Combinzrtorial enumera- 
tion problems in discrete probability. 
Modeling/operations research cour,Se: Conditional 
probability and several-stage models; stochastic 
processes. 

This division is natural in the sense that the respective 
parts of probability are motivated by and applied to the 
primary concerns of these courses. 

Alternative Arrangements 

The subpanel is convinced that two semesters are 
required for a firm introduction to both probability 
and statistics. Many institutions now offer such a two- 
semester sequence in which probabilit,y is followed by 
statistics. The subpanel prefers this structure. In this 
sequence the statistics course should be revised to  incor- 
porate the topics and flavor of the data  analysis section 
of the proposed unified course. With probability first, 
added material in statistics can also be covered, such as 
Neyman-Pearson theory, distribution-free tests, robust 
procedures, and linear models. 

Institutions will vary considerably in their choice of 
material for this statistics course, but the subpanel reit- 
erates its conviction that the traditional “theory-only” 



statistics course is not a wise choice. If experience 
shows that many students drop out in the middle of 
a two-course sequence, the unified course outlined be- 
low should be adopted, followed by one of the elective 
courses suggested in Section 3 of this chapter. 

Instructor Preparation 

Since the recommended outline is motivated by data 
and shaped by the modern practice of statistics, many 
mathematically trained instructors will be less prepared 
to  teach this course than a traditional statistical theory 
course. Growing interest in “applied” statistics has, of 
course, led many instructors to broaden their knowl- 
edge. Some background reading is provided for others 
who wish to  do so. The publications listed here contain 
material that can be incorporated in the recommended 
course, but none is suitable as a course text. In order 
of ascending level: 

1. Tanur, Judith, et al., eds., Statistics: A Guide to 
the Unknown, Second Edition, Holden-Day, 1978. 

An elementary volume describing important ap- 
plications of statistics and probability in many 
fields of endeavor. 

2. Moore, David, Statistics: Concepts and Controver- 

A paperback with good material on data collec- 
tion, statistical common sense, appealing exam- 
ples, and the logic of inference. 

3. Freedman, David; Pisani, Robert; Purves, Roger, 

A careful introduction to  elementary statistics 
written with conceptual richness, attention to 
the real world, and awareness of the treachery 
of data. 

4. Mosteller, Frederick and Tukey, John, Data Analy- 

Good ideas on exploratory data analysis, robust- 
ness and regression. 

5. Box, George; Hunter, William; Hunter, J .  Stuart, 

Applied statistics explained by experienced 
practical statisticians. Some specialized mate- 
rial, but much of the book will repay careful 
reading. 

6.  Efron, Bradley, “Computers and the Theory of 
Statistics: Thinking the Unthinkable,” SIAM Re- 
view, October, 1979. 

A superb article on some new directions in 
statistics, written for mathematicians who are 
not statisticians. 

sies, W.H. Freeman, 1979. 

Statistics, W.W. Norton, 1978. 

sis and Regression, Addison-Wesley, 1977. 

Statistics f o r  Ezperimenters, Wiley, 1978. 

Course Outline 

I. Data (about 2 weeks) 

Random sampling. Using a table of random digits; 
simple random samples, experience with sampling 
variability of sample proportions and means; strat- 
ified samples as a means of reducing variability. 
Ezperimental design. Why experiment; motivation 
for statistical design when field conditions for liv- 
ing subjects are present; the basic ideas of control 
and randomization (matching, blocking) to  red.uce 
variability. 

COMMENTS: Data collection is an important part of 
statistics. It meets practical needs (see Moore) andjus- 
tifies the assumptions made in analyzing data  (see Box, 
Hunter and Hunter). Experience with variability helps 
motivate probability and the difficult idea of a sam- 
pling distribution. Students should see for themselves 
the results of repeated random sampling from the same 
population and the variability of data  in simple experi- 
ments such as comparing 3-minute performance of egg 
timers (see W.G. Hunter, American Statistician, 1977, 
pp. 12-17, for suggestions). 

11. Organizing and Describing Data 

(about 2 weeks) 
Tables and graphs. Frequency tables and his- 
tograms; bivariate frequency tables and the mislead- 
ing effects of too much aggregation; standard line 
and bar graphs and their abuses; box plots; spot- 
ting outliers in data. 
Univariate descriptive statistics. Mean, median isnd 
percentiles; variance and standard deviation; a few 
more robust statistics such as the trimmed mean. 
Bivariate descriptive statistics. Correlation; fitting 
lines by least squares. If computer resources permit, 
least-square fitting need not be restricted to  lines. 

COMMENTS: In addition to  simple skills, students 
must be trained to  look at data  and be aware of pit- 
falls. Freedman, Pisani and Purves have much good 
material on this subject, such as the perils of aggrega- 
tion (pp. 12-15). The impressive effect on a correlation 
of keypunching 7.314 as 731.4 should be pointed out. 
Simple plots are a powerful tool and should be stressed 
throughout the course as part of good practice. 

111. Probability (about 4 weeks) 

General probability. Motivation; axioms and bisic 
rules, independence. 
Random variables. Univariate density and proba- 
bility functions; moments; Law of Large Numbers. 
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0 Standard distributions. Binomial, Poisson, expo- 
nential, normal; Central Limit Theorem (without 
proof). 
More ezperience with randomness. Use in computer 
simulation to illustrate Law of Large Numbers and 
Central Limit Theorem. 

COMMENTS: Probability must unavoidably be 
pressed in a unified course that includes data analysis. 
Instructors should repeatedly ask “What probability do 
I need for basic statistics?” and “What can the students 
learn within about four weeks?” It is certainly the case 
that combinatorics, moment generating functions, and 
continuous joint distributions must be omitted. Some 
instructors may be able to  cover conditional probability 
and Bayes’ theorem in addition to the outline material. 

IV. Statistical Inference (about 6 weeks) 

Statistics us. probability. The idea of a sampling 
distribution; properties of a random sample, e.g., it 
is normal for normal populations; the Central Limit 
Theorem. 
Tests of significance. Reasoning involved in alpha- 
level testing and use of P-values to assess evi- 
dence against a null hypothesis; cover one- and 
two-sample normal theory tests and (optional) chi- 
square tests for categorical data. Comment on ro- 
bustness, checking assumptions, and the role of de- 
sign (Part I) in justifying assumptions. 
Point estimation methods. Method of moments; 
maximum likelihood; least squares; unbiasedness 
and consistency. 
Confidence intervals. Importance of error estimate 
with point estimator; measure of size of effect in a 
test of significance. 
Inference in  simple linear regression. 

COMMENTS: A firm grasp of statistical reasoning is 
more important than coverage of a few additional spe- 
cific procedures. For much useful material on statis- 
tical reasoning such as use of the “empirical rule” to 
assess normality, see Box, Hunter and Hunter. Don’t 
just say, “We assume the sample consists of iid normal 
random variables.” Applied statisticians favor P-values 
over fixed alpha tests; a comparative discussion of this 
issue appears in Moore. 

RECOMMENDED TEXTS 
The Subpanel is not aware of a text at the post- 

calculus level that fits the recommended outline closely. 
Instructors should seriously consider adopting a good 
post-calculus statistical methods text rather than a the- 
oretical statistics text. A methods text is more likely 
to have examples and problems which have the ring of 

truth. Moreover, most instructors will find it easy to 
supplement a methods text with mathematical mate- 
rial and problems familiar from previous teaching. It is 
much harder to supply motivation and realistic prob- 
lems, and it is psychologically difficult for both the 
teacher and student to skip much of the probability in 
a mathematical statistics text. 

The following books are possible texts or reference 
material for the course described above. All of these 
have essentially the same shortcoming of being too ‘un- 
mathematical.” The appropriate combination of level of 
sophistication and content is not now a.vailable under a 
single cover. The class of books below fall in the “inter- 
mediate” level between an elementary statistics course 
and a first course in mathematical statistics. 

Box, George; Hunter, William; Hunter, J. Stuart, 
Statistics for Ezperimenters: A n  Introduction to 
Design, Data Analysis, and Modei! Building, John 
Wiley & Sons, New York, 1978. 
Moore, David and McCabe, George, Introduction to 
the Practice of Statistics, Freeman, San Francisco, 
1989. 
Ott, Lyman, A n  Introduction to Statistical Meth- 
ods and Data Analysis, Second Edition, Duxbury, 
Boston, 1984. 
Neter, John; Wasserman, William; Whitmore, 
G.A., Applied Statistics, Allyn and Bacon, Boston, 
1978. 

Additional Courses 

Probability and Statistical Theory 

CONTENT: Distribution functions; moment and 
probability generating functions; joint, marginal and 
conditional distributions; correlations; distributions of 
functions of random variables; Chebyschev’s inequal- 
ity; convergence in probability; limiting distributions; 
power test and likelihood ratio tests; introduction to 
Bayesian and nonparametric statistic!a; additional re- 
gression topics. 

COMMENT: This course is designed to complete the 
traditional probability-then-statistics sequence. Since 
the students have already completed a semester of 
study, they should be capable of tackling a good text 
on mathematical statistics such as the one by DeGroot 
or by Hogg and Craig. The book by Bickel and Dok- 
sum is a little more difficult than the other two, and the 
teacher would have to supplement it with the topics in 
probability. 
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TEXTS: 

1. Mendenhall, William; Schaeffer, Richard; Wackerly, 
Dennis, Mathematical Statistics with Applications, 
Second Edition, Duxbury, Boston, 1981. 

2. Larsen, Richard and Marx, Morris, A n  Introduction 
to Probability and its Applications, Prentice-Hall, 
Englewood Cliffs, N. Jers., 1985. 

3. DeGroot, Morris M., Probability and Statistics, 
Addison-Wesley, Reading, Mass., 1975. 

4. Hogg, Robert and Craig, Allen, Introduction to 
Mathematical Statistics, Macmillan, New York, 
1978. 

Applied Statistics 

CONTENT: This course uses statistical packages to 
analyze data sets. Topics include linear and multiple re- 
gression; nonlinear regression; analysis of variance; ran- 
dom, fixed and mixed models; expected mean squares; 
pooling, modifications under relaxed assumptions; mul- 
tiple comparisons; variance of estimators; analysis of 
covariance. 

COMMENT: The new introductory course will proba- 
bly attract more students from other fields than the tra- 
ditional probability-then-statistics course. This course 
is an excellent follow-up for such non-mathematical sci- 
ences students. Its topics are among the more widely 

classic but covers only discrete probability. The book 
by Olkin, Gleser and Derman is at a slightly lower level 
and is more "applied" but will require the instructor 
to provide some supplementary materials. The book 
by Chung is excellent but must be read with a "grain 
of salt." The book by Breiman is also excellent but 
expects much of its reader. A new book by Johnson and 
Kotz also looks interesting but is restricted to discrete 
probability. The books by Chung, Feller and Breirnan 
are difficult for the average student. 

TEXTS: 
1. Olkin, Ingram; Gleser, Leon J.; Derman, Cyrus, 

Probability Models and Applications, Macmillan, 
New York, 1980. 

2. Larsen, Richard and Marx, Morris, A n  Introduction 
to Probability and its Applications, Prentice-Hall, 
Englewood Cliffs, N.J., 1985. 

3. ROSS, Sheldon, A First Course in Probability, Sec- 
ond Edition, Macmillan, New York, 1984. 

4. Chung, Kai Lai, Elementary Probability Theory with 
Stochastic Processes, Springer-Verlag, New York, 
1974. 

5. Feller, William, A n  Introduction to Probability The- 
ory and Its Applications, Volume I, John Wiley & 
Sons, New York, 1950. 

used statistical tools. Students should be expected to 
use a statistical computing package such as Minitab of 
SPSS for many of the analyses. The book by Miller and 
Wichern is a possible text for this course. 

TEXTS: 

Preparation for Graduate Study 
There are a large number of career opportunities for 

statisticians in industry, government and teaching. For 
example as of 1977, the Federal Government employed 
over 3500 statisticians. plus 3500 statistical assistants 

1. Miller, Robert and Wichern, Dean, Intermediate 
Business Statistics, Holt, Rinehart and Winston, 
New York, 1977. 

2. Neter, John; Wasserman, William; Kutner, Michael, 
Applied Linear Statistical Models, Second Edition, 
Irwin, 1985. 

3. Morrison, Donald, Applied Linear Statistical Meth- 
ods, Prentice-Hall, Englewood Cliffs, N. Jers., 1983. 

Probability and Stochastic Processes 

CONTENT: Combinatorics; conditional probability 
and independence; Bayes theorem; joint, marginal and 
conditional distributions; distribution functions; dis- 
tributions of functions of random variables; probabil- 
ity and moment generating functions; Chebyschev's in- 
equality; convergence in probability; convergence in dis- 
tribution; random walks; Markov chains; introduction 
to continuous-time stochastic processes. 

COMMENT: This is a fairly standard course and a 
number of texts are available. The book by Feller is a 

I -  

and numerous other employees performing statistical 
duties but classified in different job series. A recent 
report by the U.S. Labor Department, reprinted in the 
New York Times National Recruitment Survey, predicts 
an increase of 35% in the demand for statisticians dur- 
ing the 1980's. This compares to a predicted increase 
of 9% for mathematicians and 30% for computer s:pe- 
cialists. 

Preparation for a career in statistics usually involves 
graduate study. An undergraduate major in statistics, 
computer science, or mathematical sciences is the rec- 
ommended preparation for graduate study in statistics. 
It is desirable for such a major to include solid courses in 
matrix theory and real analysis, in addition to courses 
in probability and statistics. Most statistics graduate 
programs require matrix algebra and real analysis for 
fully matriculated admission. Either one of the sample 
programs in the report of the General Mathematical 
Sciences Panel in the first chapter would be adequate 
preparation for graduate study in statistics. However, 
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major A is preferable to major B, and both should in- 
clude at least one follow-on elective in probability and 
statistics. 

In addition to  courses in the mathematical sciences, 
a student preparing for graduate study in statistics 
should: 

Study in depth some subject where statistics is an 
important tool (physics, chemistry, economics, psy- 
chology, ...). In fact, a double major should be 
considered. 
Take as many courses as possible which are designed 
to enhance his or her communication skills. Statis- 
ticians in industry and government are often called 
upon to provide written reports and critiques; con- 
sulting requires clear oral communications. 

A detailed discussion of preparation for a statistical 
career in industry can be found in [l] A similar report, 

[2], discusses preparation for a career i.n government. 
1. Preparing Statisticians for Careers in Industry: Re- 

port of the ASA Section on Statistical Education. 
The American Statistician, 1980, pp. 65-80. 

2. Preparing Statisticians for Careers; in Government: 
Report of the ASA Section on Statistics in Govern- 
ment. Paper presented at the Amserican Statistical 
Association meeting in August, 1980. 

Panel Members: 

RICHARD ALO, CHAIR, Lamar University. 
RICHARD KLEBER, St. Olaf College. 
DAVID MOORE, Purdue University. 
MIKE PERRY , Appalachian State University. 
TIM ROBERTSON, University of Iowa. 





Discrete Mathematics 

In the early 1 9 8 0 ’ ~ ~  as computer science enrollments 
ballooned on campuses across the country, the Mathe- 
matical Association of America established an ad hoc 
Committee on Discrete Mathematics to help provide 
leadership to  the rapidly ezpanding efforts t o  create 
a course an discrete mathematics that would meet the 
needs of computer science and at the same time fit well 
into the traditional mathematics program. Thi3 com- 
mittee issued a report in  1986 that conveyed their own 
recommendations together with an appendia that in- 
cluded reports f rom siz ezperimental projects supported 
b y  the Alfred P .  Sloan Foundation. This chapter con- 
tains the report of the Committee, without the appendiz, 
preceded by  a new preface prepared by Committee Chair 
Martha Siegel. 

1989 Preface 

In the years since 1986 when the Committee on Dis- 
crete Mathematics in the First Two Years published its 
report, there have been many changes in the attitudes 
of mathematics departments toward curricular change. 
The Committee had found that faculty in disciplines 
that required calculus were quite supportive of propos- 
als to  introduce more discrete mathematics into the first 
two years. They frequently complained about the state 
of calculus and encouraged us to get our house in better 
order. Many mathematicians also expressed dissatisfac- 
tion with the calculus sequence. The threat of replacing 
some of the traditional calculus material with discrete 
topics certainly helped to turn attention to the teach- 
ing of calculus. This movement toward a “calculus for 
a new century” is exciting and timely. 

It is disappointing, however, that  there seem to be 
only a few attempts to  incorporate any significant dis- 
crete mathematics into the revision of the curriculum 
of the first two years. The discrete mathematics course 
seems to  be established in most schools as a separate 
entity. It is encouraging that the National Council of 
Teachers of Mathematics has established a Task Force 
on Discrete Mathematics to  help teachers implement 
curriculum standards for the inclusion of discrete math- 
ematics in the schools. 

Many new textbooks for the standard (usually one 
semester) discrete mathematics courses for the fresh- 
man or sophomore student have appeared or are in 
press. Publishers seem to find the market troublesome 

because there ia no consensus as to  the exact content 
of the course. Those suggestions offered by the Com- 
mittee as to topics that should be considered for in- 
clusion may have been loosely followed, but level and 
attitude of books vary widely. A bibliography which 
is current as of the end of 1988 appears in a report on 
discrete mathematics edited by Anthony Ralston (to ap- 
pear in the MAA Notes Series, 1989), as do final reports 
of the Sloan Foundation funded discrete mathematics 
projects. 

New freshman-sophomore textbooks continue to  ap- 
pear. For the immediate future, it seems as if a one- 
or two-semester discrete mathematics course, indepen- 
dent of (but at the same level as) calculus will be the 
typical one. Recent advances such as ISETL, a com- 
puter language for the teaching of discrete mathematics 
(Learning Discrete Mathematics with I‘SETL, by Nancy 
Baxter, Ed Dubinsky, and Gary Levin), and the True 
BASIC Discrete Mathematics package(by John Kemeny 
and Thomas Kurtz, Addison-Wesley) may affect how 
the course evolves. Those few effork to  incorporate 
discrete mathematics into the calcululs and the course- 
ware that are being developed merit our attention for 
the future. 

Who teaches discrete mathematics? Most mathe- 
matics departments have a course, though sometimes 
only on the junior-senior level. Sometimes the elemen- 
tary course is offered in the computer science depart- 
ment or in engineering. The 1985-86 CBMS survey in- 
dicates that  more than 40% of all institutions require 
discrete mathematics for computer science majors. Of 
universities and four-year colleges, about 60% require 
discrete mathematics or discrete structures. It is also 
not uncommon that mathematics ma.jors are required 
to take some discrete mathematics. 

The most recent accreditation standards issued by 
the Computer Sciences Accreditation Board include a 
discrete mathematics component. The most recent re- 
port of the ACM Task Force on the Core of Computer 
Science defines nine areas as the core of computer sci- 
ence (Communications of ACM,  Jan. 1989, 32:l). In 
all but a few areas, discrete matheinatics topics are 
listed as support areas. For algorithrnls and data struc- 
tures, for example, students should be familiar with 
graph theory, recursive functions, recurrence relations, 
combinatorics, induction, predicate and temporal logic, 
among other things. Boolean algebra and coding the- 
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ory are considered part of the architecture component. 
Students certainly would need discrete mathematics as 
a prerequisite for many of the computer core courses. 
Graph theory, logic, and algebra appear in a significant 
number of necessary support areas. 

Although the Committee on Discrete Mathematics in 
the First Two Years was dissolved after its 1986 report 
was issued, concerns of the Committee have been in- 
corporated into the mission of the MAA Committee on 
Calculus Revision and the First Two Years (CRAFTY). 
Aside from concentration on the calculus initiatives 
across the country, CRAFTY is interested in continu- 
ing the effort of the earlier group to  see discrete mathe- 
matics become part of the typical freshman-sophomore 
curriculum in any of the mathematical sciences. The 
goal is to increase the effectiveness of the curriculum in 
serving other disciplines while providing enough excite- 
ment and challenge to attract talented undergraduates 
to major in mathematics. 

MARTHA J .  SIEGEL 
Towson State University 
March, 1989 

Introduction and History 
The Committee on Discrete Mathematics in the First 

Two Years was established in the spring of 1983 for the 
purpose of continuing the work begun a t  the Williams 
College Conference held in the summer of 1982. That 
conference brought to a forum the issue of revising the 
college curriculum to reflect the needs of modern pro- 
grams and the students in them. Anthony Ralston 
and Gail Young brought together 29 scientists (24 of 
whom were mathematicians) from both industry and 
academe to discuss the possible restructuring of the 
first two years of college mathematics. Although the 
growing importance of computer science majors as an 
audience for undergraduate mathematics was an impor- 
tant motivation for the Williams Conference, the con- 
ference concerned itself quite broadly with the need to  
revise the first two years of the mathematics curricu- 
lum for everyone-mathematics majors, physical sci- 
ence and engineering majors, social and management 
science majors as well as computer science majors. The 
papers presented and discussed at the conference, and 
collected in The Future of College Mathematics [35], re- 
flect this breadth of view. 

The word used to  describe what was needed was "dis- 
crete" mathematics. Most of us knew what that meant 
approximately and respected the content as good math- 
ematics. To illustrate the discrete mathematics topics 

that might be considered for an elementary course:, two 
workshop groups at the William Conference produced 
(in a very short time) a fairly remarkable set of two 
course sequences: 

1. 

2. 

A two year sequence of independent courses, one 
in discrete mathematics and one in a streaml.ined 
calculus, and 

A two year integrated course in discrete and contin- 
uous mathematics (calculus) in a modular form for 
service to  many disciplines. 

These course outlines were admittedly tentative and 
needed refinement and testing. At the same time, the 
CUPM-CTUM Subcommittee on Service Courses had 
been examining the traditional service course offerings 
of the first two years. The syllabi of these courses, in 
which many freshman and sophomores are required to 
enroll, are studied periodically for their relevancy. Fi- 
nite mathematics, linear algebra, statistics, and calculus 
are considered to be essential to many majors, but with 
the importance of the computer, the Subcommittee on 
Service Courses concluded that even the mathematics 
majors need mathematics of a new variety, not only so 
they can take computer science courses, but also so they 
can work on contemporary problems in mathematics. 

At that time, there were few or no textbooks or ex- 
amples of such courses for the community to  share.. At 
the suggestion of the Subcommittee on Service Courses, 
the MAA agreed to  help to develop the William courses 
further through the Committee on Undergraduate Pro- 
gram in Mathematics (CUPM) and the Committee on 
the Teaching of Mathematics (CTWM), standing com- 
mittees of the Association. That led to  the estab- 
lishment of the committee responsible for this report. 
Funds for the effort were secured from the Sloan Foun- 
dation. The members of the committee were chosen 
especially to reflect the communities who would even- 
tually be most affected by any changes in the traditional 
mathematics curriculum. 

In addition to the development of course outlines 
and plans for their implementation, the committee was 
also involved in the observation of a set of experi- 
mental projects which also were begun as a result of 
the Williams Conference and the interest of the Sloan 
Foundation. After the conference, the Sloan Founda- 
tion solicited about thirty proposals for courses which 
would approximate the syllabi suggested by the work- 
shop participants. The call for proposals particularly 
mentioned the need for the development of text :ma- 
terial and classroom testing and emphasized the hope 
that some schools would make the effort to  try the inte- 
grated curriculum. Six schools were ultimately chosen: 
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Colby College, Waterville, Maine. 
0 University of Delaware, Newark, Delaware. 

University of Denver, Denver, Colorado. 
0 Florida State University, Tallahassee, Florida. 

Montclair State College, Montclair, New Jersey. 
St. Olaf College, Northfield, Minnesota. 

The committee, together with some of the committee 
which chose the proposals to  be funded (Don Bushaw, 
Steve Maurer, Tony Ralston, Alan Tucker, and Gail 
Young), monitored their progress for the two year pe- 
riod of funding, ending in August 1985. (Complete re- 
ports of these funded projects will appear in an MAA 
Notes volume on discrete mathematics to  be published 
in 1989.) 

Summary of Recommendations 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Discrete mathematics should be part of the first two 
years of the standard mathematics curriculum at all 
colleges and universities. 
Discrete mathematics should be taught at the intel- 
lectual level of calculus. 
Discrete mathematics courses should be one-year 
courses which may be taken independently of the 
calculus. 
The primary themes of discrete mathematics 
courses should be the notions of proof, recursion, 
induction, modeling, and algorithmic thinking. 
The topics to  be covered are less important than the 
acquisition of mathematical maturity and of skills in 
using abstraction and generalization. 
Discrete mathematics should be distinguished from 
finite mathematics, which as it is now most often 
taught, might be characterized as baby linear alge- 
bra and some other topics for students not in the 
“hard” sciences. 
Discrete mathematics should be taught by mathe- 
mat ic ians. 
All students in the sciences and engineering should 
be required to  take some discrete mathematics as 
undergraduates. Mathematics majors should be re- 
quired to  take at least one course in discrete math- 
ematics. 
Serious attention should be paid to the teaching of 
the calculus. Integration of discrete methods with 
the calculus and the use of symbolic manipulators 
should be considered. 
Secondary schools should introduce many ideas of 
discrete mathematics into the curriculum to help 
students improve their problem-solving skills and 
prepare them for college mathematics. 

General Discussion 

In its final report, the committee has decided to 
present two course outlines for elementary mainstream 
discrete mathematics courses. Our unanimous prefer- 
ence is for a one-year course, at the level of the cal- 
culus but independent of it. It is designed to serve as 
a service course for computer science majors and oth- 
ers and as a possible requirement for mathematics ma- 
jors. The Committee on the Undergraduate Program in 
Mathematics (CUPM) has endorsed the recommenda- 
tion that every mathematics major take a course in dis- 
crete mathematics, and has agreed th(at the year course 
the committee recommends is a suitable one for math- 
ematics majors. It is expected that the course will be 
taken by freshmen or sophomores majoring in computer 
science so that they can apply the material in the first 
and second year courses in their major. The ACM rec- 
ommendations [21, 221 for the first year computer sci- 
ence course presume, if not specific topics, then cer- 
tainly the level of maturity in mathematical thought 
which students taking the discrete mathematics course 
might be expected to have attained. Hence, the Com- 
mittee recommends that the course be taken simulta- 
neously with the first computer science course. The 
Committee understands that a t  some schools the first 
computer science course may be preceded by a course 
strictly concerned with programming. At the very least, 
the Committee expects that  the discrete mathematics 
course will be a prerequisite to  upper-level computing 
courses. For this reason, the Committee has tried to  
isolate those mathematical concepts that are used in 
computer science courses. The usual sequence of these 
courses might determine what should be taught in the 
corresponding mathematics courses. 

In addition to the Committee’s concern for computer 
science majors, there is a high expectation that math- 
ematics majors and those in most physical science and 
engineering fields will benefit from the topics and the 
problem-solving strategies introduced in this discrete 
mathematics course. Subjects like combinatorics, logic, 
algebraic structures, graphs, and network flows should 
be very useful to these students. In adldition, methods of 
proof, mathematical induction, techniques for reducing 
complex problems to simpler (previously solved) prob- 
lems, and the development of algorithLms are tools to en- 
hance the mathematical maturity of all. Furthermore, 
students in these scientific and mathematically-oriented 
fields will want to take computer science courses, and 
will need some of the same mathematical preparation 
that the computer science major needs. 

Thus, the Committee has agreed to recommend that 
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the course be part of the regular mathematics sequence 
in the first two years for all students in mathematically- 
related majors. Our contacts with physicists and engi- 
neers reinforce the idea that their students will need 
this material, but, of course, there is the concern that 
calculus will be short-changed. 

The Committee will make several suggestions regard- 
ing the calculus, but individual institutions will best un- 
derstand their own needs in this regard. We do not rec- 
ommend that the third semester of calculus be cut from 
a standard curriculum. Serious students in mathemati- 
cal sciences, engineering, and physical sciences need to  
know multivariable calculus. Many in the mathemati- 
cal communityrecognize that the content of the calculus 
should be updated to  acknowledge the use of numeri- 
cal methods and computers, and promising initiatives 
along this line are being taken. Engineers have been 
especially anxious for this change. John Schmeelk sur- 
veyed 34 schools and compiled suggestions for revising 
the standard calculus. (Schmeelk's survey was included 
in the appendix to the original report of the Commit- 
tee.) At some of the Sloan-funded schools and others, 
there have been attempts to revise the calculus to incor- 
porate some discrete methods and to use the power of 
the symbolic manipulator packages. We describe these 
attempts later in the report. (A complete report on the 
Sloan-funded projects will be published in the MAA 
Notes Series in 1989.) 

There is, inherent in our proposal, the possibil- 
ity that  some students may be required to  take five 
semesters of mathematics in the first two years-a year 
of discrete mathematics and the three semesters of cal- 
culus. But, there is no reason why students cannot be 
allowed to take one of the five in the junior year. We 
point out that some linear algebra is included in the 
year of discrete mathematics. Additionally, the use of 
computers via the new and powerful symbolic manipu- 
lation packages may reduce the amount of time needed 
for the traditional calculus sequence. 

A one-semester discrete mathematics course will be 
described in the appendix to this report as a concession 
to the political realities in many institutions. It has be- 
come obvious to  the Committee over the last two years 
that at  some colleges, there is a limitation on the num- 
ber of new elementary courses that can be introduced 
at this time. 

The Committee believes strongly that mathematics 
should be taught by mathematicians. Although there 
are some freshman-sophomore courses in discrete math- 
ematics in computer science departments, the course 
presented here should, the Committee believes, be 
taught by mathematicians. The rigor and pace of this 

course are designed for the freshman level. Some t o p  
ics necessary for elementary computer science may have 
to  be taught at an appropriate later time, either in a 
junior-level discrete mathematics course or in the com- 
puter science courses. 

Needs of Computer Science 
What do the computer science majors need? In 

teaching the first year Introduction to Computer Sci- 
ence course, Tony Ralston kept track of mathematics 
topics he would have liked the students to  have had 
before (or a t  least concurrently with) his course: 

Elementary Mathematics: Summation notation; 
subscripts; absolute value, truncation logarithms, 
trigonometric functions; prime numbers; greatest 
common divisor; floor and ceiling functions. 
General Mathematical Ideas: Functions; sets iind 
operations on sets. 

* Algebra: Matrix algebra; Polish notation; congru- 
ences. 

0 Summation and Limits: Elementary summation 
calculus; order notation, O(fn); harmonic numbers. 
Numbers and Number Systems: Positional notation; 
nondecimal bases. 
Logic and Boolean Algebra: Boolean operators and 
expressions; basic logic. 
Probability: Sample spaces; laws of probability. 
Combinatorics: Permutations, combinations, count- 
ing; binomial coefficients, binomial theorem. 
Graph Theory: Basic concepts; trees. 

