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Problem Solving Strategy Essay # 7: 

Perseverance is Key  

James Tanton, PhD, Mathematics, Princeton 1994; MAA Mathematician in Residence 
*** 

Teachers and schools can benefit from the chance to challenge students with interesting 
mathematical questions that are aligned with curriculum standards at all levels of difficulty. 

(From  www.maa.org/math-competitions.)  
This is the seventh Problem Solving Strategy Essay to illustrate how to do this within curriculum and daily classroom-practice 
demands. 
 
Ask any scientist or mathematician what it takes to make true, significant progress with a research question, and most often 
the answer is tenacity, patience, perseverance, deep care and consistency of thought, the confidence to learn from false leads 
(which means one must follow leads, even the false ones!), and plugging on day after day, week after week, month after 
month. One does this until a story of some kind emerges, even if that story goes against preconceived notions! 

 
What impression do we give students on the matter of mathematical pursuit? Answers are pre-known (they’re in the back of 
the book); speed is important (quizzes, tests, exams are all timed); and the path of one’s learning is linear and to follow a pre-
described path. We give the impression that mathematics is “pre-set” enterprise with a goal of mastery of skill. Much of this 
structure is appropriate and necessary for classroom work – there are skill sets we want students to master – but the national 
STEM initiative asks for more. We must plant the seeds of thinking needed for the true pursuit of the sciences and 
mathematics.  
 
In this essay, we work on one particularly scary and complex question. The big message/theme is PERSEVERANCE! 

 
A single MAA AMC Question for the Classroom: 
One way to model tenacity and perseverance for our students is to make intentional use those occasional five- or ten-minute 
loose moments at the end of a class. Use them for a multi-week conversation!  
Start with the MAA AMC question on the next page. Share it and start simply by asking for initial reactions, nothing more. This 
models the very important, first step to problem solving:  
 

 

STEP 1: Read the question, have an emotional reaction to it, take a deep breath,  

and reread the question. Have another emotional reaction. 
 

 

http://www.maa.org/math-competitions
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Later write the question on poster-board and pin it up on the classroom wall. Let students mull on the question themselves 
over the following days, and pick up class discussion on the topic only when the next task-free moment happens to occur. 
Really do let this one mathematical investigation extend over weeks. Model the research experience! 

 
Record conversation thoughts and results on the poster too. That is, put the organic process of mathematic thinking on full, 
joyous display.) At the end, organize those thoughts into one clean, swift, elegant, pride-full presentation of ideas. 

OUR CHALLENGE TODAY 
Here it is: Question 25 from the 2011 MAA AMC 10A 
competition. It is the final question, which means the 
competition designers themselves consider it to be mighty 
challenging!  
 

Let R be a square region and 4n  an integer. A 
point X  in the interior of R  is called n -ray 
partitional if there are n rays emanating from X  
that divide R  into n  triangles of equal area. How 

many points are 100 -ray partitional but not 60 -ray 
partitional? 

 

 
WHOA!  
 

Here is how a multi-week discussion might evolve. (Don’t 
force this particular sequence of thoughts. Let the give-
and-take of conversation with your students dictate your 
class’s flow of ideas, false leads and all.)  

 
THE FIRST FIVE/TEN-MINUTE CLASSROOM 
MOMENT: 
Let the first experience be one of acknowledging emotions 
and reactions as per step 1. Truly honor those emotions by 
writing them on the poster-board. (Their validation really is 
the key first step to making progress.) 
  
My emotional reaction was “WHOA!”  
Other reactions might be:  
 

 “Yick!”         “Oh heavens.”    
  

“I don’t have a clue what any of it means.”       
 

“Who cares?”      “Scary.”    
 

“Who invents such things to torture students?”    
 

“Will this be a question on our test?”   
 

“I’m up for it. Bring it on! (But honestly I have no 
idea what to do!)”  

THE NEXT FEW FIVE/TEN-MINUTE 
CLASSROOM MOMENTS: 
 
Maybe a week has gone by and nerves have calmed a little. 
We might be ready to attempt the question.  
 
STEP 2: Reread the question. Try to make 

sense of some of the words in the 

question. Perhaps draw a picture. 
 

 
As we saw in ESSAY 4 we saw that drawing a picture is a 
powerful problem-solving technique. It seems the natural 
thing to do here. 
 