0 Difference Equations and Recurrence Relations: 
Simple differential equations; generating functions. 

Many of the ideas are those that students should have 
had in four years of the traditional high school curricu- 
lum. In addition, there are some ideas and techniques 
that are probably beyond the scope of secondary school 
mathematics. An elaboration of this list appears in the 
Appendix and in an article by Ralston in ACM Com- 
munications [33]. 

Many proposals have been coming from the computer 
science community. Recommendations for a freshman- 
level discrete mathematics course from the Educational 
Activities Board of IEEE probably are the most de- 
manding. Students enrolled in the course outlined in 
the appendix are first semester freshman also enrollled 
in the calculus according to the IEEE recommendations 
published in December 1983, by the IEEE Computer 
Society [19]. 

Accreditation guidelines passed recently by ACM 
and IEEE also require a discrete mathematics course. 
The recommendations for the mathematics component 
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of a program that would merit accreditation appear be- 
low. The criteria appear in their entirety in an article 
by Michael Mulder and John Dalphin in the April 1984 
Computer [28]. 

Certain areas of mathematics and science are funda- 
mental for the study of computer science. These areas 
must be included in all programs. The curriculum 
must include one-half year equivalent to 15 semester 
hours of study of mathematics. This material includes 
discrete mathematics, differential and integral calcu- 
lus, probability and statistics, and at least one of the 
following areas: linear algebra, numerical analysis, 
modern algebra, or differential equations. It is rec- 
ognized that some of this material may be included in 
the offerings in computer science . . . . 
Presentation of accreditation guidelines which re- 

quire one and one-half years of study in computer sci- 
ence, one year in the supporting disciplines, one year 
of general education requirements, and one-half year of 
electives induced quick and angry response. The lib- 
eral arts colleges and the small colleges unable to offer 
this number of courses or unwilling to  require so many 
credits in one discipline, have responded in many ways. 
This Small College Task Force of the ACM issued its 
own report, approved by the Education Board of the 
ACM [5]. We emphasize only the mathematics portion 
of those guidelines. 

Many areas of the computer and information sciences 
rely heavily on mathematical concepts and techniques. 
An understanding of the mathematics underlying var- 
ious computing topics and a capability to  implement 
that mathematics, at least at a basic level, will enable 
students to grasp more fully and deeply computer con- 
cepts as they occur in courses . . . . It seems entirely 
reasonable and appropriate, therefore, to recommend 
a substantial mathematical component in the CSIS 
curriculum . . . . To this end, a year of discrete math- 
ematical structures is recommended for the freshman 
year, prior to a year of calculus. 

The Sloan Foundation supported representatives of _ _  
a few liberal arts schools in their attempt to  define a 
high-quality computer science major in such institu- 
tions. Again, we put the emphasis on the mathematics 
component of the proposed program. 

From Model Curriculum for a Liberal Arts Degree in 
Computer Science by Norman E. Gibbs and Allen B. 
Tucker [12]: 

The discrete mathematics course should play an im- 
portant role in the computer science curriculum . . . . 
We recommend that discrete mathematics be either 
a prerequisite or corequisite for CS2. This early posi- 
tioning of discrete mathematics reinforces the fact that 
computer science is not just programming, and that 
there is substantial mathematical content throughout 
the discipline. Moreover, this course should have sig- 
nificant theoretical content and be taught at a level 

appropriate for freshman mathematics majors. Proofs 
will be an essential part of the course. 

Alfs Berztiss, a member of the Committee, led a 
number of mathematics and computer science faculty at 
a conference at the University of Pittsburgh in 1983 at 
which an attempt was made to  formulate a high-quality 
program in computer science which would prepare good 
students for graduate study in the field. Details are 
available in a Technical Report (83-5) from the Univer- 
sity of Pittsburgh Department of Computer Science [8]. 
Both that program and the new and extensive bach- 
elor’s program in computer science at Carnegie-Mellon 
University depend on an elementary diiscrete mathemat- 
ics course. 

In addition to  the proposals for programs, the com- 
puter science community is in the process of revising el- 
ementary computer science courses. Tlhough old courses 
stressed language instruction, a more modern approach 
stresses structured programming and a true introduc- 
tion to  computer science. The beginning courses CS1 
and CS2 are described by the ACM Task Force on CS1 
and CS2. We quote from the article by Elliot Koffman, 
et al. [21] about the role of discrete mathematics in the 
structure of these computer science courses. 

We are in agreement with many other computer sci- 
entists that a strong mathematics foundation is an 
essential component of the computer science curricu- 
lum and that discrete mathematics is the appropriate 
first mathematics course for computer science majors. 
Although discrete mathematics must be taken prior to 
CS2, we do not think i t  is a necessary prerequisite to 
CSI. . . .We would . . .expect computer science ma- 
jors and other students interested in continuing their 
studies in computer science to take discrete mathe- 
matics concurrently with the revised CS1. 

If high schools and colleges take the recommendation 
seriously, the student enrolled in CS1 would be enrolled 
in a discrete mathematics course concurrently. That 
mathematics course would be required as a prerequi- 
site for CS2. Of all the recommendat,ions, this is likely 
to have the largest impact on enrollments in discrete 
mathematics courses. 

Syllabus 
What are the common needs of mathematics and 

computer science students in mathematics? The Com- 
mittee agrees that all the students need to  understand 
the nature of proof, and the essentialls of propositional 
and predicate calculus. In addition, all need to under- 
stand recursion and induction and, related to that,  the 
analysis and verification of algorithms and the algorith- 
mic method. The nature of abstraction should be part 
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of this elementary course. While some of the Commit- 
tee supported the introduction to  algebraic structures 
in this course, particularly for coding theory and fi- 
nite automata, others felt that those concepts were best 
left to  higher-level courses in mathematics. The basic 
principles of discrete probability theory and elementary 
statistics might be considered to  be as important and 
more accessible to  students a t  this level. Professionals 
in all disciplines cite the importance of teaching prob- 
lem solving skills. Graph theory and combinatorics are 
excellent vehicles. All these students need some calcu- 
lus. 

The Committee recommends the inclusion of as 
many of the proposed topics as possible with the un- 
derstanding that taste and the structure of the curricu- 
lum in each institution will dictate the depth and extent 
to  which they are taught. The ability of students in a 
course a t  this level must be considered in making these 
choices. While one of the goals of the course is to  in- 
crease the mathematical maturity of the student, some 
of the mathematical community who have communi- 
cated to the panel about their experiences teaching this 
course have indicated that there are prerequisite skills 
in reading and in maturity of thinking that really are 
needed, perhaps even more than in the calculus. 

The Committee recognizes that it might be some 
time before there is as much agreement on the content of 
a discrete mathematics sequence as there is now about 
the calculus sequence. In the meantime, diversity and 
variety should be encouraged so that we may learn what 
works and what does not. In any case, the Committee 
strongly endorses the notion that it is not what is taught 
so much as how. If the general themes mentioned in 
the previous paragraph are woven into the content of 
the course, the course will serve the students well. Ad- 
equate time should be allowed for the students to do 
a lot on their own: they should be solving problems, 
writing proofs, constructing truth tables, manipulating 
symbols in Boolean algebra, deciding when, if, and how 
to use induction, recursion, proofs by contradiction, etc. 
And their efforts should be corrected. 

We have been asked about the role of the computer 
in this course. To a person we have agreed that this 
is a mathematics course and that while students might 
be encouraged, if they have the background, to try the 
algorithms on a computer, the course should emphasize 
mathematics. The skills that  we are trying to teach will 
serve the student better than any programming skills 
we might teach in their place, and the computer science 
departments prefer it that way. Surely the ideal would 
be that students be concurrently enrolled in this course 
and a computer science course where the complimen- 

tary nature of the subjects could be made clear by both 
instructors. 

Algorithms are, of course, an integral part of the 
course. There is still no general agreement on how to 
express them in informal language. While a form of 
pseudocode might suit some people, others have found 
that an informal conversational style suffices. The Com- 
mittee would not want to make any specific recommen- 
dations except that the student be precise and convey 
his/her methods. It is certainly not necessary to  write 
all algorithms in Pascal. Communication is the key. 

The recommendations for a one-year discrete mathe- 
matics course are presented in several ways. An outline 
of the course appears below. In the Appendix, the out- 
line has been expanded to  include objectives and sam- 
ple problems for each topic. The scope and level of 
the course can be appreciated best from the expanded 
version. 

Discrete Mathematics 
A One Year Freshman-Sophomore Course 

(Preliminary Outline) 

Prerequisite: Four years of high school mathematics; 
may be taken before, during, or after calculus I and 11. 

1. 

2. 

3. 

4. 

5 .  

6 .  

7. 

Sets. Finite sets, set notation, set operations, sub- 
sets, power sets, sets of ordered pairs, Cartesian 
products of finite sets, introduction to  countably in- 
finite sets. 
The Number System. Natural numbers, integers, 
rationals, reals, Zn, primes and composites, inhro- 
duction to operations, and algebra. 
The Nature of Proof. Use of examples to demon- 
strate direct and indirect proof, converse and con- 
trapositive, introduction to  induction, algorithms. 
Formal Logic. Propositional calculus, rules of logic, 
quantifiers and their properties, algorithms and 
logic, simplification of expressions. 
Functions and Relations. Properties of order rela- 
tions, equivalence relations and partitions, functions 
and properties, into, onto, 1-to-1, inverses, compo- 
sition, set equivalence, recursion, sequences, induc- 
tion proofs. 
Combinatorics. Permutations, combinations, bi- 
nomial and multinomial coefficients, counting sets 
formed from other sets, pigeon-hole principle, algo- 
rithms for generating combinations and permu ta- 
tions, recurrence relations for counting. 
Recurrence Relations. Examples, models, algo- 
rithms, proofs, the recurrence paradigm, solution 
of difference equations. 
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8. Graphs and Digraphs. Definitions, applications, ma- 
trix representation of graphs, algorithms for path 
problems, circuits, connectednesl, Hamiltonian and 
Eulerian graphs, ordering relations-partial and lin- 
ear ordering, minimal and maximal elements, di- 
rected graphs. 

9. Tmes. Binary trees, search problems, minimal span- 
ning trees, graph algorithms. 

10. Algebraic Structures. Boolean algebra, semigroups, 
monoids, groups, examples and applications and 
proofs; or 

11. Discrete Probability and Descriptive Statistics. 
Events, assignment of probabilities, calculus of 
probabilities, conditional probability, tree diagrams, 
Law of Large Numbers, descriptive statistics, simu- 
lation. 

Matrix operations, 
relation to  graphs, invertibility, row operations, 
solution of systems of linear equations using ar- 
rays, algebraic structure under operations, linear 
programming-simplex and graphing techniques. 

12. Algorithmic Linear Algebra. 

Preparation for Discrete Mathematics 

A consideration of the topics listed in this course out- 
line reveals that ,  while the course meets our objectives 
of scope and level, this is a serious mathematics course. 
The student will have to  be prepared for this course by 
an excellent secondary school background. Those of us 
who have been teaching freshmen know that many stu- 
dents are coming unprepared for abstract thinking and 
problem solving. We are aware that many secondary 
schools are doing a fine job of educating students to  
handle this work, but many more schools are not. It 
seems likely that courses ordinarily taught to mathe- 
matically deficient first-year students to  prepare them 
for the calculus would also prepare them for this course. 
In many cases, with only modest changes, these courses 
can be adapted to  be both prediscrete mathematics and 
precalculus. The Committee expects that the major in 
computer science will include at least one year of calcu- 
lus so that  a t  some time the student will surely reap the 
full benefits of these traditional preparatory courses. 

The additional question still remains unanswered- 
what should be taught in the high schools or on the 
remedial level in the colleges to prepare students ad- 
equately for this course? Our suggestion is tentative: 
some of us feel that  perhaps a revived emphasis on 
the use of both formal and informal proof in geometry 
courses as a means for teaching methods of proof and 
analytic thinking would be a step in the right direction. 

Others of us are not 80 sure. Increased use of algorith- 
mic thinking in problem solving could be easily adapted 
to  many high school courses. Readers are encouraged 
to read Steve Maurer’s article in the :September 1984 
Mathematics Teacher for more on this subject. 

The Committee on Placement Examinations of the 
MAA will be attempting to  isolate those skills that seem 
to be needed by students taking discrete mathematics. 
Although this study might not lead to  the development 
of a placement examination for the course, it will help 
to explain what might be the appropriate preparation 
for a successful experience in such a course. 

Year after year we face students who claim that they 
have never seen the binomial theorem, mathematical 
induction, or logarithms before college. These used to 
be topics taught a t  the eleventh or twelfth grade levels. 
What has happened to them? Students also say that 
they never had their papers corrected in high school so 
they never wrote proofs. Some of us have students who 
cannot tell the hypothesis from the conclusion. 

Simple restoration of some of the classical topics and 
increased emphasis on problem solving might make the 
proposed course much easier for the student. As one 
studies the list of topics in the discrete mathematics 
course, it becomes clear that ,  in fact, there is little in 
the way of specific prerequisites for such a course except 
a solid background in algebra; nothing in the course re- 
lies on trigonometry, number theory, or geometry, per 
se. However, the abstraction and the emphasis on some 
formalism will shock the uninitiated and the mathemat- 
ically immature. 

Recent experimentation at the Sloan-funded schools 
might tell us something about what we ought to require 
of students enrolling in this type of course. Results 
from these schools have not been completely analyzed, 
but the failure rates seem consistent with those in the 
calculus courses. Some of the experimental group had 
taken calculus first and others had not. There seemed 
to be a filtering process in both cases so that results are 
not comparable from one discrete mat,hematics course 
to  another. One Sloan-funded correspondent reported 
that reading skills might be a factor in success and was 
following through with a study to  see if verbal SAT 
scores were any indicator of success. 

One of the concerns of the Committee throughout its 
deliberations has been the articulation problem with a 
course of this kind. We want to be clear that finite 
mathematics courses in their present form are not the 
equivalent of this course. We have not t,otally succeeded 
in communicating this in presentations at professional 
meetings. The discrete and finite mathematics courses 
differ in several ways. First, the discrlete mathematics 
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course is not an all-purpose service course. It has been 
designed primarily for majors in mathematically-related 
fields. It presumes at least four years of solid secondary 
school mathematics and hence the level of the course is 
greater than or equal to  the level of calculus. There is 
inherent in this proposal a heavy emphasis on the use 
of notation and symbolism to raise the students’ ability 
to cope with abstraction. Secondly, a heavy emphasis 
on algorithmic thinking is also recommended. 

The pace, the rigor, the language, and the level are 
intended to differ from a standard finite mathematics 
course. We do not claim that this course can be taught 
to everyone. Perhaps a t  some schools the computer sci- 
ence majors are not very high caliber and college pro- 
grams naturally are geared to  the needs of the students. 
There is nothing inherently wrong in requiring that such 
students take the mathematics courses required of the 
business majors: finite mathematics, basic statistics, 
and “soft” calculus. Perhaps the finite mathematics 
courses can be improved and sections for some students 
be enhanced by teaching binary arithmetic and elemen- 
tary graphs. This is an alternative that many schools 
will probably choose. It may reflect the reality on a 
campus where there is really no major in computer sci- 
ence, but a major in data  processing or information 
science which serves its students well. We have not 
attempted to  define that kind of discrete mathemat- 
ics course. We specifically are defining a course on the 
intellectual level of calculus for science and mathemat- 
ics majors. Our visits around the country indicate that 
many schools need a course a t  the level of the present fi- 
nite mathematics offerings. Such courses are a valuable 
service to some students, but should not be considered 
equivalent to  the course we have described. 

Two Year Colleges and High Schools 

The mathematics faculty a t  two year colleges have 
been working through their own organizations and com- 
mittees toward curricular reform. The Committee on 
Discrete Mathematics has attempted to consider their 
proposals in its own. Jerry Goldstein, Chairperson 
of CUPM and an ex-officio member of the Commit- 
tee on the Curriculum at the Two Year Colleges, has 
been working to maintain articulation between the two 
groups. The Two Year College Committee began its 
deliberations after our Committee, so this report re- 
flects only preliminary conclusions from that source. A 
“Williams”-like conference for the two year colleges took 
place in the summer of 1984 and proceedings are avail- 
able from Springer-Verlag in New Directions in Two 
Year College Mathematics, edited by Donald Albers, et 

al. The situation at this time in the two year colleges 
is one of exploration, learning, and waiting. 

Just as the calculus sequence at two year colleges is 
taught from the same texts and in the same manner as 
at the baccalaureate institutions, discrete mathematics 
courses a t  two year schools are expected to conform 
to requirements of four-year schools to  which students 
hoped to  transfer. Faculty a t  Florida State University, 
in connection with one of the Sloan projects, introduced 
the discrete mathematics course at a nearby two year 
college. The course was taught from the same text and 
in the same manner a t  both institutions. The students 
did well and project directors claim the results were 
“unremarkable .” 

Recent conferences of the American Mathematical 
Association of Two Year Colleges (AMATYC) and as- 
sociations of two year college mathematics faculty in 
many state organizations have been devoted to  the spe- 
cial problems of the two year schools with regard to 
discrete mathematics. The primary concern of most 
schools is that they must wait for the four-year schools 
to indicate what type of course will be transferable. The 
Committee urges those teaching at four-year institu- 
tions to  make a special effort to  communicate their own 
requirements to the two year colleges that feed them. 

What about discrete mathematics in the high 
schools? Perhaps it will be an exciting change to see 
the secondary schools place less emphasis on calculus 
and more on some of the topics in the discrete mathe- 
matics. We understand that there is considerable pres- 
sure from parents to  have Junior (or Sis) take calculus 
in high school. We are confident that that will change 
as the first year of mathematics in the colleges becomes 
more flexible to  include either calculus or discrete math- 
ematics at  the same level. If the high schools continue 
the trend to teaching more computer science for ad- 
vanced placement, then they will have to offer the dis- 
crete mathematics to their students. The present A4d- 
vanced Placement Examination in computer science is 
essentially for placement in CS2. To place above CS2, 
there will probably be a level I1 examination which con- 
forms to  the course outline for CS1 and CS2 as noted 
in the Koffman report. An Advanced Placement Ex- 
amination in discrete mathematics is some time in the 
future, as there is no universal agreement as to  exactly 
what might be included at this time. 

In January 1986 a Sloan-funded conference on cal- 
culus was held at Tulane University in New Orleans. 
More than twenty participants presented papers and 
participated in workshops on the state of calculus and 
its future. The Committee concurs with that group’s 
consensus that the goals of teaching (mathematics) are 
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to  develop increased conceptual and procedural skills, 
to develop the ability of students to  read, write, and ex- 
plain mathematics, and to  help students deal with ab- 
stract ideas. These are the global concerns for all math- 
ematics teaching. Secondary schools should be working 
toward such goals too. 

The Committee encourages faculty to  get students 
to  work together t o  solve problems. From experience, 
some of us have found that students cannot read a 
problem-either they leave out essential words or do 
not know how to read the notation when asked to read 
aloud. The word “it” should be banned from their vo- 
cabulary for a while. Students who use the word fre- 
quently do so because they do not know what “it” re- 
ally is. Correcting students’ homework has always been 
one of the best ways of understanding their misconcep- 
tions. In discrete mathematics courses this is even more 
so-concept and procedure vary from problem to prob- 
lem. Students have to  think and be creative. That’s 
tough. They need the re-enforcement of the teacher’s 
comments and the chance to try again. Working with 
other students should be encouraged because this forces 
students to  speak. This oral communication helps them 
to learn the terminology and helps them to present clear 
explanat ions. 

The Impact on Calculus 

The concerns of some people that the introduction of 
discrete mathematics will cause a major change in the 
calculus will probably prove to  be unfounded. How- 
ever, the Committee believes that there are several im- 
portant questions to  be addressed. We should be ask- 
ing ourselves if we are doing the best job of teaching 
calculus. Some of our colleagues outside of mathemat- 
ics who teach our calculus students have commented 
to  the committee members that there are many as- 
pects of the calculus which seem to be ignored in the 
present courses. There is widespread dissatisfaction 
with the problem-solving skills of calculus students. 
Problems that look even a little different from the ones 
that they have solved in the standard course are of- 
ten impossible for students. In addition, we are be- 
ing held responsible for our students lack of knowl- 
edge of numerical techniques. The discrete aspect of 
the calculus was continually stressed by our respon- 
dents. In fact, many commented that we were pro- 
moting the idea of a dichotomy in mathematics where 
there is none by not proposing an integrated program 
of discrete and continuous mathematics for the first two 
years. The Committee admits that a t  this time it is 

presenting a feasible solution as opposed to  the ideal 
solution. 

Should the teaching of calculus reflect the tremen- 
dously powerful symbolic manipulators now on the mar- 
ket? While the most powerful require mainframes, 
some are available on minicomputers and muMath runs 
on a personal computer. Can the time previously 
spent in tedious practice of differentiation or integra- 
tion be better used to  teach the power of the cal- 
culus through problem solving and modeling? Two 
of the Sloan-funded schools-Colby College and St. 
Olaf College-did experiment with the use of MAC- 
SYMA, MAPLE, and SMP in the teaching of calcu- 
lus. At Colby, in a course offered to1 those who had 
high school calculus, the computer packages were used 
to  augment the one year single-variable and multivari- 
ate calculus course. At St. Olaf, SIMP was used in 
an elective course during a January Interim between 
the first and second semesters of the standard calcu- 
lus course. Kathleen Heid writes in The Computing 
Teacher [17] about her experience a t  the University 
of Maryland where she taught a section of the “soft” 
calculus using muMath. The results of all these ex- 
periments are quite favorable and indicate an impor- 
tant new consideration in our teaching of the sub- 
ject. 

What about the use of the methoids introduced in 
discrete mathematics in the other courses in the cur- 
riculum, including calculus and analysis? What of 
difference equations? The Committee requested that 
physical scientists and engineers respond to  the idea 
of changing the calculus. We mentioned the possi- 
bility that calculus might contain ideas from discrete 
mathematics in the solving of traditional calculus-type 
problems. Several engineers and physicists have re- 
sponded to our query with some interesting endorse- 
ments for change. Those who responded felt that the 
present mathematical training we offer their professions 
is inconsistent with what many of them were doing 
in their jobs-for they were using difference equations 
and other discrete methods in their everyday applica- 
tions. 

We also should be asking what calculus the computer 
science major needs. Does the computer science student 
need the calculus to do statistics and probability? If so, 
how much rigor is needed? What background is needed 
in numerical methods? Should matlhematics depart- 
ments be teaching numerical methods? Are the require- 
ments different from numerical analysis? Should we em- 
phasize rigor, technique, or problem-solving skills? Do 
the traditional courses suffice to  encourage integration 
of discrete and continuous mathematics? 
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Conclusion 

This report is both incomplete and already out-of- 
date. Questions will continue to arise; answers are not 
easily found. Textbooks are now being published that 
are marketed as suitable for elementary discrete mathe- 
matics courses. Our annotated bibliography is undoubt- 
edly incomplete. We know of several forthcoming texts 
that are in manuscript form but which are unlisted be- 
cause they could not be properly reviewed. 

There has been a great deal of interest, much of 
it enthusiastic, in the revitalization of the elementary 
college-level mathematics curriculum. The committee 
members have had the opportunity to  visit schools, 
speak a t  sectional and national meetings, and to  speak 
personally with hundreds of our colleagues. We are 
wrestling with problems of ever-changing demands from 
other disciplines-some, as computer science, so young 
there is no standard curriculum. We need to  adjust 
our ideals to the realities of our own academic situa- 
tion. The Committee attempted to propose a course 
with enough flexibility to allow institutions with differ- 
ent needs to  follow the general course outline, putting 
emphases where they wanted. 

The two year colleges and the high schools are deal- 
ing with demands of the four-year institutions, parents, 
and the College Entrance Examination Board. They 
feel many pressures to keep calculus as the pivotal 
course. On the other hand, the proposal to integrate 
discrete mathematics into the high school and even el- 
ementary school curricula got considerable support at 
the 1985 National Council of Teachers of Mathematics 
(NCTM) meetings in San Antonio. 

The recent publication of many discrete mathemat- 
ics textbooks suitable for the freshman-sophomore year 

has been exciting. We have the opportunity to  see what 
is successful. The Committee agrees that the next step 
in the development of the curriculum should be the in- 
tegration of the discrete and the continuous i d e a  of 
mathematics into all courses. That would be ideal and 
we encourage experimentation to  that end. 
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Course Objectives and Sample Problems 

1. Sets 

STUDENT OBJECTIVES: 

Understand set notation. 
Recognize finite and infinite sets. 
Be able to understand and manipulate relations be- 
tween sets, and make proper use of such terms as: 

subsets 
proper subsets 
supersets 
equality 
universe and empty set. 

Understand and be able to manipulate indexed col- 
lections of sets. 

0 Understand and use the set-builder notation. 
Understand and manipulate operations on sets: 

intersection (finite and countable collections) 
union (finite and countable collections) 
difference 
symmetric difference 
complement 
Venn diagrams. 

Understand the proofs of theorems and know the 
laws: 

commutative laws 
associative laws 
distributive laws 
DeMorgan's laws. 

* Understand Cartesian products of sets and power 

0 Understand inductive (recursive) definitions of sets. 
Understand a few applications: for example, gram- 

Be able to do simple proofs by using Venn diagrams 

sets. 

mars as sets. 

or elementary elementwise proofs. 

SAMPLE PROBLEMS: 
1. List the ordered pairs in the sets 

A = {(m,n) E S x T :  m < n} 

B = { (rn,n) E S x '2': m +  1 = n} 

where S = {I, 2,3,4) and T = {0,2,4,5}. 
2. True or false? 

A \  (B U C )  = (A \ B) u (A \ B). 

Verify your answer (use elementwise argument, 
Venn diagram and algebraic manipulation). 

3. Let A, = { k  E P :  k 5 n} for each n E  P. 
5 m 5 co 

Find A,, n A,, U A,, 1J A,. 
n=l  n = l  n= l  n:=l 

Find A: and A, n A,,, for n, rn E P. 
4. For each n E N, let 

A,, = { x E Q :  x = m/3" for some m E Z). 

Describe the set Ao, All Az, and AIL \ Ao. 
m 

Find n A,. 
n = O  
m 

n=2 
Find n An. 

5. Sketch the following set S in N x N: 

(0,O) E S and if (m, n) E S then i(m, n + 1) E S, 

(m+ l , n +  1) E S and ( m + 2 , n +  1) E S. 

Show S = { (m,n) : m 5 2n). 
6. Showthat i fAC B a n d C c  D , t h e n A x C C  BxD.  
7. Assume A, B, and C are subsets ad a universal set 
U. Simplify 

(An (B \ C))" u A. 

2. The Number System 

STUDENT OBJECTIVES: 

0 Be able to define 
positive integers (P) 
natural numbers (N) 
integers (Z) 
rational numbers (Q)  
irrational numbers 
reals (as (-m, m)). 

Be able to recognize subsets of N, P, Q, and Z. 
Be able to use interval notation. 
Understand the division algorithm and divisibility. 
Be able to do simple proofs about even and odd 
numbers (e.g., the sum of two even integers is even). 
Know the definition of prime number, gcd and lcm. 
Be able to find the prime factorizat,ion of a number. 

0 Know how to write an integer given in base 10 as a 
numeral in base 2. 
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SAMPLE PROBLEMS: 

1. Find elements in the sets (if the set is infinite, list 
five elements of the set). 

{ n 6 N : n2 = 4) 
{ n  E P :  n is prime and 15 n 5 20) 
{ x E R : x2 = 4) 

{ x E R : x2 5 4) 
{ x E R : x2 < 0 )  

{ x E Q : x2 = 3 )  

{ n E P : n2 = 3) 

{ x  E Q :  2 < x < 3 )  

2. Determine how many elements are in each set? 
Write 00 if the answer is infinite. 

(-11 11, {-LO), [-I, 11, [-I, 01, W), 
P([-l, I]), P({--l, I)), {n E Z : -1 5 n 5 I), 

{nE Z : -1 < n < I). 

3. List elements in 

A = {n E Z : n is divisible by 2) 

B = {n E Z : n is divisible by 7) 

C = A U B  

D = A n B  

4. Prove that the product of even integers is an even 

5. Use the Euclidean Algorithm to determine the 

6. Find the prime factorization of 4,978. 
7. Determine the numeral in base 2 to represent 81 

integer. 

greatest common divisor of 741 and 715. 

(base 10). 

3. The Nature of Proof 

STUDENT OBJECTIVES: 

Be able to identify the hypothesis and the conclusion 
in sentences of various English constructions. 
Understand the definition of a proposition, its con- 
verse, its contrapositive. 
Understand the use of examples as an aid to finding 
a proof and the misuse of examples as proof. 
Understand the use of counterexamples. 
Be able to do direct proofs, including proof by cases. 
Be able to do indirect proofs. 
Understand the role of axioms and definitions. 
Understand the backward-forward method of con- 
structing a proof. 

Understand and be able to use the principle of math- 
ematical induction. 

@ See the necessity for the verification of algorithms. 
Do a substantial number of elementary proofs using 
simple examples from arithmetic. 

SAMPLE PROBLEMS: 

1. 

2. 

3. 

4. 

5 .  

6. 
7. 
8. 
9. 

10. 
11. 

12. 

4. 

According to the Associated Press, a prominent 
public official recently said: "If a person is inno- 
cent of a crime, then he is not a suspect." What is 
the contrapositive of this quotation? 
Prove or disprove the following statement about real 
numbers x: 

If x2 = x, then x = 1. 

What is the converse of this statement? Prove it or 
disprove it. 
After considering some examples if necessary, guess 
a formula that gives the sum of the interior angles 
at the vertices of a convex polygon in terms of the 
number n of sides. Then prove the formula, if you 
can, by mathematical induction. 
Write an algorithm for finding the least common 
denominator of two fractions. Can you think of an- 
other? 
Write an algorithm for finding the median of a list 
consisting of n (an odd number) real numbers. 
Prove: i f A u B c  A n B ,  t h e n A = B .  
Prove or disprove: if A n B = A n C, then B = C. 
Prove (by cases): for every n E N, n3 + n is even. 
Prove: for every n E P, 

1 + 3 + 5 + ... + (2n - 1) = n2. 

Prove (by contradiction): if x2 is odd, then x is osdd. 
Prove: There are no integers u and b such that u2 = 
3b2. 
Prove: n3 - n is divisible by 3 for every n E P. 

Formal Logic 

STUDENT OBJECTIVES: 
Write English sentences for logical expressions and 
vice versa. 
Complete the truth tables for the standard logical 
connectives. 
Give the truth values of simple propositions given 
in plain English. 
State the definitions of tautology and contradiction. 
Prove and use the standard logical equivalences: 

commutative, associative, distributive, and 
idempotent properties; double negation; DeMor- 
gan laws. 
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Recognize computer language commands for stan- 
dard logical operations. 
State and use logical implications, at least: modus 
ponens, modus tolens, transitivity of + and H. 

Identify the basic quantifiers, free and bound vari- 
ables, negations and the generalized DeMorgan 
laws for quantified statements (e.g., iVzp(z) 

Build logic circuits with AND, OR, NOT gates. 
Understand the terms consistency, inconsistency, 
completeness and decidability (optional). 

Negate P v q,  P - Q, P A 4. 

3 X d X ) ) .  

SAMPLE PROBLEMS: 

1. 

2. 

3. 

4. 

5 .  

6. 
7. 

8. 

9. 

10. 
11. 

Use a truth table to prove that 

( p  A q )  + r is logically equivalent to p + (q  - r ) .  

Prove that i p A r  is logically equivalent to -(pV i r )  
without using truth tables. 
If p = “cows bark”, q = “the Orioles are Baltimore’s 
baseball team” and r = “2 + 4 = 7”, find truth 
values of p A q, p + q ,  ( p  A q )  - r .  
Consider the proposition for x E R: 

If (x - 3 ) ( x  - 2) = 0 then either z = 3 or x = 2. 

a) Write its converse. 
b) Write its contrapositive. 
c) Write its negation. 
d) What is the truth value of the proposition, its 

Find the result of 
converse, its contrapositive, its negation? 

[(0 AND 1) NAND 01 OR NOT [l IMP 01. 

Draw a logic circuit representing ( l p  A q )  V r .  
Prove the following logical argument: p A q ,  p - r ,  
7 s  - q ,  and s + t imply r A t. 
Determine truth values of the following proposi- 
tions. Assume the universe is N. 
(a) Vrn3n[rn = n2] (b) 3mVn[m = n2] 
Write in logical form: for every X ,  y E R, there exists 
z E R such that x < z and z < y. 
Negate V X [ ~ ( X )  A -q(z)]. 
Answer each of the following in the appropriate box. 

If the book costs more than $20, it is a best- 
seller. The book costs more than $20. Is the 
book a best-seller? 0 yes, 0 no, 0 not enough 
informat ion. 
If the kite is multicolored, it will fly. The kite 
flies. Is the kite multicolored? yes, 0 no, 
[7 not enough information. 

(c) If the bed is comfortable, Sally will sleep. The 
bed is not comfortable. Will Sa1:ly sleep? 0 yes, 
0 no, 0 not enough information. 

(d) If the candidate is elected in Vermont, she will 
be elected by the country. The candidate is not 
elected by the country. Is the candidate elected 
in Vermont? 0 yes, 0 no, 0 not enough infor- 
mation. 

12. Simplify the logic circuit below: 

X 

Y 

z 

5. Functions and Relations 

STUDENT OBJECTIVES: 
a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

a 

Be able to define “function” and “relation”. 
Know the properties of relations: 

reflexive 
transitive 
symmetric 
antisymmetric. 

Be able to identify order relations. 
Be able to identify equivalence relations. 
Understand the relationship between equivalence re- 
lations and partitions. 
Know the definitions of domain, codomain, image, 
into, onto (or surjection), one-to-one (or injection), 
bijection. 
Be able to do simple proofs involving these defini- 
tions. 
Be able to work with composition and inverses of 
relations and, in particular, of functions. 
Be familiar with recursive definitions of functions. 
Be introduced to sequences as functions, again with 
some emphasis on recurrence relations and recur- 
sion. 
Be able to do proofs involving recursion. 
Be able to work with definitions of relations as or- 
dered pairs as opposed to as “rules”. 
Know the definition of the characteristic function of 
a set. 
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SAMPLE PROBLEMS: @ Be able to use the binomial theorem. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

6. 

Give a t  least one reason why each of the following 
does not define an equivalence relation on the set of 
integers: 
a) z + y is odd; 
b) z < 2y. 
Recall that a positive integer is prime if it has ex- 
actly two positive integer divisors: itself and 1. Con- 
sider the relation defined on the set of all integers 
greater than 1 by: “y is the smallest prime that is 
a divisor of x.” 
a) Explain why this relation is a function y = f(z). 
b) What is the range o f f ?  
c) List four elements of f-’(5). 
d)  Prove that f o f = f. 
When the prevailing rate of interest is l O O r % ,  an 
account that has P dollars in it a t  the beginning of 
a year should have how much in it a t  the beginning 
of the next year? Express your answer as a recur- 
sion formula, and solve it to find the size of such an 
account after n years. 
The factorial, usually denoted by n!, of a positive 
integer n is the product of all positive integers from 
1 to n inclusive. Show how n! may be defined re- 
cursively. 
Prove that f(z) = 22 + 1 is one-to-one and onto 
from R to R. Is f one-to-one from Z to Z? Does f 
map Z onto Z? Verify your answers. 
List five elements in the sequence given by a0 = 1, 
and a, = 2an-1 for n 2 1). Give another formula 
for a,, for any n E N. 
Let C = (a, b }  and let C’ be the set of words over 
C. If w1 and w2 are elements of C’, define w1 5 w2 

if and only if length (w1) 5 length (wa). 
Is 5 a partial order? Why? 
Prove: If h(1) = 1 and h(n + 1) = 2 - h(n) + 1 for 
n 2 1, then h(n) = 2” - 1 for all n E P. 
For m, n E N define 

m - n if and only if m2 - n2 is divisible by 3. 

Prove that - is an equivalence relation on N. Find 
8 elements of each of the equivalence classes [O] and 
[l]. What is the partition of N induced by -? 

C ombinat orics 

Be able to do ball and urn type problems. 
Be able to state and apply the inclusion-exclusion 

Be able to apply the pigeon-hole principle. 
@ Be familiar with combinatorial algorithms based on 

recurrence relations, 
Be introduced to the basic ideas of intuitive discrete 
probability. 

principle. 

SAMPLE PROBLEMS: 

1. In many states automobile license plates consist of 
three (capital) letters followed by three digits. Are 
there any states in which this probably does not 
give enough different license plates even if discarded 
plate numbers can be reused? Are there any states 
in which three letters followed by three digits or 
three digits followed by three letters is probably not 
enough? How many license plates are possible in 
your state? 

2. In a hypnosis experiment, a psychologist inflicts a 
sequence of flashing lights on a subject. The psy- 
chologist has red, blue and green lights available. 
How many different ways are there to inflict 9 flashes 
if two are red, four blue and three green? 

3. How many triangles are there using edges and di- 
agonals of an n-sided polygon if the vertices of the 
triangle must be vertices of the polygon? 

4. Verify by induction and by a combinatorial argu- 
ment that 

n 

C(k,  m) = C ( n  + 1, m + 1). 
k =m 

What does this say about Pascal’s triangle? 

n 
5. Evaluate 

2 k2C(n, k). 
k=O 

6. How many ways are there to take four distinguish- 
able balls and put two in one distinguishable urn 
and 2 in another if 
a) the order in which the balls are put in the urns 

b) the order does not make a difference. 

to 105? 

makes a difference; 

7. How many integers less than 105 are relatively prime 

STUDENT OBJECTIVES: 8. Use the algorithm which generates all permutations 
of length n of 1 ,2, .  . . , n where no digit can be re- 
peated to derive an algorithm to generate all permu- 
tations when any digit may be repeated an arbitrary 
number of times. 

@ Be able to apply the basic permutation and combi- 
nation formulas. 
Be familiar with and be able to provide basic com- 
binatorial identities using combinatorial reasoning. 



7. Recurrence Relations 

STUDENT OBJECTIVES: 

Have lots of exercise in the elements of recursive 
thinking (e.g., the recursive paradigm-solve prob- 
lems by jumping into the middle and working your 
way out). 
Be familiar with recursive definitions of syntax. 
Be familiar with recursive algorithms. 
Understand what a difference equation is. 
See how difference equations can be used to model 
practical problems. 
Understand the methods for the solution of linear, 
constant coefficient equations and first order differ- 
ence equations. 
Be familiar with some applications of difference 
equations. 
Be able to use the difference calculus (optional). 

SAMPLE PROBLEMS: 
1. Compute the first ten terms of the sequence defined 

by 

if n = 1 or 2 then fn = 3 
else fn = f 2 - 1 +  fn-2. 

2. What is f (1)  i f f  is defined by 

if n 2 1000 
f(n) = { ;vc + 6))  if n < 1000. 

3. Describe the strings of characters defined by 

<word> ::= <digit>l<letter><word><letter> 

with the standard definitions of digit and letter and 
where := is read “is defined to be”. 

4. Consider the sum 

1 + 3 + 5 + 7 + .  . . + 2 n  - 1. 

Use the inductive and recursive paradigms to con- 
jecture a closed form expression for this sum. 

5. Suppose we add to the usual form of the Towers 
of Hanoi problem the rule that a disk can only be 
moved from one peg to an adjacent peg (i.e., you 
can never move a disk from peg 1 to peg 3 or vice 
versa). Devise an algorithm for solving this version 
of the problem. Display solutions when n = 2 , 3 , 4 .  

6. Display a recursive version of the Euclidean algo- 
rithm. 

7. Consider the recursion 

n- 1 

P , = I + ~ P ~  n > l ,  P,=I .  
k = l  

Compute several terms. Find the pipttern and prove 
that it is correct. 

8. Consumer loans work as follows. The Lender gives 
the Consumer a certain amount P ,  called the Prin- 
cipal. At the end of each payment, period (usually 
each month) the consumer pays the Lender a fixed 
amount p .  This continues for a prearranged number 
of periods (e.g., 60 months = 5 years). The value 
of p is calculated so that, at the end of the time, 
the Principal and all interest due have been paid off 
exactly. During each payment period the amount 
owed by the Consumer increases by r ,  the period 
interest rate, but it also decreases iPt the end of the 
period by p .  Let Pn be the amount owed after the 
nth payment is made. Find a difference equation 
and boundary conditions for P,. 

9. Solve 

an+1 = 5an - 6an- lr  a1 = !j, a2 = 7. 

10. Find the general solution to 

11. Solve 

12. In ternary search, t and u are the entries closest 
to 1/3 and 2/3  of the way through the list. Let 
the search word be w. If w < t ,  then search the 
first third of the list by ternary search. Similarly, 
if t < w < u or u < w search, respectively, the 
middle and last thirds of the list. Write recurrence 
relations for the worst and average case number of 
comparisons in ternary search. Also show that, if an 
appropriate sequence {ni} of list lengths is chosen, 
then Wn, the number of compariaons in the worst 
case is given by 

wn = 2 log,(n + 1:). 

(This problem assumes that students have seen a 
similar analysis for binary search.11 
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8. Graphs and Digraphs 

STUDENT OBJECTIVES: 
Understand the definition of the digraph and its use 
as the picture of a relation. 
Be able to write the matrix representation of a di- 
graph. 
See many applications of digraphs as natural models 
for networks in real life, such as systems of roads, 
pipelines, airline routes. 
Know the definitions: connectedness, completeness, 
complement. 
Be introduced to path problems (and transitive clo- 
sure) and Warshall’s algorithm. 
Be familiar with undirected graphs, the associ- 
ated definitions and the classical problems of graph 
theory-the bridges of Koenigsberg, the four color 
problem, Kuratowski’s theorem. 
Be encouraged to solve interesting problems like 
Mastermind and Instant Insanity to see the useful- 
ness of graph theory. 
Be using algorithms such as Kruskal’s algorithm and 
Dijkstra’s algorithm in solving problems. 
Have the opportunity to see the applications to ac- 
tivity analysis (CPM and PERT). 
Be exposed to depth-first search algorithms and 
topological sorting. 

SAMPLE PROBLEMS: 
1. Prove that a connected graph of n nodes contains 

a t  least n - 1 edges. 
2. Prove that a digraph is disconnected iff its comple- 

ment is connected. (The complement of a digraph 
D is defined by the matrix obtained when in the 
adjacency matrix of D every 0 is replaced by a 1, 
and every 1 by a 0.) 

3. A digraph D = (A, R) is complete if for all a, b E A,  
(a, b) E R implies (b, a) E R. With respect to this 
definition, is it true that (a, a) E R for all a E A, or 
is it true that (a, a) g! R for all a E A? 

4. A digraph D = (A, R) is a tournament if, for all 
(a, b) E A,  (a ,b)  E R or @,a) E R whenever a # 
b, but (a ,b )  E R implies (b ,a)  # R. How many 
tournaments are there as a function of n, where n = 
IAl? Draw all tournaments for n = 3. 

5. Prove (by induction) that every tournament con- 
tains a Hamiltonian path. 

6. How many digraphs on n nodes are there? How 
many graphs? 

7. Find the shortest path from node 1 to every other 
node in a specific given digraph. 

8. Find the transitive closure of the relation repre- 
sented by  this same digraph. 

9. Trees 

STUDENT OBJECTIVES: 
Know the definition of a tree. 

* Be able to find the minimal spanning trees for a 
given graph. 
See the many applications of trees in search prob- 
lems, with a complete introduction to binary search 
trees. 

* See how to convert digraphs to trees. 
Know how to use digraph algorithms for cycles and 
critical path analysis. 
Prove the theorems on trees by induction and rely 
on recursive algorithms for transversal problems on 
trees. 

* Be familiar with sorting and searching algorithms. 
See rooted trees and Polish notation as an applica- 
tion. 

SAMPLE PROBLEMS: 

1. Show the equivalence of the following definition of 
an undirected tree: (a) a connected graph without 
any circuits; (b) a connected graph that becomes 
disconnected on the removal of any one edge; (c) a 
connected graph with its number of edges one less 
than its number of nodes. 

2. Prove that the number of leaves in a binary tree 
with n internal nodes is a t  most n + 1. 

3. Prove that for every nonnegative integer n it is pos- 
sible to construct a binary tree with n leaves in 
which the outdegree of every internal node is 2.. 

4. Find all spanning trees of a specific given graph. 
5 .  Find all simple cycles in a specific given graph. 
6. Given the drawing of a scheduling network, find the 

critical path(s) in this network. 

10. Algebraic Structures 

STUDENT OBJECTIVES: 

Be able to define and recognize unary and binary 

Be able to distinguish whether sets are closed with 

Be familiar with a variety of operations on a variety 

operations. 

respect to a given operation. 

of sets: 
arithmetic operations on N, PI Q, I ,  R 
set operations on P ( S )  
logical operations on propositions 
matrix operations on 2 x 2 matrices. 

* Be able to understand the general definition of an 
operation on a set via some unfamiliar rule or a 
table. 
Be able to decide which of the properties hold: 
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commutative 
associative 
existence of identity 
existence of inverse for given operations on given 
sets. 

Recognize semigroups, monoids, groups, and cosets. 
Have an elementary knowledge of finite group codes 
(need cosets). 
Be familiar with and be able to manipulate boolean 
algebras with many examples. 
Have a rudimentary knowledge of lattices. 
Be able to apply the ideas of homomorphism and 
isomorphism. 

Have a working knowledge of descriptive statistics: 
populations vs. samples 
simple graphing techniques 
calculation and meaning of mean, median and 
mode 
calculation and meaning of standard deviation 
(calculations may be restricted to ungrouped 
data). 

Discuss the interpretation of sample data including 

0 Know the meaning of expected value and variance 

Know how to use Chebyshev’s inelquality. 

exploratory data analysis. 

for random variables. 

0 Know how to simulate some of the probability mod- SAMPLE PROBLEMS: 
els discussed. 
Should be doing problems that deimonstrate the re- 
lationship between probability and difference equa- 
tions, especially through classical problems like the 
gambler’s ruin problem. 

1. Determine if (N, +) is a group. 
2. Determine if (Z,o) is a semigroup, a monoid, a 

group, when a o b is defined to be a + b - 2 whenever 
a,  b E Z .  

3. For X = 011010 and Y = 100100, find the Hamming 
distance from X to Y. 

4* A ‘Ode has a minimum distance Of How many er- 
rors can it detect? How many errors can it correct? 

5. Determine if (Zs, *) is a group. 
6. Let S = { a ,  b,  c }  and define the operation @ by the 

table below. Determine whether ( S , @ )  is a semi- 
group. 

SAMPLE PROBLEMS: 

1. Find the probability that in a random arrangement 
of n files, we find them to be in alphabetical order. 

2. Simulate the gambler’s ruin problem assuming that 
the coin being tossed is fair, that A wins a dollar 
from B when the coin lands heads up and gives a 
dollar to B otherwise. You may aissume that A be- 
gins the game with $3 and B begins with $2. De- 
termine the average length of a game and determine 
the frequency with which A wins Ithe game. 

3. Solve the gambler’s ruin problem using a probabil- 
ity model. Use the situation given in problem two 
and compare your results here to the results of the 
simulation above. 

with p = 500 and Q = 75, find the probability that 
a score exceeds 700. Find the 95th percentile for the 
scores. Find the probability that (a sample mean of 

21 0 2; + (21 0 23)’. more than 510 is found for a random sample of 100 
scores. 

11. Discrete Probability and Descriptive Statistics 5. Given the data below, sketch a stern and leafdisplay, 
a frequency histogram, and find tlhe mean, median, 

STUDENT OBJECTIVES: mode and sample standard deviation. Determine 
the 75th percentile of these data. 

6. A prize has been put in 2% of all Sweeties cereal 
boxes. Find the probability that the fourth box you 
open contains the first prize you find. Determine 
the average number of boxes one needs to open in 
order to get one prize. Simulate the experiment, 
also. 

7. If 80% of all programs fail to run on the first try, 
find the probability that in a grou:p of 100 programs 

c b a c  r 
7. Prove that in every boolean algebra, [B, +, 0,‘ , 0, 11, 

8. Show that the set of 2 x 2 matrices with integer 
202: = z and z+ 1 = 1 for any z E B .  

entries is a commutative monoid under matrix ad- 4. If scores on an examination are normally distributed 
dition. 

pression 
8. Construct a logic network for the the boolean ex- 

Understand basic axioms, simple theorems of prob- 

Understand conditional probability. 
0 Understand, and be able to do problems involving 

the discrete uniform, Bernoulli, binomial, Poisson 
(optional), hypergeometric and geometric probabil- 
ity distributions and their random variables. 

0 Understand the goal of random number generation. 
Understand the Law of Large Numbers. 

ability. 



78 RESHAPING COLLEGE MATHEMA'TICS 

at least 30 programs run on the first try. 

8. Showb(z;n, 1-p) = b(n-z ;n ,p)  where b ( z ; n , p )  = 

9. Completion time on a standardized test is normally 
distributed with an average of 40 minutes and stan- 
dard deviation 5 minutes. How much time should be 
allotted if the examiner wants 95% of the students 
to finish the test? What if the examiner wishes to 
leave 5 minutes for checking for 95% of the class? 

(Z)P2(1 - P)"-". 

12. Algorithmic Linear Algebra 

STUDENT OBJECTIVES: 

Understand matrix operations and their properties. 

Be able to determine whether a matrix is invertible, 

See the relationship of matrices to graphs. 

* See the use of matrices in representation of linear 

Be able to use row operations to reduce matrices. 

Be able to determine whether a system of linear 
equations has a solution, a unique solution or no 
solution. 

Be able to solve a system of linear equations, if a 
solution exists. 

Have an understanding of linear inequalities, graph- 
ing them in the two variable case. 

Be able to solve linear programming problems using 
the simplex method (and the graphical method in 
the two variable case). 
Be able to use matrices to solve Markov chain mod- 
els. 

* Use powers of incidence matrices to study connec- 
tivity properties of graphs or digraphs. 
See and use the recursive definition of the determi- 
nant of a square matrix. 

and if so, be able to find the inverse. 

systems. 

SAMPLE PROBLEMS: 

1. Determine the matrix representation of the undi- 
rected graph pictured below. Determine the number 

of paths of length 3 from 01 to  04. 

2. A firm packages nut assortments: Fancy & Deluxe. 
The Fancy assortment contains 6 oz. cashews, 8 
01. almonds and 10 oz. peanuts. It sells for $2.40. 
The Deluxe assortment contains 12 oz. cashews, 10 
oz. almonds and 8 oz. peanuts. It is priced at  
$3.60. The supplier can provide a maximum of 3000 
oz. cashews, 3600 oz. almonds and 3200 oz. peanuts. 
Find the number of boxes of each type that would 
maximize revenue. Use the simplex method and a 
graphical method. 

3. Determine if each of the systems 

(a) 42+3y=7 
22 + 6y = 8 

(b) 62 + 3y + 72 = 4 
22 + 5y + 82 = 10 

has one solution, no solution, many solutions. Find 
all solutions in each case. 

4. Let 

A =  [: :I 

Determine if the following exist. If they do, find 
them; if not, explain. A + B ,  AB,  A + D ,  A,-', 
B - l ,  D - l ,  det A,  det C. 

5 .  Given a Markov chain with transition matrix P, find 
the steady state probability vecotr. Let 

(Here we would give a word problem with this tran- 
sition matrix.) 
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Bibliography 

Textbooks 

This is a list of textbooks that might be considered 
for use in courses of the kind discussed in this report. 
It is aa nearly complete as we could make it, but books 
of this kind are still appearing often and we may well 
have overlooked some good older ones. Inclusion in the 
list thus does not imply endorsement, nor does omission 
imply the opposite. Likewise, the “notes” are not meant 
to be definitive in any way, but just remarks that users 
of this bibliography may find interesting. 

1. Arbib, M.; Kfoury, A.; Moll, R. A Basis For The- 
oretical Computer Science. New York: Springer- 
Verlag; 1981; ISBN 0-387-90573-1. 

An introduction to  theoretical computer science. 
Chapter 4 includes techniques of proving theorems. 
Contents: Sets, maps, and relations; induction, strings, 
and languages; counting, recurrence, and trees; switch- 
ing circuits, proofs, and logic; binary relations, lattices, 
and infinity; graphs, matrices, and machines. 

2. Biggs, Norman L. Discrete Mathematics. New York: 
Oxford University Press; 1985; ISBN 0-19-853252-0. 

A mathematically-sound book with plenty of mate- 
rial for a two-semester course. Three main sections 
are “Numbers and counting,” “Graphs and algorithms,” 
and “Algebraic methods.” Although written from the 
viewpoint of mathematics rather than computer science, 
it  does pay a fair amount of attention to  algorithms. 
Probably a bit too rigorous for freshmen and sopho- 
mores. Contents: Graphs, combinatorics, number the- 
ory, coding theory, combinatorial optimization, abstract 
algebra. 

3. Bogart, Kenneth. Introductory Combinatorics. 
Boston: Pitman; 1983; ISBN 0-273-01923-6. 

A fairly complete coverage of standard combinatorial 
topics, but  the treatment is essentially non-algorithmic; 
e.g., there is no algorithm for permutations. Some- 
what sophisticated; probably requires a year of calcu- 
lus for maturity. Contents: Introduction to  enumer- 
ation; equivalence relations, partitions, and multisets; 
algebraic counting techniques; graph theory; matching 
and optimization; combinatorial designs; partially or- 
dered sets. 

4. Brualdi, Richard A. Introductory Combinatorics. 
New York, etc.: North-Holland; 1977; ISBN 0-7204- 

Sophomore level; calculus prerequisite. Sophisticated, 
but  not much algorithmic flavor. Contents: What  is 
combinatorics? the  pigeonhole principle; basic counting 
principles: permutations and combinations; the bino- 
mial coefficients; the inclusion-exclusion principle; re- 
currence relations; generating functions; systems of dis- 
tinct representatives; combinatorial designs; introduc- 

8610-6. 

tion to  the theory of graphs; chromatic number, con- 
nectivity, and other graphical parameters; optimization 
problems. 

5. Cohen, Daniel I.A. Basic Techniques of Combinato- 
rial Theory. New York: John Wiley and Sons; 1978; 
ISBN 0-471-03535- 1. 

Assumes one semester of calculust; not inclined to  
use proof by induction. Contents: Introduction; bino- 
mial coefficients; generating functione; advanced count- 
ing numbers; two fundamental principles; p.ermutations; 
graphs. Appendix on mathematical induction. 

6. Dierker, Paul; Voxman, William. Discrete Math- 
ematics. San Diego: Harcourt Elrace Jovanovich; 

College algebra a prerequisite; primarily for freshmen 
and sophomores. The  theme of algorithms is a unify- 
ing thread; otherwise, little independence between chap- 
ters, so could be used as a text for one- or two-semester 
courses. Contents: A first look a t  algorithms; number 
systems and modular arithmetic; introduction t o  graph 
theory; applications of graph theory; boolean algebra 
and switching systems; symbolic logic and logic circuits; 
difference equations; a n  introduction to enumeration; el- 
ementary probability theory; generating functions; in- 
troduction t o  automata and formal languages; appen- 
dices on set theory, functions, matrices, and relations. 

7. Doerr, Alan; Levasseur, Kenneth. Applied Discrete 
Structures for Computer Science. Chicago: Science 
Research Associates; 1985; ISBN 0-574-21755-X. 

Aimed at freshman-sophomore computer science ma- 
jors. Includes applications, some “Pascal notes.” Con- 
tents: Set theory; combinatorics; logic; more on sets; 
introduction t o  matrix algebra; relations; functions; re- 
cursion and recurrence relations; graph theory; trees; al- 
gebraic systems; more matrix algebra; boolean algebra; 
monoids and automata; group theory and applications; 
a n  introduction to  rings and fields. 

8. Gersting, Judith. Mathematical Structures for 
Computer Science. San Francisco: W.H. Freeman 
and Company; 1982; ISBN 0-7167-1305-5. 

A fine text, but emphasis on computer science applica- 
tions may be too great. An accessible reference on group 
codes. Contents: How t o  speak mathematics: basic vo- 
cabulary; structures and simulations; boolean algebra 
and computer logic; algebraic structures; coding theory; 
finite-state machines; machine design and construction; 
computability; formal languages. 

9. Grimaldi, Ralph P. Discrete and Combinatorial 
Mathematics. Reading, Mass.: Addison-Wesley; 

Intended for sophomores and juniors. Contents: Fun- 
damental principles of counting; enumeration in set the- 
ory; relations and functions; languages; finite s ta te  ma- 
chines; relations: the second time around; the system of 

1986; ISBN 0-15-517691-9. 

1985; ISBN 0-201-12590-0. 



80 RESHAPING COLLEGE MATHEMATE 

10, 

11. 

12. 

13. 

14. 

integers; the principle of inclusion and exclusion; rings 
and modular arithmetic; boolean algebra and switch- 
ing functions; generating functions; recurrence relations; 
groups, coding theory, and P6lya’s method of enumera- 
tion; finite fields and combinatorial designs; an introduc- 
tion to graph theory; trees; optimization and matching. 

Hillman, Abraham P.; Alexanderson, Gerald L.; 
Grassl, Richard M. Discrete and Combinatorid 
Mathematics. New York: Dellen Publishing Com- 
pany; 1986; ISBN 0-02-354580-1. 

Sophomore-junior text. Contents: Sets and rela- 
tions; algebraic structures; logic; induction; combina- 
torial principles; digraphs and graphs; groups; polyno- 
mials and rational functions; generating functions and 
recursions; combinatorial analysis of algorithms; intro- 
duction to coding; finite state machines and languages. 

Johnsonbaugh, R. Discrete Mathematics, Revised 
Edition. New York: Macmillan; 1984; ISBN 0-02- 

Intended for a one-semester course for freshmen or 
sophomores. Mainly but not exclusively aimed a t  com- 
puter science students. Emphasizes an algorithmic ap- 
proach and does a considerable amount of algorithm 
analysis. Contents: Introduction; counting methods and 
recurrence relations; graph theory; trees; network mod- 
els and Petri nets; boolean algebras and combinatorial 
circuits; automata, grammars, and languages. Appen- 
dices on logic and matrices. 

Kalmanson, Kenneth. A n  Introduction to  Discrete 
Mathematics and Its Applications. Reading, Mass.: 
Addison-Wesley; 1986; ISBN 0-201-14947-8. 

Intended for freshmen and sophomores. Developed in 
conjunction with Sloan-funded course at  Montclair State 
College. Contents: Sets, numbers, and algorithms; sets, 
logic and computer arithmetic; counting; introduction 
to graph theory; trees and algorithms; directed graphs 
and networks; applied modern algebra; further topics 
in counting and recursion; appendix with programs in 
BASIC. 

Kolman, Bernard; Busby, Robert C. Discrete Math- 
ematical Structures for Computer Science. Engle- 
wood Cliffs, New Jersey: Prentice-Hall; 1984; ISBN 

“There are no formal prerequisites, but the reader is 
encouraged to consult the Appendix as needed.” In- 
tended for a one- or two-semester course for freshmen 
or sophomore computer science students. Contains rel- 
atively few algorithms. Approach on the informal side, 
with not very many theorems or proofs. Contents: Fun- 
damentals; relations and digraphs; functions; order re- 
lations and structures; trees and languages; semigroups 
and groups; finite-state machines and languages; groups 
and coding. 

Korfhage, Robert R. Discrete Computational Struc- 
tures, Second Edition. New York: Academic Press; 
1984; ISBN 0-12-420860-6. 

Contents: Entities, properties, and relations; arrays 
and matrices; graph theory: fundamentals; combina- 

360900-1. 
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torics; trees and hierarchies; graph theory: undirected 
graphs; graph theory: directed graphs; discrete prob- 
ability; automata and formal languages; boolean alge- 
bras; logic: propositional and predicate calculus; algo- 
rithms and programs. 

15. Levy, Leon S. Discrete Structures of Computer Sci- 
ence. New York: John Wiley and Sons; 1980; ISBN 

A highly-personal statement on discrete structures for 
computer science students. The presentation is very 
sketchy. For a sophomore-junior course; leaps quickly 
into abstraction and algorithms. Contents: An essay 
on discrete structures; sets, functions, and relations; di- 
rected graphs; algebraic systems; formal systems; trees; 
programming applications. 

16. Lipschutz, Seymour. Discrete Mathematics. New 
York: McGraw-Hill (Schaum’s Outline Series); 
1976; ISBN 0-07-037981-5. 