Let’s draw as we go through the question making sure we 
understand the words and ideas we encounter. (Or not - 
we are allowed to skip any parts that seem too scary. It is 
okay to be human!) 
 

Let R be a square region and 4n  an integer. 
 
Okay we have a square: 

 
 

A point X  in the interior of R ...   
 
and a point inside. 
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     … is called n -ray partitional if there are n rays 
emanating from X  that divide R  into n  triangles of 
equal area … 
 

Oh scary!  Deep breath. 
 
Parts of this make some kind of sense. We have “rays” – I 
guess that just means lines – coming from X making 
triangles.  
 
There is some extra detail about area.  
 
So our job, basically, is to draw lines from X  and make 
triangles.  
 

 
Notice that we need the four lines that connect X  to each  
corner of the square. That feels important-ish (maybe). 
 
…that divide R  into n  triangles of equal area. 
 
Okay, we want all the triangles we make to have the same 
area. 
 

How many points are 100 -ray partitional but not 60 -ray 
partitional? 
 
That’s too scary for me to think about! Let’s ignore it. (Yep. 
I am human!) 
 
Righteo. So we’ve gotten to the point that we know that  
“ n -partitional” is about n  lines (rays) coming from the 
point making triangles of equal area.  
 
I don’t know why, but I feel like asking: If there are n  lines, 
are there also n triangles? 

 
 
 
 
 

THE NEXT FEW FIVE/TEN MINUTE 
CLASSROOM MOMENTS: 
 
Continuing to ignore the scary part of the question, let’s 
ask:  
 
   What feels significant about the set-up of the problem?  
 
We might all answer:  
 
    That the triangles we make have the same area. 
 

This suggests another problem-solving strategy: 
 
List all that you know that could be 

relevant to the issue at hand. 

 

 

What do we know about the areas of triangles? Certainly:  
1

2
area base height   . 

(We might also know some more sophisticated formulas: 

 1 / 2 sinA ab   or Heron’s formula, 

   A s s a s b x c    , but it feels unlikely we would 

want to analyse angles in these triangles or their individual 
perimeters.) 
 
Okay, one piece of information. Not much to play with. Oh 
well. 
 
Can we glean anything from this formula for the triangles 
we have?  
 
Look at two neighboring triangles. They are meant to have 
the same area.  

 
 
Epiphany: Two triangles with bases on the same side of the 
square have the same height. To have the same area, they 
must also have the same base length. 
 
(Well, it kind of feels like an epiphany.) 
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In fact, all the triangles on any one side of the square have 
the same height, and so all must have the same base 
lengths! 

 
This definitely feels important! 
 

Common Core Connection:  
CCSS-M standard 6-G-1 asks students to find the areas of 

triangles and 7-G-6 has students analyze the areas of figures 

composed of triangles. (See the end of the essay for more on 

this!) 

 

THE NEXT SEVERAL FIVE/TEN-MINUTE 
CLASSROOM MOMENTS: 
 
It feels compelling to start naming things.  
 
We are meant to have n  triangles. Suppose we have a  

yellow triangles to the left, b  red triangles in the bottom 

section, c  blue triangles to the right, and d  pink triangles 
on top. Then: 
 

a b c d n     
 
I’d hate to introduce any more variables into the problem 
(we’ve already got five!) I suppose we could call the side-
length of the square s , but would it hurt to assume that 
we’re dealing with a square of side-length 1 unit?  
 

Common Core Connection:   
Suppose someone was thinking that the side-length was 

actually 8 inches.  

 

Fine. But let’s now declare a new unit of length called a 

“flooble,” with one flooble just happening to be a length of 

eight inches. In this setting, our square is now indeed 1 unit 

wide! (And if later we ever want to convert lengths back into 

inches, all we need do is multiply our answers in floobles by 

the scale factor of 8 . For example, a length of 3.5  floobles is 

a length of 28  inches.)   
 

There is thus no problem then in assuming that the side length 

of the square is 1 unit. 

 

This is a sophisticated way of thinking about ratio and 

proportion: “a change of unit is equivalent to a change of 

scale.” CCSS-M grade six and seven standards 6-RP and 7-RP 

address the topic of scale, ratio and proportions directly, but the 

idea mentioned here offers a sophisticated way for high-school 

students to revisit this topic. 

 
 
The a  yellow triangles each have the same base length. 

Since the square is 1 unit wide, this base length is 
1

a
.  

These yellow triangles also all have the same height. It 
seems another variable is inevitable.  
 
Let’s call the height of the yellow triangles x  (though, in 
our picture, this height is horizontal!). We might as well 
give the height of each red triangle a name as well, say y . 

 
Thankfully we don’t need any more names! The height of 

each blue triangle is 1 x  and each pink triangle 1 y . 

 
I’ve forgotten. Why are we naming things? 
 

Well, we never had a reason other than it felt like the thing 
to do. We’re still just trying to get a feel for things, seeing if 
anything leads to what seems like a meaningful path.  
We can link things back to our epiphany, which was all 
about areas. 
 
 Let’s write: 



               

           5   

 

 

1 1

2

1 1

2

1 1
1

2

1 1
1

2

yellowtriangle

red triangle

blue triangle

pink triangle

area x
a

area y
b

area x
c

area y
d

  

  

   

   

 

 
All these areas are meant to be equal in value. This gives us 
lots of algebra.  (Is that good or bad?)  
 
For example, the first and second areas being equal give 

x y

a b
  which says: 

a
x y

b
 .  

 
The second and fourth area formulas being equal will give 

an equation just for y , in terms of a , b , c  and d .  And 

from 
a

x y
b

  we could then find a formula for x . And so 

on. 
 
Before launching into this, let’s pause and ask:  
 
Do we want to get stuck in a morass of algebra? Would 
having formulas for x  and y  in terms of the numbers a , 

b , c  and d  be helpful? 

 
THE NEXT SEVERAL FIVE/TEN-MINUTE 
CLASSROOM MOMENTS: 
I am nervous wading through lots of equations with many 

symbols ( a , b , c , d , x , y  and n !). But I don’t see what 

else to do. 
 

When stuck, reread the question.  

 
I am reminded that we ignored the actual question part of 
the question!    
 

How many points are 100 -ray partitional but not 60 -ray 
partitional? 
 
This still feels scary. 

 

When stuck, do something!  

 

Okay, let’s just take one part of this, the “100 -ray 

partitional” piece. What would 100  rays look like?  (I am 
just doing something!)  
 

The obvious things to draw would be 25  rays in each 

section of the square, 25a  , 25b  , 25c  , 25d  , 
and have a completely symmetrical picture: 25 triangles of 
each colour.  
 
From 

     
yellowtriangle blue trianglearea area  

we get: 

  
1 1 1 1

1
2 25 2 25

x x     

 or 1x x  , and so 
1

2
x  .  

 
Also, the red and pink triangles having equal areas gives 

1y y  , and so 
1

2
y  .So for 25a b c d    , the 

point X  must be half way to the right and half way up. 
That is, X must be the center point of the square. Hmm. 
 

What if we tried some asymmetrical numbers: 10a  , 

20b  , 30c  , 40d  , perhaps?  
 
The equation:  

  
1 1 1 1

1
2 10 2 30

x x     

gives 
1

4
x   and the equation: 

   
1 1 1 1

1
2 20 2 40

y y     

 gives 
1

3
y  . (Check these!) The point X  is one-third over 

and one-quarter up. 
 

It seems that knowing the numbers , , ,a b c d  will pin down 

where the point X  has to be.  
 

How many points are 100 -ray partitional but not 60 -ray 
partitional? 
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There has to be something about the places for X  that 

work for “100” but don’t work for “ 60 .”  
I don’t want to keep trying random examples of numbers 

that add to 100  and/or 60 . I think we do need actual 
formulas for x  and y .  

 
Let’s do the algebra! 

 
THE NEXT SEVERAL/MANY FIVE/TEN-MINUTE 
CLASSROOM MOMENTS: 
Okay, we have the equations  
 

   

1 1 1 1

2 2

1 1 1 1
1 1

2 2

yellow red

blue pink

area x area y
a b

area x area y
c d

     

       

 

 
All four area formulas have the same value. 

To get a formula for x  we can use  
1 1 1 1

1
2 2

x x
a c
     . 

This reads cx a ax   and so: 
a

x
a c




. 

From  
1 1 1 1

1
2 2

y y
b d
     we get: 

b
y

b d



. 

 

While we are at it, from 
1 1 1 1

2 2
x y

a b
    we get 

x a

y b
 .  

Hang on! This is weird!  
 