Contains an outstanding collection of (easy) worked 
examples and exercises. Vectors and matrices are re- 
garded as an introductory topic. Contents: Set theory; 
relations; functions; vectors and matrices; graph sthe- 
ory; planar graphs, colorations, trees; directed graphs, 
finite-state machines; combinatorial analysis; algebraic 
systems, formal languages; posets and lattices; proposi- 
tion calculus; boolean algebra. 

Essential Computer Mathe- 
matics. New York: McGraw-Hill (Schaum’s Outline 
Series); 1982; ISBN 0-07-037990-4. 

Again there is an excellent collection of examples and 
exercises. Includes discussion of representation of num- 
bers and characters, linear algebra, and probability and 
statistics. Suitable €or technical mathematics course €or 
data processing students; not appropriate as a text for 
the discrete mathematics course proposed by the Com- 
mittee. Contents: Binary number system; computer 
codes; computer arithmetic; logic, truth tables; allgo- 
rithms, flow charts, pseudocode programs; sets and rela- 
tions; boolean algebra, logic gates; simplification of logic 
circuits; vectors, matrices, subscripted variables; linear 
equations; combinatorial analysis; probability; statis- 
tics: random variables; graphs, directed graphs, ma- 
chines. 

18. Liu, C.L. Elements of Discrete Mathematics, Second 
Edition. New York: McGraw-Hill; 1985; ISBN 0-07- 
038133-X. 

A comparatively short, but well-constructed text. In- 
tended for a one-semester course but probably more ap- 
propriate for juniors than for freshmen or sophomores, 
although there is no prerequisite beyond high school al- 
gebra. Induction and problem-solving are treated early. 
A rather traditional mathematical approach with em- 
phasis on combinatorics, relatively little on algorithms. 
Contents: Computability and formal languages; per- 
mutations, combinations, and discrete probability; rela- 
tions and functions; graphs and planar graphs; trees and 
cutsets; finite-state machines; analysis of algorithms; 
discrete numeric functions and generating functions; re- 
currence relations and recursive algorithms; groups and 
rings; boolean algebras. 

0-471-03208-5. 

17. Lipschutz, Seymour. 
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19. 

20. 

21. 

22. 

23. 

24. 

Liu, C.L. Introduction to  Applied Combinatorial 
Mathematics. New York: McGraw-Hill; 1968; ISBN 

This is a good source for recurrence relations, and for 
P6lya’s theory of counting. It also contains introduc- 
tions to linear and dynamic programming. Contents: 
Permutations and combinations; generating functions; 
recurrence relations; the principle of inclusion and exclu- 
sion; P6lya’s theory of counting; fundamental concepts 
in the theory of graphs; trees, circuits, and cut-sets; pla- 
nar and dual graphs; domination, independence, and 
chromatic numbers; transport networks; matching the- 
ory; linear programming; dynamic programming; block 
designs. 

Marcus, Marvin. Discrete Mathematics: A Compu- 
tational Approach Using BASIC. Rockville, Mary- 
land: Computer Science Press; 1983; ISBN 0- 

Interesting approach; elementary. Complemented by 
a DOS 3.3 16-sector 5 1/4” floppy disk, DISCRETE 
PROGRAMS. Contents: Elementary logic; sets; rela- 
tions and functions; some important functions; function 
optimization; induction and combinatorics; introduction 
to probability; introduction to matrices; solving linear 
equations; elementary linear programming. 

Molluzzo, John L.; Buckley, Fred. A First Course in 
Discrete Mathematics. Belmont, Calif.: Wadsworth 
Publishing Company; 1986; ISBN 0-534-05310-6. 

“. . . intended for non-mathematically-oriented stu- 
dents . . .first or second-year computer science or com- 
puter information systems student.” Contents: Num- 
ber systems; sets and logic; combinatorics; probability; 
relations and functions; vectors and matrices; boolean 
algebra; graph theory; appendix on Pascal. 

Mott, Joe L.; Kandel, Abraham; Baker, Theodore 
P. Discrete Mathematics for Computer Scientists. 
Reston, Virginia: Reston Publishing Company; 

Sophomore-junior course; programming experience 
desirable but not essential. For computer science au- 
dience (posets are defined on p. 17). Contents: Foun- 
dations; elementary combinatorics; recurrence relations; 
relations and digraphs; graphs; boolean algebras. 

Norris, Fletcher R. Discrete Structures: A n  Intro- 
duction to Mathematics for Computer Scientists. 
Englewood Cliffs, New Jersey: Prentice-Hall; 1985; 
ISBN 0-13-215260-6 (Instructor’s Manual; ISBN 
2 152 77). 

Written for a one-semester course for freshmen and 
sophomores. College algebra is the prerequisite. Con- 
tents: Propositions and logic; sets; boolean algebra; the 
algebra of switching circuits; functions, recursion, and 
induction; relations and their graphs; applications of 
graph theory; discrete counting: an introduction to com- 
binatorics; posets and lattices; appendices on the binary 
number system and matrices. 

Pfleeger, Shari Lawrence; Straight, David W. In- 
troduction to  Discrete Structures. Revised Edition. 

0-0 7-0 38 1 24-0. 
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1983; ISBN 0-8359-1372-4. 

25. 

26. 

27. 

28. 

29. 

New York: John Wiley and Sons; 1985; ISBN 0-471- 

Aimed at computer science majors; no college-level 
prerequisites; theory with applications. Includes some 
proofs. Contents: Formal systems; functions and re- 
lations; boolean algebras; boolean algebra and logic 
design; lattices and their applications; cardinality and 
countability; graphs and their use in computing; intro- 
duction to formal languages; computability. 

Polimeni, Albert D.; Straight, H. Joseph. Foun- 
dations of Discrete Mathematics. Monterey, Calif.: 
Brooks Cole Publishing Company; 1985; ISBN 0- 

Intended for sophomores. Prerequisite: one year of 
college-level mathematics, including a semester of cal- 
culus, and an introductory programniing course. Pascal 
used throughout. Contents: Logic; riet theory; number 
theory and mathematical induction; relations; functions; 
algebraic structures; graph theory. 

Prather, Ronald P. Discrete Mathematical Struc- 
tures for Computer Science. Boston: Houghton 
Mifflin; 1976; ISBN 0-395-20622-7 (Solutions Man- 
ual; ISBN 0-395-20623-5). 

A solid coverage of all the standard material. Boolean 
algebras are treated as lattices. Contents: Preliminaries, 
algebras and algorithms, graphs and digraphs, monoids 
and machines, lattices and boolean algebras, groups and 
combinatorics, logic and languages. 

Prather, Ronald P. Elements of Discrete Mathemat- 
ics. Boston: Houghton Mifflin; 1986; ISBN 0-395- 
35165-0 (Solutions Manual; ISBN 0-395-35166-9). 

Suitable for a one-term course. “No prior program- 
ming experience is needed because a generic pseudocode 
language is used to phrase algorithms.” Developed un- 
der a Sloan Foundation pilot project grant. Contents: 
Intuitive set theory; deductive mathematical logic; dis- 
crete number systems; the notion of an algorithm; poly- 
nomial algebra; graphs and combinatorics. 

Roman, Steven. A n  Introduction io Discrete Mathe- 
matics. Philadelphia: Saunders College Publishing; 
1986; ISBN 0-03-064019-9. 

Could be used for a one- or two-isemester course for 
freshmen or sophomores in mathematics as well as com- 
puter science. A careful and not too hurried approach 
but quite traditionally mathematicail with little atten- 
tion to algorithms. Contents: Sets, functions, and proof 
techniques; logic and logic circuits;, relations on sets; 
combinatorics-the art of counting; more on combina- 
torics; an introduction to graph theory. 

Ross, Kenneth A.; Wright, Charles R.B. Dis- 
crete Mathematics. Englewood Cliffs, New Jersey: 
Prentice-Hall; 1985; ISBN 0-13-215286-X. 

A large book certainly suitable for a two-semester 
course for freshmen or sophomores in computer science 
or mathematics. Considerable attention is paid to algo- 
rithms, but the approach is generally that of a math- 
ematician rather than a computer scientist. Contents: 
Introduction to graphs and trees; sets; elementary logic 

80075-9. 
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and induction; functions and sequences; matrices and 
other semigroups; counting; more logic and induction; 
relations; graphs; trees; boolean algebra; algebraic sys- 
tems. 

30. Sahni, Sartaj. Concepts in  Discrete Mathemat- 
ics. Fridley, Minn.: Camelot Publishing Company; 

The author says the book is for students of computer 
science and engineering, with a bias towards the for- 
mer, and contains needed topics not included in typi- 
cal calculus and algebra courses. Algorithmic in flavor, 
but moderately formal. Probably a year course a t  the 
sophomore-junior level. Many interesting examples not 
done elsewhere. Contents: Logic; constructive proofs 
and mathematical induction; sets; relations; functions, 
recursion, and computability; analysis of algorithms; re- 
currence relations; combinatorics and discrete probabil- 
ity; graphs; modern algebra. 

31. Sedlock, James T. Mathematics for Computer Stud- 
ies. Belmont, Calif.: Wadsworth Publishing Com- 
pany; 1985; ISBN 0-534-04326-7. 

Intended as first college mathematics course for com- 
puter science majors. Unsophisticated, at the level 
of finite mathematics, without proofs or rigor. Con- 
tents: Introduction; computer-related arithmetic; sets, 
combinatorics, and probability; computer-related logic; 
computer-related linear mathematics; selected topics 
(mathematics of finance, statistics, functions, induc- 
tion); introduction to advanced topics (graphs and trees, 
semigroups, finite-state machines, languages and gram- 
mars). 

32. Skvarcius, Romualdas; Robinson, William. Discrete 
Mathematics with Computer Science Applications. 
Menlo Park, Calif.: Benjamin Cummings Publish- 
ing Company; 1986; ISBN 0-8053-7044-7. 

”. . .intended audience is freshmen and sophomore 
students who are taking a concentration in computer 
science . . .”. Contents: Introduction to discrete math- 
ematics; logic and sets; relations and functions; com- 
binatorics; undirected graphs; directed graphs; boolean 
algebra; algebraic systems; machines and computations; 
probability . 

33. Stanat, Donald F.; McAllister, David F. Discrete 
Mathematics in Computer Science. Englewood 
Cliffs, New Jersey: Prentice-Hall; 1977; ISBN 0-13- 

1981; ISBN 0-942450-00-0. 

216150-8. 
A sophomore-junior level course; students will need 

some previous exposure to college-level mathematics. 
The first discrete mathematics text to consider program 
verification in its coverage of mathematical reasoning. 
The text is essentially non-algorithmic, but contains a 
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Calculus Transition: From High School to College 

From 1983 to  1986, the CUPM Panel on Calcu- 
lus Articulation studied problems associated with college 
transition for students who had studied calculus in high 
school. The report of the CUPM Panel originally ap- 
peared under the title UTransition from High School to 
College Calculus” i n  the AMERICAN MATHEMATICAL 
MONTHLY, October, 1987. It is reprinted here with mi- 
nor editorial changes. 

1989 Preface 

The importance of the problems identified in 
the panel’s report has been underscored by sev- 
eral recent international and national assessments 
of mathematics education (e.g., The National Re- 
search Council’s report Everybody Counts: A Report 
t o  the Nation on the Future of Mathematics Educa- 
tion). 

Since the panel’s report was written in 1986, the 
severity of the transition problems from high school 
to  college calculus has increased both qualitatively 
and quantitatively. In 1987 there were 59,123 stu- 
dents who took an Advanced Placement Calculus Ex- 
amination, an increase of 85% from 1982. Although 
this increase does not necessarily indicate a similar 
growth rate in the number of students studying cal- 
culus in high school, it does document a large in- 
crease in the number of students entering college cal- 
culus having earned an Advanced Placement Calculus 
score of three or less. This increase serves to inten- 
sify the Report’s recommendation that colleges and uni- 
versities develop special calculus courses for these stu- 
dents. 

The development of Computer Algebra Systems de- 
signed for classroom teaching introduces a new com- 
ponent into the transition problems students may en- 
counter in going from high school to  college cal- 
culus. I t  is vitally important to expand com- 
munication between college and high school teach- 
ers in regards to  the development of this tech- 
nology, particularly with respect to  pedagogical is- 
sues. 

Donald B. Small 
Colby College 
March, 1989 

Introduction 

There is a widespread and growing dissatisfaction 
with the performance in college calculua courses of many 
students who had studied calculus in high school. In 
response to  this concern, in the fall of 1983, the Com- 
mittee on the Undergraduate Program in Mathematics 
(CUPM) formed a Panel on Calculus Articulation to 
undertake a three-year study of questions concerning 
the transition of students from high school calculus to 
college calculus and submit a report to CUPM detail- 
ing the problems encountered and proposals for their 
solution. 

The seriousness of the issues involved in the Panel’s 
study is underscored by the number of students involved 
and their academic ability. During the ten-year period 
1973 to  1982, the number of students in high school 
calculus courses grew a t  a rate exceeding 10% annually. 
Of the 234,000 students who passed a high school cal- 
culus course in 1982, 148,600 received a grade of B- or 
higher [2]. Assuming a continuation of the 10% growth 
rate and a similar grade distribution there were approx- 
imately 200,000 high school students in the spring of 
1985 who received a grade of B- or higher in a calculus 
course. Thus possibly a third or more of the 500,000 
college students who began their college calculus pro- 
gram (in Calculus I, Calculus 11, or Cakulus 111) in the 
fall of 1985 had already received a grade of B- or higher 
in a high school calculus course. 

The students studying calculus in high school consti- 
tute a large majority of the more mathematically capa- 
ble high school students. (In 1982, 55% of high school 
students attended schools where calculus was taught 
[2].) Students who score a 4 or 5 on an Advanced 
Placement (AP) Calculus examination normally do well 
in maintaining their accelerated mathematics program 
during the transition from high school to  college. How- 
ever, this is a very small percentage of the students who 
take calculus in high school. For exaimple, in 1982, of 
the 32,000 students who took an Advanced Placement 
calculus examination, just over 12,000 received scores of 
4 or 5, which represents only 6% of all high school stu- 
dents who took calculus that year. The primary concern 
of the Panel was with the transition difficulties associ- 
ated with the remaining almost 94% of the high school 
calculus students. 
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Problem Areas 

Past studies and the Panel's surveys of high school 
teachers, college teachers, and state supervisors suggest 
that the major problems associated with the transition 
from high school calculus to college calculus are: 

1. High school teacher qualifications and expectations. 
2. Student qualifications and expectations. 
3. The effect of repeating a course in college after 

having experienced success in a similar high school 
course. 

4. College placement. 
5. Lack of communication between high schools and 

These problems were addressed by first considering 
accelerated programs in general, high school calculus 
(successful, unsuccessful), and the responsibilities of the 
colleges. 

colleges. 

Accelerated Programs 

Accelerated mathematics programs, usually begin- 
ning with algebra in eighth grade, are now well estab- 
lished and accepted in most school systems. The suc- 
cess of these programs in attracting the mathematically 
capable students was documented in the 1981-82 test- 
ing that was done for the "Second International Math- 
ematics Study." The Summary Report [9] states with 
reference to a comparison between twelfth grade pre- 
calculus students and twelfth grade calculus students 
in the United States: 

We note furthermore that in every content area (sets 
and relations, number systems, algebra, geometry, el- 
ementary functions/calculus, probability and statis- 
tics, finite mathematics), the end-of-the-year average 
achievement of the precalculus classes was less (and in 
many cases considerably less) than the beginning-of- 
the-year achievement of the calculus students. 

The report continues: 

It is important to observe that the great majority of 
U.S. senior high school students in fourth and fifth 
year mathematics classes (that is, those in precalculus 
classes) had an average performance level that was at 
or below that of the lower 25% of the countries. The 
end-of-year performance of the students in the calculus 
classes was at or near the international means for the 
various content areas, with the exception of geometry. 
Here U.S. performance was below the international 
average. 

Thus those students in accelerated programs cul- 
minating in a calculus course perform near the inter- 
national mean level while their classmates in (non- 
accelerated) programs culminating in a precalculus 

course perform in the bottom 25% in this international 
survey. The poor performance in geometry by both the 
precalculus and calculus students correlates well with 
the statistic that 38% of the students were never taught 
the material contained in the geometry section of the 
test [9, p. 591. The test data  underscores the concern 
expressed by many college teachers that  more emphasis 
needs to be placed on geometry throughout the high 
school curriculum. This data  does not, however, indi- 
cate that accelerated programs emphasize geometry less 
than non-accelerated programs. 

The success of the accelerated programs in com- 
pleting the "normal" four year high school mathemat- 
ics program by the end of the eleventh grade presents 
schools with both an opportunity and a challenge for a 
"fifth" year program. There are two acceptable options: 

1. Offer college-level mathematics courses that would 
continue the students' accelerated program and thus 
provide exemption from one or two semesters of col- 
lege mathematics. 

2. Offer high school mathematics courses that would 
broaden and strengthen a student's background and 
understanding of precollege mathematics. 

Not offering a fifth year course or offering a watered- 
down college level course with no ezpectation of students 
earning advanced placement are not considered to be ac- 
ceptable options. 

A great deal of prestige is associated with offering 
calculus as a fifth year course. Communities often view 
the offering of calculus in their high school as an in- 
dication of a quality educational program. Parents, 
school board officials, counselors, and school adminis- 
trators often demonstrate a competitive pride in their 
school's offering of calculus. This prestige factor can 
easily manifest itself in strong political pressure for a 
school to offer calculus without sufficient regard to  the 
qualifications of teachers or students. 

It is important that this political pressure be resisted 
and that the choice of a fifth year program be made 
by the mathematics faculty of the local school and be 
made on the basis of the interest and qualifications of 
the mathematics faculty and the quality and number of 
accelerated students. School officials should be encour- 
aged to  develop public awareness programs to  extend 
the prestige and support that exists for the calculus 
to acceleration programs in general. This would help 
diffuse the political pressure as well as broaden school 
support within the community. 

Schools that elect the first option of offering a col- 
lege level course should follow a standard college course 
syllabus (e.g., the Advanced Placement syllabus for cal- 
culus). They should use placement test scores along 
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with the college records of their graduates as primary 
measures of the validity of their course. 

For schools that elect the second option, a variety of 
courses is possible. The following course descriptions 
represent four possibilities. 

ANALYTICAL GEOMETRY. This course could go well 
beyond the material normally included in second year 
algebra and precalculus. It could include Cartesian and 
vector geometry in two- and three-dimensions with top- 
ics such as translation and rotation of axes, characteris- 
tics of general quadratic relations, curve sketching, po- 
lar coordinates, and lines, planes, and surfaces in three- 
dimensional space. Such a course would provide spe- 
cific preparation for calculus and linear algebra, as well 
as give considerable additional practice in trigonometry 
and algebraic manipulations. 

PROBABILITY A N D  STATISTICS. This course could 
be taught at a variety of levels, to be accessible to 
most students, or to challenge the strongest ones. It 
could cover counting methods and some topics in dis- 
crete probability such as expected values, conditional 
probability, and binomial distributions. The statistics 
portion of the course could emphasize exploratory data 
analysis including random sampling and sampling dis- 
tributions, experimental design, measurement theory, 
measures of central tendency and spread, measures of 
association, confidence intervals, and significance test- 
ing. Such an introduction to probability and statistics 
would be valuable to  all students, and for those who 
do not plan to  study mathematics, engineering, or the 
physical sciences, probably more valuable than a calcu- 
lus course. 

DISCRETE MATHEMATICS. This type of course could 
include introductions to  a number of topics that are ei- 
ther ignored or treated lightly within a standard high 
school curriculum, but which would be stimulating and 
widely useful for the college-bound high school student. 
Suggested topics include permutations, combinations, 
and other counting techniques: mathematical induc- 
tion; difference equations; some discrete probability; el- 
ementary number theory and modular arithmetic; vec- 
tor and matrix algebra, perhaps with an introduction 
to linear or dynamic programming; and graph theory. 

MATRIX ALGEBRA. This course could include ba- 
sic arithmetic operations on matrices, techniques for 
finding matrix inverses, and solving systems of linear 
equations and their equivalent matrix equations using 
Gaussian elimination. In addition, some introduction to 
linear programming and dynamic programming could 
be included. This course could also emphasize three- 
dimensional geometry. 

High School Calculus 

There are many valid reasons why i% fifth year pro- 
gram should include a calculus course. Four major rea- 
sons: (1) calculus is generally recognized as the starting 
point of a college mathematics prograia, (2) there ex- 
ists a (nationally accepted) syllabus, (3) the Advanced 
Placement program offers a nation-widle mechanism for 
obtaining advanced placement, and (4) there is a large 
prestige factor associated with offering calculus in high 
school. Calculus, however, should not be offered un- 
less there is a strong indication that the course will be 
successful. 

Successful Calculus Courses 

The primary characteristics of a successful high 
school calculus course are: 
1. 

2. 

3. 

4. 

5 .  

6. 

7. 

8. 

A qualified and motivated instructor with a math- 
ematics degree that included at least one semester 
of a junior-senior real analysis course involving a 
rigorous treatment of limits, continuity, etc. 
Administrative support, including provision of ad- 
ditional preparation time for the instructor (e.g., as 
recommended by the North Central Accreditation 
Association). 
A full year program based on the Advanced Place- 
ment syllabus. 
A college text should be used (not a watered-down 
high school version). 
Advanced placement for students (rather than mere 
preparation for repeating calculus in college) is a 
major goal. 
Course evaluation based primarily on college place- 
ment and the performance of its graduates in the 
next higher level calculus course. 
Restriction of course enrollment t,o only qualified 
and interested students. 
The existence of an alternative fifth year course that 
students may select who are not qualified for or in- 
terested in continuing in an accelerated program. 

The bottom line of what makes a hig;h school calculus 
course successful is no surprise to  anyone. A qualified 
teacher with high but realistic expectations, using some- 
what standard course objectives, and students who are 
willing and able to learn result in a successful transi- 
tion at any level of our educational process. Problems 
appear when any of the above ingredients are missing. 

Unsuccessful Calculus Courses 

Two types of high school calculus courses have an 
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undesirable impact on students who later take calculus 
in college. 

One type is a one semester or partial year course that 
presents the highlights of calculus, including an intuitive 
look at the main concepts and a few applications, and 
makes no pretense about being a complete course in 
the subject. The motivation for offering a course of this 
kind is the misguided idea that it prepares students for 
a redcourse in college. 

However, such a preview covers only the glory and 
thus takes the excitement of calculus away from the col- 
lege course without adequately preparing students for 
the hard work and occasional drudgery needed to un- 
derstand concepts and master technical skills. Profes- 
sor Sherbert has commented: “It is like showing a ten 
minute highlights film of a baseball game, including the 
final score, and then forcing the viewer to watch the 
entire game from the beginning-with a quiz after each 
inning.” 

The second type of course is a year-long, semi- 
serious, but watered-down treatment of calculus that 
does not deal in depth with the concepts, covers no 
proofs or rigorous derivations, and mostly stresses me- 
chanics. The lack of both high standards and emphasis 
on ‘understanding dangerously misleads students into 
thinking they know more than they really do. 

In this case, not only is the excitement taken away, 
but an unfounded feeling of subject mastery is fostered 
that can lead to serious problems in college calculus 
courses. Students can receive respectable grades in a 
course of this type, yet have only a slight chance of pass- 
ing an examination. Those who place into second term 
calculus in college will find themselves in heavy com- 
petition with better prepared classmates. Those who 
elect (or are selected) to repeat first term calculus be- 
lieve they know more than they do, and the motivation 
and willingness to learn the subject are lacking. 

College Programs 

Several studies ([l], [3], [5], [6], [7]) have been con- 
ducted on the performance in later courses by students 
who have received advanced placement (and possibly 
college credit) by virtue of their scores on Advanced 
Placement Calculus examinations. The studies show 
that, overall, students earning a score of 4 or 5 on either 
the AB or BC Advanced Placement Calculus examina- 
tion do as well or better in subsequent calculus courses 
than the students who have taken all their calculus in 
college. It is therefore strongly recommended that col- 
leges recognize the validity of the Advanced Placement 

Calculus program by the granting of one semester ad- 
vanced placement with credit in calculus for students 
with a 4 or 5 score on the AB examination, and two 
semesters of advanced placement with credit in calculus 
for students with a 4 or 5 score on the BC examination. 

The studies reviewed by the Panel do not indicate 
any clear conclusions concerning performance in sub- 
sequent calculus courses by students who have scared 
a 3 on an Advanced Placement Calculus examination. 
The treatment of these students is a very important 
transition problem since approximately one-third of all 
students who take an Advanced Placement Calculus ex- 
amination are in this group and many of them are quite 
mat hematically capable. 

It is therefore recommended that these students be 
treated on a special basis in a manner that is appro- 
priate for the institution involved. For example, sev- 
eral colleges offer a student who has earned a 3 on an 
Advanced Placement Calculus examination the oppor- 
tunity to upgrade this score to an “equivalent 4” by 
doing sufficiently well on a Department of Mathemat- 
ics placement examination. Another option is to give 
such students one semester of advanced placement with 
credit for Calculus I upon successful completion of Cal- 
culus 11. A third option is to give one semester of ad- 
vanced placement with credit for Calculus I and provide 
a special section of Calculus I1 for such students. 

Other important transition problems are associ- 
ated with students who have studied calculus in high 
school, but have not attained advanced placement ei- 
ther through the Advanced Placement Calculus pro- 
gram or effective college procedures. These students 
pose an important and difficult challenge to college 
mathematics departments, namely: How should these 
students be dealt with so that they can benefit from 
their accelerated high school program and not succumb 
to the negative and (academically) destructive attitude 
problems that often result when a student repeats a 
course in which success has already been experienced? 
There are three major factors to  consider with respect 
to these students. 
1. The lack of uniformity of high school calculus 

courses. The wide diversity in the backgrounds of 
the student8 necessitates that a large review com- 
ponent be included in their first college calculus 
course to guarantee the necessary foundation for fu- 
ture courses. 

2. The mistaken belief of most of these students that 
they really know the calculus when, in fact, they do 
not. Thus they fail to study enough at the beginning 
of the course. When they realize their mistake (if 
they do), it is often too late. These students often 
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become discouraged and resentful as a result of their 
poor performance in college calculus, and believe 
that it is the college course that must be at fault. 

The better the 
student, the more upsetting are the understandable 
feelings of uncertainty about his or her position rel- 
ative to the others in the class. Although this is a 
common problem for all college freshmen, it is com- 
pounded when the student appears to be repeating 
a course in which success had been achieved the pre- 
ceding year. This promotes feelings of anxiety and 
produces an accompanying set of excuses if the stu- 
dent does not do at least as well as in the previous 
year. 

The uncertainty of one's position relative to the rest 
of the class often manifests itself in the student not 
asking questions or discussing in (or out of) class for 
fear of appearing dumb. This is in marked contrast 
to the highly confident high school senior whose 
questions and discussions were major components 
in his or her learning process. 

The unpleasant fact is that the majority of students 
who have taken calculus in high school and have not 
clearly earned advanced placement do not fit in either 
the standard Calculus I or Calculus I1 course. The stu- 
dents do not have the level of mastery of Calculus I 
topics to  be successful if placed in Calculus I1 and are 
often doomed by attitude problems if placed in Calculus 
I. In modern parlance, this is the rock and hard place. 

An additional factor to consider is the negative effect 
that a group of students who are repeating most of the 
content of Calculus I has on the rest of the class as well 
as on the level of the instructor's presentations. 

What is needed are courses designed especially for 
students who have taken calculus in high school and 
have not clearly earned advanced placement. These 
courses need to be designed so that they: 

1. Acknowledge and build on the high school experi- 
ences of the students; 

2. Provide necessary review opportunities to ensure an 
acceptable level of understanding of Calculus I top- 
ics; 

3. Are clearly diflerent from high school calculus 
courses (in order that  students do not feel that 
they are essentially just repeating their high school 
course); 

4. Result in an equivalent of one semester advanced 
placement. 

Altering the traditional lecture format or rearrang- 
ing and supplementing content seem to be two promis- 
ing approaches to developing courses that will satisfy 

3. The "Pecking Order" syndrome. 

the above criteria. For example, Col.by College has 
successfully developed a two semester calculus course 
that fulfills the four conditions. The clourse integrates 
multivariable with single variable calcuIlus, and thereby 
covers the traditional three semester program in two 
semesters [lo]. 

Of course, the introduction of a new course entails 
an accompanying modification of college placement pro- 
grams. However, providing new or alternative courses 
should have the effect of simplifying placement issues 
and easing transition difficulties that nlow exist. 

Recommendations 

1. School administrators should develop public aware- 
ness programs with the objective of extending the 
support that exists for fifth year callculus courses to 
accelerated programs including all of the fifth year 
options. 

2. A fifth year program should offer a student a choice 
of courses (not just calculus). 

3. The choice of fifth year options should be made by 
the high school mathematics facu1t:y on the basis of 
their interest and qualifications and the quality and 
number of the accelerated students. 

4. If a fifth year course is intended as a college level 
course, then it should be treated as a college level 
course (text, syllabus, rigor). 

5 .  A fifth year college level course should be taught 
with the expectation that successful graduates (B- 
or better) would not repeat the course in college. 

6. A fifth year program should provide an alternative 
option for the student who is not qualified to con- 
tinue in an accelerated program. 

7. A mathematics degree that includes a t  least one 
semester of a junior-senior real analysis course in- 
volving a rigorous treatment of limit, continuity, 
etc., is strongly recommended for anyone teaching 
calculus. 

8. A high school calculus course should be a full year 
course based on the Advanced Placement syllabus. 

9. The instructor of a high school calculus course 
should be provided with additional preparation time 
for this course. 

10. High school calculus students should take either the 
AB or BC Advanced Placement cidculus examina- 
tion. 

11. The evaluation of a high school calculus course 
should be based primarily on college placement and 
the performance of its graduates in the next level 
calculus course. 
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12. Only interested students who have successfully com- 
pleted the standard four year college preparatory 
program in mathematics should be permitted to 
take a high school calculus course. 

13. Colleges should grant credit and advanced place- 
ment out of Calculus I for students with a 4 or 5 
score on the AB Advanced Placement calculus ex- 
amination, and credit and advanced placement out 
of Calculus I1 for students with a 4 or 5 score on 
the BC Advanced Placement calculus examination. 
Colleges should develop procedures for providing 
special treatment for students who have earned a 
score of 3 on an Advanced Placement calculus ex- 
aminat ion. 

14. Colleges should individualize as much as possible 
the advising and placement of students who have 
taken calculus in high school. Placement test scores 
and personal interviews should be used in determin- 
ing the placement of these students. 