We just worked out x  and y  so this reads:

 

a

aa c
b b

b d

 



 

and simplifying gives: 
 

 a c b d   .   (Check this!)  
 
Let’s keep setting two equations equal to each other and 
see what more we can learn. (This seems a neat thing to 
try!)  

 
Exercise: There are ten pairs of formulas to set equal to 
each other. (Why ten?). Check them all and verify that 
they yield the same information we already have. The 

remaining equations turn out to be redundant. (One 
doesn’t know this until one actually checks!)   

 
In summary we have: 

 

a
x

a c

b
y

b d

a c b d







  

 

 
We also shouldn’t forget: 
 

 a b c d n    . 
 
[Hang on! Didn’t everything work out in our example: 

10a  , 20b  , 30c  , 40d  ? Here a c  fails to 

equal b d . Do we not have triangles of equal area in this 
case after all? ] 

 
Common Core Connection: 
It is clear we are connecting with the CCSS-M high-school 

standards A-CED, creating equations, and A-REI, reasoning 

with equations and inequalities. 

 

THE NEXT SEVERAL/MANY FIVE/TEN-MINUTE 
CLASSROOM MOMENTS: 
So what? 
 

When stuck, reread the question.  
 

Okay …  
 

How many points are 100 -ray partitional but not 60 -ray 
partitional? 
 

If X  is 100 -partitional, what do we know? 
 
Well … 

 100a b c d     
 
and X  lies at the position with: 

 ,
a b

x y
a c b d

 
 

.  

 

We also know a c b d   . 
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If X  is 60 -partitional, what do we know? 
 
Well … 

 60a b c d     
 
and X  lies at the position with: 

 ,
a b

x y
a c b d

 
 

  

 

We also know a c b d   . 
 
The question wants us to count how many X s work for 

100a b c d     but not for 60a b c d    . 
Yeesh! 
 
I am stuck. 

 
THE NEXT SEVERAL/MANY FIVE/TEN-MINUTE 
CLASSROOM MOMENTS: 
The location of each possible point X  is given by fractions: 

,
a b

x y
a c b d

 
 

 

There infinitely many fractions. So “infinity” many points 

work for 100 , and “infinity” many points work for 60 , so 
the answer is “infinity minus infinity”? Yeesh! 
 
I am truly stuck. 

 
THE NEXT NUMBER OF  FIVE/TEN MINUTE 
CLASSROOM MOMENTS: 
Have we used everything we know?  
 
We’ve got: 

,
a b

x y
a c b d

 
 

 

We have: 100a b c d     (or 60  if we are looking at 
the other case). 
 

Have we used a c b d   ? 
 
Oooh!  

   

   

100

100

100

a b c d

a c b d

a c a c

   

   

   

 

We see 50a c b d    ! (and this is 30  in the 60 -ray 
case). Whoa! This gives:  
 

   If X  is 100 -ray partitional, then: 

      ,
50 50

a c
x y  . 

 

   If X  is 60 -ray partitional, then: 

      ,
30 30

a c
x y  . 

 
Only certain fractions work! We’re on to something! 
 

How many points work for the 100 -ray case? 
 
     “A point X  in the interior of R  is called …” 
 
The point X  must be inside the square. So the fraction 

50

a
x   must be strictly between 0  and 1. This means a  

can have any of the values 1,2,..., 49 . Similarly, for 

50

b
y  , the number b  can be any of the numbers 

1,2,.., 49 . 

 

There are 249 2401  possible locations for the point X  

in the 100 -ray case. 
 
Aside: To be logically solid we should establish that each 
of these 2401 possible locations is actually a valid 
option! For example, if we were told that X  lay at the 

position 
22 5

,
50 50

x y  , can we actually draw 100  

triangles of equal area? The answer is yes, because from 

these fractions we see 22, 28, 5, 45a b c d     

and we can verify the arithmetic to show all triangles are 
equal in area. (And one should generalise this argument 
as an abstract piece of algebra.)  

 

How many points work for the 60 -ray case? 
 

Here 
30

a
x   and 

30

c
y  . There are 229 841  possible 

locations for X  in the 60 -ray case. 
 
So are we essentially done? 
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How many points are 100 -ray partitional but not 60 -ray 
partitional? 
 
Oh dear. This is another twist! We want to know which of 

the 2401  points that work in the 100 -ray case don’t also 

work for the 60 -point case. How do we wrap our minds 
around that? 