15. Colleges should develop special courses in calculus 
for students who have been successful in accelerated 
programs, but have clearly not earned advanced 
placement. 

Colleges have an opportunity and responsibility to de- 
velop and foster communication with high schools. In 
particular: 

16. Colleges should establish periodic meetings where 
high school and college teachers can discuss expec- 
tations, requirements, and student performance. 

17. Colleges should coordinate the development of en- 
richment programs (courses, workshops, institutes) 
for high school teachers in conjunction with school 
districts and state mathematics coordinators. 

References 
[l] C. Cahow, N. Christensen, J. Gregg, E. Nathans, H. 

Strobel, G. Williams. Undergraduate Faculty Council of 
Arts and Sciences Committee on Curriculum; Subcom- 
mittee on Advanced Placement Report, Trinity College, 
Duke University, 1979. 

"High school and beyond tabula- 
tion: Mathematics courses taken by 1980 high school 

[2] C. Dennis Carroll. 

sophomores who graduated in 1982." National Council 
of Education Statistics, April 1984 (LSB 84-4-3). 

[3] P.C. Chamberlain, R.C. Pugh, J. Schellhammer. "Does 
advanced placement continue throughout the under- 
graduate years?" College and Univerrity, Winter 1968. 

[4] "Advanced Placement Course Description, Mathemat- 
ics." The College Board, 1984. 

[5] E. Dickey. "A study comparing advanced placement and 
first-year college calculus students on a calculus achieve- 
ment test." Ed.D. dissertation, University of South Car- 
olina, 1982. 

[6] D.A. Frisbie. "Comparison of course performance of AP 
and non-AP Calculus students." Research Memorandum 
No. 207, University of Illinois, September 1980. 

"A comparison of the college performance 
in calculus-level mathematics courses between regular- 
progress students and advanced placement Students." 
Ed.D. dissertation, Temple University, 1973. 

[8] C. Jones, J. Kenelly, D. Krcider. "The advanced place- 
ment program in mathematics-Update 1975." Mathe- 
matics Teacher, 1975. 

[9] Second Internotional Mathematics Study Summary Re- 
port for the United Stater. Champaign, IL: Stipes Pub- 
lishing, 1985. 

[lo] D. Small, J. Hosack. Calculus: An Integrated Approach. 
McGraw-Hill, 1990. 

[ll] D.H. Sorge, G.H. Wheatley. "Calculus in high school- 
At what cost?" American Mathematical Monthly 84 
(1977) 644-647. 

[12] D.M. Spresser. "Placement of the first college course." 
International Journal Mathematics Education, Science, 
and Technology 10 (1979) 593-600. 

[7] D. Fry. 

Panel Members 

DONALD B. SMALL, CHAIR, Colby College. 
GORDON BUSHAW, Central Kitsap High School, Sil- 

JOHN H. HODGES, University of Colorado. 
DONALD J. NUTTER, Firestone High School, Akron, 

RONALD SCHNACKENBURG, Steamboat Springs High 

DONALD R. SHERBERT, University of Illinois. 
BARBARA STOTT, Riverdale High School, Jefferson, 

verdale , Washington. 

Ohio. 

School, Colorado. 

Louisiana. 



Curriculum for Grades 11-13 

The following report was approved in 1987 by the 
Board of Directors of the National Council of Teach- 
ers of Mathematics and by  the Board of Governors of 
the Mathematical Association of America. The joint 
NCTM-MAA committee that prepared the report was 
chaired by Joan Leitzel, Associate Provost of The Ohio 
State University. It is printed here in its entirety for 
the first time. 

The Joint Task Force on Curriculum for Grades 11-13 
was formed in Spring 1986 by John Dossey, President 
of the National Council of Teachers of Mathematics, 
and Lynn Steen, President of the Mathematical Associ- 
ation of America. The Task Force was charged to focus 
on curriculum for the mainstream of students who take 
a college preparatory program in high school and who 
go on in college to a standard freshman mathematics 
course such as calculus, finite mathematics, statistics, 
or discrete mathematics. The Task Force was asked to 
advise on the need for new recommendations to high 
schools and colleges concerning curriculum for students 
who intend to pursue careers that depend on mathe- 
matics. 

The Task Force has studied and synthesized recent 
national reports on the state of mathematics education, 
as well as the recommendations of many national and 
state boards, and the reports of several recent curricu- 
lum projects. It is clear that the present situation in 
mathematics education is dynamic and that significant 
changes in curriculum in grades 11-13 may occur in the 
next few years. The Task Force has been impressed and 
excited by the quality and scope of curricular projects 
currently underway. We note particularly the K-12 
Curriculum Project undertaken by the Mathematical 
Sciences Education Board (MSEB), the frameworks of 
which will be released during 1989, and the collegiate 
mathematics project undertaken jointly by MSEB and 
the Board of Mathematical Sciences of the National Re- 
search Council (The Mathematical Sciences in the Year 
2000: Assessment for Renewal in U.S. Colleges and Uni- 
versities). 

It is not the purpose of this report to resolve present 
conflicts or to  determine new directions for mathemat- 
ics education. Rather, it is the purpose of this report 
to summarize those areas related to grades 11-13 cur- 
riculum in which it appears the profession now has a 
level of consensus, and also to summarize those issues 
where there is lack of consensus and apparent need of 

additional study. 
Although it is tempting to make no statements dur- 

ing this time of rapid evolution, we are persuaded that 
school and university students, parents, and teachers 
will welcome some clarification from the professional 
associations. The joint statement of the NCTM and 
MAA on college preparation has not been updated since 
it was released in the mid-70s. Thus, although we do 
not in any way want to suggest that the status quo is 
acceptable for education in mathematics, we do wish 
to summarize prevailing opinions in the hope that some 
guidance will be helpful to students and teachers at this 
time. 

This Task Force was formed to consider curricular 
matters. Even though it is beyond tlhe charge of the 
Task Force, we are compelled to mention that attention 
to curriculum will be meaningless without concurrent 
attention to other matters. One such concern is the in- 
creasing shortage of qualified teachers a t  all levels, es- 
pecially in the middle grades and the secondary schools. 
In addition, colleges and universities frequently depend 
heavily on teaching assistants and part-time teachers. 

Secondly, it is difficult to discuss cuririculum in grades 
11-13 without reference to the mathematics of the ear- 
lier grades. The Task Force has been reminded fre- 
quently of the critical role that middle school mathe- 
matics and the first year of algebra play in a student’s 
success in college preparatory mathematics. Continued 
attention needs to be given to the cui:riculum of these 
grades. Indeed, some of the recommendations we make 
in this report for grades 11-13 apply as well to earlier 
grades. 

Issues of Apparent Consensus 

After reviewing numerous reports and talking with 
teachers, mathematicians, and mathematics educators, 
the Task Force believes that there is agreement within 
the profession on many issues related to curriculum in 
grades 11-13 for those students who are directed toward 
mathematics-dependent collegiate programs. From this 
consensus, it appears that the following recommenda- 
tions can be made: 
1. College-bound students should Lake mathematics 

in all years of secondary school; Ithis mathematics 
should include the content of intermediate algebra 
and geometry. 
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2. Geometry in both two and three dimensions, coor- 
dinate geometry and the development of geometric 
perception are essential parts of college preparatory 
mathematics. 

3. Although computer programming is an important 
tool for all college-bound students, courses in com- 
puter programming should not be regarded as sub- 
stitutes for college preparatory mathematics. 

4. Students should learn the content of a full four years 
of college preparatory mathematics before taking a 
calculus course. Students directed toward twelfth 
grade calculus need an enriched program as early as 
grades 7 and 8. 

5. A full program of college preparatory mathematics 
should be provided in every secondary school. 

6. Calculus, if taught in the schools, should be equiva- 
lent to college-level calculus. NCTM and MAA have 
made a joint recommendation to the schools that 
students should expect to write proficiency exam- 
inations (either Advanced Placement or university 
credit exams) to establish that they have learned 
beginning calculus, and to obtain college credit for 
high school calculus courses. Watered-down calcu- 
lus courses in the secondary schools stressing manip- 
ulations but slighting subtle processes do not help 
students. Introducing polynomial calculus in pre- 
calculus courses uses time better spent on other top- 
ics. 

7. If mathematics is required in a student’s college 
program, the student should enroll in mathemat- 
ics courses as a college freshman. There should not 
be a gap of a year or more during which a student 
takes no mathematics. 

8. Students should expect to make use of calcula- 
tors and computers in their mathematics courses in 
grades 11-13. Calculators and computers should be 
used as tools to enhance and expand the learning of 
mathematics in these grades. 

9. The availability of technology should permit com- 
putational approaches to college preparatory math- 
ematics that result in this mathematics being acces- 
sible to more students. Further, the availability of 
technology should permit students in these grades 
to investigate problem situations that are not ap- 
proachable without computational tools, and to be 
introduced to different mathematics than was pos- 
sible without calculators and computers. 

10. Mathematics in grades 11-13 needs to have a clear 
connection to  real world problems, and students 
should be expected to acquire a growing ability to 
use mathematics to model real situations. Students 
should become aware of new applications of math- 

ematics as these applications develop. In addition, 
students should understand that mathematics itself 
is a developing discipline, and, where possible, stu- 
dents should come to appreciate new developments 
in mathematics. 

11. The curriculum of grades 11-13 should contain units 
in statistics, probability, and fundamental topics in 
discrete mathematics for all college-bound students, 

12. Mathematics in grades 11-13 should have goals be- 
yond the acquisition of computational techniques. 
Mathematical understanding and analytical rea- 
soning are basic goals for mathematics at this 
level. Problem solving strategies should be stressed, 
and manipulative and computational techniques, al- 
though important, should not predominate. 

13. Teachers of mathematics in grades 11-13 should em- 
ploy strategies that encourage student reading, writ- 
ing, and reflection. Assignments and examinations 
should be designed to help students become more in- 
dependent learners of mathematics and to increase 
their abilities to discuss both orally and in writing 
the mathematical ideas they are learning. Courses 
should not cover an excessive number of topics a t  
the expense of reflection and independent learning 
on the part of students. Teachers should take advan- 
tage of mathematics competitions and science fairs 
to encourage independent learning in students. 

14. While there is need for meaningful review within 
new mathematics, the amount of time spent on re- 
view at  the beginning of a course in grades 11-13 
should not be excessive. Typically, review should 
be integrated into the learning of new mathematics. 

15. Expectations of students with regard to homework, 
examinations, and knowledge of previous courses 
need to be raised in many grade 11-13 programs. 
These expectations should include daily homework, 
cumulative examinations, and examination ques- 
tions that require problem-solving skills. 

16. To overcome the effects of socialization that discour- 
ages girls and American minorities from studying 
mathematics, these groups of students should be es- 
pecially encouraged in the study of mathematics in 
grades 11-13, and efforts should be made to identify 
applications of mathematics that hold particular in- 
terest for under-represented groups. Furthermore, 
the perceived preponderance of negative attitudes 
toward mathematics in this country should be stud- 
ied to determine what aspects of curriculum and 
what features of culture contribute most heavily to 
these attitudes. 
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Recommendat ion 
The Task Force is persuaded that improvement in the 

curriculum of grades 11-13 and in student performance 
in this curriculum requires strong collaborative effort 
among mathematicians, university faculty in mathe- 
matics education, teachers, school leaders, counselors, 
students, and parents. The Task Force recommends 
that funding be sought so that the curricular issues cited 
above and other essential related information can be 
communicated to  these groups. Particularly targeted 
brochures and flyers need to be developed and circu- 
lated to teachers, school leaders, counselors, students, 
and parents. 

We have included at the end of the report a fuller de- 
scription of the rationale and content of these proposed 
communiques and recommendations for the desired col- 
laboration. 

Issues Requiring Further Study 
In addition to the issues listed above on which the 

profession appears to have a consensus, we have iden- 
tified many issues where there is lack of consensus. In 
many cases, studies, reviews, and experimentation are 
underway in a variety of projects. Where we know of 
such projects, we have cited them here. In some cases it 
appears that more study and discussion will be needed 
t o  clarify these issues. 

Gifted Students: Acceleration or Enrichment? 
The types of courses that students are capable of tak- 

ing in grades 11-13 will depend upon the preparation of 
these students in earlier years. Should the very best stu- 
dents be accelerated or should their programs instead 
be enriched with topics they may otherwise miss? This 
question is still a matter of debate among mathematics 
educators. 

Advocates of early introduction of algebra usually 
argue that the current curriculum for grades 7 and 8 is 
mainly just a review of topics taught in previous grades 
with little new material introduced. The Report of the 
MSEB Task Force on Curriculum Frameworks for K-12 
Mathematics (Draft, October 1986) states that: 

We applaud the current attempts to make algebra an 
eighth grade subject. There is ample evidence from 
other countries that eighth graders can handle algebra. 
More generally, we think that grades 7 and 8 should 
look forward to high school mathematics as much or 
more than they look backward to elementary school 
mathematics. 

The University of Chicago School Mathematics Pro- 
gram is being designed for the general school popula- 
tion. Its eighth grade course is mainly algebra, but 

heavily manipulative techniques are postponed to later 
courses. In his paper, “Why Elementa.ry Algebra Can, 
Should, and Must be an 8th Grade Course for Average 
Students,” Zalman Usiskin argues that in other coun- 
tries algebra is usually done with all students at grades 
7 and 8 and that with proper curriculum in grades 1-6, 
algebra could be mastered in grade 8 ‘by U.S. students 
as well. 

In The Underachieving Curriculum: Assessing U.S. 
School Mathematics fiom an International Perspec- 
tive, a report on the Second International Mathematics 
Study, the authors recommend: 

The content of the mathematics curriculum needs to 
be re-examined and revitalbed. The domination of 
the lower secondary school curriculum by the arith- 
metic of the elementary school has resulted in a pro- 
gram that, from an international point of view, is very 
lean. The curriculum should be broa-dened and en- 
riched by including a substantial treatment of topics 
such as geometry, probability, statistics and algebra, 
as well as promoting higher-level process goals such as 
estimation and problem-solving. 

In “Let’s Not Teach Algebra to Eighth Graders!” 
(Mathematics Teacher, November 1985), Fernand Pre- 
vost provides evidence that offering algebra in eighth 
grade has unwanted consequences. Hiis study of New 
Hampshire schools showed that “only about half of the 
students who take algebra as eighth graders continue 
their study of mathematics through a fifth year.” Pre- 
vost recommends an enriched program rather than al- 
gebra, with only the top 3 to 5 percent being truly ac- 
celerated. Two very relevant questions regarding his 
study are: 
1. Do the sixth and seventh grade programs ad- 

equately prepare students for a:lgebra in eighth 
grade? 

2. Would the retention rate be greater if there were 
alternative twelfth grade courses? 

Several letters of rebuttal were submitted by readers 
in response to Prevost’s article. 

There has been specific concern about students who 
study calculus in grade 11. ETS reports that 4,000 of 
the 60,000 students now taking AP calculus exams are 
in eleventh grade and lower. Very special arrangements 
are needed to guarantee that these students have ap- 
propriate mathematics in grade 12. 

The NCTM’s position statement on Provisions for 
Mathematically Talented and Gifted Students (October 
1986) contends that: 

The needs of mathematically talented and gifted stu- 
dents cannot be met by programs of study that only 
accelerate these students through the standard school 
curriculum, nor can they be met by programs that al- 
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low students to terminate their study of mathematics 
before their graduation from high school. 

The NCTM paper goes on to  recommend that: 
All mathematically talented and gifted students 
should be enrolled in a program that provides a broad 
and enriched view of mathematics in a context of 
higher expectation. Acceleration within such a pro- 
gram is recommended only for those students whose 
interests, attitudes, and participation clearly reflect 
the ability to persevere and excel throughout the en- 
tire program. 

Greater Integration of Topics 

It can hardly be disputed that the curriculum for 
grades 11-13 must be closely related to  the curriculum 
of the preceding years. An issue on which there is no 
apparent consensus and which therefore requires further 
study is the extent to  which the secondary school math- 
ematics curriculum should be integrated or unified. 

In most countries mathematics is not compartmen- 
talized into algebra, geometry, etc., as is conventional 
in the U.S. Since World War I1 there have been numer- 
ous attempts to  break down these compartments in this 
country. One such attempt in the 1950's was Florida's 
Functional Mathematics Program which was short-lived 
mainly because of the advent of the School Mathematics 
Study Group (SMSG) and the "new mathematics." In 
the late 1960's and early 1970's, the Secondary School 
Mathematics Curriculum Improvement Study (SSM- 
CIS), directed by Howard Fehr at Columbia, developed 
a unified program intended for the top 15 to 20 percent 
of secondary school students. 

In 1984, after several years of experimentation, the 
New York State Board of Regents adopted an integrated 
approach as the high school Regents program in mathe- 
matics with intentions of gradually phasing out the tra- 
ditional program. At the present time, the University 
of Chicago School Mathematics Project is developing 
an applications-oriented curriculum that is integrated 
to some extent although algebra prevails in grade eight 
and geometry receives the emphasis in grade nine. 

Despite these moves toward unification, it is still the 
case in the U.S. that  most college preparatory mathe- 
matics programs begin with a year of algebra, followed 
by a year of geometry and another year of algebra. The 
Second International Mathematics Study Summary Re- 
port for the United States (1985) contends: 

It is plausible that the "fragmentation" and "low in- 
tensity" found in many of our mathematics programs 
could be allayed by a more integrated approach to the 
high school mathematics curriculum. 

The Report of the MSEB Task Force on Curricu- 
lum Frameworks for K-12 Mathematics (Draft, October 

1986) states: 
Not only do we believe that an integrated curricu- 
lum offers the possibility of a richer, more coherent 
program than the alternative but, further, we believe 
that the introduction of a variety of new subject mat- 
ter into the secondary school mathematics curriculum 
will inevitably signal the demise of the segregated cur- 
riculum if only for logistics reasons. 

How inevitable this is remains to  be seen. One fac- 
tor that must always be taken into consideration when 
making curriculum decisions in the U.S. is the mobility 
of our population. It must be admitted that the ability 
to  transfer a credit in algebra or a credit in geometry has 
simplified matters for many students. Unified curricula 
may make the process of transferring more traumatic. 
Such curricula may also cause much rethinking on the 
part of colleges that are accustomed to accepting well 
defined units of credit, although placement by examina- 
tion may suffice. An additional concern is that teach- 
ing unified courses requires a breadth of understanding 
beyond what many teachers have been prepared to  :pro- 
vide. 

It should be pointed out that  there is yet another 
aspect of integration that needs further study. This is 
the possibility of integrating mathematics with other 
disciplines, particularly science. 

Role of Statistics & Discrete Mathematics 
There appears to be agreement that topics in discrete 

mathematics and in statistics and probability should 
be included in the mathematics curriculum for college- 
bound students. However, there is lack of agreement on 
the appropriate place for these subjects in the mathe- 
matics curriculum and on the number of hours of study 
required, especially for students who study calculus in 
grades 12 or 13. The traditional mathematics cur- 
riculum from elementary algebra, geometry, interme- 
diate algebra, through precalculus is largely a calciilus 
preparatory curriculum. Usually these courses do not 
include substantial study of discrete mathematics or of 
statistics and probability even though foundational t o p  
ics in these areas are often in the back of textbooks used 
in the courses. 

STATISTICS AND PROBABILITY 

Nearly every major committee making recommenda- 
tions on the high school curriculum has said that famil- 
iarity with the basic concepts of statistics and statis- 
tical reasoning should be a fundamental goal for high 
school mathematics (new state frameworks in Califor- 
nia, Illinois, Wisconsin, and New York; The College 
Board's Academic Preparation i n  Mathematics; MSEB 
Task Force Draft Report on Curriculum Frameworks 
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for K-12 Mathematics; A Nation at Risk from the Na- 
tional Commission on Excellence in Education). Typi- 
cal is the statement in Educating Americans for the 21st 
Century (1983) from the National Science Board Com- 
mission on Precollege Education in Mathematics, Sci- 
ence and Technology: “Elementary statistics and prob- 
ability should now be considered fundamental for all 
high school students.” Similarly, after studying the per- 
formance of 12th grade college preparatory mathemat- 
ics students on the Second International Mathematics 
Study, the U.S. National Committee recommends that, 
“The curriculum should be broadened and enriched by 
including a substantial treatment of topics such as ge- 
ometry, probability, statistics and algebra, as well as 
promoting higher-level process goals such as estimation 
and problem-solving.” 

Committees have been making recommendations for 
the inclusion of statistics for thirty years. In 1959, the 
Commission on Mathematics of the CEEB in its report, 
Program for  College Preparatory Mathematics, recom- 
mended a one-semester course in probability and statis- 
tics as an alternative for grade twelve. The Commission 
published an experimental text, Introductory Probabil- 
ity and Statistical Inference, the same year. In 1975, 
the Euclid conference sponsored by the NIE identified 
probability and organization and interpretation of nu- 
merical data as two of ten basic goals for mathematics 
education. Also in 1975, the Conference Board of the 
Mathematical Sciences National Advisory Committee 
on Mathematical Education (NACOME) reported: 

While probability instruction seems to have made 
some progress, statistics instruction has yet to get off 
the ground . . . . 
The situation has not changed much since this NA- 

COME report. For example, Bruce Williamson in The 
Statistics Teacher Network Newsletter (1983) reported 
that a study of approximately 350 high schools in Wis- 
consin found that the percentage of schools which allot 
more than three weeks in the total high school program 
to statistics declined from 26% in 1975 to 23% in 1983. 
In 1975,43% allotted more than three weeks to proba- 
bility; this declined to 34% in 1983. However, Wisconsin 
now requires some elements of statistics for all students 
so it is likely the decline has been reversed. 

The dearth of good materials may be the main rea- 
son why more statistics and probability is not being 
taught. Usiskin (1985 NCTM Yearbook) states, “The 
content of any new curriculum must be specified in as 
much detail as current content. . . . Materials must be 
available to implement recommendations.” Materials 
currently available consist primarily of locally produced 
handouts, a recently published book for high school stu- 

dents (Travers, et al.), and four bookl.ets published by 
the ASA-NCTM Joint Committee on the Curriculum 
in Statistics and Probability. 

Arguments against including mo:re statistics are 
raised by educators who feel that students in grades 
11-13 need to spend their time on “basic” mathemat- 
ics topics. For example, the integrated New York State 
mathematics program is criticized by the IEEE Long 
Island Section because the introduction of new subjects 
such as statistics and probability reduces the time spent 
on basic algebra, geometry, and trigonometry. 

DISCRETE MATHEMATICS 
Recently, topics in discrete mathematics have been 

recommended for inclusion in the high school curricu- 
lum in several reports including the Report of The 
MSEB Task Force on Curriculum Fraineworks for K-12 
Mathematics (Draft, October 1986). The CBMS (“The 
Mathematical Sciences Curriculum K-.12: What Is Still 
Fundamental and What Is Not”) recommends that dis- 
crete mathematics now be regarded as “fundamental.” 

While certain topics (induction, matrices, discrete 
probability, and combinatorics) are found at  the back 
of many high school textbooks, they are not always 
taught. Additional topics such as gra.ph theory, differ- 
ence equations, recurrence relations, and game theory 
are also recommended by some. No high school curricu- 
lum has yet been standardized in discrete mathematics. 
Some relatively short units, such as the HiMap mod- 
ules, are now available and finite mathematics texts are 
sometimes adapted for this instruction. 

Many colleges and universities now offer a lower divi- 
sion course in discrete mathematics particularly suited 
to students in computer science. There has been dis- 
cussion of how students should be prepared for such a 
course. To quote from the preliminary report (1984) of 
the MAA Panel on Discrete Mathematics in the First 
Two Years: 

What should be taught in the high schools or on the 
remedial level in the colleges to prep<are students ad- 
equately for this course? Our suggestion is tentative: 
some of us feel that perhaps a revived emphasis on 
the use of both formal and informal proof in geometry 
courses as a means for teaching methods of proof and 
analytic thinking would be a step in the right direc- 
tion. Others of us are not so sure. Increased use of 
algorithmic thinking in problem solving could be eas- 
ily adapted to many high school courses . . . . Simple 
restoration of some of the classical topics (the bino- 
mial theorem, mathematical induction, natural loga- 
rithms) and increased emphasis on problem solving 
might make the proposed course much easier for the 
student. 

The issue of what curriculum adequately pre- 
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pares students for college-level discrete mathematics or 
whether any particular preparation is essential requires 
further study. 

Twelfth Grade Mathematics Courses 
For students in a college preparatory program who 

take algebra I in grade 9, the twelfth grade course is 
traditionally a year of precalculus mathematics that  
includes trigonometry as well as topics such as expo- 
nential and logarithmic functions and equations, conic 
sections, rational functions and their graphs, polar co- 
ordinates, parametric equations and their graphs. 

Two groups of students are identified by some as stu- 
dents who need alternatives to  traditional twelfth grade 
courses. The first are students who have studied precal- 
culus in grade 11 but who may not benefit particularly 
from the study of calculus in grade 12 and who may 
benefit more from the study of other topics in math- 
ematics, delaying calculus until grade 13. The second 
are students who do not expect to  need calculus in their 
college programs, but do expect to  take college mathe- 
matics. It is argued by some that standard precalculus 
in grade 12 (or calculus, in the case of students who are 
eligible for calculus) does not provide these students 
with the best college preparation. 

The three most frequently mentioned semester- 
length courses proposed as 12th grade options are given 
below. We also include a new course under development 
at the North Carolina School of Science and Mathemat- 
ics. 

STATISTICS AND PROBABILITY 

A one-semester course in statistics and probability 
has been proposed by the new Mathematics Framework 
for California Public Schools. The tenth grade course 
being designed by the University of Chicago School 
Mathematics Project is Statistics and Computers. Cur- 
rently, statistics courses are not widely taught. For ex- 
ample, of the 42 high schools in New Hampshire, only 
five offer a course in statistics (Prevost in The Statistics 
Teacher Network Newsletter, 1983). 

D IS CRETE MATE EM ATIC s 
Using their own lecture notes, Georgetown Univer- 

sity lecturers have taught a summer course in discrete 
mathematics/mathematical modeling to selected high 
school students (Sandefur in 1985 NCTM Yearbook). 
The North Carolina School of Science and Mathemat- 
ics has offered a one-semester course called "Topics in 
Discrete Mathematics" which follows multivariate cal- 
culus, again to  very select students. We know of no 
experiments in traditional high schools. The curricula 

from the six colleges and universities that were funded 
by the Sloan Foundation to  integrate discrete mathe- 
matics into the first two years of the college program 
may provide some guidance for secondary schools seek- 
ing a 12th grade course in discrete mathematics. 

LINEAR ALGEBRA 
Full courses in linear algebra are not common in sec- 

ondary schools although various individuals argue the 
appropriateness of this mathematics for grade 12 (e.g., 
John Thorpe, "Algebra: What Should We Teach and 
How Should We Teach It," NCTM Research Agenda 
Project Conference on the Teaching and Learning of 
Algebra, Athens, Georgia, March 25-28, 1987). In the 
Chicago area, high school students involved in acceler- 
ated programs through the Johns Hopkins talent search 
do take linear algebra in several junior colleges. 

A SURVEY OF MODERN MATHEMATICS 
A twelfth grade course is being developed with a 

Carnegie Foundation grant a t  the North Carolina High 
School of Science and Mathematics that  is a survey of 
modern mathematics. The year-long course will con- 
sist of units (at least three weeks long) which introduce 
students to  the kinds of mathematics that they could 
study in college. Students will presumably then be able 
to  make a more informed choice of their first college 
courses. The topics proposed include calculus, discrete 
mathematics, computer programming, popular software 
such as SMPs, statistics, probability, mathematics of 
finance, linear programming, operations research, and 
linear algebra. The course focuses on the types of prob- 
lems that are characteristic of each field and introduces 
students to  the mathematical techniques that are used 
to solve them. 

Calculus Review for College Freshmen 
Each year a large number of students take a full 

year of high school calculus and either do not write the 
AP test or do not receive a 3, 4, or 5 on it, and do 
not test above the beginning calculus level on college 
placement tests. These students may not "fit" into a 
standard college calculus sequence. They typically view 
the introductory material as mathematics they have al- 
ready learned and do not take beginning work seriously 
enough to succeed in the later work of their courses. It 
can be argued that these students are potentially capa- 
ble students in mathematics. The CUPM Subcommit- 
tee on Calculus Articulation [Don Small, Chair] has rec- 
ommended that colleges should develop a special course 
with the following characteristics: 
1. The course should be different from high school cal- 

culus. 
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2. The course should contain a broad review compo- 
nent designed to  provide depth missing in most high 
school courses. 

3. The course should assume a high school calculus 
experience and build on it. 

4. The course, when completed successfully, should 
provide one semester of beginning calculus credit 
in addition to  the credit for the course. 

Colby College has developed a two-semester calcu- 
lus sequence integrating the treatment of one and sev- 
eral variables that has these characteristics. The course 
is offered for identified students instead of the regular 
three-semester calculus course. 

On the other side, many argue that if colleges develop 
special courses for students who take calculus in high 
school but do not master it at a college level, students 
will be encouraged to  be satisfied with less than full 
mastery of their high school calculus and high schools 
will be encouraged to  offer watered-down courses in cal- 
culus in the 12th grade. (The MAA and the NCTM 
have prepared a joint statement for the schools indicat- 
ing that students who take high school calculus should 
expect to establish college credit either through the AP 
exam or through a college proficiency exam.) These ed- 
ucators maintain that alternatives to calculus should be 
developed in grade 12 for students who are not ready 
to master calculus, and that it is not a good use of stu- 
dent time to spend one and a half to two years on the 
content of first-year calculus. 

The Place of Deductive Reasoning 

University and college faculty complain that too of- 
ten students enter college with the view that mathe- 
matics is just a collection of rules and algorithms to be 
used to attack a variety of standard problems. They as- 
sert that students’ abilities to  reason either deductively 
or inductively have not been developed by their math- 
ematics courses, and that their ability to attack prob- 
lems of an unfamiliar nature has not been developed. If 
these statements are true, there is need to determine the 
cause. Some argue that the rush to streamline the high 
school program so that calculus can be taught in the 
12th grade, jettisoning things deemed unimportant to 
this goal and omitting end-of-the-text topics, bears pri- 
mary responsibility. Others claim that the emphasis on 
the formal structure of mathematics has stifled the abil- 
ity to reason intuitively. Also it is not clear how much 
better entering college students a generation ago were 
at  mathematical reasoning. There is general agreement 
that strengthening students’ reasoning ability is a goal 
in grades 11-13, but little evidence that this is happen- 
ing. The following comments by Phil Curtis, UCLA, 

suggest where attention may need to be focused: 
If this problem is to be corrected, more! attention must 
be paid to the development of a student’s reasoning 
ability a t  all levels, and the instruction should focus 
on inquiry and discovery rather than an over-riding 
emphasis on mastery of a body of rules and techniques. 
Is the following statement true or fahe? How can we 
decide? If true, why is it true? How can we see if the 
statement is a consequence of ideas that have been 
discussed before? 