 
THE NEXT NUMBER OF FIVE/TEN-MINUTE 
CLASSROOM MOMENTS: 
Which points in the square satisfying  

,
50 50

a c
x y     (1 , 49a c  ) are not also 

satisfying 

 ,
30 30

a c
x y     (1 , 29a c  )? 

 
I am worried about using the same symbols a  and c  in 
two different contexts. Let’s rewrite this: 

How many times do we have ,
50 50

a c
x y   with 

1 , 49a c  , but not ,
30 30

e f
x y   for  

1 , 29e f  ? 

 
I am also worried about the bad wording of this question! I 
just can’t wrap my mind around it! 
 
When stuck (and you are beyond 

rereading the question) take a step 

back: What is the general issue at 

hand? 

 
We have to count how many times one thing is happening 
while a second thing is not happening. What’s the best way 
to do that? 
 
Answer: Count the number of times the first thing is 
happening and subtract from that the number of times 
both happen! 
 

  Thing one: There are 2401 100 -ray points. 

  Thing two: There are 841 60 -ray points. 
 
How many are both?  

 
THE NEXT NUMBER OF FIVE/TEN-MINUTE 
CLASSROOM MOMENTS: 
We want the number of points X  with an x -value that 

can be written both as 
50

a
 for some 1 49a  , and as 

30

e
 for some 1 29e  . (And ditto for the y -

coordinates.)  That is, we need 
50 30

a e
  or: 

 
5

3
a e . 

 
Of the values 1,2,3,..., 29  for e only 3,6,9,..., 27  are 

multiples of three. And for each of these 
5

3
e  is still less 

than or equal to 49 .  So 
50 30

a e
  happens nine times. 

(With 3,6,9,..., 27e  .) 

 

For the y -values we want 
50 30

c f
 , and this happens 

nine times as well. 
 

Thus there are 9 9 81   points X  for which x  and y  

each correspond to the coordinates of a 100 -ray point and 

a 60 -ray point.  
 
We can finally, after all these months, answer the 
question! 
 

There are 2401 81 2320   points inside a square that 

are 100 -ray partitional, but not 60 -ray partitional! 
 

Common Core Practice Standards: 
Oh boy! We have certainly hit the mark on a good 
number of practice standards! 

1. MP1: Make sense of problems and persevere in solving 
them. 

2. MP2: Reason abstractly and quantitatively. 
3. MP3: Construct viable arguments and critique the 

reasoning of others. 
4. MP4: Model with mathematics. 
5. MP5: Use appropriate tools strategically. 

MP7: Look for and make use of structure. 
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ON THE AREA OF A TRIANGLE: 

The formula 
1

2
A base height  for the area of a triangle 

is discussed in the middle-school curriculum and is often 
dubbed as “known” and “obvious” by high-school students. 
(After all, they have been using it for years!)  
 
The formula is easily seen as true if the altitude of triangle 
(line of height) lies in the interior of the triangle: 

 

 
 
The trouble is that it is not at all obvious the formula holds 
for all types of triangles.  

 
 
 
 
 

 
Consider the obtuse triangle shown. If I insist on regarding 

the side labeled “b ” as the base of the triangle, does the 

formula 
1

2
area bh  hold ?  

 
A common student response to this is: 
 

“Just don’t use the side labeled b  as the base! Use the 
longest side of the triangle instead and you’ll be okay. (The 
height of the triangle is then inside the triangle.)”  
 
Fair enough! 

But of course “
1

2
area bh ” is valid in all contexts. (See 

the video http://www.jamestanton.com/?p=1271 if you 
are interested in the proof.)  But it is hard to believe! 
 
On an intuitive level, do you personally feel that each and 
every triangle in the picture below has the same area? 
Truly? Even one that goes out forty-thousand miles to the 
right and the triangle is nothing more than the merest of  
slivers? (Each triangle has the same base and the same 
height, and so the formula says the area is constant.)  
 

 
 

A QUESTION: Abigail and Beatrice are standing 20 

feet apart. Draw a diagram to show all the possible places 

Charlene could stand so that the triangle formed by the 

three girls has area 50 square feet. (Make sure you don’t 

have just half the answers!)   

 
 
 
 
 
 
 
 
 
 
Curriculum Inspirations is brought to you by the Mathematical Association of America and the MAA American Mathematics 

Competitions. 
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