The emphasis on reasoning shoulld focus on in- 
tuitive understanding rather than a development of 
formal logic. The structure of implication, however, 
should be stressed. What is the nature of mathemati- 
cal implications? What is the hypothesis and what is 
the conclusion of an implication? What is the diffet- 
ence between a statement and its converse? 

Traditionally, the geometry course was the first 
course in which students met the notion of mathemati- 
cal proof. Proofs were very formal but, since there was 
never an attempt to extend this form of reasoning to 
other mathematics courses, very little in the way of 
reasoning skills was retained when stmudents came to 
college. There are many areas where mathematical 
implication can be stressed: solution of equations and 
inequalities in algebra as well as certain elementary 
ideas from number theory, use of coordinate geom- 
etry and vector techniques in geometry, mathemati- 
cal induction, and counting arguments and elementary 
probability in advanced algebra or discrete mathemat- 
ics. 

To develop mathematical reasoning skills takes 
time and should be one of the primary goals of the high 
school program. Ideas should be developed leisurely; 
the focus on the program should not be just to make 
students ready for calculus in the 12th grade. To ac- 
complish this development the program needs to be 
opened up a t  all levels. In particulstr, the necessity 
for inordinate amount of review present a t  all lev- 
els should be lessened. Rule bound students are on 
a mathematical dead end. The high school program 
should be able to do more. 

Curricular Impact of Calculators 

The introduction of single variable calculus as the 
“desired” 12th grade mathematics course in high school 
is thought by some to have resulted irk a streamlining of 
the program prior to calculus. The reriulting lack of sea- 
soning or maturity on the part of many incoming college 
freshmen is perhaps the biggest complaint of college fac- 
ulties. Students are said to know much more than stu- 
dents of a generation ago as far as calculus-related ideas 
are concerned, but geometric intuition, skill with coor- 
dinate geometry, the ability to organize applied prob- 
lems and the ability to construct mathematical argu- 
ments are all too often reported to be lacking. Students 
may have an algorithmic facility with mathematics, but 
many lack a true understanding of thle subject. 
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I t  is often expressed that when hand-held calculators 
are generally available at all grade levels the narrowing 
of the curriculum may get worse. This apprehension is 
typified by the remark: "If students are to  use calcu- 
lators, why should we teach all of this arithmetic (and 
possibly algebra) that can be done so much easier on a 
calculator?" Experience in other countries, e.g., Aus- 
tralia, shows that narrowing of the curriculum need not 
be a serious problem. 

Indeed, many argue that an introduction of calcu- 
lators can encourage a broadening of the curriculum 
rather than a further narrowing of it. At the elemen- 
tary level, students can handle numerical data in much 
greater amounts and in wider practical situations than 
would be possible without calculators. A sense of 'rea- 
sonableness of solution' to  more complicated calcula- 
tional problems can and should be a goal of instruction. 
There is an  increased opportunity to  develop a student's 
mental arithmetic and estimation skills. 

Rather than decrease students' algebraic skills, these 
proponents argue, the ability to confront practical prob- 
lems of much greater computational complexity should 
be an impetus for development of the algebra skills nec- 
essary to organize the problems so they are amenable 
to  numerical calculation. All of the calculations involv- 
ing compound interest are possible, with the associ- 
ated opportunity to  do manipulations with geometric 
series. Transcendental equations in trigonometry are 
easily solved. This could be a spur to  confront more 
meaningful applied problems in trigonometry involving 
manipulation and solution of trigonometric equations; 
computations that were impossible in the past. Certain 
topics of course can be dropped; for example, depen- 
dence on tables for teaching trigonometry as well as the 
use of logarithms to  perform multiplication and division 
calculations. 

Curricular materials are under development now on 
several levels and a t  several locations that make central 
use of calculators and computers. The answers to many 
questions concerning the effect of technology on the cur- 
riculum will emerge as these materials become widely 
available. For grades 11-13 the content of intermediate 
algebra, precalculus, discrete mathematics, and calcu- 
lus are all likely to  be affected. Ronald Douglas has 
noted in the Introduction to Toward a Lean and Lively 
Calculus (MAA, 1987): 

Anyone who has seen hand-held calculators which out- 
put the graph of an equation usually realizes that we 
can and, indeed, we will have to change what we ask 
students to learn and what we test them on. And this 
is just a start of developments that include the grow- 
ing availability of programs for symbolic and algebraic 
methods as well as for numerical methods. 

The Sloan Foundation has funded projects at seven 
colleges and universities to  consider the potential im- 
pact of computer algebra systems on the teaching of cal- 
culus. The National Science Foundation has announced 
a major initiative in the area of calculus curriculum that 
can be expected to  include some projects where calcu- 
lators and computers play a central role. 

Alternatives to Remedial Courses 
An ever increasing fraction of resources is now de- 

voted to remedial courses a t  both the college and high 
school levels. Algebra and precalculus courses are com- 
mon at colleges for students who previously have been 
exposed to  this material, Failure rates of 40-60% are 
reported in beginning algebra courses at the 10th grade 
level. At both levels, part of the problem seems to  
be that the necessary prerequisite material was not 
learned; and the remedy often is to  teach material over 
again in the same way it was taught the first time. Some 
argue that there are alternatives. 

Initially, students who have no prospect of success 
should not be placed in a beginning algebra course. 
There are two problems here: the need for an effec- 
tive predictor test and the need for middle grade cur- 
ricula to better prepare students for algebra. The Cal- 
ifornia Mathematics Diagnostic Testing Project is de- 
veloping an algebra readiness test. Several curriculum 
projects for the middle grades are seeking to  strengthen 
curriculum at that level. A common assumption in 
these projects is that imaginative use of hand-held cal- 
culators, with the tremendous increase in calculational 
power they give students, should play a central role in 
stimulating student interest and providing different per- 
spectives on the abstract ideas, for example that of a 
variable, that students will encounter. 

There are proposals that  more flexible scheduling 
could also ease the remediation problem. These pro- 
posals argue that students who fail the first semester 
of beginning algebra should have the opportunity of re- 
peating it in the second semester and not be forced to 
wait until the following year to  begin again. However, 
this flexibility is seldom present in school schedules. In 
some districts, students who fail an entire year are given 
the opportunity of making the course up in a summer 
session. When a student attempts to learn a year of al- 
gebra I, geometry, or algebra I1 in a shortened summer 
session, there is little chance the student will become 
proficient with the fundamental ideas of the course. 

Some geometry texts attempt to help avoid remedi- 
ation, or excessive review, a t  the intermediate algebra 
level by providing diagnosis in the geometry course: of 
what algebra skills have been retained and what have 
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not. A renewed emphasis on these topics parallel to 
the development of geometry can be used to achieve 
readiness for the second course in algebra. Coordinate 
geometry is a possible framework for renewal work in 
algebra. 

In some colleges and universities, algebra and precal- 
culus courses avoid being just a review of high school 
material by making actual use of computers and calcu- 
lators and by blending precalculus topics with an intro- 
duction to the notion of limit and other fundamental 
ideas from calculus. 

Use of standardized Test Scores 

Standardized tests are widely used in high school 
and beginning college mathematics programs through- 
out the United States. These tests range from achieve- 
ment examinations, such as the mathematics achieve- 
ment tests of the College Board and the New York State 
Regents Examinations, to mathematics aptitude tests 
such as the SAT, and various assessment instruments 
designed at the state level and often used at the 12th 
grade and other levels. In addition there are diagnostic 
instruments designed to assess readiness for the next 
level of the program and placement examinations, such 
as those available from the MAA, often used a t  the col- 
lege freshman level and in high school. 

These tests are often criticized on various grounds. 
First, since they are usually multiple choice exams, they 
are criticized for supposedly not testing higher order 
thinking or problem solving skills. Secondly, since the 
general assessment exams are used to compare schools 
and programs, there can be considerable political pres- 
sure “to get those scores up,” with the result that there 
can be a narrow concentration by the teacher on just 
those basic skills covered in the examination. 

Also, tests designed for one purpose are often used 
for another. Diagnostic examinations are used as assess- 
ment instruments to compare the performance of classes 
and schools. When this is done the pressure to narrow 
the curriculum to just those basic skills necessary for 
success in the next course can become great. On the 
other hand if this comparative pressure is removed, di- 
agnostic tests can be quite effective in indicating areas 
of the curriculum which are not being retained by the 
student but which are absolutely necessary for success 
at the next level of the program. Strategies for dealing 
with these deficiencies can then be constructed which 
should result in a broadening of the curriculum rather 
than a narrowing of it to a concentration on just basic 
skills. 

Placement exams can be misused if they are used as 
a barrier which prevents students from taking a given 

mathematics course, rather than providing a route cov- 
ering necessary preparatory material. The latter then 
places the student in the course more properly prepared. 

Other misuses of tests are commonly cited: standard- 
ized tests designed for comparative assessment purposes 
that “drive the curriculum,” failure to allow for margin 
of error in interpreting scores, excessive use of multiple 
choice tests for classroom assessment. 

The Mathematical Sciences Education Board has de- 
signed a comprehensive testing study that will survey 
testing practices, assess how test results are used, and 
the effects of testing on curriculum and teaching behav- 
ior. This study should provide a foundation for future 
decisions related to test construction a.nd use. 

The Form Geometry Should Taker 

There is general agreement that many entering col- 
lege students lack geometric intuition and the ability 
to visualize geometric situations. This would seem to 
indicate that a strengthening of the geometric content 
of the high school program is sorely needed. But there 
is not a consensus as to how this should be done. Nor 
is there agreement on the place of such topics as trans- 
formations and vectors or the amount of emphasis that 
should be placed on formal proof or the desirability of 
introducing students to formal logic within the geome- 
try course. 

What ought to be taught in high school geometry 
has been debated for a t  least a half century. In an 
address to the 1958 annual meeting of the NCTM in 
Cleveland (published in the Mathematics Teacher as 
“The Nature and Content of Geometry in the High 
Schools”), Julius Hlavaty referred to the “continuing 
crisis in the teaching of geometry” that had endured for 
“fully 25 years.” Titles of other articles in the Math- 
ematics Teacher in the last two decades substantiate 
the existence of an ongoing debate (Adler, “What Shall 
We Teach in High School Geometry?” March 1968; Al- 
lendoerfer, “The Dilemma in Geometry,” March 1969; 
Fehr, Eccles, and Meserve, “The Forum: What Should 
Become of the High School Geometry Course?” Febru- 
ary 1972). The introduction to the 1973 NCTM Year- 
book Geometry in the Mathematics Curriculum is enti- 
tled “Disparities in Viewing Geometry.” The book con- 
tains chapters discussing several different approaches to 
high school geometry: conventional, coordinate, trans- 
formation, affine, vector, and an eclectic approach. In 
the latest yearbook of the NCTM, Learning and Teach- 
ing Geometry K-12 (1987), Usiskin writes on “Resolv- 
ing the Continuing Dilemmas in School Geometry,” and 
Niven on “Can Geometry Survive in the Secondary Cur- 
riculum?” Usiskin offers suggestions for resolving the 
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dilemmas, and Niven proposes recommendations that 
he thinks will make geometry a more attractive sub- 
ject. Other chapters in the Yearbook discuss various 
geometric topics and applications. 

The proliferation of computers, the growing popu- 
larity of Logo, and the development of software such as 
“Geometric Supposer” are adding new elements to the 
debate on geometry. Can they perhaps help to resolve 
issues that have been around for quite some time? 

Collaborative Efforts 
In recent years there have been many studies and re- 

ports released calling for significant changes and reforms 
in American education. While there has been consider- 
able consensus in the identification of the ills within this 
system, there has not been universal agreement as to 
what the solutions should be in order to remediate the 
identified problems and shortcomings. Such has been 
the situation with issues involving education in mathe- 
matics, particularly those related to curriculum. 

Issues related to curriculum have occupied an im- 
portant position in many of the released studies and 
reports dealing with education in mathematics in the 
United States. In particular, discussions and recom- 
mendations pertaining to the mathematics curriculum 
of grades 11-13 have been prominent in many of the 
published reports and studies. Some of the consensus 
and lack of consensus items pertaining to the mathe- 
matics curriculum have been identified and dealt with 
in other portions of this report. While a listing of these 
items is the major thrust in this report, it is necessary to 
identify briefly several other considerations which per- 
tain to the total mathematics experience for 11-13 grade 
students. 

Many of the recent reports have cited the success of 
mathematics students in other countries, particularly 
those from Japan. The reports emphasize that the suc- 
cess of the students is due in part to the collaborative 
efforts of the school and family, and due to the empha- 
sis, status, and importance accorded to learning and 
education. Enhanced success in mathematics educa- 
tion is dependent on extensive collaborative efforts in- 
volving several subgroups. We have recommended that 
targeted brochures and flyers be developed and circu- 
lated to these groups. We wish here to discuss further 
the various roles these groups must play in the desired 
collaboration and also the essential role of professional 
organizations in creating a climate for change. 

Extensive partnership and collaborative efforts 
should involve school leadership, primarily the prin- 
cipal; public guidance personnel, primarily guidance 

counselors; the home, primarily the parents; the mathe- 
matics professional community, primarily the classroom 
teachers; and of course, the students. Collaboration 
within the schools needs to be linked also to  colleges and 
universities. In these institutions, in addition to mathe- 
matics faculty members, admissions personnel play key 
roles. Some prototype regional programs for collabora- 
tion include the Bay Area Mathematics Project, and the 
Mathematics and Science Education Network of North 
Carolina. The more recently formed American Math- 
ematics Project is chaired by R.O. Wells, Jr., of Rice 
University. It aims at encouraging and extending lo- 
cal cooperative efforts involving elementary, junior high 
school, and high school teachers, college and university 
faculty, and professionals in industries. 

In the paragraphs which follow, several issues and 
questions relative to each of the essential groups will be 
addressed to provide evidence for a need of such part- 
nerships. Through the raising and addressing of such 
issues it is apparent that educators and professional or- 
ganizations will need to take advantage of many oppor- 
tunities in collaborative efforts in order to affect cur- 
ricular changes. It is also evident that curricular issues 
in and of themselves cannot be considered apart from 
factors which will have a significant effect upon any cur- 
ricular proposals or modifications. 

There are numerous issues related to the leadership 
within the schools today, and there is research related to 
the role of leadership, particularly the role of principals, 
within successful learning environments. Administra- 
tors, as agents of Boards of Education, need to become 
partners with mathematics educators in dealing with 
curriculum-impacting issues such as the following: 
1. The recruitment and retention of qualified staff 

members. 
2. The development and maintenance of educational 

settings and environments which promote quality 
instruction, effective learning, and the maintenance 
of academic standards. 

3. The providing of support and encouragement for 
professional growth, and the upgrading of content 
competencies and professional teaching skills. 

4. The providing of support which enables the oppor- 
tunities within schools for curricular change. 

5 .  The providing of settings which enable participation 
in leadership by those having expertise related to 
education in mathematics. 

6. The involvement of administrators as advocates for 
appropriate changes in the mathematics curriculum. 

A second area where collaborative efforts need to be 
fostered involves the school guidance personnel. Ef- 
forts are needed to provide aid and support to coun- 
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selors who have significant impact upon students. (In 
March, 1987 the NCTM made several recommendations 
concerning the advising of students in mathematics in 
the statement, “Counseling Students in Planning Their 
Mathematics Programs.”) Often, guidance counselors 
do not have, nor can they be expected to  have, a com- 
prehensive understanding of the content or importance 
of the 11-13 grade mathematics curriculum. Mathemat- 
ics teachers and guidance counselors need to  address the 
following issues together: 
1. 

2. 

3. 

4. 

5. 

6. 

How should students be placed in appropriate 
courses? 
Which mathematics courses do students need in 
preparation for other mathematics courses, careers, 
and future academic work? 
What communication with students and parents is 
necessary in order to  direct students into appropri- 
ate mathematics courses? 
What support should counselors be able to  provide 
to  encourage students in their studies of mathemat- 
ics? 
What support should counselors be able to provide 
to  students who are struggling in their mathematics 
studies? 
What efforts are needed to  encourage all groups of 
students, regardless of gender or race, to take more 
mathematics courses? 

Many of the recently released reports attribute the 
success of students in mathematics to the attitudes and 
the values developed in the home. Parental influence 
has been shown to  have a significant impact upon the 
successes of the child in school. There are numerous 
issues and questions which need be addressed in de- 
veloping stronger partnerships involving parents. (In 
Spring 1987 the National PTA sent a special mailing 
to the 25,000 local PTA presidents describing compar- 
ative data  from international studies in mathematics 
and calling on parents to  be more involved in finding 
solutions to  problems in mathematics education in the 
schools.) Items for consideration include the following: 
1. 

2. 

3. 

4. 

Parents need to  provide an appropriate environment 
which encourages home study and the completion of 
homework. 
Educators and parents need to  work together to es- 
tablish attitudes and priorities where learning be- 
comes more valued. 
There needs to  be a support system within which 
class attendance is a high priority. 
Parents need to  become better informed about the 
need for appropriate mathematics backgrounds for 
their children. It is not enough that students take 
mathematics courses. They should take mathemat- 
ics courses appropriate for their career goals. 

5.  Parents themselves need to  be educated about the 
learning of mathematics. To many adults the study 
of mathematics is thought to  be the performance 
of arithmetic computations. It needs to be stressed 
that the learning of mathematics is a continuous, 
sequential process to  be pursued over a period of 
time. Parents need to understand tohe need for reg- 
ular practice in the learning of mathematics. 

Another component in the collaborartive partnership 
is the teacher. Until the teacher becomes convinced 
that there is a need to improve the 11-1.3 grade curricu- 
lum, advances in the quality of 11-13 grade mathemat- 
ics programs will be limited. Professional organizations 
will have significant opportunities to  provide leadership, 
encouragement, and training to teachers. Significant 
thought and attention will be requiredl to  bring teach- 
ers into the process of affecting change in mathematics. 

Students need to  be involved fully in the educational 
process. They need to  be made aware that an ap- 
propriate mathematics background is a necessity and 
that mathematics is a “hands-on activity” and a “do- 
it-yourself’ activity. The teacher can be an aid or fa- 
cilitator of learning, but cannot do the learning for the 
students. In the era of instant gratificartion it is impor- 
tant that students realize that solving a mathematical 
problem will not always be quick nor will it be easy; in 
fact, not every problem will have a solution. Students 
need to  develop persistence and to  realize that progress 
will often seem slow, especially in the reading of math- 
ematics. Students also need to understand that it is 
important to keep up with their assignments and that 
class attendance is essential for succesis in the study of 
mathematics. 

In the preceding paragraphs several subgroups have 
been identified as being necessary components for effec- 
tive partnerships in addressing the issues and questions 
associated with the 11-13 grade mathematics curricu- 
lum and instructional program. The primary responsi- 
bility of this task force study has been to  focus upon 
the areas of consensus or lack of connensus as identi- 
fied in prior reports and studies. Nevertheless, it seems 
appropriate to  address some of those issues which ul- 
timately will determine much of the success or failure 
related to  those curricular items for which there is con- 
sensus. There needs to  be collaboration of school lead- 
ers, counselors, parents, teachers, and students-and 
linking with college and university personnel-in order 
to improve mathematics programs for the 11-13 grade 
student. 

This Task Force has recommended that the NCTM 
and MAA prepare brochures and flyer:% targeted specif- 
ically at the various groups described in this section. 
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There are additional roles that the professional organi- 
zations will need to play if the collaborative efforts of 
these groups are to succeed. We urge the organizations 
to continue to enable greater communication among the 
various groups in these ways: 

* To increase and expand the design of workshops and 
programs for policy makers, high school principals, 
and post high school level administrators in order 
to address effectively the issues relating to the re- 
cruitment and retention of qualified instructors and 
teachers of mathematics. 

* To expand efforts to work a t  national, state, and 
local levels with and through the affiliated groups 
on issues related to the recruitment and retention 
of qualified mathematics teachers and instructors. 

0 To expand their roles in working with affiliated and 
non-affiliated groups in providing forums to address 
such issues a8 curriculum change, uniform standards 
of quality instruction, equity of opportunity, and 
expectations in mathematics education. 
To focus further on ways of being more effective in 
communicating the solutions to identified problems 
beyond their membership in order to provide the a p  
propriate and necessary impact upon policy makers, 
administrators, counselors, teachers, parents, and 
students. 
To undertake actions and assume a significant role 
in developing programs where articulation with 
guidance counselors becomes a major priority. 
To work with school administrators, counselors, and 
teachers in establishing programs which will en- 
hance and increase parental involvement and s u p  
port in the educational process. 
To develop strategies that will involve the students 
more deeply in the educational process. 
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Minimal Mathematical Competencies for College Graduates 

This chapter contains the report of the CUPM Panel 
on “Minimal Mathematical Competencies for College 
Gradutes, ” reprinted f rom the AMERICAN MATHEMAT- 
ICAL MONTHLY, 89 (April 1982) 266-272. Donald 
Bushaw, chair of the panel, has prepared a new preface 
relating issues addressed by  the panel to many themes 
that are part of today’s debates about higher education. 

1989 Preface 
On Thursday, December 15, 1977, the Carnegie 

Foundation for the Advancement of Teaching released 
its famous report “Missions of the College Curriculum.” 
This report, which received a great deal of attention at  
the time, described general education in U.S. colleges 
and universities as “a disaster area,” and expressed spe- 
cial concern about the neglect of mathematics and En- 
glish composition. 

The following Monday, Henry L. Alder, then Presi- 
dent of the MAA, wrote a letter challenging the MAA’s 
Committee on the Undergraduate Program in Mathe- 
matics (CUPM) to take up the matter, suggesting as 
one possibility the formation of a “new CUPM panel 
or subcommittee” to  “consider the problem of general 
education in mathematics for all or most college stu- 
dents.” 

At the CUPM meeting of January 8, 1978, Chairman 
William F. Lucas appointed a subcommittee (“panel” 
in the then current nomenclature) to  do just that. Af- 
ter a considerable amount of study and discussion, and 
several diverse surveys, the panel presented its brief and 
temperate report to  CUPM, which approved it. 

The continuing turbulence surrounding the idea of 
general education-witness the unexpected popularity 
of the recent books by Bloom and Hirsch-is evidence 
that not all of the problems set forth in the 1977 
Carnegie Report have been solved. Many colleges and 
universities have made, or are still making, major re- 
visions of their general education programs, and math- 
ematics (often under the guise of “quantitative think- 
ing,” “computation,” or the like) is a frequent theme in 
the concomitant discussions. 

Within this setting, CUPM’s 1982 report seems to 
stand up well. If it were to reconvene today, the panel 
would certainly reaffirm all of its recommendations, and 
none more strongly perhaps than Recommendation El 
which presents an eminently sensible and even exciting 

idea that seems to  have been carried into action in very 
few places. 

One would like to  think that need for the “remedial” 
course sketched in the report has declined, or will soon 
decline, because of nation-wide attention to  weaknesses 
in the precollege mathematics curriculum. In any case, 
the course itself should still be useful for whatever re- 
mains of the clientele for which it was intended. 

Courses in mathematics appreciat#ion meeting the 
standards implied in the report are probably still rare, 
although courses of similar intent are not uncommon. 

If a survey of persons from the Combined Member- 
ship List were redone today, the responses might show 
more interest in discrete mathematics, and might show 
effects of the rapid progress in the design and dissemi- 
nation of calculators and microcomputers in the inter- 
vening years; but the responses given almost ten years 
ago tended to  be conservative, and a new round of re- 
sponses would probably tend to be conservative too. 

Thus the report, though neither iradical nor volu- 
minous, presents some worthwhile ideas that are still 
far from commonplace, and which, if widely adopted, 
could contribute significantly to the mathematical com- 
petence and maturity of coming generations. 

Donald W. Bushaw 
Washington State University 
March, 198!3 

Introduction 
Too many people know too little m<athematics. Even 

those who are well informed in other ways often cannot 
appreciate, much less participate in, some major cur- 
rents of modern life because of their ideas and feelings 
about mathematics. In a relatively severe but all too 
common form, ignorance of mathematics amounts to  a 
form of “functional illiteracy.” 

Along with the recent revival of interest in general 
education, “core” curricula, and minimal competencies, 
this problem has naturally led to the question: What 
mathematics should every graduate of an American col- 
lege or university know? 

At its January 1978 meeting, the Association’s Com- 
mittee on the Undergraduate Program in Mathematics 
(CUPM) established a panel to study the question and 
make appropriate recommendations. Some of the work 
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of the panel is described in an Appendix to  this docu- 
ment, which is a report from the panel. 

The recommendations and other ideas set forth in 
this report will surely not be the last word on the sub- 
ject. Many intelligent people will be giving further 
thought to  it, and future experience should certainly 
be allowed and expected to  affect our outlook on the 
whole matter. 

Recommendat ions 

The leading lesson the panel learned from its surveys 
(see the Appendix) is that American colleges and uni- 
versities are so diverse that it is impossible to describe 
either an approximately standard practice or an every- 
where attainable goal. A set of minimal competencies 
that might be woefully inadequate for specialized or se- 
lective universities can be a hopeless ideal for others. 
To perform its task realistically, the panel has there- 
fore felt obliged to  interpret the word “minimal” in a 
really minimal way. The recommendations listed below 
accordingly refer to a bare minimum of mathematical 
competencies for all college graduates. The panel hopes 
that individual institutions will go as far beyond these 
recommendations as local conditions allow. Similarly, 
how the requirements should be met is left open, for 
that depends not only on the requirements themselves 
but also on local policies, traditions, and resources. 

The following recommendations result from the 
panel’s studies and deliberations. In preliminary form, 
they have been reviewed by numerous mathematicians 
and nonmathematicians, and have been considerably 
modified in light of comments received. In this sense 
they represent the collective judgment of a group much 
larger than the panel itself. 

RECOMMENDATION A: 
All college graduates, with rare exceptions, should be 

expected to  have demonstrated reasonable proficiency 
in the mathematical sciences. Every college or univer- 
sity should therefore formulate, with adequate concrete- 
ness, what this “reasonable proficiency” should mean 
for its students; define how students should demonstrate 
this proficiency; and establish this demonstration as a 
degree requirement. 

Competence in arithmetic and some facility in mak- 
ing applications in everyday life might be a reasonable 
graduation requirement for two-year college students in 
terminal and vocational programs. 

Four-year colleges and universities should normally 
require-perhaps on entrance-not only these but el- 
ementary algebra and elementary geometry. They 

should also expect graduates to  understand and be able 
to  use some elementary statistical ideas, to  be aware of 
the place of mathematics in society generally, and to 
appreciate the nature and societal significance of com- 
puting. This applies also to  two-year college students 
in university parallel curricula. 

RECOMMENDATION B: 
Whether or not stipulated proficiency is tested by 

examination, courses should be made available in which 
it may be acquired. These courses should be taught 
by effective instructors, and should be designed to be 
appealing and significant to  the students. 

RECOMMENDATION C: 
In particular, one or more courses of a remedial na- 

ture should be available where there is a need. Such 
courses, by definition, ordinarily present precollege ma- 
terial, but it should be presented in a way suited to 
the clientele. In institutions where it is considered im- 
proper or impossible to offer remedial courses, mastery 
of the mathematics should be assured either by entrance 
requirements or by referring students to  other schools 
where remedial courses can be taken. Two-year colleges 
have made a large contribution in this role and may be 
expected to continue to  do so. 

Is college credit appropriate for remedial courses? 
On this point we will only quote the statement approved 
by the MAA Board of Governors on August 20, 1979: 
“College credit granted for work in mathematics must 
be carefully controlled. It should not be granted for 
distinctly high school level work. Mathematics courses 
offered in college should be examined to determine the 
extent of their overlap with high school mathematics, 
and where that overlap is substantial the course should 
not provide credit toward college graduation; but the 
students should be graded on their work, and the results 
should be included in computing grade point averages.” 

RECOMMENDATION D: 
While almost all undergraduate courses in mathe- 

matics should give attention to  applications and to his- 
torical and philosophical aspects of the subject, there 
should be one or more courses that concentrate on these 
aspects while remaining accessible to students with lit- 
tle mathematical background. 
RECOMMENDATION E: 

Individual interests often lead students to take a 
considerable amount of post-secondary mathematics in 
conventional courses. These students should also be 
able to take a course of the kind described in Rec- 
ommendation D, but presupposing more mathematical 
background. 

The MAA Committee on Improving Remediation Ef- 
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forts in the Colleges, chaired by Professor Joan Leitzel, 
has gathered information about effective remedial pro- 
grams and has made its own recommendations. A sep- 
arate CUPM panel, chaired by Professor Jerome Gold- 
stein, is at the same time formulating recommendations 
on "mathematics appreciation" courses of the kind de- 
scribed in Recommendations D and E and in the second 
section below. (The full report of this panel is reprinted 
in the following chapter of the present volume.) The 
Minimal Competencies Panel has worked in liaison with 
both groups and sees no conflict among the various rec- 
ommendations. 

Nevertheless, each of these two main matters will be 
discussed further in the remaining sections of this re- 
port. These discussions are intended primarily to  clar- 
ify the panel's recommendations, but partly as a way of 
passing along some of the good ideas it has collected. 
The separation of the two matters is certainly not in- 
tended to imply that remedial courses should do noth- 
ing to  convey an appreciation of mathematics, or that 
techniques are out of place in mathematics appreciation 
courses. 

Mathematics for Coping with Life 
The idea that all college graduates should be ex- 

pected to  have acquired a certain familiarity with math- 
ematics rests in part on the well-founded belief that 
such a familiarity is necessary for effective function- 
ing in contemporary life, and certainly for life in those 
spheres college graduates are most likely to enter. In- 
deed, i t  may be argued convincingly-and has been 
argued many times-that a modest acquaintance with 
mathematics is necessary for the successful functioning 
of almost any member of modern society. But any pre- 
requisite for contemporary life in general ought to be, 
a fortiori, something one has a right to expect of all 
college graduates. 

Unfortunately many students manage to  enter col- 
lege without having learned the mathematics needed 
for coping with everyday life, and a deplorable frac- 
tion of them leave college in the same condition. The 
panel's recommendations-most explicitly Recommen- 
dation C-suggest that for such students there should 
be a t  least one course where basic mathematical defi- 
ciencies may be repaired. 

Students entering college with mathematical defi- 
ciencies have presumably had opportunities to  learn the 
mathematics, and for them those opportunities did not 
work. Therefore, the college remedial course should not 
be a mere rehash, and certainly not an accelerated one, 
of the traditional secondary or even elementary course. 

Courses that cover the same old ground in much the 
same old way tend to  be just as uninspiring and unintel- 
ligible for these students as the originals, and therefore 
even less likely to  succeed. Students should be able to  
find even remedial courses fresh, interesting, and signif- 
icant. 

Many courses of this type are being offered, and 
new ideas are being tested all the time. Several ap- 
proaches have been described in print (nee, for instance, 
the CUPM booklet A Course in Basic Mathematics for 
Colleges, reprinted in A Compendium of CUPM Rec- 
ommendations, Vol. 1, pp. 256-313), and other reports 
will surely appear. Here there will be only a sketch to 
illustrate the type of course that mighi be considered. 

The goals of the course would be to  impart mathe- 
matical knowledge needed for dealing with most com- 
mon situations in which deductive reasoning or cal- 
culation is needed, and to  provide some motivation 
and preparation for a second course in mathematics 
that could help the students become educated men and 
women. It is not a goal of the course to teach, once and 
for all, high school mathematics in its entirety, or to 
provide background for some standard courses in math- 
ematics or other scientific subjects. (The problem of 
preparing students for mathematics courses required in 
their fields is discussed a t  length in the report of the 
Committee on Improving Remediation Efforts in the 
Colleges.) 

Students in the course would typically have studied 
no mathematics for three or four years, and have been 
bored, mystified, or discouraged by )past experiences 
with mathematics courses. Remedial courses should be 
taken during a student's first two years of college. There 
should be no formal prerequisites. 

The course should be relatively brief (twenty to 
thirty meetings), and should be manag,ed in such a way 
that students participate actively and receive frequent 
personal attention. To facilitate this, there should be 
approximately a fifth as many student assistants as 
there are students. The first few times the course is 
offered, the assistants might be mathematics or science 
majors; later, they should be students who have suc- 
ceeded in this and at least one further mathematics 
course. 

Equipment might include identical calculators for the 
students, the assistants, and the instructor. The calcu- 
lator should have the four basic arithmetical operations, 
sign changes, squares, square roots, floating decimal, a 
one-word memory, and very little else. A device for 
projecting the face of the instructor's calculator on a 
screen would be useful. There should also be a large 
collection of advertisements, newspaper and magazine 
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articles, sales and credit agreements, and so on, the in- 
terpretation or use of which would require some of the 
topics listed below. These might be complemented by 
reasonable imaginary examples, but the illustration of 
no topic should depend entirely on artificial applica- 
tions. If no genuine examples can be found, why should 
the topic be included? In some topics, however, a step 
should be taken beyond the evidently practical. 

Students should be supplied with a single page of 
formulas, sufficient for the whole course. 

The grading policy should be compassionate but 
firm. Tests should be frequent and repeatable at least 
once. They should be straightforward, but only high 
scores should be considered passing. Mastery should 
be recognized irrespective of the number of attempts 
needed to  show it, within limits, but outstanding per- 
formance should be recognized. If possible, permanent 
records of students who need to repeat the course should 
not show the unsuccessful tries. 

One list of topics for such a course is given below. 
Additions and modifications should be made in response 
to  real-world needs and to  experience in offering the 
course. 
1. 

2. 

3. 

4. 
5. 
6. 
7. 
8. 

9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 

Positive decimals; conversion of fractions to deci- 
mals with the calculator. 
Pencil-and-paper arithmetic with signed whole 
numbers. 
Pencil- and- paper arithmetic with signed fractions. 
(There should be no three-or-more digit numerators 
or denominators, except powers of ten.) 
Calculator arithmetic with signed decimals. 
Rounding off. 
Estimation; orders of magnitude. 
Scientific notation. 
Units of measurement; elements of the metric sys- 
tem. 
Percent, 
What is a formula? What is a function? 
Times, distance, and rates. 
Area and volume. 
What is an algorithm? Flowcharting. 
Statistics and its dangers. 
When is an argument correct? 
Compound interest. 
Exponential change. 

Mat hematics Appreciation 

While the panel does not insist that a knowledge 
of the cultural side of mathematics should be required 
of all college students, its Recommendations D and E 
above suggest that attractive and accessible courses 
dealing especially with that aspect should be offered. 
This section of the report contains some reasons for this 
position and some comments on how it might be real- 
ized. 

Mathematics has played a central role in the devel- 
opment of modern civilization. It has been essential not 
only to  the growth of science and technology, but has 
had profound effects on philosophy and other forms of 
thought as well. 

There was certainly no doubt in past centuries that 
every college graduate, to be an educated person, had to 
know some mathematics. In medieval times, for exam- 
ple, four of the seven traditional liberal arts were largely 
or wholly mathematical. The importance attached to 
mathematics was evident in courses of study in the nine- 
teenth century, and this carried over into the twentieth. 
Now, however, it is possible to graduate from many col- 
leges without any contact with mathematics beyond the 
most elementary high-school courses. 

While high-school mathematics is important, it does 
tend to emphasize development of skills. The same, un- 
fortunately, may be said of most college courses whose 
mission is primarily remedial or preprofessional. But an 
educated, well-informed person should know something 
about mathematics beyond skills. 

To many, the distinction between mathematicians 
and accountants is not clear. People who are alert and 
informed about many things, even colleagues in a uni- 
versity, sometimes assume that mathematicians are con- 
stantly doing arithmetic and are surprised to hear that 
there is such a thing as mathematical research. Their 
experiences with school mathematics left them with the 
impression that mathematics is ancient and immutable, 
and consists of rules and formulas for unfortunate school 
children to memorize. 

The great mathematicians do not occupy their right- 
ful place in the public consciousness. In his New Yorker 
article on mathematics (February 19, 1972), Alfred 
Adler rightly observed that 

This list should not give rise to hideous visions of 
workbooks filled with drill exercises. Games, problems 
of obvious everyday interest, opportunities for creativ- E u l e r y  Iiiemann. It be 
ity, and occasional attention to  general problem-solving 
strategies should contribute to  a cheerful and progres- 
sive atmosphere and a positive experience. 

. . . i t  would be astonishing if the reader could identify 
more than two of the following names: Gauss, Cauchy, 

ishing if he should be unfamiliar with the names of 
Mann, Stravinsky, de Kooning, Pasteur, John Dewey. 
The point is not that the first five are the math- 
ematical equivalents of the second five. They are 
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not. They are the mathematical equivalents of Tol- 
stoy, Beethoven, Rembrandt, Darwin, Freud. The ge- 
ometry of relativity-the work of Riemann-has had 
consequences as profound as psychoanalysis has . . . . 
Many college graduates know a great deal of mathe- 

matics; most of them have had to  take mathematics in 
preparation for their work. But how many of these, or 
how many mathematics majors, for that matter, could 
tell much about Abel or Jacobi? More important, how 
many of them could comment plausibly on the relation 
of mathematics to  other disciplines? 

The point here is not that  mathematics and mathe- 
maticians should be glorified but that a reasonable per- 
spective on the place of mathematics in the human en- 
terprise should be more widely shared. 

A course designed specifically to improve this per- 
spective would ideally give some idea of what sorts of 
problems mathematicians consider and how such prob- 
lems are attacked. The object would be to  promote 
mathematical literacy, interpreted to include an aware- 
ness among future colleagues in colleges and univer- 
sities, in business, in industry, in government, and in 
many other callings of what mathematics is, why it is 
important, and how it might serve them. Some history 
should be covered along the way, but a straight course 
in the history of mathematics is not recommended for 
this purpose; it can have meaning only if the students 
already have some understanding of the mathematical 
ideas whose development is traced. 

The course could include, for example, a discussion of 
the Euler formula for polyhedra-and the names of Eu- 
ler, Descartes, and Cauchy already would have entered 
the discussion. An account of non-Euclidean geome- 
try would be appropriate, and provide an occasion for 
introducing Gauss and Riemann as well as Bolyai and 
Lobachevski, and for commenting on the element of ar- 
bitrariness in mathematical modeling of reality. Neither 
of these topics requires any high level of algebraic skill. 
A discussion of the insolubility of the quintic equation 
might involve more algebra but would refer to  the work 
of Lagrange, Galois, and Abel--and the important idea 
of mathematical impossibility would have arisen. There 
are many other topics that bring up important mathe- 
matical ideas and events but do not require much back- 
ground. 

Axiomatics, though obviously important, should not 
be overemphasized. Axiomatic systems should not be 
presented in detail unless one obtains by their use 
some interesting results that were not intuitively ob- 
vious from the start. Elementary graph theory offers 
some nice opportunities here, as well as a great variety 
of easily understood applications. Laborious efforts to 

prove the obvious can convince people that the whole 
endeavor is silly. 

Applications are appealing to  many students and 
should be included. There are convenient sources of 
authentic applications of mathematics at every level 
of difficulty. Applications, however, should not be al- 
lowed to upstage the real star of the show, mathematical 
thought itself. Calculators and computing might have 
their place in the course, and some time could profitably 
be spent on the place of computers in modern society. 
Serious study of computer science, however, is probably 
best left to  other courses. 

The course should give students copious evidence 
that mathematics has not only played1 a great part in 
human history, but continues to  thrive in the service 
of other fields and as an independent source of intel- 
lectual excitement and aesthetic appeal. Mathemati- 
cal “current events,” such as the solution of the four 
color problem and the discovery of new large primes 
should be mentioned. Something might be said about 
Hilbert’s problems and the Fields medals. Carefully se- 
lected readings from Scientific American, The Mathe- 
matical Intelligencer, and similar publications can help. 

The choice of faculty for an appreciation course is 
critical. It is an extraordinary teaching assistant who 
would have the experience and breadth of outlook to 
teach such a course. It should usually be taught by se- 
nior faculty, and if appropriate faculty cannot be found, 
the course should not be taught a t  all. And it is better 
that it be taught by the right faculty in larger sections 
than by reluctant or inept instructors in small ones. 

The course mentioned in Recommendation E offers 
further opportunities. It is still too easy for mathe- 
matics and science majors to  complete their programs 
without knowing that research is done in mathematics, 
that mathematics has deep and productive relationships 
with many fields, and that mathematics has a rich and 
fascinating history. A mathematics aplpreciation course 
for students with good technical proficiency in mathe- 
matics can do much to take care of this and be a mem- 
orable experience for all concerned. 

As has already been said in Recommendation D, 
these observations about separate mathematics appreci- 
ation courses should apply, to some eztent, to all math- 
ematics instruction, even remedial. In a perfect world 
every mathematics course would be a mathematics ap- 
preciation course. The world, however, is not perfect. 

Appendix 

The panel began by consulting the pertinent litera- 
ture; officers of organizations represented in the Council 
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of Scientific Society Presidents or the Conference Board 
of Mathematical Sciences, and a sample of mathemati- 
cians drawn at random from the 1978-1979 Combined 
Membership List. Summaries of the results may be ob- 
tained from the chairman of the panel. 

A general announcement and appeal for information 
and ideas also appeared in Notices of the American 
Mathematical Society, Change Magazine, The Mathe- 
matics Teacher, The Chronicle of Higher Education, 
The Two- Year College Mathematics Journal, SIAM 
News, and The American Mathematical Monthly. 

From the first two surveys mentioned, the panel 
learned not much more than that no national organi- 
zation in this country, the MAA itself not excepted, 
has ever taken a position on what college graduates in 
general should know of mathematics. 

The survey based on the Combined Membership List 
(CML) and the appeal in periodicals, though more pro- 
ductive, did not provide as much unambiguous guidance 
as the panel had hoped to get. The CML survey yielded 
335 usable responses from a thousand questionnaires. 
226 were from persons a t  colleges and universities. Of 
these, 105 (39.5%) were from institutions where a math- 
ematics requirement for graduation was in force. These 
105 respondents were asked about the nature of the re- 
quirement, whether they favored it, and whether they 
thought it was effective. In the great majority of cases 
(91 or 86.7%) the requirement could be satisfied by one 
or more courses. Seven of these respondents reported 
that the requirement could be satisfied by examination; 
five others said both courses and an examination were 
required. 

One hundred (95.2%) of the 105 said they favored 
the requirement, and 75 (71.4%) said they thought it 
was a t  least partially effective. 

The median course requirement, where one existed, 
was between 3 and 4 semester hours. A specific course 
or sequence of courses was seldom required; indeed, ac- 
ceptable courses were remarkably diverse. 

The 161 respondents in colleges and universities 
which had no general mathematics requirement were 
asked whether they favored such a requirement. In re- 
ply, 148 expressed a preference, and of these 104 (70.3%) 
favored some kind of a requirement. 

When the two groups are combined, one finds that 
204 of 253 (80.6%) of those college- or university- 
affiliated mathematicians in the sample who expressed 
any preference favored some general graduation require- 
ment in mathematics. The panel did not expect this 
fraction to  be so high. (Unfortunately, the question- 
naire did not ask for reasons for the preference ex- 

pressed.) 
All respondents, academic or not, were asked to mark 

in a forty-item list of mathematical topics those they 
thought should be required of all college graduates. The 
following topics were marked by a t  least half of the re- 
spondents: 

Basic arithmetic skills (94.6%) 
Area and volume of common figures (76.4%) 
Linear equations (71.3%) 

0 Algebraic manipulations (63%) 
Elementary statistics (55.5%) 
Graphing of elementary functions (54.9%) 
Integer and fractional exponents (54.3%) 

0 Elementary plane geometry (51.9%) 
Next in order were: elementary probability (49%), 

general problem-solving skills (heuristic) (49%), quad- 
ratic equations (47.5%), mathematics in business 
(46.9%), and radicals (43.9%). Computer program- 
ming was marked by 33.l%, just after elementary logic 
(35.5%) and systems of equations (35.2%). 

The question about what standard courses should 
be required elicited a wide variety of answers, many of 
which were in fact far from standard. College algebra 
(mentioned by 51 respondents) led the list, and was 
followed by probability and statistics (47), calculus (45), 
elementary or intermediate algebra (44), and computer 
programming or appreciation (30). 

About 45% of the respondents accepted an invita- 
tion to comment further. Many merely expanded on 
earlier answers, but some submitted careful statements 
of their views. These statements, though not easy to 
summarize, were carefully studied by the panel. 

Responses to  the appeal in periodicals were inter- 
esting too, but they are even less reducible to a brief 
summary. 

The panel met three times and also conducted a vo- 
luminous correspondence within itself and with others. 
It completes this report with high respect for the com- 
plexity of the problem, but hopes that its proposals will 
be of some use in finding solutions. 

Panel Members 

DONALD W. BUSHAW, CHAIR, Washington State Uni- 

GERALD L. ALEXANDERSON, University of Santa 

ROBERT J .  BUMCROT, Hofstra University. 
JUANITA J .  PETERSON, Laney College. 
EDWIN H. SPANIER, University of California, Berkeley. 

versity. 
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Mathematics Appreciation Courses 

This chapter contains the report of the CUPM Panel 
on Mathematics Appreciation Courses. The Panel’s re- 
port was originally published in  two parts in  the AMER- 
ICAN MATHEMATICAL MONTHLY, Vol. 90 (1983): the 
tezt appeared on pp .  44-51, while the references ap- 
peared in  the Center Section. For this reprinting’ the 
report has been re-edited to  include the references in  the 
tezt of the report. Jerome Goldstein, Chair of the Panel, 
has prepared a brief new preface for this reprinting. 

1989 Preface 
Mathematicians generally share the view that all 

well-educated people should be mathematically liter- 
ate. As a result, “mathematics appreciation courses” 
continue to be offered with regularity to students in 
the fine arts, in the humanities, in some social sciences, 
and in education. All students who receive college-level 
training in mathematics deserve to  have well-conceived 
courses, centered around significant mathematics. In 
particular, students should get a glimpse of what it is 
that attracts mathematicians to  their subject. 

The CUPM Panel on Mathematics Appreciation 
Courses emphasized the course objectives rather than 
the intended audience, and stressed philosophy and 
teaching strategies rather than specific content. In fact, 
the comments in the Panel’s report, with their heavy 
emphasis on attitudes and teaching strategies, have uni- 
versal appeal and can be read with profit by all college 
mathematics teachers. 

The report is as timely now as when it was written. 

JEROME A .  GOLDSTEIN 
Tulane University 
March, 1989 

Introduction 
In 1977 the Committee on the Undergraduate Pro- 

gram in Mathematics (CUPM) established a panel to 
consider the content of those college and university 
courses that treat mathematics appreciation for stu- 
dents in the arts and humanities. Such courses are taken 
by a large number of students, frequently as their last 
formal contact with mathematics. Yet in most insti- 
tutions they are given very low priority; they are fre- 
quently taught perfunctorily, without a clear set of ob- 
jectives, by faculty who lack appropriate interest or cre- 
dentials. Since these courses may play a major role in 

molding nonscientists’ opinions of mathematics and its 
role in society, CUPM decided that it should call atten- 
tion to  the importance of these courses and offer some 
suggestions on how they may be organized and taught 
effectively. 

This is the report, approved by CUPM, of the CUPM 
Panel on Mathematics Appreciation Courses. While the 
panel has many guidelines and recommendations to of- 
fer, it does not feel that a particular selection of topics 
or teaching strategy should be universally adopted for 
mathematics appreciation courses. A imain goal of such 
courses is to get students to  appreciate the significant 
role that mathematics plays in society, both past and 
present. All material presented in such courses should 
be well motivated and related to the role of mathemat- 
ics in culture and technology. 

Philosophy 

The inclusion of a mathematics appreciation course 
in the undergraduate curriculum is calmmon in the na- 
tion’s colleges and universities. This trend is a direct 
result of an underlying belief, held by most mathe- 
maticians, that every well-educated person should be 
mathematically literate. Whether or not a mathemat- 
ics course is required a t  a particular institution often 
depends, among other things, upon the extent to which 
this belief is shared by the general .faculty. But the 
ultimate success of an “appreciation” course in mathe- 
matics should not depend upon mandatory enrollment. 
Rather, the value and importance of such a course 
should be directly attributable to  the: care and under- 
standing with which it is conceived and taught. 

If as mathematicians we accept the notion that an ed- 
ucated person should know something about mathemat- 
ics, then we must also accept the responsibility for con- 
scientiously providing appropriate tr<aining. Students 
in the mathematical, physical, life, and some social sci- 
ences, and usually those in business, study mathematics 
as an inherent part of the undergraduate curriculum. It 
is not to  these students, but rather to majors in the arts, 
in the humanities, and in certain socia.1 sciences that we 
must direct the mathematics appreciation course. At 
the outset we must take into account the background 
and interests of the prospective students. In many cases 
they have chosen their majors precisely because of a 
weak or unpleasant mathematical background; a col- 
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lege course that reinforces this negative experience with 
mathematics certainly cannot be called an appreciation 
course. 

At most institutions the great majority of students in 
a mathematics appreciation course will have studied less 
than four years of high school mathematics; moreover, 
many of these students will have had poor experience in 
mathematics, or will have had very weak courses. How- 
ever, high school mathematics study is predominantly 
concerned with developing skills, and while such skills 
are of unquestioned importance, they are not necessar- 
ily prerequisite to  (nor should teaching them be a part 
of) a mathematics appreciation course. 

Among all fundamental academic disciplines, math- 
ematics is perhaps unique in the degree to  which i t  is 
not understood (or is misunderstood) by students and 
even faculty from other areas of study. By taking an in- 
troductory course in chemistry, history, or psychology, 
a student is expected to gain an understanding of the 
general techniques, accomplishments, and goals of the 
discipline, and will learn to appreciate the work of the 
contemporary professional practitioner of the subject, 
sometimes even to  the extent of reading the current 
journals. But an undergraduate major in mathematics 
is unlikely to have comparable insight into mathemat- 
ics. Thus the challenge of a mathematics appreciation 
course is enormous. 

The ultimate goal of such courses is defined by our 
umbrella title-to instill in the student an appreciation 
of mathematics. For this to occur, students must come 
to understand the historical and contemporary role of 
mathematics, and to  place the discipline properly in the 
context of other human intellectual achievement. 

From the beginning of recorded history, mathematics 
has proved to be an indispensable aid to the empirical 
sciences; the great successes (and failures) of mathemat- 
ical reasoning in the furtherance of human knowledge 
are tales begging to  be told. Even the direct impact of 
mathematics on developments in virtually all disciplines 
is often not realized by the mathematical layman. 

But of course, to  mathematicians, the subject is more 
than a tool of applied science, more than a universal lan- 
guage useful for communication and research in other 
disciplines. Mathematicians see mathematics as an in- 
tellectually exciting discipline, one that holds great aes- 
thetic appeal for its practitioners. This idea of math- 
ematics as art is often difficult for nonmathematicians 
to appreciate, yet is fundamental to  understanding the 
development and role of the subject. 

Finally, to  appreciate mathematics fully, one must 
recognize it as a vital, on-going discipline, one that 
is practiced by a world-wide community of dedicated, 

sometimes passionate, and frequently brilliant scholars. 
It is a surprise to many that mathematics is a living, 
changing, developing subject. A true appreciation of 
mathematics requires some knowledge of contemporary 
developments. 

The entire mathematical community should be con- 
cerned with what view educated, informed people have 
of mathematics. Thus, courses in mathematics appreci- 
ation, while presumably benefitting primarily the stu- 
dents, may also have a long-term positive effect on the 
discipline itself. Obvious benefits will accrue if leaders 
in education, industry, business, and government have 
a better understanding of the nature, role, and impor- 
tance of contemporary mathematics. 

It is a sad commentary on the attitudes of math- 
ematicians that courses in mathematics appreciation 
frequently command pejorative (albeit informal) labels 
such as “Math for Poets.” Even the supposedly neu- 
tral title of “Math for Liberal Arts Students” may con- 
vey the connotation of condescension. We must recall 
that liberal arts education, for a large percentage of the 
college educated population, is a rigorous, disciplined 
encounter with the best elements of man’s history and 
culture. The major clientele of the mathematics appre- 
ciation courses are liberal arts students, and it is from 
their ranks that many of society’s leaders will emerge. 

The panel believes that it is better to  describe courses 
of this type in terms of their objectives rather than their 
audience. Since the term “mathematics appreciation” 
brings to mind similar courses in other special fields 
(e.g., “music appreciation”) that generally carry pos- 
itive connotations with regard to their role in general 
undergraduate education, and since it conveys concisely 
what such courses intend to accomplish, standing as a 
brief reminder of this intention to both teachers and 
students, the majority of the Panel prefers this title. 

Things to Stress 

1. The relationship between mathematics and our cul- 
tural heritage. Students enrolled in mathematics ap- 
preciation courses are generally more interested in, 
as well as more knowledgeable about, the arts and 
humanities than the sciences; it is natural, there- 
fore, to capitalize on these strengths by appropriate 
illustrations of the relations between mathematics 
and music, art ,  literature, history, and society. 

2. The role of mathematics in history and the role of 
history in mathematics. Although the influence of 
mathematics is often remote, mathematical discov- 
eries have shaped our world in fundamental ways, 
altering the course of history as well as the way we 
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live and work. Examples of these influences abound, 
and should form a major part of any mathematics 
appreciation course. Historical developments and 
the evolution of mathematical concepts should be 
properly emphasized. 

3.  The nature of contemporary mathematics. The 
mathematics known by most humanities students 
is ancient mathematics-the geometry of ancient 
Greece, and the algebra of the early renaissance; not 
surprisingly, such students have the impression that 
mathematics is dead. Showing them that it is in 
fact a vigorous, growing discipline with considerable 
influence in contemporary society is an important 
aspect of any course in mathematics appreciation. 

4. The recent emergence of several mathematical sci- 
ences. While the mathematics appreciation course 
should not be devoted solely to one Umodernll area 
such as statistics, computer science, or operations 
research, it surely provides an opportunity to use 
these fields as illustrations of the panoply of con- 
temporary mathematical science. 

5 .  The necessity of doing mathematics t o  learn math- 
ematics. While some parts of the mathematics ap- 
preciation course can and should be about mathe- 
matics, it is essential that some parts actually en- 
gage the students in doing mathematics. Only in 
this way can they gain a realistic sense of the pro- 
cess and nature of mathematics. Of course it is vi- 
tally important that the instructor have appropriate 
respect for the students’ interest and abilities, and 
that exercises be selected so as to maintain rather 
than destroy their enthusiasm. 

6 .  The role of mathematics as a tool for problem solv- 
ing. As the language of science and industry, mathe- 
matical models are the tool par ezcellence for solving 
problems. Students in mathematics appreciation 
courses should be exposed to contemporary mathe- 
matical modelling, to gain some appreciation both 
of its power and its limitations. 

7 .  The verbalization and reasoning necessary to  under- 
stand symbolism. While symbols provide the math- 
ematician and scientist with great power, they ob- 
scure the meaning of mathematics from the uniniti- 
ated. A great service the teacher of a mathematics 
appreciation course can provide is to enable students 
to overcome their fear of symbols, to learn to think 
through arguments apart from the traditional sym- 
bols in which they are expressed. 

8 .  The ezistence of a large body of interesting writing 
about mathematics. Students in mathematics ap- 
preciation courses generally feel comfortable with 
assignments such as term papers, book reports, and 

library research because they have become accus- 
tomed to these in their humanities courses. There 
is much good mathematics that can be learned in 
this way, and assignments can be arranged that uti- 
lize these familiar learning tools. 

Things to Avoid 
1. Do not leave the assignment of an instructor in 

the mathematics appreciation course until the last 
minute, and do not assign it on the sole basis of 
availability. The course requires more planning 
and preparation than almost any other mathematics 
course if it is to be successful. 

2. Do not simply allow the students to sit back and 
listen. It is important that they be involved actively. 
But this need not take the form of daily homework. 
In fact, drill type assignments should be avoided. 
The involvement could take the fiorm of projects, 
papers, book reports, “discovering” mathematics in 
class, participating in class discussions. 

3. Do not over-emphasize the history of mathematics. 
While the history of mathematics could and should 
be used to enliven the topics covered, a student who 
knows (and cares) nothing about a mathematical 
topic is not likely to be interested in its history. 

4. Do not stress remedial topics. While many of the 
students in a mathematics appreciation course may 
need remedial work, any such material that is cov- 
ered must be presented as part of a topic that fits 
into the scope of the course as a whole. 

5. Do not make a fetish of rigor; in particular do not 
prove things that are self-evident to the students. 
For example, a rigorous presentation of the real 
numbers in which one proves the uniqueness of zero 
is entirely inappropriate in courses of this type. 

6. Do not cover topics you do not yourself find interest- 
ing and important. It is hard to fool these students, 
and if the teacher does not care, ithey will not see 
why they should. 

7. Do not be condescending. While the students in 
such courses may not be mathematically inclined, 
this does not mean that they asre unintelligent. 
Many who take mathematics appreciation courses 
are outstanding, creative students who have sim- 
ply concentrated in the nonquantitative areas of the 
curriculum. The attitude of the teacher can help ei- 
ther to open or to close their minda to the material. 

8. Do not cover topics which you cannot relate in some 
way to ideas familiar to the studeints. Clock arith- 
metic and symbolic logic, for example, are of little 
value to mathematics appreciation courses unless 
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you can find applications the students can appre- 
ciate and understand. 

9. Do not make the course too easy. The material 
should not be way over the heads of the students, 
but it should not be trivial either. 

10. Do not accept anyone else’s blueprint for a mathe- 
maticians appreciation course. If you can communi- 
cate, in your own way, why you believe that math- 
ematics is beautiful and important, the course will 
fulfill its purpose. 

Course Organization 

There are nearly as many ways to teach a course in 
mathematics appreciation as there are teachers of these 
courses. While some strategies will work superbly in 
some contexts, none can be recommended for all; the 
teacher’s enthusiasm for what is being done as well as 
the appropriateness of the strategy for the students in 
the course is generally more important than the actual 
strategy adopted. Nevertheless, to encourage flexibil- 
ity, we list below some approaches to teaching mathe- 
matics appreciation that have been effective in certain 
contexts. 

A sampler approach, featuring a variety of more 
or less independent topics. The advantage of this 
method is that it covers many areas without requir- 
ing a sustained continuity of interest; students who 
fall behind or simply fail to comprehend one topic 
always know that they have a chance for a fresh 
start in a few days. The disadvantage is that of all 
survey courses: not enough time spent on any one 
thing to ensure long-term learning. 
A single-thread approach, built around a common 
theme, for example, 2 x 2 matrices, or algorithms, 
or patterns of symmetry. Doing this takes care- 
ful planning, and runs the risk of alienating some 
of the class who find the thread incomprehensible. 
But it guarantees a solid example of the intellectual 
coherence that is so much a part of contemporary 
mathematics, that ideas arising in one context find 
applications in others, and that a common abstract 
structure underlies them all. 
A Socratic approach, in which the instructor works 
carefully to let the students develop their own rea- 
soning. This works well in small classes with a 
highly-motivated instructor. While the content of 
such courses is hard to guarantee in advance, the 
achievement for students who are able to think for 
themselves, perceiving patterns where others sim- 
ply see chaos, is a worthy objective for a course in 
mathematics appreciation. 

Examples of Topics 

The topics available for courses in mathematics a p  
preciation are as diverse as mathematical science itself. 
Standard textbooks offer a rather traditional assort- 
ment of topics: probability, graph theory, finite differ- 
ence equations, computers, matrices, statistics, expo- 
nential growth, set theory, and logic seem to dominate. 
But there are numerous other themes that can be used 
for large or small components of courses. Here are a few 
of the many possible examples. 
1. Understanding how to use the buttons on a pocket 

calculator. It used to be that the number e was a 
complete mystery to those who had not studied cal- 
culus, and that %in” had for humanities students 
more the connotation of theology than of mathe- 
matics. But no more. Virtually everyone has, or 
has seen, inexpensive hand calculators with but- 
tons that perform operations involving exponen- 
tial, trigonometric, and basic statistical functions. 
Teaching a class what these buttons do is an ex- 
citing new way to explore some traditional parts of 
classical mathematics. 
REFERENCES: See the handbooks for various cal- . _  culators. 
Tracing the modern descendants of classical mathe- 
matical ideas can illustrate the power of mathemat- 
ics to influence the real world, as well as its remote- 
ness from it. For example, classical Greek geome- 
try involving conic sections led to models for plan- 
etary motion, and ultimately to the possibility of 
space flight. And probability, which had its origins 
in seventeenth-century discussions about gambling, 
now dominates actuarial and fiscal policy, influenc- 
ing government and corporate budgets, thus affect- 
ing the level of interest, of unemployment, and the 
health of the entire economy. 
REFERENCES: Much of this is in standard text- 
books. Morris Kline’s Mathematics in  W e d e r n  Cul- 
ture and George P6lya’s Mathematical Models in  
Science are helpful sources. 
Connecting mathematics with Nobel prizes. No- 
bel prizes are not given in mathematics (and the 
apocryphal reasons for this are quite amusing). But 
the work that led to Nobel prizes (e.g., of Libby, 
of Arrow, of Lederberg, and others) often has an 
intrinsically-mathematical basis. The study of this 
scientific work provides an opportunity to show how 
mathematics is important in the most profound dis- 
coveries of modern science. 
REFERENCES: Libby’s work is briefly discussed 
in several elementary texts on ordinary differential 
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equations, e.g., in Differential Equations with Ap- 
plications and Historical Notes by George F. Sim- 
mons. For some work of Arrow see Edward Bender, 
A n  Introduction to  Mathematical Modeling, Wiley, 
New York, 1978. Lederberg published an article in 
this Monthly entitled "Hamilton circuits of convex 
trivalent polyhedra (up to  18 vertices)" in Vol. 74, 

4. Applying exponential growth models. The applica- 
tions of traditional topics from elementary mathe- 
matics can often be explored more fully than has 
usually been the case. Exponential growth and de- 
cay models provide a striking example. Simple non- 
calculus approaches to  models of growth provide a 
basis for discussion not only of interest and infla- 
tion, but also of such things as radio-carbon dating, 
cooling and heating of houses, population dynam- 
ics, strategies for controlling epidemics, and even 
detection of art forgeries. 
REFERENCES: See any modern text on ordinary 
differential equations. A particularly good one is 
Martin Braun, Differential Equations and Their Ap- 
plications, Springer-Verlag, New York, 1975. 

5. Relating traditional mathematics to new applica- 
tions. A discussion of beginning probability the- 
ory can quickly lead to a treatment of the Hardy- 
Weinberg law of genetics and a calculation of the 
probability of winning state lotteries. An introduc- 
tory treatment of statistics can quickly lead to a 
discussion of political polls, the design and inter- 
pretation of surveys and of related decision-making 
problems. Modern applications of elementary net- 
work theory include recent work in computational 
complexity and almost unbreakable codes. 
REFERENCES: The Hardy-Weinberg law appears 
in several texts on finite mathematics, e.g., Applied 
Finite Mathematics by Anton and Kolman. How to 
Lie with Statistics by Darrel Huff and Irving Geis, 
Norton, 1954, and other texts contain situational 
mathematics which can be discussed according to 
the interests of the audience. For the two topics 
mentioned last, see Scientific American, Jan. 1978 
and Aug. 1977. 

6. Introducing problems involving decision making. 
There are many situations described by elementary 
mathematics in which one must choose "rationally" 
among possible options. One can discuss quantify- 
ing risk and uncertainty, fair division schemes, ap- 
plications of network flows, pursuit and navigation 
problems, game theory, and numerous other topics. 
Political science is full of unexpected but usually in- 
teresting topics, including Arrow's theorem and its 
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offshoot theories of voting, the recently discovered 
problems associated with apportionment of legisla- 
tures, and strategies of fair voting in multiple can- 
didate elections. 
REFERENCES: See Bender, A n  Introduction to 
Mathematical Modeling, Wiley, New York, 1978; the 
articles by William Lucas in Vol. 2 of the forth- 
coming Modules in Applied Mathematics (Springer- 
Verlag, New York); M. Balinski aind H.P. Young, 
Proc. Nat. Acad. Sci. U.S.A. 77 (January 1980) 
1-4; H. Hamburger, J .  Math. Sociology 3 (1973) 
27-48; David Gale, UMAP Module 317, 1978; W. 
Stromquist, this Monthly 87 (1980) 640-644; and 
George Minty's article in M.D. Thoimpson, ed., Dis- 
crete Mathematics and its Applications (Indiana 
University, Bloomington, 1977). 

7. Exploring the powers and limitatioins of mathemat- 
ical models. Each of the modern. social sciences 
abounds with applications of elementary mathemat- 
ics. All of the examples mentio:ned above, and 
many more, involve the use of mathematical mod- 
els. Sometimes these models are quite accurate and 
sometimes they are not. But even in the latter 
case the model can help clarify one% thinking about 
the underlying problem. An example of this use of 
mathematical modelling is the prisoner's dilemma 
argument of game theory and its :possible connec- 
tion with U.S.-U.S.S.R. relations. 

Two-Year Colleges 
Many courses that ought to follow the "mathemat- 

ics appreciation" philosophy are taught, in two-year col- 
leges. Innovative approaches and curriculum develop- 
ment by some two-year faculty are reflected by their 
texts and articles in this area. Although the preceding 
sections of this report are applicable to mathematics 
appreciation courses in all colleges, this separate sec- 
tion appears because of the special problems created 
in two-year colleges by generally heavy teaching loads, 
by staffing in some cases by faculty whose mathemat- 
ical experiences are not sufficient to rnake them com- 
fortable with the broad range of topi'cs demanded by 
these courses, and by the regrettable frequency of ad- 
ministrative procedures which allow students needing 
remediation to enroll in these courses. The following 
suggestions may help to overcome these impediments to 
two-year college implementation of the goals of mathe- 
matics appreciation courses. 
1. When there is a choice among faculty members for 

assignment to the mathematics appreciation course, 
only those having a broad range of mathematical 
experiences and expressing interest in the course 
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2. 

3. 

4. 

5 .  

6, 

should teach it. Mathematics program adminis- 
trators should provide extra guidance to faculty 
teaching this course for the first time. In the two- 
year college there will usually be one text used by 
all teachers, often supplemented by a reading list 
and/or other texts; a description of special uses of 
these materials, as well as sample course outlines, 
supplementary and classwork materials, and tests, 
will be helpful. Entrance and/or exit requirements 
may be matters of policy and should be explained. 
Lists of applicable resource material owned by the 
school should be provided to new teachers, along 
with knowledge of the schools' firm rental policies. 
Special attention should be paid to the needs of this 
course by the library, audio-visual, and computer 
facilities. The mathematics program administrator 
should be sure these courses are adequately sup 
ported. 
Since mathematics appreciation courses, properly 
taught, take an enormous amount of preparation 
time, any load relief possible would be appropriate. 
In a suitable lecture room, the course can be effec- 
tively taught to "double" sections of 60-90 students 
if doing so would leave the teacher several hours 
more preparation time each week. (Such a load 
might be counted as two or three sections, corre- 
sponding to the grading load.) 
Sharing materials and ideas and perhaps team- 
teaching would be reasonable for mathematics ap- 
preciation courses. One teacher a t  a school might 
be most qualified for teaching, say, a computer unit, 
and might "rotate" across several sections. Many 
more "hand-out" materials seem to be necessary 
for mathematics appreciation courses than for tradi- 
tional courses; these might be used by several teach- 
ers in a given term, or re-used in succeeding terms. 
Faculty teaching mathematics appreciation courses 
seem to  enjoy sharing materials and methods. 
In-course remediation should be avoided. If stu- 
dents are enrolled who cannot handle elementary 
operations at the level needed for the work of the 
course, a "math lab" facility might be used to design 
and administer individual remediation programs. It 
cannot be over-emphasized that a mathematics ap- 
preciation course cannot fulfill its goal if it degener- 
ates into the teaching of arithmetic computations or 
pre-algebra skills, or if it is limited to a topic such 
as "consumer mathematics." 
A large proportion of students enter two-year col- 
leges with little realistic expectation concerning ma- 
jors. Many of these students have had poor experi- 

ences with mathematics and, if there is a general ed- 
ucation mathematics requirement which may be sat- 
isfied by either a mathematics appreciation course 
or a pre-calculus/calculus course, they will often 
elect the mathematics appreciation course. Well 
into a successful term, the student may begin to 
think realistically about mathematics requirements 
of various university majors. Since most majors out- 
side the humanities will necessitate at least some 
mathematics at a technical level rarely achieved in 
the typical two-year college mathematics apprecia- 
tion course, an important service of this course can 
be to channel these students back into regular se- 
quence mathematics courses. 

Without violating the spirit of a mathematics appre- 
ciation course, it is possible to include a topically orga- 
nized unit requiring the review and use of elementary 
algebra and graphing techniques; this may give the stu- 
dent a successful experience in doing mathematics that 
serve as encouragement to return to regular sequence 
mathematics courses. (A linear programming unit, for 
example, requires the students to review or acquire facil- 
ity with graphing and algebra techniques. Many of the 
topics suitable for a mathematics appreciation course 
can be handled in this way.) Students with the experi- 
ence will frequently place higher in the sequence courses 
than they would have upon original enrollment, and will 
go on as solid, though late-blooming, students. 
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Reference Section 

Films 

Since students in mathematics appreciation courses 
frequently have little experience in sustaining interest in 
regular mathematics lectures, it is usually appropriate 
in these courses to  provide a variety of class activities. 
Films are a useful but under-utilized medium for mathe- 
matics instruction generally. They are especially useful 
for the mathematics appreciation course. 

The following selection of films about mathematical 
subjects features those that are suitable for lay audi- 
ences. (Distributor addresses are listed a t  the end of 
the list.) Further information on these and other films 
is available in the booklet Annotated Bibliography of 
Films and Videotapes for College Mathematics by David 
Schneider (M.A.A., 1980). 

A Non-Euclidean Universe. (1978; 25 Min; Color). Univer- 
sity Media. 

A Time for Change-The Calculus. (1975; 25 Min; Color) 
University Media. 

Accidental Nuclear War. (1976; 8 Min; Color) Pictura 
Film. 

Adventures in Perception. (1973; 22 Min; Color) BFA Ed- 
ucational Media. (Reviews: Amer. Math. Monthly 84 
(1977) 582.) 

An Historical Introduction to Algebra. Modern Film 
Rentals. 

An Introduction to Feedback. (1960; 11 Min; Color) Ency- 
clopedia Britannica Educational Corporation. 

Anatomy of Analogy. (25 Min; BW) Open University. 
Area and Pi. (1969; 10 Min; Color) Modern Film Rentals. 
Auto Insurance. (1976; 8 Min; Color) Pictura Film. 
Caroms. (1971; 9 1/2 Min; Color) International Film Bu- 

reau. (Reviews: Amer. Math. Monthly 82 (1975) 417; 
Math Teacher 66 (1973) 51.) 

Centml Perspectivities. (1971; 13 1/2 Min; Color) Interna- 
tional Film Bureau. (Reviews: Amer. Math. Monthly 82 
(1975) 419; Math. Teacher (1972) 733.) 

Centml Similarities. (1966; 10 Min; Color) International 
Film Bureau. (Reviews: Amer. Math. Monthly 82 (1975) 
418; Math. Teacher (1972) 643-644.) 

Challenge in the Classroom. (1966; 55 Min; Color) Modern 
Film Rentals. 

Circle Circus. (1979; 7 Min; Color) International Film Bu- 

Common Generation of Conics. (4 Min; Color). Educa- 

Complez Numbers. (1978; 25 Min; Color). University Me- 

Computer Perspective. (1972; 8 Min; Color) Pyramid 

reau. 

tional Solutions. 

dia. 

Films. 

Congruent Triangles. (1978; 7 Min; Color). International 
Film Bureau. 

Conic Sections. (1968; 11 Min; Color) :BFA Educational 
Media. 

Conics. (1979; 10 Min; Color) Wards ]Modern Learning 
Aids. 

Conics. (1978; 25 Min; Color). University Media. 
Constructing an Algorithm. (25 Min; BW) Open Univer- 

Cosmic Zoom. McGraw-Hill Films. 
Curves. (1968; 17 Min; Color) A.I.M.S. (Reviews: Amer. 

Math. Monthly 83 (1976) 71-72; Math. ‘reacher 64 (1971) 
525.) 

Curves of Constant Width. (1971; 16 Min; Color) Interna- 
tional Film Bureau. (Reviews: Amer. Math. Monthly 78 
(1971) 539; Math. Teacher 65 (1972) 234.) 

Cycloidal Curves or Tales From the Wanklenberg Woods. 
(1974; 22 Min; Color) Modern Film Rentals. 

Dance Squared. (1963; 4 Min; Color) International Film 
Bureau. Review: Math. Teacher 64 (1971) 627.) 

Dihedral Kaleidoscopes. (1966; 13 Min; Cador) International 
Film Bureau. (Review: Math. Teacher 66 (1973) 51.) 

Dimension. (1970; 13 Min; Color) A.I.M.S. (Reviews: 
Amer. Math. Monthly 83 (1976) 71-72; Math. Teacher 
64 (1971) 525.) 

Donald in Mathmagicland. (1960; 26 Min; Color) Walt Dis- 
ney Educational Media Company. 

Dr. Posin’s Giants: Isaac Newton. Indiana University Au- 
diovisual Library. 

Dragon Fold ... And Other Ways to Fill Space. (1979; 7 1/2 
Min; Color) International Film Bureau. 

Equidecomposable Polygons. (10 1/2 Min; Color) Interna- 
tional Film Bureau. (Reviews: Amer. Math. Monthly 82 
(1975) 687-688; Math. Teacher 65 (1972) 734.) 

Errors That Die. (25 Min; BW) Open University. 
Flatland. (1965; 12 Min; Color) McGraw-Hill Films. (Re- 

view: Math. Teacher 64 (1971) 44-45.) 
Functions and Graphs. (1978; 25 Min; Color) University 

Media. 
Geodesic Domes: Math Raises the Roof. (1979; 20 Min; 

Color) David Nulsen Enterprises. 
Geometric Vectors-Addition. (1971; 17 lain; Color) Inter- 

national Film Bureau. (Review: Amer. Math. Monthly 
82 (1975) 420.) 

Geometry: Inductive and Deductive Reaaroning. (1962; 12 
1/2 Min; Color) Coronet Films. 

Good for  What? (25 Min; BW) Open University. 
Gottingen and New York. (1966; 43 Min; Color) Modern 

How Far is Around? (1979; 7 1/2 Min; Color) International 

sity. 

Film Rentals. 

Film Bureau. 
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Inferential Statistics, Part  I: Sampling and Estimation. 
(1977; 19 Min; Color) Media Guild. 

Inferential Statistics, Part  IZ: Hypothesis Testing. (1977; 25 
Min; Color). Media Guild. 

Infinity. (1972; 17 Min; Color) A.I.M.S. (Review: Amer. 
Math. Monthly 83 (1976) 71-72.) 

Inversion. (12 Min; Color) International Film Bureau. 
(Reviews: Amer. Math. Monthly 83 (1976) 71; Math. 
Teacher (1972) 644.) 

Isaac Newton. (1959; 13 112 Min; Color) Coronet Films. 
Isn’t That the Limit! (1980; 17 Min; Color) David Nulsen 

Enterprises. 
Isometries. (1967; 26 Min; Color) International Film Bu- 

reau. (Review: Math. Teacher 66 (1973) 51-52.) 
Iteration and Convergence. (1978; 25 Min; Color) University 

Media. 
John won Neumann, A Documentary. (1966; 63 Min; BW) 

Modern Film Rentals. (Review: Amer. Math. Monthly 
75 (1968) 435.) 

Journey to the Center of a Triangle. (1977; 8 112 Min; 
Color) International Film Bureau. 

Let Us Teach Guessing. (1966; 61  Min; Color) Modern Film 
Rentals. (Review: Amer. Math. Monthly 75 (1968) 219.) 

Limit Curves and Curves of Infinite Length. (1979; 14 Min; 
Silent; Color) International Film Bureau. 

Limit Surfaces and Space Filling Curves. (1979; 10 112 Min; 
Silent; Color) International Film Bureau. 

Limits. (25 Min; BW) Open University. 
Linear Programming. (1969; 9 Min; Color) Macmillan 

Films. 
Look Again. (1970; 15 Min; Color) A.I.M.S. (Reviews: 

Amer. Math. Monthly 83 (1976) 71-72; Math. Teacher 
64 (1971) 525.) 

Love Song. (1976; 11 Min; Color) Pictura Film. 
Mathematical Curves. (1977; 10 Min; Color) Churchill 

Films. 
Mathematical Induction. (1960; 62 Min; Color) Modern 

Film Rentals. 
Mathematical Induction. (1978; 25 Min; Color) University 

Media. 
Mathematical Peep Show. (1961; 11 Min; Color) Encyclope- 

dia Britannica Educational Corporation. (Review: Math. 
Teacher 64 (1971) 625.) 

Mathematician and the River. (1959; 19 Min; Color) No 
distributor. 

Mathematics of the Honeycomb. (1964; 13 Min; Color) 
Moody Institute of Science. (Review: Math. Teacher 64 
(1971) 334.) 

Matrices. (9 Min; Color) Macmillan Films. 
Matrioska. Indiana University Audiovisual Library. 
Maurits Escher, Painter of Fantasies. (1970; 26 112 Min; 

Color) Coronet Films. (Review: Amer. Math. Monthly 
83 (1976) 495.) 

Mean, Median, Mode. McGraw-Hill Films. 
Modelling Drug Therapy. (1978; 25 Min; Color). University 

Media. 

Modelling Pollution. (1978; 25 Min; Color). University Me- 

Modelling Surveys. (1978; 25 Min; Color). University Me- 

Modmath. (14 112 Min; Color) International Film Bureau. 
Mr. Simplez Saves the Aspidistra. (1966; 33 Min; Color) 

Modern Film Rentals. 
Networks and Matrices. (1978; 25 Min; Color) University 

Media. 
New Worlds From Old. (1975; 25 Min; Color) University 

Media. 
Newton’s Equal Area .  (1968; 8 Min; Color) International 

Film Bureau. (Reviews: Amer. Math. Monthly 79 (1972) 
1054; Math. Teacher 63 (1970) 449.) 

Nim and Other Oriented Graph Games. (1966; 63 Min; BW) 
Modern Film Rentals. 

Notes on a Triangle. International Film Bureau. (Review: 
Math. Teacher 63 (1970) 363.) 

Numbers Now and Then. (1975; 25 Min; Color) University 
Media. 

Orthogonal Projection. (1965; 13 Min; Color) International 
Film Bureau. (Reviews: Amer. Math. Monthly 82 (1975) 
419-420; Math. Teacher (1972) 643.) 

dia. 

dia. 

Paradoz Boz. Scientific American. 
Pits, Peaks, and Passes (Part 1). 

Plateau’s Problem. A Film by Sr. Rita Ehrmann. 
Points of View: Perspective and Projection. (1975; 25 Min; 

Color) University Media. 
Possibly So, Pythagoras. (1973; 14 Min; Color). Interna- 

tional Film Bureau. (Review: Math. Teacher 64 (1971) 
626.) 

Powers of Ten. (1978; 9 Min; Color) Pyramid Films. (Re- 
view: Math. Teacher (1979) 388.) 

Predicting at Random. (1966; 43 Min; Color) Modern Film 
Rentals. 

Probability. (12 Min; Color) McGraw-Hill Films. 
Professor George Po’lya and Students, Parts I and 11. (1972; 

60 Min; Color) University Media. 
Professor George Po’lya Talks to Professor Mazim Bruck- 

beimer. (1972; 60 Min; Color) University Media. 
Projective Generation of Conics. (16 Min; Color) Interna- 

tional Film Bureau. (Reviews: Amer. Math. Monthly 82 
(1975) 538-539; Math. Teacher 66 (1973) 51.) 

Quaterniona: A Herald of Modern Algebra. (1975; 25 Min; 
Color) University Media. 

Rational Numbers and the Square Root of 2. (1978; 25 Min; 
Color) University Media. 

Regular Homotopies in the Plane: Part  I: (1975; 14 Min; 
Color); Part  II: (1975; 18 112 Min; Color) International 
Film Bureau. (Review: Amer. Math. Monthly 85 (1978) 
212. 

Root Two: Geometry o r  Arithmetic? (1975; 25 Min; Color) 
University Media. 

Sampling. (25 Min; BW) Open University. 

(1966; 48 Win; Color) 
Modern Film Rentals. 
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Sets, Crows, and Infinity. (12 Min; Color) BFA Educational 
Media. 

Shaking the Foundations. (1975; 25 Min; Color) University 
Media. 

Shapes of the Future: Some Unsolved Problems in Geome- 
try: Part Z: T w o  Dimensions (1975; 22 Min; Color); Part 
ZZ: Three Dimensions (1970; 21 Min; Color) Modern Film 
Rentals. (Review: Amer. Math. Monthly 79 (1972) 1052- 
1053.) 

Sierpinski’s Curve Fills Space. (1979; 4 1/2 Min; Color) 
International Film Bureau. 

Similar Triangles. (1976; 7 1/2 Min; Color) International 
Film Bureau. 

Space Filling Curves. (1975; 25 1/2 Min; Color) Interna- 
tional Film Bureau. (Review: Math. Teacher 69 (1976) 
164-165.) 

Sphere Eversions. (1979; 7 1/2 Min; Silent; Color) Interna- 
tional Film Bureau. 

Spheres. International Film Bureau. 
Statistics A t  A Glance. (1972; 28 Min; Color) Media Guild. 

Statistics and Probability Z. (15 Min; BW) Open University. 
Statistics and Probability ZZ. (25 Min; BW) Open Univer- 

sity. 
Statistics and Probability ZZZ. (25 Min; BW) Open Univer- 

sity. 
Symbols, Equations and the Computer. (1978; 25 Min; 

Color) University Media. 
Symmetries of the Cube. (1971; 13 1/2 Min; Color) Inter- 

national Film Bureau. (Review: Math. Teacher 65 (1972) 

The Algebra of the Unknown. (1975; 25 Min; Color) Univer- 
sity Media. 

T h e  Binomial Theorem. (1978; 25 Min; BW) University 
Media. 

The Butterfly Catastrophe. (1979; 4 1/2 Min; Silent; Color) 
International Film Bureau. 

The Delian Problem. (1975; 25 Min; Color) University Me- 
dia. 

The Dot and the Line. Indiana University Audiovisual Li- 
brary. 

The Geometry Euclid Didn’t Know. (1979; 16 Min; Color) 
David Nulsen Enterprises. (Reviews: Amer. Math. 
Monthly 86 (1979) 600; Math. Teacher (1979) 300.) 

The Great Art-Solving Equations. (1975; 25 Min; Color) 
University Media. 

The Hypercube: Projections and Slicing. (1978; 12 Min; 
Color) Banchoff-Strauss Productions. 

The Kakeya Problem. (1962; 60 Min; Color) Modern Film 
Rentals. 

The Majestic Clockwork. (1974; 52 Min; Color) Time Life 
Multimedia. 

The Marriage Theorem, Parts Z Ei ZZ. (1974; 46 Min. and 
47 Min; BW) Modern Film Rentals. 

The Music of the Spheres. (1974; 52 Min; Color) Time Life 
Multimedia. 

(Review: Amer. Math. Monthly 82 (1975) 312.) 

733.) 

The Nature of Digital Computing. (25 Min; BW) University 

The Perfection of Matter. McGraw-Hill Films. 
The Search for  Solid Ground. (1963; 62 Min; BW) Modern 

The Seven Bridges of Ko’nigsberg. (1965; 4 Min; Color) In- 

The Structure of a Computer. (25 Min; BNW) Open Univer- 

Topology. (1972; 9 Min; Color) Macmillari Films. 
Topology. (1966; 30 Min; BW) Modern Film Rentals. (Re- 

view: Amer. Math. Monthly 75 (1968) 790.) 
Topology: Some Historical Concepta. (2:L 3/4 Min; Color) 

Richard Cline Film Productions. 
Trio for  Three Angles. (8 Min; Color) International Film 

Bureau. 
Turning a Sphere Inside Out. (1976; 23 Min; Color) Inter- 

national Film Bureau. (Reviews: Amer. Math. Monthly 
86 (1979) 511-512; Math. Teacher 70 (1977) 55.) 

View From the People Wall. (1964; 14 lain; Color) Ency- 
clopedia Britannica Educational Corporation. 

Weather by the Numbers. University of Indiana Audiovisual 
Library. 

What is a Limit? (25 Min; BW) Open University. 
What is a Set? Part Z El ZZ. (1967; 15 Min; Color) Modern 
Film Rentals. (Review: Amer. Math. Monthly 75 (1968) 
324.) 

What i s  Mathematics and How Do W e  Teach i t?  (1966; 60 
Min; BW) Modern Film Rentals. 

Zooms on  Self-Similar Figures. (1979; 8 Min; Color) Inter- 
national Film Bureau. 

Media. 

Film Rentals. 

ternational Film Bureau. 

sity. 

ADDRESSES OF DISTRIBUTORS: 
A.I.M.S., 626 Justin Avenue, Glendale, CA 91201. 
International Film Bureau, 332 South Michigan Avenue, 

McGraw-Hill Films, McGraw-Hill Book Company, 330 West 

Modern Film Rentals, 2323 New Hyde Park Road, New 

Moody Institute of Science, 12000 East Washington Boule- 

Indiana University Audiovisual Library, Bloomington, IN 

Ward’s Modern Learning Aids Division, P.O. Box 1712, 

University Media, 118 South Acacia, Box 881, Solana Beach, 

Pyramid Films, P.O. Box 1048, Santa Monica, CA 90406. 
Educational Solutions, Inc., 80 Fifth Avenue, New York, NY 

Banchoff-Straws Productions, Inc., P.O. Box 2430, East 

Macmillan Films, Inc., 34 MacQuesten Parkway South, Mt. 

Encyclopedia Britannica Educational Corporation, 425 

Chicago, IL 60604. 

42nd Street, New York, NY 10036. 

Hyde Park, NY 11040. 

vard, Whittier, CA 90606. 

47401. 

Rochester, NY 14603. 

CA 92075. 

10011. 

Side Station, Providence, RI  02906. 

Vernon, NY 10550. 

North Michigan Avenue, Chicago, IL 60611. 
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David Nulsen Enterprises, 3211 Pic0 Boulevard, Santa Mon- 

The Media Guild, 118 South Acacia, Box 881, Solana Beach, 

Coronet Films, 65 East South Water Street, Chicago, IL 

Pictura Film Co., 111 8th Avenue, New York, NY 10011. 
BFA Educational Media, 2211 Michigan Avenue, P.O. Box 

Time-Life Multimedia, Time and Life Building, New York, 

Churchill Films, 662 North Robertson Boulevard, Los An- 

Walt Disney Educational Media Company, 500 South Buena 

Contemporary-McGraw Hill Films, 1221 Avenue of the 

ica, CA 90405. 

CA 92075. 

60601. 

1795, Santa Monica, CA 90406. 

NY 10020. 

geles, CA 90069. 

Vista Street, Burbank, CA 91521. 

Americas, New York, NY 10020. 

Classroom Aids 

Certain topics treated in mathematics appreciation 
courses are particularly amenable to  demonstration 
with physical or geometric devices. Useful exhibits can 
often be seen at NCTM meetings. A list of major sup- 
pliers of mathematics classroom devices is given below: 

The Math Group, Inc., 396 East 79th Street, Minneapolis, 

Unique puzzles and card games. Designed for elemen- 
tary school enrichment, many are flexible enough to be 
of interest to adults as well. 

Lano Company, 9001 Gross Road, Dexter, MI 48130. (313- 

Mathematical visual aids (solids, transparencies, graph- 
ing aids) together with various games and probability 
models. 

A full range of curriculum enrichment material for ele- 
mentary, junior and senior high school mathematics. In- 
cludes several games and puzzles of use in introductory 
college mathematics. 

International Film Bureau, Inc., 332 South Michigan Av- 
enue, Chicago, IL 60604. 

The major American distributor of mathematics films. 
The current list includes nearly 50 films a t  the high school 
and college level, each of which may be either purchased 
or rented. 

(216-426- 

Two unique geometric construction sets for plane and 
solid geometry. 

of America, Inc., 12 Church Street, New 

Sensory apparatus designed for elementary schools, some 
of which (e.g., geoboards, polyhedral structures) would 
be suitable to courses in mathematics appreciation. 

MN 55420. 

426-4860). 

Math Shop, Inc., 5 Bridge Street, Watertown, MA 02172. 

Yoder Instruments, East Palestine, OH 44413. 
3612; 216-426-9580). 

Cuisenaire Co. 
Rochelle, NY 10805. 

LaPine Scientific Company, Department B43, 6005 South 
Knox Avenue, Chicago, IL 60629; 373 Chestnut Street, 
Norwood, NJ 07648; 920 Parker Street, Berkeley, CA 
94710; Box 95, Postal Station U., Toronto, Canada M8Z 
5M4. 

An extensive offering of models, teaching aids, games, 
and audio-visual materials for elementary, high school 
and beginning college mathematics. Mathematics cata- 
logue exceeds 100 pages. 

Geyer Instructional Aids Co., Inc., P.O. Box 7306, Fort 

A large collection of models, games, books and classroom 
aids for high school and elementary college courses. 

Creative Publications, 3977 East Bayshore Road, P.O. Box 

An attractive 100-page catalogue of mathematical books, 
models, games, posters, construction sets, and puzzles 
for all grade levels. The premier source for mathematics 
enrichment material. 

Inquiry Audio-Visuals, 1754 West Farragut Avenue, 

Filmstrips and transparencies for high school algebra t o p  
ics. 

Transparencies and games for algebra, geometry, calculus 
and statistics. 

W.H. Freeman and Company, 660 Market Street, San Fran- 
cisco, CA 94104. 

Wayne, IN 46807. 

10328, Palo Alto, CA 94303. (415-968-3977). 

Chicago, IL 60640. 

Educational Audio Visual, Inc., Pleasantville, NY 10570. 

Offprints of Scientific American articles. 
David Nulsen Enterprises, 3211 Pic0 Boulevard, Santa Mon- 

Three 15-minute, 16mm color films (“Curves,” “Dimen- 
sion,” “Look Again”) for rent or purchase. 

Popular Science Audio-Visuals, Inc., 5235 Ravenswood Av- 

Filmstrips and overhead transparencies, principally in 
high school mathematics (geometry, algebra, elementary 
functions). 

Time Life Films, 43 West 16th Street, New York, NY 10011. 

Numerous BBC-produced 20-minute 16mm B & W films 
on topics ranging from inequalities to matrices. 

Edmund Scientific Company, 1985 Edscorp Building, Bar- 

ica, CA 90405. 

enue, Chicago, IL 60640. 

(212-691-2930). 

rington, NJ 08007. (609-547-3488). 
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